—
IgH EtherCAT. ™ Master 1.5.2
Documentation

Dipl.-Ing. (FH) Florian Pose, fp@igh.de
Ingenieurgemeinschaft

Essen, 6 octobre 2025
Révision 1.6.8

Traduit en francais par Sébastien BLANCHET

fp@igh.de

i

1.6.8, 6 octobre 2025

Table des matieres

Conventions o

1 Le maitre EtherCAT IgH
1.1 Résumé des fonctionnalités
1.2 License

2 Architecture
2.1 Module Maitre e
2.2 Phases dumaitre
2.3 Données de processus e e e

3 Interface de Programmation Applicative (API)
3.1 Configuration du maitre
3.1.1 Configuration de l'esclave
3.2 Opération cycliqueo
3.3 Gestionnaires VoEo o
3.4 Acces concurrents au maitre
3.5 Horloges distribuéeso Lo

4 Interfaces Ethernet
4.1 Principes de base du pilote réseau L.
4.2 Les pilotes natifs pour périphériques EtherCAT
4.3 Le pilote de périphérique EtherCAT générique
4.4 Fourniture de périphériques Ethernet
4.5 Redondance
4.6 Interface de périphérique EtherCAT
4.7 Application de correctifs aux pilotes de réseau natifs

5 Automates finis
5.1 Théorie des automates finis L.
5.2 Le modele d’état du maitre
5.3 L’automate du maitre L Lo
5.4 L’automate d’analyse des esclaves
5.5 L’automate de configuration de I’état de 'esclave
5.6 L’automate de changement d’état
5.7 L’automate SIT
5.8 Les automates PDO

1.6.8, 6 octobre 2025

15
15
15
19
19
19
21

25
25
28
30
31
31
32
32

35
36
38
41
43
43
46
48
49

11

6 Implémentation du protocole de boite aux lettres 53

6.1 Ethernet over EtherCAT (EoE) 53
6.2 CANopen over EtherCAT (CoE) 56
6.3 Vendor specific over EtherCAT (VoE) 57
6.4 Servo Profile over EtherCAT (SoE) 59
7 Interfaces dans I'espace utilisateur 61
7.1 Outil en ligne de commande 61
7.1.1 Périphériques en mode caracteres 61
7.1.2 Parametre d’alias d’adresse L 62
7.1.3 Affichage de la configuration du bus 62
7.1.4 Sortie des informations PDO en langage C 63
7.1.5 Affichage des données de processus 63
7.1.6 Configuration du niveau de déverminage d’un maitre 64
7.1.7 Domaines configurés 64
7.1.8 Acces SDO e 65
7.1.9 Statistiques EoEo o 66
7.1.10 File-Access over EtherCAT 66
7.1.11 Création de graphiques topologiques 67
7.1.12 Maitre et périphériques Ethernet 68
7.1.13 Gestionnaires de synchronisation, PDOs et entrées PDO 68
7.1.14 Registre d’acceso 69
7.1.15 Dictionnaire SDO oo 70
7.1.16 Acces SSI 71
7.1.17 Esclavessurlebus 73
7.1.18 Acces IDN SoEo 74
7.1.19 Demande des états de la couche application 75
7.1.20 Affichage de la version du maitre 76
7.1.21 Génération de la description de l'esclave au format XML 76

7.2 Bibliotheque en espace utilisateur 76
7.2.1 Utilisation de la bibliotheque 7
7.2.2 Implémentation 7
723 Timing Lo 78

7.3 Interface RTDM 78
7.4 Intégration systeme Lo 79
7.4.1 Script d’initialisation o 0L 79
7.4.2 Fichier sysconfig Lo 80
7.4.3 Démarrage du maitre comme service 81
7.4.4 Intégration avec systemdo L 81

7.5 Interfaces de déverminageo 82
8 Aspects temporels 85
8.1 Profilage de 'interface de programmation applicative 85
8.2 Mesuredescyclesdubus o Lo 86

v 1.6.8, 6 octobre 2025

9 Installation
9.1 Obtention du logiciel
9.2 Construction du logiciel
9.3 Construction de la documentation de l'interface .
9.4 Installation du logiciel
9.5 Création automatique des noeuds de périphériques

Bibliographie
Glossaire

Index

1.6.8, 6 octobre 2025

89
89
89
91
92
93

95
97
99

vi

1.6.8, 6 octobre 2025

Liste des tableaux

3.1
5.1
7.1
8.1

9.1

Spécifier la position d'un esclave 17
Une table typique de transition d’état 37
Comparaison du timing des APT 78
Profilage d’un cycle d’application sur un processeur a 2.0 GHz 86
Options de configuration 90

1.6.8, 6 octobre 2025 Vil

viil 1.6.8, 6 octobre 2025

Table des figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3
5.4

2.5
2.6
5.7
5.8
2.9

Architecture du maitre 6
Plusieurs maitres dans un module 8
Phases et transitions du maitre 10
Configuration FMMU 13
Configuration du maitre 16
Attachement de la configuration des esclaves 18
Acces concurrent au maitre L. 20
Horloges distribuées 22
Opération avec interruption versus Opération sans interruption 29
Un diagramme typique de transition d’état 37
Diagramme de transition de I'automate du maitre 42
Diagramme de transition de I'automate d’analyse des esclaves 44
Diagramme de transition de 'automate de configuration de 1'état de

PVesclave 45
Diagramme de transition de 'automate de changement d’état 47
Diagramme de transition de 'automate SIT 48
Diagramme de transition de 'automate de lecture des PDO 49
Diagramme de transition de 'automate de lecture des entrées PDO . . 50
Diagramme de transition de 'automate de configuration des PDO . . . 51

5.10 Diagramme de transition de 'automate de configuration des entrées PDO 52

6.1
6.2

Diagramme de transition de 'automate EoE 55
Diagramme de transition de 'automate de téléchargement CoE 58

1.6.8, 6 octobre 2025 1X

Conventions

Conventions

Ce document utilise les conventions typographiques suivantes :

— Le texte en italique est utilisé pour introduire des nouveaux termes et pour les
noms de fichiers.

— Le texte a chasse fixe est utilisé pour les exemples de code et les sorties
des lignes de commandes.

— Le texte en gras a chasse fixe est utilisé pour les entrées utilisateurs dans
les lignes de commandes.

Les valeurs des données et des adresses sont habituelles spécifiées en valeurs hexadécimales.
Elles sont indiquées dans le style du langage de programmation C' avec le préfixe 0x
(par exemple : 0x88A4). Sauf mention contraire, les valeurs des adresses sont spécifiées

en adresse d’octets.

Les noms des fonctions sont toujours écrits avec des parentheses, mais sans parametre.
Ainsi, si une fonction ecrt_request_master() a des parentheses vides, ceci n’indique
pas qu’elle ne prend pas de parametres.

Les commandes shell a taper, sont indiquées par un prompt dollar :

$

Par ailleurs, si une commande shell doit étre tapée en tant que le super utilisateur, le
prompt est un diese :

#

X 1.6.8, 6 octobre 2025

1

Ce

Le maitre EtherCAT IgH

chapitre couvre les informations générales a propos du maitre EtherCAT.

1.1 Résumé des fonctionnalités

La

liste ci-dessous donne un bref résumé des fonctionnalités du maitre.

— Congu en tant que module noyau pour Linux 2.6 / 3.x.

— Implémenté suivant la norme IEC 61158-12 [2] [3].

— Fourni avec des pilotes natifs EtherCAT pour plusieurs périphériques Ethernet
courants, mais aussi avec un pilote générique pour toutes les puces Ethernet
supportées par le noyau Linux.

— Les pilotes natifs gerent le matériel sans interruption.

— Des pilotes natifs pour d’autres périphériques Ethernet peuvent étre facilement
implémentés en utilisant I'interface commune des périphériques (voir section 4.6)
fournie par le module maitre.

— Pour les autres matériels, le pilote générique peut étre utilisé. Il utilise les
couches basses de la pile réseau de Linux.

— Le module maitre supporte ’exécution en parallele de plusieurs maitres EtherCAT.

— Le code du maitre supporte n’importe quelle extension temps réel de Linux au
travers de son architecture indépendante.

— RTAI[11] (y compris LXRT via RTDM), ADEOS, RT-Preempt [12], Xenomai
(y compris RTDM), etc.

— Il fonctionne aussi sans extension temps réel.

— Une “API” commune pour les applications qui veulent utiliser les fonctionnalités
EtherCAT (voir chapitre 3).

— Des domaines sont ajoutés, pour permettre de grouper les transferts de données
des processus avec différents groupes d’esclaves et de périodes des taches.

— Gestion de domaines multiples avec différentes périodes de taches.

— C(Calcul automatique de la cartographie des données des processus, FMMU
et configuration automatique des gestionnaires de synchronisation au sein
de chaque domaine.

— Communication au travers de plusieurs automates.

— Analyse automatique du bus apres les changements de topologie.

— Surveillance du bus pendant les opérations.

— Reconfiguration automatique des esclaves (par exemple apres une panne
d’alimentation) pendant les opérations.

1.6.8, 6 octobre 2025 1

1 Le maitre EtherCAT IgH

— Support des horloges distribuées (Distributed Clocks)(voir section 3.5).
— Configuration des parametres d’horloges distribuées de I’esclave via I'interface
de I'application.
— Synchronisation (compensation du décalage et de la dérive) des horloges
distribuées des esclaves avec 1'horloge de référence.
— Synchronisation optionnelle de ’horloge de référence avec I’horloge maitre
ou dans l'autre sens.
— CANopen over EtherCAT (CoE)
— Téléversement, téléchargement et service d’information SDO.
— Configuration des esclaves via SDOs.
— Acces SDO depuis 'espace utilisateur et depuis I’application.
— Ethernet over EtherCAT (EoE)
— Utilisation transparente des esclaves EoE via des interfaces réseaux virtuelles.
— Support natif des architectures réseaux EoE commutées ou routées.
— Vendor-specific over EtherCAT (VoE)
— Communication avec les boites aux lettres spécifiques des vendeurs via
I’APIL.
— File Access over EtherCAT (FoE)
— Chargement et enregistrement des fichiers via I'outil en ligne de commande.
— La mise a jour du firmware de 1’esclave peut étre faite facilement.
— Servo Profile over EtherCAT (SoE)
— Implémentation conforme a IEC 61800-7 [16].
— Enregistrement des configurations IDN, qui sont écrites dans ’esclave pendant
le démarrage.
— Acces aux IDNs via l'outil en ligne de commande.
— Acces aux IDNs pendant I'exécution via la bibliotheque en espace utilisateur.
— Outil en ligne de commande “ethercat” dans ’espace utilisateur (voir section 7.1)
— Information détaillée a propos du maitre, des esclaves, domaines et configuration
du bus.
— Paramétrage du niveau de déverminage du maitre.
— Lecture/Ecriture des adresses d’alias.
— Listage des configurations des esclaves.
— Affichage des données des processus.
— Téléchargement /Téléversement SDO ; listage des dictionnaires SDO.
— Chargement et enregistrement de fichiers via FoE.
— Acces IDN SoE.
— Acces aux registres des esclaves.
— Acces a la SII (EEPROM) de esclave.
— Controle des états de la couche application.
— Génération de la description des esclaves au format XML et code C pour
les esclaves existants.
— Intégration systeme transparente au travers de la conformité LSB.
— Configuration du maitre et des périphériques réseaux via des fichiers sysconfig.
— Script d’initialisation pour le controle du maitre.

2 1.6.8, 6 octobre 2025

1.2 License

— Fichier de service pour systemd.
— Interface réseau virtuelle en lecture seule pour la surveillance et le déverminage.

1.2 License

Le code source du maitre est publiée selon les termes et conditions de la GNU General
Public License (GPL [1]), version 2. Les développeurs, qui veulent utiliser EtherCAT
pour les systemes Linux, sont invités a utiliser le code source du maitre ou méme a
participer a son développement.

Pour autoriser la liaison statique d’une application en espace utilisateur avec I’API
du maitre (voir chapitre 3), la bibliotheque pour 'espace utilisateur (voir section 7.2)
est publiée selon les termes et conditions de la GNU Lesser General Public License
(LGPL [5]), version 2.1.

1.6.8, 6 octobre 2025 3

1 Le maitre EtherCAT IgH

4 1.6.8, 6 octobre 2025

2 Architecture

Le maitre EtherCAT est intégré au noyau Linux. C’était une décision originelle de
conception, qui a été prise pour plusieurs raisons :

— Le code du noyau a des caractéristiques de temps réel significativement meilleures,
i. e. une latence plus faible que le code de ’espace utilisateur. Il était prévisible,
qu’un maitre pour un bus de terrain, ait beaucoup de travail cyclique a faire.
Le travail cyclique est habituellement déclenché par des interruptions de timer
dans le noyau. Le délai d’exécution d’une fonction qui traite une interruption
de timer est moindre si elle réside dans I’espace noyau, parce qu’il n’y a pas
besoin de passer du temps a commuter le contexte vers le processus en espace
utilisateur.

— 1l était prévisible, que le code du maitre doive communiquer directement avec
le matériel Ethernet. Ceci doit étre fait dans le noyau de toute fagon (au travers
des pilotes des périphériques réseau), ce qui constitue une raison supplémentaire
pour que le code du maitre soit dans I’espace du noyau.

La figure 2.1 fournit une vue d’ensemble de I'architecture du maitre.

Les composants de I’environnement du maitre sont décrits ci-dessous :

Master Module Module noyau contenant une ou plusieurs instances du maitre
EtherCAT (voir section 2.1), le “Device Interface” (interface du périphérique,
voir section 4.6) et I’“Application Interface” (interface de programmation applicative,
voir chapitre 3).

Device Modules Modules de pilotes de périphérique Ethernet supportant EtherCAT
qui offrent leurs périphériques au maitre EtherCAT via 'interface du périphérique
(voir section 4.6). Ces pilotes réseaux modifiés peuvent gérer en parallele les
interfaces réseaux utilisées pour les opérations EtherCAT et les interfaces réseaux
Ethernet “normales”. Un maitre peut accepter un périphérique particulier pour
envoyer et recevoir des trames EtherCAT. Les périphériques Ethernet déclinés
par le module maitre sont connectés comme d’habitude a la pile réseau du
noyau.

Application Un programme qui utilise le maitre EtherCAT (habituellement pour
un échange cyclique de données de processus avec les esclaves EtherCAT).
Ces programmes n’appartiennent pas au code du maitre EtherCAT !, mais ils
doivent étre générés ou écrits par I'utilisateur. Une application peut demander
un maitre via 'API (voir chapitre 3). Si la demande réussie, elle a alors le

1. Toutefois, il y a des exemples fournis dans le dossier ezamples/.

1.6.8, 6 octobre 2025 5

2 Architecture

0
[0
Q
L}
‘(‘Y’
2153\ §
Userspace e = s
Application § o [0}
® g' &
- J
—
[0}
Q
o] p—
o g
52 =
LXRT / Xenomai <23 2
Userspace 39 q . ‘
Application § %’- |g’~ ethercat
> a Tool
3
-
l
1
Userspace !
______________________________________ e
Kernelspace Character |
Device Device :
1
1
1
l
1
4 N e N . e !
Application Module EtherCAT Master Module Generic :
Ethernet X
Driver Module I
l
8 % i
5 > Master 1 & !
. 238 () |
=| X5 < !
D Q - Ie) 1
Task 38 Master 0 2 = :
=) o -—
@« [5) 1
s pd |
Generic S |
— Ethernet (= |
. Device !
Device |
L) L Interface VRN Y, J o
1
ecdev_* () [netif_* () :
| 1
| N
Native EtherCAT-capable Ethernet Driver Standard !
Ethernet Driver I
1
l
net_device net_device net_device :
1
1
1
1
1
__ .
Hardware |
NIC NIC NIC |
1
[[] [] !
O O O
EtherCAT Ethernet EtherCAT

FIGURE 2.1 — Architecture du maitre

1.6.8, 6 octobre 2025

2.1 Module Maitre

controle du maitre : elle peut fournir une configuration de bus et échanger
des données de processus. Les applications peuvent étre des modules noyaux
(qui utilisent directement 1I’API du noyau) ou des programmes dans ’espace
utilisateur, qui utilisent ’API via la bibliotheque EtherCAT (voir section 7.2),
ou la bibliotheque RTDM (voir section 7.3).

2.1 Module Maitre

Le module noyau du maitre EtherCAT ec_master peut contenir plusieurs instances
maitresses. Chaque maitre attend des périphériques Ethernet particuliers identifiés par
leurs adresses MAC. Ces adresses doivent étre spécifiées au chargement du module
via le parametre de module main_devices (et en option : backup_devices). Le nombre
d’instances maitresses a initialiser est défini par le nombre d’adresses MAC fournies.

La commande ci-dessous charge le module maitre avec une unique instance maitresse
qui attend un seul périphérique Ethernet dont I’adresse MAC est 00:0E:0C:DA: A2:20.
Le maitre sera accessible a 'index 0.

modprobe ec_master main devices=00:0E:0C:DA:A2:20

Pour plusieurs maitres, des virgules séparent les adresses MAC :

modprobe ec_master main devices=00:0E:0C:DA:A2:20,00:e0:81:71:d5:1c

Les deux maitres peuvent étre adressés par leurs indices respectifs 0 et 1 (voir figure 2.2).
L’index du maitre est requis par la fonction ecrt_request_master() de ’API (voir
chapitre 3) et par I'option --master de l'outil de commande en ligne ethercat (voir
section 7.1), qui vaut 0 par défaut.

Niveau de déverminage Le module maitre a aussi un parametre debug_level pour
configurer le niveau initial de déverminage pour tous les maitres (voir aussi sous-
section 7.1.6).

Script d’initialisation Dans la plupart des cas, il n’est pas nécessaire de charger

manuellement le module maitre et les modules des pilotes Ethernet. Un script d’initialisation

est disponible pour démarrer le maitre en tant que service (voir section 7.4). Un fichier
de service est aussi disponible pour les systemes qui sont gérés par systemd [7].

Syslog Le module maitre publie des informations a propos de son état et ses événement
dans le tampon circulaire du noyau. Elles aboutissent aussi dans les journaux systemes.
La commande de chargement du module devrait produire les messages ci-dessous :

1.6.8, 6 octobre 2025 7

2 Architecture

EtherCAT master module

FIGURE 2.2 — Plusieurs maitres dans un module

8 1.6.8, 6 octobre 2025

2.2 Phases du maitre

dmesg | tail -2
EtherCAT: Master driver 1.5.2
EtherCAT: 2 masters waiting for devices.

tail -2 /var/log/messages

Jul 4 10:22:45 ethercat kermnel: EtherCAT: Master driver 1.5.2

Jul 4 10:22:45 ethercat kernel: EtherCAT: 2 masters waiting
for devices.

Les messages du maitre sont préfixés par EtherCAT pour faciliter la recherche dans les
journaux.

2.2 Phases du maitre

Chaque maitre EtherCAT fourni par le module maitre (voir section 2.1) traverse
plusieurs phases au cours de son exécution (voir figure 2.3) :

Phase orpheline (Orphaned) Ce mode prend effet quand le maitre attend encore
pour se connecter a ses périphériques Ethernet. Aucune communication de bus
n’est possible pour l'instant.

Phase paresseuse (ldle) Ce mode prend effet quand le maitre a accepté tous
les périphériques Ethernet requis, mais qu’aucune application ne ’a encore
mobilisé. Le maitre exécute son automate (voir section 5.3), qui analyse automatiquement
le bus pour rechercher les esclaves et exécuter les opérations en attente depuis
'interface en espace utilisateur (par exemple les acces SDO). L’outil en ligne de
commande peut étre utilisé pour accéder au bus, mais il n’y a aucun échange
de donnée de processus parce que la configuration du bus est manquante.

Phase d’opération Le maitre est mobilisé par une application qui peut fournir
une configuration de bus et échanger des données de processus..

2.3 Données de processus

Cette section présente quelques termes et idées sur la maniere dont le maitre traite
les données de processus.

Image des données de processus Les esclaves présentent leurs entrés et sorties au
maitre au travers d’objet de données de processus “Process Data Objects” (PDOs).
Les PDOs disponibles peuvent étre déterminés en lisant les catégories SII TxPDO
et RxPDO de l'esclave depuis I'E?PROM (en cas de PDOs fixes) ou en lisant les
objets CoE appropriés (voir section 6.2), si disponibles. L’application peut inscrire les
entrées des PDOs pour ’échange pendant 'opération cyclique. La somme de toutes
les entrées PDO inscrites définit 1’“image des données du processus”, qui peut étre

1.6.8, 6 octobre 2025 9

2 Architecture

.\\ Device connection Master request
orphaned
Device disconnection Master release

FIGURE 2.3 — Phases et transitions du maitre

10 1.6.8, 6 octobre 2025

2.3 Données de processus

échangée via des datagrammes avec des acces mémoires “logiques” (comme LWR?,
LRD? ou LRW *) présentés dans [2, sec. 5.4].

Domaine de données de processus Les images des données de processus peuvent
étre facilement gérées en créant des “domaines”, qui permettent 1’échange de PDO
groupés. Ils s’occupent également de gérer les structures des datagrammes qui sont
nécessaires pour échanger les PDOs. Les domaines sont obligatoires pour 1’échange de
données de processus, donc il doit y en avoir au moins un. Ils ont été introduits pour
les raisons suivantes :

— La taille maximale d'un datagramme est limitée par celle d'une trame Ethernet.
La taille maximale des données est la taille du champ “données” d’Ethernet
moins 'entéte de la trame Ethernet, moins I'entéte du datagramme EtherCAT
et moins la terminaison du datagramme EtherCAT : 1500 —2 — 12 — 2 = 1484
octets. Si la taille de I'image des données de processus dépasse cette limite,
il faut envoyer plusieurs trames et partitionner I'image pour utiliser plusieurs
datagrammes. Un domaine gere cela automatiquement.

— Tous les PDOs n’ont pas besoin d’étre échangés a la méme fréquence : les
valeurs des PDOs peuvent varier lentement au cours du temps (par exemple
des valeurs de température), aussi les échanger a haute fréquence serait un
gaspillage de la bande passante du bus. Pour cette raison, plusieurs domaines
peuvent étre créés, pour grouper différents PDOs et ainsi séparer les échanges.

Il n’y a aucune limite supérieure pour le nombre de domaines, mais chaque domaine
occupe une FMMU ® dans ’esclave concerné, donc le nombre maximal de domaines
est en fait limité par les esclaves.

Configuration FMMU Une application peut inscrire des entrées PDO pour 1’échange.
Chaque entrée PDO et son PDO parent font partie d’'une zone mémoire dans la
mémoire physique de 'esclave, qui est protégée par un gestionnaire de synchronisation
(sync manager) [2, sec. 6.7] pour des acces synchronisés. Pour que le gestionnaire de
synchronisation réagisse a un datagramme qui accede a sa mémoire, il est nécessaire
d’accéder au dernier octet couvert par le gestionnaire de synchronisation. Sinon le
gestionnaire de synchronisation ne réagira pas au datagramme et aucune donnée
ne sera échangée. C’est pourquoi I'ensemble de la zone mémoire synchronisée doit
étre inclus dans I'image des données de processus : par exemple; si une entrée PDO
particuliere d'un esclave est inscrite pour I’échange avec un domaine particulier, une
FMMU sera configurée pour mapper toute la mémoire protégée par le gestionnaire de
synchronisation dans laquelle ’entrée PDO réside. Si une deuxieme entrée PDO du
méme esclave est inscrite pour ’échange de donnée de processus au sein du méme

2. LWR : Logical Write

3. LRD : Logical Read

4. LRW : Logical Read/Write

5. FMMU : Fieldbus Memory Management Unit

1.6.8, 6 octobre 2025 11

2 Architecture

domaine, et s’il réside dans la méme zone mémoire protégée par le gestionnaire
de synchronisation que la premiere entrée, alors la configuration FMMU n’est pas
modifiée, parce que la mémoire désirée fait déja partie de I'image des données du
processus du domaine. Si la deuxieme entrée appartenait a une autre zone protégée
par le gestionnaire de synchronisation, alors cette zone entiere serait aussi incluse dans
I'image des données des processus des domaines.

figure 2.4 fournit un apercu de la maniere de configurer les FMMUs pour mapper la
mémoire physique vers les images logiques des données des processus.

12 1.6.8, 6 octobre 2025

1.6.8, 6 octobre 2025

2.3 Données de processus

SM3

Slave0 Slavet
RAm [SMO ﬁ'\m RAM
T Eag T I]]]

‘\ ‘\ \\\ /// \\\

\\ \\) 'y

[FMMUO] [FMMU1][FM

MU2]

LT TEEA]

’ \ \\ /// ///
! / Domaini Image N
L TTEITEEAT
Registered PDO Entries

F1cURE 2.4 — Configuration FMMU

13

2 Architecture

14 1.6.8, 6 octobre 2025

3 Interface de Programmation
Applicative (API)

L’interface de programmation applicative fournit les fonctions et structures de données
pour accéder au maitre EtherCAT. La documentation complete de l'interface est
incluse sous forme de commentaires Doxygen [13] dans le fichier d’entéte include/ecrt.h.
Elle peut étre lue directement depuis les commentaires du fichier, ou plus confortablement
sous forme de documentation HTML. La génération du HTML est décrite dans
section 9.3.

Les sections suivantes couvrent une description générale de I’API.

Chaque application devrait utiliser le maitre en deux étapes :

Configuration Le maitre est mobilisé et la configuration est appliquée. Par exemple,
les domaines sont créés, les esclaves sont configurés et les entrées PDO sont
inscrites. (voir section 3.1).

Opération Le code cyclique est exécuté et les données de processus sont échangées
(voir section 3.2).

Exemple d’Applications Il y a quelques exemples d’applications dans le sous-dossier
examples/ du code du maitre. Ils sont documentés dans le code source.

3.1 Configuration du maitre

La configuration du bus est fournie via ’API. La figure 3.1 donne une vue d’ensemble
des objets qui peuvent étre configurés par ’application.

3.1.1 Configuration de I’esclave

L’application doit dire au maitre quelle est la topologie attendue du bus. Ceci peut
étre fait en créant des “configurations d’esclaves”. Une configuration d’esclave peut
étre vue comme un esclave attendu. Quand une configuration d’esclave est créée,
I'application fournit la position sur le bus (voir ci-dessous), l'identifiant du fabricant
(vendor id) et le code du produit (product code).

Quand la configuration du bus est appliquée, le maitre vérifie s’il y a un esclave
avec l'identifiant du fabricant et le code du produit a la position donnée. Si c’est le

1.6.8, 6 octobre 2025 15

3 Interface de Programmation Applicative (API)

16

PDO

Index

Index
n
Slave Configuration n | Sync Manager
. Index
Al|alsl Direction
Position
Vendor ID
Product Code

\”,

SDO Configuration

Index
Subindex
Data

SDO Request
Index

Subindex

FIGURE 3.1 — Configuration du maitre

PDO Entry

Index
Subindex
Bitlength

1.6.8, 6 octobre 2025

3.1 Configuration du maitre

cas, la configuration de 'esclave est “attachée” a ’esclave réel sur le bus et ’esclave est

configuré en fonction des parametres fournis par 'application. L’état de la configuration
de l'esclave peut soit étre demandé via I’API ou via I'outil en ligne de commande (voir

sous-section 7.1.3).

Position de l'esclave La position de 'esclave doit étre spécifiée sous forme d’un
couple “alias” et “position”. Ceci permet d’adresser les esclaves via la position absolue
sur le bus ou via un identifiant stocké et appelé “alias” ou via un mélange des deux.
L’alias est une valeur 16 bits stockée dans E?PROM de 'esclave. Il peut étre modifié
via l'outil en ligne de commande (voir sous-section 7.1.2). tableau 3.1 montre comment
les valeurs sont interprétées.

TABLE 3.1 — Spécifier la position d'un esclave

Alias Position | Interprétation

0 0 — 65535 | Adressage par position. Le parametre
de position est interprété comme la
position absolue de ’anneau sur le bus.
1 — 65535 | 0 — 65535 | Adressage par alias. Le parametre de
position est interprété comme une
position relative apres le premier
esclave avec une adresse d’alias donnée.

figure 3.2 montre un exemple d’attachement des configurations des esclaves. Certaines
configurations sont attachées, tandis que d’autres restes détachées. La liste ci-dessous
en donne les raisons en commencant par la configuration de I'esclave du haut.

1. L’alias zéro signifie un adressage simple par position. L’esclave #1 existe et
I'identifiant du fabricant et le code produit correspondent aux valeurs attendues.

2. Bien que l'esclave en position 0 a été trouvé, le code produit ne correspond
pas, aussi la configuration n’est pas attachée.

3. L’alias n’est pas zéro, aussi ’adressage par alias est utilisé. L’esclave #2 est
le premier esclave avec I'alias 0x2000. Comme la valeur de position est zéro, le
meéme esclave est utilisé.

4. Tl n’y a aucun esclave avec 'alias demandé, aussi la configuration ne peut pas
étre attachée.

5. L’esclave #2 est encore le premier esclave avec ’alias 0x2000, mais la position
est maintenant 1, aussi I'esclave #3 est attaché.

Si les sources du maitre sont configurées avec --enable-wildcards, alors Oxffffffff
correspond a n’importe quel identifiant de fabricant et/ou code produit.

1.6.8, 6 octobre 2025 17

3 Interface de Programmation Applicative (API)

18

Slaves Slave Configurations
0 [Vendor: 0x00000001 Alias: 0x0000
Product: 0x00000001 Position: 1
Alias: 0x0000 Vendor: 0x00000002
Product: 0x00000004
1 [Vendor: 0x00000002 Alias: 0x0000
Product: 0x00000004 -.|Position: 0
Alias: 0x1000 Vendor: 0x00000001
Product: 0x00000002
2 [Vendor: 0x00000001 Alias: 0x2000
Product: 0x00000002 ——— |Position: 0
Alias: 0x2000 Vendor: 0x00000001
Product: 0x00000002
3 [Vendor: 0x00000001 Alias: 0x3000
Product: 0x00000002 Position: 0
Alias: 0x0000 Vendor: 0x00000001
Product: 0x00000002
Alias: 0x2000
Position: 1
Vendor: 0x00000001
Product: 0x00000002

FIGURE 3.2 — Attachement de la configuration des esclaves

1.6.8, 6 octobre 2025

3.2 Opération cyclique

3.2 Opération cyclique

Pour entrer dans le mode d’opération cyclique, le maitre doit étre “activé” pour
calculer I'image des données de processus et appliquer la configuration du bus pour
la premiere fois. Apres I'activation, 'application est responsable d’envoyer et recevoir
les trames. La configuration ne peut pas étre modifiée apres I'activation.

3.3 Gestionnaires VoE

Pendant la phase de configuration, l'application peut créer des gestionnaires pour
le protocole de boite aux lettres VoE, décrit dans section 6.3. Un gestionnaire VoE
appartient toujours a une configuration d’esclave particuliere, aussi la fonction de
création est une méthode de la configuration de 'esclave.

Un gestionnaire VoE gere les données VoE et les datagrammes utilisés pour transmettre
et recevoir les messages VoE. Il contient I’automate nécessaire au transfert des messages
VoE.

L’automate VoE peut traiter seulement une opération a la fois. Par conséquent,
seule une opération de lecture ou une opération d’écriture peut étre émise a un
moment donné!. Apres l'initialisation de 'opération, le gestionnaire doit étre exécuté
de maniere cyclique jusqu’a ce qu’il se termine. Apres cela, les résultats de I'opération
peuvent étre récupérés.

Un gestionnaire VoE a sa propre structure de datagramme, qui est marqué pour
I’échange apres chaque pas d’exécution. Aussi, 'application peut décider, combien de
gestionnaires elle exécute avant d’envoyer les trames EtherCAT correspondantes.

Pour obtenir davantage d’information sur les gestionnaires VoE, consultez la documentation
des fonctions de I’APT et les exemples d’applications fournis dans le dossier ezamples/.

3.4 Acces concurrents au maitre

Dans certains cas, plusieurs instances utilisent un seul maitre, par exemple quand une
application échange des données de processus cyclique et qu’il y a des esclaves EoE
qui ont besoin d’échanger des données Ethernet avec le noyau (voir section 6.1). Pour
cette raison, le maitre est une ressource partagée qui doit étre séquentialisée. Ceci est
habituellement réalisé en verrouillant au moyen de sémaphores ou d’autres méthodes
pour protéger les sections critiques.

Le maitre ne fournit pas lui-méme de mécanismes de verrouillage, parce qu’il ne peut
connaitre le type de verrou approprié. Par exemple, si I’application est en espace noyau
et utilise la fonctionnalité RTAI, les sémaphores ordinaires du noyau ne seraient pas

1. Si, on désire envoyer et recevoir simutanément, deux gestionnaires VoE peuvent étre créés pour
la configuration de ’esclave.

1.6.8, 6 octobre 2025 19

3 Interface de Programmation Applicative (API)

suffisants. Pour cela, une décision de conception importante a été faite : 'application
qui a réservé un maitre doit en avoir le controle total, c’est pourquoi elle doit prendre
la responsabilité de fournir les mécanismes de verrouillage appropriés. Si une autre
instance veut accéder au maitre, elle doit demander 1’acces au bus via des fonctions de
rappels qui doivent étre fournis par 'application. De plus, 'application peut refuser
I’acces au maitre, si elle considere que le moment est génant.

Master Module
Application Module

F
g
5
8
3

uoneoddy

FIGURE 3.3 — Acces concurrent au maitre

L’exemple figure 3.3 montre comment deux processus partagent un maitre : la tache
cyclique de l'application utilise le maitre pour 1’échange de données de processus,
tandis que le processus EoE interne au maitre 1'utilise pour communiquer avec les
esclaves EoE. Les deux ont acces au bus de temps en temps, mais le processus EoE
le fait en “demandant” a l'application de réaliser ’acces au bus pour lui. De cette
maniere, 'application peut utiliser le mécanisme de verrouillage approprié pour éviter
d’acceder au bus en méme temps. Voir la documentation de I’API (chapitre 3) pour
savoir comment utiliser ces fonctions de rappel.

20 1.6.8, 6 octobre 2025

3.5 Horloges distribuées

3.5 Horloges distribuées

A partir de la version 1.5, le maitre supporte les “horloges distribuées” (Distributed
Clocks) EtherCAT pour synchroniser les horloges des esclaves sur le bus avec I’horloge
de “référence” (qui est I'horloge locale du premier esclave qui supporte 'horloge
distribuée) et pour synchroniser 1'horloge de référence avec “I'’horloge maitresse” (qui
est I'horloge locale du maitre). Toutes les autres horloges du bus (apres I'horloge de
référence) sont considérés comme “horloges esclaves” (voir figure 3.4).

Horloges locales Tout esclave EtherCAT qui supporte ’horloge distribuée possede
un registre d’horloge locale avec une résolution a la nanoseconde. Si l'esclave est
allumé, ’horloge démarre depuis zéro, ce qui signifie que lorsque des esclaves sont
allumés a différents instants, leurs horloges auront des valeurs différentes. Ces “décalages”
doivent étre compensés par le mécanisme des horloges distribuées. En outre, les
horloges ne tournent pas exactement a la méme vitesse, puisque les quartzs ont
une déviation de leur fréquence naturelle. Cette déviation est habituellement tres
faible, mais au bout de longues périodes, I'erreur s’accumulera et la différence entre
les horloges locales grandira. Cette “dérive” des horloges doit aussi étre compensée
par le mécanisme des horloges distribuées.

Temps de I’Application La base de temps commune pour le bus doit étre fournie
par 'application. Ce temps d’application ¢,p, est utilisé

1. pour configurer les décalages des horloges des esclaves (voir ci-dessous),

2. pour programmer les temps de démarrage de 'esclave pour la génération des
impulsions synchrones. (voir ci-dessous)

3. pour synchroniser les horloges de référence avec ’horloge maitresse (optionnel).

Compensation du décalage Pour la compensation du décalage, chaque esclave
fournit un registre de “décalage du temps systeme” t.g, qui est ajouté a la valeur
de I'horloge interne ¢, pour obtenir le “Temps Systeme” tgys :

tsys = tint + tosr (31)
= liny = tsys — Lot

Le maitre lit les valeurs des deux registres pour calculer un nouveau décalage du
temps systeme de telle maniere que le temps systeme résultant corresponde au temps
de 'application du maitre t,pp :

1.6.8, 6 octobre 2025 21

3 Interface de Programmation Applicative (API)

Slave 0 Slave 1 Slave 2 Slave n
Master Clock (No DC) @ @ @
Reference Clock Slave Clocks

FIGURE 3.4 — Horloges distribuées

292 1.6.8, 6 octobre 2025

3.5 Horloges distribuées

tsys = tapp (3.2)
= by +toff = tapp
= tor = tapp — tint
=tor = tapp — (tsys — toft)
= tlot = lapp — tsys + Lot (3.3)

La petite erreur de décalage du temps résultant des différences de temps entre la
lecture et I’écriture des registres sera compensée par la compensation de la dérive.

Compensation de la dérive La compensation de la dérive est possible grace a un
mécanisme spécial de chaque esclave compatible avec les horloges distribuées : une
opération d’écriture dans le registre du “Temps systeme” obligera la boucle de controle
du temps interne a comparer le temps écrit (moins le délai de transmission programmé,
voir ci-dessous) avec le temps systeme courant. L’erreur de temps calculée sera utilisée
comme une entrée pour le controleur de temps, qui ajustera la vitesse de ’horloge
locale pour étre légerement plus rapide ou plus lente ?, en fonction du signe de I'erreur.

Délais de transmission La trame Ethernet a besoin d’une petite quantité de temps
pour se propager d’esclave en esclave. Les délais de transmission s’accumulent sur le
bus et peuvent attendre la magnitude de la microseconde et doivent alors étre pris en
compte par la compensation de la dérive. Les esclaves EtherCAT qui supportent les
horloges distribuées fournissent un mécanisme pour mesurer les délais de transmission :
pour chacun des 4 ports de l'esclave il y a un registre d’heure de réception. Une
opération d’écriture sur le registre d’heure de réception du port démarre la mesure et
I’heure systeme courante est capturée et stockée dans un registre d’heure de réception
une fois que la trame est recue sur le port correspondant. Le maitre peut lire le
temps de réception relatif puis calculer les délais entre les esclaves (en utilisant sa
connaissance de la topologie du bus), et finalement calculer les délais de chaque esclave
avec I'horloge de référence. Ces valeurs sont programmées dans les registres de délai
de transmission des esclaves. De cette maniere, la compensation de la dérive peut
attendre une synchronie a la nanoseconde.

Vérification de la synchronie Les esclaves compatibles avec les horloge distribuées
fournissent un registre 32 bits “Différence de I'heure systeme” a l’adresse 0x092c,
dans lequel la différence de temps systeme de la derniere compensation de la dérive
est stockée avec une résolution d’une nanoseconde et un codage signe-et-magnitude ?.
Pour vérifier la synchronie du bus, les registres de différence du temps systéme peuvent
aussi étre lus via l'outil en ligne de commande (voir sous-section 7.1.14) :

2. L’horloge locale de ’esclave sera incrémentée de 9 ns, 10 ns ou 11 ns toute les 10 ns.
3. Ceci permet une lecture-diffusion de tous les registres de différence de temps systeme sur le
bus pour obtenir une approximation de la valeur supérieure.

1.6.8, 6 octobre 2025 23

3 Interface de Programmation Applicative (API)

$ watch -n0O "ethercat reg.read -p4 -tsm32 0x92c"

Signaux synchrones Les horloge synchrones sont seulement un pré-requis pour des
évenements synchrones sur le bus. Chaque esclave qui supporte les horloges distribuées
fournit deux “signaux synchrones”, qui peuvent étre programmés pour créer des
évenements, qui vont par exemple obliger ’application esclave a capturer ses entrées
a un instant précis. Un évenement synchrone peut étre généré soit une seule fois ou
périodiquement, selon ce qui a du sens pour ’application esclave. La programmation
des signaux synchrones est une question de réglage du mot “AssignActivate” et des
temps de cycle et décalage des signaux de synchronisation. Le mot AssignActivate
est spécifique a chaque esclave et doit étre récupéré depuis la description XML de
'esclave (Device — Dc), ol se trouvent aussi typiquement les signaux de configurations
“OpModes”.

24 1.6.8, 6 octobre 2025

4 Interfaces Ethernet

Le protocole EtherCAT est fondé sur le standard Ethernet standard, aussi un maitre
dépend du matériel Ethernet standard pour communiquer avec le bus.

Le terme device est utilisé comme synonyme pour matériel d’interface réseau Ethernet.

Pilotes natifs pour périphériques Ethernet Il y a des modules natifs pour les
pilotes de périphériques (voir section 4.2) qui gerent le matériel Ethernet qu’utilise
le maitre pour se connecter au bus EtherCAT. Ils offrent leurs matériels Ethernet
au module maitre via 'interface de device (voir section 4.6) et doivent étre capable
de préparer les périphériques Ethernet pour les opérations EtherCAT (temps réel) ou
pour les opérations “normales” en utilisant la pile réseau du noyau. L’avantage de cete
approche est que le maitre peut opérer pratiquement directement avec le matériel ce
qui permet des performances élevées. L’inconvénient est qu’il faut avoir une version
compatible EtherCAT du pilote Ethernet original.

Pilote générique pour les périphériques Ethernet A partir du maitre version 1.5,
il y a un module de pilote générique pour les périphériques Ethernet (voir section 4.3),
qui utilise les couches basses de la pile réseau pour se connecter au matériel. L’avantage
est que n’importe quel périphérique Ethernet peut étre utilisé pour les opérations
EtherCAT, indépendamment du pilote matériel réel (ainsi tous les pilotes Ethernet
Linux sont supportés sans modification). L’inconvénient est que cette approche ne
supporte pas les extensions temps réel, comme RTAI, parce que la pile réseau de Linux
est utilisée. Cependant la performance est 1égerement moins bonne qu’avec ’approche
native, car les données de la trame Ethernet doivent traverser la pile réseau.

4.1 Principes de base du pilote réseau

EtherCAT repose sur le matériel Ethernet et le maitre a besoin d’un périphérique
Ethernet physique pour communiquer avec le bus. C’est pourquoi, il est nécessaire de
comprendre comment Linux gere les périphériques réseaux et leurs pilotes.

Taches d’un pilote réseau Les pilotes de périphériques réseaux gerent habituellement
les deux couches les plus basses du modele OSI, qui sont la couche physique et la
couche liaison de données. Le périphérique réseau gere nativement les problemes de la

1.6.8, 6 octobre 2025 25

4 Interfaces Ethernet

couche physique : il représente le matériel pour se connecter au média et pour envoyer
et recevoir des données de la maniere décrite par le protocole de la couche physique.
Le pilote de périphérique réseau est responsable de récupérer les données depuis la
pile réseau du noyau et de les faire suivre au périphérique qui fait la transmission
physique. Si des données sont recues par le périphérique alors le pilote est notifié
(habituellement au moyen d’une interruption) et il doit lire les données depuis la
mémoire du périphérique et ’envoyer a la pile réseau. Un pilote de périphérique réseau
doit aussi gérer d’autres taches telles que le controle de la file d’attente, les statistiques
et les fonctionnalités spécifiques du périphérique.

Démarrage du pilote Habituellement, un pilote recherche des périphériques compatibles
lors du chargement du module. Pour les pilotes PCI, ceci est fait en analysant le bus
PCI et en vérifiant les identifiants (ID) des périphériques. Si un périphérique est
trouvé, les structures de données sont allouées et le périphérique est mis en service.

Fonctionnement des interruptions Un périphérique réseau fournit généralement

une interruption matérielle qui est utilisée pour notifier le pilote des trames recues

et des succes ou erreurs des transmissions. Le pilote doit enregistrer une routine de
service d’interruption — en anglais interrupt service routine — (ISR), qui est exécutée a
chaque fois que le matériel signale un tel évenement. Si l'interruption a été envoyée par

le bon périphérique (plusieurs périphériques peuvent partager une méme interruption
matérielle), la raison de I'interruption doit étre déterminée en lisant le registre d’interruption
du périphérique. Par exemple, si le drapeau pour les trames regues est activé, les
données des trames doivent étre copiées depuis le matériel vers la mémoire du noyau

puis transmise a la pile réseau.

La structure net_device Le pilote enregistre une structure net_device pour chaque
périphérique pour communiquer avec la pile réseau et créé une “interface réseau”.
Dans le cas d’un pilote Ethernet, cette interface apparait sous la forme ethX, ou
X est le numéro assigné par le noyau a l’enregistrement. La structure net_device
regoit les évenements (soit depuis l'espace utilisateur, soit depuis la pile réseau)
via différentes fonctions de rappel, qui doivent étre définies avant l’enregistrement.
Toutes les fonctions de rappel ne sont pas obligatoires, mais pour un fonctionnement
raisonnable, celles qui sont définies ci-dessous sont nécessaires dans tous les cas :

open() Cette fonction est appelée quand la communication a démaré, par exemple
apres une commande ip link set ethX up depuis I'espace utilisateur. La réception
des trames doit étre activée par le pilote.

stop() Le but de cette fonction de rappel est de “fermer” le périphérique, c’est-
a-dire faire en sorte que le matériel cesse de recevoir des trames.

hard_start_xmit() Cette fonction est appelée pour chaque trame qui a été transmise.
La pile réseau passe la trame sous la forme d’un pointeur vers une structure

26 1.6.8, 6 octobre 2025

4.1 Principes de base du pilote réseau

sk_buff (“socket buffer” — tampon de socket — voir ci-dessous), qui doit étre
libérée apres 1’envoi.

get_stats() Cet appel doit retourner un pointeur vers la structure net_device_stats
, qui doit étre continuellement mise a jour avec les statistiques des trames. Cela
signifie qu’a chaque fois qu'une trame est recue, envoyée ou qu’une erreur se
produit, le compteur approprié de cette structure doit étre augmenté.

L’inscription réelle est faite par 'appel register_netdev(), la désinscription est faite
par unregister_netdev().

L’interface netif Toute autre communication dans la direction interface — réseau
est faite via les appels netif_* (). Par exemple, apres I'ouverture réussie du périphérique,
la pile réseau doit étre notifiée, pour qu’elle puisse maintenant passer les trames a
I'interface. Ceci est fait en appelant netif _start_queue(). Apres cet appel, la fonction
de rappel hard_start_xmit () peut étre rappelée par la pile réseau. De plus, un pilote
réseau gere habituellement une file d’attente pour la transmission des trames. Quand
elle est pleine, il faut informer la pile réseau qu’elle doit cesser de pousser davantage
de trames pendant un moment. Ceci se produit avec un appel a netif_stop_queue().
Si des trames ont été envoyées, et qu’il y a a nouveau suffisamment de place pour
les mettre en file d’attente, ceci peut étre notifié avec netif_wake_queue(). Un autre
appel important est netif_receive_skb() ! : il passe une trame qui vient juste d’étre
regue par le périphérique, a la pile réseau. Les données de la trame doivent étre incluses
a cet effet dans le “tampon de socket” (voir ci-dessous).

Tampons de Socket Les tampons de sockets sont le type de données fondamental de
toute la pile réseau. Ils servent de container pour les données réseaux et sont capables
d’ajouter rapidement des données au début et a la fin, ou bien de les retirer. C’est
pourquoi, un tampon de socket consiste en un tampon alloué et plusieurs pointeurs
qui marquent le début du tampon (head), le début des données data (data), la fin
des données (tail) et la fin du tampon (end). De plus, un tampon de socket contient
les informations d’entéte pour le réseau et (en cas de données regue), un pointeur
vers le net_device, qui 'a réceptionné. Il existe des fonctions qui créent un tampon
socket (dev_alloc_skb()), ajoutent des données au début (skb_push()) ou a la fin
(skb_put)), suppriment des données au début (skb_pull()) ou & la fin (skb_trim()
), ou suppriment le tampon (kfree_skb()). Un tampon socket est passé de couche
en couche et il est libéré par la couche qui s’en sert en dernier. En cas d’envoi, la
libération est faite par le pilote réseau.

1. Cette fonction fait partie de NAPI (“New API”), qui remplace la technique du noyau 2.4 pour
interfacer la pile réseau (avec netif _rx()). NAPI est une technique pour améliorer la performance
réseau de Linux. Davantage d’information dans http://www.cyberus.ca/~hadi/usenix-paper.
tgz.

1.6.8, 6 octobre 2025 27

http://www.cyberus.ca/~hadi/usenix-paper.tgz
http://www.cyberus.ca/~hadi/usenix-paper.tgz

4 Interfaces Ethernet

4.2 Les pilotes natifs pour périphériques EtherCAT

Il y a quelques conditions qui s’appliquent au matériel Ethernet lorsqu’il est utilisé
avec un pilote Ethernet natif avec les fonctionnalités EtherCAT.

Matériel dédié Pour des raisons de performances et de temps réel, le maitre EtherCAT
a besoin d'un acces direct et exclusif au matériel Ethernet. Cela implique que le
périphérique réseau ne doit pas étre connecté a la pile réseau du noyau comme
d’habitude, car le noyau essaierait de 1'utiliser comme un périphérique Ethernet ordinaire.

Opération sans interruption Les trames EtherCAT voyagent au travers de ’anneau
logique EtherCAT et sont alors renvoyées au maitre. La communication est hautement
déterministe : une trame est envoyée et sera recue apres un temps constant, aussi il
n’y pas besoin de notifier le pilote de la réception de la trame. A la place, le maitre
peut interroger le matériel pour les trames recues, s’il s’attend a ce qu’elles soient déja
arrivées.

La figure 4.1 montre deux flots de travail pour la transmission et réception cyclique
de trames avec et sans interruptions.

Dans le flux de travail de gauche, “Opération avec interruption”, les données venant
du dernier cycle sont d’abord traitées et une nouvelle trame est assemblée avec des
nouveaux datagrammes, puis elle est envoyée. Le travail cyclique est fait pout 'instant.
Plus tard, quand la trame est a nouveau recue par le matériel, une interruption est
déclenchée et I'ISR est exécutée. L’ISR va récupérer les données de la trame depuis le
matériel et commencer la dissection de la trame : les datagrammes seront traités, et
alors les données seront prétes pour le traitement dans le prochain cycle.

Dans le flux de travail de droite, “Opération sans interruption”, aucune interruption
matérielle n'est activée. A la place, le maitre va sonder le matériel en exécutant I'ISR.
Si la trame a été recue entre temps, elle sera disséquée. La situation est maintenant
la méme qu’au début de flux de travail de gauche : les données recues sont traitées et
une nouvelle trame est assemblée et envoyée. Il n’y a rien d’autre a faire pour le reste
du cycle.

L’opération sans interruption est préférable, parce que les interruptions matérielles
ne sont pas propices a ’amélioration du comportement temps réel du pilote : leurs
incidences indéterministes contribuent a augmenter la gigue. En outre, si une extension
temps réel (comme RTAI) est utilisée, un effort supplémentaire devra étre fait pour
hiérarchiser les interruptions.

Périphériques Ethernet et EtherCAT Un autre probleme réside dans la fagon dont
Linux gere les périphériques du méme type. Par exemple, un pilote PCI analyse le bus
PCI pour chercher des périphériques qu’il peut gérer. Alors, il s’enregistre lui-méme
comme pilote responsable pour tous les périphériques trouvés. Le probleme est que

28 1.6.8, 6 octobre 2025

4.2 Les pilotes natifs pour périphériques EtherCAT

Interrupt Operation

Time
Realtime Cycle

Data Processing

Frame Assembly

Frame Sending

Interrupt

ISR

Frame Dissection

FIGURE 4.1 — Opération avec interruption versus Opération sans interruption

1.6.8, 6 octobre 2025

Data Processing

Interrupt-less Operation

Realtime Cycle

ISR

Frame Dissection

Data Processing

Frame Assembly

Frame Sending

ISR

29

4 Interfaces Ethernet

I’on ne peut pas dire a un pilote non modifié d’ignorer un périphérique pour 'utiliser
ultérieurement pour EtherCAT. Il faut donc un moyen de gérer plusieurs périphériques
du méme type, I'un étant réservé a EtherCAT, tandis que 'autre est traité comme un
périphérique Ethernet ordinaire.

Pour toutes ces raisons, 'auteur a décidé que la seule solution acceptable était de
modifier les pilotes Ethernet standards de maniere a ce qu’ils conservent leurs fonctionnalités
normales, tout en gagnant la possibilité de traiter un ou plusieurs périphériques comme
étant compatibles EtherCAT.

Les avantages de cette solution sont listés ci-dessous :

— Pas besoin de dire aux pilotes standards d’ignorer certains périphériques.

— Un seul pilote réseau pour les périphériques EtherCAT et non-EtherCAT.

— Pas besoin d’implémenter un pilote réseau depuis zéro et de rencontrer des
problemes que les anciens développeurs ont déja résolus.

L’approche choisie a les inconvénients suivants :

— Le pilote modifié est plus compliqué car il doit gérer les périphériques EtherCAT
et non-EtherCAT.

— De nombreuses différenciations de cas supplémentaires dans le code du pilote.

— Les modifications et changements dans les pilotes standards doivent étre portés
de temps en temps vers les versions compatibles EtherCAT.

4.3 Le pilote de périphérique EtherCAT générique

Puisqu’il existe des approches pour activer un fonctionnement en temps réel [12] du
noyau Linux complet, il est possible d’opérer sans implémentation native des pilotes de
périphériques Ethernet compatibles EtherCAT et d’utiliser la pile réseau a la place.
La figure 2.1 présente le “Module de pilote Ethernet générique”, qui se connecte a
des périphériques Ethernet locaux via la pile réseau. Le module noyau se nomme
ec_generic et il peut étre chargé apres le module maitre comme un pilote Ethernet
compatible EtherCAT.

Le pilote de périphérique générique analyse la pile réseau a la recherche d’interfaces
enregistrées par les pilotes de périphériques Ethernet. Il offre tous les périphériques
possibles au maitre EtherCAT. Si le maitre accepte un périphérique, le pilote générique
crée un socket de paquet (voir man 7 packet) avec socket_type mis & SOCK_RAW, lié &
ce périphérique. Toutes les fonctions de 'interface de ce périphérique (voir section 4.6)
opéreront alors sur ce socket.

Les avantages de cette solution sont listés ci-dessous :

— Tout matériel, qui est géré par un pilote Ethernet Linux, peut étre utilisé pour
EtherCAT.
— Aucune modification n’est nécéssaire sur les pilotes Ethernet réels.

L’approche générique a les inconvénients suivants :

30 1.6.8, 6 octobre 2025

4.4 Fourniture de périphériques Ethernet

— La performance est un peut moins bonne qu’avec ’approche native, parce que
les données de la trame doivent traverser les couches basses de la pile réseau.

— Il n’est pas possible d'utiliser des extensions en temps réel dans le noyau comme
RTALI avec le pilote générique, car le code de la pile réseau utilise des allocations
dynamiques de mémoire et d’autres choses, qui pourraient provoquer le gel du
systeme dans un contexte temps réel.

Activation du périphérique Dans le but d’envoyer et recevoir des trames au travers
d’un socket, le périphérique Ethernet lié a ce socket doit étre activé, autrement toutes
les trames seront rejetées. L’activation doit avoir lieu avant le chargement du module
maitre et peut avoir lieu de différentes manieres :

— Ad-hoc, en utilisant la commande ip link set dev ethX up (ou la commande
plus ancienne ifconfig ethX up),

— Configurée, en fonction de la distribution, par exemple en utilisant les fichiers
ifcfg (/etc/sysconfig/network/ifcfg-ethX) dans openSUSE et d’autres. C’est
le meilleur choix si le maitre EtherCAT doit démarrer avec le systeme. Puisque
le périphérique Ethernet doit seulement étre activé, mais qu’aucune adresse IP
etc. ne sera assignée, il est suffisant d’utiliser STARTMODE=auto comme configuration.

4.4 Fourniture de périphériques Ethernet

Apres le chargement du module maitre, des modules additionnels doivent étre chargés
pour offrir des périphériques au(x) maitre(s) (voir section 4.6). Le module maitre
connait les périphériques a choisir grace aux parametres de module (voir section 2.1).
Si le script d’initialisation est utilisé pour démarrer le maitre, les pilotes et périphériques
a utiliser peuvent étre spécifiés dans le fichier sysconfig (voir sous-section 7.4.2).

Les modules offrant des périphériques Ethernet peuvent étre

— des modules natifs de pilotes réseaux compatibles EtherCAT (voir section 4.2)
ou
— le module générique de périphérique EtherCAT (voir section 4.3).

4.5 Redondance

L’opération redondante de bus signifie, qu’il y a plus qu'une connexion Ethernet entre
le maitre et les esclaves. Les datagrammes de 1’échange de données de processus
sont envoyés sur chaque lien maitre, aussi I’échange se terminera, méme si le bus
est déconnecté quelque part entre les deux.

La condition pour une opération redondante de bus est que chaque esclave puisse
étre atteint par au moins un lien maitre. Dans ce cas, une panne de connexion unique

1.6.8, 6 octobre 2025 31

4 Interfaces Ethernet

(i. e. la rupture d’un cable) ne conduira jamais a des données de processus incomplétes.
Les doubles défauts ne peuvent pas étre traités avec deux périphériques Ethernet.

La redondance peut étre configurée avec le commutateur --with-devices au moment
de la configuration (voir chapitre 9) et en utilisant le parametre backup_devices du
module noyau ec_master (voir section 2.1) ou la variable appropriée MASTERx_BACKUP
dans le fichier de configuration sysconfig (voir sous-section 7.4.2).

L’analyse du bus est faite apres un changement de topologie sur n’importe quel lien
Ethernet. L’API (voir chapitre 3) et l'outil en ligne de commande (voir section 7.1)
ont tous les deux des méthodes pour interroger le status de l'opération redondante.

4.6 Interface de périphérique EtherCAT

Une anticipation de la section concernant le module maitre (section 2.1) est nécessaire
pour comprendre la maniere dont un module de pilote de périphérique réseau peut
connecter un périphérique a un maitre EtherCAT spécifique.

Le module maitre fournit une “interface de périphérique” pour les pilotes de périphériques
réseaux. Pour utiliser cette interface, un module de pilote de périphérique réseau doit
inclure l'entéte devices/ecdev.h, provenant du code du maitre EtherCAT. Cet entéte
offre une interface de fonction pour les périphériques EtherCAT. Toutes les fonctions
de l'interface du périphérique sont nommées avec le préfixe ecdev.

La documentation de l'interface du périphérique peut étre trouvée dans le fichier
d’entéte ou dans le module approprié de la documentation de I'interface (voir section 9.3
pour les instruction pour la générer).

4.7 Application de correctifs aux pilotes de réseau
natifs

Cette section décrit, comment fabriquer un pilote Ethernet standard compatible EtherCAT,
en utilisant I'approche native (voir section 4.2). Malheureusement, il n'y a pas de
procédure standard pour permettre 1'utilisation d'un pilote Ethernet par le maitre
EtherCAT, mais il existe quelques techniques courantes.

1. Une premiere regle simple est d’éviter les appels netif_x() pour tous les
périphériques EtherCAT. Comme indiqué précédemment, les périphériques EtherCAT
ne doivent avoir aucune connexion avec la pile réseau, et c’est pourquoi ils ne
doivent pas appeler ces fonctions d’interface.

2. Une autre chose importante est, que les périphériques EtherCAT doivent fonctionner
sans interruption. Aussi tous les appels pour inscrire les gestionnaires d’interruption
et activer les interruptions au niveau matériel doivent aussi étre évités.

32 1.6.8, 6 octobre 2025

4.7 Application de correctifs aux pilotes de réseau natifs

3. Le maitre n’utilise pas un nouveau tampon de socket pour chaque opération
d’envoi : a la place, il y a un tampon fixe, alloué pendant 'initialisation du
maitre. Ce tampon de socket est rempli avec une trame EtherCAT par chaque
opération d’envoi et transmis a la fonction de rappel hard_start_xmit (). C’est
pourquoi, il est nécessaire que le tampon de socket ne soit pas libéré comme
d’habitude par le pilote réseau.

Un pilote Ethernet gere habituellement plusieurs périphériques Ethernet, chacun est
décrit par une structure net_device avec un champ priv_data pour attacher les
données qui dépendent du pilote a la structure. Pour distinguer entre les périphériques
Ethernet normaux et ceux qui sont utilisés par les maitres EtherCAT, la structure de
données privées utilisée par le pilote peut étre étendue avec un pointeur, qui pointe vers
un objet ec_device_t retourné par ecdev_offer () (voir section 4.6) si le périphérique
est utilisé par un maitre ou sinon qui est a zéro.

Le pilote Ethernet RealTek RTL-8139 est un pilote Ethernet “simple” qui peut servir
d’exemple pour modifier des nouveaux pilotes. Les sections intéressantes peuvent
étre trouvées en recherchant la chaine “ecdev” dans le fichier devices/8139t00-2.6.24-
ethercat.c.

1.6.8, 6 octobre 2025 33

4 Interfaces Ethernet

34 1.6.8, 6 octobre 2025

5 Automates finis

Beaucoup de parties du maitre EtherCAT sont implémentées sous forme d’ automates
finis — en anglais finite state machines (FSMs). Bien qu’ils ameénent une plus grande
complexité pour certains aspects, ils ouvrent de nombreuses nouvelles possibilités.

Le court exemple de code ci-dessous montre comment lire tous les états d’esclave et
illustre en outre les restrictions du codage “ séquentiel ” :

ec_datagram_brd(datagram, 0x0130, 2); // prepare datagram
if (ec_master_simple_io(master, datagram)) return -1;
slave_states = EC_READ_U8(datagram->data); // process datagram

La fonction ec_master_simple_io() fournit une interface simple pour envoyer de maniere
synchrone un datagramme unique et recevoir le résultat!. En interne, elle met en
file d’attente le datagramme spécifié, invoque la fonction ec_master_send_datagrams()
pour envoyer une trame avec le datagramme en attente, puis attend activement la
réception.

Cette approche séquentielle est tres simple, se reflétant dans seulement trois lignes
de code. L’inconvénient est que le maitre est bloqué pendant le temps ou il attend
la réception du datagramme. Ce n’est pas vraiment un probleme, s’il n’y a qu'une
seule instance qui utilise le maitre, mais si plusieurs instances veulent (de maniére
synchrone ?) utiliser le maitre, il est inévitable de songer a une alternative au modele
séquentiel.

L’acces maitre doit étre séquentalisé pour que plusieurs instances puissent envoyer et
recevoir des datagrammes de maniere synchrone. Avec la présente approche, cela se
traduirait par une phase d’attente active pour chaque instance, ce qui serait inacceptable,
en particulier dans des circonstances en temps réel, en raison de I’énorme surcharge
de temps.

Une solution possible serait, que toutes les instances soient exécutées séquentiellement
pour mettre en file d’attente leurs datagrammes, et qu’elles passent alors le controle
a la prochaine instance au lieu d’attendre la réception du datagramme. Finalement,
une instance supérieure ferait l’entrée-sortie sur le bus pour envoyer et recevoir tous

1. Comme tous les problemes de communication ont été entre temps transmis aux automates
finis, la fonction est obsolete et a cessé d’exister. Néanmoins, elle est suffisante pour montrer ses
propres restrictions.

2. Ace stade, I'acces synchrone au maitre sera suffisant pour montrer les avantages d’un automate.
L’approche asynchrone sera discutée dans la section 6.1

1.6.8, 6 octobre 2025 35

5 Automates finis

les datagrammes en attente. La prochaine étape serait d’exécuter a nouveau toutes les
instances pour qu’elles traitent leurs datagrammes regus et en émettent des nouveaux.

Cette approche aboutit a ce que toutes les instances mémorisent leurs états lorsqu’elles
redonnent le controle a l'instance supérieure. Il est évident dans ce cas d’utiliser le
modele d’automate. La section 5.1 introduira une partie de la théorie utilisée, tandis
que 'extrait ci-dessous montre I’approche de base en codant ’exemple ci-dessus sous
forme d’automate :

// state 1

ec_datagram_brd(datagram, 0x0130, 2); // prepare datagram
ec_master_queue (master, datagram); // queue datagram
next_state = state_2;

// state processing finished

Apres que toutes les instances ont exécuté leur état courant et mis en file d’attente
leurs datagrammes, ceci sont envoyés et recus. Alors les états suivants respectifs sont
exécutés :

// state 2
if (datagram->state != EC_DGRAM_STATE_RECEIVED) {
next_state = state_error;

return; // state processing finished

}
slave_states = EC_READ_U8(datagram->data); // process datagram
// state processing finished.

Voir section 5.2 pour une introduction au concept de programmation d’automate fini
utilisé dans le code du maitre.

5.1 Théorie des automates finis

Un automate fini [9] est un modele de comportement avec des entrées et des sorties, ou
les sorties dépendent non-seulement des entrées, mais aussi de ’historique des entrées.
La définition mathématique d’un automate fini (ou automate avec un nombre fini
d’états) est un six-tuple (X,T", S, s¢, 0, w), avec

— T’alphabet d’entrée X, avec X # (), contenant tous les symboles d’entrées,
— Talphabet de sortie I', avec I # (), contenant tous les symboles de sorties,
— Densemble des états S, avec S # 0,

— Densemble des états initiauxs sqg avec so C S, so # 0

— la fonction de transition § : S x ¥ — S x T’

— la fonction de sortie w.

La fonction de transition d’état ¢ est souvent spécifiée sous la forme d’une table de
transition d’état, ou par un diagramme de transition d’état. La table de transition offre
une vue matricielle du comportement de 'automate fini (voir tableau 5.1). Les lignes

36 1.6.8, 6 octobre 2025

5.1 Théorie des automates finis

de la matrice correspondent aux états (S = {so, 51, 52}) et les colonnes correspondent
aux symboles d’entrée (I' = {a,b,e}). Le contenu de la table a la ligne i et a la
colonne j représente alors le prochain état (et éventuellement la sortie) pour le cas ou

le symbole o; est lu dans I'état s;.

TABLE 5.1 — Une table typique de transition d’état

a b ¢
So | S1 S1 S2
S1|S2 S1 So
S2 1S So So

Le diagramme d’état pour le méme exemple est semblable a figure 5.1. Les états
sont représentés par des cercles ou des ellipses et les transitions sont représentées par
des fleches entre eux. La condition a remplir pour autoriser la transition se trouve a
proximité de la fleche de transition. L’état initial est marqué par un disque noir avec
une fleche pointant vers I’état respectif.

FIGURE 5.1 — Un diagramme typique de transition d’état

1.6.8, 6 octobre 2025

37

5 Automates finis

Automate fini déterministe et non-déterministe Un automate fini peut étre déterministe,
ce qui signifit que pour un état et une entrée, il y a un (et seulement un) état suivant.

Dans ce cas, 'automate fini a exactement un état de départ. Les automates finis non-
déterministes peuvent avoir plusieurs transitions pour une paire unique état-entrée. Il
existe un ensemble d’états de départ dans ce dernier cas.

Automates de Moore et de Mealy Il y a une distinction entre ce qu’on appelle
les automates de Moore, et les automates de Mealy. Mathématiquement parlant, la
distinction se situe dans la fonction de sortie w : si elle ne dépend que de I'état
courant (w : S — I'), 'automate correspond au “modele de Moore”. Sinon, si w est
une fonction de I'état et de I'alphabet d’entrée (w: S x ¥ — I') Pautomate correspond
au “modele de Mealy”. Les automates de Mealy sont plus pratiques dans la plupart
des cas, car leur conception permet d’obtenir des automates avec un nombre minimal
d’états. En pratique, un mélange des deux modeles est souvent employé.

Malentendu sur les automates finis Il y a un phénomene appelé “explosion d’états”,
qui est souvent utilisé comme argument défavorable contre 'usage général des automates
finis dans les environnements complexes. Il faut mentionner que ce point est trompeur [10].
Les explosions d’états sont souvent le résultat d'une mauvaise conception de ’automate :
les erreurs courantes sont de stocker la valeur présente de toutes les entrées dans un
état, ou de ne pas diviser un automate complexe en sous-automates plus simples. Le
maitre EtherCAT utilise plusieurs automates, qui sont exécutés de maniere hiérarchique
et qui servent de sous-automates. Ils sont aussi décrits ci-dessous.

5.2 Le modéle d’état du maitre

Cette section présente les techniques utilisées dans le maitre pour implémenter les
automates.

Programmation des automates Il y a plusieurs maniere d’implémenter un automate
avec du code C. La maniere évidente est d’implémenter les différents états et actions
avec un branchement a choix multiple (switch) :

enum {STATE_1, STATE_2, STATE_3};
int state = STATE_1;

void state_machine_run(void *priv_data) {
switch (state) {
case STATE_1:
action_1Q);
state = STATE_2;
break;

38 1.6.8, 6 octobre 2025

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

5.2 Le modeéle d’état du maitre

case STATE_2:
action_2()
if (some_condition) state = STATE_1;
else state = STATE_3;
break;
case STATE_3:
action_3();
state = STATE_1;
break;

Cette technique reste possible pour les petits automates, mais présente l'inconvénient
de complexifier rapidement le code lorsque le nombre d’états augmente. De plus
le branchement a choix multiple doit étre exécuté a chaque itération et beaucoup
d’indentations sont gaspillés.

La méthode retenue par le maitre est d’implémenter chaque état dans sa propre
fonction et de stocker la fonction d’état courante dans un pointeur de fonction :

void (*xstate) (void *) = statel;

void state_machine_run(void *priv_data) {
state(priv_data);

void statel (void *priv_data) {
action_1Q);
state = state?2;

void state2(void xpriv_data) {
action_2();
if (some_condition) state = statel;
else state = state2;

void state3(void *priv_data) {
action_3Q);
state = statel;

Dans le code du maitre, les pointeurs d’état de tous les automates?® sont rassemblés
dans un objet unique de la classe ec_fsm_master_t. C’est avantageux, car il y a

3. Tous sauf 'automate EoE, parce plusieurs esclaves Eoe doivent étre gérés en parallele. Pour
cette raison, chaque objet gestionnaire EoE a son propre pointeur d’état.

1.6.8, 6 octobre 2025 39

10

11

5 Automates finis

toujours une instance disponible de chaque automate qui peut étre démarrée a la
demande.

Mealy et Moore Une vue rapprochée du code ci-dessus montre que les actions
exécutées (les “sorties” de I'automate) dépendent uniquement de ’état courant. Ceci
correspond au modele de “Moore” introduit dans section 5.1. Comme déja mentionné,
le modele de “Mealy” offre une flexibilité supérieure, visible dans le code ci-dessous :

void state7(void *priv_data) {
if (some_condition) {
action_7a();

state = statel;

}
else {
action_7b();
state = state8;
}

() + (») la fonction d’état exécute les actions en fonction de la transition d’état,
qui est sur le point d’étre effectuée.

L’alternative la plus flexible est d’exécuter certaines actions en fonction de ’état, puis
d’autres actions en fonction de la transition d’état :

void state9(void *priv_data) {
action_9();
if (some_condition) {
action_9a();
state = state7;

}
else {
action_9b();
state = statelO;
}

}

Ce modele est souvent utilisé dans le maitre. Il combine les meilleurs aspects des deux
approches.

Utilisation de sous-automates Pour éviter d’avoir trop d’états, certaines fonctions
de l'automate du maitre EtherCAT ont été extraites vers des sous-automates. Ceci
améliore 'encapsulation des flux de travail concernés et surtout évite le phénomene
d’“explosion d’états” décrit dans section 5.1. Si le maitre utilisait a la place un seul
gros automate, le nombre d’état serait démultiplié. Ce qui augmenterait le niveau de
complexité jusqu’a un niveau ingérable.

40 1.6.8, 6 octobre 2025

10

11

12

13

14

5.3 L’automate du maitre

Exécution de sous-automates Si un automate démarre I’exécution d’un sous-automate,
il reste habituellement dans un état jusqu'a ce que le sous-automate termine son
exécution. Ceci est générallement fait comme dans l'extrait de code ci-dessous, qui
provient du code de I'automate de configuration des esclaves :

void ec_fsm_slaveconf_safeop(ec_fsm_t *fsm)
{
fsm->change_state (fsm); // ezecute state change
// sub state machine

if (fsm->change_state == ec_fsm_error) {
fsm->slave_state = ec_fsm_end;
return;

}

if (fsm->change_state != ec_fsm_end) return;

// continue state processing

(3) change_state est le pointeur d’état de l'automate. La fonction d’état, sur
laquelle pointe le pointeur, est exécutée ...

(6) ...jusqu’a ce que 'automate termine par 'état d’erreur ...

(1) ...ou jusqu’a ce que 'automate termine dans 1’état de fin. Pendant ce temps,
I'automate “supérieur” reste dans I’état courant et exécute a nouveau le sous-
automate dans le prochain cycle.

Description des automates Les sections ci-dessous décrivent chaque automate utilisé
par le maitre EtherCAT. Les descriptions textuelles des automates contiennent des
références aux transitions dans les diagrammes de transitions d’états correspondants,
qui sont marqués avec une fleche suivie par le nom de 1’état successeur. Les transitions
provoquées par des cas d’erreurs triviales (c’est-a-~dire, pas de réponse de 'esclave) ne
sont pas décrites explicitement. Ces transitions sont décrites sous forme de fleches en
tirets dans les diagrammes.

5.3 L’automate du maitre

[’automate du maitre s’exécute dans le contexte du fil d’exécution (thread) du maitre.
La figure 5.2 montre son diagramme de transition. Ses buts sont :

Surveillance du bus La topologie du bus est surveillée. Si elle change, le bus est
a nouveau analysé.

1.6.8, 6 octobre 2025 41

5 Automates finis

=

read_state

clear_addresses

dc_measure_delays

configure_slave

write_system_times

dc_read offset

dc_write_offset

sdo_dictionary

sdo_request

FIGURE 5.2 — Diagramme de transition de I’automate du maitre

492 1.6.8, 6 octobre 2025

5.4 L’automate d’analyse des esclaves

Configuration des esclaves Les états de la couche application des esclaves sont
surveillés. Siun esclave n’est pas dans 1’état supposé, alors I’esclave est (re)configuré.

Gestion des requétes Les requétes (qui proviennent soit de I’application ou bien
de sources externes) sont gérées. Une requéte est un travail que le maitre
traitera de maniere asynchrone, par exemple un acces SII, un acces SDO ou
similaire.

5.4 L’automate d’analyse des esclaves

L’automate d’analyse des esclaves, qui est représenté dans figure 5.3, conduit le
processus de lecture des informations des esclaves.

Le processus d’analyse comprend les étapes suivantes :

Node Address L’adresse du nceud est définie pour 'esclave, de sorte qu’il puisse
étre adressé par nceud pour toutes les opérations suivantes.

AL State [’état initial de la couche application (Application Layer) est lu.

Base Information L’information de base (tel que le nombre de FMMUSs supportées)
est lue depuis la mémoire physique la plus basse.

Data Link L’information sur les ports physiques est lue.

Sll Size La taille des contenus SII est déterminée pour allouer I'image mémoire
SII.

SIl Data Les contenus SII sont lus dans I'image du maitre.

PREOP Si l'esclave supporte CoE, son état est défini a PREOP en utilisant
I'automate de changement d’état (voir section 5.6) pour autoriser la communication
par boite aux lettres et lire la configuration PDO via CoE.

PDOs Les PDOs sont lus via CoE (si supporté) en utilisant ’automate de lecture
des PDO (voir section 5.8). Si cela réussit, les informations PDO du SII sont
(le cas échéant) écrasées.

5.5 L’automate de configuration de I'état de I'esclave

L’automate de configuration de I'état de I'esclave, qui est représenté dans figure 5.4,
configure un esclave et 'amene dans un état particulier de la couche application.

INIT L’automate de changement d’état est utilisé pour amener 'esclave a 1’état
INIT.

FMMU Clearing Pour éviter que 'esclave réagisse a n'importe quelle donnée de
processus, la configuration FMMU est effacée. Si ’esclave ne supporte pas les
FMMUs, cet état est sauté. Si INIT est 1’état demandé, I'automate est terminé.

1.6.8, 6 octobre 2025 43

5 Automates finis

INo category

FIGURE 5.3 — Diagramme de transition de ’automate d’analyse des esclaves

44 1.6.8, 6 octobre 2025

5.5 L’automate de configuration de I’état de I’esclave

dc_write_offset

No mailboxes @

boot_preop

Config
etached

No IDNs
configured @'U’feup

o config
attached

\

@ conf
INIT
requested

PREOP
Nopposms (_ pdo_sync or BOOT
requested

o FMMUs
Jconfigured

lo config
attached

FIGURE 5.4 — Diagramme de transition de 'automate de configuration de 1’état de

I'esclave
1.6.8, 6 octobre 2025 45

5 Automates finis

Mailbox Sync Manager Configuration Si 'esclave supporte la communication
par boite aux lettres, les gestionnaires de synchronisation des boites aux lettres
sont configurés. Sinon cet état est sauté.

PREOP I’automate de changement d’état est utilisé pour amener I’esclave a 1’état
PREOP. Si PREOP est I’état demandé, 'automate est terminé.

SDO Configuration Si une configuration d’esclave est attachée (voir section 3.1),
et que I'application fournit des configurations SDO, elles sont envoyées a ’esclave.

PDO Configuration L’automate de configuration PDO est exécuté pour appliquer
toutes les configurations PDO nécessaires.

PDO Sync Manager Configuration S’il y a des gestionnaires de synchronisation
PDO, ils sont configurés.

FMMU Configuration Si I'application fournit des configurations FMMU (i. e. si
Iapplication a inscrit des entrées PDO), elles sont appliquées.

SAFEOP L’automate de changement d’état est utilisé pour amener l'esclave a
I’état SAFEOP. Si SAFEOP est I'état demandé, 'automate est terminé.

OP L[’automate de changement d’état est utilisé pour amener 'esclave a 1'état
OP. Si OP est I'état demandé, I'automate est terminé.

5.6 L’automate de changement d’état

L’automate de changement d’état, qui est représenté dans figure 5.5, conduit le processus
de changement d’état de la couche application de I'esclave. Il implémente les états et
transitions décrits dans [3, sec. 6.4.1].

Start Le nouvel état de la couche d’application (AL : application-layer) est demandé
via le registre “AL Control Request” (voir [3, sec. 5.3.1]).

Check for Response Certains esclaves ont besoin de temps pour répondre a une
commande de changement d’état AL et ne répondent pas pendant un certain
temps. Dans ce cas, la commande est a nouveau émise, jusqu'a l'accusé de
réception.

Check AL Status Si le datagramme de changement d’état AL a été acquité, le
registre “AL Control Response” (voir [3, sec. 5.3.2]) doit étre lu jusqu’a ce que
I’esclave change 1’état AL.

AL Status Code Si l'esclave refuse la commande de changement d’état, la raison
peut étre lue dans le champ “AL Status Code” des registres “AL State Changed”
(voir [3, sec. 5.3.3]).

Acknowledge State Si le changement d’état n’a pas réussi, le maitre doit accuser
réception de 'ancien état en écrivant a nouveau dans le registre “AL Control
request”.

46 1.6.8, 6 octobre 2025

5.6 L’automate de changement d’état

F1GURE 5.5 — Diagramme de transition de 'automate de changement d’état

1.6.8, 6 octobre 2025

Response
timeout

timeout

Success

47

5 Automates finis

Check Acknowledge Apres l'envoi de la commande d’accusé de réception, le
registre “AL Control Response” doit étre lu a nouveau.

L’état “start_ack” est un raccourci dans I'automate quand le maitre veut accuser
réception d’un changement spontané d’état AL, qui n’avait pas été demandé.

5.7 L’automate Sil

L’automate SII (présenté dans figure 5.6) implémente le processus de lecture ou
d’écriture des données SII via I'interface d’information de 'esclave (Slave Information
Interface) décrite dans [2, sec. 6.4].

FI1GURE 5.6 — Diagramme de transition de I’automate SII

Voici comment fonctionne la partie lecture de 'automate :

Start Reading La requéte de lecture et I’adresse du mot demandé sont écrits dans
I’attribut SII.

Check Read Command Si la commande de lecture SII a regu son accusé de
réception, un chronometre est démarré. Un datagramme est envoyé pour lire
I’attribut SII pour I’état et les données.

Fetch Data Sil’opération de lecture est encore en attente (la SII est habituellement
implémentée avec une E2PROM), I’état est lu & nouveau. Sinon les données sont
copiées dans le datagramme.

La partie écriture est presque similaire :

Start Writing Une requéte d’écriture, I'adresse destination et le mot de donnée
sont écrits dans I'attribut SII.

48 1.6.8, 6 octobre 2025

5.8 Les automates PDO

Check Write Command Si la commande d’écriture SII a recu son accusé de
réception, un chronometre est démarré. Un datagramme est envoyé pour lire
Pattribut SII pour I’état de 'opération d’écriture.

Wait while Busy Sil'opération d’écriture est encore en attente (déterminé par un
temps d’attente minimal et I’état du drapeau busy), 'automate reste dans cet
état pour éviter qu'une autre opération d’écriture ne soit émise trop tot.

5.8 Les automates PDO

Les automates PDO sont un ensemble d’automates qui lisent ou écrivent ’affectation
PDO et la cartographie des PDO via la “zone de communication CoE” décrite dans
[3, sec. 5.6.7.4]. Pour I'acces aux objets, les primitives CANopen over EtherCAT sont
utilisées (voir section 6.2), donc I'esclave doit obligatoirement supporter le protocole
de boite aux lettres CoE.

Automate de lecture PDO Cet automate (figure 5.7) a pour but de lire la configuration
PDO complete d’un esclave. Il lit 'affectation PDO et pour chaque gestionnaire de
configuration il utilise 'automate de lecture des entrées PDO (figure 5.8) pour lire la
cartographie de chaque PDO assigné.

pdo_entries

FIGURE 5.7 — Diagramme de transition de 'automate de lecture des PDO

Fondamentalement, il lit pour chaque gestionnaire de synchronisation, le compteur
de PDOs affectés a ce gestionnaire de synchronisation via l'objet SDO 0x1C1x. Il lit
ensuite les sous-index du SDO pour obtenir les indices des PDO affectés. Quand un
index PDO est lu, 'automate de lecture des entrées PDO est exécuté pour lire les
entrées PDO qui sont mappées en mémoire.

1.6.8, 6 octobre 2025 49

5 Automates finis

L’automate de lecture des entrées PDO Cet automate (figure 5.8) lit la cartograhie
PDO (les entrées PDO) d'un PDO. 11 lit la cartographie SDO respective (0x1600 —
0x17£f, ou 0x1a00 — 0x1bff) pour le PDO donné en lisant le sous-index zéro (nombre
d’éléments) pour déterminer le nombre d’entrée PDO projetés en mémoire. Apres cela,
chaque sous-index est lu pour obtenir 'index de 'entrée PDO mappée en mémoire,
ainsi que son sous-index et sa taille en bits.

w No more entries
pdo_entry

FI1GURE 5.8 — Diagramme de transition de 'automate de lecture des entrées PDO

50 1.6.8, 6 octobre 2025

5.8 Les automates PDO

No PDOs

FIGURE 5.9 — Diagramme de transition de ’automate de

1.6.8, 6 octobre 2025

Assign ok

read_mapping

No PDOs ext PDO

zero_pdo_count

First PDO
Y

Next PDO

No more PDOs

set_pdo_count

configuration des PDO

51

5 Automates finis

zero_entry_count

IAdd first entry
Y

Next entry
A

No Entries map_entry

No more Entries
A

set_entry_count

FI1GURE 5.10 — Diagramme de transition de l'automate de configuration des entrées
PDO

52 1.6.8, 6 octobre 2025

6 Implémentation du protocole de
boite aux lettres

Le maitre EtherCAT implémente les protocoles de boite aux lettres CANopen over
EtherCAT (CoE), Ethernet over EtherCAT (EoE), File-access over EtherCAT (FoE),

Vendor-specific over EtherCAT (VoE) et Servo Profile over EtherCAT (SoE). Voir les
sections ci-dessous pour les détails.

6.1 Ethernet over EtherCAT (EoE)

Le maitre EtherCAT implémente le protocole de boite aux lettres Ethernet over
EtherCAT [3, sec. 5.7] pour permettre le tunnelage de trames Ethernet vers des
esclaves spéciaux, qui peuvent soit avoir des ports physiques Ethernet ou avoir leur
propre pile IP pour recevoir les trames.

Interfaces réseaux virtuelles Le maitre crée une interface réseau virtuelle EoE pour
chaque esclave compatible EoE. Ces interface sont nommées

eoeXsY pour un esclave sans adresse alias (voir sous-section 7.1.2), ou X est
I'index du maitre et Y la position de ’esclave sur ’anneau.

eoeXaY pour un esclave avec une adresse d’alias non-nulle, ou X est I'index du
maitre et Y est I'adresse alias en décimal.

Les trames envoyées vers ces interfaces sont transférées vers les esclaves associés par le
maitre. Les trames regues par les esclaves sont récupérées par le maitre et transférées
aux interfaces virtuelles.

Ceci apporte les avantages suivants :

— Flexibilité : 1'utilisateur peut décider comment les esclaves compatibles EoE
sont interconnectés avec le reste du monde.

— Les outils standards peuvent étre utilisés pour surveiller I'activité EoE et pour
configurer les interfaces EoE.

— L’implémentation du pontage de niveau 2 du noyau Linux (selon la norme de
pontage IEEE 802.1D MAC) peut étre utilisée nativement pour relier le trafic
Ethernet entre les esclaves compatibles EoE.

— La pile réseau du noyau Linux peut étre utilisée pour router les paquets entre
les esclaves compatibles EoE et pour suivre les problemes de sécurité, comme
avec une interface réseau physique.

1.6.8, 6 octobre 2025 53

6 Implémentation du protocole de boite aux lettres

EoE Handlers Les interface virtuelles EoE et les fonctionnalités relatives sont encapsulées
dans la classe ec_eoe_t class. Un objet de cette classe est appelé “gestionnaire EoE”.

Par exemple, le maitre ne crée pas les interfaces réseaux directement : ceci est fait

a l'intérieur du constructeur d’un gestionnaire EoE. Un gestionnaire EoE contient
également une file d’attente pour les trames. A chaque fois que le noyau passe un
nouveau tampon de socket pour I’envoyer via la fonction de rappel hard_start_xmit

() de l'interface, le tampon de socket est mis en file d’attente pour la transmission

via 'automate EoE (voir ci-dessous). Si la file d’attente est pleine, le passage des
nouveaux tampons de socket est suspendu par un appel a netif_stop_queue().

Création de gestionnaire EOE Pendant ’analyse du bus (voir section 5.4), le maitre
détermine les protocoles de boite aux lettres supportés par chaque esclave. Ceci est
fait en examinant le champ de bits “Protocoles de boite aux lettres supportés” au mot
d’adresse 0x001C de la SII. Si le bit 1 est défini, alors I'esclave supporte le protocole
EoE. Dans ce cas, un gestionnaire EoE est créé pour cet esclave.

Automate EoE Chaque gestionnaire EoE possede son automate EoE, qui est utilisé
pour envoyer des trames a l’esclave correspondant et recevoir des trames de celui-ci
via les primitives de communication EoE. Cette automate est présenté dans figure 6.1.

RX_START L’état de départ de 'automate EoE. Un datagramme de vérification
de la boite aux lettres est envoyé pour demander de nouvelles trames a la boite
aux lettres de 'esclave. — RX_CHECK

RX_CHECK Le datagramme de vérification de la boite aux lettres est regu. Si
la boite aux lettres de l’esclave ne contenait pas de données, un cycle de
transmission débute. — TX_START
S’il y a des nouvelles données dans la boite aux lettres, un datagramme est
envoyé pour rapatrier les nouvelles données. — RX_FETCH

RX_FETCH Le datagramme de rapatriement est recu. Si la donnée dans la boite
aux lettres ne contient pas de commande de “requéte de fragment EoE”, les
données sont abandonnées et une séquence de transmission démarre. — TX_START

Si la trame Ethernet recue est le premier fragment, un nouveau tampon de
socket est alloué. Sinon, les données sont copiées a la bonne position dans le
tampon de socket.

Si le fragment est le dernier fragment, le tampon de socket est envoyé a la pile
réseau et une séquence de transmission est démarrée. — TX_START

Sinon, une nouvelle séquence de réception est démarrée pour rappatrier le
prochain fragment. — RX_START

TX_START L’état de démarrage de la séquence de transmission. On vérifie si
la file d’attente de la transmission contient une trame a envoyer. Sinon, une
séquence de réception est démarrée — RX_START

54 1.6.8, 6 octobre 2025

6.1 Ethernet over EtherCAT (EoE)

FIGURE 6.1 — Diagramme de transition de 'automate EoE

1.6.8, 6 octobre 2025 55

6 Implémentation du protocole de boite aux lettres

S’il y a une trame a envoyer, elle est retirée de la file d’attente. Si la file
d’attente était inactive auparavant (parce qu’elle était pleine), la file d’attente
est réveillée par un appel a netif wake_queue(). Le premier fragment de la trame
est envoyé. — TX_SENT

TX_SENT On vérifie si le premier fragment a été envoyé avec succes. Si la trame
actuelle est constituée de fragments supplémentaires, le prochain est envoyé.
— TX_SENT

Si le dernier fragment a été envoyé, une nouvelle séquence de réception est
démarrée. — RX_START

Traitement EoE Pour exécuter I'automate EoE de chaque gestionnaire EoE actif,
il doit y avoir un processus cyclique. La solution la plus simple serait d’exécuter les
automates EoE de maniére synchrone avec 'automate du maitre (voir section 5.3.
Cette approche a les inconvénients suivants :

Un seul fragment EoE pourrait étre envoyé ou recu tous les quelques cycles. Le débit
des données serait tres faible, parce que les automates EoE ne seraient pas exécutés
entre les cycles de 'application. En outre, le débit dépendrait de la période de la tache
application.

Pour surmonter ce probleme, les automates EoE ont besoin de leur propre processus
cyclique pour s’exécuter. Pour cela, le maitre possede un timer noyau, qui est exécuté
a chaque interruption temporelle. Ceci garantie une bande passante constante, mais
pose un nouveau probleme d’acces concurrent au maitre. Le mécanisme de verrouillage
nécessaire a cet effet est présenté dans section 3.4.

Configuration automatique Par défaut, les esclaves sont laissés dans ’état PREOP
si aucune configuration n’est appliquée. Si le lien de l'interface EoE est configuré a
“up”, I'état de la couche application de ’esclave concerné passe automatiquement a

OP.

6.2 CANopen over EtherCAT (CoE)

Le protocole CANopen over EtherCAT [3, sec. 5.6] permet de configurer les esclaves
et d’échanger des objets de données au niveau de I'application.

Automate de téléchargement SDO Le meilleur moment pour appliquer les configurations
SDO est pendant 1’état PREOP, parce que la communication par boite aux lettres
est déja possible et que 'application de I'esclave va démarrer avec la mise a jour des
données d’entrées dans le prochain état SAFEOP. C’est pourquoi, la configuration
SDO doit faire partie de 'automate de configuration de l'esclave (voir section 5.5) :
ceci est implémenté via 'automate de téléchargement SDO, qui est exécuté juste

56 1.6.8, 6 octobre 2025

6.3 Vendor specific over EtherCAT (VoE)

avant que l’esclave entre dans I'état SAFEOP. De cette maniere, il est garanti que les
configurations SDO soient appliquées a chaque fois que 'esclave est reconfiguré.

Le diagramme de transition de I'automate de téléchargement SDO est présenté dans
figure 6.2.

START L’état de départ de 'automate de téléchargement CoE. La commande de
boite aux lettres “SDO Download Normal Request” est envoyée. - REQUEST

REQUEST On vérifie que l'esclave a regu la requéte de téléchargement CokE.
Apres cela, la commande de vérification de la boite aux lettres est émise et un
minuteur est lancé. - CHECK

CHECK Si aucune donnée n’est disponible dans la boite aux lettres, le minuteur
est vérifié.
— S’il a expiré, le téléchargement SDO est interrompu. - ERROR
— Sinon la boite aux lettres est a nouveau interrogée. - CHECK
Si la boite aux lettres contient des nouvelles données, la réponse est rapatriée.

— RESPONSE

RESPONSE Si la réponse de la boite aux lettres ne peut pas étre récupérée,
c’est que les données sont invalides, ou qu’on a recu le mauvais protocole ou
un “Abort SDO Transfer Request”. Alors on arréte le téléchargement SDO.
— ERROR

Si on regoit ’accusé de réception “SDO Download Normal Response”, le téléchargement
SDO a réussi. — END

END Le téléchargement SDO a réussi.
ERROR Une erreur a arrété le téléchargement SDO.

6.3 Vendor specific over EtherCAT (VoE)

Le protocole VoE permet d’implémenter des protocoles de communication par boite
aux lettres spécifiques pour un fabricant. Les messages VoE sont préfixés par un entéte
VoE qui contient 'identité du fabricant (vendor ID) sur 32 bits et le type de fabricant
(vendor-type) sur 16 bit. Il n’y a aucune autre contrainte pour ce protocole.

Le maitre EtherCAT autorise la création multiple de gestionnaires VoE pour les
configurations d’esclaves via ’API (voir chapitre 3). Ces gestionnaires contiennent
les automates nécessaires a la communication via VoE.These

Pour davantage d’information sur les gestionnaires VoE, voir section 3.3 ou les applications
d’exemples dans le sous-dossier ezamples/.

1.6.8, 6 octobre 2025 57

6 Implémentation du protocole de boite aux lettres

FIGURE 6.2 — Diagramme de transition de 'automate de téléchargement CoE

58 1.6.8, 6 octobre 2025

6.4 Servo Profile over EtherCAT (SoE)

6.4 Servo Profile over EtherCAT (SoE)

Le protocole SoE implémente la couche canal de service, spécifiée dans IEC 61800-7
[16] via les boites aux lettres EtherCAT.

Le protocole SoE est tres similaire au protocole CoE (vor section 6.2). Mais a la
place des index et sous-index SDO, des numéros d’identification (IDNs) identifient les
parametres.

L’implémentation couvre les primitives “SCC Read” et “SCC Write”, chacune est
capable de fragmenter les données.

Il y a plusieurs manieres d’utiliser I'implémentation SoE :

— Lecture et écriture des IDNs via l'outil en ligne de commande (voir sous-
section 7.1.18).
— Stocker des configuration pour des IDNs arbitraires via ’API (voir chapitre 3,
i.e. ecrt_slave_config_idn()). Ces configurations sont écrites dans l'esclave
pendant la configuration dans I’état PREOP, avant de passer en SAFEOP.
— La bibliotheéque en espace utilisateur (voir section 7.2), offre des fonctions pour
lire/écrire les IDNs en mode bloquant (ecrt_master_read_idn(), ecrt_master_write_idn

0).

1.6.8, 6 octobre 2025 59

6 Implémentation du protocole de boite aux lettres

60

1.6.8, 6 octobre 2025

7 Interfaces dans |I'espace utilisateur

Puisque le maitre s’exécute en tant que module noyau, ses acces natifs se limitent a
analyser les messages Syslog et a le controler avec modutils.

I1 était donc nécessaire d’'implémenter d’autres interface pour faciliter I’acces au maitre
depuis l'espace utilisateur et pour permettre une influence plus fine. I doit étre
possible de voir et de changer des parametres spéciaux en cours d’exécution.

La visualisation du bus est un autre point : dans un but de développement et de
déverminage, il est nécessaire, par exemple, de montrer les esclaves connectés (voir
section 7.1).

L’API doit étre disponible depuis I'espace utilisateur pour permettre aux programmes
qui s’y trouvent d’utiliser les fonctionnalités EtherCAT. Ceci est implémenté via
un périphérique en mode caractére et une bibliotheque en espace utilisateur (voir
section 7.2).

Le démarrage et la configuration automatique sont d’autres aspects. Le maitre doit
étre capable de démarrer automatiquement avec une configuration persistante (voir
section 7.4).

La surveillance des communications EtherCAT est un dernier point. Dans un but
de déverminage, il faut avoir un moyen d’analyser les datagrammes FEtherCAT. La
meilleure solution serait d’utiliser un analyseur réseau populaire, tel que Wireshark
[8] ou d’autres (voir section 7.5).

Ce chapitre couvre tous ces points et présente les interfaces et outils qui les rendent
possibles.

7.1 Outil en ligne de commande

7.1.1 Périphériques en mode caracteres

Chaque instance de maitre recoit un périphérique en mode caractere comme interface
en espace utilisateur. Les périphériques sont nommés /dev/EtherCATz, oux € {0...n}
est 'index du maitre.

Création des nceuds de périphériques Les nceuds des périphériques en mode caracteres
sont automatiquement créés si le paquet udev est installé. Voir section 9.5 pour son
installation et sa configuration.

1.6.8, 6 octobre 2025 61

7 Interfaces dans I'espace utilisateur

7.1.2 Parameétre d’alias d’adresse

ethercat alias [OPTIONS] <ALIAS>
Write alias addresses.
Arguments:
ALTAS must be an unsigned 16 bit number. Zero means

removing an alias address.

If multiple slaves are selected, the --force option
is required.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--force -f Acknowledge writing aliases of

multiple slaves.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.3 Affichage de la configuration du bus

ethercat config [OPTIONS]
Show slave configurations.

Without the --verbose option, slave configurations are
output one-per-line. Example:

(0)3

|

\- Application-layer
state of the attached

1001:0 0x0000003b/0x02010000

|

|

|

| slave, or ’-’, if no
| slave is attached.

| - Absolute decimal ring

| position of the attached
| slave, or ’-’ if none
|

\ -

v —_———— — W

attached.
Expected vendor ID and product code (both
hexadecimal) .
- Alias address and relative position (both decimal).

With the --verbose option given, the configured PDOs and
SDOs are output in addition.

Configuration selection:
Slave configurations can be selected with

62 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option
is given, all slave configurations are displayed.

2) If only the --position option is given, an alias
of zero is assumed (see 4)).

3) If only the --alias option is given, all slave

configurations with the given alias address
are displayed.

4) If both the --alias and the --position option are
given, the selection can match a single
configuration, that is displayed, if it exists.

Command -specific options:

--alias -a <alias> Configuration alias (see above).
--position -p <pos> Relative position (see above).
--verbose -V Show detailed configurations.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.4 Sortie des informations PDO en langage C

ethercat cstruct [OPTIONS]
Generate slave PDO information in C language.
The output C code can be used directly with the
ecrt_slave_config_pdos () function of the application
interface.
Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of

the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.5 Affichage des données de processus

ethercat data [OPTIONS]
Output binary domain process data.
Data of multiple domains are concatenated.
Command -specific options:
--domain -d <index> Positive numerical domain index.

If omitted, data of all domains
are output.

1.6.8, 6 octobre 2025 63

7 Interfaces dans I'espace utilisateur

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.6 Configuration du niveau de déverminage d’un maitre

ethercat debug <LEVEL>
Set the master’s debug level.
Debug messages are printed to syslog.

Arguments:
LEVEL can have one of the following values:
0 for no debugging output,
1 for some debug messages, or
2 for printing all frame contents (use with caution!).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.7 Domaines configurés

ethercat domains [OPTIONS]
Show configured domains.

Without the --verbose option, the domains are displayed
one-per-line. Example:

DomainO: LogBaseAddr 0x00000000, Size 6, WorkingCounter 0/1

The domain’s base address for the logical datagram
(LRD/LWR/LRW) is displayed followed by the domain’s
process data size in byte. The last values are the current
datagram working counter sum and the expected working
counter sum. If the values are equal, all PDOs were
exchanged during the last cycle.

If the --verbose option is given, the participating slave
configurations/FMMUs and the current process data are
additionally displayed:
Domainl: LogBaseAddr 0x00000006, Size 6, WorkingCounter 0/1
SlaveConfig 1001:0, SM3 (Input), LogAddr 0x00000006, Size 6
00 00 00 00 00 00

The process data are displayed as hexadecimal bytes.

Command -specific options:
-—-domain -d <index> Positive numerical domain index.

64 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

If omitted, all domains are
displayed.

--verbose -v Show FMMUs and process data
in addition.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.8 Accés SDO

ethercat download [OPTIONS] <INDEX> <SUBINDEX> <VALUE>
[OPTIONS] <INDEX> <VALUE>

Write an SDO entry to a slave.
This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO
dictionary by default. It can be overridden with the
--type option. If the slave does not support the SDO
information service or the SDO is not in the dictionary,
the --type option is mandatory.

The second call (without <SUBINDEX>) uses the complete
access method.

These are valid data types to use with
the --type option:
bool,
int8, intl16, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Arguments:

INDEX is the SDO index and must be an unsigned
16 bit number.

SUBINDEX is the SDO entry subindex and must be an
unsigned 8 bit number.

VALUE is the value to download and must correspond
to the SDO entry datatype (see above). Use
’-? to read from standard input.

Command-specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> SDO entry data type (see above).

1.6.8, 6 octobre 2025

65

7 Interfaces dans I'espace utilisateur

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat upload [OPTIONS] <INDEX> <SUBINDEX>
Read an SDO entry from a slave.
This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO
dictionary by default. It can be overridden with the
--type option. If the slave does not support the SDO
information service or the SDO is not in the dictionary,
the --type option is mandatory.

These are valid data types to use with
the --type option:
bool,
int8, intl6, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Arguments:
INDEX is the SDO index and must be an unsigned
16 bit number.
SUBINDEX is the SDO entry subindex and must be an
unsigned 8 bit number.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> SDO0 entry data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.9 Statistiques EoE

ethercat eoe
Display Ethernet over EtherCAT statictics.

The TxRate and RxRate are displayed in Byte/s.

7.1.10 File-Access over EtherCAT

ethercat foe_read [OPTIONS] <SOURCEFILE>

66 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

Read a file from a slave via FoE.
This command requires a single slave to be selected.

Arguments:
SOURCEFILE is the name of the source file on the slave.

Command -specific options:
--output-file -o <file> Local target filename. If
’-7 (default), data are
printed to stdout.
--alias -a <alias>
--position -p <pos> Slave selection. See the help
of the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat foe_write [OPTIONS] <FILENAME>
Store a file on a slave via FoE.
This command requires a single slave to be selected.

Arguments:
FILENAME can either be a path to a file, or ’-’. In
the latter case, data are read from stdin and
the --output-file option has to be specified.

Command -specific options:

--output-file -o <file> Target filename on the slave.
If the FILENAME argument is
’-’, this 1is mandatory.
Otherwise, the basename() of
FILENAME is used by default.

--alias -a <alias>

--position -p <pos> Slave selection. See the help
of the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.11 Création de graphiques topologiques

ethercat graph [OPTIONS]
ethercat graph [OPTIONS] <INFO0>

Output the bus topology as a graph.

The bus is output in DOT language (see

1.6.8, 6 octobre 2025 67

7 Interfaces dans I'espace utilisateur

http://www.graphviz.org/doc/info/lang.html), which can
be processed with the tools from the Graphviz
package. Example:
ethercat graph | dot -Tsvg > bus.svg
See ’man dot’ for more information.
Additional information at edges and nodes is selected via
the first argument:

DC - DC timing
CRC - CRC error register information

7.1.12 Maitre et périphériques Ethernet

ethercat master [OPTIONS]
Show master and Ethernet device information.
Command -specific options:
--master -m <indices> Master indices. A comma-separated
list with ranges is supported.

Example: 1,4,5,7-9. Default: - (all).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.13 Gestionnaires de synchronisation, PDOs et entrées PDO

ethercat pdos [OPTIONS]

List Sync managers, PDO assignment and mapping.

For the default skin (see --skin option) the information

is displayed in three layers, which are

indented accordingly:

1) Sync managers - Contains the sync manager information
from the SII: Index, physical start address, default

size, control register and enable word. Example:

SM3: PhysAddr 0x1100, DefaultSize 0O, ControlRegister 0x20, Enable
1

2) Assigned PDOs - PDO direction, hexadecimal index and
the PDO name, if available. Note that a ’Tx’ and ’Rx’
are seen from the slave’s point of view. Example:

TxPDO 0x1a00 "Channell"

3) Mapped PDO entries - PDO entry index and subindex (both

68 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

hexadecimal), the length in bit and the description, if
available. Example:

PDO entry 0x3101:01, 8 bit, "Status"
Note, that the displayed PDO assignment and PDO mapping
information can either originate from the SII or from the

CoE communication area.

The "etherlab" skin outputs a template configuration
for EtherlLab’s generic EtherCAT slave block.

Command -specific options:

--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.
--skin -s <skin> Choose output skin. Possible values are

"default" and "etherlab".

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.14 Registre d’acces

ethercat reg_read [OPTIONS] <ADDRESS> [SIZE]
Output a slave’s register contents.
This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address. Must
be an unsigned 16 bit number.

SIZE is the number of bytes to read and must also be
an unsigned 16 bit number. ADDRESS plus SIZE
may not exceed 64k. The size is ignored (and
can be omitted), if a selected data type
implies a size.

These are valid data types to use with
the --type option:
bool,
int8, intl16, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>
--position -p <pos> Slave selection. See the help of

1.6.8, 6 octobre 2025 69

7 Interfaces dans I'espace utilisateur

the ’slaves’ command.
--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat reg_write [OPTIONS] <OFFSET> <DATA>
Write data to a slave’s registers.
This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address to write to.

DATA depends on whether a datatype was specified
with the --type option: If not, DATA must be
either a path to a file with data to write,
or ’-’, which means, that data are read from
stdin. If a datatype was specified, VALUE is
interpreted respective to the given type.

These are valid data types to use with
the --type option:
bool,
int8, intl6, int32, int64,
uint8, uintl6, uint32, uinté4,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

-—emergency -e Send as emergency request.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.15 Dictionnaire SDO

ethercat sdos [OPTIONS]
List SDO dictionaries.

SDO dictionary information is displayed in two layers,
which are indented accordingly:

1) SDOs - Hexadecimal SDO index and the name. Example:

70 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

SDO 0x1018, "Identity object"

2) SDO entries - SDO index and SDO entry subindex (both
hexadecimal) followed by the access rights (see
below), the data type, the length in bit, and the
description. Example:

0x1018:01, rwrwrw, uint32, 32 bit, "Vendor id"
The access rights are specified for the AL states PREOP,
SAFEOP and OP. An ’r’ means, that the entry is readable
in the corresponding state, an ’w’ means writable,
respectively. If a right is not granted, a dash ’-’ is
shown.

If the --quiet option is given, only the SDOs are output.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--quiet -q Only output SDOs (without the

SDO entries).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.16 Acces SSI

Il est possible de lire ou écrire directement tout le contenu SII des esclaves. Ceci a été
ajouté pour les raisons ci-dessous :

— Le format des données SII est encore en développement et des catégories
peuvent étre ajoutées dans le futur. Avec les acces en lecture et écriture,
tout le contenu de la mémoire peut étre facilement sauvegardé et restauré.

— Certaines champs SII doivent étre altérés (par exemple les alias d’adresses).
Une écriture rapide est donc nécessaire pour cela.

— Au travers de 'acces en lecture, I’analyse des catégories de données doit étre
possible depuis 'espace utilisateur.

ethercat sii_read [OPTIONS]
Output a slave’s SII contents.

This command requires a single slave to be selected.

Without the --verbose option, binary SII contents are
output.
With the --verbose option given, a textual representation

1.6.8, 6 octobre 2025 71

7 Interfaces dans I'espace utilisateur

of the data is output, that is separated by SII category
names .

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--verbose -V OQutput textual data with

category names.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

Le lecture des données SII est aussi facile que les autres commandes. Comme les
données sont au format binaire, I’analyse est plus facile avec un outil tel que hezdump :

$ ethercat sii_read --position 3 | hexdump

0000000 0103 0000 0000 0000 0OOO 0000 0000 008c
0000010 0002 0000 3052 07f0 0000 0000 0000 0000
0000020 0000 0000 0000 0OOO 0OOO 0000 0000 0000

La sauvegarde de la SII peut étre facilement faite avec une redirection :
$ ethercat sii.read --position 3 > sii-of-slave3.bin

Pour téléverser une SII dans un esclave, I’acces en écriture au périphérique en mode
caractere du maitre est nécessaire (voir sous-section 7.1.1).

ethercat sii_write [OPTIONS] <FILENAME>
Write SII contents to a slave.
This command requires a single slave to be selected.

The file contents are checked for validity and integrity.
These checks can be overridden with the --force option.

Arguments:
FILENAME must be a path to a file that contains a
positive number of words. If it is ’-’,
data are read from stdin.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--force -f Override validity checks.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

72 1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

ethercat sii_write --position 3 sii-of-slave3.bin

La validité du contenu de la SSI peut étre vérifiée puis le contenu est envoyé a ’esclave.
L’opération d’écriture peut prendre quelques secondes.

7.1.17 Esclaves sur le bus

Les informations sur les esclaves peuvent étre collectées avec la sous-commande slaves

ethercat slaves [OPTIONS]
Display slaves on the bus.

If the --verbose option is not given, the slaves are

displayed one-per-line. Example:

555 + EL3162 2C. Ana. Input 0-10V

(.

| \- Name from the SII if available,

| otherwise vendor ID and product

I code (both hexadecimal).

\- Error flag. ’+’ means no error,

’E’ means that scan or

| configuration failed.

\- Current application-layer state.

Decimal relative position to the last

slave with an alias address set.

- Decimal alias address of this slave (if set),
otherwise of the last slave with an alias set,
or zero, if no alias was encountered up to this
position.

Absolute ring position in the bus.

5 :0
I |
I I
| |
| |
| |
| |
I |
I |
| \-
|

\

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\ -

If the --verbose option is given, a detailed (multi-1line)
description is output for each slave.

Slave selection:
Slaves for this and other commands can be selected with

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option
is given, all slaves are selected.

2) If only the --position option is given, it is

interpreted as an absolute ring position and
a slave with this position is matched.

3) If only the --alias option is given, all slaves
with the given alias address and subsequent
slaves before a slave with a different alias
address match (use -p0 if only the slaves
with the given alias are desired, see 4)).

1.6.8, 6 octobre 2025 73

7 Interfaces dans I'espace utilisateur

4) If both the --alias and the --position option are
given, the latter is interpreted as relative
position behind any slave with the given alias.

Command -specific options:

--alias -a <alias> Slave alias (see above).
--position -p <pos> Slave position (see above).
--verbose -V Show detailed slave information

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’)
Voici par exemple une sortie typique :

ethercat slaves
0:0 PREOP
5555:0 PREOQOP
5555:1 PREQOP
5555:2 PREQOP

EL3162 2K. Ana. Eingang 0-10V
EL4102 2K. Ana. Ausgang 0-10V

W N = O &
+ o+ 4+ o+

7.1.18 Acces IDN SoE

ethercat soe_read [OPTIONS] <IDN>
ethercat soe_read [OPTIONS] <DRIVE> <IDN>

Read an SoE IDN from a slave.
This command requires a single slave to be selected.

Arguments:
DRIVE is the drive number (0 - 7). If omitted, O is
IDN is the IDN and must be either an unsigned
16 bit number acc. to IEC 61800-7-204:
Bit 15: (0) Standard data, (1) Product data
Bit 14 - 12: Parameter set (0 - 7)
Bit 11 - 0: Data block number
or a string like ’P-0-150".

Data of the given IDN are read and displayed according to

the given datatype, or as raw hex bytes.

These are valid data types to use with
the --type option:
bool,
int8, intl16, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

74

base.

EK1100 Ethernet Kopplerklemme (2A E-Bus)

EL2004 4K. Dig. Ausgang 24V, O0,5A

assumed.

1.6.8, 6 octobre 2025

7.1 Outil en ligne de commande

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat soe_write [OPTIONS] <IDN> <VALUE>
ethercat soe_write [OPTIONS] <DRIVE> <IDN> <VALUE>

Write an SoE IDN to a slave.
This command requires a single slave to be selected.

Arguments:
DRIVE is the drive number (0 - 7). If omitted, O is assumed.
IDN is the IDN and must be either an unsigned
16 bit number acc. to IEC 61800-7-204:
Bit 15: (0) Standard data, (1) Product data
Bit 14 - 12: Parameter set (0 - 7)
Bit 11 - 0: Data block number
or a string like ’P-0-150".
VALUE is the value to write (see below).

The VALUE argument is interpreted as the given data type
(--type is mandatory) and written to the selected slave.

These are valid data types to use with
the --type option:
bool,
int8, intl1l6, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.19 Demande des états de la couche application

1.6.8, 6 octobre 2025 75

7 Interfaces dans I'espace utilisateur

ethercat states [OPTIONS] <STATE>
Request application-layer states.

Arguments:
STATE can be ’INIT’, ’PREOP’, ’B00T’, ’SAFEOP’, or ’0P’.

Command -specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.20 Affichage de la version du maitre

ethercat version [OPTIONS]

Show version information.

7.1.21 Génération de la description de I’esclave au format XML

ethercat xml [OPTIONS]
Generate slave information XML.

Note that the PDO information can either originate
from the SII or from the CoE communication area. For
slaves, that support configuring PDO assignment and
mapping, the output depends on the last configuration.

Command -specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.2 Bibliotheque en espace utilisateur

L’API native (voir chapitre 3) se trouve dans ’espace noyau et n’est donc accessible
que depuis le noyau. Pour rendre I’API disponible aux programmes en espace utilisateur,
une bibliotheque en espace utilisateur a été créée, et elle peut étre liée a des programmes
selon les termes et conditions de la licence LGPL, version 2 [5].

La bibliotheque s’appelle libethercat. Ses sources se trouvent dans le sous-dossier lib/ et
elles sont construites par défaut lorsqu’on utilise la commande make. Elle est installée

76 1.6.8, 6 octobre 2025

7.2 Bibliothéque en espace utilisateur

dans le sous-dossier [ib/ en dessous du préfixe d’installation sous le nom libethercat.a
(pour la liaison statique), libethercat.la (pour utiliser avec libtool) et libethercat.so
(pour la liaison dynamique).

7.2.1 Utilisation de la bibliotheque

Le fichier d’entéte ecrt.h de I’API peut étre utilisé dans les deux contextes : utilisateur
ou noyau.

L’exemple minimal suivant montre comment construire un programme EtherCAT. Un
exemple complet se trouve dans le dossier examples/user/ des sources du maitre.

#include <ecrt.h>

int main(void)

{
ec_master_t *master = ecrt_request_master (0);
if (!master)
return 1; // error
pause(); // watit for signal
return O;
}

Le programme peut étre compilé et dynamiquement lié a la bibliotheque avec la
commande ci-dessous :

Listing 7.1 — Commande de I'éditeur de liens pour utiliser la bibliotheque de ’espace
utilisateur

gcc ethercat.c -o ectest -I/opt/etherlab/include \
-L/opt/etherlab/1lib -lethercat \
-Wl,--rpath -Wl,/opt/etherlab/lib

La bibliotheque peut aussi étre liée statiquement au programme :

gcc -static ectest.c -o ectest -I/opt/etherlab/include \
/opt/etherlab/lib/libethercat.a

7.2.2 Implémentation

Fondamentalement, I’API noyau a été transferée dans ’espace utilisateur via le périphérique
en mode caractére du maitre (voir chapitre 2, figure 2.1 et sous-section 7.1.1).

Les appels de fonction de I’API noyau sont projetés dans 'espace utilisateur via
I'interface ioct1 (). Les fonctions de I’API en espace utilisateur partagent un ensemble

1.6.8, 6 octobre 2025 77

7 Interfaces dans I'espace utilisateur

d’appels ioctl () génériques. La partie noyau des appels de l'interface appelle directement
les fonctions correspondantes de I’API, ce qui ajoute un minimum de délai supplémentaire
(voir sous-section 7.2.3).

Pour des raisons de performance, les données de processus réels (voir section 2.3) ne
sont pas copiées entre la mémoire du noyau et celle de I'utilisateur : a la place, les
données sont projetées en mémoire vers 'application en espace utilisateur. Une fois
que le maitre est configuré et activé, le module maitre crée une zone de mémoire de
données de processus couvrant tous les domaines et la mappe dans ’espace utilisateur,
de sorte que l'application puisse accéder directement aux données de processus. En
conséquence, il n’y a pas de délai supplémentaire lors de ’acces aux données de
processus depuis ’espace utilisateur.

Différence API noyau/utilisateur En raison de la projection en mémoire des données
de processus, la mémoire est gérée en interne par les fonctions de la bibliotheque. Par
conséquent, il est impossible de fournir de la mémoire externe pour les domaines,
comme pour I’API noyau. Les fonctions correspondantes sont disponibles uniquement
dans l'espace noyau. C’est la seule différence lorsqu’on utilise I’API depuis 'espace
utilisateur.

7.2.3 Timing

Un aspect intéressant est la comparaison du timing des appels de la bibliotheque en
espace utilisateur avec ceux de I’API noyau. tableau 7.1 montre les durées des appels
et I'écart-type des fonctions de 'API typiques (et critiques pour le temps) mesurée
avec un processeur Intel Pentium 4 M avec 2.2 GHz et un noyau standard 2.6.26.

TABLE 7.1 — Comparaison du timing des API

Espace noyau Espace utilisateur
Fonction u(t) o(t) u(t) o(t)
ecrt_master_receive() 1.1 ps 0.3 us | 2.2 ps 0.5 us
ecrt_domain_process() | < 0.1 us | < 0.1 pus | 1.0 us 0.2 ps
ecrt_domain_queue () <01lps|<0.1us|1.0ps 0.1 us
ecrt_master_send() 1.8 us 0.2pus | 2.5 us 0.5 pus

Les résultats des tests montrent que, dans cette configuration, I’API en espace utilisateur
rajoute un délai supplémentaire d’environ 1 us a chaque fonction, par rapport a I’API
en mode noyau.

7.3 Interface RTDM

Lorsqu’on utilise les interfaces en espace utilisateur des extensions temps réels telles
que Xenomai ou RTAI, il est déconseillé d’utiliser ioctl(), parce que ¢a peut perturber

78 1.6.8, 6 octobre 2025

7.4 Intégration systeme

les opérations en temps réels. Pour y parvenir, le modele de périphérique temps réel
(Real-Time Device Model = RTDM][17]) a été développé. Le module maitre fourni une
interface RTDM (voir figure 2.1) en plus du périphérique normal en mode caractere,
si les sources du maitres sont configurées avec --enable-rtdm (voir chapitre 9).

Pour forcer une application a utiliser I'interface RTDM au lieu du périphérique normal
en mode caracteres, elle doit étre liée avec la bibliotheque libethercat_rtdm au lieu de
libethercat. L’utilisation de libethercat_rtdm est transparente, par conséquent l'entéte
EtherCAT ecrt.h peut étre utilisé comme d’habitude avec I’API complete.

Pour construire 'exemple dans Listing 7.1 avec la bibliotheque RTDM, la commande
de I'éditeur de lien doit étre modifiée comme ci-dessous :

gcc ethercat-with-rtdm.c -o ectest -I/opt/etherlab/include \
-L/opt/etherlab/lib -lethercat_rtdm \
-Wl,--rpath -Wl,/opt/etherlab/lib

7.4 Intégration systeme

Pour intégrer le maitre EtherCAT en tant que service dans un systéme en cours
d’exécution, il vient avec un script d’initialisation et un fichier sysconfig qui sont
décrits ci-dessous. Les systemes plus modernes utilisent systemd [7]. L’intégration du
maitre avec systemd est décrite dans sous-section 7.4.4.

7.4.1 Script d’initialisation

Le script d’initialisation du maitre EtherCAT est conforme aux exigences de la “Linux
Standard Base” ((LSB, [0])). Le script est installé dans etc/init.d/ethercat sous
le préfixe d’installation et doit étre copié (ou encore mieux : lié) aux destinations
appropriées (voirchapitre 9), avant que le maitre puisse étre inséré en tant que service.
Veuillez noter, que ce script d’initialisation dépend du fichier sysconfig décrit ci-
dessous.

Pour indiquer les dépendances du service (c’est-a-dire, quels services doivent étre
démarrés avant les autres) a U'intérieur du code du script d’initialisation, LSB définit
un bloc spécial de commentaires. Les outils systemes peuvent extraire cette information
pour insérer le script d’initialisation EtherCAT a la bonne position dans la séquence
de démarrage :

Default-Stop: 0126
Short-Description: EtherCAT master
Description: EtherCAT master QVERSIONG@

END INIT INFO

1.6.8, 6 octobre 2025 79

=
H O © 0 N O 0k W N

o e
_wWoN

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

7 Interfaces dans I'espace utilisateur

7.4.2 Fichier sysconfig

Pour la configuration persistante, le script d’initialisation utilise un fichier sysconfig
installé dans etc/sysconfig/ethercat (sous le préfixe d’'installation), qui est obligatoire.
Le fichier sysconfig contient toutes les variables de configuration requises pour opérer
un ou plusieurs maitres. La documentation se trouve dans le fichier et elle est reproduite
ci-dessous :

The MASTER<X>_DEVICE wvariable specifies the Ethernet device for a master
with tindex ’X’.

Spectify the MAC address (hezadectimal with colons) of the Ethernet device to
use. Ezample: "00:00:08:44:ab:66"

Alternatively, a network interface name can be specified. The interface
name will be resolved to a MAC address wusing the ’<p’ command.
Exzample: "ethO"

The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning: It tells
the master to accept the first device offered by any Ethernet driver.

The MASTER<X>_DEVICE wartables also determine, how many masters will be
created: A nmon-empty wvartable MASTERO_DEVICE will create one master, adding a
non-empty variable MASTERI1I_DEVICE will create a second master, and so on.

Exzamples:
MASTERO_DEVICE="00:00:08:44:ab:66"
MASTERO_DEVICE="eth0"

HORH K W WO R W R OR KWW R W OB KRR W R RR

MASTERO_DEVICE=""
#MASTER1_DEVICE=""

Backup Ethernet dewvices

The MASTER<X>_BACKUP wariables specify the devices used for redundancy. They
behaves mnearly the same as the MASTER<X>_DEVICE wvariable, exzcept that it
does mnot interpret the ff:ff:ff:ff:ff:ff address.

H RO W W R R

#MASTERO_BACKUP=""

Ethernet driver modules to use for EtherCAT operation.

Specify a non-empty list of Ethernet drivers, that shall be used for
EtherCAT operation.

Except for the generic Ethernet driver module, the init script will try to
unload the usual Ethernet driver modules in the list and replace them with
the EtherCAT-capable ones. If a certain (EtherCAT-capable) driver %s not
found, a warning will appear.

H oW R B OB R R H R OR ¥R

Possible walues: 8139too, el00, e1000, e1000e, r8169, generic, ccat, w9db, 1igc,
genet, dwmac-intel, stmmac-pct.

Separate multiple drivers with spaces.

A list of all matching kernel wversions can be found here:

https://docs.etherlab.org/ethercat/1.6/dozygen/devicedrivers.html

Note: The el100, e1000, el1000e, r8169, ccat, igb and igc drivers are not built by
default. Enable them with the --enable-<driver> configure switches.

O % % % % % % %

EVICE_MODULES=""

80 1.6.8, 6 octobre 2025

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

7.4 Intégration systeme

If you have any issues about network interfaces mnot being configured
properly, systemd may need some additional <infos about your setup.

Have a look at the service file, you’ll find some detatils there.

#

List of interfaces to bring up and down automatically.

#

#

#

Specify a space-separated list of interface names (such as eth0O or

enp0s1) that shall be brought up on ‘ethercatctl start‘ and down on
‘ethercatctl stop ‘.
#

#

#

#

#

U

When using the generic driver, the corresponding Ethernet device has to be
activated before the master is started, otherwise all frames will time out.
This the perfect use-case for ‘UPDOWN_INTERFACES .

PDOWN_INTERFACES=""

#

Flags for loading kernel modules.

#

This can usually be left empty. Adjust this wariable, if you have problems
with module loading.

#

#MODPROBE_FLAGS="-b"

Pour les systémes gérés par systemd (voir sous-section 7.4.4), le fichier sysconfig a
été déplacé dans /etc/ethercat.conf. Les deux versions font parties des sources du
maitre et sont destinées a étre utilisées en alternance.

7.4.3 Démarrage du maitre comme service

Une fois que le script d’initialisation et le fichier sysconfig ont été installés au bon

endroit, le maitre EtherCAT peut étre inséré comme un service. Les différentes distributions

Linux offrent différentes facons pour marquer un service pour le démarrage ou l'arrét
dans certains runlevels. Par exemple, SUSE Linux fournit la commande insserv :

insserv ethercat

Le script d’initialisation peut aussi étre utilisé pour démarrer ou stopper manuellement
le maitre EtherCAT.

Il doit étre exécuté avec un des parametres suivants : start, stop, restart ou status.

/etc/init.d/ethercat restart
Shutting down EtherCAT master done
Starting EtherCAT master done

7.4.4 Intégration avec systemd

Les distributions utilisant systemd a la place du systeme d’initialisation SysV utilisent
des fichiers de service pour décrire comment un service doit étre maintenu. Listing 7.2

1.6.8, 6 octobre 2025 81

7 Interfaces dans I'espace utilisateur

liste le fichier de service du mailtre :

Listing 7.2 — Service file

#
EtherCAT master kernel modules
#

[Unit]
Description=EtherCAT Master Kernel Modules

Fine tuning of the startup dependencies below are recommended
to provide a reliable startup routine.

The dependencies below can be either uncommented after copying
this file to /etc/systemd/system or by creating overrides:
Copy the needed dependencies into
/etc/systemd/system/ethercat.service.d/50-dependencies.conf

in a [Unit] section.

H H HHHEHR

Uncomment this, if the generic Ethernet driver is used. It assures, that the
network interfaces are configured, before the master starts.

H H

#
#Requires=network.target # Stop master, if network is stopped
#After=network.target # Start master, after network is ready

Uncomment this, if a native Ethernet driver is used. It assures, that the
network interfaces are configured, after the Ethernet drivers have been

#
#
#
replaced. Otherwise, the networking configuration tools could be confused.

#
#Before=network-pre.target
#Wants=network-pre.target

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=0sbindir@/ethercatctl start
ExecStop=0sbindir@/ethercatctl stop

[Installl
WantedBy=multi-user.target

La commande systemctl est utilisée pour charger et décharger le maitre et les modules
des pilotes réseaux de la méme maniére que l'ancien script d’initialisation (sous-
section 7.4.1).

systemctl start ethercat

Lorsqu’on utilise systemd et /ou la commande systemctl, le fichier de configuration du
maitre doit étre dans /etc/ethercat.conf au lieu de /etc/sysconfig/ethercat!
Celui-ci est ignoré. Les options de configurations sont exactement les mémes.

7.5 Interfaces de déverminage

Les bus EtherCAT peuvent toujours étre surveillés en insérant un commutateur entre
le maitre et I'esclave. Ceci permet de connecter un autre PC avec un analyseur réseau,

82 1.6.8, 6 octobre 2025

7.5 Interfaces de déverminage

par exemple Wireshark [2]. Il est aussi possible d’écouter directement sur les interfaces
réseaux locales de la machine exécutant le maitre EtherCAT. Si le pilote Ethernet
générique (voir section 4.3) est utilisé, I'analyseur réseau peut écouter directement
sur l'interface réseau connecté au bus EtherCAT.

Si on utilise les pilotes Ethernet natifs (voir section 4.2), il n’y a aucune interface réseau
local pour écouter, parce que les périphériques Ethernet utilisés pour EtherCAT ne
sont par enregistrés dans la pile réseau. Dans ce cas, des “interfaces de déverminage”
sont supportées : ce sont des interfaces réseaux virtuelles pour permettre la capture du
trafic EtherCAT avec un analyseur réseau (comme Wireshark ou tcpdump) s’exécutant

sur la machine maitresse sans utiliser de matériel externe. Pour utiliser cette fonctionnalité,
les sources du maitre doivent avoir été configurées avec 'option --enable-debug-if
(voir chapitre 9).

Chaque maitre EtherCAT enregistre une interface réseau en lecture seule par périphérique
Ethernet physique. Les interfaces réseaux sont nommées ecdbgmX pour le périphérique
principal et ecdbghbX pour le périphérique de secours, ou X est I'index du maitre. Le
listing ci-dessous montre une interface de déverminage parmi des interfaces réseaux
standards :

ip link

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

4: ethO: <BROADCAST ,MULTICAST> mtu 1500 gdisc noop qlen 1000
link/ether 00:13:46:3b:ad:d7 brd ff:ff:ff:ff:ff:£ff

8: ecdbgmO: <BROADCAST ,MULTICAST> mtu 1500 qdisc pfifo_fast

gqlen 1000

link/ether 00:04:61:03:d1:01 brd ff:ff:ff:ff:ff:ff

Lorsque l'interface de déverminage est activée, toutes les trames envoyées ou regues
depuis ou vers le périphérique physique sont aussi transmises a 'interface de déverminage
par le maitre correspondant. Les interfaces réseaux peuvent étre activées avec la
commande ci-dessous :

ip link set dev ecdbgmO up
Veuillez noter, que la fréquence des trames peut étre tres élevée. Avec une application

connectée, l'interface de déverminage peut produire des milliers de trames par seconde.

Attention Les tampons de socket nécessaires pour les interfaces de déverminage
doivent étre alloués dynamiquement. Certaines extensions temps réels pour Linux
(comme RTAI) ne autorisent pas un contexte temps réel !

1.6.8, 6 octobre 2025 83

7 Interfaces dans I'espace utilisateur

84

1.6.8, 6 octobre 2025

8 Aspects temporels

Bien que le timing EtherCAT soit hautement déterministe et que par conséquent les
probléemes de timing soient rares, il y a quelques aspects qui peuvent (et doivent) étre
traités.

8.1 Profilage de I'interface de programmation
applicative

Un des aspects de timing les plus important est le temps d’exécution des fonctions
de "API, qui sont appelées dans un contexte cyclique. Ces fonctions prennent une
part importante du timing d’ensemble de ’application. Pour mesurer le timing de ces
fonctions, le code suivant a été utilisé :

cO = get_cycles();
ecrt_master_receive (master);
cl = get_cycles();
ecrt_domain_process (domainl);
c2 = get_cycles();
ecrt_master_run (master) ;

c3 = get_cycles();
ecrt_master_send (master) ;

c4 = get_cycles();

Entre chaque appel d’une fonction de I’API, le compteur d’horodatage d’estampille du
microprocesseur est lu. Les différences des compteurs sont converties en us au moyen
de la variable cpu_khz, qui contient le nombre d’incréments par ms.

Pour la mesure réelle, un systeme avec un microprocesseur a 2.0 GHz a été utilisé pour
exécuter le code ci-dessus dans un fil d’exécution RTAI avec une période de 100 ps.
La mesure a été répétée n = 100 fois et les résultats ont été moyennés. Ils sont visibles
dans tableau 8.1.

Il est évident, que les fonctions qui accedent au matériel prennent la part du lion.
La fonction ec_master_receive() exécute la requéte de service d’interruption (ISR)
du périphérique Ethernet, analyse les datagrammes et copie leurs contenus dans la
mémoire des objets datagrammes. La fonction ec_master_send() assemble une trame
a partir des datagrammes et la copie vers les tampons matériels. Il est intéressant de
noter, que ceci ne prend qu'un quart du temps de réception.

1.6.8, 6 octobre 2025 85

8 Aspects temporels

TABLE 8.1 — Profilage d'un cycle d’application sur un processeur a 2.0 GHz

Element Durée moyenne [s] | Déviation standard [us]
ecrt_master_receive() 8.04 0.48
ecrt_domain_process() 0.14 0.03
ecrt_master_run() 0.29 0.12
ecrt_master_send() 2.18 0.17
Cycle complet 10.65 0.69

Les fonctions qui operent uniquement sur les structures de données internes des
maitres sont tres rapides (At < 1 us). Il est intéressant de noter que 'exécution
de ec_domain_process() a un petit écart-type par rapport a la moyenne, alors que le
ratio est presque deux fois plus grand pour ec_master_run() : Cela vient probablement
des fonctions ultérieures qui doivent exécuter le code en fonction de I’état courant et
les différentes fonctions d’état sont plus ou moins complexes.

Pour un cycle en temps réel qui représente environ 10 ps, la fréquence théorique peut
atteindre jusqu’a 100 kHz. Mais cette fréquence reste théorique pour deux raisons :

1. Le processeur doit continuer a exécuter le systeme d’exploitation entre les cycles
temps réels.

2. Les trames EtherCAT doivent étre envoyées et recues, avant que le prochain
cycle temps réel commence. La détermination du temps de cycle du bus est
difficile. Elle est couverte dans section 8.2.

8.2 Mesure des cycles du bus

Pour mesurer le temps pendant lequel, la trame est “sur le cable”, deux horodatages
sont nécessaires :

1. Le premier quand le matériel Ethernet commence a envoyer physiquement la
trame.

2. Le second quand la trame est completement recue par le matériel Ethernet.

Les deux instants sont difficiles a déterminer. La premiere raison est que les interruptions
sont désactivées et le maitre n’est pas notifié quand une trame est envoyée ou regue
(un sondage fausserait les résultats). La deuxiéme raison est que, méme avec les
interruptions activées, la durée entre I’évenement et la notification est inconnue. C’est
pourquoi, la seule maniere de déterminer avec certitude le temps de cycle du bus est
une mesure électrique.

De toute fagon, la durée du cycle du bus est un facteur important lors de la conception
du code temps réel, car il limite la fréquence maximale pour la tache cyclique de
I’application. En pratique, ces parametres de timing dépendent fortement du matériel

86 1.6.8, 6 octobre 2025

8.2 Mesure des cycles du bus

et une méthode par essais et erreurs doit étre utilisée pour déterminer les limites du
systeme.

La question centrale est : Que se passe-t-il si la fréquence du cycle est trop haute? La
réponse est que les trames EtherCAT qui ont été envoyées a la fin du cycle ne sont
pas encore recues quand le prochain cycle démarre.

Ceci est notifié en premier par ecrt_domain_process(), parce que le compteur de travail
des datagrammes de données de processus n’est pas incrémenté. La fonction notifiera
I'utilisateur via Syslog !. Dans ce cas, les données de processus sont conservés identiques
comme dans le dernier cycle, parce qu’elles ne sont pas écrasées par le domaine.
Quand les datagrammes du domaine sont a nouveau mis en file d’attente, le maitre
s’apercoit qu'ils ont déja été mis en file d’attente (et marqués comme envoyés). Le
malitre les marquera a nouveau comme non-envoyés et affichera un avertissement que
les datagrammes ont été “ignorés”.

Sur le systeme a 2.0 GHz mentionné, la fréquence de cycle possible peut atteindre
25 kHz sans perdre de trames. Cette valeur peut siirement étre augmentée en choisissant
un matériel plus rapide. En particulier le matériel réseau RealTek peut étre remplacé
par un autre plus rapide. En outre, la mise en oeuvre d’un ISR dédié pour les
périphériques EtherCAT contribuerait également a augmenter la latence. Ces deux
points sont la liste des choses encore a faire de 'auteur.

1. Pour limiter la sortie de Syslog, un mécanisme a été implémenté pour générer une notification
résumée au maximum une fois par seconde.

1.6.8, 6 octobre 2025 87

8 Aspects temporels

88 1.6.8, 6 octobre 2025

O Installation

9.1 Obtention du logiciel

Il y a plusieurs manieres d’obtenir le logiciel du maitre :

1. Une version officielle (par exemple 1.5.2) peut étre téléchargée depuis le site
web du maitre® dans le projet EtherLab [1] sous forme d’archive tar.

2. Larévision de développement la plus récente (mais aussi n’importe quelle autre
révision) peut étre obtenue via le dépot Git [11] sur la page du projet sur
GitLab.com 2. L’intégralité du dépot peut étre clonée avec la commande

git clone https://gitlab.com/etherlab.org/ethercat.git
local-dir

3. Sans installation locale de Git, des archives tar de révisions arbitraires peuvent
étre téléchargées via le bouton “Download“ sur GitLab.

9.2 Construction du logiciel

Apres le téléchargement d’une archive tar ou le clonage du dépot tel que décrit dans
la section 9.1, les sources doivent étre préparées et configurées pour le processus de
construction.

Si une archive tar a été téléchargée, elle doit étre extraite avec les commandes suivantes :

$ tar xjf ethercat-1.5.2.tar.bz2
$ cd ethercat-1.5.2/

La configuration du logiciel est gérée avec Autoconf [15] aussi les versions publiées
contiennent un script shell configure, qui doit étre exécuté pour la configuration (voir
ci-dessous).

Amorcage Lors d'un téléchargement ou clonage direct du dépot, le script configure
n’existe pas encore. Il peut étre créé via le script bootstrap.sh dans les sources du
maitre. Les paquets autoconf et automake sont alors nécessaires.

1. https://etherlab.org/ethercat
2. https://gitlab.com/etherlab.org/ethercat

1.6.8, 6 octobre 2025 89

https://etherlab.org/ethercat
https://gitlab.com/etherlab.org/ethercat

9 Installation

Configuration et construction La configuration et le processus de construction
suivent dans les commandes ci-dessous :

$./configure
$ make
$ make modules

tableau 9.1 liste les commutateurs importants de configuration et les options :

Option/Commutateur

TABLE 9.1 — Options de configuration

Description

Défaut

—--prefix
—-with-linux-dir
--with-module-dir

Préfixe d’installation

Sources du noyau Linux
Sous-dossier dans ’arbre des
modules du noyau dans lequel
les modules noyaux EtherCAT
doivent étre installés.

/opt/etherlab
Utilise le noyau actuel
ethercat

--enable-generic Construire le pilote Ethernet | oui
générique (voir section 4.3).
--enable-8139too Construire le pilote 8139too oui
--with-8139too-kernel noyau 8139too]
--enable-e100 Construire le pilote €100 driver non
--with-e100-kernel €100 noyau T
--enable-e1000 Activer le pilote e1000 non
--with-e1000-kernel noyau e1000 T
--enable-e1000e Activer le pilote e1000e non
--with-e1000e-kernel noyau e€1000e]
--enable-r8169 Activer le pilote r8169 non
--with-r8169-kernel noyau r8169 T
--enable-ccat Activer le pilote ccat (indépendant | non
de la version du noyau)
--enable-igb Activer le pilote igh non
--with-igb-kernel noyau igh T
--enable-kernel Construire les modules noyau du | oui
maitre
--enable-rtdm Créer linterface RTDM (Le | non

—--with-rtai-dir

--with-xenomai-dir

90

dossier RTAI ou Xenomai est
requis, voir ci-dessous)

Chemin RTAI (pour les exemples
RTAI et interface RTDM)
Chemin Xenomai (pour les
exemples Xenomai et interface

RTDM)

1.6.8, 6 octobre 2025

9.3 Construction de la documentation de l'interface

Option/Commutateur Description Défaut

--with-devices Nombre de périphériques Ethernet | 1
pour l'opération redondante (> 1
commute la redondance)

--with-systemdsystemunitdir | Chemin Systemd auto

--enable-debug-if Créer une interface de | non
déverminage pour chaque maitre

--enable-debug-ring Créer un anneau de déverminage | non
pour enregistrer les trames

--enable-eoe Activer le support EoE oui

--enable-cycles Utiliser le compteur d’horodatage | non
du processeur. Activez ceci sur
les architectures Intel pour un
meilleur calcul des timings.

--enable-hrtimer Utiliser un minuteur haute- | non
résolution pour laisser dormir
I’automate du maitre entre 1’envoi
des trames.

--enable-regalias Lire les alias d’adresses depuis le | non
registre

--enable-tool Construire l'outil en ligne de | oui
commande “ethercat” (voir
section 7.1)

--enable-userlib Construire la bibliotheque pour | oui
I’espace utilisateur

--enable-tty Construire le pilote TTY non

--enable-wildcards Activer Oxffffffff pour étre un | non
jocker pour lidentifiant de
fabricant et le code produit

--enable-sii-assign Activer l'assignation de l'acces | non
SII a la couche PDI pendant la
configuration de 'esclave

--enable-rt-syslog Activer les instructions syslog | yes
dans le contexte temps réel

T Si cette option n’est pas spécifiée, la version du noyau a utiliser est extraite des
sources du noyau Linux.

9.3 Construction de la documentation de l'interface

Le code source est documenté avec Doxygen [13]. Pour construire la documentation
HTML, le logiciel the Doxygen doit étre installé. La commande ci-dessous génere les
documents dans le sous-dossier dozygen-output :

1.6.8, 6 octobre 2025 91

9 Installation

$ make doc

La documentation de l'interface peut étre consultée en ouvrant avec un navigateur
web le fichier doxzygen-output/html/index.html. Les fonctions et structures de données
de 'application sont couvertes par leur propre module “Application Interface”.

9.4 Installation du logiciel

Les commandes ci-dessous doivent étre entrées en tant que root : la premiere installe
I'entéte EtherCAT, le script d’initialisation, le fichier sysconfig et I'outil en espace
utilisateur dans le chemin du préfixe. La deuxieme installe les modules noyaux dans
le dossier des modules du noyau. L’appel final a depmod est nécessaire pour inclure
les modules noyaux dans le fichier modules.dep pour permettre de les utiliser avec la
commande modprobe, qui se trouve dans le script d’initialisation.

make install
make modules_install
depmod

Si le dossier de destination des modules noyaux ne se trouve dans /lib/modules, un
dossier de destination différent peut étre spécifié avec la variable make DESTDIR. Par
exemple :

make DESTDIR=/vol/nfs/root modules_install

Ce commande installe les modules noyaux compilés dans /vol/nfs/root/lib/modules,
auquel on ajoute la version du noyau.

Maintenant le fichier de configuration /etc/sysconfig/ethercat (voir sous-section 7.4.2)
ou /etc/ethercat.conf si on utilise systemd, doit étre personnalisé. La personnalisation
minimale consiste a définir la variable MASTERO_DEVICE avec I’adresse MAC du périphérique
Ethernet a utiliser (ou ££:££:£f:£f:ff:£f pour utiliser le premier périphérique offert)

et a sélectionner le(s) pilote(s) a charger via la variable DEVICE_MODULES.

Apres que la définition de la configuration de base, le maitre peut étre démarré avec
la commande ci-dessous :

systemctl start ethercat
Lorsqu’on utilise init.d, la commande suivante peut étre utilisée a la place :
/etc/init.d/ethercat start

A partir de cet instant, I'opération du maitre peut étre obervée en consultant les
messages Syslog, qui ressemblent & ceux qui sont ci-dessous. Si des esclaves EtherCAT
sont connectés au périphérique du maitre EtherCAT, les indicateurs d’activité devraient
commencer a clignoter.

92 1.6.8, 6 octobre 2025

10

11

12

13

14

15

16

17

18

9.5 Création automatique des nceuds de périphériques

EtherCAT: Master driver 1.5.2

EtherCAT: 1 master waiting for devices.

EtherCAT Intel(R) PRO/1000 Network Driver - version 6.0.60-k2

Copyright (c) 1999-2005 Intel Corporation.

PCI: Found IRQ 12 for device 0000:01:01.0

PCI: Sharing IRQ 12 with 0000:00:1d.2

PCI: Sharing IRQ 12 with 0000:00:1f.1

EtherCAT: Accepting device 00:0E:0C:DA:A2:20 for master O.

EtherCAT: Starting master thread.

ec_el000: ecO: el1000_probe: Intel(R) PRO/1000 Network
Connection

ec_el000: ecO: el1000_watchdog_task: NIC Link is Up 100 Mbps
Full Duplex

EtherCAT: Link state changed to UP.

EtherCAT: 7 slave(s) responding.

EtherCAT: Slave states: PREQOP.

EtherCAT: Scanning bus.

EtherCAT: Bus scanning completed in 431 ms.

(1) — () Le module maitre est en train de charger , et un maitre est initialisé.

G) - Le pilote e1000 compatible EtherCAT est en train de charger. Le maitre
accepte le périphérique avec I'adresse 00:0E:0C:DA:A2:20.

(o) - Le maitre entre en phase de repos, démarre son automate et commence
a analyser le bus.

9.5 Création automatique des nceuds de périphériques

L’outil en ligne de commande ethercat (voir section 7.1) communique avec le maitre
via le périphérique en mode caractere. Les nceuds de périphériques correspondants
sont créés automatiquement, si le service udev est en cours de fonctionnement. Veuillez
noter, que pour certaines distributions, le paquet udev n’est pas installé par défaut.

Les nceuds de périphériques seront créés avec le mode 0660 et le groupe root par
défaut. Si des utilisateurs “normaux” doivent avoir un acces en lecture, un fichier de
regle udev (par exemple /etc/udev/rules.d/99-EtherCAT.rules) doit étre créé avec le
contenu suivant :

KERNEL=="EtherCAT[0-9]*", MODE="0664"

Apres la création du fichier de regles udev et le redémarrage du maitre EtherCAT
avec /etc/init.d/ethercat restart, le noecud de périphérique est automatiquement
créé avec les bons droits :

1s -1 /dev/EtherCATO
crwu-rw-r-- 1 root root 252, 0 2008-09-03 16:19 /dev/EtherCATO

1.6.8, 6 octobre 2025 93

9 Installation

Maintenant, l'outil ethercat peut étre utilisé (voir section 7.1) par un utilisateur
non-root.

Si les utilisateurs non-root doivent avoir ’acces en écriture, on peut utiliser la regle
udev suivante a la place :

KERNEL=="EtherCAT [0-9]*", MODE="0664", GROUP="users"

94 1.6.8, 6 octobre 2025

Bibliographie

1]

[10]
[11]
[12]

[13]

Ingenieurgemeinschaft IgH : EtherLab — Open Source Toolkit for rapid realtime
code generation under Linux with Simulink/RTW and EtherCAT technology.
https://etherlab.org, 2024.

IEC 61158-4-12 : Data-link Protocol Specification. International Electrotechnical
Commission (IEC), 2005.

IEC 61158-6-12 : Application Layer Protocol Specification. International
Electrotechnical Commission (IEC), 2005.

GNU General Public License, Version 2. http://www.gnu.org/licenses/
gpl-2.0.html. October 15, 2008.

GNU Lesser General Public License, Version 2.1. http://www.gnu.org/
licenses/old-1licenses/1gpl-2.1.html. October 15, 2008.

Linux Standard Base. http://www.linuxfoundation.org/en/LSB. August 9,
2006.

systemd System and Service Manager http://freedesktop.org/wiki/
Software/systemd. January 18, 2013.

Wireshark. http://www.wireshark.org. 2008.

Hopcroft, J. E. / Ullman, J. D. : Introduction to Automata Theory, Languages
and Computation. Adison-Wesley, Reading, Mass. 1979.

Wagner, F. / Wolstenholme, P. : State machine misunderstandings. In : IEE

journal “Computing and Control Engineering”, 2004.

RTAI. The RealTime Application Interface for Linux from DIAPM. https://
www.rtai.org, 2010.

RT PREEMPT HOWTO. http://rt.wiki.kernel.org/index.php/RT_
PREEMPT_HOWTO, 2010.

Doxygen. Source code documentation generator tool. http://www.stack.nl/
~dimitri/doxygen, 2008.

Git SCM. https://git-scm.com, 2021.

Autoconf — GNU Project — Free Software Foundation (FSF). http://www.gnu.
org/software/autoconf, 2010.

IEC 61800-7-304 : Adjustable speed electrical power drive systems - Part 7-300 :
Generic interface and use of profiles for power drive systems - Mapping of profiles
to network technologies. International Electrotechnical Commission (IEC), 2007.

1.6.8, 6 octobre 2025 95

https://etherlab.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.linuxfoundation.org/en/LSB
http://freedesktop.org/wiki/Software/systemd
http://freedesktop.org/wiki/Software/systemd
http://www.wireshark.org
https://www.rtai.org
https://www.rtai.org
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.stack.nl/~dimitri/doxygen
http://www.stack.nl/~dimitri/doxygen
https://git-scm.com
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf

Bibliographie

[17] J. Kiszka : The Real-Time Driver Model and First Applications.
http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/
RTDM-and-Applications.pdf, 2013.

96 1.6.8, 6 octobre 2025

http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/RTDM-and-Applications.pdf
http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/RTDM-and-Applications.pdf

Glossaire

ADEOS Adaptive Domain Environment for Operating Systems, page 1
CoE CANopen over EtherCAT, Mailbox Protocol, page 56

ecdev EtherCAT Device, page 32

EoE Ethernet over EtherCAT, Mailbox Protocol, page 53

FSM Finite State Machine, page 35

ISR Interrupt Service Routine, page 26

LSB Linux Standard Base, page 2

PCI Peripheral Component Interconnect, Bus informatique, page 28

RTAI Realtime Application Interface, page 1

1.6.8, 6 octobre 2025

97

Glossaire

98

1.6.8, 6 octobre 2025

Index

Application, 5
Application interface, 15

Bus cycle, 86

CoE, 56
Concurrency, 19

Debug Interfaces, 82
Device modules, 5
Device interface, 32
Device modules, 5
Distributed Clocks, 21
Domain, 11

EoE, 53
Example Applications, 15

FMMU
Configuration, 11
FSM, 35
EoE, 54
Master, 41
PDO, 49
SII, 48
Slave Configuration, 43
Slave Scan, 43
State Change, 46
Theory, 36

GPL, 3

Idle phase, 9
Init script, 7, 79
Interrupt, 26, 28
ISR, 26

LGPL, 3

1.6.8, 6 octobre 2025

LSB, 79

MAC address, 7
Mailbox, 53
Master
Architecture, 5
Features, 1
Installation, 89
Master Module, 5
Master module, 7
Master phases, 9

net_device, 26
netif, 27
Network drivers, 25, 32

Operation phase, 9
Orphaned phase, 9

PDO, 9
Process data, 9
Profiling, 85

Redondance, 31

Service, 81
SII, 48

Access, 71
Socket buffer, 27
SoE, 59
Sysconfig file, 80
Syslog, 92
systemd, 81

Userspace, 61
VoE, 57

99

	Conventions
	Le maître EtherCAT IgH
	Résumé des fonctionnalités
	License

	Architecture
	Module Maître
	Phases du maître
	Données de processus

	Interface de Programmation Applicative (API)
	Configuration du maître
	Configuration de l'esclave

	Opération cyclique
	Gestionnaires VoE
	Accès concurrents au maître
	Horloges distribuées

	Interfaces Ethernet
	Principes de base du pilote réseau
	Les pilotes natifs pour périphériques EtherCAT
	Le pilote de périphérique EtherCAT générique
	Fourniture de périphériques Ethernet
	Redondance
	Interface de périphérique EtherCAT
	Application de correctifs aux pilotes de réseau natifs

	Automates finis
	Théorie des automates finis
	Le modèle d'état du maître
	L'automate du maître
	L'automate d'analyse des esclaves
	L'automate de configuration de l'état de l'esclave
	L'automate de changement d'état
	L'automate SII
	Les automates PDO

	Implémentation du protocole de boîte aux lettres
	Ethernet over EtherCAT (EoE)
	CANopen over EtherCAT (CoE)
	Vendor specific over EtherCAT (VoE)
	Servo Profile over EtherCAT (SoE)

	Interfaces dans l'espace utilisateur
	Outil en ligne de commande
	Périphériques en mode caractères
	Paramètre d'alias d'adresse
	Affichage de la configuration du bus
	Sortie des informations PDO en langage C
	Affichage des données de processus
	Configuration du niveau de déverminage d'un maître
	Domaines configurés
	Accès SDO
	Statistiques EoE
	File-Access over EtherCAT
	Création de graphiques topologiques
	Maître et périphériques Ethernet
	Gestionnaires de synchronisation, PDOs et entrées PDO
	Registre d'accès
	Dictionnaire SDO
	Accès SSI
	Esclaves sur le bus
	Accès IDN SoE
	Demande des états de la couche application
	Affichage de la version du maître
	Génération de la description de l'esclave au format XML

	Bibliothèque en espace utilisateur
	Utilisation de la bibliothèque
	Implémentation
	Timing

	Interface RTDM
	Intégration système
	Script d'initialisation
	Fichier sysconfig
	Démarrage du maître comme service
	Intégration avec systemd

	Interfaces de déverminage

	Aspects temporels
	Profilage de l'interface de programmation applicative
	Mesure des cycles du bus

	Installation
	Obtention du logiciel
	Construction du logiciel
	Construction de la documentation de l'interface
	Installation du logiciel
	Création automatique des nœuds de périphériques

	Bibliographie
	Glossaire
	Index

