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Conventions

Conventions

The following typographic conventions are used:

• Italic face is used for newly introduced terms and file names.

• Typewriter face is used for code examples and command line output.

• Bold typewriter face is used for user input in command lines.

Data values and addresses are usually specified as hexadecimal values. These are
marked in the C programming language style with the prefix 0x (example: 0x88A4).
Unless otherwise noted, address values are specified as byte addresses.

Function names are always printed with parentheses, but without parameters. So, if
a function ecrt_request_master() has empty parentheses, this shall not imply that
it has no parameters.

If shell commands have to be entered, this is marked by a dollar prompt:

$

Further, if a shell command has to be entered as the superuser, the prompt is a mesh:

#

x 1.6.8,



1 The IgH EtherCAT Master

This chapter covers some general information about the EtherCAT master.

1.1 Feature Summary

The list below gives a short summary of the master features.

• Designed as a kernel module for Linux from version 2.6 (or newer).

• Implemented according to IEC 61158-12 [2] [3].

• Comes with EtherCAT-capable native drivers for several common Ethernet
chips, as well as a generic driver for all chips supported by the Linux kernel.

– The native drivers operate the hardware without interrupts.

– Native drivers for additional Ethernet hardware can easily be implemented
using the common device interface (see section 4.6) provided by the master
module.

– For any other hardware, the generic driver can be used. It uses the lower
layers of the Linux network stack.

• The master module supports multiple EtherCAT masters running in parallel.

• The master code supports any Linux realtime extension through its independent
architecture.

– RTAI [11] (including LXRT via RTDM), ADEOS, RT-Preempt [12], Xeno-
mai (including RTDM), etc.

– It runs well even without realtime extensions.

• Common “Application Interface” for applications, that want to use EtherCAT
functionality (see chapter 3).

• Domains are introduced, to allow grouping of process data transfers with dif-
ferent slave groups and task periods.

– Handling of multiple domains with different task periods.

– Automatic calculation of process data mapping, FMMU and sync manager
configuration within each domain.

• Communication through several finite state machines.

1.6.8, October 6, 2025 1



1 The IgH EtherCAT Master

– Automatic bus scanning after topology changes.

– Bus monitoring during operation.

– Automatic reconfiguration of slaves (for example after power failure) during
operation.

• Distributed Clocks support (see section 3.5).

– Configuration of the slave’s DC parameters through the application inter-
face.

– Synchronization (offset and drift compensation) of the distributed slave
clocks to the reference clock.

– Optional synchronization of the reference clock to the master clock or the
other way round.

• CANopen over EtherCAT (CoE)

– SDO upload, download and information service.

– Slave configuration via SDOs.

– SDO access from userspace and from the application.

• Ethernet over EtherCAT (EoE)

– Transparent use of EoE slaves via virtual network interfaces.

– Natively supports either a switched or a routed EoE network architecture.

• Vendor-specific over EtherCAT (VoE)

– Communication with vendor-specific mailbox protocols via the API.

• File Access over EtherCAT (FoE)

– Loading and storing files via the command-line tool.

– Updating a slave’s firmware can be done easily.

• Servo Profile over EtherCAT (SoE)

– Implemented according to IEC 61800-7 [16].

– Storing IDN configurations, that are written to the slave during startup.

– Accessing IDNs via the command-line tool.

– Accessing IDNs at runtime via the user-space library.

• Userspace command-line-tool “ethercat” (see section 7.1)

– Detailed information about master, slaves, domains and bus configuration.

– Setting the master’s debug level.

– Reading/Writing alias addresses.

– Listing slave configurations.

– Viewing process data.

2 1.6.8,



1.2 License

– SDO download/upload; listing SDO dictionaries.

– Loading and storing files via FoE.

– SoE IDN access.

– Access to slave registers.

– Slave SII (EEPROM) access.

– Controlling application-layer states.

– Generation of slave description XML and C-code from existing slaves.

• Seamless system integration though LSB compliance.

– Master and network device configuration via sysconfig files.

– Init script for master control.

– Service file for systemd.

• Virtual read-only network interface for monitoring and debugging purposes.

1.2 License

The master code is released under the terms and conditions of the GNU General Public
License (GPL [4]), version 2. Other developers, that want to use EtherCAT with Linux
systems, are invited to use the master code or even participate on development.

To allow dynamic linking of userspace application against the master’s application
interface (see chapter 3), the userspace library (see section 7.2) is licensed under the
terms and conditions of the GNU Lesser General Public License (LGPL [5]), version
2.1.

1.6.8, 3
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2 Architecture

The EtherCAT master is integrated into the Linux kernel. This was an early design
decision, which has been made for several reasons:

• Kernel code has significantly better realtime characteristics, i. e. less latency
than userspace code. It was foreseeable, that a fieldbus master has a lot of
cyclic work to do. Cyclic work is usually triggered by timer interrupts inside
the kernel. The execution delay of a function that processes timer interrupts is
less, when it resides in kernelspace, because there is no need of time-consuming
context switches to a userspace process.

• It was also foreseeable, that the master code has to directly communicate with
the Ethernet hardware. This has to be done in the kernel anyway (through
network device drivers), which is one more reason for the master code being in
kernelspace.

Figure 2.1 gives a general overview of the master architecture.

The components of the master environment are described below:

Master Module Kernel module containing one or more EtherCAT master instances
(see section 2.1), the “Device Interface” (see section 4.6) and the “Application
Interface” (see chapter 3).

Device Modules EtherCAT-capable Ethernet device driver modules, that offer their
devices to the EtherCAT master via the device interface (see section 4.6). These
modified network drivers can handle network devices used for EtherCAT oper-
ation and “normal” Ethernet devices in parallel. A master can accept a certain
device and then is able to send and receive EtherCAT frames. Ethernet devices
declined by the master module are connected to the kernel’s network stack as
usual.

Application A program that uses the EtherCAT master (usually for cyclic exchange
of process data with EtherCAT slaves). These programs are not part of the
EtherCAT master code1, but have to be generated or written by the user. An
application can request a master through the application interface (see chap-
ter 3). If this succeeds, it has the control over the master: It can provide a bus
configuration and exchange process data. Applications can be kernel modules
(that use the kernel application interface directly) or userspace programs, that
use the application interface via the EtherCAT library (see section 7.2), or the
RTDM library (see section 7.3).

1Although there are some examples provided in the examples/ directory.
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2.1 Master Module

2.1 Master Module

The EtherCAT master kernel module ec master can contain multiple master instances.
Each master waits for certain Ethernet device(s) identified by its MAC address(es).
These addresses have to be specified on module loading via the main devices (and
optional: backup devices) module parameter. The number of master instances to
initialize is taken from the number of MAC addresses given.

The below command loads the master module with a single master instance that waits
for one Ethernet device with the MAC address 00:0E:0C:DA:A2:20. The master will
be accessible via index 0.

# modprobe ec master main devices=00:0E:0C:DA:A2:20

MAC addresses for multiple masters have to be separated by commas:

# modprobe ec master main devices=00:0E:0C:DA:A2:20,00:e0:81:71:d5:1c

The two masters can be addressed by their indices 0 and 1 respectively (see Figure 2.2).
The master index is needed for the ecrt_request_master() function of the application
interface (see chapter 3) and the --master option of the ethercat command-line tool
(see section 7.1), which defaults to 0.

Debug Level The master module also has a parameter debug level to set the initial
debug level for all masters (see also subsection 7.1.7).

Init Script In most cases it is not necessary to load the master module and the
Ethernet driver modules manually. There is an init script available, so the master can
be started as a service (see section 7.4). For systems that are managed by systemd
[7], there is also a service file available.

Syslog The master module outputs information about its state and events to the
kernel ring buffer. These also end up in the system logs. The above module loading
command should result in the messages below:

# dmesg | tail -2

EtherCAT: Master driver 1.6.8

EtherCAT: 2 masters waiting for devices.

# tail -2 /var/log/messages

Jul 4 10:22:45 ethercat kernel: EtherCAT: Master driver 1.6.8

Jul 4 10:22:45 ethercat kernel: EtherCAT: 2 masters waiting

for devices.

Master output is prefixed with EtherCAT which makes searching the logs easier.

1.6.8, 7
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Figure 2.2: Multiple masters in one module
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2.2 Master Phases

2.2 Master Phases

Every EtherCAT master provided by the master module (see section 2.1) runs through
several phases (see Figure 2.3):

Orphaned phase This mode takes effect, when the master still waits for its Ethernet
device(s) to connect. No bus communication is possible until then.

Idle phase takes effect when the master has accepted all required Ethernet devices,
but is not requested by any application yet. The master runs its state ma-
chine (see section 5.3), that automatically scans the bus for slaves and executes
pending operations from the userspace interface (for example SDO access). The
command-line tool can be used to access the bus, but there is no process data
exchange because of the missing bus configuration.

Operation phase The master is requested by an application that can provide a bus
configuration and exchange process data.

2.3 Process Data

This section shall introduce a few terms and ideas how the master handles process
data.

Process Data Image Slaves offer their inputs and outputs by presenting the mas-
ter so-called “Process Data Objects” (PDOs). The available PDOs can be either
determined by reading out the slave’s TxPDO and RxPDO SII categories from the
E2PROM (in case of fixed PDOs) or by reading out the appropriate CoE objects (see
section 6.2), if available. The application can register the PDOs’ entries for exchange
during cyclic operation. The sum of all registered PDO entries defines the “process
data image”, which is exchanged via datagrams with “logical” memory access (like
LWR, LRD or LRW) introduced in [2, sec. 5.4].

Process Data Domains The process data image can be easily managed by creat-
ing so-called “domains”, which allow grouped PDO exchange. They also take care
of managing the datagram structures needed to exchange the PDOs. Domains are
mandatory for process data exchange, so there has to be at least one. They were
introduced for the following reasons:

• The maximum size of a datagram is limited due to the limited size of an Eth-
ernet frame: The maximum data size is the Ethernet data field size minus the
EtherCAT frame header, EtherCAT datagram header and EtherCAT datagram
footer: 1500 − 2 − 12 − 2 = 1484 octets. If the size of the process data image
exceeds this limit, multiple frames have to be sent, and the image has to be
partitioned for the use of multiple datagrams. A domain manages this auto-
matically.

1.6.8, 9
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Orphaned Idle Operation

Device connection Master request

Device disconnection Master release

Figure 2.3: Master phases and transitions

10 1.6.8,



2.3 Process Data

• Not every PDO has to be exchanged with the same frequency: The values of
PDOs can vary slowly over time (for example temperature values), so exchanging
them with a high frequency would just waste bus bandwidth. For this reason,
multiple domains can be created, to group different PDOs and so allow separate
exchange.

There is no upper limit for the number of domains, but each domain occupies one
FMMU in each slave involved, so the maximum number of domains is de facto limited
by the slaves.

FMMU Configuration An application can register PDO entries for exchange. Every
PDO entry and its parent PDO is part of a memory area in the slave’s physical
memory, that is protected by a sync manager [2, sec. 6.7] for synchronized access.
In order to make a sync manager react on a datagram accessing its memory, it is
necessary to access the last byte covered by the sync manager. Otherwise the sync
manager will not react on the datagram and no data will be exchanged. That is
why the whole synchronized memory area has to be included into the process data
image: For example, if a certain PDO entry of a slave is registered for exchange with
a certain domain, one FMMU will be configured to map the complete sync-manager-
protected memory, the PDO entry resides in. If a second PDO entry of the same slave
is registered for process data exchange within the same domain, and it resides in the
same sync-manager-protected memory as the first one, the FMMU configuration is
not altered, because the desired memory is already part of the domain’s process data
image. If the second PDO entry would belong to another sync-manager-protected
area, this complete area would also be included into the domains process data image.

Figure 2.4 gives an overview, how FMMUs are configured to map physical memory
to logical process data images.

1.6.8, 11
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Figure 2.4: FMMU Configuration
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3 Application Interface

The application interface provides functions and data structures for applications to
access an EtherCAT master. The complete documentation of the interface is included
as Doxygen [13] comments in the header file include/ecrt.h (see section 3.6). It can
either be read directly from the file comments, or as a more comfortable HTML
documentation. The HTML generation is described in section 9.3.

The following sections cover a general description of the application interface.

Every application should use the master in two steps:

Configuration The master is requested and the configuration is applied. For example,
domains are created, slaves are configured and PDO entries are registered (see
section 3.1).

Operation Cyclic code is run and process data are exchanged (see section 3.2).

Example Applications There are a few example applications in the examples/ sub-
directory of the master code. They are documented in the source code.

3.1 Master Configuration

The bus configuration is supplied via the application interface. Figure 3.1 gives an
overview of the objects, that can be configured by the application.

3.1.1 Slave Configuration

The application has to tell the master about the expected bus topology. This can
be done by creating “slave configurations”. A slave configuration can be seen as an
expected slave. When a slave configuration is created, the application provides the
bus position (see below), vendor id and product code.

When the bus configuration is applied, the master checks, if there is a slave with
the given vendor id and product code at the given position. If this is the case,
the slave configuration is “attached” to the real slave on the bus and the slave is
configured according to the settings provided by the application. The state of a slave
configuration can either be queried via the application interface or via the command-
line tool (see subsection 7.1.3).
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Slave Position The slave position has to be specified as a tuple of “alias” and
“position”. This allows addressing slaves either via an absolute bus position, or a
stored identifier called “alias”, or a mixture of both. The alias is a 16-bit value
stored in the slave’s E2PROM. It can be modified via the command-line tool (see
subsection 7.1.2). Table 3.1 shows, how the values are interpreted.

Table 3.1: Specifying a Slave Position

Alias Position Interpretation
0 0 – 65535 Position addressing. The position pa-

rameter is interpreted as the absolute
ring position in the bus.

1 – 65535 0 – 65535 Alias addressing. The position param-
eter is interpreted as relative position
after the first slave with the given alias
address.

Figure 3.2 shows an example of how slave configurations are attached. Some of the
configurations were attached, while others remain detached. The below lists gives the
reasons beginning with the top slave configuration.

1. A zero alias means to use simple position addressing. Slave 1 exists and vendor
id and product code match the expected values.

2. Although the slave with position 0 is found, the product code does not match,
so the configuration is not attached.

3. The alias is non-zero, so alias addressing is used. Slave 2 is the first slave with
alias 0x2000. Because the position value is zero, the same slave is used.

4. There is no slave with the given alias, so the configuration can not be attached.

5. Slave 2 is again the first slave with the alias 0x2000, but position is now 1, so
slave 3 is attached.

If the master sources are configured with --enable-wildcards, then 0xffffffff matches
every vendor ID and/or product code.

3.2 Cyclic Operation

To enter cyclic operation mode, the master has to be “activated” to calculate the
process data image and apply the bus configuration for the first time. After activation,
the application is in charge to send and receive frames. The configuration can not be
changed after activation.
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3.3 VoE Handlers

During the configuration phase, the application can create handlers for the VoE mail-
box protocol described in section 6.3. One VoE handler always belongs to a certain
slave configuration, so the creation function is a method of the slave configuration.

A VoE handler manages the VoE data and the datagram used to transmit and receive
VoE messages. Is contains the state machine necessary to transfer VoE messages.

The VoE state machine can only process one operation at a time. As a result, either
a read or write operation may be issued at a time1. After the operation is initiated,
the handler must be executed cyclically until it is finished. After that, the results of
the operation can be retrieved.

A VoE handler has an own datagram structure, that is marked for exchange after each
execution step. So the application can decide, how many handlers to execute before
sending the corresponding EtherCAT frame(s).

For more information about the use of VoE handlers see the documentation of the
application interface functions and the example applications provided in the examples/
directory.

3.4 Concurrent Master Access

In some cases, one master is used by several instances, for example when an application
does cyclic process data exchange, and there are EoE-capable slaves that require to
exchange Ethernet data with the kernel (see section 6.1). For this reason, the master
is a shared resource, and access to it has to be sequentialized. This is usually done
by locking with semaphores, or other methods to protect critical sections.

The master itself can not provide locking mechanisms, because it has no chance to
know the appropriate kind of lock. For example if the application is in kernelspace
and uses RTAI functionality, ordinary kernel semaphores would not be sufficient. For
that, an important design decision was made: The application that reserved a master
must have the total control, therefore it has to take responsibility for providing the
appropriate locking mechanisms. If another instance wants to access the master, it has
to request the bus access via callbacks, that have to be provided by the application.
Moreover the application can deny access to the master if it considers it to be awkward
at the moment.

Figure 3.3 exemplary shows, how two processes share one master: The application’s
cyclic task uses the master for process data exchange, while the master-internal EoE
process uses it to communicate with EoE-capable slaves. Both have to access the bus
from time to time, but the EoE process does this by “asking” the application to do
the bus access for it. In this way, the application can use the appropriate locking

1If simultaneous sending and receiving is desired, two VoE handlers can be created for the slave
configuration.
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mechanism to avoid accessing the bus at the same time. See the application interface
documentation (chapter 3) for how to use these callbacks.

3.5 Distributed Clocks

From version 1.5, the master supports EtherCAT’s “Distributed Clocks” feature. It
is possible to synchronize the slave clocks on the bus to the “reference clock” (which
is the local clock of the first slave with DC support) and to synchronize the reference
clock to the “master clock” (which is the local clock of the master). All other clocks
on the bus (after the reference clock) are considered as “slave clocks” (see Figure 3.4).

Local Clocks Any EtherCAT slave that supports DC has a local clock register with
nanosecond resolution. If the slave is powered, the clock starts from zero, meaning
that when slaves are powered on at different times, their clocks will have different
values. These “offsets” have to be compensated by the distributed clocks mechanism.
On the other hand, the clocks do not run exactly with the same speed, since the
used quarts units have a natural frequency deviation. This deviation is usually very
small, but over longer periods, the error would accumulate and the difference between
local clocks would grow. This clock “drift” has also to be compensated by the DC
mechanism.

Application Time The common time base for the bus has to be provided by the
application. This application time tapp is used

1. to configure the slaves’ clock offsets (see below),

2. to program the slave’s start times for sync pulse generation (see below).

3. to synchronize the reference clock to the master clock (optional).

Offset Compensation For the offset compensation, each slave provides a “System
Time Offset” register toff, that is added to the internal clock value tint to get the
“System Time” tsys:

tsys = tint + toff (3.1)

⇒ tint = tsys − toff

The master reads the values of both registers to calculate a new system time offset in
a way, that the resulting system time shall match the master’s application time tapp:
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tsys
!

= tapp (3.2)

⇒ tint + toff
!

= tapp

⇒ toff = tapp − tint

⇒ toff = tapp − (tsys − toff)

⇒ toff = tapp − tsys + toff (3.3)

The small time offset error resulting from the different times of reading and writing
the registers will be compensated by the drift compensation.

Drift Compensation The drift compensation is possible due to a special mechanism
in each DC-capable slave: A write operation to the “System time” register will cause
the internal time control loop to compare the written time (minus the programmed
transmission delay, see below) to the current system time. The calculated time error
will be used as an input to the time controller, that will tune the local clock speed to
be a little faster or slower2, according to the sign of the error.

Transmission Delays The Ethernet frame needs a small amount of time to get from
slave to slave. The resulting transmission delay times accumulate on the bus and
can reach microsecond magnitude and thus have to be considered during the drift
compensation. EtherCAT slaves supporting DC provide a mechanism to measure the
transmission delays: For each of the four slave ports there is a receive time register.
A write operation to the receive time register of port 0 starts the measuring and the
current system time is latched and stored in a receive time register once the frame
is received on the corresponding port. The master can read out the relative receive
times, then calculate time delays between the slaves (using its knowledge of the bus
topology), and finally calculate the time delays from the reference clock to each slave.
These values are programmed into the slaves’ transmission delay registers. In this
way, the drift compensation can reach nanosecond synchrony.

Checking Synchrony DC-capable slaves provide the 32-bit “System time difference”
register at address 0x092c, where the system time difference of the last drift compensa-
tion is stored in nanosecond resolution and in sign-and-magnitude coding3. To check
for bus synchrony, the system time difference registers can also be cyclically read via
the command-line-tool (see subsection 7.1.16):

$ watch -n0 "ethercat reg read -p4 -tsm32 0x92c"

2The local slave clock will be incremented either with 9 ns, 10 ns or 11 ns every 10 ns.
3This allows broadcast-reading all system time difference registers on the bus to get an upper

approximation
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Sync Signals Synchronous clocks are only the prerequisite for synchronous events
on the bus. Each slave with DC support provides two “sync signals”, that can be
programmed to create events, that will for example cause the slave application to
latch its inputs on a certain time. A sync event can either be generated once or
cyclically, depending on what makes sense for the slave application. Programming
the sync signals is a matter of setting the so-called “AssignActivate” word and the
sync signals’ cycle- and shift times. The AssignActivate word is slave-specific and has
to be taken from the XML slave description (Device → Dc), where also typical sync
signal configurations “OpModes” can be found.

3.6 Application Interface Header

The application interface of the EtherCAT master is defined in the header file in-
clude/ecrt.h (acronym for “EtherCAT Real-Time”) which is listed in this section. The
calling conventions of all methods are documented in the comments of this header.
There is also a Doxygen-generated [13] online version at https://docs.etherlab.

org.

Listing 3.1: Application Interface Header ecrt.h
1 /* ****************************************************************************

2 *

3 * Copyright (C) 2006 -2024 Florian Pose , Ingenieurgemeinschaft IgH

4 *

5 * This file is part of the IgH EtherCAT master userspace library.

6 *

7 * The IgH EtherCAT master userspace library is free software; you can

8 * redistribute it and/or modify it under the terms of the GNU Lesser General

9 * Public License as published by the Free Software Foundation; version 2.1

10 * of the License.

11 *

12 * The IgH EtherCAT master userspace library is distributed in the hope that

13 * it will be useful , but WITHOUT ANY WARRANTY; without even the implied

14 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 * GNU Lesser General Public License for more details.

16 *

17 * You should have received a copy of the GNU Lesser General Public License

18 * along with the IgH EtherCAT master userspace library. If not , see

19 * <http ://www.gnu.org/licenses/>.

20 *

21 *************************************************************************** */

22

23 /** \file

24 *

25 * EtherCAT master application interface.

26 *

27 * \defgroup ApplicationInterface EtherCAT Application Interface

28 *

29 * EtherCAT interface for realtime applications. This interface is designed

30 * for realtime modules that want to use EtherCAT. There are functions to

31 * request a master , to map process data , to communicate with slaves via CoE

32 * and to configure and activate the bus.

33 *

34 *

35 * Changes in version 1.6.0:

36 *
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37 * - Added the ecrt_master_scan_progress () method , the

38 * ec_master_scan_progress_t structure and the EC_HAVE_SCAN_PROGRESS

39 * definition to check for its existence.

40 * - Added the EoE configuration methods ecrt_slave_config_eoe_mac_address (),

41 * ecrt_slave_config_eoe_ip_address (), ecrt_slave_config_eoe_subnet_mask (),

42 * ecrt_slave_config_eoe_default_gateway (),

43 * ecrt_slave_config_eoe_dns_address (),

44 * ecrt_slave_config_eoe_hostname () and the EC_HAVE_SET_IP

45 * definition to check for its existence.

46 * - Added ecrt_slave_config_state_timeout () to set the application -layer

47 * state change timeout and EC_HAVE_STATE_TIMEOUT to check for its

48 * existence.

49 *

50 * Changes since version 1.5.2:

51 *

52 * - Added the ecrt_slave_config_flag () method and the EC_HAVE_FLAGS

53 * definition to check for its existence.

54 * - Added SoE IDN requests , including the datatype ec_soe_request_t and the

55 * methods ecrt_slave_config_create_soe_request (),

56 * ecrt_soe_request_object (), ecrt_soe_request_timeout (),

57 * ecrt_soe_request_data (), ecrt_soe_request_data_size (),

58 * ecrt_soe_request_state (), ecrt_soe_request_write () and

59 * ecrt_soe_request_read (). Use the EC_HAVE_SOE_REQUESTS to check , if the

60 * functionality is available.

61 *

62 * Changes in version 1.5.2:

63 *

64 * - Added redundancy_active flag to ec_domain_state_t.

65 * - Added ecrt_master_link_state () method and ec_master_link_state_t to query

66 * the state of a redundant link.

67 * - Added the EC_HAVE_REDUNDANCY define , to check , if the interface contains

68 * redundancy features.

69 * - Added ecrt_sdo_request_index () to change SDO index and subindex after

70 * request creation.

71 * - Added interface for retrieving CoE emergency messages , i. e.

72 * ecrt_slave_config_emerg_size (), ecrt_slave_config_emerg_pop (),

73 * ecrt_slave_config_emerg_clear (), ecrt_slave_config_emerg_overruns () and

74 * the defines EC_HAVE_EMERGENCY and EC_COE_EMERGENCY_MSG_SIZE.

75 * - Added interface for direct EtherCAT register access: Added data type

76 * ec_reg_request_t and methods ecrt_slave_config_create_reg_request (),

77 * ecrt_reg_request_data (), ecrt_reg_request_state (),

78 * ecrt_reg_request_write (), ecrt_reg_request_read () and the feature flag

79 * EC_HAVE_REG_ACCESS.

80 * - Added method to select the reference clock ,

81 * ecrt_master_select_reference_clock () and the feature flag

82 * EC_HAVE_SELECT_REF_CLOCK to check , if the method is available.

83 * - Added method to get the reference clock time ,

84 * ecrt_master_reference_clock_time () and the feature flag

85 * EC_HAVE_REF_CLOCK_TIME to have the possibility to synchronize the master

86 * clock to the reference clock.

87 * - Changed the data types of the shift times in ecrt_slave_config_dc () to

88 * int32_t to correctly display negative shift times.

89 * - Added ecrt_slave_config_reg_pdo_entry_pos () and the feature flag

90 * EC_HAVE_REG_BY_POS for registering PDO entries with non -unique indices

91 * via their positions in the mapping.

92 *

93 * Changes in version 1.5:

94 *

95 * - Added the distributed clocks feature and the respective method

96 * ecrt_slave_config_dc () to configure a slave for cyclic operation , and

97 * ecrt_master_application_time (), ecrt_master_sync_reference_clock () and

98 * ecrt_master_sync_slave_clocks () for offset and drift compensation. The

99 * EC_TIMEVAL2NANO () macro can be used for epoch time conversion , while the

100 * ecrt_master_sync_monitor_queue () and ecrt_master_sync_monitor_process ()

101 * methods can be used to monitor the synchrony.

102 * - Improved the callback mechanism. ecrt_master_callbacks () now takes two
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103 * callback functions for sending and receiving datagrams.

104 * ecrt_master_send_ext () is used to execute the sending of non -application

105 * datagrams.

106 * - Added watchdog configuration (method ecrt_slave_config_watchdog (),

107 * #ec_watchdog_mode_t , \a watchdog_mode parameter in ec_sync_info_t and

108 * ecrt_slave_config_sync_manager ()).

109 * - Added ecrt_slave_config_complete_sdo () method to download an SDO during

110 * configuration via CompleteAccess.

111 * - Added ecrt_master_deactivate () to remove the master configuration.

112 * - Added ecrt_open_master () and ecrt_master_reserve () separation for

113 * userspace.

114 * - Added master information interface (methods ecrt_master (),

115 * ecrt_master_get_slave (), ecrt_master_get_sync_manager (),

116 * ecrt_master_get_pdo () and ecrt_master_get_pdo_entry ()) to get information

117 * about the currently connected slaves and the PDO entries provided.

118 * - Added ecrt_master_sdo_download (), ecrt_master_sdo_download_complete () and

119 * ecrt_master_sdo_upload () methods to let an application transfer SDOs

120 * before activating the master.

121 * - Changed the meaning of the negative return values of

122 * ecrt_slave_config_reg_pdo_entry () and ecrt_slave_config_sdo *().

123 * - Implemented the Vendor -specific over EtherCAT mailbox protocol. See

124 * ecrt_slave_config_create_voe_handler ().

125 * - Renamed ec_sdo_request_state_t to #ec_request_state_t , because it is also

126 * used by VoE handlers.

127 * - Removed ’const ’ from argument of ecrt_sdo_request_state (), because the

128 * userspace library has to modify object internals.

129 * - Added 64-bit data access macros.

130 * - Added ecrt_slave_config_idn () method for storing SoE IDN configurations ,

131 * and ecrt_master_read_idn () and ecrt_master_write_idn () to read/write IDNs

132 * ad-hoc via the user -space library.

133 * - Added ecrt_master_reset () to initiate retrying to configure slaves.

134 *

135 * @{

136 */

137

138 /* ************************************************************************** */

139

140 #ifndef __ECRT_H__

141 #define __ECRT_H__

142

143 #ifdef __KERNEL__

144 #include <asm/byteorder.h>

145 #include <linux/types.h>

146 #include <linux/time.h>

147 #include <linux/in.h> // struct in_addr

148 #else

149 #include <stdlib.h> // for size_t

150 #include <stdint.h>

151 #include <sys/time.h> // for struct timeval

152 #include <netinet/in.h> // struct in_addr

153 #endif

154

155 /* ****************************************************************************

156 * Global definitions

157 *************************************************************************** */

158

159 /** EtherCAT realtime interface major version number.

160 */

161 #define ECRT_VER_MAJOR 1

162

163 /** EtherCAT realtime interface minor version number.

164 */

165 #define ECRT_VER_MINOR 6

166

167 /** EtherCAT realtime interface version word generator.

168 */
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169 #define ECRT_VERSION(a, b) (((a) << 8) + (b))

170

171 /** EtherCAT realtime interface version word.

172 */

173 #define ECRT_VERSION_MAGIC ECRT_VERSION(ECRT_VER_MAJOR , ECRT_VER_MINOR)

174

175 /* ****************************************************************************

176 * Feature flags

177 *************************************************************************** */

178

179 /** Defined , if the redundancy features are available.

180 *

181 * I. e. if the \a redundancy_active flag in ec_domain_state_t and the

182 * ecrt_master_link_state () method are available.

183 */

184 #define EC_HAVE_REDUNDANCY

185

186 /** Defined , if the CoE emergency ring feature is available.

187 *

188 * I. e. if the ecrt_slave_config_emerg_ *() methods are available.

189 */

190 #define EC_HAVE_EMERGENCY

191

192 /** Defined , if the register access interface is available.

193 *

194 * I. e. if the methods ecrt_slave_config_create_reg_request (),

195 * ecrt_reg_request_data (), ecrt_reg_request_state (), ecrt_reg_request_write ()

196 * and ecrt_reg_request_read () are available.

197 */

198 #define EC_HAVE_REG_ACCESS

199

200 /** Defined if the method ecrt_master_select_reference_clock () is available.

201 */

202 #define EC_HAVE_SELECT_REF_CLOCK

203

204 /** Defined if the method ecrt_master_reference_clock_time () is available.

205 */

206 #define EC_HAVE_REF_CLOCK_TIME

207

208 /** Defined if the method ecrt_slave_config_reg_pdo_entry_pos () is available.

209 */

210 #define EC_HAVE_REG_BY_POS

211

212 /** Defined if the method ecrt_master_sync_reference_clock_to () is available.

213 */

214 #define EC_HAVE_SYNC_TO

215

216 /** Defined if the method ecrt_slave_config_flag () is available.

217 */

218 #define EC_HAVE_FLAGS

219

220 /** Defined if the methods ecrt_slave_config_create_soe_request (),

221 * ecrt_soe_request_object (), ecrt_soe_request_timeout (),

222 * ecrt_soe_request_data (), ecrt_soe_request_data_size (),

223 * ecrt_soe_request_state (), ecrt_soe_request_write () and

224 * ecrt_soe_request_read () and the datatype ec_soe_request_t are available.

225 */

226 #define EC_HAVE_SOE_REQUESTS

227

228 /** Defined , if the method ecrt_master_scan_progress () and the

229 * ec_master_scan_progress_t structure are available.

230 */

231 #define EC_HAVE_SCAN_PROGRESS

232

233 /** Defined , if the methods ecrt_slave_config_eoe_mac_address (),

234 * ecrt_slave_config_eoe_ip_address (), ecrt_slave_config_eoe_subnet_mask (),
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235 * ecrt_slave_config_eoe_default_gateway (),

236 * ecrt_slave_config_eoe_dns_address (), ecrt_slave_config_eoe_hostname () are

237 * available.

238 */

239 #define EC_HAVE_SET_IP

240

241 /** Defined , if the method ecrt_slave_config_state_timeout () is available.

242 */

243 #define EC_HAVE_STATE_TIMEOUT

244

245 /* ************************************************************************** */

246

247 /** Symbol visibility control macro.

248 */

249 #ifndef EC_PUBLIC_API

250 # if defined(ethercat_EXPORTS) && !defined(__KERNEL__)

251 # define EC_PUBLIC_API __attribute__ (( visibility ("default")))

252 # else

253 # define EC_PUBLIC_API

254 # endif

255 #endif

256

257 /* ************************************************************************** */

258

259 /** End of list marker.

260 *

261 * This can be used with ecrt_slave_config_pdos ().

262 */

263 #define EC_END ~0U

264

265 /** Maximum number of sync managers per slave.

266 */

267 #define EC_MAX_SYNC_MANAGERS 16

268

269 /** Maximum string length.

270 *

271 * Used in ec_slave_info_t.

272 */

273 #define EC_MAX_STRING_LENGTH 64

274

275 /** Maximum number of slave ports. */

276 #define EC_MAX_PORTS 4

277

278 /** Timeval to nanoseconds conversion.

279 *

280 * This macro converts a Unix epoch time to EtherCAT DC time.

281 *

282 * \see void ecrt_master_application_time ()

283 *

284 * \param TV struct timeval containing epoch time.

285 */

286 #define EC_TIMEVAL2NANO(TV) \

287 (((TV).tv_sec - 946684800 ULL) * 1000000000 ULL + (TV).tv_usec * 1000 ULL)

288

289 /** Size of a CoE emergency message in byte.

290 *

291 * \see ecrt_slave_config_emerg_pop ().

292 */

293 #define EC_COE_EMERGENCY_MSG_SIZE 8

294

295 /* ****************************************************************************

296 * Data types

297 *************************************************************************** */

298

299 struct ec_master;

300 typedef struct ec_master ec_master_t; /**< \see ec_master */
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301

302 struct ec_slave_config;

303 typedef struct ec_slave_config ec_slave_config_t; /**< \see ec_slave_config */

304

305 struct ec_domain;

306 typedef struct ec_domain ec_domain_t; /**< \see ec_domain */

307

308 struct ec_sdo_request;

309 typedef struct ec_sdo_request ec_sdo_request_t; /**< \see ec_sdo_request. */

310

311 struct ec_soe_request;

312 typedef struct ec_soe_request ec_soe_request_t; /**< \see ec_soe_request. */

313

314 struct ec_voe_handler;

315 typedef struct ec_voe_handler ec_voe_handler_t; /**< \see ec_voe_handler. */

316

317 struct ec_reg_request;

318 typedef struct ec_reg_request ec_reg_request_t; /**< \see ec_reg_request. */

319

320 /* ************************************************************************** */

321

322 /** Master state.

323 *

324 * This is used for the output parameter of ecrt_master_state ().

325 *

326 * \see ecrt_master_state ().

327 */

328 typedef struct {

329 unsigned int slaves_responding; /**< Sum of responding slaves on all

330 Ethernet devices. */

331 unsigned int al_states : 4; /**< Application -layer states of all slaves.

332 The states are coded in the lower 4 bits.

333 If a bit is set , it means that at least one

334 slave in the network is in the corresponding

335 state:

336 - Bit 0: \a INIT

337 - Bit 1: \a PREOP

338 - Bit 2: \a SAFEOP

339 - Bit 3: \a OP */

340 unsigned int link_up : 1; /**< \a true , if at least one Ethernet link is

341 up. */

342 } ec_master_state_t;

343

344 /* ************************************************************************** */

345

346 /** Redundant link state.

347 *

348 * This is used for the output parameter of ecrt_master_link_state ().

349 *

350 * \see ecrt_master_link_state ().

351 */

352 typedef struct {

353 unsigned int slaves_responding; /**< Sum of responding slaves on the given

354 link. */

355 unsigned int al_states : 4; /**< Application -layer states of the slaves on

356 the given link. The states are coded in the

357 lower 4 bits. If a bit is set , it means

358 that at least one slave in the network is in

359 the corresponding state:

360 - Bit 0: \a INIT

361 - Bit 1: \a PREOP

362 - Bit 2: \a SAFEOP

363 - Bit 3: \a OP */

364 unsigned int link_up : 1; /**< \a true , if the given Ethernet link is up.

365 */

366 } ec_master_link_state_t;
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367

368 /* ************************************************************************** */

369

370 /** Slave configuration state.

371 *

372 * This is used as an output parameter of ecrt_slave_config_state ().

373 *

374 * \see ecrt_slave_config_state ().

375 */

376 typedef struct {

377 unsigned int online : 1; /**< The slave is online. */

378 unsigned int operational : 1; /**< The slave was brought into \a OP state

379 using the specified configuration. */

380 unsigned int al_state : 4; /**< The application -layer state of the slave.

381 - 1: \a INIT

382 - 2: \a PREOP

383 - 4: \a SAFEOP

384 - 8: \a OP

385

386 Note that each state is coded in a different

387 bit! */

388 } ec_slave_config_state_t;

389

390 /* ************************************************************************** */

391

392 /** Master information.

393 *

394 * This is used as an output parameter of ecrt_master ().

395 *

396 * \see ecrt_master ().

397 */

398 typedef struct {

399 unsigned int slave_count; /**< Number of slaves in the network. */

400 unsigned int link_up : 1; /**< \a true , if the network link is up. */

401 uint8_t scan_busy; /**< \a true , while the master is scanning the network.

402 */

403 uint64_t app_time; /**< Application time. */

404 } ec_master_info_t;

405

406 /* ************************************************************************** */

407

408 /** Master scan progress information.

409 *

410 * This is used as an output parameter of ecrt_master_scan_progress ().

411 *

412 * \see ecrt_master_scan_progress ().

413 */

414 typedef struct {

415 unsigned int slave_count; /**< Number of slaves detected. */

416 unsigned int scan_index; /**< Index of the slave that is currently

417 scanned. If it is less than the \a

418 slave_count , the network scan is in progress.

419 */

420 } ec_master_scan_progress_t;

421

422 /* ************************************************************************** */

423

424 /** EtherCAT slave port descriptor.

425 */

426 typedef enum {

427 EC_PORT_NOT_IMPLEMENTED , /**< Port is not implemented. */

428 EC_PORT_NOT_CONFIGURED , /**< Port is not configured. */

429 EC_PORT_EBUS , /**< Port is an E-Bus. */

430 EC_PORT_MII /**< Port is a MII. */

431 } ec_slave_port_desc_t;

432
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433 /* ************************************************************************** */

434

435 /** EtherCAT slave port information.

436 */

437 typedef struct {

438 uint8_t link_up; /**< Link detected. */

439 uint8_t loop_closed; /**< Loop closed. */

440 uint8_t signal_detected; /**< Detected signal on RX port. */

441 } ec_slave_port_link_t;

442

443 /* ************************************************************************** */

444

445 /** Slave information.

446 *

447 * This is used as an output parameter of ecrt_master_get_slave ().

448 *

449 * \see ecrt_master_get_slave ().

450 */

451 typedef struct {

452 uint16_t position; /**< Offset of the slave in the ring. */

453 uint32_t vendor_id; /**< Vendor -ID stored on the slave. */

454 uint32_t product_code; /**< Product -Code stored on the slave. */

455 uint32_t revision_number; /**< Revision -Number stored on the slave. */

456 uint32_t serial_number; /**< Serial -Number stored on the slave. */

457 uint16_t alias; /**< The slaves alias if not equal to 0. */

458 int16_t current_on_ebus; /**< Used current in mA. */

459 struct {

460 ec_slave_port_desc_t desc; /**< Physical port type. */

461 ec_slave_port_link_t link; /**< Port link state. */

462 uint32_t receive_time; /**< Receive time on DC transmission delay

463 measurement. */

464 uint16_t next_slave; /**< Ring position of next DC slave on that

465 port. */

466 uint32_t delay_to_next_dc; /**< Delay [ns] to next DC slave. */

467 } ports[EC_MAX_PORTS ]; /**< Port information. */

468 uint8_t al_state; /**< Current state of the slave. */

469 uint8_t error_flag; /**< Error flag for that slave. */

470 uint8_t sync_count; /**< Number of sync managers. */

471 uint16_t sdo_count; /**< Number of SDOs. */

472 char name[EC_MAX_STRING_LENGTH ]; /**< Name of the slave. */

473 } ec_slave_info_t;

474

475 /* ************************************************************************** */

476

477 /** Domain working counter interpretation.

478 *

479 * This is used in ec_domain_state_t.

480 */

481 typedef enum {

482 EC_WC_ZERO = 0, /**< No registered process data were exchanged. */

483 EC_WC_INCOMPLETE , /**< Some of the registered process data were

484 exchanged. */

485 EC_WC_COMPLETE /**< All registered process data were exchanged. */

486 } ec_wc_state_t;

487

488 /* ************************************************************************** */

489

490 /** Domain state.

491 *

492 * This is used for the output parameter of ecrt_domain_state ().

493 */

494 typedef struct {

495 unsigned int working_counter; /**< Value of the last working counter. */

496 ec_wc_state_t wc_state; /**< Working counter interpretation. */

497 unsigned int redundancy_active; /**< Redundant link is in use. */

498 } ec_domain_state_t;
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499

500 /* ************************************************************************** */

501

502 /** Direction type for PDO assignment functions.

503 */

504 typedef enum {

505 EC_DIR_INVALID , /**< Invalid direction. Do not use this value. */

506 EC_DIR_OUTPUT , /**< Values written by the master. */

507 EC_DIR_INPUT , /**< Values read by the master. */

508 EC_DIR_COUNT /**< Number of directions. For internal use only. */

509 } ec_direction_t;

510

511 /* ************************************************************************** */

512

513 /** Watchdog mode for sync manager configuration.

514 *

515 * Used to specify , if a sync manager ’s watchdog is to be enabled.

516 */

517 typedef enum {

518 EC_WD_DEFAULT , /**< Use the default setting of the sync manager. */

519 EC_WD_ENABLE , /**< Enable the watchdog. */

520 EC_WD_DISABLE , /**< Disable the watchdog. */

521 } ec_watchdog_mode_t;

522

523 /* ************************************************************************** */

524

525 /** PDO entry configuration information.

526 *

527 * This is the data type of the \a entries field in ec_pdo_info_t.

528 *

529 * \see ecrt_slave_config_pdos ().

530 */

531 typedef struct {

532 uint16_t index; /**< PDO entry index. */

533 uint8_t subindex; /**< PDO entry subindex. */

534 uint8_t bit_length; /**< Size of the PDO entry in bit. */

535 } ec_pdo_entry_info_t;

536

537 /* ************************************************************************** */

538

539 /** PDO configuration information.

540 *

541 * This is the data type of the \a pdos field in ec_sync_info_t.

542 *

543 * \see ecrt_slave_config_pdos ().

544 */

545 typedef struct {

546 uint16_t index; /**< PDO index. */

547 unsigned int n_entries; /**< Number of PDO entries in \a entries to map.

548 Zero means , that the default mapping shall be

549 used (this can only be done if the slave is

550 present at configuration time). */

551 ec_pdo_entry_info_t const *entries; /**< Array of PDO entries to map. Can

552 either be \a NULL , or must contain

553 at least \a n_entries values. */

554 } ec_pdo_info_t;

555

556 /* ************************************************************************** */

557

558 /** Sync manager configuration information.

559 *

560 * This can be use to configure multiple sync managers including the PDO

561 * assignment and PDO mapping. It is used as an input parameter type in

562 * ecrt_slave_config_pdos ().

563 */

564 typedef struct {
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565 uint8_t index; /**< Sync manager index. Must be less

566 than #EC_MAX_SYNC_MANAGERS for a valid sync manager ,

567 but can also be \a 0xff to mark the end of the list. */

568 ec_direction_t dir; /**< Sync manager direction. */

569 unsigned int n_pdos; /**< Number of PDOs in \a pdos. */

570 ec_pdo_info_t const *pdos; /**< Array with PDOs to assign. This must

571 contain at least \a n_pdos PDOs. */

572 ec_watchdog_mode_t watchdog_mode; /**< Watchdog mode. */

573 } ec_sync_info_t;

574

575 /* ************************************************************************** */

576

577 /** List record type for PDO entry mass -registration.

578 *

579 * This type is used for the array parameter of the

580 * ecrt_domain_reg_pdo_entry_list ()

581 */

582 typedef struct {

583 uint16_t alias; /**< Slave alias address. */

584 uint16_t position; /**< Slave position. */

585 uint32_t vendor_id; /**< Slave vendor ID. */

586 uint32_t product_code; /**< Slave product code. */

587 uint16_t index; /**< PDO entry index. */

588 uint8_t subindex; /**< PDO entry subindex. */

589 unsigned int *offset; /**< Pointer to a variable to store the PDO entry’s

590 (byte -) offset in the process data. */

591 unsigned int *bit_position; /**< Pointer to a variable to store a bit

592 position (0-7) within the \a offset. Can be

593 NULL , in which case an error is raised if

594 the PDO entry does not byte -align. */

595 } ec_pdo_entry_reg_t;

596

597 /* ************************************************************************** */

598

599 /** Request state.

600 *

601 * This is used as return type for ecrt_sdo_request_state () and

602 * ecrt_voe_handler_state ().

603 */

604 typedef enum {

605 EC_REQUEST_UNUSED , /**< Not requested. */

606 EC_REQUEST_BUSY , /**< Request is being processed. */

607 EC_REQUEST_SUCCESS , /**< Request was processed successfully. */

608 EC_REQUEST_ERROR , /**< Request processing failed. */

609 } ec_request_state_t;

610

611 /* ************************************************************************** */

612

613 /** Application -layer state.

614 */

615 typedef enum {

616 EC_AL_STATE_INIT = 1, /**< Init. */

617 EC_AL_STATE_PREOP = 2, /**< Pre -operational. */

618 EC_AL_STATE_SAFEOP = 4, /**< Safe -operational. */

619 EC_AL_STATE_OP = 8, /**< Operational. */

620 } ec_al_state_t;

621

622 /* ****************************************************************************

623 * Global functions

624 *************************************************************************** */

625

626 #ifdef __cplusplus

627 extern "C" {

628 #endif

629

630 /** Returns the version magic of the realtime interface.
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631 *

632 * \apiusage{master_any ,rt_safe}

633 *

634 * \return Value of ECRT_VERSION_MAGIC () at EtherCAT master compile time.

635 */

636 EC_PUBLIC_API unsigned int ecrt_version_magic(void);

637

638 /** Requests an EtherCAT master for realtime operation.

639 *

640 * Before an application can access an EtherCAT master , it has to reserve one

641 * for exclusive use.

642 *

643 * In userspace , this is a convenience function for ecrt_open_master () and

644 * ecrt_master_reserve ().

645 *

646 * This function has to be the first function an application has to call to

647 * use EtherCAT. The function takes the index of the master as its argument.

648 * The first master has index 0, the n-th master has index n - 1. The number

649 * of masters has to be specified when loading the master module.

650 *

651 * \apiusage{master_idle ,blocking}

652 *

653 * \return Pointer to the reserved master , otherwise \a NULL.

654 */

655 EC_PUBLIC_API ec_master_t *ecrt_request_master(

656 unsigned int master_index /**< Index of the master to request. */

657 );

658

659 #ifndef __KERNEL__

660

661 /** Opens an EtherCAT master for userspace access.

662 *

663 * This function has to be the first function an application has to call to

664 * use EtherCAT. The function takes the index of the master as its argument.

665 * The first master has index 0, the n-th master has index n - 1. The number

666 * of masters has to be specified when loading the master module.

667 *

668 * For convenience , the function ecrt_request_master () can be used.

669 *

670 * \apiusage{master_idle ,blocking}

671 *

672 * \return Pointer to the opened master , otherwise \a NULL.

673 */

674 EC_PUBLIC_API ec_master_t *ecrt_open_master(

675 unsigned int master_index /**< Index of the master to request. */

676 );

677

678 #endif // #ifndef __KERNEL__

679

680 /** Releases a requested EtherCAT master.

681 *

682 * After use , a master it has to be released to make it available for other

683 * applications.

684 *

685 * This method frees all created data structures. It should not be called in

686 * realtime context.

687 *

688 * If the master was activated , ecrt_master_deactivate () is called internally.

689 *

690 * \apiusage{master_any ,blocking}

691 */

692 EC_PUBLIC_API void ecrt_release_master(

693 ec_master_t *master /**< EtherCAT master */

694 );

695

696 /* ****************************************************************************
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697 * Master methods

698 *************************************************************************** */

699

700 #ifndef __KERNEL__

701

702 /** Reserves an EtherCAT master for realtime operation.

703 *

704 * Before an application can use PDO/domain registration functions or SDO

705 * request functions on the master , it has to reserve one for exclusive use.

706 *

707 * \apiusage{master_idle ,blocking}

708 *

709 * \return 0 in case of success , else < 0

710 */

711 EC_PUBLIC_API int ecrt_master_reserve(

712 ec_master_t *master /**< EtherCAT master */

713 );

714

715 #endif // #ifndef __KERNEL__

716

717 #ifdef __KERNEL__

718

719 /** Sets the locking callbacks.

720 *

721 * For concurrent master access , i. e. if other instances than the application

722 * want to send and receive datagrams on the network , the application has to

723 * provide a callback mechanism. This method takes two function pointers as

724 * its parameters. Asynchronous master access (like EoE processing) is only

725 * possible if the callbacks have been set.

726 *

727 * The task of the send callback (\a send_cb) is to decide , if the network

728 * hardware is currently accessible and whether or not to call the

729 * ecrt_master_send_ext () method.

730 *

731 * The task of the receive callback (\a receive_cb) is to decide , if a call to

732 * ecrt_master_receive () is allowed and to execute it respectively.

733 *

734 * \apiusage{master_idle ,blocking}

735 *

736 * \attention This method has to be called before ecrt_master_activate ().

737 */

738 void ecrt_master_callbacks(

739 ec_master_t *master , /**< EtherCAT master */

740 void (* send_cb)(void *), /**< Datagram sending callback. */

741 void (* receive_cb)(void *), /**< Receive callback. */

742 void *cb_data /**< Arbitrary pointer passed to the callback functions.

743 */

744 );

745

746 #endif /* __KERNEL__ */

747

748 /** Creates a new process data domain.

749 *

750 * For process data exchange , at least one process data domain is needed.

751 * This method creates a new process data domain and returns a pointer to the

752 * new domain object. This object can be used for registering PDOs and

753 * exchanging them in cyclic operation.

754 *

755 * This method allocates memory and should be called in non -realtime context

756 * before ecrt_master_activate ().

757 *

758 * \apiusage{master_idle ,blocking}

759 *

760 * \return Pointer to the new domain on success , else NULL.

761 */

762 EC_PUBLIC_API ec_domain_t *ecrt_master_create_domain(
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763 ec_master_t *master /**< EtherCAT master. */

764 );

765

766 /** Obtains a slave configuration.

767 *

768 * Creates a slave configuration object for the given \a alias and \a position

769 * tuple and returns it. If a configuration with the same \a alias and \a

770 * position already exists , it will be re -used. In the latter case , the given

771 * vendor ID and product code are compared to the stored ones. On mismatch , an

772 * error message is raised and the function returns \a NULL.

773 *

774 * Slaves are addressed with the \a alias and \a position parameters.

775 * - If \a alias is zero , \a position is interpreted as the desired slave’s

776 * ring position.

777 * - If \a alias is non -zero , it matches a slave with the given alias. In this

778 * case , \a position is interpreted as ring offset , starting from the

779 * aliased slave , so a position of zero means the aliased slave itself and a

780 * positive value matches the n-th slave behind the aliased one.

781 *

782 * If the slave with the given address is found during the configuration ,

783 * its vendor ID and product code are matched against the given value. On

784 * mismatch , the slave is not configured and an error message is raised.

785 *

786 * If different slave configurations are pointing to the same slave during

787 * configuration , a warning is raised and only the first configuration is

788 * applied.

789 *

790 * This method allocates memory and should be called in non -realtime context

791 * before ecrt_master_activate ().

792 *

793 * \apiusage{master_idle ,blocking}

794 *

795 * \retval >0 Pointer to the slave configuration structure.

796 * \retval NULL in the error case.

797 */

798 EC_PUBLIC_API ec_slave_config_t *ecrt_master_slave_config(

799 ec_master_t *master , /**< EtherCAT master */

800 uint16_t alias , /**< Slave alias. */

801 uint16_t position , /**< Slave position. */

802 uint32_t vendor_id , /**< Expected vendor ID. */

803 uint32_t product_code /**< Expected product code. */

804 );

805

806 /** Selects the reference clock for distributed clocks.

807 *

808 * If this method is not called for a certain master , or if the slave

809 * configuration pointer is NULL , then the first slave with DC functionality

810 * will provide the reference clock.

811 *

812 * \apiusage{master_idle ,blocking}

813 *

814 * \return 0 on success , otherwise negative error code.

815 */

816 EC_PUBLIC_API int ecrt_master_select_reference_clock(

817 ec_master_t *master , /**< EtherCAT master. */

818 ec_slave_config_t *sc /**< Slave config of the slave to use as the

819 * reference slave (or NULL). */

820 );

821

822 /** Obtains master information.

823 *

824 * No memory is allocated on the heap in this function.

825 *

826 * \apiusage{master_any ,rt_safe}

827 *

828 * \attention The pointer to this structure must point to a valid variable.
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829 *

830 * \return 0 in case of success , else < 0

831 */

832 EC_PUBLIC_API int ecrt_master(

833 ec_master_t *master , /**< EtherCAT master */

834 ec_master_info_t *master_info /**< Structure that will output the

835 information */

836 );

837

838 /** Obtains network scan progress information.

839 *

840 * No memory is allocated on the heap in this function.

841 *

842 * \apiusage{master_any ,rt_safe}

843 *

844 * \attention The pointer to this structure must point to a valid variable.

845 *

846 * \return 0 in case of success , else < 0

847 */

848 EC_PUBLIC_API int ecrt_master_scan_progress(

849 ec_master_t *master , /**< EtherCAT master */

850 ec_master_scan_progress_t *progress /**< Structure that will output

851 the progress information. */

852 );

853

854 /** Obtains slave information.

855 *

856 * Tries to find the slave with the given ring position. The obtained

857 * information is stored in a structure. No memory is allocated on the heap in

858 * this function.

859 *

860 * \apiusage{master_any ,blocking}

861 *

862 * \attention The pointer to this structure must point to a valid variable.

863 *

864 * \return 0 in case of success , else < 0

865 */

866 EC_PUBLIC_API int ecrt_master_get_slave(

867 ec_master_t *master , /**< EtherCAT master */

868 uint16_t slave_position , /**< Slave position. */

869 ec_slave_info_t *slave_info /**< Structure that will output the

870 information */

871 );

872

873 #ifndef __KERNEL__

874

875 /** Returns the proposed configuration of a slave ’s sync manager.

876 *

877 * Fills a given ec_sync_info_t structure with the attributes of a sync

878 * manager. The \a pdos field of the return value is left empty. Use

879 * ecrt_master_get_pdo () to get the PDO information.

880 *

881 * \apiusage{master_any ,blocking}

882 *

883 * \return zero on success , else non -zero

884 */

885 EC_PUBLIC_API int ecrt_master_get_sync_manager(

886 ec_master_t *master , /**< EtherCAT master. */

887 uint16_t slave_position , /**< Slave position. */

888 uint8_t sync_index , /**< Sync manager index. Must be less

889 than #EC_MAX_SYNC_MANAGERS. */

890 ec_sync_info_t *sync /**< Pointer to output structure. */

891 );

892

893 /** Returns information about a currently assigned PDO.

894 *
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895 * Fills a given ec_pdo_info_t structure with the attributes of a currently

896 * assigned PDO of the given sync manager. The \a entries field of the return

897 * value is left empty. Use ecrt_master_get_pdo_entry () to get the PDO

898 * entry information.

899 *

900 * \apiusage{master_any ,blocking}

901 *

902 * \retval zero on success , else non -zero

903 */

904 EC_PUBLIC_API int ecrt_master_get_pdo(

905 ec_master_t *master , /**< EtherCAT master. */

906 uint16_t slave_position , /**< Slave position. */

907 uint8_t sync_index , /**< Sync manager index. Must be less

908 than #EC_MAX_SYNC_MANAGERS. */

909 uint16_t pos , /**< Zero -based PDO position. */

910 ec_pdo_info_t *pdo /**< Pointer to output structure. */

911 );

912

913 /** Returns information about a currently mapped PDO entry.

914 *

915 * Fills a given ec_pdo_entry_info_t structure with the attributes of a

916 * currently mapped PDO entry of the given PDO.

917 *

918 * \apiusage{master_any ,blocking}

919 *

920 * \retval zero on success , else non -zero

921 */

922 EC_PUBLIC_API int ecrt_master_get_pdo_entry(

923 ec_master_t *master , /**< EtherCAT master. */

924 uint16_t slave_position , /**< Slave position. */

925 uint8_t sync_index , /**< Sync manager index. Must be less

926 than #EC_MAX_SYNC_MANAGERS. */

927 uint16_t pdo_pos , /**< Zero -based PDO position. */

928 uint16_t entry_pos , /**< Zero -based PDO entry position. */

929 ec_pdo_entry_info_t *entry /**< Pointer to output structure. */

930 );

931

932 #endif /* #ifndef __KERNEL__ */

933

934 /** Executes an SDO download request to write data to a slave.

935 *

936 * This request is processed by the master state machine. This method blocks ,

937 * until the request has been processed and may not be called in realtime

938 * context.

939 *

940 * \apiusage{master_any ,blocking}

941 *

942 * \retval 0 Success.

943 * \retval <0 Error code.

944 */

945 EC_PUBLIC_API int ecrt_master_sdo_download(

946 ec_master_t *master , /**< EtherCAT master. */

947 uint16_t slave_position , /**< Slave position. */

948 uint16_t index , /**< Index of the SDO. */

949 uint8_t subindex , /**< Subindex of the SDO. */

950 const uint8_t *data , /**< Data buffer to download. */

951 size_t data_size , /**< Size of the data buffer. */

952 uint32_t *abort_code /**< Abort code of the SDO download. */

953 );

954

955 /** Executes an SDO download request to write data to a slave via complete

956 * access.

957 *

958 * This request is processed by the master state machine. This method blocks ,

959 * until the request has been processed and may not be called in realtime

960 * context.
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961 *

962 * \apiusage{master_any ,blocking}

963 *

964 * \retval 0 Success.

965 * \retval <0 Error code.

966 */

967 EC_PUBLIC_API int ecrt_master_sdo_download_complete(

968 ec_master_t *master , /**< EtherCAT master. */

969 uint16_t slave_position , /**< Slave position. */

970 uint16_t index , /**< Index of the SDO. */

971 const uint8_t *data , /**< Data buffer to download. */

972 size_t data_size , /**< Size of the data buffer. */

973 uint32_t *abort_code /**< Abort code of the SDO download. */

974 );

975

976 /** Executes an SDO upload request to read data from a slave.

977 *

978 * This request is processed by the master state machine. This method blocks ,

979 * until the request has been processed and may not be called in realtime

980 * context.

981 *

982 * \apiusage{master_any ,blocking}

983 *

984 * \retval 0 Success.

985 * \retval <0 Error code.

986 */

987 EC_PUBLIC_API int ecrt_master_sdo_upload(

988 ec_master_t *master , /**< EtherCAT master. */

989 uint16_t slave_position , /**< Slave position. */

990 uint16_t index , /**< Index of the SDO. */

991 uint8_t subindex , /**< Subindex of the SDO. */

992 uint8_t *target , /**< Target buffer for the upload. */

993 size_t target_size , /**< Size of the target buffer. */

994 size_t *result_size , /**< Uploaded data size. */

995 uint32_t *abort_code /**< Abort code of the SDO upload. */

996 );

997

998 /** Executes an SoE write request.

999 *

1000 * Starts writing an IDN and blocks until the request was processed , or an

1001 * error occurred.

1002 *

1003 * \apiusage{master_any ,blocking}

1004 *

1005 * \retval 0 Success.

1006 * \retval <0 Error code.

1007 */

1008 EC_PUBLIC_API int ecrt_master_write_idn(

1009 ec_master_t *master , /**< EtherCAT master. */

1010 uint16_t slave_position , /**< Slave position. */

1011 uint8_t drive_no , /**< Drive number. */

1012 uint16_t idn , /**< SoE IDN (see ecrt_slave_config_idn ()). */

1013 const uint8_t *data , /**< Pointer to data to write. */

1014 size_t data_size , /**< Size of data to write. */

1015 uint16_t *error_code /**< Pointer to variable , where an SoE error code

1016 can be stored. */

1017 );

1018

1019 /** Executes an SoE read request.

1020 *

1021 * Starts reading an IDN and blocks until the request was processed , or an

1022 * error occurred.

1023 *

1024 * \apiusage{master_any ,blocking}

1025 *

1026 * \retval 0 Success.
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1027 * \retval <0 Error code.

1028 */

1029 EC_PUBLIC_API int ecrt_master_read_idn(

1030 ec_master_t *master , /**< EtherCAT master. */

1031 uint16_t slave_position , /**< Slave position. */

1032 uint8_t drive_no , /**< Drive number. */

1033 uint16_t idn , /**< SoE IDN (see ecrt_slave_config_idn ()). */

1034 uint8_t *target , /**< Pointer to memory where the read data can be

1035 stored. */

1036 size_t target_size , /**< Size of the memory \a target points to. */

1037 size_t *result_size , /**< Actual size of the received data. */

1038 uint16_t *error_code /**< Pointer to variable , where an SoE error code

1039 can be stored. */

1040 );

1041

1042 /** Finishes the configuration phase and prepares for cyclic operation.

1043 *

1044 * This function tells the master that the configuration phase is finished and

1045 * the realtime operation will begin. The function allocates internal memory

1046 * for the domains and calculates the logical FMMU addresses for domain

1047 * members. It tells the master state machine that the configuration is

1048 * now to be applied to the network.

1049 *

1050 * \apiusage{master_idle ,blocking}

1051 *

1052 * \attention After this function has been called , the realtime application is

1053 * in charge of cyclically calling ecrt_master_send () and

1054 * ecrt_master_receive () to ensure network communication. Before calling this

1055 * function , the master thread is responsible for that , so these functions may

1056 * not be called! The method itself allocates memory and should not be called

1057 * in realtime context.

1058 *

1059 * \return 0 in case of success , else < 0

1060 */

1061 EC_PUBLIC_API int ecrt_master_activate(

1062 ec_master_t *master /**< EtherCAT master. */

1063 );

1064

1065 /** Deactivates the master.

1066 *

1067 * Removes the master configuration. All objects created by

1068 * ecrt_master_create_domain (), ecrt_master_slave_config (), ecrt_domain_data ()

1069 * ecrt_slave_config_create_sdo_request () and

1070 * ecrt_slave_config_create_voe_handler () are freed , so pointers to them

1071 * become invalid.

1072 *

1073 * \apiusage{master_op ,blocking}

1074 *

1075 * This method should not be called in realtime context.

1076 * \return 0 on success , otherwise negative error code.

1077 * \retval 0 Success.

1078 * \retval -EINVAL Master has not been activated before.

1079 */

1080 EC_PUBLIC_API int ecrt_master_deactivate(

1081 ec_master_t *master /**< EtherCAT master. */

1082 );

1083

1084 /** Set interval between calls to ecrt_master_send ().

1085 *

1086 * This information helps the master to decide , how much data can be appended

1087 * to a frame by the master state machine. When the master is configured with

1088 * --enable -hrtimers , this is used to calculate the scheduling of the master

1089 * thread.

1090 *

1091 * \apiusage{master_idle ,blocking}

1092 *
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1093 * \retval 0 on success.

1094 * \retval <0 Error code.

1095 */

1096 EC_PUBLIC_API int ecrt_master_set_send_interval(

1097 ec_master_t *master , /**< EtherCAT master. */

1098 size_t send_interval /**< Send interval in us */

1099 );

1100

1101 /** Sends all datagrams in the queue.

1102 *

1103 * This method takes all datagrams , that have been queued for transmission ,

1104 * puts them into frames , and passes them to the Ethernet device for sending.

1105 *

1106 * Has to be called cyclically by the application after ecrt_master_activate ()

1107 * has returned.

1108 *

1109 * \apiusage{master_op ,rt_safe}

1110 *

1111 * \return Zero on success , otherwise negative error code.

1112 */

1113 EC_PUBLIC_API int ecrt_master_send(

1114 ec_master_t *master /**< EtherCAT master. */

1115 );

1116

1117 /** Fetches received frames from the hardware and processes the datagrams.

1118 *

1119 * Queries the network device for received frames by calling the interrupt

1120 * service routine. Extracts received datagrams and dispatches the results to

1121 * the datagram objects in the queue. Received datagrams , and the ones that

1122 * timed out , will be marked , and dequeued.

1123 *

1124 * Has to be called cyclically by the realtime application after

1125 * ecrt_master_activate () has returned.

1126 *

1127 * \apiusage{master_op ,rt_safe}

1128 *

1129 * \return Zero on success , otherwise negative error code.

1130 */

1131 EC_PUBLIC_API int ecrt_master_receive(

1132 ec_master_t *master /**< EtherCAT master. */

1133 );

1134

1135 #ifdef __KERNEL__

1136 /** Sends non -application datagrams.

1137 *

1138 * This method has to be called in the send callback function passed via

1139 * ecrt_master_callbacks () to allow the sending of non -application datagrams.

1140 *

1141 * \apiusage{master_op ,rt_safe}

1142 *

1143 * \return Zero on success , otherwise negative error code.

1144 * \retval -EAGAIN Lock could not be acquired , try again later.

1145 */

1146 int ecrt_master_send_ext(

1147 ec_master_t *master /**< EtherCAT master. */

1148 );

1149 #endif

1150

1151 /** Reads the current master state.

1152 *

1153 * Stores the master state information in the given \a state structure.

1154 *

1155 * This method returns a global state. For the link -specific states in a

1156 * redundant network topology , use the ecrt_master_link_state () method.

1157 *

1158 * \apiusage{master_any ,rt_safe}
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1159 *

1160 * \return Zero on success , otherwise negative error code.

1161 */

1162 EC_PUBLIC_API int ecrt_master_state(

1163 const ec_master_t *master , /**< EtherCAT master. */

1164 ec_master_state_t *state /**< Structure to store the information. */

1165 );

1166

1167 /** Reads the current state of a redundant link.

1168 *

1169 * Stores the link state information in the given \a state structure.

1170 *

1171 * \apiusage{master_any ,rt_safe}

1172 *

1173 * \return Zero on success , otherwise negative error code.

1174 */

1175 EC_PUBLIC_API int ecrt_master_link_state(

1176 const ec_master_t *master , /**< EtherCAT master. */

1177 unsigned int dev_idx , /**< Index of the device (0 = main device , 1 =

1178 first backup device , ...). */

1179 ec_master_link_state_t *state /**< Structure to store the information.

1180 */

1181 );

1182

1183 /** Sets the application time.

1184 *

1185 * The master has to know the application ’s time when operating slaves with

1186 * distributed clocks. The time is not incremented by the master itself , so

1187 * this method has to be called cyclically.

1188 *

1189 * \attention The time passed to this method is used to calculate the phase of

1190 * the slaves ’ SYNC0 /1 interrupts. It should be called constantly at the same

1191 * point of the realtime cycle. So it is recommended to call it at the start

1192 * of the calculations to avoid deviancies due to changing execution times.

1193 * Avoid calling this method before the realtime cycle is established.

1194 *

1195 * The time is used when setting the slaves ’ <tt >System Time Offset </tt> and

1196 * <tt>Cyclic Operation Start Time </tt> registers and when synchronizing the

1197 * DC reference clock to the application time via

1198 * ecrt_master_sync_reference_clock ().

1199 *

1200 * The time is defined as nanoseconds from 2000 -01 -01 00:00. Converting an

1201 * epoch time can be done with the EC_TIMEVAL2NANO () macro , but is not

1202 * necessary , since the absolute value is not of any interest.

1203 *

1204 * \apiusage{master_op ,rt_safe}

1205 *

1206 * \return Zero on success , otherwise negative error code.

1207 */

1208 EC_PUBLIC_API int ecrt_master_application_time(

1209 ec_master_t *master , /**< EtherCAT master. */

1210 uint64_t app_time /**< Application time. */

1211 );

1212

1213 /** Queues the DC reference clock drift compensation datagram for sending.

1214 *

1215 * The reference clock will by synchronized to the application time provided

1216 * by the last call off ecrt_master_application_time ().

1217 *

1218 * \apiusage{master_op ,rt_safe}

1219 *

1220 * \return Zero on success , otherwise negative error code.

1221 * \retval 0 Success.

1222 * \retval -ENXIO No reference clock found.

1223 */

1224 EC_PUBLIC_API int ecrt_master_sync_reference_clock(
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1225 ec_master_t *master /**< EtherCAT master. */

1226 );

1227

1228 /** Queues the DC reference clock drift compensation datagram for sending.

1229 *

1230 * The reference clock will by synchronized to the time passed in the

1231 * sync_time parameter.

1232 *

1233 * Has to be called by the application after ecrt_master_activate ()

1234 * has returned.

1235 *

1236 * \apiusage{master_op ,rt_safe}

1237 *

1238 * \return Zero on success , otherwise negative error code.

1239 * \retval 0 Success.

1240 * \retval -ENXIO No reference clock found.

1241 */

1242 EC_PUBLIC_API int ecrt_master_sync_reference_clock_to(

1243 ec_master_t *master , /**< EtherCAT master. */

1244 uint64_t sync_time /**< Sync reference clock to this time. */

1245 );

1246

1247 /** Queues the DC clock drift compensation datagram for sending.

1248 *

1249 * All slave clocks synchronized to the reference clock.

1250 *

1251 * Has to be called by the application after ecrt_master_activate ()

1252 * has returned.

1253 *

1254 * \apiusage{master_op ,rt_safe}

1255 *

1256 * \return 0 on success , otherwise negative error code.

1257 * \retval 0 Success.

1258 * \retval -ENXIO No reference clock found.

1259 */

1260 EC_PUBLIC_API int ecrt_master_sync_slave_clocks(

1261 ec_master_t *master /**< EtherCAT master. */

1262 );

1263

1264 /** Get the lower 32 bit of the reference clock system time.

1265 *

1266 * This method can be used to synchronize the master to the reference clock.

1267 *

1268 * The reference clock system time is queried via the

1269 * ecrt_master_sync_slave_clocks () method , that reads the system time of the

1270 * reference clock and writes it to the slave clocks (so be sure to call it

1271 * cyclically to get valid data).

1272 *

1273 * \attention The returned time is the system time of the reference clock

1274 * minus the transmission delay of the reference clock.

1275 *

1276 * Calling this method makes only sense in realtime context (after master

1277 * activation), when the ecrt_master_sync_slave_clocks () method is called

1278 * cyclically.

1279 *

1280 * \apiusage{master_op ,rt_safe}

1281 *

1282 * \retval 0 success , system time was written into \a time.

1283 * \retval -ENXIO No reference clock found.

1284 * \retval -EIO Slave synchronization datagram was not received.

1285 */

1286 EC_PUBLIC_API int ecrt_master_reference_clock_time(

1287 const ec_master_t *master , /**< EtherCAT master. */

1288 uint32_t *time /**< Pointer to store the queried system time. */

1289 );

1290
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1291 /** Queues the DC synchrony monitoring datagram for sending.

1292 *

1293 * The datagram broadcast -reads all "System time difference" registers (\a

1294 * 0x092c) to get an upper estimation of the DC synchrony. The result can be

1295 * checked with the ecrt_master_sync_monitor_process () method.

1296 *

1297 * \apiusage{master_op ,rt_safe}

1298 *

1299 * \return Zero on success , otherwise a negative error code.

1300 */

1301 EC_PUBLIC_API int ecrt_master_sync_monitor_queue(

1302 ec_master_t *master /**< EtherCAT master. */

1303 );

1304

1305 /** Processes the DC synchrony monitoring datagram.

1306 *

1307 * If the sync monitoring datagram was sent before with

1308 * ecrt_master_sync_monitor_queue (), the result can be queried with this

1309 * method.

1310 *

1311 * \apiusage{master_op ,rt_safe}

1312 *

1313 * \return Upper estimation of the maximum time difference in ns, -1 on error.

1314 * \retval (uint32_t)-1 Error.

1315 */

1316 EC_PUBLIC_API uint32_t ecrt_master_sync_monitor_process(

1317 const ec_master_t *master /**< EtherCAT master. */

1318 );

1319

1320 /** Retry configuring slaves.

1321 *

1322 * Via this method , the application can tell the master to bring all slaves to

1323 * OP state. In general , this is not necessary , because it is automatically

1324 * done by the master. But with special slaves , that can be reconfigured by

1325 * the vendor during runtime , it can be useful.

1326 *

1327 * Calling this method only makes sense in realtime context (after

1328 * activation), because slaves will not be configured before.

1329 *

1330 * \apiusage{master_op ,rt_safe}

1331 *

1332 * \return 0 on success , otherwise negative error code.

1333 */

1334 EC_PUBLIC_API int ecrt_master_reset(

1335 ec_master_t *master /**< EtherCAT master. */

1336 );

1337

1338 /* ****************************************************************************

1339 * Slave configuration methods

1340 *************************************************************************** */

1341

1342 /** Configure a sync manager.

1343 *

1344 * Sets the direction of a sync manager. This overrides the direction bits

1345 * from the default control register from SII.

1346 *

1347 * This method has to be called in non -realtime context before

1348 * ecrt_master_activate ().

1349 *

1350 * \apiusage{master_idle ,blocking}

1351 *

1352 * \return zero on success , else non -zero

1353 */

1354 EC_PUBLIC_API int ecrt_slave_config_sync_manager(

1355 ec_slave_config_t *sc , /**< Slave configuration. */

1356 uint8_t sync_index , /**< Sync manager index. Must be less
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1357 than #EC_MAX_SYNC_MANAGERS. */

1358 ec_direction_t direction , /**< Input/Output. */

1359 ec_watchdog_mode_t watchdog_mode /** Watchdog mode. */

1360 );

1361

1362 /** Configure a slave’s watchdog times.

1363 *

1364 * This method has to be called in non -realtime context before

1365 * ecrt_master_activate ().

1366 *

1367 * \apiusage{master_idle ,blocking}

1368 *

1369 * \return 0 on success , otherwise negative error code.

1370 */

1371 EC_PUBLIC_API int ecrt_slave_config_watchdog(

1372 ec_slave_config_t *sc , /**< Slave configuration. */

1373 uint16_t watchdog_divider , /**< Number of 40 ns intervals (register

1374 0x0400). Used as a base unit for all

1375 slave watchdogs ^. If set to zero , the

1376 value is not written , so the default is

1377 used. */

1378 uint16_t watchdog_intervals /**< Number of base intervals for sync

1379 manager watchdog (register 0x0420). If

1380 set to zero , the value is not written ,

1381 so the default is used. */

1382 );

1383

1384 /** Add a PDO to a sync manager ’s PDO assignment.

1385 *

1386 * This method has to be called in non -realtime context before

1387 * ecrt_master_activate ().

1388 *

1389 * \apiusage{master_idle ,blocking}

1390 *

1391 * \see ecrt_slave_config_pdos ()

1392 * \return zero on success , else non -zero

1393 */

1394 EC_PUBLIC_API int ecrt_slave_config_pdo_assign_add(

1395 ec_slave_config_t *sc , /**< Slave configuration. */

1396 uint8_t sync_index , /**< Sync manager index. Must be less

1397 than #EC_MAX_SYNC_MANAGERS. */

1398 uint16_t index /**< Index of the PDO to assign. */

1399 );

1400

1401 /** Clear a sync manager ’s PDO assignment.

1402 *

1403 * This can be called before assigning PDOs via

1404 * ecrt_slave_config_pdo_assign_add (), to clear the default assignment of a

1405 * sync manager.

1406 *

1407 * This method has to be called in non -realtime context before

1408 * ecrt_master_activate ().

1409 *

1410 * \apiusage{master_idle ,blocking}

1411 *

1412 * \see ecrt_slave_config_pdos ()

1413 * \return 0 on success , otherwise negative error code.

1414 */

1415 EC_PUBLIC_API int ecrt_slave_config_pdo_assign_clear(

1416 ec_slave_config_t *sc , /**< Slave configuration. */

1417 uint8_t sync_index /**< Sync manager index. Must be less

1418 than #EC_MAX_SYNC_MANAGERS. */

1419 );

1420

1421 /** Add a PDO entry to the given PDO’s mapping.

1422 *
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1423 * This method has to be called in non -realtime context before

1424 * ecrt_master_activate ().

1425 *

1426 * \apiusage{master_idle ,blocking}

1427 *

1428 * \see ecrt_slave_config_pdos ()

1429 * \return zero on success , else non -zero

1430 */

1431 EC_PUBLIC_API int ecrt_slave_config_pdo_mapping_add(

1432 ec_slave_config_t *sc , /**< Slave configuration. */

1433 uint16_t pdo_index , /**< Index of the PDO. */

1434 uint16_t entry_index , /**< Index of the PDO entry to add to the PDO’s

1435 mapping. */

1436 uint8_t entry_subindex , /**< Subindex of the PDO entry to add to the

1437 PDO’s mapping. */

1438 uint8_t entry_bit_length /**< Size of the PDO entry in bit. */

1439 );

1440

1441 /** Clear the mapping of a given PDO.

1442 *

1443 * This can be called before mapping PDO entries via

1444 * ecrt_slave_config_pdo_mapping_add (), to clear the default mapping.

1445 *

1446 * This method has to be called in non -realtime context before

1447 * ecrt_master_activate ().

1448 *

1449 * \apiusage{master_idle ,blocking}

1450 *

1451 * \see ecrt_slave_config_pdos ()

1452 * \return 0 on success , otherwise negative error code.

1453 */

1454 EC_PUBLIC_API int ecrt_slave_config_pdo_mapping_clear(

1455 ec_slave_config_t *sc , /**< Slave configuration. */

1456 uint16_t pdo_index /**< Index of the PDO. */

1457 );

1458

1459 /** Specify a complete PDO configuration.

1460 *

1461 * This function is a convenience wrapper for the functions

1462 * ecrt_slave_config_sync_manager (), ecrt_slave_config_pdo_assign_clear (),

1463 * ecrt_slave_config_pdo_assign_add (), ecrt_slave_config_pdo_mapping_clear ()

1464 * and ecrt_slave_config_pdo_mapping_add (), that are better suitable for

1465 * automatic code generation.

1466 *

1467 * The following example shows , how to specify a complete configuration ,

1468 * including the PDO mappings. With this information , the master is able to

1469 * reserve the complete process data , even if the slave is not present at

1470 * configuration time:

1471 *

1472 * \code

1473 * ec_pdo_entry_info_t el3162_channel1 [] = {

1474 * {0x3101 , 1, 8}, // status

1475 * {0x3101 , 2, 16} // value

1476 * };

1477 *

1478 * ec_pdo_entry_info_t el3162_channel2 [] = {

1479 * {0x3102 , 1, 8}, // status

1480 * {0x3102 , 2, 16} // value

1481 * };

1482 *

1483 * ec_pdo_info_t el3162_pdos [] = {

1484 * {0x1A00 , 2, el3162_channel1},

1485 * {0x1A01 , 2, el3162_channel2}

1486 * };

1487 *

1488 * ec_sync_info_t el3162_syncs [] = {
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1489 * {2, EC_DIR_OUTPUT},

1490 * {3, EC_DIR_INPUT , 2, el3162_pdos},

1491 * {0xff}

1492 * };

1493 *

1494 * if (ecrt_slave_config_pdos(sc_ana_in , EC_END , el3162_syncs)) {

1495 * // handle error

1496 * }

1497 * \endcode

1498 *

1499 * The next example shows , how to configure the PDO assignment only. The

1500 * entries for each assigned PDO are taken from the PDO’s default mapping.

1501 * Please note , that PDO entry registration will fail , if the PDO

1502 * configuration is left empty and the slave is offline.

1503 *

1504 * \code

1505 * ec_pdo_info_t pdos[] = {

1506 * {0 x1600}, // Channel 1

1507 * {0 x1601} // Channel 2

1508 * };

1509 *

1510 * ec_sync_info_t syncs[] = {

1511 * {3, EC_DIR_INPUT , 2, pdos},

1512 * };

1513 *

1514 * if (ecrt_slave_config_pdos(slave_config_ana_in , 1, syncs)) {

1515 * // handle error

1516 * }

1517 * \endcode

1518 *

1519 * Processing of \a syncs will stop , if

1520 * - the number of processed items reaches \a n_syncs , or

1521 * - the \a index member of an ec_sync_info_t item is 0xff. In this case ,

1522 * \a n_syncs should set to a number greater than the number of list items;

1523 * using EC_END is recommended.

1524 *

1525 * This method has to be called in non -realtime context before

1526 * ecrt_master_activate ().

1527 *

1528 * \apiusage{master_idle ,blocking}

1529 *

1530 * \return zero on success , else non -zero

1531 */

1532 EC_PUBLIC_API int ecrt_slave_config_pdos(

1533 ec_slave_config_t *sc , /**< Slave configuration. */

1534 unsigned int n_syncs , /**< Number of sync manager configurations in

1535 \a syncs. */

1536 const ec_sync_info_t syncs[] /**< Array of sync manager

1537 configurations. */

1538 );

1539

1540 /** Registers a PDO entry for process data exchange in a domain.

1541 *

1542 * Searches the assigned PDOs for the given PDO entry. An error is raised , if

1543 * the given entry is not mapped. Otherwise , the corresponding sync manager

1544 * and FMMU configurations are provided for slave configuration and the

1545 * respective sync manager ’s assigned PDOs are appended to the given domain ,

1546 * if not already done. The offset of the requested PDO entry’s data inside

1547 * the domain ’s process data is returned. Optionally , the PDO entry bit

1548 * position (0-7) can be retrieved via the \a bit_position output parameter.

1549 * This pointer may be \a NULL , in this case an error is raised if the PDO

1550 * entry does not byte -align.

1551 *

1552 * This method has to be called in non -realtime context before

1553 * ecrt_master_activate ().

1554 *

1.6.8, 45



3 Application Interface

1555 * \apiusage{master_idle ,blocking}

1556 *

1557 * \retval >=0 Success: Offset of the PDO entry’s process data.

1558 * \retval <0 Error code.

1559 */

1560 EC_PUBLIC_API int ecrt_slave_config_reg_pdo_entry(

1561 ec_slave_config_t *sc , /**< Slave configuration. */

1562 uint16_t entry_index , /**< Index of the PDO entry to register. */

1563 uint8_t entry_subindex , /**< Subindex of the PDO entry to register. */

1564 ec_domain_t *domain , /**< Domain. */

1565 unsigned int *bit_position /**< Optional address if bit addressing

1566 is desired */

1567 );

1568

1569 /** Registers a PDO entry using its position.

1570 *

1571 * Similar to ecrt_slave_config_reg_pdo_entry (), but not using PDO indices but

1572 * offsets in the PDO mapping , because PDO entry indices may not be unique

1573 * inside a slave’s PDO mapping. An error is raised , if

1574 * one of the given positions is out of range.

1575 *

1576 * This method has to be called in non -realtime context before

1577 * ecrt_master_activate ().

1578 *

1579 * \apiusage{master_idle ,blocking}

1580 *

1581 * \retval >=0 Success: Offset of the PDO entry’s process data.

1582 * \retval <0 Error code.

1583 */

1584 EC_PUBLIC_API int ecrt_slave_config_reg_pdo_entry_pos(

1585 ec_slave_config_t *sc , /**< Slave configuration. */

1586 uint8_t sync_index , /**< Sync manager index. */

1587 unsigned int pdo_pos , /**< Position of the PDO inside the SM. */

1588 unsigned int entry_pos , /**< Position of the entry inside the PDO. */

1589 ec_domain_t *domain , /**< Domain. */

1590 unsigned int *bit_position /**< Optional address if bit addressing

1591 is desired */

1592 );

1593

1594 /** Configure distributed clocks.

1595 *

1596 * Sets the AssignActivate word and the cycle and shift times for the sync

1597 * signals.

1598 *

1599 * The AssignActivate word is vendor -specific and can be taken from the XML

1600 * device description file (Device -> Dc -> AssignActivate). Set this to zero ,

1601 * if the slave shall be operated without distributed clocks (default).

1602 *

1603 * This method has to be called in non -realtime context before

1604 * ecrt_master_activate ().

1605 *

1606 * \apiusage{master_idle ,blocking}

1607 *

1608 * \attention The \a sync1_shift time is ignored.

1609 * \return 0 on success , otherwise negative error code.

1610 */

1611 EC_PUBLIC_API int ecrt_slave_config_dc(

1612 ec_slave_config_t *sc , /**< Slave configuration. */

1613 uint16_t assign_activate , /**< AssignActivate word. */

1614 uint32_t sync0_cycle , /**< SYNC0 cycle time [ns]. */

1615 int32_t sync0_shift , /**< SYNC0 shift time [ns]. */

1616 uint32_t sync1_cycle , /**< SYNC1 cycle time [ns]. */

1617 int32_t sync1_shift /**< SYNC1 shift time [ns]. */

1618 );

1619

1620 /** Add an SDO configuration.
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1621 *

1622 * An SDO configuration is stored in the slave configuration object and is

1623 * downloaded to the slave whenever the slave is being configured by the

1624 * master. This usually happens once on master activation , but can be repeated

1625 * subsequently , for example after the slave ’s power supply failed.

1626 *

1627 * \attention The SDOs for PDO assignment (\p 0x1C10 - \p 0x1C2F) and PDO

1628 * mapping (\p 0x1600 - \p 0x17FF and \p 0x1A00 - \p 0x1BFF) should not be

1629 * configured with this function , because they are part of the slave

1630 * configuration done by the master. Please use ecrt_slave_config_pdos () and

1631 * friends instead.

1632 *

1633 * This is the generic function for adding an SDO configuration. Please note

1634 * that the this function does not do any endianness correction. If

1635 * datatype -specific functions are needed (that automatically correct the

1636 * endianness), have a look at ecrt_slave_config_sdo8 (),

1637 * ecrt_slave_config_sdo16 () and ecrt_slave_config_sdo32 ().

1638 *

1639 * This method has to be called in non -realtime context before

1640 * ecrt_master_activate ().

1641 *

1642 * \apiusage{master_idle ,blocking}

1643 *

1644 * \retval 0 Success.

1645 * \retval <0 Error code.

1646 */

1647 EC_PUBLIC_API int ecrt_slave_config_sdo(

1648 ec_slave_config_t *sc , /**< Slave configuration. */

1649 uint16_t index , /**< Index of the SDO to configure. */

1650 uint8_t subindex , /**< Subindex of the SDO to configure. */

1651 const uint8_t *data , /**< Pointer to the data. */

1652 size_t size /**< Size of the \a data. */

1653 );

1654

1655 /** Add a configuration value for an 8-bit SDO.

1656 *

1657 * This method has to be called in non -realtime context before

1658 * ecrt_master_activate ().

1659 *

1660 * \see ecrt_slave_config_sdo ().

1661 *

1662 * \apiusage{master_idle ,blocking}

1663 *

1664 * \retval 0 Success.

1665 * \retval <0 Error code.

1666 */

1667 EC_PUBLIC_API int ecrt_slave_config_sdo8(

1668 ec_slave_config_t *sc , /**< Slave configuration */

1669 uint16_t sdo_index , /**< Index of the SDO to configure. */

1670 uint8_t sdo_subindex , /**< Subindex of the SDO to configure. */

1671 uint8_t value /**< Value to set. */

1672 );

1673

1674 /** Add a configuration value for a 16-bit SDO.

1675 *

1676 * This method has to be called in non -realtime context before

1677 * ecrt_master_activate ().

1678 *

1679 * \see ecrt_slave_config_sdo ().

1680 *

1681 * \apiusage{master_idle ,blocking}

1682 *

1683 * \retval 0 Success.

1684 * \retval <0 Error code.

1685 */

1686 EC_PUBLIC_API int ecrt_slave_config_sdo16(
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1687 ec_slave_config_t *sc , /**< Slave configuration */

1688 uint16_t sdo_index , /**< Index of the SDO to configure. */

1689 uint8_t sdo_subindex , /**< Subindex of the SDO to configure. */

1690 uint16_t value /**< Value to set. */

1691 );

1692

1693 /** Add a configuration value for a 32-bit SDO.

1694 *

1695 * This method has to be called in non -realtime context before

1696 * ecrt_master_activate ().

1697 *

1698 * \see ecrt_slave_config_sdo ().

1699 *

1700 * \apiusage{master_idle ,blocking}

1701 *

1702 * \retval 0 Success.

1703 * \retval <0 Error code.

1704 */

1705 EC_PUBLIC_API int ecrt_slave_config_sdo32(

1706 ec_slave_config_t *sc , /**< Slave configuration */

1707 uint16_t sdo_index , /**< Index of the SDO to configure. */

1708 uint8_t sdo_subindex , /**< Subindex of the SDO to configure. */

1709 uint32_t value /**< Value to set. */

1710 );

1711

1712 /** Add configuration data for a complete SDO.

1713 *

1714 * The SDO data are transferred via CompleteAccess. Data for the first

1715 * subindex (0) have to be included.

1716 *

1717 * This method has to be called in non -realtime context before

1718 * ecrt_master_activate ().

1719 *

1720 * \see ecrt_slave_config_sdo ().

1721 *

1722 * \apiusage{master_idle ,blocking}

1723 *

1724 * \retval 0 Success.

1725 * \retval <0 Error code.

1726 */

1727 EC_PUBLIC_API int ecrt_slave_config_complete_sdo(

1728 ec_slave_config_t *sc , /**< Slave configuration. */

1729 uint16_t index , /**< Index of the SDO to configure. */

1730 const uint8_t *data , /**< Pointer to the data. */

1731 size_t size /**< Size of the \a data. */

1732 );

1733

1734 /** Set the size of the CoE emergency ring buffer.

1735 *

1736 * The initial size is zero , so all messages will be dropped. This method can

1737 * be called even after master activation , but it will clear the ring buffer!

1738 *

1739 * This method has to be called in non -realtime context before

1740 * ecrt_master_activate ().

1741 *

1742 * \apiusage{master_idle ,blocking}

1743 *

1744 * \return 0 on success , or negative error code.

1745 */

1746 EC_PUBLIC_API int ecrt_slave_config_emerg_size(

1747 ec_slave_config_t *sc , /**< Slave configuration. */

1748 size_t elements /**< Number of records of the CoE emergency ring. */

1749 );

1750

1751 /** Read and remove one record from the CoE emergency ring buffer.

1752 *
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1753 * A record consists of 8 bytes:

1754 *

1755 * Byte 0-1: Error code (little endian)

1756 * Byte 2: Error register

1757 * Byte 3-7: Data

1758 *

1759 * Calling this method makes only sense in realtime context (after master

1760 * activation).

1761 *

1762 * \return 0 on success (record popped), or negative error code (i. e.

1763 * -ENOENT , if ring is empty).

1764 *

1765 * \apiusage{master_op ,any_context}

1766 */

1767 EC_PUBLIC_API int ecrt_slave_config_emerg_pop(

1768 ec_slave_config_t *sc , /**< Slave configuration. */

1769 uint8_t *target /**< Pointer to target memory (at least

1770 EC_COE_EMERGENCY_MSG_SIZE bytes). */

1771 );

1772

1773 /** Clears CoE emergency ring buffer and the overrun counter.

1774 *

1775 * Calling this method makes only sense in realtime context (after master

1776 * activation).

1777 *

1778 * \apiusage{master_op ,any_context}

1779 *

1780 * \return 0 on success , or negative error code.

1781 *

1782 */

1783 EC_PUBLIC_API int ecrt_slave_config_emerg_clear(

1784 ec_slave_config_t *sc /**< Slave configuration. */

1785 );

1786

1787 /** Read the number of CoE emergency overruns.

1788 *

1789 * The overrun counter will be incremented when a CoE emergency message could

1790 * not be stored in the ring buffer and had to be dropped. Call

1791 * ecrt_slave_config_emerg_clear () to reset the counter.

1792 *

1793 * Calling this method makes only sense in realtime context (after master

1794 * activation).

1795 *

1796 * \apiusage{master_op ,any_context}

1797 *

1798 * \return Number of overruns since last clear , or negative error code.

1799 *

1800 */

1801 EC_PUBLIC_API int ecrt_slave_config_emerg_overruns(

1802 const ec_slave_config_t *sc /**< Slave configuration. */

1803 );

1804

1805 /** Create an SDO request to exchange SDOs during realtime operation.

1806 *

1807 * The created SDO request object is freed automatically when the master is

1808 * released.

1809 *

1810 * This method has to be called in non -realtime context before

1811 * ecrt_master_activate ().

1812 *

1813 * \apiusage{master_idle ,blocking}

1814 *

1815 * \return New SDO request , or NULL on error.

1816 */

1817 EC_PUBLIC_API ec_sdo_request_t *ecrt_slave_config_create_sdo_request(

1818 ec_slave_config_t *sc , /**< Slave configuration. */
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1819 uint16_t index , /**< SDO index. */

1820 uint8_t subindex , /**< SDO subindex. */

1821 size_t size /**< Data size to reserve. */

1822 );

1823

1824 /** Create an SoE request to exchange SoE IDNs during realtime operation.

1825 *

1826 * The created SoE request object is freed automatically when the master is

1827 * released.

1828 *

1829 * This method has to be called in non -realtime context before

1830 * ecrt_master_activate ().

1831 *

1832 * \apiusage{master_idle ,blocking}

1833 *

1834 * \return New SoE request , or NULL on error.

1835 */

1836 EC_PUBLIC_API ec_soe_request_t *ecrt_slave_config_create_soe_request(

1837 ec_slave_config_t *sc , /**< Slave configuration. */

1838 uint8_t drive_no , /**< Drive number. */

1839 uint16_t idn , /**< Sercos ID-Number. */

1840 size_t size /**< Data size to reserve. */

1841 );

1842

1843 /** Create an VoE handler to exchange vendor -specific data during realtime

1844 * operation.

1845 *

1846 * The number of VoE handlers per slave configuration is not limited , but

1847 * usually it is enough to create one for sending and one for receiving , if

1848 * both can be done simultaneously.

1849 *

1850 * The created VoE handler object is freed automatically when the master is

1851 * released.

1852 *

1853 * This method has to be called in non -realtime context before

1854 * ecrt_master_activate ().

1855 *

1856 * \apiusage{master_idle ,blocking}

1857 *

1858 * \return New VoE handler , or NULL on error.

1859 */

1860 EC_PUBLIC_API ec_voe_handler_t *ecrt_slave_config_create_voe_handler(

1861 ec_slave_config_t *sc , /**< Slave configuration. */

1862 size_t size /**< Data size to reserve. */

1863 );

1864

1865 /** Create a register request to exchange EtherCAT register contents during

1866 * realtime operation.

1867 *

1868 * This interface should not be used to take over master functionality ,

1869 * instead it is intended for debugging and monitoring reasons.

1870 *

1871 * The created register request object is freed automatically when the master

1872 * is released.

1873 *

1874 * This method has to be called in non -realtime context before

1875 * ecrt_master_activate ().

1876 *

1877 * \apiusage{master_idle ,blocking}

1878 *

1879 * \return New register request , or NULL on error.

1880 */

1881 EC_PUBLIC_API ec_reg_request_t *ecrt_slave_config_create_reg_request(

1882 ec_slave_config_t *sc , /**< Slave configuration. */

1883 size_t size /**< Data size to reserve. */

1884 );
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1885

1886 /** Outputs the state of the slave configuration.

1887 *

1888 * Stores the state information in the given \a state structure. The state

1889 * information is updated by the master state machine , so it may take a few

1890 * cycles , until it changes.

1891 *

1892 * \attention If the state of process data exchange shall be monitored in

1893 * realtime , ecrt_domain_state () should be used.

1894 *

1895 * \apiusage{master_op ,rt_safe}

1896 *

1897 * This method is meant to be called in realtime context (after master

1898 * activation).

1899 *

1900 * \retval 0 Success.

1901 * \retval <0 Error code.

1902 */

1903 EC_PUBLIC_API int ecrt_slave_config_state(

1904 const ec_slave_config_t *sc, /**< Slave configuration */

1905 ec_slave_config_state_t *state /**< State object to write to. */

1906 );

1907

1908 /** Add an SoE IDN configuration.

1909 *

1910 * A configuration for a Sercos -over -EtherCAT IDN is stored in the slave

1911 * configuration object and is written to the slave whenever the slave is

1912 * being configured by the master. This usually happens once on master

1913 * activation , but can be repeated subsequently , for example after the slave’s

1914 * power supply failed.

1915 *

1916 * The \a idn parameter can be separated into several sections:

1917 * - Bit 15: Standard data (0) or Product data (1)

1918 * - Bit 14 - 12: Parameter set (0 - 7)

1919 * - Bit 11 - 0: Data block number (0 - 4095)

1920 *

1921 * Please note that the this function does not do any endianness correction.

1922 * Multi -byte data have to be passed in EtherCAT endianness (little -endian).

1923 *

1924 * This method has to be called in non -realtime context before

1925 * ecrt_master_activate ().

1926 *

1927 * \apiusage{master_idle ,blocking}

1928 *

1929 * \retval 0 Success.

1930 * \retval <0 Error code.

1931 */

1932 EC_PUBLIC_API int ecrt_slave_config_idn(

1933 ec_slave_config_t *sc , /**< Slave configuration. */

1934 uint8_t drive_no , /**< Drive number. */

1935 uint16_t idn , /**< SoE IDN. */

1936 ec_al_state_t state , /**< AL state in which to write the IDN (PREOP or

1937 SAFEOP). */

1938 const uint8_t *data , /**< Pointer to the data. */

1939 size_t size /**< Size of the \a data. */

1940 );

1941

1942 /** Adds a feature flag to a slave configuration.

1943 *

1944 * Feature flags are a generic way to configure slave -specific behavior.

1945 *

1946 * Multiple calls with the same slave configuration and key will overwrite the

1947 * configuration.

1948 *

1949 * The following flags may be available:

1950 * - AssignToPdi: Zero (default) keeps the slave information interface (SII)
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1951 * assigned to EtherCAT (except during transition to PREOP). Non -zero

1952 * assigns the SII to the slave controller side before going to PREOP and

1953 * leaves it there until a write command happens.

1954 * - WaitBeforeSAFEOPms: Number of milliseconds to wait before commanding the

1955 * transition from PREOP to SAFEOP. This can be used as a workaround for

1956 * slaves that need a little time to initialize.

1957 *

1958 * This method has to be called in non -realtime context before

1959 * ecrt_master_activate ().

1960 *

1961 * \apiusage{master_idle ,blocking}

1962 *

1963 * \retval 0 Success.

1964 * \retval <0 Error code.

1965 */

1966 EC_PUBLIC_API int ecrt_slave_config_flag(

1967 ec_slave_config_t *sc , /**< Slave configuration. */

1968 const char *key , /**< Key as null -terminated ASCII string. */

1969 int32_t value /**< Value to store. */

1970 );

1971

1972 /** Sets the link/MAC address for Ethernet -over -EtherCAT (EoE) operation.

1973 *

1974 * This method has to be called in non -realtime context before

1975 * ecrt_master_activate ().

1976 *

1977 * The MAC address is stored in the slave configuration object and will be

1978 * written to the slave during the configuration process.

1979 *

1980 * \apiusage{master_idle ,blocking}

1981 *

1982 * \retval 0 Success.

1983 * \retval <0 Error code.

1984 */

1985 EC_PUBLIC_API int ecrt_slave_config_eoe_mac_address(

1986 ec_slave_config_t *sc , /**< Slave configuration. */

1987 const unsigned char *mac_address /**< MAC address. */

1988 );

1989

1990 /** Sets the IP address for Ethernet -over -EtherCAT (EoE) operation.

1991 *

1992 * This method has to be called in non -realtime context before

1993 * ecrt_master_activate ().

1994 *

1995 * The IP address is stored in the slave configuration object and will be

1996 * written to the slave during the configuration process.

1997 *

1998 * The IP address is passed by-value as a ‘struct in_addr ‘. This structure

1999 * contains the 32-bit IPv4 address in network byte order (big endian).

2000 *

2001 * A string -represented IPv4 address can be converted to a ‘struct in_addr ‘

2002 * for example via the POSIX function ‘inet_pton ()‘ (see man 3 inet_pton):

2003 *

2004 * \code{.c}

2005 * #include <arpa/inet.h>

2006 * struct in_addr addr;

2007 * if (inet_aton ("192.168.0.1" , &addr) == 0) {

2008 * fprintf(stderr , "Failed to convert IP address .\n");

2009 * return -1;

2010 * }

2011 * if (ecrt_slave_config_eoe_ip_address(sc, addr)) {

2012 * fprintf(stderr , "Failed to set IP address .\n");

2013 * return -1;

2014 * }

2015 * \endcode

2016 *
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2017 *

2018 * \apiusage{master_idle ,blocking}

2019 *

2020 * \retval 0 Success.

2021 * \retval <0 Error code.

2022 */

2023 EC_PUBLIC_API int ecrt_slave_config_eoe_ip_address(

2024 ec_slave_config_t *sc , /**< Slave configuration. */

2025 struct in_addr ip_address /**< IPv4 address. */

2026 );

2027

2028 /** Sets the subnet mask for Ethernet -over -EtherCAT (EoE) operation.

2029 *

2030 * This method has to be called in non -realtime context before

2031 * ecrt_master_activate ().

2032 *

2033 * The subnet mask is stored in the slave configuration object and will be

2034 * written to the slave during the configuration process.

2035 *

2036 * The subnet mask is passed by-value as a ‘struct in_addr ‘. This structure

2037 * contains the 32-bit mask in network byte order (big endian).

2038 *

2039 * See ecrt_slave_config_eoe_ip_address () on how to convert string -coded masks

2040 * to ‘struct in_addr ‘.

2041 *

2042 * \apiusage{master_idle ,blocking}

2043 *

2044 * \retval 0 Success.

2045 * \retval <0 Error code.

2046 */

2047 EC_PUBLIC_API int ecrt_slave_config_eoe_subnet_mask(

2048 ec_slave_config_t *sc , /**< Slave configuration. */

2049 struct in_addr subnet_mask /**< IPv4 subnet mask. */

2050 );

2051

2052 /** Sets the gateway address for Ethernet -over -EtherCAT (EoE) operation.

2053 *

2054 * This method has to be called in non -realtime context before

2055 * ecrt_master_activate ().

2056 *

2057 * The gateway address is stored in the slave configuration object and will be

2058 * written to the slave during the configuration process.

2059 *

2060 * The address is passed by-value as a ‘struct in_addr ‘. This structure

2061 * contains the 32-bit IPv4 address in network byte order (big endian).

2062 *

2063 * See ecrt_slave_config_eoe_ip_address () on how to convert string -coded IPv4

2064 * addresses to ‘struct in_addr ‘.

2065 *

2066 * \apiusage{master_idle ,blocking}

2067 *

2068 * \retval 0 Success.

2069 * \retval <0 Error code.

2070 */

2071 EC_PUBLIC_API int ecrt_slave_config_eoe_default_gateway(

2072 ec_slave_config_t *sc , /**< Slave configuration. */

2073 struct in_addr gateway_address /**< Gateway ’s IPv4 address. */

2074 );

2075

2076 /** Sets the IPv4 address of the DNS server for Ethernet -over -EtherCAT (EoE)

2077 * operation.

2078 *

2079 * This method has to be called in non -realtime context before

2080 * ecrt_master_activate ().

2081 *

2082 * The DNS server address is stored in the slave configuration object and will
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2083 * be written to the slave during the configuration process.

2084 *

2085 * The address is passed by-value as a ‘struct in_addr ‘. This structure

2086 * contains the 32-bit IPv4 address in network byte order (big endian).

2087 *

2088 * See ecrt_slave_config_eoe_ip_address () on how to convert string -coded IPv4

2089 * addresses to ‘struct in_addr ‘.

2090 *

2091 * \apiusage{master_idle ,blocking}

2092 *

2093 * \retval 0 Success.

2094 * \retval <0 Error code.

2095 */

2096 EC_PUBLIC_API int ecrt_slave_config_eoe_dns_address(

2097 ec_slave_config_t *sc , /**< Slave configuration. */

2098 struct in_addr dns_address /**< IPv4 address of the DNS server. */

2099 );

2100

2101 /** Sets the host name for Ethernet -over -EtherCAT (EoE) operation.

2102 *

2103 * This method has to be called in non -realtime context before

2104 * ecrt_master_activate ().

2105 *

2106 * The host name is stored in the slave configuration object and will

2107 * be written to the slave during the configuration process.

2108 *

2109 * The maximum size of the host name is 32 bytes (including the zero

2110 * terminator).

2111 *

2112 * \apiusage{master_idle ,blocking}

2113 *

2114 * \retval 0 Success.

2115 * \retval <0 Error code.

2116 */

2117 EC_PUBLIC_API int ecrt_slave_config_eoe_hostname(

2118 ec_slave_config_t *sc , /**< Slave configuration. */

2119 const char *name /**< Zero -terminated host name. */

2120 );

2121

2122 /** Sets the application -layer state transition timeout in ms.

2123 *

2124 * Change the maximum allowed time for a slave to make an application -layer

2125 * state transition for the given state transition (for example from PREOP to

2126 * SAFEOP). The default values are defined in ETG .2000.

2127 *

2128 * A timeout value of zero ms will restore the default value.

2129 *

2130 * This method has to be called in non -realtime context before

2131 * ecrt_master_activate ().

2132 *

2133 * \apiusage{master_idle ,blocking}

2134 *

2135 * \retval 0 Success.

2136 * \retval <0 Error code.

2137 */

2138 EC_PUBLIC_API int ecrt_slave_config_state_timeout(

2139 ec_slave_config_t *sc , /**< Slave configuration. */

2140 ec_al_state_t from_state , /**< Initial state. */

2141 ec_al_state_t to_state , /**< Target state. */

2142 unsigned int timeout_ms /**< Timeout in [ms]. */

2143 );

2144

2145 /* ****************************************************************************

2146 * Domain methods

2147 *************************************************************************** */

2148
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2149 /** Registers a bunch of PDO entries for a domain.

2150 *

2151 * This method has to be called in non -realtime context before

2152 * ecrt_master_activate ().

2153 *

2154 * \see ecrt_slave_config_reg_pdo_entry ()

2155 *

2156 * \attention The registration array has to be terminated with an empty

2157 * structure , or one with the \a index field set to zero!

2158 *

2159 * \apiusage{master_idle ,blocking}

2160 *

2161 * \return 0 on success , else non -zero.

2162 */

2163 EC_PUBLIC_API int ecrt_domain_reg_pdo_entry_list(

2164 ec_domain_t *domain , /**< Domain. */

2165 const ec_pdo_entry_reg_t *pdo_entry_regs /**< Array of PDO

2166 registrations. */

2167 );

2168

2169 /** Returns the current size of the domain ’s process data.

2170 *

2171 * The domain size is calculated after master activation.

2172 *

2173 * \apiusage{master_op ,rt_safe}

2174 *

2175 * \return Size of the process data image , or a negative error code.

2176 */

2177 EC_PUBLIC_API size_t ecrt_domain_size(

2178 const ec_domain_t *domain /**< Domain. */

2179 );

2180

2181 #ifdef __KERNEL__

2182

2183 /** Provide external memory to store the domain ’s process data.

2184 *

2185 * Call this after all PDO entries have been registered and before activating

2186 * the master.

2187 *

2188 * The size of the allocated memory must be at least ecrt_domain_size (), after

2189 * all PDO entries have been registered.

2190 *

2191 * This method has to be called in non -realtime context before

2192 * ecrt_master_activate ().

2193 *

2194 * \apiusage{master_idle ,blocking}

2195 */

2196 void ecrt_domain_external_memory(

2197 ec_domain_t *domain , /**< Domain. */

2198 uint8_t *memory /**< Address of the memory to store the process

2199 data in. */

2200 );

2201

2202 #endif /* __KERNEL__ */

2203

2204 /** Returns the domain ’s process data.

2205 *

2206 * - In kernel context: If external memory was provided with

2207 * ecrt_domain_external_memory (), the returned pointer will contain the

2208 * address of that memory. Otherwise it will point to the internally allocated

2209 * memory. In the latter case , this method may not be called before

2210 * ecrt_master_activate ().

2211 *

2212 * - In userspace context: This method has to be called after

2213 * ecrt_master_activate () to get the mapped domain process data memory.

2214 *
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2215 * \apiusage{master_op ,rt_safe}

2216 *

2217 * \return Pointer to the process data memory.

2218 */

2219 EC_PUBLIC_API uint8_t *ecrt_domain_data(

2220 const ec_domain_t *domain /**< Domain. */

2221 );

2222

2223 /** Determines the states of the domain ’s datagrams.

2224 *

2225 * Evaluates the working counters of the received datagrams and outputs

2226 * statistics , if necessary. This must be called after ecrt_master_receive ()

2227 * is expected to receive the domain datagrams in order to make

2228 * ecrt_domain_state () return the result of the last process data exchange.

2229 *

2230 * \apiusage{master_op ,rt_safe}

2231 *

2232 * \return 0 on success , otherwise negative error code.

2233 */

2234 EC_PUBLIC_API int ecrt_domain_process(

2235 ec_domain_t *domain /**< Domain. */

2236 );

2237

2238 /** (Re -) queues all domain datagrams in the master ’s datagram queue.

2239 *

2240 * Call this function to mark the domain ’s datagrams for exchanging at the

2241 * next call of ecrt_master_send ().

2242 *

2243 * \apiusage{master_op ,rt_safe}

2244 *

2245 * \return 0 on success , otherwise negative error code.

2246 */

2247 EC_PUBLIC_API int ecrt_domain_queue(

2248 ec_domain_t *domain /**< Domain. */

2249 );

2250

2251 /** Reads the state of a domain.

2252 *

2253 * Stores the domain state in the given \a state structure.

2254 *

2255 * Using this method , the process data exchange can be monitored in realtime.

2256 *

2257 * \apiusage{master_op ,rt_safe}

2258 *

2259 * \return 0 on success , otherwise negative error code.

2260 */

2261 EC_PUBLIC_API int ecrt_domain_state(

2262 const ec_domain_t *domain , /**< Domain. */

2263 ec_domain_state_t *state /**< Pointer to a state object to store the

2264 information. */

2265 );

2266

2267 /* ****************************************************************************

2268 * SDO request methods.

2269 *************************************************************************** */

2270

2271 /** Set the SDO index and subindex.

2272 *

2273 * \attention If the SDO index and/or subindex is changed while

2274 * ecrt_sdo_request_state () returns EC_REQUEST_BUSY , this may lead to

2275 * unexpected results.

2276 *

2277 * This method is meant to be called in realtime context (after master

2278 * activation). To initialize the SDO request , the index and subindex can be

2279 * set via ecrt_slave_config_create_sdo_request ().

2280 *
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2281 * \apiusage{master_op ,rt_safe}

2282 *

2283 * \return 0 on success , otherwise negative error code.

2284 */

2285 EC_PUBLIC_API int ecrt_sdo_request_index(

2286 ec_sdo_request_t *req , /**< SDO request. */

2287 uint16_t index , /**< SDO index. */

2288 uint8_t subindex /**< SDO subindex. */

2289 );

2290

2291 /** Set the timeout for an SDO request.

2292 *

2293 * If the request cannot be processed in the specified time , if will be marked

2294 * as failed.

2295 *

2296 * The timeout is permanently stored in the request object and is valid until

2297 * the next call of this method.

2298 *

2299 * The timeout should be defined in non -realtime context , but can also be

2300 * changed afterwards.

2301 *

2302 * \apiusage{master_any ,rt_safe}

2303 *

2304 * \return 0 on success , otherwise negative error code.

2305 */

2306 EC_PUBLIC_API int ecrt_sdo_request_timeout(

2307 ec_sdo_request_t *req , /**< SDO request. */

2308 uint32_t timeout /**< Timeout in milliseconds. Zero means no

2309 timeout. */

2310 );

2311

2312 /** Access to the SDO request ’s data.

2313 *

2314 * This function returns a pointer to the request ’s internal SDO data memory.

2315 *

2316 * - After a read operation was successful , integer data can be evaluated

2317 * using the EC_READ_ *() macros as usual. Example:

2318 * \code

2319 * uint16_t value = EC_READ_U16(ecrt_sdo_request_data(sdo)));

2320 * \endcode

2321 * - If a write operation shall be triggered , the data have to be written to

2322 * the internal memory. Use the EC_WRITE_ *() macros , if you are writing

2323 * integer data. Be sure , that the data fit into the memory. The memory size

2324 * is a parameter of ecrt_slave_config_create_sdo_request ().

2325 * \code

2326 * EC_WRITE_U16(ecrt_sdo_request_data(sdo), 0xFFFF);

2327 * \endcode

2328 *

2329 * \attention The return value can be invalid during a read operation , because

2330 * the internal SDO data memory could be re-allocated if the read SDO data do

2331 * not fit inside.

2332 *

2333 * This method is meant to be called in realtime context (after master

2334 * activation), but can also be used to initialize data before.

2335 *

2336 * \apiusage{master_any ,rt_safe}

2337 *

2338 * \return Pointer to the internal SDO data memory.

2339 *

2340 */

2341 EC_PUBLIC_API uint8_t *ecrt_sdo_request_data(

2342 const ec_sdo_request_t *req /**< SDO request. */

2343 );

2344

2345 /** Returns the current SDO data size.

2346 *
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2347 * When the SDO request is created , the data size is set to the size of the

2348 * reserved memory. After a read operation the size is set to the size of the

2349 * read data. The size is not modified in any other situation.

2350 *

2351 * This method is meant to be called in realtime context (after master

2352 * activation).

2353 *

2354 * \apiusage{master_any ,rt_safe}

2355 *

2356 * \return SDO data size in bytes.

2357 *

2358 */

2359 EC_PUBLIC_API size_t ecrt_sdo_request_data_size(

2360 const ec_sdo_request_t *req /**< SDO request. */

2361 );

2362

2363 /** Get the current state of the SDO request.

2364 *

2365 * The user -space implementation fetches incoming data and stores the received

2366 * data size in the request object , so the request is not const.

2367 *

2368 * This method is meant to be called in realtime context (after master

2369 * activation).

2370 *

2371 * \apiusage{master_op ,rt_safe}

2372 *

2373 * \return Request state.

2374 *

2375 */

2376 EC_PUBLIC_API ec_request_state_t ecrt_sdo_request_state(

2377 #ifdef __KERNEL__

2378 const

2379 #endif

2380 ec_sdo_request_t *req /**< SDO request. */

2381 );

2382

2383 /** Schedule an SDO write operation.

2384 *

2385 * \attention This method may not be called while ecrt_sdo_request_state ()

2386 * returns EC_REQUEST_BUSY.

2387 *

2388 * This method is meant to be called in realtime context (after master

2389 * activation).

2390 *

2391 * \apiusage{master_op ,rt_safe}

2392 *

2393 * \return 0 on success , otherwise negative error code.

2394 * \retval -EINVAL Invalid input data , e.g. data size == 0.

2395 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_sdo_request ()

2396 * too small.

2397 */

2398 EC_PUBLIC_API int ecrt_sdo_request_write(

2399 ec_sdo_request_t *req /**< SDO request. */

2400 );

2401

2402 /** Schedule an SDO read operation.

2403 *

2404 * \attention This method may not be called while ecrt_sdo_request_state ()

2405 * returns EC_REQUEST_BUSY.

2406 *

2407 * \attention After calling this function , the return value of

2408 * ecrt_sdo_request_data () must be considered as invalid while

2409 * ecrt_sdo_request_state () returns EC_REQUEST_BUSY.

2410 *

2411 * This method is meant to be called in realtime context (after master

2412 * activation).
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2413 *

2414 * \apiusage{master_op ,rt_safe}

2415 *

2416 * \return 0 on success , otherwise negative error code.

2417 */

2418 EC_PUBLIC_API int ecrt_sdo_request_read(

2419 ec_sdo_request_t *req /**< SDO request. */

2420 );

2421

2422 /* ****************************************************************************

2423 * SoE request methods.

2424 *************************************************************************** */

2425

2426 /** Set the request ’s drive and Sercos ID numbers.

2427 *

2428 * \attention If the drive number and/or IDN is changed while

2429 * ecrt_soe_request_state () returns EC_REQUEST_BUSY , this may lead to

2430 * unexpected results.

2431 *

2432 * This method is meant to be called in realtime context (after master

2433 * activation). To initialize the SoE request , the drive_no and IDN can be

2434 * set via ecrt_slave_config_create_soe_request ().

2435 *

2436 * \apiusage{master_op ,rt_safe}

2437 *

2438 * \return 0 on success , otherwise negative error code.

2439 */

2440 EC_PUBLIC_API int ecrt_soe_request_idn(

2441 ec_soe_request_t *req , /**< IDN request. */

2442 uint8_t drive_no , /**< SDO index. */

2443 uint16_t idn /**< SoE IDN. */

2444 );

2445

2446 /** Set the timeout for an SoE request.

2447 *

2448 * If the request cannot be processed in the specified time , if will be marked

2449 * as failed.

2450 *

2451 * The timeout is permanently stored in the request object and is valid until

2452 * the next call of this method.

2453 *

2454 * The timeout should be defined in non -realtime context , but can also be

2455 * changed afterwards.

2456 *

2457 * \apiusage{master_any ,rt_safe}

2458 *

2459 * \return 0 on success , otherwise negative error code.

2460 */

2461 EC_PUBLIC_API int ecrt_soe_request_timeout(

2462 ec_soe_request_t *req , /**< SoE request. */

2463 uint32_t timeout /**< Timeout in milliseconds. Zero means no

2464 timeout. */

2465 );

2466

2467 /** Access to the SoE request ’s data.

2468 *

2469 * This function returns a pointer to the request ’s internal IDN data memory.

2470 *

2471 * - After a read operation was successful , integer data can be evaluated

2472 * using the EC_READ_ *() macros as usual. Example:

2473 * \code

2474 * uint16_t value = EC_READ_U16(ecrt_soe_request_data(idn_req)));

2475 * \endcode

2476 * - If a write operation shall be triggered , the data have to be written to

2477 * the internal memory. Use the EC_WRITE_ *() macros , if you are writing

2478 * integer data. Be sure , that the data fit into the memory. The memory size
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2479 * is a parameter of ecrt_slave_config_create_soe_request ().

2480 * \code

2481 * EC_WRITE_U16(ecrt_soe_request_data(idn_req), 0xFFFF);

2482 * \endcode

2483 *

2484 * \attention The return value can be invalidated during a read operation ,

2485 * because the internal IDN data memory could be re-allocated if the read IDN

2486 * data do not fit inside.

2487 *

2488 * This method is meant to be called in realtime context (after master

2489 * activation), but can also be used to initialize data before.

2490 *

2491 * \apiusage{master_any ,rt_safe}

2492 *

2493 * \return Pointer to the internal IDN data memory.

2494 *

2495 */

2496 EC_PUBLIC_API uint8_t *ecrt_soe_request_data(

2497 const ec_soe_request_t *req /**< SoE request. */

2498 );

2499

2500 /** Returns the current IDN data size.

2501 *

2502 * When the SoE request is created , the data size is set to the size of the

2503 * reserved memory. After a read operation the size is set to the size of the

2504 * read data. The size is not modified in any other situation.

2505 *

2506 * \apiusage{master_any ,rt_safe}

2507 *

2508 * \return IDN data size in bytes.

2509 */

2510 EC_PUBLIC_API size_t ecrt_soe_request_data_size(

2511 const ec_soe_request_t *req /**< SoE request. */

2512 );

2513

2514 /** Get the current state of the SoE request.

2515 *

2516 * \return Request state.

2517 *

2518 * This method is meant to be called in realtime context (after master

2519 * activation).

2520 *

2521 * In the user -space implementation , the method fetches the size of the

2522 * incoming data , so the request object is not const.

2523 *

2524 * \apiusage{master_op ,rt_safe}

2525 */

2526 EC_PUBLIC_API ec_request_state_t ecrt_soe_request_state(

2527 #ifdef __KERNEL__

2528 const

2529 #endif

2530 ec_soe_request_t *req /**< SoE request. */

2531 );

2532

2533 /** Schedule an SoE IDN write operation.

2534 *

2535 * \attention This method may not be called while ecrt_soe_request_state ()

2536 * returns EC_REQUEST_BUSY.

2537 *

2538 * This method is meant to be called in realtime context (after master

2539 * activation).

2540 *

2541 * \apiusage{master_op ,rt_safe}

2542 *

2543 * \return 0 on success , otherwise negative error code.

2544 * \retval -EINVAL Invalid input data , e.g. data size == 0.
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2545 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_soe_request ()

2546 * too small.

2547 */

2548 EC_PUBLIC_API int ecrt_soe_request_write(

2549 ec_soe_request_t *req /**< SoE request. */

2550 );

2551

2552 /** Schedule an SoE IDN read operation.

2553 *

2554 * \attention This method may not be called while ecrt_soe_request_state ()

2555 * returns EC_REQUEST_BUSY.

2556 *

2557 * \attention After calling this function , the return value of

2558 * ecrt_soe_request_data () must be considered as invalid while

2559 * ecrt_soe_request_state () returns EC_REQUEST_BUSY.

2560 *

2561 * This method is meant to be called in realtime context (after master

2562 * activation).

2563 *

2564 * \apiusage{master_op ,rt_safe}

2565 *

2566 * \return 0 on success , otherwise negative error code.

2567 */

2568 EC_PUBLIC_API int ecrt_soe_request_read(

2569 ec_soe_request_t *req /**< SoE request. */

2570 );

2571

2572 /* ****************************************************************************

2573 * VoE handler methods.

2574 *************************************************************************** */

2575

2576 /** Sets the VoE header for future send operations.

2577 *

2578 * A VoE message shall contain a 4-byte vendor ID, followed by a 2-byte vendor

2579 * type at as header. These numbers can be set with this function. The values

2580 * are valid and will be used for future send operations until the next call

2581 * of this method.

2582 *

2583 * This method is meant to be called in non -realtime context (before master

2584 * activation) to initialize the header data , but it is also safe to

2585 * change the header later on in realtime context.

2586 *

2587 * \apiusage{master_any ,rt_safe}

2588 *

2589 * \return 0 on success , otherwise negative error code.

2590 */

2591 EC_PUBLIC_API int ecrt_voe_handler_send_header(

2592 ec_voe_handler_t *voe , /**< VoE handler. */

2593 uint32_t vendor_id , /**< Vendor ID. */

2594 uint16_t vendor_type /**< Vendor -specific type. */

2595 );

2596

2597 /** Reads the header data of a received VoE message.

2598 *

2599 * This method can be used to get the received VoE header information after a

2600 * read operation has succeeded.

2601 *

2602 * The header information is stored at the memory given by the pointer

2603 * parameters.

2604 *

2605 * This method is meant to be called in realtime context (after master

2606 * activation).

2607 *

2608 * \apiusage{master_op ,rt_safe}

2609 *

2610 * \return 0 on success , otherwise negative error code.
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2611 */

2612 EC_PUBLIC_API int ecrt_voe_handler_received_header(

2613 const ec_voe_handler_t *voe , /**< VoE handler. */

2614 uint32_t *vendor_id , /**< Vendor ID. */

2615 uint16_t *vendor_type /**< Vendor -specific type. */

2616 );

2617

2618 /** Access to the VoE handler ’s data.

2619 *

2620 * This function returns a pointer to the VoE handler ’s internal memory , that

2621 * points to the actual VoE data right after the VoE header (see

2622 * ecrt_voe_handler_send_header ()).

2623 *

2624 * - After a read operation was successful , the memory contains the received

2625 * data. The size of the received data can be determined via

2626 * ecrt_voe_handler_data_size ().

2627 * - Before a write operation is triggered , the data have to be written to the

2628 * internal memory. Be sure , that the data fit into the memory. The reserved

2629 * memory size is a parameter of ecrt_slave_config_create_voe_handler ().

2630 *

2631 * \attention The returned pointer is not necessarily persistent: After a read

2632 * operation , the internal memory may have been reallocated. This can be

2633 * avoided by reserving enough memory via the \a size parameter of

2634 * ecrt_slave_config_create_voe_handler ().

2635 *

2636 * \apiusage{master_any ,rt_safe}

2637 *

2638 * \return Pointer to the internal memory.

2639 */

2640 EC_PUBLIC_API uint8_t *ecrt_voe_handler_data(

2641 const ec_voe_handler_t *voe /**< VoE handler. */

2642 );

2643

2644 /** Returns the current data size.

2645 *

2646 * The data size is the size of the VoE data without the header (see

2647 * ecrt_voe_handler_send_header ()).

2648 *

2649 * When the VoE handler is created , the data size is set to the size of the

2650 * reserved memory. At a write operation , the data size is set to the number

2651 * of bytes to write. After a read operation the size is set to the size of

2652 * the read data. The size is not modified in any other situation.

2653 *

2654 * \apiusage{master_any ,rt_safe}

2655 *

2656 * \return Data size in bytes.

2657 */

2658 EC_PUBLIC_API size_t ecrt_voe_handler_data_size(

2659 const ec_voe_handler_t *voe /**< VoE handler. */

2660 );

2661

2662 /** Start a VoE write operation.

2663 *

2664 * After this function has been called , the ecrt_voe_handler_execute () method

2665 * must be called in every realtime cycle as long as it returns

2666 * EC_REQUEST_BUSY. No other operation may be started while the handler is

2667 * busy.

2668 *

2669 * This method is meant to be called in realtime context (after master

2670 * activation).

2671 *

2672 * \apiusage{master_op ,rt_safe}

2673 *

2674 * \return 0 on success , otherwise negative error code.

2675 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_voe_handler

2676 * too small.
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2677 */

2678 EC_PUBLIC_API int ecrt_voe_handler_write(

2679 ec_voe_handler_t *voe , /**< VoE handler. */

2680 size_t size /**< Number of bytes to write (without the VoE header). */

2681 );

2682

2683 /** Start a VoE read operation.

2684 *

2685 * After this function has been called , the ecrt_voe_handler_execute () method

2686 * must be called in every realtime cycle as long as it returns

2687 * EC_REQUEST_BUSY. No other operation may be started while the handler is

2688 * busy.

2689 *

2690 * The state machine queries the slave’s send mailbox for new data to be send

2691 * to the master. If no data appear within the EC_VOE_RESPONSE_TIMEOUT

2692 * (defined in master/voe_handler.c), the operation fails.

2693 *

2694 * On success , the size of the read data can be determined via

2695 * ecrt_voe_handler_data_size (), while the VoE header of the received data

2696 * can be retrieved with ecrt_voe_handler_received_header ().

2697 *

2698 * This method is meant to be called in realtime context (after master

2699 * activation).

2700 *

2701 * \apiusage{master_op ,rt_safe}

2702 *

2703 * \return 0 on success , otherwise negative error code.

2704 */

2705 EC_PUBLIC_API int ecrt_voe_handler_read(

2706 ec_voe_handler_t *voe /**< VoE handler. */

2707 );

2708

2709 /** Start a VoE read operation without querying the sync manager status.

2710 *

2711 * After this function has been called , the ecrt_voe_handler_execute () method

2712 * must be called in every realtime cycle as long as it returns

2713 * EC_REQUEST_BUSY. No other operation may be started while the handler is

2714 * busy.

2715 *

2716 * The state machine queries the slave by sending an empty mailbox. The slave

2717 * fills its data to the master in this mailbox. If no data appear within the

2718 * EC_VOE_RESPONSE_TIMEOUT (defined in master/voe_handler.c), the operation

2719 * fails.

2720 *

2721 * On success , the size of the read data can be determined via

2722 * ecrt_voe_handler_data_size (), while the VoE header of the received data

2723 * can be retrieved with ecrt_voe_handler_received_header ().

2724 *

2725 * This method is meant to be called in realtime context (after master

2726 * activation).

2727 *

2728 * \apiusage{master_op ,rt_safe}

2729 *

2730 * \return 0 on success , otherwise negative error code.

2731 */

2732 EC_PUBLIC_API int ecrt_voe_handler_read_nosync(

2733 ec_voe_handler_t *voe /**< VoE handler. */

2734 );

2735

2736 /** Execute the handler.

2737 *

2738 * This method executes the VoE handler. It has to be called in every realtime

2739 * cycle as long as it returns EC_REQUEST_BUSY.

2740 *

2741 * \return Handler state.

2742 *
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2743 * This method is meant to be called in realtime context (after master

2744 * activation).

2745 *

2746 * \apiusage{master_op ,rt_safe}

2747 *

2748 */

2749 EC_PUBLIC_API ec_request_state_t ecrt_voe_handler_execute(

2750 ec_voe_handler_t *voe /**< VoE handler. */

2751 );

2752

2753 /* ****************************************************************************

2754 * Register request methods.

2755 *************************************************************************** */

2756

2757 /** Access to the register request ’s data.

2758 *

2759 * This function returns a pointer to the request ’s internal memory.

2760 *

2761 * - After a read operation was successful , integer data can be evaluated

2762 * using the EC_READ_ *() macros as usual. Example:

2763 * \code

2764 * uint16_t value = EC_READ_U16(ecrt_reg_request_data(reg_request)));

2765 * \endcode

2766 * - If a write operation shall be triggered , the data have to be written to

2767 * the internal memory. Use the EC_WRITE_ *() macros , if you are writing

2768 * integer data. Be sure , that the data fit into the memory. The memory size

2769 * is a parameter of ecrt_slave_config_create_reg_request ().

2770 * \code

2771 * EC_WRITE_U16(ecrt_reg_request_data(reg_request), 0xFFFF);

2772 * \endcode

2773 *

2774 * This method is meant to be called in realtime context (after master

2775 * activation), but can also be used to initialize data before.

2776 *

2777 * \apiusage{master_any ,rt_safe}

2778 *

2779 * \return Pointer to the internal memory.

2780 *

2781 */

2782 EC_PUBLIC_API uint8_t *ecrt_reg_request_data(

2783 const ec_reg_request_t *req /**< Register request. */

2784 );

2785

2786 /** Get the current state of the register request.

2787 *

2788 * This method is meant to be called in realtime context (after master

2789 * activation).

2790 *

2791 * \apiusage{master_op ,rt_safe}

2792 *

2793 * \return Request state.

2794 *

2795 */

2796 EC_PUBLIC_API ec_request_state_t ecrt_reg_request_state(

2797 const ec_reg_request_t *req /**< Register request. */

2798 );

2799

2800 /** Schedule an register write operation.

2801 *

2802 * \attention This method may not be called while ecrt_reg_request_state ()

2803 * returns EC_REQUEST_BUSY.

2804 *

2805 * \attention The \a size parameter is truncated to the size given at request

2806 * creation.

2807 *

2808 * This method is meant to be called in realtime context (after master
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2809 * activation).

2810 *

2811 * \apiusage{master_op ,rt_safe}

2812 *

2813 * \return 0 on success , otherwise negative error code.

2814 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_reg_request

2815 * too small.

2816 */

2817 EC_PUBLIC_API int ecrt_reg_request_write(

2818 ec_reg_request_t *req , /**< Register request. */

2819 uint16_t address , /**< Register address. */

2820 size_t size /**< Size to write. */

2821 );

2822

2823 /** Schedule a register read operation.

2824 *

2825 * \attention This method may not be called while ecrt_reg_request_state ()

2826 * returns EC_REQUEST_BUSY.

2827 *

2828 * \attention The \a size parameter is truncated to the size given at request

2829 * creation.

2830 *

2831 * This method is meant to be called in realtime context (after master

2832 * activation).

2833 *

2834 * \apiusage{master_op ,rt_safe}

2835 *

2836 * \return 0 on success , otherwise negative error code.

2837 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_reg_request

2838 * too small.

2839 */

2840 EC_PUBLIC_API int ecrt_reg_request_read(

2841 ec_reg_request_t *req , /**< Register request. */

2842 uint16_t address , /**< Register address. */

2843 size_t size /**< Size to write. */

2844 );

2845

2846 /* ****************************************************************************

2847 * Bitwise read/write macros

2848 *************************************************************************** */

2849

2850 /** Read a certain bit of an EtherCAT data byte.

2851 *

2852 * \param DATA EtherCAT data pointer

2853 * \param POS bit position

2854 */

2855 #define EC_READ_BIT(DATA , POS) ((*(( uint8_t *) (DATA)) >> (POS)) & 0x01)

2856

2857 /** Write a certain bit of an EtherCAT data byte.

2858 *

2859 * \param DATA EtherCAT data pointer

2860 * \param POS bit position

2861 * \param VAL new bit value

2862 */

2863 #define EC_WRITE_BIT(DATA , POS , VAL) \

2864 do { \

2865 if (VAL) *(( uint8_t *) (DATA)) |= (1 << (POS)); \

2866 else *(( uint8_t *) (DATA)) &= ~(1 << (POS)); \

2867 } while (0)

2868

2869 /* ****************************************************************************

2870 * Byte -swapping functions for user space

2871 *************************************************************************** */

2872

2873 #ifndef __KERNEL__

2874
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2875 #if __BYTE_ORDER == __LITTLE_ENDIAN

2876

2877 #define le16_to_cpu(x) x

2878 #define le32_to_cpu(x) x

2879 #define le64_to_cpu(x) x

2880

2881 #define cpu_to_le16(x) x

2882 #define cpu_to_le32(x) x

2883 #define cpu_to_le64(x) x

2884

2885 #elif __BYTE_ORDER == __BIG_ENDIAN

2886

2887 #define swap16(x) \

2888 (( uint16_t)( \

2889 ((( uint16_t)(x) & 0x00ffU) << 8) | \

2890 ((( uint16_t)(x) & 0xff00U) >> 8) ))

2891 #define swap32(x) \

2892 (( uint32_t)( \

2893 ((( uint32_t)(x) & 0x000000ffUL) << 24) | \

2894 ((( uint32_t)(x) & 0x0000ff00UL) << 8) | \

2895 ((( uint32_t)(x) & 0x00ff0000UL) >> 8) | \

2896 ((( uint32_t)(x) & 0xff000000UL) >> 24) ))

2897 #define swap64(x) \

2898 (( uint64_t)( \

2899 ((( uint64_t)(x) & 0x00000000000000ffULL) << 56) | \

2900 ((( uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \

2901 ((( uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \

2902 ((( uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \

2903 ((( uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \

2904 ((( uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \

2905 ((( uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \

2906 ((( uint64_t)(x) & 0xff00000000000000ULL) >> 56) ))

2907

2908 #define le16_to_cpu(x) swap16(x)

2909 #define le32_to_cpu(x) swap32(x)

2910 #define le64_to_cpu(x) swap64(x)

2911

2912 #define cpu_to_le16(x) swap16(x)

2913 #define cpu_to_le32(x) swap32(x)

2914 #define cpu_to_le64(x) swap64(x)

2915

2916 #endif

2917

2918 #define le16_to_cpup(x) le16_to_cpu (*(( uint16_t *)(x)))

2919 #define le32_to_cpup(x) le32_to_cpu (*(( uint32_t *)(x)))

2920 #define le64_to_cpup(x) le64_to_cpu (*(( uint64_t *)(x)))

2921

2922 #endif /* ifndef __KERNEL__ */

2923

2924 /* ****************************************************************************

2925 * Read macros

2926 *************************************************************************** */

2927

2928 /** Read an 8-bit unsigned value from EtherCAT data.

2929 *

2930 * \return EtherCAT data value

2931 */

2932 #define EC_READ_U8(DATA) \

2933 (( uint8_t) *(( uint8_t *) (DATA)))

2934

2935 /** Read an 8-bit signed value from EtherCAT data.

2936 *

2937 * \param DATA EtherCAT data pointer

2938 * \return EtherCAT data value

2939 */

2940 #define EC_READ_S8(DATA) \

66 1.6.8,



3.6 Application Interface Header

2941 (( int8_t) *(( uint8_t *) (DATA)))

2942

2943 /** Read a 16-bit unsigned value from EtherCAT data.

2944 *

2945 * \param DATA EtherCAT data pointer

2946 * \return EtherCAT data value

2947 */

2948 #define EC_READ_U16(DATA) \

2949 (( uint16_t) le16_to_cpup ((void *) (DATA)))

2950

2951 /** Read a 16-bit signed value from EtherCAT data.

2952 *

2953 * \param DATA EtherCAT data pointer

2954 * \return EtherCAT data value

2955 */

2956 #define EC_READ_S16(DATA) \

2957 (( int16_t) le16_to_cpup ((void *) (DATA)))

2958

2959 /** Read a 32-bit unsigned value from EtherCAT data.

2960 *

2961 * \param DATA EtherCAT data pointer

2962 * \return EtherCAT data value

2963 */

2964 #define EC_READ_U32(DATA) \

2965 (( uint32_t) le32_to_cpup ((void *) (DATA)))

2966

2967 /** Read a 32-bit signed value from EtherCAT data.

2968 *

2969 * \param DATA EtherCAT data pointer

2970 * \return EtherCAT data value

2971 */

2972 #define EC_READ_S32(DATA) \

2973 (( int32_t) le32_to_cpup ((void *) (DATA)))

2974

2975 /** Read a 64-bit unsigned value from EtherCAT data.

2976 *

2977 * \param DATA EtherCAT data pointer

2978 * \return EtherCAT data value

2979 */

2980 #define EC_READ_U64(DATA) \

2981 (( uint64_t) le64_to_cpup ((void *) (DATA)))

2982

2983 /** Read a 64-bit signed value from EtherCAT data.

2984 *

2985 * \param DATA EtherCAT data pointer

2986 * \return EtherCAT data value

2987 */

2988 #define EC_READ_S64(DATA) \

2989 (( int64_t) le64_to_cpup ((void *) (DATA)))

2990

2991 /* ****************************************************************************

2992 * Floating -point read functions and macros (userspace only)

2993 *************************************************************************** */

2994

2995 #ifndef __KERNEL__

2996

2997 /** Read a 32-bit floating -point value from EtherCAT data.

2998 *

2999 * \apiusage{master_any ,rt_safe}

3000 *

3001 * \param data EtherCAT data pointer

3002 * \return EtherCAT data value

3003 */

3004 EC_PUBLIC_API float ecrt_read_real(const void *data);

3005

3006 /** Read a 32-bit floating -point value from EtherCAT data.
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3007 *

3008 * \param DATA EtherCAT data pointer

3009 * \return EtherCAT data value

3010 */

3011 #define EC_READ_REAL(DATA) ecrt_read_real(DATA)

3012

3013 /** Read a 64-bit floating -point value from EtherCAT data.

3014 *

3015 * \apiusage{master_any ,rt_safe}

3016 *

3017 * \param data EtherCAT data pointer

3018 * \return EtherCAT data value

3019 */

3020 EC_PUBLIC_API double ecrt_read_lreal(const void *data);

3021

3022 /** Read a 64-bit floating -point value from EtherCAT data.

3023 *

3024 * \param DATA EtherCAT data pointer

3025 * \return EtherCAT data value

3026 */

3027 #define EC_READ_LREAL(DATA) ecrt_read_lreal(DATA)

3028

3029 #endif // ifndef __KERNEL__

3030

3031 /* ****************************************************************************

3032 * Write macros

3033 *************************************************************************** */

3034

3035 /** Write an 8-bit unsigned value to EtherCAT data.

3036 *

3037 * \param DATA EtherCAT data pointer

3038 * \param VAL new value

3039 */

3040 #define EC_WRITE_U8(DATA , VAL) \

3041 do { \

3042 *(( uint8_t *)(DATA)) = (( uint8_t) (VAL)); \

3043 } while (0)

3044

3045 /** Write an 8-bit signed value to EtherCAT data.

3046 *

3047 * \param DATA EtherCAT data pointer

3048 * \param VAL new value

3049 */

3050 #define EC_WRITE_S8(DATA , VAL) EC_WRITE_U8(DATA , VAL)

3051

3052 /** Write a 16-bit unsigned value to EtherCAT data.

3053 *

3054 * \param DATA EtherCAT data pointer

3055 * \param VAL new value

3056 */

3057 #define EC_WRITE_U16(DATA , VAL) \

3058 do { \

3059 *(( uint16_t *) (DATA)) = cpu_to_le16 (( uint16_t) (VAL)); \

3060 } while (0)

3061

3062 /** Write a 16-bit signed value to EtherCAT data.

3063 *

3064 * \param DATA EtherCAT data pointer

3065 * \param VAL new value

3066 */

3067 #define EC_WRITE_S16(DATA , VAL) EC_WRITE_U16(DATA , VAL)

3068

3069 /** Write a 32-bit unsigned value to EtherCAT data.

3070 *

3071 * \param DATA EtherCAT data pointer

3072 * \param VAL new value
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3073 */

3074 #define EC_WRITE_U32(DATA , VAL) \

3075 do { \

3076 *(( uint32_t *) (DATA)) = cpu_to_le32 (( uint32_t) (VAL)); \

3077 } while (0)

3078

3079 /** Write a 32-bit signed value to EtherCAT data.

3080 *

3081 * \param DATA EtherCAT data pointer

3082 * \param VAL new value

3083 */

3084 #define EC_WRITE_S32(DATA , VAL) EC_WRITE_U32(DATA , VAL)

3085

3086 /** Write a 64-bit unsigned value to EtherCAT data.

3087 *

3088 * \param DATA EtherCAT data pointer

3089 * \param VAL new value

3090 */

3091 #define EC_WRITE_U64(DATA , VAL) \

3092 do { \

3093 *(( uint64_t *) (DATA)) = cpu_to_le64 (( uint64_t) (VAL)); \

3094 } while (0)

3095

3096 /** Write a 64-bit signed value to EtherCAT data.

3097 *

3098 * \param DATA EtherCAT data pointer

3099 * \param VAL new value

3100 */

3101 #define EC_WRITE_S64(DATA , VAL) EC_WRITE_U64(DATA , VAL)

3102

3103 /* ****************************************************************************

3104 * Floating -point write functions and macros (userspace only)

3105 *************************************************************************** */

3106

3107 #ifndef __KERNEL__

3108

3109 /** Write a 32-bit floating -point value to EtherCAT data.

3110 *

3111 * \apiusage{master_any ,rt_safe}

3112 *

3113 * \param data EtherCAT data pointer

3114 * \param value new value

3115 */

3116 EC_PUBLIC_API void ecrt_write_real(void *data , float value);

3117

3118 /** Write a 32-bit floating -point value to EtherCAT data.

3119 *

3120 * \param DATA EtherCAT data pointer

3121 * \param VAL new value

3122 */

3123 #define EC_WRITE_REAL(DATA , VAL) ecrt_write_real(DATA , VAL)

3124

3125 /** Write a 64-bit floating -point value to EtherCAT data.

3126 *

3127 * \apiusage{master_any ,rt_safe}

3128 *

3129 * \param data EtherCAT data pointer

3130 * \param value new value

3131 */

3132 EC_PUBLIC_API void ecrt_write_lreal(void *data , double value);

3133

3134 /** Write a 64-bit floating -point value to EtherCAT data.

3135 *

3136 * \param DATA EtherCAT data pointer

3137 * \param VAL new value

3138 */
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3139 #define EC_WRITE_LREAL(DATA , VAL) ecrt_write_lreal(DATA , VAL)

3140

3141 #endif // ifndef __KERNEL__

3142

3143 /* ************************************************************************** */

3144

3145 #ifdef __cplusplus

3146 }

3147 #endif

3148

3149 /* ************************************************************************** */

3150

3151 /** @} */

3152

3153 #endif

3.7 Userspace Application Example

There are multiple examples of how to use the application interface included in the
master sources (under examples/ ). This section lists a very common application, the
usage of the master from the user-space. The example code reserves an EtherCAT
master, creates slave configurations and domains and goes into cyclic mode, where
the cyclic_task() function is called repeatedly. For more general information on how
to do real-time programming under Linux, please have a look at the code examples
in https://gitlab.com/etherlab.org/realtime.

Listing 3.2: Userspace application example example/user/main.c

1 /* ****************************************************************************

2 *

3 * Copyright (C) 2007 -2009 Florian Pose , Ingenieurgemeinschaft IgH

4 *

5 * This file is part of the IgH EtherCAT Master.

6 *

7 * The IgH EtherCAT Master is free software; you can redistribute it and/or

8 * modify it under the terms of the GNU General Public License version 2, as

9 * published by the Free Software Foundation.

10 *

11 * The IgH EtherCAT Master is distributed in the hope that it will be useful ,

12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

14 * Public License for more details.

15 *

16 * You should have received a copy of the GNU General Public License along

17 * with the IgH EtherCAT Master; if not , write to the Free Software

18 * Foundation , Inc., 51 Franklin St, Fifth Floor , Boston , MA 02110 -1301 USA

19 *

20 *************************************************************************** */

21

22 #include <errno.h>

23 #include <signal.h>

24 #include <stdio.h>

25 #include <string.h>

26 #include <sys/resource.h>

27 #include <sys/time.h>

28 #include <sys/types.h>

29 #include <unistd.h>

30 #include <time.h> /* clock_gettime () */
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31 #include <sys/mman.h> /* mlockall () */

32 #include <sched.h> /* sched_setscheduler () */

33

34 /* ************************************************************************** */

35

36 #include "ecrt.h"

37

38 /* ************************************************************************** */

39

40 /** Task period in ns. */

41 #define PERIOD_NS (1000000)

42

43 #define MAX_SAFE_STACK (8 * 1024) /* The maximum stack size which is

44 guranteed safe to access without

45 faulting */

46

47 /* ************************************************************************** */

48

49 /* Constants */

50 #define NSEC_PER_SEC (1000000000)

51 #define FREQUENCY (NSEC_PER_SEC / PERIOD_NS)

52

53 /* ************************************************************************** */

54

55 // EtherCAT

56 static ec_master_t *master = NULL;

57 static ec_master_state_t master_state = {};

58

59 static ec_domain_t *domain1 = NULL;

60 static ec_domain_state_t domain1_state = {};

61

62 static ec_slave_config_t *sc_ana_in = NULL;

63 static ec_slave_config_state_t sc_ana_in_state = {};

64

65 /* ************************************************************************** */

66

67 // process data

68 static uint8_t *domain1_pd = NULL;

69

70 #define BusCouplerPos 0, 0

71 #define DigOutSlavePos 0, 2

72 #define AnaInSlavePos 0, 3

73 #define AnaOutSlavePos 0, 4

74

75 #define Beckhoff_EK1100 0x00000002 , 0x044c2c52

76 #define Beckhoff_EL2004 0x00000002 , 0x07d43052

77 #define Beckhoff_EL2032 0x00000002 , 0x07f03052

78 #define Beckhoff_EL3152 0x00000002 , 0x0c503052

79 #define Beckhoff_EL3102 0x00000002 , 0x0c1e3052

80 #define Beckhoff_EL4102 0x00000002 , 0x10063052

81

82 // offsets for PDO entries

83 static unsigned int off_ana_in_status;

84 static unsigned int off_ana_in_value;

85 static unsigned int off_ana_out;

86 static unsigned int off_dig_out;

87

88 const static ec_pdo_entry_reg_t domain1_regs [] = {

89 {AnaInSlavePos , Beckhoff_EL3102 , 0x3101 , 1, &off_ana_in_status},

90 {AnaInSlavePos , Beckhoff_EL3102 , 0x3101 , 2, &off_ana_in_value},

91 {AnaOutSlavePos , Beckhoff_EL4102 , 0x3001 , 1, &off_ana_out},

92 {DigOutSlavePos , Beckhoff_EL2032 , 0x3001 , 1, &off_dig_out},

93 {}

94 };

95

96 static unsigned int counter = 0;
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97 static unsigned int blink = 0;

98

99 /* ************************************************************************** */

100

101 // Analog in --------------------------

102

103 static const ec_pdo_entry_info_t el3102_pdo_entries [] = {

104 {0x3101 , 1, 8}, // channel 1 status

105 {0x3101 , 2, 16}, // channel 1 value

106 {0x3102 , 1, 8}, // channel 2 status

107 {0x3102 , 2, 16}, // channel 2 value

108 {0x6401 , 1, 16}, // channel 1 value (alt.)

109 {0x6401 , 2, 16} // channel 2 value (alt.)

110 };

111

112 static const ec_pdo_info_t el3102_pdos [] = {

113 {0x1A00 , 2, el3102_pdo_entries},

114 {0x1A01 , 2, el3102_pdo_entries + 2}

115 };

116

117 static const ec_sync_info_t el3102_syncs [] = {

118 {2, EC_DIR_OUTPUT},

119 {3, EC_DIR_INPUT , 2, el3102_pdos},

120 {0xff}

121 };

122

123 // Analog out -------------------------

124

125 static const ec_pdo_entry_info_t el4102_pdo_entries [] = {

126 {0x3001 , 1, 16}, // channel 1 value

127 {0x3002 , 1, 16}, // channel 2 value

128 };

129

130 static const ec_pdo_info_t el4102_pdos [] = {

131 {0x1600 , 1, el4102_pdo_entries},

132 {0x1601 , 1, el4102_pdo_entries + 1}

133 };

134

135 static const ec_sync_info_t el4102_syncs [] = {

136 {2, EC_DIR_OUTPUT , 2, el4102_pdos},

137 {3, EC_DIR_INPUT},

138 {0xff}

139 };

140

141 // Digital out ------------------------

142

143 static const ec_pdo_entry_info_t el2004_channels [] = {

144 {0x3001 , 1, 1}, // Value 1

145 {0x3001 , 2, 1}, // Value 2

146 {0x3001 , 3, 1}, // Value 3

147 {0x3001 , 4, 1} // Value 4

148 };

149

150 static const ec_pdo_info_t el2004_pdos [] = {

151 {0x1600 , 1, &el2004_channels [0]},

152 {0x1601 , 1, &el2004_channels [1]},

153 {0x1602 , 1, &el2004_channels [2]},

154 {0x1603 , 1, &el2004_channels [3]}

155 };

156

157 static const ec_sync_info_t el2004_syncs [] = {

158 {0, EC_DIR_OUTPUT , 4, el2004_pdos},

159 {1, EC_DIR_INPUT},

160 {0xff}

161 };

162
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163 /* ************************************************************************** */

164

165 void check_domain1_state(void)

166 {

167 ec_domain_state_t ds;

168

169 ecrt_domain_state(domain1 , &ds);

170

171 if (ds.working_counter != domain1_state.working_counter) {

172 printf("Domain1: WC %u.\n", ds.working_counter);

173 }

174 if (ds.wc_state != domain1_state.wc_state) {

175 printf("Domain1: State %u.\n", ds.wc_state);

176 }

177

178 domain1_state = ds;

179 }

180

181 /* ************************************************************************** */

182

183 void check_master_state(void)

184 {

185 ec_master_state_t ms;

186

187 ecrt_master_state(master , &ms);

188

189 if (ms.slaves_responding != master_state.slaves_responding) {

190 printf("%u slave(s).\n", ms.slaves_responding);

191 }

192 if (ms.al_states != master_state.al_states) {

193 printf("AL states: 0x%02X.\n", ms.al_states);

194 }

195 if (ms.link_up != master_state.link_up) {

196 printf("Link is %s.\n", ms.link_up ? "up" : "down");

197 }

198

199 master_state = ms;

200 }

201

202 /* ************************************************************************** */

203

204 void check_slave_config_states(void)

205 {

206 ec_slave_config_state_t s;

207

208 ecrt_slave_config_state(sc_ana_in , &s);

209

210 if (s.al_state != sc_ana_in_state.al_state) {

211 printf("AnaIn: State 0x%02X.\n", s.al_state);

212 }

213 if (s.online != sc_ana_in_state.online) {

214 printf("AnaIn: %s.\n", s.online ? "online" : "offline");

215 }

216 if (s.operational != sc_ana_in_state.operational) {

217 printf("AnaIn: %soperational .\n", s.operational ? "" : "Not ");

218 }

219

220 sc_ana_in_state = s;

221 }

222

223 /* ************************************************************************** */

224

225 void cyclic_task ()

226 {

227 // receive process data

228 ecrt_master_receive(master);
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229 ecrt_domain_process(domain1);

230

231 // check process data state

232 check_domain1_state ();

233

234 if (counter) {

235 counter --;

236 } else { // do this at 1 Hz

237 counter = FREQUENCY;

238

239 // calculate new process data

240 blink = !blink;

241

242 // check for master state (optional)

243 check_master_state ();

244

245 // check for slave configuration state(s) (optional)

246 check_slave_config_states ();

247 }

248

249 #if 0

250 // read process data

251 printf("AnaIn: state %u value %u\n",

252 EC_READ_U8(domain1_pd + off_ana_in_status),

253 EC_READ_U16(domain1_pd + off_ana_in_value));

254 #endif

255

256 #if 1

257 // write process data

258 EC_WRITE_U8(domain1_pd + off_dig_out , blink ? 0x06 : 0x09);

259 #endif

260

261 // send process data

262 ecrt_domain_queue(domain1);

263 ecrt_master_send(master);

264 }

265

266 /* ************************************************************************** */

267

268 void stack_prefault(void)

269 {

270 unsigned char dummy[MAX_SAFE_STACK ];

271

272 memset(dummy , 0, MAX_SAFE_STACK);

273 }

274

275 /* ************************************************************************** */

276

277 int main(int argc , char **argv)

278 {

279 ec_slave_config_t *sc;

280 struct timespec wakeup_time;

281 int ret = 0;

282

283 master = ecrt_request_master (0);

284 if (! master) {

285 return -1;

286 }

287

288 domain1 = ecrt_master_create_domain(master);

289 if (! domain1) {

290 return -1;

291 }

292

293 if (!( sc_ana_in = ecrt_master_slave_config(

294 master , AnaInSlavePos , Beckhoff_EL3102))) {
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295 fprintf(stderr , "Failed to get slave configuration .\n");

296 return -1;

297 }

298

299 printf("Configuring PDOs ...\n");

300 if (ecrt_slave_config_pdos(sc_ana_in , EC_END , el3102_syncs)) {

301 fprintf(stderr , "Failed to configure PDOs.\n");

302 return -1;

303 }

304

305 if (!(sc = ecrt_master_slave_config(

306 master , AnaOutSlavePos , Beckhoff_EL4102))) {

307 fprintf(stderr , "Failed to get slave configuration .\n");

308 return -1;

309 }

310

311 if (ecrt_slave_config_pdos(sc, EC_END , el4102_syncs)) {

312 fprintf(stderr , "Failed to configure PDOs.\n");

313 return -1;

314 }

315

316 if (!(sc = ecrt_master_slave_config(

317 master , DigOutSlavePos , Beckhoff_EL2032))) {

318 fprintf(stderr , "Failed to get slave configuration .\n");

319 return -1;

320 }

321

322 if (ecrt_slave_config_pdos(sc, EC_END , el2004_syncs)) {

323 fprintf(stderr , "Failed to configure PDOs.\n");

324 return -1;

325 }

326

327 // Create configuration for bus coupler

328 sc = ecrt_master_slave_config(master , BusCouplerPos , Beckhoff_EK1100);

329 if (!sc) {

330 return -1;

331 }

332

333 if (ecrt_domain_reg_pdo_entry_list(domain1 , domain1_regs)) {

334 fprintf(stderr , "PDO entry registration failed !\n");

335 return -1;

336 }

337

338 printf("Activating master ...\n");

339 if (ecrt_master_activate(master)) {

340 return -1;

341 }

342

343 if (!( domain1_pd = ecrt_domain_data(domain1))) {

344 return -1;

345 }

346

347 /* Set priority */

348

349 struct sched_param param = {};

350 param.sched_priority = sched_get_priority_max(SCHED_FIFO);

351

352 printf("Using priority %i.\n", param.sched_priority);

353 if (sched_setscheduler (0, SCHED_FIFO , &param) == -1) {

354 perror("sched_setscheduler failed");

355 }

356

357 /* Lock memory */

358

359 if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {

360 fprintf(stderr , "Warning: Failed to lock memory: %s\n",
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361 strerror(errno));

362 }

363

364 stack_prefault ();

365

366 printf("Starting RT task with dt=%u ns.\n", PERIOD_NS);

367

368 clock_gettime(CLOCK_MONOTONIC , &wakeup_time);

369 wakeup_time.tv_sec += 1; /* start in future */

370 wakeup_time.tv_nsec = 0;

371

372 while (1) {

373 ret = clock_nanosleep(CLOCK_MONOTONIC , TIMER_ABSTIME ,

374 &wakeup_time , NULL);

375 if (ret) {

376 fprintf(stderr , "clock_nanosleep (): %s\n", strerror(ret));

377 break;

378 }

379

380 cyclic_task ();

381

382 wakeup_time.tv_nsec += PERIOD_NS;

383 while (wakeup_time.tv_nsec >= NSEC_PER_SEC) {

384 wakeup_time.tv_nsec -= NSEC_PER_SEC;

385 wakeup_time.tv_sec ++;

386 }

387 }

388

389 return ret;

390 }

391

392 /* ************************************************************************** */
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The EtherCAT protocol is based on the Ethernet standard, so a master relies on
standard Ethernet hardware to communicate with the bus.

The term device is used as a synonym for Ethernet network interface hardware.

Native Ethernet Device Drivers There are native device driver modules (see sec-
tion 4.2) that handle Ethernet hardware, which a master can use to connect to an
EtherCAT bus. They offer their Ethernet hardware to the master module via the
device interface (see section 4.6) and must be capable to prepare Ethernet devices
either for EtherCAT (realtime) operation or for “normal” operation using the kernel’s
network stack. The advantage of this approach is that the master can operate nearly
directly on the hardware, which allows a high performance. The disadvantage is, that
there has to be an EtherCAT-capable version of the original Ethernet driver.

Generic Ethernet Device Driver From master version 1.5, there is a generic Eth-
ernet device driver module (see section 4.3), that uses the lower layers of the network
stack to connect to the hardware. The advantage is, that arbitrary Ethernet hardware
can be used for EtherCAT operation, independently of the actual hardware driver (so
all Linux Ethernet drivers are supported without modifications). The disadvantage
is, that this approach does not support realtime extensions like RTAI, because the
Linux network stack is addressed. Moreover the performance is a little worse than
the native approach, because the Ethernet frame data have to traverse the network
stack.

4.1 Network Driver Basics

EtherCAT relies on Ethernet hardware and the master needs a physical Ethernet
device to communicate with the bus. Therefore it is necessary to understand how
Linux handles network devices and their drivers, respectively.

Tasks of a Network Driver Network device drivers usually handle the lower two
layers of the OSI model, that is the physical layer and the data-link layer. A network
device itself natively handles the physical layer issues: It represents the hardware to
connect to the medium and to send and receive data in the way, the physical layer
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protocol describes. The network device driver is responsible for getting data from the
kernel’s networking stack and forwarding it to the hardware, that does the physical
transmission. If data is received by the hardware respectively, the driver is notified
(usually by means of an interrupt) and has to read the data from the hardware memory
and forward it to the network stack. There are a few more tasks, a network device
driver has to handle, including queue control, statistics and device dependent features.

Driver Startup Usually, a driver searches for compatible devices on module loading.
For PCI drivers, this is done by scanning the PCI bus and checking for known device
IDs. If a device is found, data structures are allocated and the device is taken into
operation.

Interrupt Operation A network device usually provides a hardware interrupt that
is used to notify the driver of received frames and success of transmission, or errors,
respectively. The driver has to register an interrupt service routine (ISR), that is
executed each time, the hardware signals such an event. If the interrupt was thrown
by the own device (multiple devices can share one hardware interrupt), the reason
for the interrupt has to be determined by reading the device’s interrupt register. For
example, if the flag for received frames is set, frame data has to be copied from
hardware to kernel memory and passed to the network stack.

The net_device Structure The driver registers a net_device structure for each
device to communicate with the network stack and to create a “network interface”.
In case of an Ethernet driver, this interface appears as ethX, where X is a number
assigned by the kernel on registration. The net_device structure receives events
(either from userspace or from the network stack) via several callbacks, which have
to be set before registration. Not every callback is mandatory, but for reasonable
operation the ones below are needed in any case:

open() This function is called when network communication has to be started, for ex-
ample after a command ip link set ethX up from userspace. Frame reception
has to be enabled by the driver.

stop() The purpose of this callback is to “close” the device, i. e. make the hardware
stop receiving frames.

hard_start_xmit() This function is called for each frame that has to be transmitted.
The network stack passes the frame as a pointer to an sk_buff structure (“socket
buffer”, see below), which has to be freed after sending.

get_stats() This call has to return a pointer to the device’s net_device_stats struc-
ture, which permanently has to be filled with frame statistics. This means,
that every time a frame is received, sent, or an error happened, the appropriate
counter in this structure has to be increased.

The actual registration is done with the register_netdev() call, unregistering is done
with unregister_netdev().
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The netif Interface All other communication in the direction interface→ network
stack is done via the netif_*() calls. For example, on successful device opening,
the network stack has to be notified, that it can now pass frames to the interface.
This is done by calling netif_start_queue(). After this call, the hard_start_xmit()

callback can be called by the network stack. Furthermore a network driver usually
manages a frame transmission queue. If this gets filled up, the network stack has
to be told to stop passing further frames for a while. This happens with a call
to netif_stop_queue(). If some frames have been sent, and there is enough space
again to queue new frames, this can be notified with netif_wake_queue(). Another
important call is netif_receive_skb()1: It passes a frame to the network stack, that
was just received by the device. Frame data has to be included in a so-called “socket
buffer” for that (see below).

Socket Buffers Socket buffers are the basic data type for the whole network stack.
They serve as containers for network data and are able to quickly add data headers
and footers, or strip them off again. Therefore a socket buffer consists of an allocated
buffer and several pointers that mark beginning of the buffer (head), beginning of data
(data), end of data (tail) and end of buffer (end). In addition, a socket buffer holds
network header information and (in case of received data) a pointer to the net_device,
it was received on. There exist functions that create a socket buffer (dev_alloc_skb
()), add data either from front (skb_push()) or back (skb_put()), remove data from
front (skb_pull()) or back (skb_trim()), or delete the buffer (kfree_skb()). A socket
buffer is passed from layer to layer, and is freed by the layer that uses it the last time.
In case of sending, freeing has to be done by the network driver.

4.2 Native EtherCAT Device Drivers

There are a few requirements, that applies to Ethernet hardware when used with a
native Ethernet driver with EtherCAT functionality.

Dedicated Hardware For performance and realtime purposes, the EtherCAT master
needs direct and exclusive access to the Ethernet hardware. This implies that the
network device must not be connected to the kernel’s network stack as usual, because
the kernel would try to use it as an ordinary Ethernet device.

Interrupt-less Operation EtherCAT frames travel through the logical EtherCAT
ring and are then sent back to the master. Communication is highly deterministic: A
frame is sent and will be received again after a constant time, so there is no need to

1This function is part of the NAPI (“New API”), that replaces the kernel 2.4 technique for in-
terfacing to the network stack (with netif_rx()). NAPI is a technique to improve network
performance on Linux. Read more in http://www.cyberus.ca/~hadi/usenix-paper.tgz.
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notify the driver about frame reception: The master can instead query the hardware
for received frames, if it expects them to be already received.

Figure 4.1 shows two workflows for cyclic frame transmission and reception with and
without interrupts.

In the left workflow “Interrupt Operation”, the data from the last cycle is first pro-
cessed and a new frame is assembled with new datagrams, which is then sent. The
cyclic work is done for now. Later, when the frame is received again by the hardware,
an interrupt is triggered and the ISR is executed. The ISR will fetch the frame data
from the hardware and initiate the frame dissection: The datagrams will be processed,
so that the data is ready for processing in the next cycle.

In the right workflow “Interrupt-less Operation”, there is no hardware interrupt en-
abled. Instead, the hardware will be polled by the master by executing the ISR. If the
frame has been received in the meantime, it will be dissected. The situation is now
the same as at the beginning of the left workflow: The received data is processed and
a new frame is assembled and sent. There is nothing to do for the rest of the cycle.

The interrupt-less operation is desirable, because hardware interrupts are not con-
ducive in improving the driver’s realtime behaviour: Their indeterministic incidences
contribute to increasing the jitter. Besides, if a realtime extension (like RTAI) is used,
some additional effort would have to be made to prioritize interrupts.

Ethernet and EtherCAT Devices Another issue lies in the way Linux handles de-
vices of the same type. For example, a PCI driver scans the PCI bus for devices it can
handle. Then it registers itself as the responsible driver for all of the devices found.
The problem is, that an unmodified driver can not be told to ignore a device because
it will be used for EtherCAT later. There must be a way to handle multiple devices
of the same type, where one is reserved for EtherCAT, while the other is treated as
an ordinary Ethernet device.

For all this reasons, the author decided that the only acceptable solution is to modify
standard Ethernet drivers in a way that they keep their normal functionality, but gain
the ability to treat one or more of the devices as EtherCAT-capable.

Below are the advantages of this solution:

• No need to tell the standard drivers to ignore certain devices.

• One networking driver for EtherCAT and non-EtherCAT devices.

• No need to implement a network driver from scratch and running into issues,
the former developers already solved.

The chosen approach has the following disadvantages:

• The modified driver gets more complicated, as it must handle EtherCAT and
non-EtherCAT devices.

• Many additional case differentiations in the driver code.

• Changes and bug fixes on the standard drivers have to be ported to the Ether-
CAT-capable versions from time to time.
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4.3 Generic EtherCAT Device Driver

Since there are approaches to enable the complete Linux kernel for realtime operation
[12], it is possible to operate without native implementations of EtherCAT-capable
Ethernet device drivers and use the Linux network stack instead. Figure 2.1 shows
the “Generic Ethernet Driver Module”, that connects to local Ethernet devices via
the network stack. The kernel module is named ec_generic and can be loaded after
the master module like a native EtherCAT-capable Ethernet driver.

The generic device driver scans the network stack for interfaces, that have been reg-
istered by Ethernet device drivers. It offers all possible devices to the EtherCAT
master. If the master accepts a device, the generic driver creates a packet socket (see
man 7 packet) with socket_type set to SOCK_RAW, bound to that device. All functions
of the device interface (see section 4.6) will then operate on that socket.

Below are the advantages of this solution:

• Any Ethernet hardware, that is covered by a Linux Ethernet driver can be used
for EtherCAT.

• No modifications have to be made to the actual Ethernet drivers.

The generic approach has the following disadvantages:

• The performance is a little worse than the native approach, because the frame
data have to traverse the lower layers of the network stack.

• It is not possible to use in-kernel realtime extensions like RTAI with the generic
driver, because the network stack code uses dynamic memory allocations and
other things, that could cause the system to freeze in realtime context.

Device Activation In order to send and receive frames through a socket, the Eth-
ernet device linked to that socket has to be activated, otherwise all frames will be
rejected. Activation has to take place before the master module is loaded and can
happen in several ways:

• Ad-hoc, using the command ip link set dev ethX up (or the older ifconfig

ethX up),

• Configured, depending on the distribution, for example using ifcfg files (/etc
/sysconfig/network/ifcfg-ethX) in openSUSE and others. This is the better
choice, if the EtherCAT master shall start at system boot time. Since the
Ethernet device shall only be activated, but no IP address etc. shall be assigned,
it is enough to use STARTMODE=auto as configuration.
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4.4 Providing Ethernet Devices

After loading the master module, additional module(s) have to be loaded to offer
devices to the master(s) (see section 4.6). The master module knows the devices to
choose from the module parameters (see section 2.1). If the init script is used to start
the master, the drivers and devices to use can be specified in the sysconfig file (see
subsection 7.4.2).

Modules offering Ethernet devices can be

• native EtherCAT-capable network driver modules (see section 4.2) or

• the generic EtherCAT device driver module (see section 4.3).

4.5 Redundancy

Redundant bus operation means, that there is more than one Ethernet connection
from the master to the slaves. Process data exchange datagrams are sent out on
every master link, so that the exchange is still complete, even if the bus is disconnected
somewhere in between.

Prerequisite for fully redundant bus operation is, that every slave can be reached by
at least one master link. In this case a single connection failure (i. e. cable break) will
never lead to incomplete process data. Double-faults can not be handled with two
Ethernet devices.

Redundancy is configured with the --with-devices switch at configure time (see chap-
ter 9) and using the backup_devices parameter of the ec_master kernel module (see
section 2.1) or the appropriate variable MASTERx_BACKUP in the (sys-)config file (see
subsection 7.4.2).

Bus scanning is done after a topology change on any Ethernet link. The applica-
tion interface (see chapter 3) and the command-line tool (see section 7.1) both have
methods to query the status of the redundant operation.

4.6 EtherCAT Device Interface

An anticipation to the section about the master module (section 2.1) has to be made
in order to understand the way, a network device driver module can connect a device
to a specific EtherCAT master.

The master module provides a “device interface” for network device drivers. To use
this interface, a network device driver module must include the header devices/ecdev.h,
coming with the EtherCAT master code. This header offers a function interface for
EtherCAT devices. All functions of the device interface are named with the prefix
ecdev.
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The documentation of the device interface can be found in the header file or in the
appropriate module of the interface documentation (see section 9.3 for generation
instructions).

4.7 Patching Native Network Drivers

This section will describe, how to make a standard Ethernet driver EtherCAT-capable,
using the native approach (see section 4.2). Unfortunately, there is no standard pro-
cedure to enable an Ethernet driver for use with the EtherCAT master, but there are
a few common techniques.

1. A first simple rule is, that netif_*() calls must be avoided for all EtherCAT
devices. As mentioned before, EtherCAT devices have no connection to the
network stack, and therefore must not call its interface functions.

2. Another important thing is, that EtherCAT devices should be operated without
interrupts. So any calls of registering interrupt handlers and enabling interrupts
at hardware level must be avoided, too.

3. The master does not use a new socket buffer for each send operation: In-
stead there is a fix one allocated on master initialization. This socket buffer
is filled with an EtherCAT frame with every send operation and passed to the
hard_start_xmit() callback. For that it is necessary, that the socket buffer is
not be freed by the network driver as usual.

An Ethernet driver usually handles several Ethernet devices, each described by a
net_device structure with a priv_data field to attach driver-dependent data to the
structure. To distinguish between normal Ethernet devices and the ones used by
EtherCAT masters, the private data structure used by the driver could be extended
by a pointer, that points to an ec_device_t object returned by ecdev_offer() (see
section 4.6) if the device is used by a master and otherwise is zero.

The RealTek RTL-8139 Fast Ethernet driver is a “simple” Ethernet driver and can
be taken as an example to patch new drivers. The interesting sections can be found
by searching the string “ecdev” in the file devices/8139too-2.6.24-ethercat.c.
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Many parts of the EtherCAT master are implemented as finite state machines (FSMs).
Though this leads to a higher grade of complexity in some aspects, is opens many
new possibilities.

The below short code example exemplary shows how to read all slave states and
moreover illustrates the restrictions of “sequential” coding:

1 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

2 if (ec_master_simple_io(master , datagram)) return -1;

3 slave_states = EC_READ_U8(datagram ->data); // process datagram

The ec master simple io() function provides a simple interface for synchronously send-
ing a single datagram and receiving the result1. Internally, it queues the specified
datagram, invokes the ec master send datagrams() function to send a frame with the
queued datagram and then waits actively for its reception.

This sequential approach is very simple, reflecting in only three lines of code. The
disadvantage is, that the master is blocked for the time it waits for datagram reception.
There is no difficulty when only one instance is using the master, but if more instances
want to (synchronously2) use the master, it is inevitable to think about an alternative
to the sequential model.

Master access has to be sequentialized for more than one instance wanting to send
and receive datagrams synchronously. With the present approach, this would result in
having one phase of active waiting for each instance, which would be non-acceptable
especially in realtime circumstances, because of the huge time overhead.

A possible solution is, that all instances would be executed sequentially to queue
their datagrams, then give the control to the next instance instead of waiting for the
datagram reception. Finally, bus IO is done by a higher instance, which means that
all queued datagrams are sent and received. The next step is to execute all instances
again, which then process their received datagrams and issue new ones.

This approach results in all instances having to retain their state, when giving the
control back to the higher instance. It is quite obvious to use a finite state machine
model in this case. section 5.1 will introduce some of the theory used, while the

1For all communication issues have been meanwhile sourced out into state machines, the function
is deprecated and stopped existing. Nevertheless it is adequate for showing it’s own restrictions.

2At this time, synchronous master access will be adequate to show the advantages of an FSM. The
asynchronous approach will be discussed in section 6.1
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listings below show the basic approach by coding the example from above as a state
machine:

1 // state 1

2 ec_datagram_brd(datagram , 0x0130 , 2); // prepare datagram

3 ec_master_queue(master , datagram); // queue datagram

4 next_state = state_2;

5 // state processing finished

After all instances executed their current state and queued their datagrams, these are
sent and received. Then the respective next states are executed:

1 // state 2

2 if (datagram ->state != EC_DGRAM_STATE_RECEIVED) {

3 next_state = state_error;

4 return; // state processing finished

5 }

6 slave_states = EC_READ_U8(datagram ->data); // process datagram

7 // state processing finished.

See section 5.2 for an introduction to the state machine programming concept used
in the master code.

5.1 State Machine Theory

A finite state machine [9] is a model of behavior with inputs and outputs, where the
outputs not only depend on the inputs, but the history of inputs. The mathematical
definition of a finite state machine (or finite automaton) is a six-tuple (Σ,Γ, S, s0, δ, ω),
with

• the input alphabet Σ, with Σ 6= ∅, containing all input symbols,

• the output alphabet Γ, with Γ 6= ∅, containing all output symbols,

• the set of states S, with S 6= ∅,
• the set of initial states s0 with s0 ⊆ S, s0 6= ∅
• the transition function δ : S × Σ→ S × Γ

• the output function ω.

The state transition function δ is often specified by a state transition table, or by a
state transition diagram. The transition table offers a matrix view of the state machine
behavior (see Table 5.1). The matrix rows correspond to the states (S = {s0, s1, s2})
and the columns correspond to the input symbols (Γ = {a, b, ε}). The table contents
in a certain row i and column j then represent the next state (and possibly the output)
for the case, that a certain input symbol σj is read in the state si.
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Table 5.1: A typical state transition table

a b ε
s0 s1 s1 s2

s1 s2 s1 s0

s2 s0 s0 s0

The state diagram for the same example looks like the one in Figure 5.1. The states
are represented as circles or ellipses and the transitions are drawn as arrows between
them. Close to a transition arrow can be the condition that must be fulfilled to
allow the transition. The initial state is marked by a filled black circle with an arrow
pointing to the respective state.

s0 s1

s2

ε

ε

ε

a, b,

a

b

a, b

Figure 5.1: A typical state transition diagram

Deterministic and non-deterministic state machines A state machine can be de-
terministic, meaning that for one state and input, there is one (and only one) following
state. In this case, the state machine has exactly one starting state. Non-deterministic
state machines can have more than one transitions for a single state-input combina-
tion. There is a set of starting states in the latter case.
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Moore and Mealy machines There is a distinction between so-called Moore ma-
chines, and Mealy machines. Mathematically spoken, the distinction lies in the output
function ω: If it only depends on the current state (ω : S → Γ), the machine corre-
sponds to the “Moore Model”. Otherwise, if ω is a function of a state and the input
alphabet (ω : S × Σ → Γ) the state machine corresponds to the “Mealy model”.
Mealy machines are the more practical solution in most cases, because their design
allows machines with a minimum number of states. In practice, a mixture of both
models is often used.

Misunderstandings about state machines There is a phenomenon called “state
explosion”, that is often taken as a counter-argument against general use of state
machines in complex environments. It has to be mentioned, that this point is mis-
leading [10]. State explosions happen usually as a result of a bad state machine design:
Common mistakes are storing the present values of all inputs in a state, or not divid-
ing a complex state machine into simpler sub state machines. The EtherCAT master
uses several state machines, that are executed hierarchically and so serve as sub state
machines. These are also described below.

5.2 The Master’s State Model

This section will introduce the techniques used in the master to implement state
machines.

State Machine Programming There are certain ways to implement a state machine
in C code. An obvious way is to implement the different states and actions by one
big case differentiation:

1 enum {STATE_1 , STATE_2 , STATE_3 };

2 int state = STATE_1;

3

4 void state_machine_run(void *priv_data) {

5 switch (state) {

6 case STATE_1:

7 action_1 ();

8 state = STATE_2;

9 break;

10 case STATE_2:

11 action_2 ()

12 if (some_condition) state = STATE_1;

13 else state = STATE_3;

14 break;

15 case STATE_3:

16 action_3 ();
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17 state = STATE_1;

18 break;

19 }

20 }

For small state machines, this is an option. The disadvantage is, that with an increas-
ing number of states the code soon gets complex and an additional case differentiation
is executed each run. Besides, lots of indentation is wasted.

The method used in the master is to implement every state in an own function and
to store the current state function with a function pointer:

1 void (* state)(void *) = state1;

2

3 void state_machine_run(void *priv_data) {

4 state(priv_data);

5 }

6

7 void state1(void *priv_data) {

8 action_1 ();

9 state = state2;

10 }

11

12 void state2(void *priv_data) {

13 action_2 ();

14 if (some_condition) state = state1;

15 else state = state2;

16 }

17

18 void state3(void *priv_data) {

19 action_3 ();

20 state = state1;

21 }

In the master code, state pointers of all state machines3 are gathered in a single
object of the ec_fsm_master_t class. This is advantageous, because there is always
one instance of every state machine available and can be started on demand.

Mealy and Moore If a closer look is taken to the above listing, it can be seen that
the actions executed (the “outputs” of the state machine) only depend on the current
state. This accords to the “Moore” model introduced in section 5.1. As mentioned,
the “Mealy” model offers a higher flexibility, which can be seen in the listing below:

1 void state7(void *priv_data) {

3All except for the EoE state machine, because multiple EoE slaves have to be handled in parallel.
For this reason each EoE handler object has its own state pointer.
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2 if (some_condition) {

3 action_7a ();

4 state = state1;

5 }

6 else {

7 action_7b ();

8 state = state8;

9 }

10 }

3○ + 7○ The state function executes the actions depending on the state transition,
that is about to be done.

The most flexible alternative is to execute certain actions depending on the state,
followed by some actions dependent on the state transition:

1 void state9(void *priv_data) {

2 action_9 ();

3 if (some_condition) {

4 action_9a ();

5 state = state7;

6 }

7 else {

8 action_9b ();

9 state = state10;

10 }

11 }

This model is often used in the master. It combines the best aspects of both ap-
proaches.

Using Sub State Machines To avoid having too much states, certain functions of
the EtherCAT master state machine have been sourced out into sub state machines.
This helps to encapsulate the related workflows and moreover avoids the “state ex-
plosion” phenomenon described in section 5.1. If the master would instead use one
big state machine, the number of states would be a multiple of the actual number.
This would increase the level of complexity to a non-manageable grade.

Executing Sub State Machines If a state machine starts to execute a sub state
machine, it usually remains in one state until the sub state machine terminates. This
is usually done like in the listing below, which is taken out of the slave configuration
state machine code:

1 void ec_fsm_slaveconf_safeop(ec_fsm_t *fsm)

2 {

3 fsm ->change_state(fsm); // execute state change
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4 // sub state machine

5

6 if (fsm ->change_state == ec_fsm_error) {

7 fsm ->slave_state = ec_fsm_end;

8 return;

9 }

10

11 if (fsm ->change_state != ec_fsm_end) return;

12

13 // continue state processing

14 ...

3○ change_state is the state pointer of the state change state machine. The state
function, the pointer points on, is executed. . .

6○ . . . either until the state machine terminates with the error state . . .

11○ . . . or until the state machine terminates in the end state. Until then, the “higher”
state machine remains in the current state and executes the sub state machine
again in the next cycle.

State Machine Descriptions The below sections describe every state machine used
in the EtherCAT master. The textual descriptions of the state machines contain
references to the transitions in the corresponding state transition diagrams, that are
marked with an arrow followed by the name of the successive state. Transitions caused
by trivial error cases (i. e. no response from slave) are not described explicitly. These
transitions are drawn as dashed arrows in the diagrams.

5.3 The Master State Machine

The master state machine is executed in the context of the master thread. Figure 5.2
shows its transition diagram. Its purposes are:

Bus monitoring The bus topology is monitored. If it changes, the bus is (re-)scanned.

Slave configuration The application-layer states of the slaves are monitored. If a
slave is not in the state it supposed to be, the slave is (re-)configured.

Request handling Requests (either originating from the application or from external
sources) are handled. A request is a job that the master shall process asyn-
chronously, for example an SII access, SDO access, or similar.

5.4 The Slave Scan State Machine

The slave scan state machine, which can be seen in Figure 5.3, leads through the
process of reading desired slave information.

The scan process includes the following steps:
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start

broadcast

clear_addresses read_state

write_system_times

dc_measure_delays acknowledge

dc_read_offset

write_siisdo_request reg_request

sdo_dictionary

configure_slave

scan_slave

dc_write_offset

Figure 5.2: Transition diagram of the master state machine

92 1.6.8,



5.4 The Slave Scan State Machine

start

address

state

base

dc_cap DC not
supported

datalink

sii_size

sii_data

end

No category
data

preop

Not in
PREOP

sync

pdos

Figure 5.3: Transition diagram of the slave scan state machine
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Node Address The node address is set for the slave, so that it can be node-addressed
for all following operations.

AL State The initial application-layer state is read.

Base Information Base information (like the number of supported FMMUs) is read
from the lower physical memory.

Data Link Information about the physical ports is read.

SII Size The size of the SII contents is determined to allocate SII image memory.

SII Data The SII contents are read into the master’s image.

PREOP If the slave supports CoE, it is set to PREOP state using the State change
FSM (see section 5.6) to enable mailbox communication and read the PDO
configuration via CoE.

PDOs The PDOs are read via CoE (if supported) using the PDO Reading FSM (see
section 5.8). If this is successful, the PDO information from the SII (if any) is
overwritten.

5.5 The Slave Configuration State Machine

The slave configuration state machine, which can be seen in Figure 5.4, leads through
the process of configuring a slave and bringing it to a certain application-layer state.

INIT The state change FSM is used to bring the slave to the INIT state.

FMMU Clearing To avoid that the slave reacts on any process data, the FMMU
configuration are cleared. If the slave does not support FMMUs, this state is
skipped. If INIT is the requested state, the state machine is finished.

Mailbox Sync Manager Configuration If the slaves support mailbox communica-
tion, the mailbox sync managers are configured. Otherwise this state is skipped.

PREOP The state change FSM is used to bring the slave to PREOP state. If this is
the requested state, the state machine is finished.

SDO Configuration If there is a slave configuration attached (see section 3.1), and
there are any SDO configurations that are provided by the application, these
are sent to the slave.

PDO Configuration The PDO configuration state machine is executed to apply all
necessary PDO configurations.

PDO Sync Manager Configuration If any PDO sync managers exist, they are con-
figured.

FMMU Configuration If there are FMMUs configurations supplied by the applica-
tion (i. e. if the application registered PDO entries), they are applied.

SAFEOP The state change FSM is used to bring the slave to SAFEOP state. If this
is the requested state, the state machine is finished.

OP The state change FSM is used to bring the slave to OP state. If this is the
requested state, the state machine is finished.
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start

init

No FMMUs clear_fmmus

Config
detached

No SMs clear_sync

No DC
support

dc_clear_assign

end

INIT
requested

No mailboxes mbox_sync

dc_read_offset

dc_write_offset

boot_preop

PREOP
or BOOT
requested

No config
attached

No SDOs
configured sdo_conf

No PDO SMs pdo_sync

No config
attached

No IDNs
configured soe_conf_preop

No IP parameterseoe_ip_param

pdo_conf

No config
attached

No FMMUs
configuredfmmu

safeop

DC not
configured

dc_cycle

dc_start

dc_assign

SAFEOP
requested op

Figure 5.4: Transition diagram of the slave configuration state machine
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5.6 The State Change State Machine

The state change state machine, which can be seen in Figure 5.5, leads through the
process of changing a slave’s application-layer state. This implements the states and
transitions described in [3, sec. 6.4.1].

start

check

status

error

Response
timeout

Change
timeout

end

Success

code

Refuse

ack

check_ack

start_ack

Ack only

Ack only

Figure 5.5: Transition Diagram of the State Change State Machine

Start The new application-layer state is requested via the “AL Control Request”
register (see [3, sec. 5.3.1]).

Check for Response Some slave need some time to respond to an AL state change
command, and do not respond for some time. For this case, the command is
issued again, until it is acknowledged.

Check AL Status If the AL State change datagram was acknowledged, the “AL Con-
trol Response” register (see [3, sec. 5.3.2]) must be read out until the slave
changes the AL state.
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AL Status Code If the slave refused the state change command, the reason can be
read from the “AL Status Code” field in the “AL State Changed” registers
(see [3, sec. 5.3.3]).

Acknowledge State If the state change was not successful, the master has to ac-
knowledge the old state by writing to the “AL Control request” register again.

Check Acknowledge After sending the acknowledge command, it has to read out the
“AL Control Response” register again.

The “start ack” state is a shortcut in the state machine for the case, that the master
wants to acknowledge a spontaneous AL state change, that was not requested.

5.7 The SII State Machine

The SII state machine (shown in Figure 5.6) implements the process of reading or
writing SII data via the Slave Information Interface described in [2, sec. 6.4].

start_reading

read_check

error

read_fetch

end

start_writing

write_check

write_check2

Figure 5.6: Transition Diagram of the SII State Machine

This is how the reading part of the state machine works:

Start Reading The read request and the requested word address are written to the
SII attribute.

Check Read Command If the SII read request command has been acknowledged, a
timer is started. A datagram is issued, that reads out the SII attribute for state
and data.

Fetch Data If the read operation is still busy (the SII is usually implemented as an
E2PROM), the state is read again. Otherwise the data are copied from the
datagram.

The writing part works nearly similar:
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Start Writing A write request, the target address and the data word are written to
the SII attribute.

Check Write Command If the SII write request command has been acknowledged,
a timer is started. A datagram is issued, that reads out the SII attribute for the
state of the write operation.

Wait while Busy If the write operation is still busy (determined by a minimum wait
time and the state of the busy flag), the state machine remains in this state to
avoid that another write operation is issued too early.

5.8 The PDO State Machines

The PDO state machines are a set of state machines that read or write the PDO
assignment and the PDO mapping via the “CoE Communication Area” described in
[3, sec. 5.6.7.4]. For the object access, the CANopen over EtherCAT access primitives
are used (see section 6.2), so the slave must support the CoE mailbox protocol.

PDO Reading FSM This state machine (Figure 5.7) has the purpose to read the
complete PDO configuration of a slave. It reads the PDO assignment for each Sync
Manager and uses the PDO Entry Reading FSM (Figure 5.8) to read the mapping
for each assigned PDO.

start

First SM

pdo_count end No more PDOs

pdo

Next PDO

pdo_entries

Figure 5.7: Transition Diagram of the PDO Reading State Machine

Basically it reads the every Sync manager’s PDO assignment SDO’s (0x1C1x) number
of elements to determine the number of assigned PDOs for this sync manager and
then reads out the subindices of the SDO to get the assigned PDO’s indices. When
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a PDO index is read, the PDO Entry Reading FSM is executed to read the PDO’s
mapped PDO entries.

PDO Entry Reading FSM This state machine (Figure 5.8) reads the PDO mapping
(the PDO entries) of a PDO. It reads the respective mapping SDO (0x1600 – 0x17ff,
or 0x1a00 – 0x1bff) for the given PDO by reading first the subindex zero (number of
elements) to determine the number of mapped PDO entries. After that, each subindex
is read to get the mapped PDO entry index, subindex and bit size.

start

count

pdo_entry

Next entry

end

No more entries

Figure 5.8: Transition Diagram of the PDO Entry Reading State Machine
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start

First SM

end

No config

No more SMs

No PDOs

First PDO

Assign ok

zero_pdo_count

read_mapping

Unknown

mapping

Next PDO

No PDOs

First PDO

assign_pdo

Next PDO

set_pdo_count

No more PDOs

Figure 5.9: Transition Diagram of the PDO Configuration State Machine
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start

zero_entry_count

end

No Entries

Add first entry

map_entry

Next entry

set_entry_count

No more Entries

Figure 5.10: Transition Diagram of the PDO Entry Configuration State Machine
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6 Mailbox Protocol Implementations

The EtherCAT master implements the CANopen over EtherCAT (CoE), Ethernet
over EtherCAT (EoE), File-access over EtherCAT (FoE), Vendor-specific over Ether-
CAT (VoE) and Servo Profile over EtherCAT (SoE) mailbox protocols. See the below
sections for details.

6.1 Ethernet over EtherCAT (EoE)

The EtherCAT master implements the Ethernet over EtherCAT mailbox protocol [3,
sec. 5.7] to enable the tunneling of Ethernet frames to special slaves, that can either
have physical Ethernet ports to forward the frames to, or have an own IP stack to
receive the frames.

Virtual Network Interfaces The master creates a virtual EoE network interface for
every EoE-capable slave. These interfaces are called either

eoeXsY for a slave without an alias address (see subsection 7.1.2), where X is the
master index and Y is the slave’s ring position, or

eoeXaY for a slave with a non-zero alias address, where X is the master index and
Y is the decimal alias address.

For some hints on how to configure these virtual interfaces, see subsection 6.1.1.

Frames sent to these interfaces are forwarded to the associated slaves by the master.
Frames, that are received by the slaves, are fetched by the master and forwarded to
the virtual interfaces.

This bears the following advantages:

• Flexibility: The user can decide, how the EoE-capable slaves are interconnected
with the rest of the world.

• Standard tools can be used to monitor the EoE activity and to configure the
EoE interfaces.

• The Linux kernel’s layer-2-bridging implementation (according to the IEEE
802.1D MAC Bridging standard) can be used natively to bridge Ethernet traffic
between EoE-capable slaves.

• The Linux kernel’s network stack can be used to route packets between EoE-
capable slaves and to track security issues, just like having physical network
interfaces.
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EoE Handlers The virtual EoE interfaces and the related functionality is encap-
sulated in the ec_eoe_t class. An object of this class is called “EoE handler”. For
example the master does not create the network interfaces directly: This is done inside
the constructor of an EoE handler. An EoE handler additionally contains a frame
queue. Each time, the kernel passes a new socket buffer for sending via the interface’s
hard_start_xmit() callback, the socket buffer is queued for transmission by the EoE
state machine (see below). If the queue gets filled up, the passing of new socket buffers
is suspended with a call to netif_stop_queue().

Creation of EoE Handlers During bus scanning (see section 5.4), the master deter-
mines the supported mailbox protocols for each slave. This is done by examining the
“Supported Mailbox Protocols” mask field at word address 0x001C of the SII. If bit
1 is set, the slave supports the EoE protocol. In this case, an EoE handler is created
for that slave.

EoE State Machine Every EoE handler owns an EoE state machine, that is used
to send frames to the corresponding slave and receive frames from the it via the EoE
communication primitives. This state machine is showed in Figure 6.1.

RX START The beginning state of the EoE state machine. A mailbox check data-
gram is sent, to query the slave’s mailbox for new frames. → RX CHECK

RX CHECK The mailbox check datagram is received. If the slave’s mailbox did not
contain data, a transmit cycle is started. → TX START

If there are new data in the mailbox, a datagram is sent to fetch the new data.
→ RX FETCH

RX FETCH The fetch datagram is received. If the mailbox data do not contain
a “EoE Fragment request” command, the data are dropped and a transmit
sequence is started. → TX START

If the received Ethernet frame fragment is the first fragment, a new socket buffer
is allocated. In either case, the data are copied into the correct position of the
socket buffer.

If the fragment is the last fragment, the socket buffer is forwarded to the network
stack and a transmit sequence is started. → TX START

Otherwise, a new receive sequence is started to fetch the next fragment. → RX -
START

TX START The beginning state of a transmit sequence. It is checked, if the trans-
mission queue contains a frame to send. If not, a receive sequence is started.
→ RX START

If there is a frame to send, it is dequeued. If the queue was inactive before
(because it was full), the queue is woken up with a call to netif wake queue().
The first fragment of the frame is sent. → TX SENT
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RX_START RX_CHECK RX_FETCH

TX_START TX_SENT

Figure 6.1: Transition Diagram of the EoE State Machine
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TX SENT It is checked, if the first fragment was sent successfully. If the current
frame consists of further fragments, the next one is sent. → TX SENT

If the last fragment was sent, a new receive sequence is started. → RX START

EoE Processing To execute the EoE state machine of every active EoE handler,
there must be a cyclic process. The easiest solution would be to execute the EoE
state machines synchronously with the master state machine (see section 5.3). This
approach has the following disadvantage:

Only one EoE fragment could be sent or received every few cycles. This causes the
data rate to be very low, because the EoE state machines are not executed in the
time between the application cycles. Moreover, the data rate would be dependent on
the period of the application task.

To overcome this problem, an own cyclic process is needed to asynchronously execute
the EoE state machines. For that, the master owns a kernel timer, that is executed
each timer interrupt. This guarantees a constant bandwidth, but poses the new
problem of concurrent access to the master. The locking mechanisms needed for this
are introduced in section 3.4.

6.1.1 EoE Interface Configuration

The configuration of the EoE network interfaces is a matter of using standard Linux
networking infrastructure commands like ifconfig, ip and brctl. Though this lies
not in the scope of this document, some hints and examples are provided in this
section.

In the below examples it is assumed, that there are two slaves (0 and 1) with EoE
support in the bus. The first decision to make is whether to use a bridged or routed
environment.

Bridging A common solution is to create a bridge containing all EoE interfaces:

$ brctl addbr br0

$ ip addr add 192.168.100.1/24 dev br0

$ brctl addif br0 eoe0s0

$ brctl addif br0 eoe0s1

The above example allows to access IPv4 nodes using subnet 192.168.100.0/24 con-
nected to the EtherCAT bus via EoE. Please note, that the example only contains
ad-hoc configuration commands: If the bus topology changes, the EoE interfaces are
re-created and have to be added to the bridge again. Therefore it is highly recom-
mended to use the networking configuration infrastructure of the used Linux distribu-
tion to store this configuration permanently, so that appearing EoE devices are added
automatically.
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Routing Another possibility is to create an IP subnet for each EoE interface:

$ ip addr add 192.168.200.1/24 dev eoe0s0

$ ip addr add 192.168.201.1/24 dev eoe0s1

$ echo 1 > /proc/sys/net/ipv4/ip forward

This example is again only an ad-hoc configuration (see above). Please note, that it
is necessary to set the default gateways properly on the IP nodes connected to the
EoE slaves, if they shall be able to communicate between the different EoE interfaces
/ IP networks.

Setting IP Parameters If IP address and other parameters of the EoE remote nodes
(not the EoE interfaces on the master side) have to be set, this can be achieved via
the ethercat ip command-line tool (see subsection 7.1.13).

6.2 CANopen over EtherCAT (CoE)

The CANopen over EtherCAT protocol [3, sec. 5.6] is used to configure slaves and
exchange data objects on application level.

SDO Download State Machine The best time to apply SDO configurations is
during the slave’s PREOP state, because mailbox communication is already possible
and slave’s application will start with updating input data in the succeeding SAFEOP
state. Therefore the SDO configuration has to be part of the slave configuration state
machine (see section 5.5): It is implemented via an SDO download state machine, that
is executed just before entering the slave’s SAFEOP state. In this way, it is guaranteed
that the SDO configurations are applied each time, the slave is reconfigured.

The transition diagram of the SDO Download state machine can be seen in Figure 6.2.

START The beginning state of the CoE download state machine. The “SDO Down-
load Normal Request” mailbox command is sent. → REQUEST

REQUEST It is checked, if the CoE download request has been received by the
slave. After that, a mailbox check command is issued and a timer is started.
→ CHECK

CHECK If no mailbox data is available, the timer is checked.

• If it timed out, the SDO download is aborted. → ERROR

• Otherwise, the mailbox is queried again. → CHECK

If the mailbox contains new data, the response is fetched. → RESPONSE

RESPONSE If the mailbox response could not be fetched, the data is invalid, the
wrong protocol was received, or a “Abort SDO Transfer Request” was received,
the SDO download is aborted. → ERROR

If a “SDO Download Normal Response” acknowledgement was received, the
SDO download was successful. → END

1.6.8, 107



6 Mailbox Protocol Implementations

START REQUEST CHECK RESPONSE

ENDERROR

Figure 6.2: Transition diagram of the CoE download state machine
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END The SDO download was successful.

ERROR The SDO download was aborted due to an error.

6.3 Vendor specific over EtherCAT (VoE)

The VoE protocol opens the possibility to implement a vendor-specific mailbox com-
munication protocol. VoE mailbox messages are prepended by a VoE header con-
taining a 32-bit vendor ID and a 16-bit vendor-type. There are no more constraints
regarding this protocol.

The EtherCAT master allows to create multiple VoE handlers per slave configuration
via the application interface (see chapter 3). These handlers contain the state machine
necessary for the communication via VoE.

For more information about using VoE handlers, see section 3.3 or the example ap-
plications provided in the examples/ subdirectory.

6.4 Servo Profile over EtherCAT (SoE)

The SoE protocol implements the Service Channel layer, specified in IEC 61800-7 [16]
via EtherCAT mailboxes.

The SoE protocol is quite similar to the CoE protocol (see section 6.2). Instead of SDO
indices and subindices, so-called identification numbers (IDNs) identify parameters.

The implementation covers the “SCC Read” and “SCC Write” primitives, each with
the ability to fragment data.

There are several ways to use the SoE implementation:

• Reading and writing IDNs via the command-line tool (see subsection 7.1.21).

• Storing configurations for arbitrary IDNs via the application interface (see chap-
ter 3, i. e. ecrt_slave_config_idn()). These configurations are written to the
slave during configuration in PREOP state, before going to SAFEOP.

• The user-space library (see section 7.2), offers functions to read/write IDNs in
blocking mode (ecrt_master_read_idn(), ecrt_master_write_idn()).
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7 Userspace Interfaces

For the master runs as a kernel module, accessing it is natively limited to analyzing
Syslog messages and controlling using modutils.

It was necessary to implement further interfaces, that make it easier to access the
master from userspace and allow a finer influence. It should be possible to view and
to change special parameters at runtime.

Bus visualization is another point: For development and debugging purposes it is
necessary to show the connected slaves with a single command, for instance (see
section 7.1).

The application interface has to be available in userspace, to allow userspace programs
to use EtherCAT master functionality. This was implemented via a character device
and a userspace library (see section 7.2).

Another aspect is automatic startup and configuration. The master must be able to
automatically start up with a persistent configuration (see section 7.4).

A last thing is monitoring EtherCAT communication. For debugging purposes, there
had to be a way to analyze EtherCAT datagrams. The best way would be with a
popular network analyzer, like Wireshark [8] or others (see section 7.5).

This chapter covers all these points and introduces the interfaces and tools to make
all that possible.

7.1 Command-line Tool

7.1.1 Character Devices

Each master instance will get a character device as a userspace interface. The devices
are named /dev/EtherCATx, where x ∈ {0 . . . n} is the index of the master.

Device Node Creation The character device nodes are automatically created, if the
udev Package is installed. See section 9.5 for how to install and configure it.
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7.1.2 Setting Alias Addresses

ethercat alias [OPTIONS] <ALIAS >

Write alias addresses.

Arguments:

ALIAS must be an unsigned 16 bit number. Zero means

removing an alias address.

If multiple slaves are selected , the --force option

is required.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Acknowledge writing aliases of

multiple slaves.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.3 Displaying the Bus Configuration

ethercat config [OPTIONS]

Show slave configurations.

Without the --verbose option , slave configurations are

output one -per -line. Example:

1001:0 0x0000003b /0 x02010000 3 OP

| | | |

| | | \- Application -layer

| | | state of the attached

| | | slave , or ’-’, if no

| | | slave is attached.

| | \- Absolute decimal ring

| | position of the attached

| | slave , or ’-’ if none

| | attached.

| \- Expected vendor ID and product code (both

| hexadecimal).

\- Alias address and relative position (both decimal).

With the --verbose option given , the configured PDOs and

SDOs are output in addition.

Configuration selection:

Slave configurations can be selected with
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the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slave configurations are displayed.

2) If only the --position option is given , an alias

of zero is assumed (see 4)).

3) If only the --alias option is given , all slave

configurations with the given alias address

are displayed.

4) If both the --alias and the --position option are

given , the selection can match a single

configuration , that is displayed , if it exists.

Command -specific options:

--alias -a <alias > Configuration alias (see above).

--position -p <pos > Relative position (see above).

--verbose -v Show detailed configurations.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.4 Display CRC Error Counters

ethercat crc

ethercat crc reset

CRC error register diagnosis.

CRC - CRC Error Counter 0x300 , 0x302 , 0x304 , 0x306

PHY - Physical Interface Error Counter 0x301 , 0x303 , 0x305 , 0x307

FWD - Forwarded RX Error Counter 0x308 , 0x309 , 0x30a , 0x30b

NXT - Next slave

7.1.5 Output PDO information in C Language

ethercat cstruct [OPTIONS]

Generate slave PDO information in C language.

The output C code can be used directly with the

ecrt_slave_config_pdos () function of the application

interface.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.
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7.1.6 Displaying Process Data

ethercat data [OPTIONS]

Output binary domain process data.

Data of multiple domains are concatenated.

Command -specific options:

--domain -d <index > Positive numerical domain index.

If omitted , data of all domains

are output.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.7 Setting a Master’s Debug Level

ethercat debug <LEVEL >

Set the master ’s debug level.

Debug messages are printed to syslog.

Arguments:

LEVEL can have one of the following values:

0 for no debugging output ,

1 for some debug messages , or

2 for printing all frame contents (use with caution !).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.8 Configured Domains

ethercat domains [OPTIONS]

Show configured domains.

Without the --verbose option , the domains are displayed

one -per -line. Example:

Domain0: LogBaseAddr 0x00000000 , Size 6, WorkingCounter 0/1

The domain ’s base address for the logical datagram

(LRD/LWR/LRW) is displayed followed by the domain ’s

process data size in byte. The last values are the current

datagram working counter sum and the expected working

counter sum. If the values are equal , all PDOs were

exchanged during the last cycle.
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If the --verbose option is given , the participating slave

configurations/FMMUs and the current process data are

additionally displayed:

Domain1: LogBaseAddr 0x00000006 , Size 6, WorkingCounter 0/1

SlaveConfig 1001:0 , SM3 ( Input), LogAddr 0x00000006 , Size 6

00 00 00 00 00 00

The process data are displayed as hexadecimal bytes.

Command -specific options:

--domain -d <index > Positive numerical domain index.

If omitted , all domains are

displayed.

--verbose -v Show FMMUs and process data

in addition.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.9 SDO Access

ethercat download [OPTIONS] <INDEX > <SUBINDEX > <VALUE >

[OPTIONS] <INDEX > <VALUE >

Write an SDO entry to a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

The second call (without <SUBINDEX >) uses the complete

access method.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned
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16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

VALUE is the value to download and must correspond

to the SDO entry datatype (see above). Use

’-’ to read from standard input.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat upload [OPTIONS] <INDEX > <SUBINDEX >

Read an SDO entry from a slave.

This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO

dictionary by default. It can be overridden with the

--type option. If the slave does not support the SDO

information service or the SDO is not in the dictionary ,

the --type option is mandatory.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Arguments:

INDEX is the SDO index and must be an unsigned

16 bit number.

SUBINDEX is the SDO entry subindex and must be an

unsigned 8 bit number.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.
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7.1.10 EoE Statistics

ethercat eoe

Display Ethernet over EtherCAT statictics.

The TxRate and RxRate are displayed in Byte/s.

7.1.11 File-Access over EtherCAT

ethercat foe_read [OPTIONS] <SOURCEFILE >

Read a file from a slave via FoE.

This command requires a single slave to be selected.

Arguments:

SOURCEFILE is the name of the source file on the slave.

Command -specific options:

--output -file -o <file > Local target filename. If

’-’ (default), data are

printed to stdout.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat foe_write [OPTIONS] <FILENAME >

Store a file on a slave via FoE.

This command requires a single slave to be selected.

Arguments:

FILENAME can either be a path to a file , or ’-’. In

the latter case , data are read from stdin and

the --output -file option has to be specified.

Command -specific options:

--output -file -o <file > Target filename on the slave.

If the FILENAME argument is

’-’, this is mandatory.

Otherwise , the basename () of

FILENAME is used by default.

--alias -a <alias >

--position -p <pos > Slave selection. See the help

of the ’slaves ’ command.
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Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.12 Creating Topology Graphs

ethercat graph [OPTIONS]

ethercat graph [OPTIONS] <INFO >

Output the bus topology as a graph.

The bus is output in DOT language (see

http :// www.graphviz.org/doc/info/lang.html), which can

be processed with the tools from the Graphviz

package. Example:

ethercat graph | dot -Tsvg > bus.svg

See ’man dot ’ for more information.

Additional information at edges and nodes is selected via

the first argument:

DC - DC timing

CRC - CRC error register information

7.1.13 Setting Ethernet-over-EtherCAT IP Parameters

Slaves can have own IP stack implementations accessible via EoE. Since some of them
do not provide other mechanisms to set IP parameters (because they only have an
EtherCAT interface), there is a possibility to set the below parameters via EoE:

• Ethernet MAC address1,

• IPv4 address,

• IPv4 subnet mask,

• IPv4 default gateway,

• IPv4 DNS server,

• DNS host name.

ethercat ip [OPTIONS] <ARGS >

Set EoE IP parameters.

This command requires a single slave to be selected.

IP parameters can be appended as argument pairs:

ip_address <IPv4 >[/ prefix] IP address (optionally with

1The MAC address of the virtual EoE remote interface, not the one of the EtherCAT interface.
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decimal subnet prefix)

mac_address <MAC > Link -layer address (may contain

colons or hyphens)

default_gateway <IPv4 > Default gateway

dns_address <IPv4 > DNS server address

hostname <hostname > Host name (max. 32 byte)

IPv4 adresses can be given either in dot notation or as

hostnames , which will be automatically resolved.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.14 Master and Ethernet Devices

ethercat master [OPTIONS]

Show master and Ethernet device information.

Command -specific options:

--master -m <indices > Master indices. A comma -separated

list with ranges is supported.

Example: 1,4,5,7-9. Default: - (all).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.15 Sync Managers, PDOs and PDO Entries

ethercat pdos [OPTIONS]

List Sync managers , PDO assignment and mapping.

For the default skin (see --skin option) the information

is displayed in three layers , which are

indented accordingly:

1) Sync managers - Contains the sync manager information

from the SII: Index , physical start address , default

size , control register and enable word. Example:

SM3: PhysAddr 0x1100 , DefaultSize 0, ControlRegister 0x20 , Enable

1

2) Assigned PDOs - PDO direction , hexadecimal index and
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the PDO name , if available. Note that a ’Tx ’ and ’Rx ’

are seen from the slave ’s point of view. Example:

TxPDO 0x1a00 "Channel1"

3) Mapped PDO entries - PDO entry index and subindex (both

hexadecimal), the length in bit and the description , if

available. Example:

PDO entry 0x3101:01, 8 bit , "Status"

Note , that the displayed PDO assignment and PDO mapping

information can either originate from the SII or from the

CoE communication area.

The "etherlab" skin outputs a template configuration

for EtherLab ’s generic EtherCAT slave block.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--skin -s <skin > Choose output skin. Possible values are

"default" and "etherlab ".

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.16 Register Access

ethercat reg_read [OPTIONS] <ADDRESS > [SIZE]

Output a slave ’s register contents.

This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address. Must

be an unsigned 16 bit number.

SIZE is the number of bytes to read and must also be

an unsigned 16 bit number. ADDRESS plus SIZE

may not exceed 64k. The size is ignored (and

can be omitted), if a selected data type

implies a size.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.
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For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat reg_write [OPTIONS] <OFFSET > <DATA >

Write data to a slave ’s registers.

This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address to write to.

DATA depends on whether a datatype was specified

with the --type option: If not , DATA must be

either a path to a file with data to write ,

or ’-’, which means , that data are read from

stdin. If a datatype was specified , VALUE is

interpreted respective to the given type.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

--emergency -e Send as emergency request.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.17 Trigger a Bus Scan

ethercat rescan
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Rescan the bus.

Command a bus rescan. Gathered slave information will be

forgotten and slaves will be read in again.

7.1.18 SDO Dictionary

ethercat sdos [OPTIONS]

List SDO dictionaries.

SDO dictionary information is displayed in two layers ,

which are indented accordingly:

1) SDOs - Hexadecimal SDO index and the name. Example:

SDO 0x1018 , "Identity object"

2) SDO entries - SDO index and SDO entry subindex (both

hexadecimal) followed by the access rights (see

below), the data type , the length in bit , and the

description. Example:

0x1018 :01, rwrwrw , uint32 , 32 bit , "Vendor id"

The access rights are specified for the AL states PREOP ,

SAFEOP and OP. An ’r’ means , that the entry is readable

in the corresponding state , an ’w’ means writable ,

respectively. If a right is not granted , a dash ’-’ is

shown.

If the --quiet option is given , only the SDOs are output.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--quiet -q Only output SDOs (without the

SDO entries).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.19 SII Access

It is possible to directly read or write the complete SII contents of the slaves. This
was introduced for the reasons below:

• The format of the SII data is still in development and categories can be added
in the future. With read and write access, the complete memory contents can
be easily backed up and restored.
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• Some SII data fields have to be altered (like the alias address). A quick writing
must be possible for that.

• Through reading access, analyzing category data is possible from userspace.

ethercat sii_read [OPTIONS]

Output a slave ’s SII contents.

This command requires a single slave to be selected.

Without the --verbose option , binary SII contents are

output.

With the --verbose option given , a textual representation

of the data is output , that is separated by SII category

names.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--verbose -v Output textual data with

category names.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Reading out SII data is as easy as other commands. Though the data are in binary
format, analysis is easier with a tool like hexdump:

$ ethercat sii read --position 3 | hexdump

0000000 0103 0000 0000 0000 0000 0000 0000 008c

0000010 0002 0000 3052 07f0 0000 0000 0000 0000

0000020 0000 0000 0000 0000 0000 0000 0000 0000

...

Backing up SII contents can easily done with a redirection:

$ ethercat sii read --position 3 > sii-of-slave3.bin

To download SII contents to a slave, writing access to the master’s character device
is necessary (see subsection 7.1.1).

ethercat sii_write [OPTIONS] <FILENAME >

Write SII contents to a slave.

This command requires a single slave to be selected.

The file contents are checked for validity and integrity.

These checks can be overridden with the --force option.

1.6.8, 123



7 Userspace Interfaces

Arguments:

FILENAME must be a path to a file that contains a

positive number of words. If it is ’-’,

data are read from stdin.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--force -f Override validity checks.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

# ethercat sii write --position 3 sii-of-slave3.bin

The SII contents will be checked for validity and then sent to the slave. The write
operation may take a few seconds.

7.1.20 Slaves on the Bus

Slave information can be gathered with the subcommand slaves:

ethercat slaves [OPTIONS]

Display slaves on the bus.

If the --verbose option is not given , the slaves are

displayed one -per -line. Example:

1 5555:0 PREOP + EL3162 2C. Ana. Input 0-10V

| | | | | |

| | | | | \- Name from the SII if available ,

| | | | | otherwise vendor ID and product

| | | | | code (both hexadecimal).

| | | | \- Error flag. ’+’ means no error ,

| | | | ’E’ means that scan or

| | | | configuration failed.

| | | \- Current application -layer state.

| | \- Decimal relative position to the last

| | slave with an alias address set.

| \- Decimal alias address of this slave (if set),

| otherwise of the last slave with an alias set ,

| or zero , if no alias was encountered up to this

| position.

\- Absolute ring position in the bus.

If the --verbose option is given , a detailed (multi -line)

description is output for each slave.
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Slave selection:

Slaves for this and other commands can be selected with

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option

is given , all slaves are selected.

2) If only the --position option is given , it is

interpreted as an absolute ring position and

a slave with this position is matched.

3) If only the --alias option is given , all slaves

with the given alias address and subsequent

slaves before a slave with a different alias

address match (use -p0 if only the slaves

with the given alias are desired , see 4)).

4) If both the --alias and the --position option are

given , the latter is interpreted as relative

position behind any slave with the given alias.

Command -specific options:

--alias -a <alias > Slave alias (see above).

--position -p <pos > Slave position (see above).

--verbose -v Show detailed slave information.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Below is a typical output:

$ ethercat slaves

0 0:0 PREOP + EK1100 Ethernet Kopplerklemme (2A E-Bus)

1 5555:0 PREOP + EL3162 2K. Ana. Eingang 0-10V

2 5555:1 PREOP + EL4102 2K. Ana. Ausgang 0-10V

3 5555:2 PREOP + EL2004 4K. Dig. Ausgang 24V, 0,5A

7.1.21 SoE IDN Access

ethercat soe_read [OPTIONS] <IDN >

ethercat soe_read [OPTIONS] <DRIVE > <IDN >

Read an SoE IDN from a slave.

This command requires a single slave to be selected.

Arguments:

DRIVE is the drive number (0 - 7). If omitted , 0 is assumed.

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data

Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number
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or a string like ’P-0-150’.

Data of the given IDN are read and displayed according to

the given datatype , or as raw hex bytes.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:

sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat soe_write [OPTIONS] <IDN > <VALUE >

ethercat soe_write [OPTIONS] <DRIVE > <IDN > <VALUE >

Write an SoE IDN to a slave.

This command requires a single slave to be selected.

Arguments:

DRIVE is the drive number (0 - 7). If omitted , 0 is assumed.

IDN is the IDN and must be either an unsigned

16 bit number acc. to IEC 61800 -7 -204:

Bit 15: (0) Standard data , (1) Product data

Bit 14 - 12: Parameter set (0 - 7)

Bit 11 - 0: Data block number

or a string like ’P-0-150’.

VALUE is the value to write (see below).

The VALUE argument is interpreted as the given data type

(--type is mandatory) and written to the selected slave.

These are valid data types to use with

the --type option:

bool ,

int8 , int16 , int32 , int64 ,

uint8 , uint16 , uint32 , uint64 ,

float , double ,

string , octet_string , unicode_string.

For sign -and -magnitude coding , use the following types:
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sm8 , sm16 , sm32 , sm64

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

--type -t <type > Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.22 Requesting Application-Layer States

ethercat states [OPTIONS] <STATE >

Request application -layer states.

Arguments:

STATE can be ’INIT ’, ’PREOP ’, ’BOOT ’, ’SAFEOP ’, or ’OP ’.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.23 Displaying the Master Version

ethercat version [OPTIONS]

Show version information.

7.1.24 Generating Slave Description XML

ethercat xml [OPTIONS]

Generate slave information XML.

Note that the PDO information can either originate

from the SII or from the CoE communication area. For

slaves , that support configuring PDO assignment and

mapping , the output depends on the last configuration.

Command -specific options:

--alias -a <alias >

--position -p <pos > Slave selection. See the help of

the ’slaves ’ command.
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Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.2 Userspace Library

The native application interface (see chapter 3) resides in kernelspace and hence is
only accessible from inside the kernel. To make the application interface available
from userspace programs, a userspace library has been created, that can be linked to
programs under the terms and conditions of the LGPL, version 2 [5].

The library is named libethercat. Its sources reside in the lib/ subdirectory and are
build by default when using make. It is installed in the lib/ path below the installation
prefix as libethercat.a (for static linking), libethercat.la (for the use with libtool) and
libethercat.so (for dynamic linking).

For running an application without actual EtherCAT hardware or for simulation pur-
poses, there is a special library called libfakeethercat (see subsection 7.2.4).

7.2.1 Using the Library

The application interface header ecrt.h (see section 3.6) can be used both in kernel
and in user context.

The following minimal example shows how to build a program with EtherCAT func-
tionality. An entire example can be found in the examples/user/ path of the master
sources and in section 3.7.

#include <ecrt.h>

int main(void)

{

ec_master_t *master = ecrt_request_master (0);

if (! master)

return 1; // error

pause(); // wait for signal

return 0;

}

The program can be compiled and dynamically linked to the library with the below
command:

Listing 7.1: Linker command for using the userspace library

gcc ethercat.c -o ectest -I/opt/etherlab/include \

-L/opt/etherlab/lib -lethercat \

-Wl,--rpath -Wl ,/opt/etherlab/lib
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The library can also be linked statically to the program:

gcc -static ectest.c -o ectest -I/opt/etherlab/include \

/opt/etherlab/lib/libethercat.a

Please keep in mind, that your application has to be licensed under GPLv2 then,
because the LGPL does only allow dynamic linking.

7.2.2 Implementation

Basically the kernel API was transferred into userspace via the master character device
(see chapter 2, Figure 2.1 and subsection 7.1.1).

The function calls of the kernel API are mapped to the userspace via an ioctl()

interface. The userspace API functions share a set of generic ioctl() calls. The
kernel part of the interface calls the according API functions directly, what results in
a minimum additional delay (see subsection 7.2.3).

For performance reasons, the actual domain process data (see section 2.3) are not
copied between kernel and user memory on every access: Instead, the data are
memory-mapped to the userspace application. Once the master is configured and
activated, the master module creates one process data memory area spanning all
domains and maps it to userspace, so that the application can directly access the
process data. As a result, there is no additional delay when accessing process data
from userspace.

Kernel/User API Differences Because of the memory-mapping of the process data,
the memory is managed internally by the library functions. As a result, it is not possi-
ble to provide external memory for domains, like in the kernel API. The corresponding
functions are only available in kernelspace. This is the only difference when using the
application interface in userspace.

7.2.3 Timing

An interesting aspect is the timing of the userspace library calls compared to those of
the kernel API. Table 7.1 shows the call times and standard deviancies of typical (and
time-critical) API functions measured on an Intel Pentium 4 M CPU with 2.2 GHz
and a standard 2.6.26 kernel.

The test results show, that for this configuration, the userspace API causes about
1 µs additional delay for each function, compared to the kernel API.

1.6.8, 129



7 Userspace Interfaces

Table 7.1: Application Interface Timing Comparison

Kernelspace Userspace
Function µ(t) σ(t) µ(t) σ(t)
ecrt_master_receive() 1.1 µs 0.3 µs 2.2 µs 0.5 µs
ecrt_domain_process() < 0.1 µs < 0.1 µs 1.0 µs 0.2 µs
ecrt_domain_queue() < 0.1 µs < 0.1 µs 1.0 µs 0.1 µs
ecrt_master_send() 1.8 µs 0.2 µs 2.5 µs 0.5 µs

7.2.4 Simulation / Fake Library

Sometimes is is handy to run your EtherCAT realtime application without an actual
EtherCAT network connected, for example for test purposes. Though it is possible
to spin up an EtherCAT master and to connect it to a loopback device, this step is
not always wanted.

The EtherCAT master (since version 1.6.1) comes with a library libfakeethercat that
comes with a reasonable subset of the EtherCAT application interface (see chapter 3).

The ecrt method implementation in the fake library will just accept your input and
behave as if everything would be fine. Without further steps, the process data will be
all-zero then.

As a special feature, the libfakeethercat will create RtIPC [18] endpoints for registered
PDO entries to enable a simulation interface. Another application that either uses
RtIPC directly or another (inverted) instance of libfakeethercat will then connect to
these endpoints and thus create the possibility to provide simulated values to your
pristine application.

The fake library functions an usage is documented in Doxygen [13] and the most
recent version can be found online: https://docs.etherlab.org/ethercat/1.6/

doxygen/libfakeethercat.html

7.3 RTDM Interface

When using the userspace interfaces of realtime extensions like Xenomai or RTAI,
the use of ioctl() is not recommended, because it may disturb realtime operation.
To accomplish this, the Real-Time Device Model (RTDM) [17] has been developed.
The master module provides an RTDM interface (see Figure 2.1) in addition to the
normal character device, if the master sources were configured with --enable-rtdm

(see chapter 9).

To force an application to use the RTDM interface instead of the normal character
device, it has to be linked with the libethercat rtdm library instead of libethercat.
The use of the libethercat rtdm is transparent, so the EtherCAT header ecrt.h (see
section 3.6) with the complete API can be used as usual.
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To make the example in Listing 7.1 use the RTDM library, the linker command has
to be altered as follows:

gcc ethercat -with -rtdm.c -o ectest -I/opt/etherlab/include \

-L/opt/etherlab/lib -lethercat_rtdm \

-Wl ,--rpath -Wl ,/opt/etherlab/lib

7.4 System Integration

To integrate the EtherCAT master as a service into a running system, it comes with
an init script and a sysconfig file, that are described below. Modern systems may
be managed by systemd [7]. Integration of the master with systemd is described in
subsection 7.4.4.

7.4.1 Init Script

The EtherCAT master init script conforms to the requirements of the “Linux Standard
Base” (LSB, [6]). The script is installed to etc/init.d/ethercat below the installation
prefix and has to be copied (or better: linked) to the appropriate location (see chap-
ter 9), before the master can be inserted as a service. Please note, that the init script
depends on the sysconfig file described below.

To provide service dependencies (i. e. which services have to be started before others)
inside the init script code, LSB defines a special comment block. System tools can
extract this information to insert the EtherCAT init script at the correct place in the
startup sequence:

# Default -Stop: 0 1 2 6

# Short -Description: EtherCAT master

# Description: EtherCAT master @VERSION@

### END INIT INFO

#------------------------------------------------------------------------------

ETHERCATCTL =" @sbindir@/ethercatctl -c @sysconfdir@/sysconfig/ethercat"

#------------------------------------------------------------------------------

7.4.2 Sysconfig File

For persistent configuration, the init script uses a sysconfig file installed to etc/syscon-
fig/ethercat (below the installation prefix), that is mandatory for the init script. The
sysconfig file contains all configuration variables needed to operate one or more mas-
ters. The documentation is inside the file and included below:
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1 #

2 # The MASTER <X>_DEVICE variable specifies the Ethernet device for a master

3 # with index ’X’.

4 #

5 # Specify the MAC address ( hexadecimal with colons) of the Ethernet device to

6 # use. Example: "00:00:08:44: ab :66"

7 #

8 # Alternatively , a network interface name can be specified . The interface

9 # name will be resolved to a MAC address using the ’ip ’ command.

10 # Example: "eth0"

11 #

12 # The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning: It tells

13 # the master to accept the first device offered by any Ethernet driver.

14 #

15 # The MASTER <X>_DEVICE variables also determine , how many masters will be

16 # created: A non -empty variable MASTER0_DEVICE will create one master , adding a

17 # non -empty variable MASTER1_DEVICE will create a second master , and so on.

18 #

19 # Examples:

20 # MASTER0_DEVICE ="00:00:08:44: ab :66"

21 # MASTER0_DEVICE =" eth0"

22 #

23 MASTER0_DEVICE=""

24 # MASTER1_DEVICE =""

25

26 #

27 # Backup Ethernet devices

28 #

29 # The MASTER <X>_BACKUP variables specify the devices used for redundancy . They

30 # behaves nearly the same as the MASTER <X>_DEVICE variable , except that it

31 # does not interpret the ff:ff:ff:ff:ff:ff address.

32 #

33 # MASTER0_BACKUP =""

34

35 #

36 # Ethernet driver modules to use for EtherCAT operation.

37 #

38 # Specify a non -empty list of Ethernet drivers , that shall be used for

39 # EtherCAT operation.

40 #

41 # Except for the generic Ethernet driver module , the init script will try to

42 # unload the usual Ethernet driver modules in the list and replace them with

43 # the EtherCAT -capable ones. If a certain (EtherCAT -capable) driver is not

44 # found , a warning will appear.

45 #

46 # Possible values: 8139too , e100 , e1000 , e1000e , r8169 , generic , ccat , igb , igc ,

genet , dwmac -intel , stmmac -pci.

47 # Separate multiple drivers with spaces.

48 # A list of all matching kernel versions can be found here:

49 # https :// docs.etherlab.org/ethercat /1.6/ doxygen/ devicedrivers .html

50 #

51 # Note: The e100 , e1000 , e1000e , r8169 , ccat , igb and igc drivers are not built by

52 # default. Enable them with the --enable -<driver > configure switches.

53 #

54 DEVICE_MODULES=""

55

56 # If you have any issues about network interfaces not being configured

57 # properly , systemd may need some additional infos about your setup.

58 # Have a look at the service file , you ’ll find some details there.

59 #

60

61 #

62 # List of interfaces to bring up and down automatically .

63 #

64 # Specify a space -separated list of interface names (such as eth0 or

65 # enp0s1) that shall be brought up on ‘ethercatctl start ‘ and down on
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66 # ‘ethercatctl stop ‘.

67 #

68 # When using the generic driver , the corresponding Ethernet device has to be

69 # activated before the master is started , otherwise all frames will time out.

70 # This the perfect use -case for ‘UPDOWN_INTERFACES ‘.

71 #

72 UPDOWN_INTERFACES=""

73

74 #

75 # Flags for loading kernel modules.

76 #

77 # This can usually be left empty. Adjust this variable , if you have problems

78 # with module loading.

79 #

80 # MODPROBE_FLAGS ="-b"

81

82 # ------------------------------------------------------------------------------

For systems managed by systemd (see subsection 7.4.4), the sysconfig file has moved
to /etc/ethercat.conf. Both versions are part of the master sources and are meant
to used alternatively.

7.4.3 Starting the Master as a Service

After the init script and the sysconfig file are placed into the right location, the
EtherCAT master can be inserted as a service. The different Linux distributions offer
different ways to mark a service for starting and stopping in certain runlevels. For
example, SUSE Linux provides the insserv command:

# insserv ethercat

The init script can also be used for manually starting and stopping the EtherCAT
master. It has to be executed with one of the parameters start, stop, restart or
status.

# /etc/init.d/ethercat restart

Shutting down EtherCAT master done

Starting EtherCAT master done

7.4.4 Integration with systemd

Distributions using systemd instead of the SysV init system are using service files to
describe how a service is to be maintained. Listing 7.2 lists the master’s service file:

Listing 7.2: Service file

#

# EtherCAT master kernel modules

#

[Unit]

Description=EtherCAT Master Kernel Modules
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# Fine tuning of the startup dependencies below are recommended

# to provide a reliable startup routine.

# The dependencies below can be either uncommented after copying

# this file to /etc/systemd/system or by creating overrides:

# Copy the needed dependencies into

# /etc/systemd/system/ethercat.service.d/50- dependencies.conf

# in a [Unit] section.

#

# Uncomment this , if the generic Ethernet driver is used. It assures , that the

# network interfaces are configured , before the master starts.

#

#Requires=network.target # Stop master , if network is stopped

#After=network.target # Start master , after network is ready

#

# Uncomment this , if a native Ethernet driver is used. It assures , that the

# network interfaces are configured , after the Ethernet drivers have been

# replaced. Otherwise , the networking configuration tools could be confused.

#

#Before=network -pre.target

#Wants=network -pre.target

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=@sbindir@/ethercatctl start

ExecStop=@sbindir@/ethercatctl stop

[Install]

WantedBy=multi -user.target

The systemctl command is used to load and unload the master and network driver
modules in a similar way to the former init script (subsection 7.4.1).

# systemctl start ethercat

When using systemd and/or the systemctl command, the master configuration must
be in /etc/ethercat.conf instead of /etc/sysconfig/ethercat! The latter is ig-
nored. The configuration options are exactly the same.

7.5 Debug Interfaces

EtherCAT buses can always be monitored by inserting a switch between master and
slaves. This allows to connect another PC with a network monitor like Wireshark [8],
for example. It is also possible to listen to local network interfaces on the machine
running the EtherCAT master directly. If the generic Ethernet driver (see section 4.3)
is used, the network monitor can directly listen on the network interface connected to
the EtherCAT bus.

When using native Ethernet drivers (see section 4.2), there are no local network inter-
faces to listen to, because the Ethernet devices used for EtherCAT are not registered
at the network stack. For that case, so-called “debug interfaces” are supported, which
are virtual network interfaces allowing to capture EtherCAT traffic with a network
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monitor (like Wireshark or tcpdump) running on the master machine without using
external hardware. To use this functionality, the master sources have to be configured
with the --enable-debug-if switch (see chapter 9).

Every EtherCAT master registers a read-only network interface per attached physical
Ethernet device. The network interfaces are named ecdbgmX for the main device, and
ecdbgbX for the backup device, where X is the master index. The below listing shows
a debug interface among some standard network interfaces:

# ip link

1: lo: <LOOPBACK ,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

4: eth0: <BROADCAST ,MULTICAST > mtu 1500 qdisc noop qlen 1000

link/ether 00:13:46:3b:ad:d7 brd ff:ff:ff:ff:ff:ff

8: ecdbgm0: <BROADCAST ,MULTICAST > mtu 1500 qdisc pfifo_fast

qlen 1000

link/ether 00:04:61:03: d1:01 brd ff:ff:ff:ff:ff:ff

While a debug interface is enabled, all frames sent or received to or from the physical
device are additionally forwarded to the debug interface by the corresponding master.
Network interfaces can be enabled with the below command:

# ip link set dev ecdbgm0 up

Please note, that the frame rate can be very high. With an application connected,
the debug interface can produce thousands of frames per second.

Attention The socket buffers needed for the operation of debug interfaces have to
be allocated dynamically. Some Linux realtime extensions (like RTAI) do not allow
this in realtime context!
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8 Timing Aspects

Although EtherCAT’s timing is highly deterministic and therefore timing issues are
rare, there are a few aspects that can (and should be) dealt with.

8.1 Application Interface Profiling

One of the most important timing aspects are the execution times of the application
interface functions, that are called in cyclic context. These functions make up an
important part of the overall timing of the application. To measure the timing of the
functions, the following code was used:

c0 = get_cycles ();

ecrt_master_receive(master);

c1 = get_cycles ();

ecrt_domain_process(domain1);

c2 = get_cycles ();

ecrt_master_run(master);

c3 = get_cycles ();

ecrt_master_send(master);

c4 = get_cycles ();

Between each call of an interface function, the CPU timestamp counter is read. The
counter differences are converted to µs with help of the cpu_khz variable, that contains
the number of increments per ms.

For the actual measuring, a system with a 2.0 GHz CPU was used, that ran the above
code in an RTAI thread with a period of 100 µs. The measuring was repeated n = 100
times and the results were averaged. These can be seen in Table 8.1.

Table 8.1: Profiling of an Application Cycle on a 2.0 GHz Processor

Element Mean Duration [s] Standard Deviancy [µs]
ecrt master receive() 8.04 0.48
ecrt domain process() 0.14 0.03
ecrt master run() 0.29 0.12
ecrt master send() 2.18 0.17
Complete Cycle 10.65 0.69
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It is obvious, that the functions accessing hardware make up the lion’s share. The
ec master receive() executes the ISR of the Ethernet device, analyzes datagrams and
copies their contents into the memory of the datagram objects. The ec master send()
assembles a frame out of different datagrams and copies it to the hardware buffers.
Interestingly, this makes up only a quarter of the receiving time.

The functions that only operate on the masters internal data structures are very
fast (∆t < 1 µs). Interestingly the runtime of ec domain process() has a small stan-
dard deviancy relative to the mean value, while this ratio is about twice as big for
ec master run(): This probably results from the latter function having to execute
code depending on the current state and the different state functions are more or less
complex.

For a realtime cycle makes up about 10 µs, the theoretical frequency can be up to
100 kHz. For two reasons, this frequency keeps being theoretical:

1. The processor must still be able to run the operating system between the real-
time cycles.

2. The EtherCAT frame must be sent and received, before the next realtime cycle
begins. The determination of the bus cycle time is difficult and covered in
section 8.2.

8.2 Bus Cycle Measuring

For measuring the time, a frame is “on the wire”, two timestamps must be taken:

1. The time, the Ethernet hardware begins with physically sending the frame.

2. The time, the frame is completely received by the Ethernet hardware.

Both times are difficult to determine. The first reason is, that the interrupts are
disabled and the master is not notified, when a frame is sent or received (polling
would distort the results). The second reason is, that even with interrupts enabled,
the time from the event to the notification is unknown. Therefore the only way to
confidently determine the bus cycle time is an electrical measuring.

Anyway, the bus cycle time is an important factor when designing realtime code,
because it limits the maximum frequency for the cyclic task of the application. In
practice, these timing parameters are highly dependent on the hardware and often a
trial and error method must be used to determine the limits of the system.

The central question is: What happens, if the cycle frequency is too high? The answer
is, that the EtherCAT frames that have been sent at the end of the cycle are not yet
received, when the next cycle starts. First this is noticed by ecrt domain process(),
because the working counter of the process data datagrams were not increased. The
function will notify the user via Syslog1. In this case, the process data keeps being the

1To limit Syslog output, a mechanism has been implemented, that outputs a summarized notifica-
tion at maximum once a second.
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same as in the last cycle, because it is not erased by the domain. When the domain
datagrams are queued again, the master notices, that they are already queued (and
marked as sent). The master will mark them as unsent again and output a warning,
that datagrams were “skipped”.

On the mentioned 2.0 GHz system, the possible cycle frequency can be up to 25 kHz
without skipped frames. This value can surely be increased by choosing faster hard-
ware. Especially the RealTek network hardware could be replaced by a faster one.
Besides, implementing a dedicated ISR for EtherCAT devices would also contribute
to increasing the latency. These are two points on the author’s to-do list.
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9 Installation

9.1 Getting the Software

There are several ways to get the master software:

1. An official release (for example 1.6.8), can be downloaded from the master’s
website1 at the EtherLab project [1] as a tarball.

2. The most recent development revision (and moreover any other revision) can
be obtained via the Git [14] repository on the master’s project page on Git-
Lab.com2. The whole repository can be cloned with the command

git clone https :// gitlab.com/etherlab.org/ethercat.git

local-dir

3. Without a local Git installation, tarballs of arbitrary revisions can be down-
loaded via the “Download” button on GitLab.

9.2 Building the Software

After downloading a tarball or cloning the repository as described in section 9.1, the
sources have to be prepared and configured for the build process.

When a tarball was downloaded, it has to be extracted with the following commands:

$ tar xjf ethercat-1.6.8.tar.bz2

$ cd ethercat-1.6.8/

The software configuration is managed with Autoconf [15] so the released versions
contain a configure shell script, that has to be executed for configuration (see below).

Bootstrap When downloading or cloning directly from the repository, the configure

script does not yet exist. It can be created via the bootstrap.sh script in the master
sources. The autoconf and automake packages are required for this.

1https://etherlab.org/ethercat
2https://gitlab.com/etherlab.org/ethercat
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Configuration and Build The configuration and the build process follow the below
commands:

$ ./configure

$ make

$ make modules

Table 9.1 lists important configuration switches and options.

Table 9.1: Configuration options

Option/Switch Description Default
--prefix Installation prefix /opt/etherlab
--with-linux-dir Linux kernel sources Use running kernel
--with-module-dir Subdirectory in the kernel module

tree, where the EtherCAT kernel
modules shall be installed.

ethercat

--enable-generic Build the generic Ethernet driver
(see section 4.3).

yes

--enable-8139too Build the 8139too driver yes
--with-8139too-kernel 8139too kernel †
--enable-e100 Build the e100 driver no
--with-e100-kernel e100 kernel †
--enable-e1000 Enable e1000 driver no
--with-e1000-kernel e1000 kernel †
--enable-e1000e Enable e1000e driver no
--with-e1000e-kernel e1000e kernel †
--enable-r8169 Enable r8169 driver no
--with-r8169-kernel r8169 kernel †
--enable-ccat Enable ccat driver (independent of

kernel version)
no

--enable-igb Enable igb driver no
--with-igb-kernel igb kernel †
--enable-kernel Build the master kernel modules yes
--enable-rtdm Create the RTDM interface (RTAI

or Xenomai directory needed, see
below)

no

--with-rtai-dir RTAI path (for RTAI examples
and RTDM interface)

--with-xenomai-dir Xenomai path (for Xenomai ex-
amples and RTDM interface)

--with-devices Number of Ethernet devices for re-
dundant operation (> 1 switches
redundancy on)

1
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Option/Switch Description Default
--with-systemdsystemunitdir Systemd unit directory (”no” dis-

ables service file installation)
auto

--enable-debug-if Create a debug interface for each
master

no

--enable-debug-ring Create a debug ring to record
frames

no

--enable-eoe Enable EoE support yes
--enable-cycles Use CPU timestamp counter. En-

able this on Intel architecture to
get finer timing calculation.

no

--enable-hrtimer Use high-resolution timer to let
the master state machine sleep be-
tween sending frames.

no

--enable-regalias Read alias address from register no
--enable-tool Build the command-line tool

“ethercat” (see section 7.1)
yes

--enable-userlib Build the userspace library yes
--enable-tty Build the TTY driver no
--enable-wildcards Enable 0xffffffff to be wildcards

for vendor ID and product code
no

--enable-sii-assign Enable assigning SII access to the
PDI layer during slave configura-
tion

no

--enable-rt-syslog Enable syslog statements in real-
time context

yes

† If this option is not specified, the kernel version to use is extracted from the Linux
kernel sources.

9.3 Building the Interface Documentation

The source code is documented using Doxygen [13]. To build the HTML documen-
tation, the Doxygen software has to be installed. The below command will generate
the documents in the subdirectory doxygen-output :

$ make doc

The interface documentation can be viewed by pointing a browser to the file doxygen-
output/html/index.html. The functions and data structures of the application interface
are covered by an own module “Application Interface”.
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9.4 Installing the Software

The below commands have to be entered as root : the first one will install the Ether-
CAT header, service scripts (systemd or init.d) and the userspace tool to the prefix
path. The second one will install the kernel modules to the kernel’s modules directory.
The final depmod call is necessary to include the kernel modules into the modules.dep
file to make it available to the modprobe command, used by the service scripts.

# make install

# make modules install

# depmod

If the target kernel’s modules directory is not under /lib/modules, a different destina-
tion directory can be specified with the DESTDIR make variable. For example:

# make DESTDIR=/vol/nfs/root modules install

This command will install the compiled kernel modules to /vol/nfs/root/lib/modules,
prepended by the kernel release.

Now the sysconfig file /etc/sysconfig/ethercat (see subsection 7.4.2), or the con-
figuration file /etc/ethercat.conf, if using systemd, has to be customized. The minimal
customization is to set the MASTER0_DEVICE variable to the MAC address of the Ether-
net device to use (or ff:ff:ff:ff:ff:ff to use the first device offered) and selecting
the driver(s) to load via the DEVICE_MODULES variable.

After the basic configuration is done, the master can be started with the below com-
mand:

# systemctl start ethercat

When using init.d, the following command can be used alternatively:

# /etc/init.d/ethercat start

At this time, the operation of the master can be observed by viewing the Syslog
messages, which should look like the ones below. If EtherCAT slaves are connected
to the master’s EtherCAT device, the activity indicators should begin to flash.

1 EtherCAT: Master driver 1.6.8

2 EtherCAT: 1 master waiting for devices.

3 EtherCAT Intel(R) PRO /1000 Network Driver - version 6.0.60 -k2

4 Copyright (c) 1999 -2005 Intel Corporation.

5 PCI: Found IRQ 12 for device 0000:01:01.0

6 PCI: Sharing IRQ 12 with 0000:00:1d.2

7 PCI: Sharing IRQ 12 with 0000:00:1f.1

8 EtherCAT: Accepting device 00:0E:0C:DA:A2:20 for master 0.

9 EtherCAT: Starting master thread.

10 ec_e1000: ec0: e1000_probe: Intel(R) PRO /1000 Network
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11 Connection

12 ec_e1000: ec0: e1000_watchdog_task: NIC Link is Up 100 Mbps

13 Full Duplex

14 EtherCAT: Link state changed to UP.

15 EtherCAT: 7 slave(s) responding.

16 EtherCAT: Slave states: PREOP.

17 EtherCAT: Scanning bus.

18 EtherCAT: Bus scanning completed in 431 ms.

1○ – 2○ The master module is loading, and one master is initialized.

3○ – 8○ The EtherCAT-capable e1000 driver is loading. The master accepts the
device with the address 00:0E:0C:DA:A2:20.

9○ – 16○ The master goes to idle phase, starts its state machine and begins scanning
the bus.

9.5 Automatic Device Node Creation

The ethercat command-line tool (see section 7.1) communicates with the master via
a character device. The corresponding device nodes are created automatically, if the
udev daemon is running. Note, that on some distributions, the udev package is not
installed by default.

The device nodes will be created with mode 0660 and group root by default. If “nor-
mal” users shall have reading access, a udev rule file (for example /etc/udev/rules.d/99-
EtherCAT.rules) has to be created with the following contents:

KERNEL ==" EtherCAT [0-9]*", MODE ="0664"

After the udev rule file is created and the EtherCAT master is restarted with /etc

/init.d/ethercat restart, the device node will be automatically created with the
desired rights:

# ls -l /dev/EtherCAT0

crw -rw -r-- 1 root root 252, 0 2008 -09 -03 16:19 /dev/EtherCAT0

Now, the ethercat tool can be used (see section 7.1) even as a non-root user.

If non-root users shall have writing access, the following udev rule can be used instead:

KERNEL ==" EtherCAT [0-9]*", MODE ="0664" , GROUP=" users"
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