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2.2 Phases du mâıtre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Données de processus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Interface de Programmation Applicative (API) 15
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7.4.3 Démarrage du mâıtre comme service . . . . . . . . . . . . . . . 81
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Conventions

Conventions

Ce document utilise les conventions typographiques suivantes :

— Le texte en italique est utilisé pour introduire des nouveaux termes et pour les
noms de fichiers.

— Le texte à chasse fixe est utilisé pour les exemples de code et les sorties
des lignes de commandes.

— Le texte en gras à chasse fixe est utilisé pour les entrées utilisateurs dans
les lignes de commandes.

Les valeurs des données et des adresses sont habituelles spécifiées en valeurs hexadécimales.
Elles sont indiquées dans le style du langage de programmation C avec le préfixe 0x

(par exemple : 0x88A4). Sauf mention contraire, les valeurs des adresses sont spécifiées
en adresse d’octets.

Les noms des fonctions sont toujours écrits avec des parenthèses, mais sans paramètre.
Ainsi, si une fonction ecrt_request_master() a des parenthèses vides, ceci n’indique
pas qu’elle ne prend pas de paramètres.

Les commandes shell à taper, sont indiquées par un prompt dollar :

$

Par ailleurs, si une commande shell doit être tapée en tant que le super utilisateur, le
prompt est un dièse :

#

x 1.6.8, 6 octobre 2025



1 Le mâıtre EtherCAT IgH

Ce chapitre couvre les informations générales à propos du mâıtre EtherCAT.

1.1 Résumé des fonctionnalités

La liste ci-dessous donne un bref résumé des fonctionnalités du mâıtre.

— Conçu en tant que module noyau pour Linux 2.6 / 3.x.
— Implémenté suivant la norme IEC 61158-12 [2] [3].
— Fourni avec des pilotes natifs EtherCAT pour plusieurs périphériques Ethernet

courants, mais aussi avec un pilote générique pour toutes les puces Ethernet
supportées par le noyau Linux.
— Les pilotes natifs gèrent le matériel sans interruption.
— Des pilotes natifs pour d’autres périphériques Ethernet peuvent être facilement

implémentés en utilisant l’interface commune des périphériques (voir section 4.6)
fournie par le module mâıtre.

— Pour les autres matériels, le pilote générique peut être utilisé. Il utilise les
couches basses de la pile réseau de Linux.

— Le module mâıtre supporte l’exécution en parallèle de plusieurs mâıtres EtherCAT.
— Le code du mâıtre supporte n’importe quelle extension temps réel de Linux au

travers de son architecture indépendante.
— RTAI [11] (y compris LXRT via RTDM), ADEOS, RT-Preempt [12], Xenomai

(y compris RTDM), etc.
— Il fonctionne aussi sans extension temps réel.

— Une “API” commune pour les applications qui veulent utiliser les fonctionnalités
EtherCAT (voir chapitre 3).

— Des domaines sont ajoutés, pour permettre de grouper les transferts de données
des processus avec différents groupes d’esclaves et de périodes des tâches.
— Gestion de domaines multiples avec différentes périodes de tâches.
— Calcul automatique de la cartographie des données des processus, FMMU

et configuration automatique des gestionnaires de synchronisation au sein
de chaque domaine.

— Communication au travers de plusieurs automates.
— Analyse automatique du bus après les changements de topologie.
— Surveillance du bus pendant les opérations.
— Reconfiguration automatique des esclaves (par exemple après une panne

d’alimentation) pendant les opérations.

1.6.8, 6 octobre 2025 1



1 Le mâıtre EtherCAT IgH

— Support des horloges distribuées (Distributed Clocks)(voir section 3.5).
— Configuration des paramètres d’horloges distribuées de l’esclave via l’interface

de l’application.
— Synchronisation (compensation du décalage et de la dérive) des horloges

distribuées des esclaves avec l’horloge de référence.
— Synchronisation optionnelle de l’horloge de référence avec l’horloge mâıtre

ou dans l’autre sens.
— CANopen over EtherCAT (CoE)

— Téléversement, téléchargement et service d’information SDO.
— Configuration des esclaves via SDOs.
— Accès SDO depuis l’espace utilisateur et depuis l’application.

— Ethernet over EtherCAT (EoE)
— Utilisation transparente des esclaves EoE via des interfaces réseaux virtuelles.
— Support natif des architectures réseaux EoE commutées ou routées.

— Vendor-specific over EtherCAT (VoE)
— Communication avec les bôıtes aux lettres spécifiques des vendeurs via

l’API.
— File Access over EtherCAT (FoE)

— Chargement et enregistrement des fichiers via l’outil en ligne de commande.
— La mise à jour du firmware de l’esclave peut être faite facilement.

— Servo Profile over EtherCAT (SoE)
— Implémentation conforme à IEC 61800-7 [16].
— Enregistrement des configurations IDN, qui sont écrites dans l’esclave pendant

le démarrage.
— Accès aux IDNs via l’outil en ligne de commande.
— Accès aux IDNs pendant l’exécution via la bibliothèque en espace utilisateur.

— Outil en ligne de commande “ethercat” dans l’espace utilisateur (voir section 7.1)
— Information détaillée à propos du mâıtre, des esclaves, domaines et configuration

du bus.
— Paramétrage du niveau de déverminage du mâıtre.
— Lecture/Ecriture des adresses d’alias.
— Listage des configurations des esclaves.
— Affichage des données des processus.
— Téléchargement/Téléversement SDO ; listage des dictionnaires SDO.
— Chargement et enregistrement de fichiers via FoE.
— Accès IDN SoE.
— Accès aux registres des esclaves.
— Accès à la SII (EEPROM) de l’esclave.
— Contrôle des états de la couche application.
— Génération de la description des esclaves au format XML et code C pour

les esclaves existants.
— Intégration système transparente au travers de la conformité LSB.

— Configuration du mâıtre et des périphériques réseaux via des fichiers sysconfig.
— Script d’initialisation pour le contrôle du mâıtre.
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1.2 License

— Fichier de service pour systemd.
— Interface réseau virtuelle en lecture seule pour la surveillance et le déverminage.

1.2 License

Le code source du mâıtre est publiée selon les termes et conditions de la GNU General
Public License (GPL [4]), version 2. Les développeurs, qui veulent utiliser EtherCAT
pour les systèmes Linux, sont invités à utiliser le code source du mâıtre ou même à
participer à son développement.

Pour autoriser la liaison statique d’une application en espace utilisateur avec l’API
du mâıtre (voir chapitre 3), la bibliothèque pour l’espace utilisateur (voir section 7.2)
est publiée selon les termes et conditions de la GNU Lesser General Public License
(LGPL [5]), version 2.1.

1.6.8, 6 octobre 2025 3
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2 Architecture

Le mâıtre EtherCAT est intégré au noyau Linux. C’était une décision originelle de
conception, qui a été prise pour plusieurs raisons :

— Le code du noyau a des caractéristiques de temps réel significativement meilleures,
i. e. une latence plus faible que le code de l’espace utilisateur. Il était prévisible,
qu’un mâıtre pour un bus de terrain, ait beaucoup de travail cyclique à faire.
Le travail cyclique est habituellement déclenché par des interruptions de timer
dans le noyau. Le délai d’exécution d’une fonction qui traite une interruption
de timer est moindre si elle réside dans l’espace noyau, parce qu’il n’y a pas
besoin de passer du temps à commuter le contexte vers le processus en espace
utilisateur.

— Il était prévisible, que le code du mâıtre doive communiquer directement avec
le matériel Ethernet. Ceci doit être fait dans le noyau de toute façon (au travers
des pilotes des périphériques réseau), ce qui constitue une raison supplémentaire
pour que le code du mâıtre soit dans l’espace du noyau.

La figure 2.1 fournit une vue d’ensemble de l’architecture du mâıtre.

Les composants de l’environnement du mâıtre sont décrits ci-dessous :

Master Module Module noyau contenant une ou plusieurs instances du mâıtre
EtherCAT (voir section 2.1), le “Device Interface” (interface du périphérique,
voir section 4.6) et l’“Application Interface” (interface de programmation applicative,
voir chapitre 3).

Device Modules Modules de pilotes de périphérique Ethernet supportant EtherCAT
qui offrent leurs périphériques au mâıtre EtherCAT via l’interface du périphérique
(voir section 4.6). Ces pilotes réseaux modifiés peuvent gérer en parallèle les
interfaces réseaux utilisées pour les opérations EtherCAT et les interfaces réseaux
Ethernet “normales”. Un mâıtre peut accepter un périphérique particulier pour
envoyer et recevoir des trames EtherCAT. Les périphériques Ethernet déclinés
par le module mâıtre sont connectés comme d’habitude à la pile réseau du
noyau.

Application Un programme qui utilise le mâıtre EtherCAT (habituellement pour
un échange cyclique de données de processus avec les esclaves EtherCAT).
Ces programmes n’appartiennent pas au code du mâıtre EtherCAT 1, mais ils
doivent être générés ou écrits par l’utilisateur. Une application peut demander
un mâıtre via l’API (voir chapitre 3). Si la demande réussie, elle a alors le

1. Toutefois, il y a des exemples fournis dans le dossier examples/.
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2.1 Module Mâıtre

contrôle du mâıtre : elle peut fournir une configuration de bus et échanger
des données de processus. Les applications peuvent être des modules noyaux
(qui utilisent directement l’API du noyau) ou des programmes dans l’espace
utilisateur, qui utilisent l’API via la bibliothèque EtherCAT (voir section 7.2),
ou la bibliothèque RTDM (voir section 7.3).

2.1 Module Mâıtre

Le module noyau du mâıtre EtherCAT ec master peut contenir plusieurs instances
mâıtresses. Chaque mâıtre attend des périphériques Ethernet particuliers identifiés par
leurs adresses MAC. Ces adresses doivent être spécifiées au chargement du module
via le paramètre de module main devices (et en option : backup devices). Le nombre
d’instances mâıtresses à initialiser est défini par le nombre d’adresses MAC fournies.

La commande ci-dessous charge le module mâıtre avec une unique instance mâıtresse
qui attend un seul périphérique Ethernet dont l’adresse MAC est 00:0E:0C:DA:A2:20.
Le mâıtre sera accessible à l’index 0.

# modprobe ec master main devices=00:0E:0C:DA:A2:20

Pour plusieurs mâıtres, des virgules séparent les adresses MAC :

# modprobe ec master main devices=00:0E:0C:DA:A2:20,00:e0:81:71:d5:1c

Les deux mâıtres peuvent être adressés par leurs indices respectifs 0 et 1 (voir figure 2.2).
L’index du mâıtre est requis par la fonction ecrt_request_master() de l’API (voir
chapitre 3) et par l’option --master de l’outil de commande en ligne ethercat (voir
section 7.1), qui vaut 0 par défaut.

Niveau de déverminage Le module mâıtre a aussi un paramètre debug level pour
configurer le niveau initial de déverminage pour tous les mâıtres (voir aussi sous-
section 7.1.6).

Script d’initialisation Dans la plupart des cas, il n’est pas nécessaire de charger
manuellement le module mâıtre et les modules des pilotes Ethernet. Un script d’initialisation
est disponible pour démarrer le mâıtre en tant que service (voir section 7.4). Un fichier
de service est aussi disponible pour les systèmes qui sont gérés par systemd [7].

Syslog Le module mâıtre publie des informations à propos de son état et ses événement
dans le tampon circulaire du noyau. Elles aboutissent aussi dans les journaux systèmes.
La commande de chargement du module devrait produire les messages ci-dessous :

1.6.8, 6 octobre 2025 7
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master 0 master 1

EtherCAT master module

Kernel space

Figure 2.2 – Plusieurs mâıtres dans un module
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2.2 Phases du mâıtre

# dmesg | tail -2

EtherCAT: Master driver 1.5.2

EtherCAT: 2 masters waiting for devices.

# tail -2 /var/log/messages

Jul 4 10:22:45 ethercat kernel: EtherCAT: Master driver 1.5.2

Jul 4 10:22:45 ethercat kernel: EtherCAT: 2 masters waiting

for devices.

Les messages du mâıtre sont préfixés par EtherCAT pour faciliter la recherche dans les
journaux.

2.2 Phases du mâıtre

Chaque mâıtre EtherCAT fourni par le module mâıtre (voir section 2.1) traverse
plusieurs phases au cours de son exécution (voir figure 2.3) :

Phase orpheline (Orphaned) Ce mode prend effet quand le mâıtre attend encore
pour se connecter à ses périphériques Ethernet. Aucune communication de bus
n’est possible pour l’instant.

Phase paresseuse (Idle) Ce mode prend effet quand le mâıtre a accepté tous
les périphériques Ethernet requis, mais qu’aucune application ne l’a encore
mobilisé. Le mâıtre exécute son automate (voir section 5.3), qui analyse automatiquement
le bus pour rechercher les esclaves et exécuter les opérations en attente depuis
l’interface en espace utilisateur (par exemple les accès SDO). L’outil en ligne de
commande peut être utilisé pour accéder au bus, mais il n’y a aucun échange
de donnée de processus parce que la configuration du bus est manquante.

Phase d’opération Le mâıtre est mobilisé par une application qui peut fournir
une configuration de bus et échanger des données de processus..

2.3 Données de processus

Cette section présente quelques termes et idées sur la manière dont le mâıtre traite
les données de processus.

Image des données de processus Les esclaves présentent leurs entrés et sorties au
mâıtre au travers d’objet de données de processus “Process Data Objects” (PDOs).
Les PDOs disponibles peuvent être déterminés en lisant les catégories SII TxPDO
et RxPDO de l’esclave depuis l’E2PROM (en cas de PDOs fixes) ou en lisant les
objets CoE appropriés (voir section 6.2), si disponibles. L’application peut inscrire les
entrées des PDOs pour l’échange pendant l’opération cyclique. La somme de toutes
les entrées PDO inscrites définit l’“image des données du processus”, qui peut être
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Orphaned Idle Operation

Device connection Master request

Device disconnection Master release

Figure 2.3 – Phases et transitions du mâıtre
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échangée via des datagrammes avec des accès mémoires “logiques” (comme LWR 2,
LRD 3 ou LRW 4) présentés dans [2, sec. 5.4].

Domaine de données de processus Les images des données de processus peuvent
être facilement gérées en créant des “domaines”, qui permettent l’échange de PDO
groupés. Ils s’occupent également de gérer les structures des datagrammes qui sont
nécessaires pour échanger les PDOs. Les domaines sont obligatoires pour l’échange de
données de processus, donc il doit y en avoir au moins un. Ils ont été introduits pour
les raisons suivantes :

— La taille maximale d’un datagramme est limitée par celle d’une trame Ethernet.
La taille maximale des données est la taille du champ “données” d’Ethernet
moins l’entête de la trame Ethernet, moins l’entête du datagramme EtherCAT
et moins la terminaison du datagramme EtherCAT : 1500− 2− 12− 2 = 1484
octets. Si la taille de l’image des données de processus dépasse cette limite,
il faut envoyer plusieurs trames et partitionner l’image pour utiliser plusieurs
datagrammes. Un domaine gère cela automatiquement.

— Tous les PDOs n’ont pas besoin d’être échangés à la même fréquence : les
valeurs des PDOs peuvent varier lentement au cours du temps (par exemple
des valeurs de température), aussi les échanger à haute fréquence serait un
gaspillage de la bande passante du bus. Pour cette raison, plusieurs domaines
peuvent être créés, pour grouper différents PDOs et ainsi séparer les échanges.

Il n’y a aucune limite supérieure pour le nombre de domaines, mais chaque domaine
occupe une FMMU 5 dans l’esclave concerné, donc le nombre maximal de domaines
est en fait limité par les esclaves.

Configuration FMMU Une application peut inscrire des entrées PDO pour l’échange.
Chaque entrée PDO et son PDO parent font partie d’une zone mémoire dans la
mémoire physique de l’esclave, qui est protégée par un gestionnaire de synchronisation
(sync manager) [2, sec. 6.7] pour des accès synchronisés. Pour que le gestionnaire de
synchronisation réagisse à un datagramme qui accède à sa mémoire, il est nécessaire
d’accéder au dernier octet couvert par le gestionnaire de synchronisation. Sinon le
gestionnaire de synchronisation ne réagira pas au datagramme et aucune donnée
ne sera échangée. C’est pourquoi l’ensemble de la zone mémoire synchronisée doit
être inclus dans l’image des données de processus : par exemple ; si une entrée PDO
particulière d’un esclave est inscrite pour l’échange avec un domaine particulier, une
FMMU sera configurée pour mapper toute la mémoire protégée par le gestionnaire de
synchronisation dans laquelle l’entrée PDO réside. Si une deuxième entrée PDO du
même esclave est inscrite pour l’échange de donnée de processus au sein du même

2. LWR : Logical Write
3. LRD : Logical Read
4. LRW : Logical Read/Write
5. FMMU : Fieldbus Memory Management Unit
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domaine, et s’il réside dans la même zone mémoire protégée par le gestionnaire
de synchronisation que la première entrée, alors la configuration FMMU n’est pas
modifiée, parce que la mémoire désirée fait déjà partie de l’image des données du
processus du domaine. Si la deuxième entrée appartenait à une autre zone protégée
par le gestionnaire de synchronisation, alors cette zone entière serait aussi incluse dans
l’image des données des processus des domaines.

figure 2.4 fournit un aperçu de la manière de configurer les FMMUs pour mapper la
mémoire physique vers les images logiques des données des processus.
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Registered PDO Entries

RAM SM1 RAM

Slave0 Slave1

FMMU0FMMU0 FMMU1 FMMU2

SM0 SM3

Domain0 Image Domain1 Image

Figure 2.4 – Configuration FMMU
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3 Interface de Programmation
Applicative (API)

L’interface de programmation applicative fournit les fonctions et structures de données
pour accéder au mâıtre EtherCAT. La documentation complète de l’interface est
incluse sous forme de commentaires Doxygen [13] dans le fichier d’entête include/ecrt.h.
Elle peut être lue directement depuis les commentaires du fichier, ou plus confortablement
sous forme de documentation HTML. La génération du HTML est décrite dans
section 9.3.

Les sections suivantes couvrent une description générale de l’API.

Chaque application devrait utiliser le mâıtre en deux étapes :

Configuration Le mâıtre est mobilisé et la configuration est appliquée. Par exemple,
les domaines sont créés, les esclaves sont configurés et les entrées PDO sont
inscrites. (voir section 3.1).

Opération Le code cyclique est exécuté et les données de processus sont échangées
(voir section 3.2).

Exemple d’Applications Il y a quelques exemples d’applications dans le sous-dossier
examples/ du code du mâıtre. Ils sont documentés dans le code source.

3.1 Configuration du mâıtre

La configuration du bus est fournie via l’API. La figure 3.1 donne une vue d’ensemble
des objets qui peuvent être configurés par l’application.

3.1.1 Configuration de l’esclave

L’application doit dire au mâıtre quelle est la topologie attendue du bus. Ceci peut
être fait en créant des “configurations d’esclaves”. Une configuration d’esclave peut
être vue comme un esclave attendu. Quand une configuration d’esclave est créée,
l’application fournit la position sur le bus (voir ci-dessous), l’identifiant du fabricant
(vendor id) et le code du produit (product code).

Quand la configuration du bus est appliquée, le mâıtre vérifie s’il y a un esclave
avec l’identifiant du fabricant et le code du produit à la position donnée. Si c’est le
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Figure 3.1 – Configuration du mâıtre
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cas, la configuration de l’esclave est “attachée” à l’esclave réel sur le bus et l’esclave est
configuré en fonction des paramètres fournis par l’application. L’état de la configuration
de l’esclave peut soit être demandé via l’API ou via l’outil en ligne de commande (voir
sous-section 7.1.3).

Position de l’esclave La position de l’esclave doit être spécifiée sous forme d’un
couple “alias” et “position”. Ceci permet d’adresser les esclaves via la position absolue
sur le bus ou via un identifiant stocké et appelé “alias” ou via un mélange des deux.
L’alias est une valeur 16 bits stockée dans E2PROM de l’esclave. Il peut être modifié
via l’outil en ligne de commande (voir sous-section 7.1.2). tableau 3.1 montre comment
les valeurs sont interprétées.

Table 3.1 – Spécifier la position d’un esclave

Alias Position Interprétation
0 0 – 65535 Adressage par position. Le paramètre

de position est interprété comme la
position absolue de l’anneau sur le bus.

1 – 65535 0 – 65535 Adressage par alias. Le paramètre de
position est interprété comme une
position relative après le premier
esclave avec une adresse d’alias donnée.

figure 3.2 montre un exemple d’attachement des configurations des esclaves. Certaines
configurations sont attachées, tandis que d’autres restes détachées. La liste ci-dessous
en donne les raisons en commençant par la configuration de l’esclave du haut.

1. L’alias zéro signifie un adressage simple par position. L’esclave #1 existe et
l’identifiant du fabricant et le code produit correspondent aux valeurs attendues.

2. Bien que l’esclave en position 0 a été trouvé, le code produit ne correspond
pas, aussi la configuration n’est pas attachée.

3. L’alias n’est pas zéro, aussi l’adressage par alias est utilisé. L’esclave #2 est
le premier esclave avec l’alias 0x2000. Comme la valeur de position est zéro, le
même esclave est utilisé.

4. Il n’y a aucun esclave avec l’alias demandé, aussi la configuration ne peut pas
être attachée.

5. L’esclave #2 est encore le premier esclave avec l’alias 0x2000, mais la position
est maintenant 1, aussi l’esclave #3 est attaché.

Si les sources du mâıtre sont configurées avec --enable-wildcards, alors 0xffffffff

correspond à n’importe quel identifiant de fabricant et/ou code produit.
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Figure 3.2 – Attachement de la configuration des esclaves
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3.2 Opération cyclique

Pour entrer dans le mode d’opération cyclique, le mâıtre doit être “activé” pour
calculer l’image des données de processus et appliquer la configuration du bus pour
la première fois. Après l’activation, l’application est responsable d’envoyer et recevoir
les trames. La configuration ne peut pas être modifiée après l’activation.

3.3 Gestionnaires VoE

Pendant la phase de configuration, l’application peut créer des gestionnaires pour
le protocole de bôıte aux lettres VoE, décrit dans section 6.3. Un gestionnaire VoE
appartient toujours à une configuration d’esclave particulière, aussi la fonction de
création est une méthode de la configuration de l’esclave.

Un gestionnaire VoE gère les données VoE et les datagrammes utilisés pour transmettre
et recevoir les messages VoE. Il contient l’automate nécessaire au transfert des messages
VoE.

L’automate VoE peut traiter seulement une opération à la fois. Par conséquent,
seule une opération de lecture ou une opération d’écriture peut être émise à un
moment donné 1. Après l’initialisation de l’opération, le gestionnaire doit être exécuté
de manière cyclique jusqu’à ce qu’il se termine. Après cela, les résultats de l’opération
peuvent être récupérés.

Un gestionnaire VoE a sa propre structure de datagramme, qui est marqué pour
l’échange après chaque pas d’exécution. Aussi, l’application peut décider, combien de
gestionnaires elle exécute avant d’envoyer les trames EtherCAT correspondantes.

Pour obtenir davantage d’information sur les gestionnaires VoE, consultez la documentation
des fonctions de l’API et les exemples d’applications fournis dans le dossier examples/.

3.4 Accès concurrents au mâıtre

Dans certains cas, plusieurs instances utilisent un seul mâıtre, par exemple quand une
application échange des données de processus cyclique et qu’il y a des esclaves EoE
qui ont besoin d’échanger des données Ethernet avec le noyau (voir section 6.1). Pour
cette raison, le mâıtre est une ressource partagée qui doit être séquentialisée. Ceci est
habituellement réalisé en verrouillant au moyen de sémaphores ou d’autres méthodes
pour protéger les sections critiques.

Le mâıtre ne fournit pas lui-même de mécanismes de verrouillage, parce qu’il ne peut
connâıtre le type de verrou approprié. Par exemple, si l’application est en espace noyau
et utilise la fonctionnalité RTAI, les sémaphores ordinaires du noyau ne seraient pas

1. Si, on désire envoyer et recevoir simutanément, deux gestionnaires VoE peuvent être créés pour
la configuration de l’esclave.
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suffisants. Pour cela, une décision de conception importante a été faite : l’application
qui a réservé un mâıtre doit en avoir le contrôle total, c’est pourquoi elle doit prendre
la responsabilité de fournir les mécanismes de verrouillage appropriés. Si une autre
instance veut accéder au mâıtre, elle doit demander l’accès au bus via des fonctions de
rappels qui doivent être fournis par l’application. De plus, l’application peut refuser
l’accès au mâıtre, si elle considère que le moment est gênant.

Task

EoE

Master Module

Master0

Application Module

A
p
p
lic

a
tio

n

In
te

rfa
c
e

Figure 3.3 – Accès concurrent au mâıtre

L’exemple figure 3.3 montre comment deux processus partagent un mâıtre : la tâche
cyclique de l’application utilise le mâıtre pour l’échange de données de processus,
tandis que le processus EoE interne au mâıtre l’utilise pour communiquer avec les
esclaves EoE. Les deux ont accès au bus de temps en temps, mais le processus EoE
le fait en “demandant” à l’application de réaliser l’accès au bus pour lui. De cette
manière, l’application peut utiliser le mécanisme de verrouillage approprié pour éviter
d’accèder au bus en même temps. Voir la documentation de l’API (chapitre 3) pour
savoir comment utiliser ces fonctions de rappel.
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3.5 Horloges distribuées

À partir de la version 1.5, le mâıtre supporte les “horloges distribuées” (Distributed
Clocks) EtherCAT pour synchroniser les horloges des esclaves sur le bus avec l’horloge
de “référence” (qui est l’horloge locale du premier esclave qui supporte l’horloge
distribuée) et pour synchroniser l’horloge de référence avec “l’horloge mâıtresse” (qui
est l’horloge locale du mâıtre). Toutes les autres horloges du bus (après l’horloge de
référence) sont considérés comme “horloges esclaves” (voir figure 3.4).

Horloges locales Tout esclave EtherCAT qui supporte l’horloge distribuée possède
un registre d’horloge locale avec une résolution à la nanoseconde. Si l’esclave est
allumé, l’horloge démarre depuis zéro, ce qui signifie que lorsque des esclaves sont
allumés à différents instants, leurs horloges auront des valeurs différentes. Ces “décalages”
doivent être compensés par le mécanisme des horloges distribuées. En outre, les
horloges ne tournent pas exactement à la même vitesse, puisque les quartzs ont
une déviation de leur fréquence naturelle. Cette déviation est habituellement très
faible, mais au bout de longues périodes, l’erreur s’accumulera et la différence entre
les horloges locales grandira. Cette “dérive” des horloges doit aussi être compensée
par le mécanisme des horloges distribuées.

Temps de l’Application La base de temps commune pour le bus doit être fournie
par l’application. Ce temps d’application tapp est utilisé

1. pour configurer les décalages des horloges des esclaves (voir ci-dessous),

2. pour programmer les temps de démarrage de l’esclave pour la génération des
impulsions synchrones. (voir ci-dessous)

3. pour synchroniser les horloges de référence avec l’horloge mâıtresse (optionnel).

Compensation du décalage Pour la compensation du décalage, chaque esclave
fournit un registre de “décalage du temps système” toff, qui est ajouté à la valeur
de l’horloge interne tint pour obtenir le “Temps Système” tsys :

tsys = tint + toff (3.1)

⇒ tint = tsys − toff

Le mâıtre lit les valeurs des deux registres pour calculer un nouveau décalage du
temps système de telle manière que le temps système résultant corresponde au temps
de l’application du mâıtre tapp :
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Figure 3.4 – Horloges distribuées

22 1.6.8, 6 octobre 2025



3.5 Horloges distribuées

tsys
!

= tapp (3.2)

⇒ tint + toff
!

= tapp

⇒ toff = tapp − tint

⇒ toff = tapp − (tsys − toff)

⇒ toff = tapp − tsys + toff (3.3)

La petite erreur de décalage du temps résultant des différences de temps entre la
lecture et l’écriture des registres sera compensée par la compensation de la dérive.

Compensation de la dérive La compensation de la dérive est possible grâce à un
mécanisme spécial de chaque esclave compatible avec les horloges distribuées : une
opération d’écriture dans le registre du “Temps système” obligera la boucle de contrôle
du temps interne à comparer le temps écrit (moins le délai de transmission programmé,
voir ci-dessous) avec le temps système courant. L’erreur de temps calculée sera utilisée
comme une entrée pour le contrôleur de temps, qui ajustera la vitesse de l’horloge
locale pour être légèrement plus rapide ou plus lente 2, en fonction du signe de l’erreur.

Délais de transmission La trame Ethernet a besoin d’une petite quantité de temps
pour se propager d’esclave en esclave. Les délais de transmission s’accumulent sur le
bus et peuvent attendre la magnitude de la microseconde et doivent alors être pris en
compte par la compensation de la dérive. Les esclaves EtherCAT qui supportent les
horloges distribuées fournissent un mécanisme pour mesurer les délais de transmission :
pour chacun des 4 ports de l’esclave il y a un registre d’heure de réception. Une
opération d’écriture sur le registre d’heure de réception du port démarre la mesure et
l’heure système courante est capturée et stockée dans un registre d’heure de réception
une fois que la trame est reçue sur le port correspondant. Le mâıtre peut lire le
temps de réception relatif puis calculer les délais entre les esclaves (en utilisant sa
connaissance de la topologie du bus), et finalement calculer les délais de chaque esclave
avec l’horloge de référence. Ces valeurs sont programmées dans les registres de délai
de transmission des esclaves. De cette manière, la compensation de la dérive peut
attendre une synchronie à la nanoseconde.

Vérification de la synchronie Les esclaves compatibles avec les horloge distribuées
fournissent un registre 32 bits “Différence de l’heure système” à l’adresse 0x092c,
dans lequel la différence de temps système de la dernière compensation de la dérive
est stockée avec une résolution d’une nanoseconde et un codage signe-et-magnitude 3.
Pour vérifier la synchronie du bus, les registres de différence du temps système peuvent
aussi être lus via l’outil en ligne de commande (voir sous-section 7.1.14) :

2. L’horloge locale de l’esclave sera incrémentée de 9 ns, 10 ns ou 11 ns toute les 10 ns.
3. Ceci permet une lecture-diffusion de tous les registres de différence de temps système sur le

bus pour obtenir une approximation de la valeur supérieure.
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$ watch -n0 "ethercat reg read -p4 -tsm32 0x92c"

Signaux synchrones Les horloge synchrones sont seulement un pré-requis pour des
évènements synchrones sur le bus. Chaque esclave qui supporte les horloges distribuées
fournit deux “signaux synchrones”, qui peuvent être programmés pour créer des
évènements, qui vont par exemple obliger l’application esclave à capturer ses entrées
à un instant précis. Un évènement synchrone peut être généré soit une seule fois ou
périodiquement, selon ce qui a du sens pour l’application esclave. La programmation
des signaux synchrones est une question de réglage du mot “AssignActivate” et des
temps de cycle et décalage des signaux de synchronisation. Le mot AssignActivate
est spécifique à chaque esclave et doit être récupéré depuis la description XML de
l’esclave (Device→ Dc), où se trouvent aussi typiquement les signaux de configurations
“OpModes”.
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Le protocole EtherCAT est fondé sur le standard Ethernet standard, aussi un mâıtre
dépend du matériel Ethernet standard pour communiquer avec le bus.

Le terme device est utilisé comme synonyme pour matériel d’interface réseau Ethernet.

Pilotes natifs pour périphériques Ethernet Il y a des modules natifs pour les
pilotes de périphériques (voir section 4.2) qui gèrent le matériel Ethernet qu’utilise
le mâıtre pour se connecter au bus EtherCAT. Ils offrent leurs matériels Ethernet
au module mâıtre via l’interface de device (voir section 4.6) et doivent être capable
de préparer les périphériques Ethernet pour les opérations EtherCAT (temps réel) ou
pour les opérations “normales” en utilisant la pile réseau du noyau. L’avantage de cete
approche est que le mâıtre peut opérer pratiquement directement avec le matériel ce
qui permet des performances élevées. L’inconvénient est qu’il faut avoir une version
compatible EtherCAT du pilote Ethernet original.

Pilote générique pour les périphériques Ethernet À partir du mâıtre version 1.5,
il y a un module de pilote générique pour les périphériques Ethernet (voir section 4.3),
qui utilise les couches basses de la pile réseau pour se connecter au matériel. L’avantage
est que n’importe quel périphérique Ethernet peut être utilisé pour les opérations
EtherCAT, indépendamment du pilote matériel réel (ainsi tous les pilotes Ethernet
Linux sont supportés sans modification). L’inconvénient est que cette approche ne
supporte pas les extensions temps réel, comme RTAI, parce que la pile réseau de Linux
est utilisée. Cependant la performance est légèrement moins bonne qu’avec l’approche
native, car les données de la trame Ethernet doivent traverser la pile réseau.

4.1 Principes de base du pilote réseau

EtherCAT repose sur le matériel Ethernet et le mâıtre a besoin d’un périphérique
Ethernet physique pour communiquer avec le bus. C’est pourquoi, il est nécessaire de
comprendre comment Linux gère les périphériques réseaux et leurs pilotes.

Tâches d’un pilote réseau Les pilotes de périphériques réseaux gèrent habituellement
les deux couches les plus basses du modèle OSI, qui sont la couche physique et la
couche liaison de données. Le périphérique réseau gère nativement les problèmes de la
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couche physique : il représente le matériel pour se connecter au média et pour envoyer
et recevoir des données de la manière décrite par le protocole de la couche physique.
Le pilote de périphérique réseau est responsable de récupérer les données depuis la
pile réseau du noyau et de les faire suivre au périphérique qui fait la transmission
physique. Si des données sont reçues par le périphérique alors le pilote est notifié
(habituellement au moyen d’une interruption) et il doit lire les données depuis la
mémoire du périphérique et l’envoyer à la pile réseau. Un pilote de périphérique réseau
doit aussi gérer d’autres tâches telles que le contrôle de la file d’attente, les statistiques
et les fonctionnalités spécifiques du périphérique.

Démarrage du pilote Habituellement, un pilote recherche des périphériques compatibles
lors du chargement du module. Pour les pilotes PCI, ceci est fait en analysant le bus
PCI et en vérifiant les identifiants (ID) des périphériques. Si un périphérique est
trouvé, les structures de données sont allouées et le périphérique est mis en service.

Fonctionnement des interruptions Un périphérique réseau fournit généralement
une interruption matérielle qui est utilisée pour notifier le pilote des trames reçues
et des succès ou erreurs des transmissions. Le pilote doit enregistrer une routine de
service d’interruption – en anglais interrupt service routine – (ISR), qui est exécutée à
chaque fois que le matériel signale un tel évènement. Si l’interruption a été envoyée par
le bon périphérique (plusieurs périphériques peuvent partager une même interruption
matérielle), la raison de l’interruption doit être déterminée en lisant le registre d’interruption
du périphérique. Par exemple, si le drapeau pour les trames reçues est activé, les
données des trames doivent être copiées depuis le matériel vers la mémoire du noyau
puis transmise à la pile réseau.

La structure net_device Le pilote enregistre une structure net_device pour chaque
périphérique pour communiquer avec la pile réseau et créé une “interface réseau”.
Dans le cas d’un pilote Ethernet, cette interface apparâıt sous la forme ethX, où
X est le numéro assigné par le noyau à l’enregistrement. La structure net_device

reçoit les évènements (soit depuis l’espace utilisateur, soit depuis la pile réseau)
via différentes fonctions de rappel, qui doivent être définies avant l’enregistrement.
Toutes les fonctions de rappel ne sont pas obligatoires, mais pour un fonctionnement
raisonnable, celles qui sont définies ci-dessous sont nécessaires dans tous les cas :

open() Cette fonction est appelée quand la communication a démaré, par exemple
après une commande ip link set ethX up depuis l’espace utilisateur. La réception
des trames doit être activée par le pilote.

stop() Le but de cette fonction de rappel est de “fermer” le périphérique, c’est-
à-dire faire en sorte que le matériel cesse de recevoir des trames.

hard_start_xmit() Cette fonction est appelée pour chaque trame qui a été transmise.
La pile réseau passe la trame sous la forme d’un pointeur vers une structure
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sk_buff (“socket buffer” – tampon de socket – voir ci-dessous), qui doit être
libérée après l’envoi.

get_stats() Cet appel doit retourner un pointeur vers la structure net_device_stats
, qui doit être continuellement mise à jour avec les statistiques des trames. Cela
signifie qu’à chaque fois qu’une trame est reçue, envoyée ou qu’une erreur se
produit, le compteur approprié de cette structure doit être augmenté.

L’inscription réelle est faite par l’appel register_netdev(), la désinscription est faite
par unregister_netdev().

L’interface netif Toute autre communication dans la direction interface → réseau
est faite via les appels netif_*(). Par exemple, après l’ouverture réussie du périphérique,
la pile réseau doit être notifiée, pour qu’elle puisse maintenant passer les trames à
l’interface. Ceci est fait en appelant netif_start_queue(). Après cet appel, la fonction
de rappel hard_start_xmit() peut être rappelée par la pile réseau. De plus, un pilote
réseau gère habituellement une file d’attente pour la transmission des trames. Quand
elle est pleine, il faut informer la pile réseau qu’elle doit cesser de pousser davantage
de trames pendant un moment. Ceci se produit avec un appel à netif_stop_queue().
Si des trames ont été envoyées, et qu’il y a à nouveau suffisamment de place pour
les mettre en file d’attente, ceci peut être notifié avec netif_wake_queue(). Un autre
appel important est netif_receive_skb() 1 : il passe une trame qui vient juste d’être
reçue par le périphérique, à la pile réseau. Les données de la trame doivent être incluses
à cet effet dans le “tampon de socket” (voir ci-dessous).

Tampons de Socket Les tampons de sockets sont le type de données fondamental de
toute la pile réseau. Ils servent de container pour les données réseaux et sont capables
d’ajouter rapidement des données au début et à la fin, ou bien de les retirer. C’est
pourquoi, un tampon de socket consiste en un tampon alloué et plusieurs pointeurs
qui marquent le début du tampon (head), le début des données data (data), la fin
des données (tail) et la fin du tampon (end). De plus, un tampon de socket contient
les informations d’entête pour le réseau et (en cas de données reçue), un pointeur
vers le net_device, qui l’a réceptionné. Il existe des fonctions qui créent un tampon
socket (dev_alloc_skb()), ajoutent des données au début (skb_push()) ou à la fin
(skb_put()), suppriment des données au début (skb_pull()) ou à la fin (skb_trim()
), ou suppriment le tampon (kfree_skb()). Un tampon socket est passé de couche
en couche et il est libéré par la couche qui s’en sert en dernier. En cas d’envoi, la
libération est faite par le pilote réseau.

1. Cette fonction fait partie de NAPI (“New API”), qui remplace la technique du noyau 2.4 pour
interfacer la pile réseau (avec netif_rx()). NAPI est une technique pour améliorer la performance
réseau de Linux. Davantage d’information dans http://www.cyberus.ca/~hadi/usenix-paper.

tgz.

1.6.8, 6 octobre 2025 27

http://www.cyberus.ca/~hadi/usenix-paper.tgz
http://www.cyberus.ca/~hadi/usenix-paper.tgz


4 Interfaces Ethernet

4.2 Les pilotes natifs pour périphériques EtherCAT

Il y a quelques conditions qui s’appliquent au matériel Ethernet lorsqu’il est utilisé
avec un pilote Ethernet natif avec les fonctionnalités EtherCAT.

Matériel dédié Pour des raisons de performances et de temps réel, le mâıtre EtherCAT
a besoin d’un accès direct et exclusif au matériel Ethernet. Cela implique que le
périphérique réseau ne doit pas être connecté à la pile réseau du noyau comme
d’habitude, car le noyau essaierait de l’utiliser comme un périphérique Ethernet ordinaire.

Opération sans interruption Les trames EtherCAT voyagent au travers de l’anneau
logique EtherCAT et sont alors renvoyées au mâıtre. La communication est hautement
déterministe : une trame est envoyée et sera reçue après un temps constant, aussi il
n’y pas besoin de notifier le pilote de la réception de la trame. À la place, le mâıtre
peut interroger le matériel pour les trames reçues, s’il s’attend à ce qu’elles soient déjà
arrivées.

La figure 4.1 montre deux flots de travail pour la transmission et réception cyclique
de trames avec et sans interruptions.

Dans le flux de travail de gauche, “Opération avec interruption”, les données venant
du dernier cycle sont d’abord traitées et une nouvelle trame est assemblée avec des
nouveaux datagrammes, puis elle est envoyée. Le travail cyclique est fait pout l’instant.
Plus tard, quand la trame est à nouveau reçue par le matériel, une interruption est
déclenchée et l’ISR est exécutée. L’ISR va récupérer les données de la trame depuis le
matériel et commencer la dissection de la trame : les datagrammes seront traités, et
alors les données seront prêtes pour le traitement dans le prochain cycle.

Dans le flux de travail de droite, “Opération sans interruption”, aucune interruption
matérielle n’est activée. À la place, le mâıtre va sonder le matériel en exécutant l’ISR.
Si la trame a été reçue entre temps, elle sera disséquée. La situation est maintenant
la même qu’au début de flux de travail de gauche : les données reçues sont traitées et
une nouvelle trame est assemblée et envoyée. Il n’y a rien d’autre à faire pour le reste
du cycle.

L’opération sans interruption est préférable, parce que les interruptions matérielles
ne sont pas propices à l’amélioration du comportement temps réel du pilote : leurs
incidences indéterministes contribuent à augmenter la gigue. En outre, si une extension
temps réel (comme RTAI) est utilisée, un effort supplémentaire devra être fait pour
hiérarchiser les interruptions.

Périphériques Ethernet et EtherCAT Un autre problème réside dans la façon dont
Linux gère les périphériques du même type. Par exemple, un pilote PCI analyse le bus
PCI pour chercher des périphériques qu’il peut gérer. Alors, il s’enregistre lui-même
comme pilote responsable pour tous les périphériques trouvés. Le problème est que
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Figure 4.1 – Opération avec interruption versus Opération sans interruption
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l’on ne peut pas dire à un pilote non modifié d’ignorer un périphérique pour l’utiliser
ultérieurement pour EtherCAT. Il faut donc un moyen de gérer plusieurs périphériques
du même type, l’un étant réservé à EtherCAT, tandis que l’autre est traité comme un
périphérique Ethernet ordinaire.

Pour toutes ces raisons, l’auteur a décidé que la seule solution acceptable était de
modifier les pilotes Ethernet standards de manière à ce qu’ils conservent leurs fonctionnalités
normales, tout en gagnant la possibilité de traiter un ou plusieurs périphériques comme
étant compatibles EtherCAT.

Les avantages de cette solution sont listés ci-dessous :

— Pas besoin de dire aux pilotes standards d’ignorer certains périphériques.
— Un seul pilote réseau pour les périphériques EtherCAT et non-EtherCAT.
— Pas besoin d’implémenter un pilote réseau depuis zéro et de rencontrer des

problèmes que les anciens développeurs ont déjà résolus.

L’approche choisie a les inconvénients suivants :

— Le pilote modifié est plus compliqué car il doit gérer les périphériques EtherCAT
et non-EtherCAT.

— De nombreuses différenciations de cas supplémentaires dans le code du pilote.
— Les modifications et changements dans les pilotes standards doivent être portés

de temps en temps vers les versions compatibles EtherCAT.

4.3 Le pilote de périphérique EtherCAT générique

Puisqu’il existe des approches pour activer un fonctionnement en temps réel [12] du
noyau Linux complet, il est possible d’opérer sans implémentation native des pilotes de
périphériques Ethernet compatibles EtherCAT et d’utiliser la pile réseau à la place.
La figure 2.1 présente le “Module de pilote Ethernet générique”, qui se connecte à
des périphériques Ethernet locaux via la pile réseau. Le module noyau se nomme
ec_generic et il peut être chargé après le module mâıtre comme un pilote Ethernet
compatible EtherCAT.

Le pilote de périphérique générique analyse la pile réseau à la recherche d’interfaces
enregistrées par les pilotes de périphériques Ethernet. Il offre tous les périphériques
possibles au mâıtre EtherCAT. Si le mâıtre accepte un périphérique, le pilote générique
crée un socket de paquet (voir man 7 packet) avec socket_type mis à SOCK_RAW, lié à
ce périphérique. Toutes les fonctions de l’interface de ce périphérique (voir section 4.6)
opéreront alors sur ce socket.

Les avantages de cette solution sont listés ci-dessous :

— Tout matériel, qui est géré par un pilote Ethernet Linux, peut être utilisé pour
EtherCAT.

— Aucune modification n’est nécéssaire sur les pilotes Ethernet réels.

L’approche générique a les inconvénients suivants :
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— La performance est un peut moins bonne qu’avec l’approche native, parce que
les données de la trame doivent traverser les couches basses de la pile réseau.

— Il n’est pas possible d’utiliser des extensions en temps réel dans le noyau comme
RTAI avec le pilote générique, car le code de la pile réseau utilise des allocations
dynamiques de mémoire et d’autres choses, qui pourraient provoquer le gel du
système dans un contexte temps réel.

Activation du périphérique Dans le but d’envoyer et recevoir des trames au travers
d’un socket, le périphérique Ethernet lié à ce socket doit être activé, autrement toutes
les trames seront rejetées. L’activation doit avoir lieu avant le chargement du module
mâıtre et peut avoir lieu de différentes manières :

— Ad-hoc, en utilisant la commande ip link set dev ethX up (ou la commande
plus ancienne ifconfig ethX up),

— Configurée, en fonction de la distribution, par exemple en utilisant les fichiers
ifcfg (/etc/sysconfig/network/ifcfg-ethX) dans openSUSE et d’autres. C’est
le meilleur choix si le mâıtre EtherCAT doit démarrer avec le système. Puisque
le périphérique Ethernet doit seulement être activé, mais qu’aucune adresse IP
etc. ne sera assignée, il est suffisant d’utiliser STARTMODE=auto comme configuration.

4.4 Fourniture de périphériques Ethernet

Après le chargement du module mâıtre, des modules additionnels doivent être chargés
pour offrir des périphériques au(x) mâıtre(s) (voir section 4.6). Le module mâıtre
connâıt les périphériques à choisir grâce aux paramètres de module (voir section 2.1).
Si le script d’initialisation est utilisé pour démarrer le mâıtre, les pilotes et périphériques
à utiliser peuvent être spécifiés dans le fichier sysconfig (voir sous-section 7.4.2).

Les modules offrant des périphériques Ethernet peuvent être

— des modules natifs de pilotes réseaux compatibles EtherCAT (voir section 4.2)
ou

— le module générique de périphérique EtherCAT (voir section 4.3).

4.5 Redondance

L’opération redondante de bus signifie, qu’il y a plus qu’une connexion Ethernet entre
le mâıtre et les esclaves. Les datagrammes de l’échange de données de processus
sont envoyés sur chaque lien mâıtre, aussi l’échange se terminera, même si le bus
est déconnecté quelque part entre les deux.

La condition pour une opération redondante de bus est que chaque esclave puisse
être atteint par au moins un lien mâıtre. Dans ce cas, une panne de connexion unique
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(i. e. la rupture d’un câble) ne conduira jamais à des données de processus incomplètes.
Les doubles défauts ne peuvent pas être traités avec deux périphériques Ethernet.

La redondance peut être configurée avec le commutateur --with-devices au moment
de la configuration (voir chapitre 9) et en utilisant le paramètre backup_devices du
module noyau ec_master (voir section 2.1) ou la variable appropriée MASTERx_BACKUP

dans le fichier de configuration sysconfig (voir sous-section 7.4.2).

L’analyse du bus est faite après un changement de topologie sur n’importe quel lien
Ethernet. L’API (voir chapitre 3) et l’outil en ligne de commande (voir section 7.1)
ont tous les deux des méthodes pour interroger le status de l’opération redondante.

4.6 Interface de périphérique EtherCAT

Une anticipation de la section concernant le module mâıtre (section 2.1) est nécessaire
pour comprendre la manière dont un module de pilote de périphérique réseau peut
connecter un périphérique à un mâıtre EtherCAT spécifique.

Le module mâıtre fournit une “interface de périphérique” pour les pilotes de périphériques
réseaux. Pour utiliser cette interface, un module de pilote de périphérique réseau doit
inclure l’entête devices/ecdev.h, provenant du code du mâıtre EtherCAT. Cet entête
offre une interface de fonction pour les périphériques EtherCAT. Toutes les fonctions
de l’interface du périphérique sont nommées avec le préfixe ecdev.

La documentation de l’interface du périphérique peut être trouvée dans le fichier
d’entête ou dans le module approprié de la documentation de l’interface (voir section 9.3
pour les instruction pour la générer).

4.7 Application de correctifs aux pilotes de réseau
natifs

Cette section décrit, comment fabriquer un pilote Ethernet standard compatible EtherCAT,
en utilisant l’approche native (voir section 4.2). Malheureusement, il n’y a pas de
procédure standard pour permettre l’utilisation d’un pilote Ethernet par le mâıtre
EtherCAT, mais il existe quelques techniques courantes.

1. Une première règle simple est d’éviter les appels netif_*() pour tous les
périphériques EtherCAT. Comme indiqué précédemment, les périphériques EtherCAT
ne doivent avoir aucune connexion avec la pile réseau, et c’est pourquoi ils ne
doivent pas appeler ces fonctions d’interface.

2. Une autre chose importante est, que les périphériques EtherCAT doivent fonctionner
sans interruption. Aussi tous les appels pour inscrire les gestionnaires d’interruption
et activer les interruptions au niveau matériel doivent aussi être évités.
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3. Le mâıtre n’utilise pas un nouveau tampon de socket pour chaque opération
d’envoi : à la place, il y a un tampon fixe, alloué pendant l’initialisation du
mâıtre. Ce tampon de socket est rempli avec une trame EtherCAT par chaque
opération d’envoi et transmis à la fonction de rappel hard_start_xmit(). C’est
pourquoi, il est nécessaire que le tampon de socket ne soit pas libéré comme
d’habitude par le pilote réseau.

Un pilote Ethernet gère habituellement plusieurs périphériques Ethernet, chacun est
décrit par une structure net_device avec un champ priv_data pour attacher les
données qui dépendent du pilote à la structure. Pour distinguer entre les périphériques
Ethernet normaux et ceux qui sont utilisés par les mâıtres EtherCAT, la structure de
données privées utilisée par le pilote peut être étendue avec un pointeur, qui pointe vers
un objet ec_device_t retourné par ecdev_offer() (voir section 4.6) si le périphérique
est utilisé par un mâıtre ou sinon qui est à zéro.

Le pilote Ethernet RealTek RTL-8139 est un pilote Ethernet “simple” qui peut servir
d’exemple pour modifier des nouveaux pilotes. Les sections intéressantes peuvent
être trouvées en recherchant la châıne “ecdev” dans le fichier devices/8139too-2.6.24-
ethercat.c.
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Beaucoup de parties du mâıtre EtherCAT sont implémentées sous forme d’ automates
finis – en anglais finite state machines (FSMs). Bien qu’ils amènent une plus grande
complexité pour certains aspects, ils ouvrent de nombreuses nouvelles possibilités.

Le court exemple de code ci-dessous montre comment lire tous les états d’esclave et
illustre en outre les restrictions du codage “ séquentiel ” :

1 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

2 if (ec_master_simple_io(master , datagram)) return -1;

3 slave_states = EC_READ_U8(datagram ->data); // process datagram

La fonction ec master simple io() fournit une interface simple pour envoyer de manière
synchrone un datagramme unique et recevoir le résultat 1. En interne, elle met en
file d’attente le datagramme spécifié, invoque la fonction ec master send datagrams()
pour envoyer une trame avec le datagramme en attente, puis attend activement la
réception.

Cette approche séquentielle est très simple, se reflétant dans seulement trois lignes
de code. L’inconvénient est que le mâıtre est bloqué pendant le temps où il attend
la réception du datagramme. Ce n’est pas vraiment un problème, s’il n’y a qu’une
seule instance qui utilise le mâıtre, mais si plusieurs instances veulent (de manière
synchrone 2) utiliser le mâıtre, il est inévitable de songer à une alternative au modèle
séquentiel.

L’accès mâıtre doit être séquentalisé pour que plusieurs instances puissent envoyer et
recevoir des datagrammes de manière synchrone. Avec la présente approche, cela se
traduirait par une phase d’attente active pour chaque instance, ce qui serait inacceptable,
en particulier dans des circonstances en temps réel, en raison de l’énorme surcharge
de temps.

Une solution possible serait, que toutes les instances soient exécutées séquentiellement
pour mettre en file d’attente leurs datagrammes, et qu’elles passent alors le contrôle
à la prochaine instance au lieu d’attendre la réception du datagramme. Finalement,
une instance supérieure ferait l’entrée-sortie sur le bus pour envoyer et recevoir tous

1. Comme tous les problèmes de communication ont été entre temps transmis aux automates
finis, la fonction est obsolète et a cessé d’exister. Néanmoins, elle est suffisante pour montrer ses
propres restrictions.

2. À ce stade, l’accès synchrone au mâıtre sera suffisant pour montrer les avantages d’un automate.
L’approche asynchrone sera discutée dans la section 6.1
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les datagrammes en attente. La prochaine étape serait d’exécuter à nouveau toutes les
instances pour qu’elles traitent leurs datagrammes reçus et en émettent des nouveaux.

Cette approche aboutit à ce que toutes les instances mémorisent leurs états lorsqu’elles
redonnent le contrôle à l’instance supérieure. Il est évident dans ce cas d’utiliser le
modèle d’automate. La section 5.1 introduira une partie de la théorie utilisée, tandis
que l’extrait ci-dessous montre l’approche de base en codant l’exemple ci-dessus sous
forme d’automate :

1 // state 1

2 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

3 ec_master_queue(master , datagram); // queue datagram

4 next_state = state_2;

5 // state processing finished

Après que toutes les instances ont exécuté leur état courant et mis en file d’attente
leurs datagrammes, ceci sont envoyés et reçus. Alors les états suivants respectifs sont
exécutés :

1 // state 2

2 if (datagram ->state != EC_DGRAM_STATE_RECEIVED) {

3 next_state = state_error;

4 return; // state processing finished

5 }

6 slave_states = EC_READ_U8(datagram ->data); // process datagram

7 // state processing finished.

Voir section 5.2 pour une introduction au concept de programmation d’automate fini
utilisé dans le code du mâıtre.

5.1 Théorie des automates finis

Un automate fini [9] est un modèle de comportement avec des entrées et des sorties, où
les sorties dépendent non-seulement des entrées, mais aussi de l’historique des entrées.
La définition mathématique d’un automate fini (ou automate avec un nombre fini
d’états) est un six-tuple (Σ,Γ, S, s0, δ, ω), avec

— l’alphabet d’entrée Σ, avec Σ 6= ∅, contenant tous les symboles d’entrées,
— l’alphabet de sortie Γ, avec Γ 6= ∅, contenant tous les symboles de sorties,
— l’ensemble des états S, avec S 6= ∅,
— l’ensemble des états initiauxs s0 avec s0 ⊆ S, s0 6= ∅
— la fonction de transition δ : S × Σ→ S × Γ
— la fonction de sortie ω.

La fonction de transition d’état δ est souvent spécifiée sous la forme d’une table de
transition d’état, ou par un diagramme de transition d’état. La table de transition offre
une vue matricielle du comportement de l’automate fini (voir tableau 5.1). Les lignes
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de la matrice correspondent aux états (S = {s0, s1, s2}) et les colonnes correspondent
aux symboles d’entrée (Γ = {a, b, ε}). Le contenu de la table à la ligne i et à la
colonne j représente alors le prochain état (et éventuellement la sortie) pour le cas où
le symbole σj est lu dans l’état si.

Table 5.1 – Une table typique de transition d’état

a b ε
s0 s1 s1 s2

s1 s2 s1 s0

s2 s0 s0 s0

Le diagramme d’état pour le même exemple est semblable à figure 5.1. Les états
sont représentés par des cercles ou des ellipses et les transitions sont représentées par
des flèches entre eux. La condition à remplir pour autoriser la transition se trouve à
proximité de la flèche de transition. L’état initial est marqué par un disque noir avec
une flèche pointant vers l’état respectif.

s0 s1

s2

ε

ε

ε

a, b,

a

b

a, b

Figure 5.1 – Un diagramme typique de transition d’état
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Automate fini déterministe et non-déterministe Un automate fini peut être déterministe,
ce qui signifit que pour un état et une entrée, il y a un (et seulement un) état suivant.
Dans ce cas, l’automate fini a exactement un état de départ. Les automates finis non-
déterministes peuvent avoir plusieurs transitions pour une paire unique état-entrée. Il
existe un ensemble d’états de départ dans ce dernier cas.

Automates de Moore et de Mealy Il y a une distinction entre ce qu’on appelle
les automates de Moore, et les automates de Mealy. Mathématiquement parlant, la
distinction se situe dans la fonction de sortie ω : si elle ne dépend que de l’état
courant (ω : S → Γ), l’automate correspond au “modèle de Moore”. Sinon, si ω est
une fonction de l’état et de l’alphabet d’entrée (ω : S×Σ→ Γ) l’automate correspond
au “modèle de Mealy”. Les automates de Mealy sont plus pratiques dans la plupart
des cas, car leur conception permet d’obtenir des automates avec un nombre minimal
d’états. En pratique, un mélange des deux modèles est souvent employé.

Malentendu sur les automates finis Il y a un phénomène appelé “explosion d’états”,
qui est souvent utilisé comme argument défavorable contre l’usage général des automates
finis dans les environnements complexes. Il faut mentionner que ce point est trompeur [10].
Les explosions d’états sont souvent le résultat d’une mauvaise conception de l’automate :
les erreurs courantes sont de stocker la valeur présente de toutes les entrées dans un
état, ou de ne pas diviser un automate complexe en sous-automates plus simples. Le
mâıtre EtherCAT utilise plusieurs automates, qui sont exécutés de manière hiérarchique
et qui servent de sous-automates. Ils sont aussi décrits ci-dessous.

5.2 Le modèle d’état du mâıtre

Cette section présente les techniques utilisées dans le mâıtre pour implémenter les
automates.

Programmation des automates Il y a plusieurs manière d’implémenter un automate
avec du code C. La manière évidente est d’implémenter les différents états et actions
avec un branchement à choix multiple (switch) :

1 enum {STATE_1 , STATE_2 , STATE_3 };

2 int state = STATE_1;

3

4 void state_machine_run(void *priv_data) {

5 switch (state) {

6 case STATE_1:

7 action_1 ();

8 state = STATE_2;

9 break;
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10 case STATE_2:

11 action_2 ()

12 if (some_condition) state = STATE_1;

13 else state = STATE_3;

14 break;

15 case STATE_3:

16 action_3 ();

17 state = STATE_1;

18 break;

19 }

20 }

Cette technique reste possible pour les petits automates, mais présente l’inconvénient
de complexifier rapidement le code lorsque le nombre d’états augmente. De plus
le branchement à choix multiple doit être exécuté à chaque itération et beaucoup
d’indentations sont gaspillés.

La méthode retenue par le mâıtre est d’implémenter chaque état dans sa propre
fonction et de stocker la fonction d’état courante dans un pointeur de fonction :

1 void (* state)(void *) = state1;

2

3 void state_machine_run(void *priv_data) {

4 state(priv_data);

5 }

6

7 void state1(void *priv_data) {

8 action_1 ();

9 state = state2;

10 }

11

12 void state2(void *priv_data) {

13 action_2 ();

14 if (some_condition) state = state1;

15 else state = state2;

16 }

17

18 void state3(void *priv_data) {

19 action_3 ();

20 state = state1;

21 }

Dans le code du mâıtre, les pointeurs d’état de tous les automates 3 sont rassemblés
dans un objet unique de la classe ec_fsm_master_t. C’est avantageux, car il y a

3. Tous sauf l’automate EoE, parce plusieurs esclaves Eoe doivent être gérés en parallèle. Pour
cette raison, chaque objet gestionnaire EoE a son propre pointeur d’état.
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toujours une instance disponible de chaque automate qui peut être démarrée à la
demande.

Mealy et Moore Une vue rapprochée du code ci-dessus montre que les actions
exécutées (les “sorties” de l’automate) dépendent uniquement de l’état courant. Ceci
correspond au modèle de “Moore” introduit dans section 5.1. Comme déjà mentionné,
le modèle de “Mealy” offre une flexibilité supérieure, visible dans le code ci-dessous :

1 void state7(void *priv_data) {

2 if (some_condition) {

3 action_7a ();

4 state = state1;

5 }

6 else {

7 action_7b ();

8 state = state8;

9 }

10 }

3○ + 7○ la fonction d’état exécute les actions en fonction de la transition d’état,
qui est sur le point d’être effectuée.

L’alternative la plus flexible est d’exécuter certaines actions en fonction de l’état, puis
d’autres actions en fonction de la transition d’état :

1 void state9(void *priv_data) {

2 action_9 ();

3 if (some_condition) {

4 action_9a ();

5 state = state7;

6 }

7 else {

8 action_9b ();

9 state = state10;

10 }

11 }

Ce modèle est souvent utilisé dans le mâıtre. Il combine les meilleurs aspects des deux
approches.

Utilisation de sous-automates Pour éviter d’avoir trop d’états, certaines fonctions
de l’automate du mâıtre EtherCAT ont été extraites vers des sous-automates. Ceci
améliore l’encapsulation des flux de travail concernés et surtout évite le phénomène
d’“explosion d’états” décrit dans section 5.1. Si le mâıtre utilisait à la place un seul
gros automate, le nombre d’état serait démultiplié. Ce qui augmenterait le niveau de
complexité jusqu’à un niveau ingérable.
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Exécution de sous-automates Si un automate démarre l’exécution d’un sous-automate,
il reste habituellement dans un état jusqu’à ce que le sous-automate termine son
exécution. Ceci est générallement fait comme dans l’extrait de code ci-dessous, qui
provient du code de l’automate de configuration des esclaves :

1 void ec_fsm_slaveconf_safeop(ec_fsm_t *fsm)

2 {

3 fsm ->change_state(fsm); // execute state change

4 // sub state machine

5

6 if (fsm ->change_state == ec_fsm_error) {

7 fsm ->slave_state = ec_fsm_end;

8 return;

9 }

10

11 if (fsm ->change_state != ec_fsm_end) return;

12

13 // continue state processing

14 ...

3○ change_state est le pointeur d’état de l’automate. La fonction d’état, sur
laquelle pointe le pointeur, est exécutée . . .

6○ . . . jusqu’à ce que l’automate termine par l’état d’erreur . . .

11○ . . . ou jusqu’à ce que l’automate termine dans l’état de fin. Pendant ce temps,
l’automate “supérieur” reste dans l’état courant et exécute à nouveau le sous-
automate dans le prochain cycle.

Description des automates Les sections ci-dessous décrivent chaque automate utilisé
par le mâıtre EtherCAT. Les descriptions textuelles des automates contiennent des
références aux transitions dans les diagrammes de transitions d’états correspondants,
qui sont marqués avec une flèche suivie par le nom de l’état successeur. Les transitions
provoquées par des cas d’erreurs triviales (c’est-à-dire, pas de réponse de l’esclave) ne
sont pas décrites explicitement. Ces transitions sont décrites sous forme de flèches en
tirets dans les diagrammes.

5.3 L’automate du mâıtre

L’automate du mâıtre s’exécute dans le contexte du fil d’exécution (thread) du mâıtre.
La figure 5.2 montre son diagramme de transition. Ses buts sont :

Surveillance du bus La topologie du bus est surveillée. Si elle change, le bus est
à nouveau analysé.
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start

broadcast

clear_addresses read_state

write_system_times

dc_measure_delays acknowledge

dc_read_offset

write_siisdo_request reg_request

sdo_dictionary

configure_slave

scan_slave

dc_write_offset

Figure 5.2 – Diagramme de transition de l’automate du mâıtre
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Configuration des esclaves Les états de la couche application des esclaves sont
surveillés. Si un esclave n’est pas dans l’état supposé, alors l’esclave est (re)configuré.

Gestion des requêtes Les requêtes (qui proviennent soit de l’application ou bien
de sources externes) sont gérées. Une requête est un travail que le mâıtre
traitera de manière asynchrone, par exemple un accès SII, un accès SDO ou
similaire.

5.4 L’automate d’analyse des esclaves

L’automate d’analyse des esclaves, qui est représenté dans figure 5.3, conduit le
processus de lecture des informations des esclaves.

Le processus d’analyse comprend les étapes suivantes :

Node Address L’adresse du nœud est définie pour l’esclave, de sorte qu’il puisse
être adressé par nœud pour toutes les opérations suivantes.

AL State L’état initial de la couche application (Application Layer) est lu.

Base Information L’information de base (tel que le nombre de FMMUs supportées)
est lue depuis la mémoire physique la plus basse.

Data Link L’information sur les ports physiques est lue.

SII Size La taille des contenus SII est déterminée pour allouer l’image mémoire
SII.

SII Data Les contenus SII sont lus dans l’image du mâıtre.

PREOP Si l’esclave supporte CoE, son état est défini à PREOP en utilisant
l’automate de changement d’état (voir section 5.6) pour autoriser la communication
par bôıte aux lettres et lire la configuration PDO via CoE.

PDOs Les PDOs sont lus via CoE (si supporté) en utilisant l’automate de lecture
des PDO (voir section 5.8). Si cela réussit, les informations PDO du SII sont
(le cas échéant) écrasées.

5.5 L’automate de configuration de l’état de l’esclave

L’automate de configuration de l’état de l’esclave, qui est représenté dans figure 5.4,
configure un esclave et l’amène dans un état particulier de la couche application.

INIT L’automate de changement d’état est utilisé pour amener l’esclave à l’état
INIT.

FMMU Clearing Pour éviter que l’esclave réagisse à n’importe quelle donnée de
processus, la configuration FMMU est effacée. Si l’esclave ne supporte pas les
FMMUs, cet état est sauté. Si INIT est l’état demandé, l’automate est terminé.
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start

address

state

base

dc_cap DC not
supported

datalink

sii_size

sii_data

end

No category
data

preop

Not in
PREOP

sync

pdos

Figure 5.3 – Diagramme de transition de l’automate d’analyse des esclaves
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start

init

No FMMUs clear_fmmus

Config
detached

No SMs clear_sync

No DC
support

dc_clear_assign

end

INIT
requested

No mailboxes mbox_sync

dc_read_offset

dc_write_offset

boot_preop

PREOP
or BOOT
requested

No config
attached

No SDOs
configured sdo_conf

No PDO SMs pdo_sync

No config
attached

No IDNs
configured soe_conf_preop

No IP parameterseoe_ip_param

pdo_conf

No config
attached

No FMMUs
configuredfmmu

safeop

DC not
configured

dc_cycle

dc_start

dc_assign

SAFEOP
requested op

Figure 5.4 – Diagramme de transition de l’automate de configuration de l’état de
l’esclave
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Mailbox Sync Manager Configuration Si l’esclave supporte la communication
par bôıte aux lettres, les gestionnaires de synchronisation des bôıtes aux lettres
sont configurés. Sinon cet état est sauté.

PREOP L’automate de changement d’état est utilisé pour amener l’esclave à l’état
PREOP. Si PREOP est l’état demandé, l’automate est terminé.

SDO Configuration Si une configuration d’esclave est attachée (voir section 3.1),
et que l’application fournit des configurations SDO, elles sont envoyées à l’esclave.

PDO Configuration L’automate de configuration PDO est exécuté pour appliquer
toutes les configurations PDO nécessaires.

PDO Sync Manager Configuration S’il y a des gestionnaires de synchronisation
PDO, ils sont configurés.

FMMU Configuration Si l’application fournit des configurations FMMU (i. e. si
l’application a inscrit des entrées PDO), elles sont appliquées.

SAFEOP L’automate de changement d’état est utilisé pour amener l’esclave à
l’état SAFEOP. Si SAFEOP est l’état demandé, l’automate est terminé.

OP L’automate de changement d’état est utilisé pour amener l’esclave à l’état
OP. Si OP est l’état demandé, l’automate est terminé.

5.6 L’automate de changement d’état

L’automate de changement d’état, qui est représenté dans figure 5.5, conduit le processus
de changement d’état de la couche application de l’esclave. Il implémente les états et
transitions décrits dans [3, sec. 6.4.1].

Start Le nouvel état de la couche d’application (AL : application-layer) est demandé
via le registre “AL Control Request” (voir [3, sec. 5.3.1]).

Check for Response Certains esclaves ont besoin de temps pour répondre à une
commande de changement d’état AL et ne répondent pas pendant un certain
temps. Dans ce cas, la commande est à nouveau émise, jusqu’à l’accusé de
réception.

Check AL Status Si le datagramme de changement d’état AL a été acquité, le
registre “AL Control Response” (voir [3, sec. 5.3.2]) doit être lu jusqu’à ce que
l’esclave change l’état AL.

AL Status Code Si l’esclave refuse la commande de changement d’état, la raison
peut être lue dans le champ “AL Status Code” des registres “AL State Changed”
(voir [3, sec. 5.3.3]).

Acknowledge State Si le changement d’état n’a pas réussi, le mâıtre doit accuser
réception de l’ancien état en écrivant à nouveau dans le registre “AL Control
request”.
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start

check

status

error

Response
timeout

Change
timeout

end

Success

code

Refuse

ack

check_ack

start_ack

Ack only

Ack only

Figure 5.5 – Diagramme de transition de l’automate de changement d’état
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Check Acknowledge Après l’envoi de la commande d’accusé de réception, le
registre “AL Control Response” doit être lu à nouveau.

L’état “start ack” est un raccourci dans l’automate quand le mâıtre veut accuser
réception d’un changement spontané d’état AL, qui n’avait pas été demandé.

5.7 L’automate SII

L’automate SII (présenté dans figure 5.6) implémente le processus de lecture ou
d’écriture des données SII via l’interface d’information de l’esclave (Slave Information
Interface) décrite dans [2, sec. 6.4].

start_reading

read_check

error

read_fetch

end

start_writing

write_check

write_check2

Figure 5.6 – Diagramme de transition de l’automate SII

Voici comment fonctionne la partie lecture de l’automate :

Start Reading La requête de lecture et l’adresse du mot demandé sont écrits dans
l’attribut SII.

Check Read Command Si la commande de lecture SII a reçu son accusé de
réception, un chronomètre est démarré. Un datagramme est envoyé pour lire
l’attribut SII pour l’état et les données.

Fetch Data Si l’opération de lecture est encore en attente (la SII est habituellement
implémentée avec une E2PROM), l’état est lu à nouveau. Sinon les données sont
copiées dans le datagramme.

La partie écriture est presque similaire :

Start Writing Une requête d’écriture, l’adresse destination et le mot de donnée
sont écrits dans l’attribut SII.
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Check Write Command Si la commande d’écriture SII a reçu son accusé de
réception, un chronomètre est démarré. Un datagramme est envoyé pour lire
l’attribut SII pour l’état de l’opération d’écriture.

Wait while Busy Si l’opération d’écriture est encore en attente (déterminé par un
temps d’attente minimal et l’état du drapeau busy), l’automate reste dans cet
état pour éviter qu’une autre opération d’écriture ne soit émise trop tôt.

5.8 Les automates PDO

Les automates PDO sont un ensemble d’automates qui lisent ou écrivent l’affectation
PDO et la cartographie des PDO via la “zone de communication CoE” décrite dans
[3, sec. 5.6.7.4]. Pour l’accès aux objets, les primitives CANopen over EtherCAT sont
utilisées (voir section 6.2), donc l’esclave doit obligatoirement supporter le protocole
de bôıte aux lettres CoE.

Automate de lecture PDO Cet automate (figure 5.7) a pour but de lire la configuration
PDO complète d’un esclave. Il lit l’affectation PDO et pour chaque gestionnaire de
configuration il utilise l’automate de lecture des entrées PDO (figure 5.8) pour lire la
cartographie de chaque PDO assigné.

start

First SM

pdo_count end No more PDOs

pdo

Next PDO

pdo_entries

Figure 5.7 – Diagramme de transition de l’automate de lecture des PDO

Fondamentalement, il lit pour chaque gestionnaire de synchronisation, le compteur
de PDOs affectés à ce gestionnaire de synchronisation via l’objet SDO 0x1C1x. Il lit
ensuite les sous-index du SDO pour obtenir les indices des PDO affectés. Quand un
index PDO est lu, l’automate de lecture des entrées PDO est exécuté pour lire les
entrées PDO qui sont mappées en mémoire.
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L’automate de lecture des entrées PDO Cet automate (figure 5.8) lit la cartograhie
PDO (les entrées PDO) d’un PDO. Il lit la cartographie SDO respective (0x1600 –
0x17ff, ou 0x1a00 – 0x1bff) pour le PDO donné en lisant le sous-index zéro (nombre
d’éléments) pour déterminer le nombre d’entrée PDO projetés en mémoire. Après cela,
chaque sous-index est lu pour obtenir l’index de l’entrée PDO mappée en mémoire,
ainsi que son sous-index et sa taille en bits.

start

count

pdo_entry

Next entry

end

No more entries

Figure 5.8 – Diagramme de transition de l’automate de lecture des entrées PDO
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start

First SM

end

No config

No more SMs

No PDOs

First PDO

Assign ok

zero_pdo_count

read_mapping

Unknown

mapping

Next PDO

No PDOs

First PDO

assign_pdo

Next PDO

set_pdo_count

No more PDOs

Figure 5.9 – Diagramme de transition de l’automate de configuration des PDO
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start

zero_entry_count

end

No Entries

Add first entry

map_entry

Next entry

set_entry_count

No more Entries

Figure 5.10 – Diagramme de transition de l’automate de configuration des entrées
PDO
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6 Implémentation du protocole de
bôıte aux lettres

Le mâıtre EtherCAT implémente les protocoles de bôıte aux lettres CANopen over
EtherCAT (CoE), Ethernet over EtherCAT (EoE), File-access over EtherCAT (FoE),
Vendor-specific over EtherCAT (VoE) et Servo Profile over EtherCAT (SoE). Voir les
sections ci-dessous pour les détails.

6.1 Ethernet over EtherCAT (EoE)

Le mâıtre EtherCAT implémente le protocole de bôıte aux lettres Ethernet over
EtherCAT [3, sec. 5.7] pour permettre le tunnelage de trames Ethernet vers des
esclaves spéciaux, qui peuvent soit avoir des ports physiques Ethernet ou avoir leur
propre pile IP pour recevoir les trames.

Interfaces réseaux virtuelles Le mâıtre crée une interface réseau virtuelle EoE pour
chaque esclave compatible EoE. Ces interface sont nommées

eoeXsY pour un esclave sans adresse alias (voir sous-section 7.1.2), où X est
l’index du mâıtre et Y la position de l’esclave sur l’anneau.

eoeXaY pour un esclave avec une adresse d’alias non-nulle, où X est l’index du
mâıtre et Y est l’adresse alias en décimal.

Les trames envoyées vers ces interfaces sont transférées vers les esclaves associés par le
mâıtre. Les trames reçues par les esclaves sont récupérées par le mâıtre et transférées
aux interfaces virtuelles.

Ceci apporte les avantages suivants :

— Flexibilité : l’utilisateur peut décider comment les esclaves compatibles EoE
sont interconnectés avec le reste du monde.

— Les outils standards peuvent être utilisés pour surveiller l’activité EoE et pour
configurer les interfaces EoE.

— L’implémentation du pontage de niveau 2 du noyau Linux (selon la norme de
pontage IEEE 802.1D MAC) peut être utilisée nativement pour relier le trafic
Ethernet entre les esclaves compatibles EoE.

— La pile réseau du noyau Linux peut être utilisée pour router les paquets entre
les esclaves compatibles EoE et pour suivre les problèmes de sécurité, comme
avec une interface réseau physique.
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EoE Handlers Les interface virtuelles EoE et les fonctionnalités relatives sont encapsulées
dans la classe ec_eoe_t class. Un objet de cette classe est appelé “gestionnaire EoE”.
Par exemple, le mâıtre ne crée pas les interfaces réseaux directement : ceci est fait
à l’intérieur du constructeur d’un gestionnaire EoE. Un gestionnaire EoE contient
également une file d’attente pour les trames. À chaque fois que le noyau passe un
nouveau tampon de socket pour l’envoyer via la fonction de rappel hard_start_xmit
() de l’interface, le tampon de socket est mis en file d’attente pour la transmission
via l’automate EoE (voir ci-dessous). Si la file d’attente est pleine, le passage des
nouveaux tampons de socket est suspendu par un appel à netif_stop_queue().

Création de gestionnaire EoE Pendant l’analyse du bus (voir section 5.4), le mâıtre
détermine les protocoles de bôıte aux lettres supportés par chaque esclave. Ceci est
fait en examinant le champ de bits “Protocoles de bôıte aux lettres supportés” au mot
d’adresse 0x001C de la SII. Si le bit 1 est défini, alors l’esclave supporte le protocole
EoE. Dans ce cas, un gestionnaire EoE est créé pour cet esclave.

Automate EoE Chaque gestionnaire EoE possède son automate EoE, qui est utilisé
pour envoyer des trames à l’esclave correspondant et recevoir des trames de celui-ci
via les primitives de communication EoE. Cette automate est présenté dans figure 6.1.

RX START L’état de départ de l’automate EoE. Un datagramme de vérification
de la bôıte aux lettres est envoyé pour demander de nouvelles trames à la bôıte
aux lettres de l’esclave. → RX CHECK

RX CHECK Le datagramme de vérification de la bôıte aux lettres est reçu. Si
la bôıte aux lettres de l’esclave ne contenait pas de données, un cycle de
transmission débute. → TX START

S’il y a des nouvelles données dans la bôıte aux lettres, un datagramme est
envoyé pour rapatrier les nouvelles données. → RX FETCH

RX FETCH Le datagramme de rapatriement est reçu. Si la donnée dans la bôıte
aux lettres ne contient pas de commande de “requête de fragment EoE”, les
données sont abandonnées et une séquence de transmission démarre.→ TX START

Si la trame Ethernet reçue est le premier fragment, un nouveau tampon de
socket est alloué. Sinon, les données sont copiées à la bonne position dans le
tampon de socket.

Si le fragment est le dernier fragment, le tampon de socket est envoyé à la pile
réseau et une séquence de transmission est démarrée. → TX START

Sinon, une nouvelle séquence de réception est démarrée pour rappatrier le
prochain fragment. → RX START

TX START L’état de démarrage de la séquence de transmission. On vérifie si
la file d’attente de la transmission contient une trame à envoyer. Sinon, une
séquence de réception est démarrée → RX START
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RX_START RX_CHECK RX_FETCH

TX_START TX_SENT

Figure 6.1 – Diagramme de transition de l’automate EoE
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S’il y a une trame à envoyer, elle est retirée de la file d’attente. Si la file
d’attente était inactive auparavant (parce qu’elle était pleine), la file d’attente
est réveillée par un appel à netif wake queue(). Le premier fragment de la trame
est envoyé. → TX SENT

TX SENT On vérifie si le premier fragment a été envoyé avec succès. Si la trame
actuelle est constituée de fragments supplémentaires, le prochain est envoyé.
→ TX SENT

Si le dernier fragment a été envoyé, une nouvelle séquence de réception est
démarrée. → RX START

Traitement EoE Pour exécuter l’automate EoE de chaque gestionnaire EoE actif,
il doit y avoir un processus cyclique. La solution la plus simple serait d’exécuter les
automates EoE de manière synchrone avec l’automate du mâıtre (voir section 5.3.
Cette approche a les inconvénients suivants :

Un seul fragment EoE pourrait être envoyé ou reçu tous les quelques cycles. Le débit
des données serait très faible, parce que les automates EoE ne seraient pas exécutés
entre les cycles de l’application. En outre, le débit dépendrait de la période de la tâche
application.

Pour surmonter ce problème, les automates EoE ont besoin de leur propre processus
cyclique pour s’exécuter. Pour cela, le mâıtre possède un timer noyau, qui est exécuté
à chaque interruption temporelle. Ceci garantie une bande passante constante, mais
pose un nouveau problème d’accès concurrent au mâıtre. Le mécanisme de verrouillage
nécessaire à cet effet est présenté dans section 3.4.

Configuration automatique Par défaut, les esclaves sont laissés dans l’état PREOP
si aucune configuration n’est appliquée. Si le lien de l’interface EoE est configuré à
“up”, l’état de la couche application de l’esclave concerné passe automatiquement à
OP.

6.2 CANopen over EtherCAT (CoE)

Le protocole CANopen over EtherCAT [3, sec. 5.6] permet de configurer les esclaves
et d’échanger des objets de données au niveau de l’application.

Automate de téléchargement SDO Le meilleur moment pour appliquer les configurations
SDO est pendant l’état PREOP, parce que la communication par bôıte aux lettres
est déjà possible et que l’application de l’esclave va démarrer avec la mise à jour des
données d’entrées dans le prochain état SAFEOP. C’est pourquoi, la configuration
SDO doit faire partie de l’automate de configuration de l’esclave (voir section 5.5) :
ceci est implémenté via l’automate de téléchargement SDO, qui est exécuté juste
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avant que l’esclave entre dans l’état SAFEOP. De cette manière, il est garanti que les
configurations SDO soient appliquées à chaque fois que l’esclave est reconfiguré.

Le diagramme de transition de l’automate de téléchargement SDO est présenté dans
figure 6.2.

START L’état de départ de l’automate de téléchargement CoE. La commande de
bôıte aux lettres “SDO Download Normal Request” est envoyée.→ REQUEST

REQUEST On vérifie que l’esclave a reçu la requête de téléchargement CoE.
Après cela, la commande de vérification de la bôıte aux lettres est émise et un
minuteur est lancé. → CHECK

CHECK Si aucune donnée n’est disponible dans la bôıte aux lettres, le minuteur
est vérifié.

— S’il a expiré, le téléchargement SDO est interrompu. → ERROR
— Sinon la bôıte aux lettres est à nouveau interrogée. → CHECK

Si la bôıte aux lettres contient des nouvelles données, la réponse est rapatriée.
→ RESPONSE

RESPONSE Si la réponse de la bôıte aux lettres ne peut pas être récupérée,
c’est que les données sont invalides, ou qu’on a reçu le mauvais protocole ou
un “Abort SDO Transfer Request”. Alors on arrête le téléchargement SDO.
→ ERROR

Si on reçoit l’accusé de réception “SDO Download Normal Response”, le téléchargement
SDO a réussi. → END

END Le téléchargement SDO a réussi.

ERROR Une erreur a arrêté le téléchargement SDO.

6.3 Vendor specific over EtherCAT (VoE)

Le protocole VoE permet d’implémenter des protocoles de communication par bôıte
aux lettres spécifiques pour un fabricant. Les messages VoE sont préfixés par un entête
VoE qui contient l’identité du fabricant (vendor ID) sur 32 bits et le type de fabricant
(vendor-type) sur 16 bit. Il n’y a aucune autre contrainte pour ce protocole.

Le mâıtre EtherCAT autorise la création multiple de gestionnaires VoE pour les
configurations d’esclaves via l’API (voir chapitre 3). Ces gestionnaires contiennent
les automates nécessaires à la communication via VoE.These

Pour davantage d’information sur les gestionnaires VoE, voir section 3.3 ou les applications
d’exemples dans le sous-dossier examples/.
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START REQUEST CHECK RESPONSE

ENDERROR

Figure 6.2 – Diagramme de transition de l’automate de téléchargement CoE
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6.4 Servo Profile over EtherCAT (SoE)

Le protocole SoE implémente la couche canal de service, spécifiée dans IEC 61800-7
[16] via les bôıtes aux lettres EtherCAT.

Le protocole SoE est très similaire au protocole CoE (vor section 6.2). Mais à la
place des index et sous-index SDO, des numéros d’identification (IDNs) identifient les
paramètres.

L’implémentation couvre les primitives “SCC Read” et “SCC Write”, chacune est
capable de fragmenter les données.

Il y a plusieurs manières d’utiliser l’implémentation SoE :

— Lecture et écriture des IDNs via l’outil en ligne de commande (voir sous-
section 7.1.18).

— Stocker des configuration pour des IDNs arbitraires via l’API (voir chapitre 3,
i. e. ecrt_slave_config_idn()). Ces configurations sont écrites dans l’esclave
pendant la configuration dans l’état PREOP, avant de passer en SAFEOP.

— La bibliothèque en espace utilisateur (voir section 7.2), offre des fonctions pour
lire/écrire les IDNs en mode bloquant (ecrt_master_read_idn(), ecrt_master_write_idn
()).

1.6.8, 6 octobre 2025 59
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Puisque le mâıtre s’exécute en tant que module noyau, ses accès natifs se limitent à
analyser les messages Syslog et à le contrôler avec modutils.

Il était donc nécessaire d’implémenter d’autres interface pour faciliter l’accès au mâıtre
depuis l’espace utilisateur et pour permettre une influence plus fine. Il doit être
possible de voir et de changer des paramètres spéciaux en cours d’exécution.

La visualisation du bus est un autre point : dans un but de développement et de
déverminage, il est nécessaire, par exemple, de montrer les esclaves connectés (voir
section 7.1).

L’API doit être disponible depuis l’espace utilisateur pour permettre aux programmes
qui s’y trouvent d’utiliser les fonctionnalités EtherCAT. Ceci est implémenté via
un périphérique en mode caractère et une bibliothèque en espace utilisateur (voir
section 7.2).

Le démarrage et la configuration automatique sont d’autres aspects. Le mâıtre doit
être capable de démarrer automatiquement avec une configuration persistante (voir
section 7.4).

La surveillance des communications EtherCAT est un dernier point. Dans un but
de déverminage, il faut avoir un moyen d’analyser les datagrammes EtherCAT. La
meilleure solution serait d’utiliser un analyseur réseau populaire, tel que Wireshark
[8] ou d’autres (voir section 7.5).

Ce chapitre couvre tous ces points et présente les interfaces et outils qui les rendent
possibles.

7.1 Outil en ligne de commande

7.1.1 Périphériques en mode caractères

Chaque instance de mâıtre recoit un périphérique en mode caractère comme interface
en espace utilisateur. Les périphériques sont nommés /dev/EtherCATx, où x ∈ {0 . . . n}
est l’index du mâıtre.

Création des nœuds de périphériques Les nœuds des périphériques en mode caractères
sont automatiquement créés si le paquet udev est installé. Voir section 9.5 pour son
installation et sa configuration.
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7.1.2 Paramètre d’alias d’adresse

ethercat alias [OPTIONS] <ALIAS >

Write alias addresses.

Arguments:

ALIAS must be an unsigned 16 bit number. Zero means

removing an alias address.

If multiple slaves are selected , the --force option

is required.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Acknowledge writing aliases of

multiple slaves.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.3 Affichage de la configuration du bus

ethercat config [OPTIONS]

Show slave configurations.

Without the --verbose option , slave configurations are

output one -per -line. Example:

1001:0 0x0000003b /0 x02010000 3 OP

| | | |

| | | \- Application -layer

| | | state of the attached

| | | slave , or ’-’, if no

| | | slave is attached.

| | \- Absolute decimal ring

| | position of the attached

| | slave , or ’-’ if none

| | attached.

| \- Expected vendor ID and product code (both

| hexadecimal).

\- Alias address and relative position (both decimal).

With the --verbose option given , the configured PDOs and

SDOs are output in addition.

Configuration selection:

Slave configurations can be selected with
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the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slave configurations are displayed.

2) If only the --position option is given , an alias

of zero is assumed (see 4)).

3) If only the --alias option is given , all slave

configurations with the given alias address

are displayed.

4) If both the --alias and the --position option are

given , the selection can match a single

configuration , that is displayed , if it exists.

Command -specific options:

--alias -a <alias > Configuration alias (see above).

--position -p <pos > Relative position (see above).

--verbose -v Show detailed configurations.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.4 Sortie des informations PDO en langage C

ethercat cstruct [OPTIONS]

Generate slave PDO information in C language.

The output C code can be used directly with the

ecrt_slave_config_pdos () function of the application

interface.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.5 Affichage des données de processus

ethercat data [OPTIONS]

Output binary domain process data.

Data of multiple domains are concatenated.

Command -specific options:

--domain -d <index > Positive numerical domain index.

If omitted , data of all domains

are output.

1.6.8, 6 octobre 2025 63



7 Interfaces dans l’espace utilisateur

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.6 Configuration du niveau de déverminage d’un mâıtre

ethercat debug <LEVEL >

Set the master ’s debug level.

Debug messages are printed to syslog.

Arguments:

LEVEL can have one of the following values:

0 for no debugging output ,

1 for some debug messages , or

2 for printing all frame contents (use with caution !).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.7 Domaines configurés

ethercat domains [OPTIONS]

Show configured domains.

Without the --verbose option , the domains are displayed

one -per -line. Example:

Domain0: LogBaseAddr 0x00000000 , Size 6, WorkingCounter 0/1

The domain ’s base address for the logical datagram

(LRD/LWR/LRW) is displayed followed by the domain ’s

process data size in byte. The last values are the current

datagram working counter sum and the expected working

counter sum. If the values are equal , all PDOs were

exchanged during the last cycle.

If the --verbose option is given , the participating slave

configurations/FMMUs and the current process data are

additionally displayed:

Domain1: LogBaseAddr 0x00000006 , Size 6, WorkingCounter 0/1

SlaveConfig 1001:0 , SM3 ( Input), LogAddr 0x00000006 , Size 6

00 00 00 00 00 00

The process data are displayed as hexadecimal bytes.

Command -specific options:

--domain -d <index > Positive numerical domain index.
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If omitted , all domains are

displayed.

--verbose -v Show FMMUs and process data

in addition.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.8 Accès SDO

ethercat download [OPTIONS] <INDEX > <SUBINDEX > <VALUE >

[OPTIONS] <INDEX > <VALUE >

Write an SDO entry to a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

The second call (without <SUBINDEX >) uses the complete

access method.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned

16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

VALUE is the value to download and must correspond

to the SDO entry datatype (see above). Use

’-’ to read from standard input.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).
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Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat upload [OPTIONS] <INDEX > <SUBINDEX >

Read an SDO entry from a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned

16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.9 Statistiques EoE

ethercat eoe

Display Ethernet over EtherCAT statictics.

The TxRate and RxRate are displayed in Byte/s.

7.1.10 File-Access over EtherCAT

ethercat foe_read [OPTIONS] <SOURCEFILE >
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Read a file from a slave via FoE.

This command requires a single slave to be selected.

Arguments:

SOURCEFILE is the name of the source file on the slave.

Command -specific options:

--output -file -o <file > Local target filename. If

’-’ (default), data are

printed to stdout.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat foe_write [OPTIONS] <FILENAME >

Store a file on a slave via FoE.

This command requires a single slave to be selected.

Arguments:

FILENAME can either be a path to a file , or ’-’. In

the latter case , data are read from stdin and

the --output -file option has to be specified.

Command -specific options:

--output -file -o <file > Target filename on the slave.

If the FILENAME argument is

’-’, this is mandatory.

Otherwise , the basename () of

FILENAME is used by default.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.11 Création de graphiques topologiques

ethercat graph [OPTIONS]

ethercat graph [OPTIONS] <INFO >

Output the bus topology as a graph.

The bus is output in DOT language (see
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http :// www.graphviz.org/doc/info/lang.html), which can

be processed with the tools from the Graphviz

package. Example:

ethercat graph | dot -Tsvg > bus.svg

See ’man dot ’ for more information.

Additional information at edges and nodes is selected via

the first argument:

DC - DC timing

CRC - CRC error register information

7.1.12 Mâıtre et périphériques Ethernet

ethercat master [OPTIONS]

Show master and Ethernet device information.

Command -specific options:

--master -m <indices > Master indices. A comma -separated

list with ranges is supported.

Example: 1,4,5,7-9. Default: - (all).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.13 Gestionnaires de synchronisation, PDOs et entrées PDO

ethercat pdos [OPTIONS]

List Sync managers , PDO assignment and mapping.

For the default skin (see --skin option) the information

is displayed in three layers , which are

indented accordingly:

1) Sync managers - Contains the sync manager information

from the SII: Index , physical start address , default

size , control register and enable word. Example:

SM3: PhysAddr 0x1100 , DefaultSize 0, ControlRegister 0x20 , Enable

1

2) Assigned PDOs - PDO direction , hexadecimal index and

the PDO name , if available. Note that a ’Tx ’ and ’Rx ’

are seen from the slave ’s point of view. Example:

TxPDO 0x1a00 "Channel1"

3) Mapped PDO entries - PDO entry index and subindex (both
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hexadecimal), the length in bit and the description , if

available. Example:

PDO entry 0x3101:01, 8 bit , "Status"

Note , that the displayed PDO assignment and PDO mapping

information can either originate from the SII or from the

CoE communication area.

The "etherlab" skin outputs a template configuration

for EtherLab ’s generic EtherCAT slave block.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--skin -s <skin > Choose output skin. Possible values are

"default" and "etherlab ".

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.14 Registre d’accès

ethercat reg_read [OPTIONS] <ADDRESS > [SIZE]

Output a slave ’s register contents.

This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address. Must

be an unsigned 16 bit number.

SIZE is the number of bytes to read and must also be

an unsigned 16 bit number. ADDRESS plus SIZE

may not exceed 64k. The size is ignored (and

can be omitted), if a selected data type

implies a size.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of
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the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat reg_write [OPTIONS] <OFFSET > <DATA >

Write data to a slave ’s registers.

This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address to write to.

DATA depends on whether a datatype was specified

with the --type option: If not , DATA must be

either a path to a file with data to write ,

or ’-’, which means , that data are read from

stdin. If a datatype was specified , VALUE is

interpreted respective to the given type.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

--emergency -e Send as emergency request.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.15 Dictionnaire SDO

ethercat sdos [OPTIONS]

List SDO dictionaries.

SDO dictionary information is displayed in two layers ,

which are indented accordingly:

1) SDOs - Hexadecimal SDO index and the name. Example:
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SDO 0x1018 , "Identity object"

2) SDO entries - SDO index and SDO entry subindex (both

hexadecimal) followed by the access rights (see

below), the data type , the length in bit , and the

description. Example:

0x1018 :01, rwrwrw , uint32 , 32 bit , "Vendor id"

The access rights are specified for the AL states PREOP ,

SAFEOP and OP. An ’r’ means , that the entry is readable

in the corresponding state , an ’w’ means writable ,

respectively. If a right is not granted , a dash ’-’ is

shown.

If the --quiet option is given , only the SDOs are output.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--quiet -q Only output SDOs (without the

SDO entries).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.16 Accès SSI

Il est possible de lire ou écrire directement tout le contenu SII des esclaves. Ceci a été
ajouté pour les raisons ci-dessous :

— Le format des données SII est encore en développement et des catégories
peuvent être ajoutées dans le futur. Avec les accès en lecture et écriture,
tout le contenu de la mémoire peut être facilement sauvegardé et restauré.

— Certaines champs SII doivent être altérés (par exemple les alias d’adresses).
Une écriture rapide est donc nécessaire pour cela.

— Au travers de l’accès en lecture, l’analyse des catégories de données doit être
possible depuis l’espace utilisateur.

ethercat sii_read [OPTIONS]

Output a slave ’s SII contents.

This command requires a single slave to be selected.

Without the --verbose option , binary SII contents are

output.

With the --verbose option given , a textual representation

1.6.8, 6 octobre 2025 71



7 Interfaces dans l’espace utilisateur

of the data is output , that is separated by SII category

names.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--verbose -v Output textual data with

category names.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Le lecture des données SII est aussi facile que les autres commandes. Comme les
données sont au format binaire, l’analyse est plus facile avec un outil tel que hexdump :

$ ethercat sii read --position 3 | hexdump

0000000 0103 0000 0000 0000 0000 0000 0000 008c

0000010 0002 0000 3052 07f0 0000 0000 0000 0000

0000020 0000 0000 0000 0000 0000 0000 0000 0000

...

La sauvegarde de la SII peut être facilement faite avec une redirection :

$ ethercat sii read --position 3 > sii-of-slave3.bin

Pour téléverser une SII dans un esclave, l’accès en écriture au périphérique en mode
caractère du mâıtre est nécessaire (voir sous-section 7.1.1).

ethercat sii_write [OPTIONS] <FILENAME >

Write SII contents to a slave.

This command requires a single slave to be selected.

The file contents are checked for validity and integrity.

These checks can be overridden with the --force option.

Arguments:

FILENAME must be a path to a file that contains a

positive number of words. If it is ’-’,

data are read from stdin.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Override validity checks.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.
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# ethercat sii write --position 3 sii-of-slave3.bin

La validité du contenu de la SSI peut être vérifiée puis le contenu est envoyé à l’esclave.
L’opération d’écriture peut prendre quelques secondes.

7.1.17 Esclaves sur le bus

Les informations sur les esclaves peuvent être collectées avec la sous-commande slaves

:

ethercat slaves [OPTIONS]

Display slaves on the bus.

If the --verbose option is not given , the slaves are

displayed one -per -line. Example:

1 5555:0 PREOP + EL3162 2C. Ana. Input 0-10V

| | | | | |

| | | | | \- Name from the SII if available ,

| | | | | otherwise vendor ID and product

| | | | | code (both hexadecimal).

| | | | \- Error flag. ’+’ means no error ,

| | | | ’E’ means that scan or

| | | | configuration failed.

| | | \- Current application -layer state.

| | \- Decimal relative position to the last

| | slave with an alias address set.

| \- Decimal alias address of this slave (if set),

| otherwise of the last slave with an alias set ,

| or zero , if no alias was encountered up to this

| position.

\- Absolute ring position in the bus.

If the --verbose option is given , a detailed (multi -line)

description is output for each slave.

Slave selection:

Slaves for this and other commands can be selected with

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slaves are selected.

2) If only the --position option is given , it is

interpreted as an absolute ring position and

a slave with this position is matched.

3) If only the --alias option is given , all slaves

with the given alias address and subsequent

slaves before a slave with a different alias

address match (use -p0 if only the slaves

with the given alias are desired , see 4)).
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4) If both the --alias and the --position option are

given , the latter is interpreted as relative

position behind any slave with the given alias.

Command -specific options:

--alias -a <alias > Slave alias (see above).

--position -p <pos > Slave position (see above).

--verbose -v Show detailed slave information.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Voici par exemple une sortie typique :

$ ethercat slaves

0 0:0 PREOP + EK1100 Ethernet Kopplerklemme (2A E-Bus)

1 5555:0 PREOP + EL3162 2K. Ana. Eingang 0-10V

2 5555:1 PREOP + EL4102 2K. Ana. Ausgang 0-10V

3 5555:2 PREOP + EL2004 4K. Dig. Ausgang 24V, 0,5A

7.1.18 Accès IDN SoE

ethercat soe_read [OPTIONS] <IDN >

ethercat soe_read [OPTIONS] <DRIVE > <IDN >

Read an SoE IDN from a slave.

This command requires a single slave to be selected.

Arguments:

DRIVE is the drive number (0 - 7). If omitted , 0 is assumed.

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data

Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number

or a string like ’P-0-150’.

Data of the given IDN are read and displayed according to

the given datatype , or as raw hex bytes.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64
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Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat soe_write [OPTIONS] <IDN > <VALUE >

ethercat soe_write [OPTIONS] <DRIVE > <IDN > <VALUE >

Write an SoE IDN to a slave.

This command requires a single slave to be selected.

Arguments:

DRIVE is the drive number (0 - 7). If omitted , 0 is assumed.

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data

Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number

or a string like ’P-0-150’.

VALUE is the value to write (see below).

The VALUE argument is interpreted as the given data type

(--type is mandatory) and written to the selected slave.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.19 Demande des états de la couche application
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ethercat states [OPTIONS] <STATE >

Request application -layer states.

Arguments:

STATE can be ’INIT ’, ’PREOP ’, ’BOOT ’, ’SAFEOP ’, or ’OP ’.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.20 Affichage de la version du mâıtre

ethercat version [OPTIONS]

Show version information.

7.1.21 Génération de la description de l’esclave au format XML

ethercat xml [OPTIONS]

Generate slave information XML.

Note that the PDO information can either originate

from the SII or from the CoE communication area. For

slaves , that support configuring PDO assignment and

mapping , the output depends on the last configuration.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.2 Bibliothèque en espace utilisateur

L’API native (voir chapitre 3) se trouve dans l’espace noyau et n’est donc accessible
que depuis le noyau. Pour rendre l’API disponible aux programmes en espace utilisateur,
une bibliothèque en espace utilisateur a été créée, et elle peut être liée à des programmes
selon les termes et conditions de la licence LGPL, version 2 [5].

La bibliothèque s’appelle libethercat. Ses sources se trouvent dans le sous-dossier lib/ et
elles sont construites par défaut lorsqu’on utilise la commande make. Elle est installée
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dans le sous-dossier lib/ en dessous du préfixe d’installation sous le nom libethercat.a
(pour la liaison statique), libethercat.la (pour utiliser avec libtool) et libethercat.so
(pour la liaison dynamique).

7.2.1 Utilisation de la bibliothèque

Le fichier d’entête ecrt.h de l’API peut être utilisé dans les deux contextes : utilisateur
ou noyau.

L’exemple minimal suivant montre comment construire un programme EtherCAT. Un
exemple complet se trouve dans le dossier examples/user/ des sources du mâıtre.

#include <ecrt.h>

int main(void)

{

ec_master_t *master = ecrt_request_master (0);

if (! master)

return 1; // error

pause (); // wait for signal

return 0;

}

Le programme peut être compilé et dynamiquement lié à la bibliothèque avec la
commande ci-dessous :

Listing 7.1 – Commande de l’éditeur de liens pour utiliser la bibliothèque de l’espace
utilisateur

gcc ethercat.c -o ectest -I/opt/etherlab/include \

-L/opt/etherlab/lib -lethercat \

-Wl ,--rpath -Wl ,/opt/etherlab/lib

La bibliothèque peut aussi être liée statiquement au programme :

gcc -static ectest.c -o ectest -I/opt/etherlab/include \

/opt/etherlab/lib/libethercat.a

7.2.2 Implémentation

Fondamentalement, l’API noyau a été transferée dans l’espace utilisateur via le périphérique
en mode caractére du mâıtre (voir chapitre 2, figure 2.1 et sous-section 7.1.1).

Les appels de fonction de l’API noyau sont projetés dans l’espace utilisateur via
l’interface ioctl(). Les fonctions de l’API en espace utilisateur partagent un ensemble
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d’appels ioctl() génériques. La partie noyau des appels de l’interface appelle directement
les fonctions correspondantes de l’API, ce qui ajoute un minimum de délai supplémentaire
(voir sous-section 7.2.3).

Pour des raisons de performance, les données de processus réels (voir section 2.3) ne
sont pas copiées entre la mémoire du noyau et celle de l’utilisateur : à la place, les
données sont projetées en mémoire vers l’application en espace utilisateur. Une fois
que le mâıtre est configuré et activé, le module mâıtre crée une zone de mémoire de
données de processus couvrant tous les domaines et la mappe dans l’espace utilisateur,
de sorte que l’application puisse accéder directement aux données de processus. En
conséquence, il n’y a pas de délai supplémentaire lors de l’accès aux données de
processus depuis l’espace utilisateur.

Différence API noyau/utilisateur En raison de la projection en mémoire des données
de processus, la mémoire est gérée en interne par les fonctions de la bibliothèque. Par
conséquent, il est impossible de fournir de la mémoire externe pour les domaines,
comme pour l’API noyau. Les fonctions correspondantes sont disponibles uniquement
dans l’espace noyau. C’est la seule différence lorsqu’on utilise l’API depuis l’espace
utilisateur.

7.2.3 Timing

Un aspect intéressant est la comparaison du timing des appels de la bibliothèque en
espace utilisateur avec ceux de l’API noyau. tableau 7.1 montre les durées des appels
et l’écart-type des fonctions de l’API typiques (et critiques pour le temps) mesurée
avec un processeur Intel Pentium 4 M avec 2.2 GHz et un noyau standard 2.6.26.

Table 7.1 – Comparaison du timing des API

Espace noyau Espace utilisateur
Fonction µ(t) σ(t) µ(t) σ(t)
ecrt_master_receive() 1.1 µs 0.3 µs 2.2 µs 0.5 µs
ecrt_domain_process() < 0.1 µs < 0.1 µs 1.0 µs 0.2 µs
ecrt_domain_queue() < 0.1 µs < 0.1 µs 1.0 µs 0.1 µs
ecrt_master_send() 1.8 µs 0.2 µs 2.5 µs 0.5 µs

Les résultats des tests montrent que, dans cette configuration, l’API en espace utilisateur
rajoute un délai supplémentaire d’environ 1 µs à chaque fonction, par rapport à l’API
en mode noyau.

7.3 Interface RTDM

Lorsqu’on utilise les interfaces en espace utilisateur des extensions temps réels telles
que Xenomai ou RTAI, il est déconseillé d’utiliser ioctl(), parce que ça peut perturber
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les opérations en temps réels. Pour y parvenir, le modèle de périphérique temps réel
(Real-Time Device Model = RTDM[17]) a été développé. Le module mâıtre fourni une
interface RTDM (voir figure 2.1) en plus du périphérique normal en mode caractère,
si les sources du mâıtres sont configurées avec --enable-rtdm (voir chapitre 9).

Pour forcer une application à utiliser l’interface RTDM au lieu du périphérique normal
en mode caractères, elle doit être liée avec la bibliothèque libethercat rtdm au lieu de
libethercat. L’utilisation de libethercat rtdm est transparente, par conséquent l’entête
EtherCAT ecrt.h peut être utilisé comme d’habitude avec l’API complète.

Pour construire l’exemple dans Listing 7.1 avec la bibliothèque RTDM, la commande
de l’éditeur de lien doit être modifiée comme ci-dessous :

gcc ethercat -with -rtdm.c -o ectest -I/opt/etherlab/include \

-L/opt/etherlab/lib -lethercat_rtdm \

-Wl ,--rpath -Wl ,/opt/etherlab/lib

7.4 Intégration système

Pour intégrer le mâıtre EtherCAT en tant que service dans un système en cours
d’exécution, il vient avec un script d’initialisation et un fichier sysconfig qui sont
décrits ci-dessous. Les systèmes plus modernes utilisent systemd [7]. L’intégration du
mâıtre avec systemd est décrite dans sous-section 7.4.4.

7.4.1 Script d’initialisation

Le script d’initialisation du mâıtre EtherCAT est conforme aux exigences de la “Linux
Standard Base” ( (LSB, [6]) ). Le script est installé dans etc/init.d/ethercat sous
le préfixe d’installation et doit être copié (ou encore mieux : lié) aux destinations
appropriées (voirchapitre 9), avant que le mâıtre puisse être inséré en tant que service.
Veuillez noter, que ce script d’initialisation dépend du fichier sysconfig décrit ci-
dessous.

Pour indiquer les dépendances du service (c’est-à-dire, quels services doivent être
démarrés avant les autres) à l’intérieur du code du script d’initialisation, LSB définit
un bloc spécial de commentaires. Les outils systèmes peuvent extraire cette information
pour insérer le script d’initialisation EtherCAT à la bonne position dans la séquence
de démarrage :

# Default -Stop: 0 1 2 6

# Short -Description: EtherCAT master

# Description: EtherCAT master @VERSION@

### END INIT INFO

#------------------------------------------------------------------------------

ETHERCATCTL =" @sbindir@/ethercatctl -c @sysconfdir@/sysconfig/ethercat"

#------------------------------------------------------------------------------
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7.4.2 Fichier sysconfig

Pour la configuration persistante, le script d’initialisation utilise un fichier sysconfig
installé dans etc/sysconfig/ethercat (sous le préfixe d’installation), qui est obligatoire.
Le fichier sysconfig contient toutes les variables de configuration requises pour opérer
un ou plusieurs mâıtres. La documentation se trouve dans le fichier et elle est reproduite
ci-dessous :

1 #

2 # The MASTER <X>_DEVICE variable specifies the Ethernet device for a master

3 # with index ’X’.

4 #

5 # Specify the MAC address ( hexadecimal with colons) of the Ethernet device to

6 # use. Example: "00:00:08:44: ab :66"

7 #

8 # Alternatively , a network interface name can be specified . The interface

9 # name will be resolved to a MAC address using the ’ip ’ command.

10 # Example: "eth0"

11 #

12 # The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning: It tells

13 # the master to accept the first device offered by any Ethernet driver.

14 #

15 # The MASTER <X>_DEVICE variables also determine , how many masters will be

16 # created: A non -empty variable MASTER0_DEVICE will create one master , adding a

17 # non -empty variable MASTER1_DEVICE will create a second master , and so on.

18 #

19 # Examples:

20 # MASTER0_DEVICE ="00:00:08:44: ab :66"

21 # MASTER0_DEVICE =" eth0"

22 #

23 MASTER0_DEVICE=""

24 # MASTER1_DEVICE =""

25

26 #

27 # Backup Ethernet devices

28 #

29 # The MASTER <X>_BACKUP variables specify the devices used for redundancy . They

30 # behaves nearly the same as the MASTER <X>_DEVICE variable , except that it

31 # does not interpret the ff:ff:ff:ff:ff:ff address.

32 #

33 # MASTER0_BACKUP =""

34

35 #

36 # Ethernet driver modules to use for EtherCAT operation.

37 #

38 # Specify a non -empty list of Ethernet drivers , that shall be used for

39 # EtherCAT operation.

40 #

41 # Except for the generic Ethernet driver module , the init script will try to

42 # unload the usual Ethernet driver modules in the list and replace them with

43 # the EtherCAT -capable ones. If a certain (EtherCAT -capable) driver is not

44 # found , a warning will appear.

45 #

46 # Possible values: 8139too , e100 , e1000 , e1000e , r8169 , generic , ccat , igb , igc ,

genet , dwmac -intel , stmmac -pci.

47 # Separate multiple drivers with spaces.

48 # A list of all matching kernel versions can be found here:

49 # https :// docs.etherlab.org/ethercat /1.6/ doxygen/ devicedrivers .html

50 #

51 # Note: The e100 , e1000 , e1000e , r8169 , ccat , igb and igc drivers are not built by

52 # default. Enable them with the --enable -<driver > configure switches.

53 #

54 DEVICE_MODULES=""
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55

56 # If you have any issues about network interfaces not being configured

57 # properly , systemd may need some additional infos about your setup.

58 # Have a look at the service file , you ’ll find some details there.

59 #

60

61 #

62 # List of interfaces to bring up and down automatically .

63 #

64 # Specify a space -separated list of interface names (such as eth0 or

65 # enp0s1) that shall be brought up on ‘ethercatctl start ‘ and down on

66 # ‘ethercatctl stop ‘.

67 #

68 # When using the generic driver , the corresponding Ethernet device has to be

69 # activated before the master is started , otherwise all frames will time out.

70 # This the perfect use -case for ‘UPDOWN_INTERFACES ‘.

71 #

72 UPDOWN_INTERFACES=""

73

74 #

75 # Flags for loading kernel modules.

76 #

77 # This can usually be left empty. Adjust this variable , if you have problems

78 # with module loading.

79 #

80 # MODPROBE_FLAGS ="-b"

81

82 # ------------------------------------------------------------------------------

Pour les systèmes gérés par systemd (voir sous-section 7.4.4), le fichier sysconfig a
été déplacé dans /etc/ethercat.conf. Les deux versions font parties des sources du
mâıtre et sont destinées à être utilisées en alternance.

7.4.3 Démarrage du mâıtre comme service

Une fois que le script d’initialisation et le fichier sysconfig ont été installés au bon
endroit, le mâıtre EtherCAT peut être inséré comme un service. Les différentes distributions
Linux offrent différentes façons pour marquer un service pour le démarrage ou l’arrêt
dans certains runlevels. Par exemple, SUSE Linux fournit la commande insserv :

# insserv ethercat

Le script d’initialisation peut aussi être utilisé pour démarrer ou stopper manuellement
le mâıtre EtherCAT.

Il doit être exécuté avec un des paramètres suivants : start, stop, restart ou status.

# /etc/init.d/ethercat restart

Shutting down EtherCAT master done

Starting EtherCAT master done

7.4.4 Intégration avec systemd

Les distributions utilisant systemd à la place du système d’initialisation SysV utilisent
des fichiers de service pour décrire comment un service doit être maintenu. Listing 7.2

1.6.8, 6 octobre 2025 81



7 Interfaces dans l’espace utilisateur

liste le fichier de service du mâıtre :

Listing 7.2 – Service file

#

# EtherCAT master kernel modules

#

[Unit]

Description=EtherCAT Master Kernel Modules

# Fine tuning of the startup dependencies below are recommended

# to provide a reliable startup routine.

# The dependencies below can be either uncommented after copying

# this file to /etc/systemd/system or by creating overrides:

# Copy the needed dependencies into

# /etc/systemd/system/ethercat.service.d/50- dependencies.conf

# in a [Unit] section.

#

# Uncomment this , if the generic Ethernet driver is used. It assures , that the

# network interfaces are configured , before the master starts.

#

#Requires=network.target # Stop master , if network is stopped

#After=network.target # Start master , after network is ready

#

# Uncomment this , if a native Ethernet driver is used. It assures , that the

# network interfaces are configured , after the Ethernet drivers have been

# replaced. Otherwise , the networking configuration tools could be confused.

#

#Before=network -pre.target

#Wants=network -pre.target

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=@sbindir@/ethercatctl start

ExecStop=@sbindir@/ethercatctl stop

[Install]

WantedBy=multi -user.target

La commande systemctl est utilisée pour charger et décharger le mâıtre et les modules
des pilotes réseaux de la même manière que l’ancien script d’initialisation (sous-
section 7.4.1).

# systemctl start ethercat

Lorsqu’on utilise systemd et/ou la commande systemctl, le fichier de configuration du
mâıtre doit être dans /etc/ethercat.conf au lieu de /etc/sysconfig/ethercat !
Celui-ci est ignoré. Les options de configurations sont exactement les mêmes.

7.5 Interfaces de déverminage

Les bus EtherCAT peuvent toujours être surveillés en insérant un commutateur entre
le mâıtre et l’esclave. Ceci permet de connecter un autre PC avec un analyseur réseau,
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par exemple Wireshark [8]. Il est aussi possible d’écouter directement sur les interfaces
réseaux locales de la machine exécutant le mâıtre EtherCAT. Si le pilote Ethernet
générique (voir section 4.3) est utilisé, l’analyseur réseau peut écouter directement
sur l’interface réseau connecté au bus EtherCAT.

Si on utilise les pilotes Ethernet natifs (voir section 4.2), il n’y a aucune interface réseau
local pour écouter, parce que les périphériques Ethernet utilisés pour EtherCAT ne
sont par enregistrés dans la pile réseau. Dans ce cas, des “interfaces de déverminage”
sont supportées : ce sont des interfaces réseaux virtuelles pour permettre la capture du
trafic EtherCAT avec un analyseur réseau (comme Wireshark ou tcpdump) s’exécutant
sur la machine mâıtresse sans utiliser de matériel externe. Pour utiliser cette fonctionnalité,
les sources du mâıtre doivent avoir été configurées avec l’option --enable-debug-if

(voir chapitre 9).

Chaque mâıtre EtherCAT enregistre une interface réseau en lecture seule par périphérique
Ethernet physique. Les interfaces réseaux sont nommées ecdbgmX pour le périphérique
principal et ecdbgbX pour le périphérique de secours, où X est l’index du mâıtre. Le
listing ci-dessous montre une interface de déverminage parmi des interfaces réseaux
standards :

# ip link

1: lo: <LOOPBACK ,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

4: eth0: <BROADCAST ,MULTICAST > mtu 1500 qdisc noop qlen 1000

link/ether 00:13:46:3b:ad:d7 brd ff:ff:ff:ff:ff:ff

8: ecdbgm0: <BROADCAST ,MULTICAST > mtu 1500 qdisc pfifo_fast

qlen 1000

link/ether 00:04:61:03: d1:01 brd ff:ff:ff:ff:ff:ff

Lorsque l’interface de déverminage est activée, toutes les trames envoyées ou reçues
depuis ou vers le périphérique physique sont aussi transmises à l’interface de déverminage
par le mâıtre correspondant. Les interfaces réseaux peuvent être activées avec la
commande ci-dessous :

# ip link set dev ecdbgm0 up

Veuillez noter, que la fréquence des trames peut être très élevée. Avec une application
connectée, l’interface de déverminage peut produire des milliers de trames par seconde.

Attention Les tampons de socket nécessaires pour les interfaces de déverminage
doivent être alloués dynamiquement. Certaines extensions temps réels pour Linux
(comme RTAI) ne l’autorisent pas un contexte temps réel !
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8 Aspects temporels

Bien que le timing EtherCAT soit hautement déterministe et que par conséquent les
problèmes de timing soient rares, il y a quelques aspects qui peuvent (et doivent) être
traités.

8.1 Profilage de l’interface de programmation
applicative

Un des aspects de timing les plus important est le temps d’exécution des fonctions
de l’API, qui sont appelées dans un contexte cyclique. Ces fonctions prennent une
part importante du timing d’ensemble de l’application. Pour mesurer le timing de ces
fonctions, le code suivant a été utilisé :

c0 = get_cycles ();

ecrt_master_receive(master);

c1 = get_cycles ();

ecrt_domain_process(domain1);

c2 = get_cycles ();

ecrt_master_run(master);

c3 = get_cycles ();

ecrt_master_send(master);

c4 = get_cycles ();

Entre chaque appel d’une fonction de l’API, le compteur d’horodatage d’estampille du
microprocesseur est lu. Les différences des compteurs sont converties en µs au moyen
de la variable cpu_khz, qui contient le nombre d’incréments par ms.

Pour la mesure réelle, un système avec un microprocesseur à 2.0 GHz a été utilisé pour
exécuter le code ci-dessus dans un fil d’exécution RTAI avec une période de 100 µs.
La mesure a été répétée n = 100 fois et les résultats ont été moyennés. Ils sont visibles
dans tableau 8.1.

Il est évident, que les fonctions qui accèdent au matériel prennent la part du lion.
La fonction ec master receive() exécute la requête de service d’interruption (ISR)
du périphérique Ethernet, analyse les datagrammes et copie leurs contenus dans la
mémoire des objets datagrammes. La fonction ec master send() assemble une trame
à partir des datagrammes et la copie vers les tampons matériels. Il est intéressant de
noter, que ceci ne prend qu’un quart du temps de réception.
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Table 8.1 – Profilage d’un cycle d’application sur un processeur à 2.0 GHz

Élement Durée moyenne [s] Déviation standard [µs]
ecrt master receive() 8.04 0.48
ecrt domain process() 0.14 0.03
ecrt master run() 0.29 0.12
ecrt master send() 2.18 0.17
Cycle complet 10.65 0.69

Les fonctions qui opèrent uniquement sur les structures de données internes des
mâıtres sont très rapides (∆t < 1 µs). Il est intéressant de noter que l’exécution
de ec domain process() a un petit écart-type par rapport à la moyenne, alors que le
ratio est presque deux fois plus grand pour ec master run() : Cela vient probablement
des fonctions ultérieures qui doivent exécuter le code en fonction de l’état courant et
les différentes fonctions d’état sont plus ou moins complexes.

Pour un cycle en temps réel qui représente environ 10 µs, la fréquence théorique peut
atteindre jusqu’à 100 kHz. Mais cette fréquence reste théorique pour deux raisons :

1. Le processeur doit continuer à exécuter le système d’exploitation entre les cycles
temps réels.

2. Les trames EtherCAT doivent être envoyées et reçues, avant que le prochain
cycle temps réel commence. La détermination du temps de cycle du bus est
difficile. Elle est couverte dans section 8.2.

8.2 Mesure des cycles du bus

Pour mesurer le temps pendant lequel, la trame est “sur le câble”, deux horodatages
sont nécessaires :

1. Le premier quand le matériel Ethernet commence à envoyer physiquement la
trame.

2. Le second quand la trame est complètement reçue par le matériel Ethernet.

Les deux instants sont difficiles à déterminer. La première raison est que les interruptions
sont désactivées et le mâıtre n’est pas notifié quand une trame est envoyée ou reçue
(un sondage fausserait les résultats). La deuxième raison est que, même avec les
interruptions activées, la durée entre l’évènement et la notification est inconnue. C’est
pourquoi, la seule manière de déterminer avec certitude le temps de cycle du bus est
une mesure électrique.

De toute façon, la durée du cycle du bus est un facteur important lors de la conception
du code temps réel, car il limite la fréquence maximale pour la tâche cyclique de
l’application. En pratique, ces paramètres de timing dépendent fortement du matériel
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et une méthode par essais et erreurs doit être utilisée pour déterminer les limites du
système.

La question centrale est : Que se passe-t-il si la fréquence du cycle est trop haute ? La
réponse est que les trames EtherCAT qui ont été envoyées à la fin du cycle ne sont
pas encore reçues quand le prochain cycle démarre.

Ceci est notifié en premier par ecrt domain process(), parce que le compteur de travail
des datagrammes de données de processus n’est pas incrémenté. La fonction notifiera
l’utilisateur via Syslog 1. Dans ce cas, les données de processus sont conservés identiques
comme dans le dernier cycle, parce qu’elles ne sont pas écrasées par le domaine.
Quand les datagrammes du domaine sont à nouveau mis en file d’attente, le mâıtre
s’aperçoit qu’ils ont déjà été mis en file d’attente (et marqués comme envoyés). Le
mâıtre les marquera à nouveau comme non-envoyés et affichera un avertissement que
les datagrammes ont été “ignorés”.

Sur le système à 2.0 GHz mentionné, la fréquence de cycle possible peut atteindre
25 kHz sans perdre de trames. Cette valeur peut sûrement être augmentée en choisissant
un matériel plus rapide. En particulier le matériel réseau RealTek peut être remplacé
par un autre plus rapide. En outre, la mise en oeuvre d’un ISR dédié pour les
périphériques EtherCAT contribuerait également à augmenter la latence. Ces deux
points sont la liste des choses encore à faire de l’auteur.

1. Pour limiter la sortie de Syslog, un mécanisme a été implémenté pour générer une notification
résumée au maximum une fois par seconde.
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9.1 Obtention du logiciel

Il y a plusieurs manières d’obtenir le logiciel du mâıtre :

1. Une version officielle (par exemple 1.5.2) peut être téléchargée depuis le site
web du mâıtre 1 dans le projet EtherLab [1] sous forme d’archive tar.

2. La révision de développement la plus récente (mais aussi n’importe quelle autre
révision) peut être obtenue via le dépôt Git [14] sur la page du projet sur
GitLab.com 2. L’intégralité du dépot peut être clonée avec la commande

git clone https :// gitlab.com/etherlab.org/ethercat.git

local-dir

3. Sans installation locale de Git, des archives tar de révisions arbitraires peuvent
être téléchargées via le bouton “Download“ sur GitLab.

9.2 Construction du logiciel

Après le téléchargement d’une archive tar ou le clonage du dépôt tel que décrit dans
la section 9.1, les sources doivent être préparées et configurées pour le processus de
construction.

Si une archive tar a été téléchargée, elle doit être extraite avec les commandes suivantes :

$ tar xjf ethercat-1.5.2.tar.bz2

$ cd ethercat-1.5.2/

La configuration du logiciel est gérée avec Autoconf [15] aussi les versions publiées
contiennent un script shell configure, qui doit être exécuté pour la configuration (voir
ci-dessous).

Amorcage Lors d’un téléchargement ou clonage direct du dépôt, le script configure
n’existe pas encore. Il peut être créé via le script bootstrap.sh dans les sources du
mâıtre. Les paquets autoconf et automake sont alors nécessaires.

1. https://etherlab.org/ethercat

2. https://gitlab.com/etherlab.org/ethercat
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Configuration et construction La configuration et le processus de construction
suivent dans les commandes ci-dessous :

$ ./configure

$ make

$ make modules

tableau 9.1 liste les commutateurs importants de configuration et les options :

Table 9.1 – Options de configuration

Option/Commutateur Description Défaut
--prefix Préfixe d’installation /opt/etherlab
--with-linux-dir Sources du noyau Linux Utilise le noyau actuel
--with-module-dir Sous-dossier dans l’arbre des

modules du noyau dans lequel
les modules noyaux EtherCAT
doivent être installés.

ethercat

--enable-generic Construire le pilote Ethernet
générique (voir section 4.3).

oui

--enable-8139too Construire le pilote 8139too oui
--with-8139too-kernel noyau 8139too †
--enable-e100 Construire le pilote e100 driver non
--with-e100-kernel e100 noyau †
--enable-e1000 Activer le pilote e1000 non
--with-e1000-kernel noyau e1000 †
--enable-e1000e Activer le pilote e1000e non
--with-e1000e-kernel noyau e1000e †
--enable-r8169 Activer le pilote r8169 non
--with-r8169-kernel noyau r8169 †
--enable-ccat Activer le pilote ccat (indépendant

de la version du noyau)
non

--enable-igb Activer le pilote igb non
--with-igb-kernel noyau igb †
--enable-kernel Construire les modules noyau du

mâıtre
oui

--enable-rtdm Créer l’interface RTDM (Le
dossier RTAI ou Xenomai est
requis, voir ci-dessous)

non

--with-rtai-dir Chemin RTAI (pour les exemples
RTAI et interface RTDM)

--with-xenomai-dir Chemin Xenomai (pour les
exemples Xenomai et interface
RTDM)
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Option/Commutateur Description Défaut
--with-devices Nombre de périphériques Ethernet

pour l’opération redondante (> 1
commute la redondance)

1

--with-systemdsystemunitdir Chemin Systemd auto
--enable-debug-if Créer une interface de

déverminage pour chaque mâıtre
non

--enable-debug-ring Créer un anneau de déverminage
pour enregistrer les trames

non

--enable-eoe Activer le support EoE oui
--enable-cycles Utiliser le compteur d’horodatage

du processeur. Activez ceci sur
les architectures Intel pour un
meilleur calcul des timings.

non

--enable-hrtimer Utiliser un minuteur haute-
résolution pour laisser dormir
l’automate du mâıtre entre l’envoi
des trames.

non

--enable-regalias Lire les alias d’adresses depuis le
registre

non

--enable-tool Construire l’outil en ligne de
commande “ethercat” (voir
section 7.1)

oui

--enable-userlib Construire la bibliothèque pour
l’espace utilisateur

oui

--enable-tty Construire le pilote TTY non
--enable-wildcards Activer 0xffffffff pour être un

jocker pour l’identifiant de
fabricant et le code produit

non

--enable-sii-assign Activer l’assignation de l’accès
SII à la couche PDI pendant la
configuration de l’esclave

non

--enable-rt-syslog Activer les instructions syslog
dans le contexte temps réel

yes

† Si cette option n’est pas spécifiée, la version du noyau à utiliser est extraite des
sources du noyau Linux.

9.3 Construction de la documentation de l’interface

Le code source est documenté avec Doxygen [13]. Pour construire la documentation
HTML, le logiciel the Doxygen doit être installé. La commande ci-dessous génère les
documents dans le sous-dossier doxygen-output :
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$ make doc

La documentation de l’interface peut être consultée en ouvrant avec un navigateur
web le fichier doxygen-output/html/index.html. Les fonctions et structures de données
de l’application sont couvertes par leur propre module “Application Interface”.

9.4 Installation du logiciel

Les commandes ci-dessous doivent être entrées en tant que root : la première installe
l’entête EtherCAT, le script d’initialisation, le fichier sysconfig et l’outil en espace
utilisateur dans le chemin du préfixe. La deuxième installe les modules noyaux dans
le dossier des modules du noyau. L’appel final à depmod est nécessaire pour inclure
les modules noyaux dans le fichier modules.dep pour permettre de les utiliser avec la
commande modprobe, qui se trouve dans le script d’initialisation.

# make install

# make modules install

# depmod

Si le dossier de destination des modules noyaux ne se trouve dans /lib/modules, un
dossier de destination différent peut être spécifié avec la variable make DESTDIR. Par
exemple :

# make DESTDIR=/vol/nfs/root modules install

Ce commande installe les modules noyaux compilés dans /vol/nfs/root/lib/modules,
auquel on ajoute la version du noyau.

Maintenant le fichier de configuration /etc/sysconfig/ethercat (voir sous-section 7.4.2)
ou /etc/ethercat.conf si on utilise systemd, doit être personnalisé. La personnalisation
minimale consiste à définir la variable MASTER0_DEVICE avec l’adresse MAC du périphérique
Ethernet à utiliser (ou ff:ff:ff:ff:ff:ff pour utiliser le premier périphérique offert)
et à sélectionner le(s) pilote(s) à charger via la variable DEVICE_MODULES.

Après que la définition de la configuration de base, le mâıtre peut être démarré avec
la commande ci-dessous :

# systemctl start ethercat

Lorsqu’on utilise init.d, la commande suivante peut être utilisée à la place :

# /etc/init.d/ethercat start

A partir de cet instant, l’opération du mâıtre peut être obervée en consultant les
messages Syslog, qui ressemblent à ceux qui sont ci-dessous. Si des esclaves EtherCAT
sont connectés au périphérique du mâıtre EtherCAT, les indicateurs d’activité devraient
commencer à clignoter.
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1 EtherCAT: Master driver 1.5.2

2 EtherCAT: 1 master waiting for devices.

3 EtherCAT Intel(R) PRO /1000 Network Driver - version 6.0.60 -k2

4 Copyright (c) 1999 -2005 Intel Corporation.

5 PCI: Found IRQ 12 for device 0000:01:01.0

6 PCI: Sharing IRQ 12 with 0000:00:1d.2

7 PCI: Sharing IRQ 12 with 0000:00:1f.1

8 EtherCAT: Accepting device 00:0E:0C:DA:A2:20 for master 0.

9 EtherCAT: Starting master thread.

10 ec_e1000: ec0: e1000_probe: Intel(R) PRO /1000 Network

11 Connection

12 ec_e1000: ec0: e1000_watchdog_task: NIC Link is Up 100 Mbps

13 Full Duplex

14 EtherCAT: Link state changed to UP.

15 EtherCAT: 7 slave(s) responding.

16 EtherCAT: Slave states: PREOP.

17 EtherCAT: Scanning bus.

18 EtherCAT: Bus scanning completed in 431 ms.

1○ – 2○ Le module mâıtre est en train de charger , et un mâıtre est initialisé.

3○ – 8○ Le pilote e1000 compatible EtherCAT est en train de charger. Le mâıtre
accepte le périphérique avec l’adresse 00:0E:0C:DA:A2:20.

9○ – 16○ Le mâıtre entre en phase de repos, démarre son automate et commence
à analyser le bus.

9.5 Création automatique des nœuds de périphériques

L’outil en ligne de commande ethercat (voir section 7.1) communique avec le mâıtre
via le périphérique en mode caractère. Les nœuds de périphériques correspondants
sont créés automatiquement, si le service udev est en cours de fonctionnement. Veuillez
noter, que pour certaines distributions, le paquet udev n’est pas installé par défaut.

Les nœuds de périphériques seront créés avec le mode 0660 et le groupe root par
défaut. Si des utilisateurs “normaux” doivent avoir un accès en lecture, un fichier de
règle udev (par exemple /etc/udev/rules.d/99-EtherCAT.rules) doit être créé avec le
contenu suivant :

KERNEL ==" EtherCAT [0-9]*", MODE ="0664"

Après la création du fichier de règles udev et le redémarrage du mâıtre EtherCAT
avec /etc/init.d/ethercat restart, le nœud de périphérique est automatiquement
créé avec les bons droits :

# ls -l /dev/EtherCAT0

crw -rw -r-- 1 root root 252, 0 2008 -09 -03 16:19 /dev/EtherCAT0
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Maintenant, l’outil ethercat peut être utilisé (voir section 7.1) par un utilisateur
non-root.

Si les utilisateurs non-root doivent avoir l’accès en écriture, on peut utiliser la règle
udev suivante à la place :

KERNEL ==" EtherCAT [0-9]*", MODE ="0664" , GROUP=" users"
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Glossaire

ADEOS Adaptive Domain Environment for Operating Systems, page 1

CoE CANopen over EtherCAT, Mailbox Protocol, page 56

ecdev EtherCAT Device, page 32

EoE Ethernet over EtherCAT, Mailbox Protocol, page 53

FSM Finite State Machine, page 35

ISR Interrupt Service Routine, page 26

LSB Linux Standard Base, page 2

PCI Peripheral Component Interconnect, Bus informatique, page 28

RTAI Realtime Application Interface, page 1
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