—
IgH EtherCAT. ™ Master 1.6.8
Documentation

Dipl.-Ing. (FH) Florian Pose, fp@igh.de
Ingenieurgemeinschaft ki

Essen, October 6, 2025
Revision 1.6.8

fp@igh.de

i

1.6.8, October 6, 2025

Contents

Conventions o

1 The IgH EtherCAT Master
1.1 Feature Summary
1.2 License e

2 Architecture

2.1 Master Module
2.2 Master Phases
2.3 Process Data

3 Application Interface

3.1 Master Configuration

3.1.1 Slave Configuration
3.2 Cyclic Operation
3.3 VoE Handlers
3.4 Concurrent Master Access
3.5 Distributed Clocks
3.6 Application Interface Header
3.7 Userspace Application Example

4 Ethernet Devices
4.1 Network Driver Basics
4.2 Native EtherCAT Device Drivers
4.3 Generic EtherCAT Device Driver
4.4 Providing Ethernet Devices 0oL
4.5 Redundancy
4.6 EtherCAT Device Interface
4.7 Patching Native Network Drivers
5 State Machines

5.1 State Machine Theory,
5.2 The Master’s State Model
5.3 The Master State Machine
5.4 The Slave Scan State Machine
5.5 The Slave Configuration State Machine
5.6 The State Change State Machine

1.6.8, October 6, 2025

11

v

2.7
2.8

The SII State Machine
The PDO State Machines

Mailbox Protocol Implementations

6.1

6.2
6.3
6.4

Ethernet over EtherCAT (EoE)
6.1.1 EoE Interface Configuration
CANopen over EtherCAT (CoE)

Vendor specific over EtherCAT (VoE)

Servo Profile over EtherCAT (SoE)

Userspace Interfaces

7.1

7.2

7.3
7.4

Command-line Tool
Character Devices
Setting Alias Addresses

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.1.16
7.1.17
7.1.18
7.1.19
7.1.20
7.1.21
7.1.22
7.1.23
7.1.24

Displaying the Bus Configuration

Output PDO information in C Language
Displaying Process Data
Setting a Master’s Debug Level
Configured Domains
SDO Access

Setting Ethernet-over-EtherCAT IP Parameters
Master and Ethernet Devices
Sync Managers, PDOs and PDO Entries
Register Access
Trigger a Bus Scan

SIT Access

Requesting Application-Layer States

Generating Slave Description XML

Userspace Library
Using the Library

7.2.1

7.2.2 Implementation

723 Timingo Lo

7.2.4 Simulation / Fake Library

RTDM Interface

System Integration
7.4.1 Init Script

Display CRC Error Counters.

EoE Statistics
File-Access over EtherCAT
Creating Topology Graphs

SDO Dictionary

Slavesonthe Bus
SoE IDN Access

Displaying the Master Version

1.6.8, October 6, 2025

7.4.2 Sysconfig File
7.4.3 Starting the Master as a Service
7.4.4 Integration with systemd
7.5 Debug Interfaces o

8 Timing Aspects
8.1 Application Interface Profiling,
8.2 Bus Cycle Measuring

9 Installation
9.1 Getting the Software
9.2 Building the Software L
9.3 Building the Interface Documentation
9.4 Installing the Software L.
9.5 Automatic Device Node Creation

Bibliography
Glossary

Index

1.6.8, October 6, 2025

vi

1.6.8, October 6, 2025

List of Tables

3.1 Specifying a Slave Position 0oL 15
5.1 A typical state transition table. L. 87
7.1 Application Interface Timing Comparison 130
8.1 Profiling of an Application Cycle on a 2.0 GHz Processor 137
9.1 Configuration optionso 142

1.6.8, October 6, 2025 Vil

viil 1.6.8, October 6, 2025

List of Figures

2.1 Master Architecture. 6
2.2 Multiple masters in one module 0oL 8
2.3 Master phases and transitions 10
2.4 FMMU Configuration 12
3.1 Master Configuration L 14
3.2 Slave Configuration Attachment 16
3.3 Concurrent Master Access 18
3.4 Distributed Clockso 20
4.1 Interrupt Operation versus Interrupt-less Operation 81
5.1 A typical state transition diagram L. 87
5.2 Transition diagram of the master state machine 92
5.3 Transition diagram of the slave scan state machine 93
5.4 Transition diagram of the slave configuration state machine 95
5.5 Transition Diagram of the State Change State Machine 96
5.6 Transition Diagram of the SII State Machine 97
5.7 Transition Diagram of the PDO Reading State Machine 98
5.8 Transition Diagram of the PDO Entry Reading State Machine 99
5.9 Transition Diagram of the PDO Configuration State Machine 100
5.10 Transition Diagram of the PDO Entry Configuration State Machine . . 101
6.1 Transition Diagram of the EoE State Machine 105
6.2 Transition diagram of the CoE download state machine 108

1.6.8, October 6, 2025 1X

Conventions

Conventions

The following typographic conventions are used:

e [talic face is used for newly introduced terms and file names.
e Typewriter face is used for code examples and command line output.
e Bold typewriter face is used for user input in command lines.
Data values and addresses are usually specified as hexadecimal values. These are

marked in the C programming language style with the prefix 0x (example: 0x88A4).
Unless otherwise noted, address values are specified as byte addresses.

Function names are always printed with parentheses, but without parameters. So, if
a function ecrt_request_master() has empty parentheses, this shall not imply that
it has no parameters.

If shell commands have to be entered, this is marked by a dollar prompt:

$

Further, if a shell command has to be entered as the superuser, the prompt is a mesh:

#

X 1.6.8,

1 The IgH EtherCAT Master

This chapter covers some general information about the EtherCAT master.

1.1

Feature Summary

The list below gives a short summary of the master features.

Designed as a kernel module for Linux from version 2.6 (or newer).
Implemented according to IEC 61158-12 [2] [3].
Comes with EtherCAT-capable native drivers for several common Ethernet
chips, as well as a generic driver for all chips supported by the Linux kernel.

— The native drivers operate the hardware without interrupts.

— Native drivers for additional Ethernet hardware can easily be implemented
using the common device interface (see section 4.6) provided by the master
module.

— For any other hardware, the generic driver can be used. It uses the lower
layers of the Linux network stack.
The master module supports multiple EtherCAT masters running in parallel.

The master code supports any Linux realtime extension through its independent
architecture.

— RTAI [11] (including LXRT via RTDM), ADEOS, RT-Preempt [12], Xeno-
mai (including RTDM), etc.

— It runs well even without realtime extensions.
Common “Application Interface” for applications, that want to use EtherCAT
functionality (see chapter 3).

Domains are introduced, to allow grouping of process data transfers with dif-
ferent slave groups and task periods.

— Handling of multiple domains with different task periods.

— Automatic calculation of process data mapping, FMMU and sync manager
configuration within each domain.

Communication through several finite state machines.

1.6.8, October 6, 2025 1

1 The IgH EtherCAT Master

— Automatic bus scanning after topology changes.
— Bus monitoring during operation.
— Automatic reconfiguration of slaves (for example after power failure) during
operation.
e Distributed Clocks support (see section 3.5).
— Configuration of the slave’s DC parameters through the application inter-
face.

— Synchronization (offset and drift compensation) of the distributed slave
clocks to the reference clock.

— Optional synchronization of the reference clock to the master clock or the
other way round.

CANopen over EtherCAT (CoE)

— SDO upload, download and information service.
— Slave configuration via SDOs.

— SDO access from userspace and from the application.

Ethernet over EtherCAT (EoE)

— Transparent use of EoE slaves via virtual network interfaces.

— Natively supports either a switched or a routed EoE network architecture.

Vendor-specific over EtherCAT (VoE)

— Communication with vendor-specific mailbox protocols via the API.

File Access over EtherCAT (FoE)

— Loading and storing files via the command-line tool.

— Updating a slave’s firmware can be done easily.
Servo Profile over EtherCAT (SoE)
— Implemented according to IEC 61800-7 [16].

— Storing IDN configurations, that are written to the slave during startup.

— Accessing IDNs via the command-line tool.

— Accessing IDNs at runtime via the user-space library.

Userspace command-line-tool “ethercat” (see section 7.1)

— Detailed information about master, slaves, domains and bus configuration.
— Setting the master’s debug level.

— Reading/Writing alias addresses.

— Listing slave configurations.

— Viewing process data.

2 1.6.8,

1.2 License

— SDO download /upload; listing SDO dictionaries.
— Loading and storing files via FoE.

SoE IDN access.

Access to slave registers.

Slave SII (EEPROM) access.

— Controlling application-layer states.

— Generation of slave description XML and C-code from existing slaves.
e Seamless system integration though LSB compliance.

— Master and network device configuration via sysconfig files.
— Init script for master control.

— Service file for systemd.

e Virtual read-only network interface for monitoring and debugging purposes.

1.2 License

The master code is released under the terms and conditions of the GNU General Public
License (GPL [1]), version 2. Other developers, that want to use EtherCAT with Linux
systems, are invited to use the master code or even participate on development.

To allow dynamic linking of userspace application against the master’s application
interface (see chapter 3), the userspace library (see section 7.2) is licensed under the
terms and conditions of the GNU Lesser General Public License (LGPL [5]), version
2.1.

1.6.8, 3

1 The IgH EtherCAT Master

4 1.6.8,

2 Architecture

The EtherCAT master is integrated into the Linux kernel. This was an early design
decision, which has been made for several reasons:

e Kernel code has significantly better realtime characteristics, i.e. less latency
than userspace code. It was foreseeable, that a fieldbus master has a lot of
cyclic work to do. Cyclic work is usually triggered by timer interrupts inside
the kernel. The execution delay of a function that processes timer interrupts is
less, when it resides in kernelspace, because there is no need of time-consuming
context switches to a userspace process.

e [t was also foreseeable, that the master code has to directly communicate with
the Ethernet hardware. This has to be done in the kernel anyway (through
network device drivers), which is one more reason for the master code being in
kernelspace.

Figure 2.1 gives a general overview of the master architecture.

The components of the master environment are described below:

Master Module Kernel module containing one or more EtherCAT master instances
(see section 2.1), the “Device Interface” (see section 4.6) and the “Application
Interface” (see chapter 3).

Device Modules EtherCAT-capable Ethernet device driver modules, that offer their
devices to the EtherCAT master via the device interface (see section 4.6). These
modified network drivers can handle network devices used for EtherCAT oper-
ation and “normal” Ethernet devices in parallel. A master can accept a certain
device and then is able to send and receive EtherCAT frames. Ethernet devices
declined by the master module are connected to the kernel’s network stack as
usual.

Application A program that uses the EtherCAT master (usually for cyclic exchange
of process data with EtherCAT slaves). These programs are not part of the
EtherCAT master code!, but have to be generated or written by the user. An
application can request a master through the application interface (see chap-
ter 3). If this succeeds, it has the control over the master: It can provide a bus
configuration and exchange process data. Applications can be kernel modules
(that use the kernel application interface directly) or userspace programs, that
use the application interface via the EtherCAT library (see section 7.2), or the
RTDM library (see section 7.3).

L Although there are some examples provided in the ezamples/ directory.

1.6.8, October 6, 2025)

2 Architecture

)
[0
Q
L}
‘I‘Y’
2153\ §
Userspace e = s
Application § o [0}
® g' &
- J
—
[0}
Q
:{r =
| I
23 =
LXET / Xenomai | 35 @
serspace =9) ' '
Application § %’- |g’~ ethercat
> a Tool
3
-
l
1
Userspace !
______________________________________ .
Kernelspace Character |
Device Device :
1
1
1
l
1
4 N e N . e !
Application Module EtherCAT Master Module Etehr(]eerrr:gt :
Driver Module |
l
8 % i
5 > Master 1 & !
| . %g_ n |
< | 88 5 5 |
Task 85 Master 0 % 2 |
%] (0] 1
s pd |
Generic S |
— Ethernet (= |
. Device !
Device |
_) N Interface) U))
ecdev_* () [netif_* () :
| 1
| N
Native EtherCAT-capable Ethernet Driver Standard !
Ethernet Driver I
1
l
net_device net_device net_device :
1
1
1
1
1
__ .
Hardwar '
ardware NIC NIC NIC i
1
[[] [] !
O O O
EtherCAT Ethernet EtherCAT
Figure 2.1: Master Architecture
6 1.6.8,

2.1 Master Module

2.1 Master Module

The EtherCAT master kernel module ec_master can contain multiple master instances.
Each master waits for certain Ethernet device(s) identified by its MAC address(es).
These addresses have to be specified on module loading via the main_devices (and
optional: backup_devices) module parameter. The number of master instances to
initialize is taken from the number of MAC addresses given.

The below command loads the master module with a single master instance that waits
for one Ethernet device with the MAC address 00:0E:0C:DA:A2:20. The master will
be accessible via index 0.

modprobe ec_master main devices=00:0E:0C:DA:A2:20
MAC addresses for multiple masters have to be separated by commas:
modprobe ec_master main devices=00:0E:0C:DA:A2:20,00:e0:81:71:d5:1c

The two masters can be addressed by their indices 0 and 1 respectively (see Figure 2.2).
The master index is needed for the ecrt_request_master () function of the application
interface (see chapter 3) and the --master option of the ethercat command-line tool
(see section 7.1), which defaults to 0.

Debug Level The master module also has a parameter debug_level to set the initial
debug level for all masters (see also subsection 7.1.7).

Init Script In most cases it is not necessary to load the master module and the
Ethernet driver modules manually. There is an init script available, so the master can
be started as a service (see section 7.4). For systems that are managed by systemd
[7], there is also a service file available.

Syslog The master module outputs information about its state and events to the
kernel ring buffer. These also end up in the system logs. The above module loading
command should result in the messages below:

dmesg | tail -2
EtherCAT: Master driver 1.6.8
EtherCAT: 2 masters waiting for devices.

tail -2 /var/log/messages

Jul 4 10:22:45 ethercat kernel: EtherCAT: Master driver 1.6.8

Jul 4 10:22:45 ethercat kernel: EtherCAT: 2 masters waiting
for devices.

Master output is prefixed with EtherCAT which makes searching the logs easier.

1.6.8, 7

2 Architecture

EtherCAT master module

Figure 2.2: Multiple masters in one module

8 1.6.8,

2.2 Master Phases

2.2 Master Phases

Every EtherCAT master provided by the master module (see section 2.1) runs through
several phases (see Figure 2.3):

Orphaned phase This mode takes effect, when the master still waits for its Ethernet
device(s) to connect. No bus communication is possible until then.

Idle phase takes effect when the master has accepted all required Ethernet devices,
but is not requested by any application yet. The master runs its state ma-
chine (see section 5.3), that automatically scans the bus for slaves and executes
pending operations from the userspace interface (for example SDO access). The
command-line tool can be used to access the bus, but there is no process data
exchange because of the missing bus configuration.

Operation phase The master is requested by an application that can provide a bus
configuration and exchange process data.

2.3 Process Data

This section shall introduce a few terms and ideas how the master handles process
data.

Process Data Image Slaves offer their inputs and outputs by presenting the mas-
ter so-called “Process Data Objects” (PDOs). The available PDOs can be either
determined by reading out the slave’s TxPDO and RxPDO SII categories from the
E2PROM (in case of fixed PDOs) or by reading out the appropriate CoE objects (see
section 6.2), if available. The application can register the PDOs’ entries for exchange
during cyclic operation. The sum of all registered PDO entries defines the “process
data image”, which is exchanged via datagrams with “logical” memory access (like

LWR, LRD or LRW) introduced in [2, sec. 5.4].

Process Data Domains The process data image can be easily managed by creat-
ing so-called “domains”, which allow grouped PDO exchange. They also take care
of managing the datagram structures needed to exchange the PDOs. Domains are
mandatory for process data exchange, so there has to be at least one. They were
introduced for the following reasons:

e The maximum size of a datagram is limited due to the limited size of an Eth-
ernet frame: The maximum data size is the Ethernet data field size minus the
EtherCAT frame header, EtherCAT datagram header and EtherCAT datagram
footer: 1500 — 2 — 12 — 2 = 1484 octets. If the size of the process data image
exceeds this limit, multiple frames have to be sent, and the image has to be
partitioned for the use of multiple datagrams. A domain manages this auto-
matically.

1.6.8, 9

2 Architecture

.\\ Device connection Master request
orphaned
Device disconnection Master release

Figure 2.3: Master phases and transitions

10 1.6.8,

2.3 Process Data

e Not every PDO has to be exchanged with the same frequency: The values of
PDOs can vary slowly over time (for example temperature values), so exchanging
them with a high frequency would just waste bus bandwidth. For this reason,
multiple domains can be created, to group different PDOs and so allow separate
exchange.

There is no upper limit for the number of domains, but each domain occupies one
FMMU in each slave involved, so the maximum number of domains is de facto limited
by the slaves.

FMMU Configuration An application can register PDO entries for exchange. Every
PDO entry and its parent PDO is part of a memory area in the slave’s physical
memory, that is protected by a sync manager [2, sec. 6.7] for synchronized access.
In order to make a sync manager react on a datagram accessing its memory, it is
necessary to access the last byte covered by the sync manager. Otherwise the sync
manager will not react on the datagram and no data will be exchanged. That is
why the whole synchronized memory area has to be included into the process data
image: For example, if a certain PDO entry of a slave is registered for exchange with
a certain domain, one FMMU will be configured to map the complete sync-manager-
protected memory, the PDO entry resides in. If a second PDO entry of the same slave
is registered for process data exchange within the same domain, and it resides in the
same sync-manager-protected memory as the first one, the FMMU configuration is
not altered, because the desired memory is already part of the domain’s process data
image. If the second PDO entry would belong to another sync-manager-protected
area, this complete area would also be included into the domains process data image.

Figure 2.4 gives an overview, how FMMUs are configured to map physical memory
to logical process data images.

1.6.8, 11

12

2 Architecture

Slave0 Slave1
Ram [SMO ﬁ'\m RAM SM3
I =Za Il LT TEEA
‘\ \\ , \\\ /// \\\ / //
\\\ \\‘ // \>/\ \\\ ///
S I T T
‘\ \\ ’ \ \ 4
\\ \\ /// /// \\\ \\\ ////
Domain0 Image \// / Domain1 Image

/
\

\HH%\HV%H

Registered PDO Entries

Figure 2.4: FMMU Configuration

1.6.8,

3 Application Interface

The application interface provides functions and data structures for applications to
access an EtherCAT master. The complete documentation of the interface is included
as Doxygen [13] comments in the header file include/ecrt.h (see section 3.6). It can
either be read directly from the file comments, or as a more comfortable HT'ML
documentation. The HTML generation is described in section 9.3.

The following sections cover a general description of the application interface.

Every application should use the master in two steps:

Configuration The master is requested and the configuration is applied. For example,
domains are created, slaves are configured and PDO entries are registered (see
section 3.1).

Operation Cyclic code is run and process data are exchanged (see section 3.2).

Example Applications There are a few example applications in the ezamples/ sub-
directory of the master code. They are documented in the source code.

3.1 Master Configuration

The bus configuration is supplied via the application interface. Figure 3.1 gives an
overview of the objects, that can be configured by the application.

3.1.1 Slave Configuration

The application has to tell the master about the expected bus topology. This can
be done by creating “slave configurations”. A slave configuration can be seen as an
expected slave. When a slave configuration is created, the application provides the
bus position (see below), vendor id and product code.

When the bus configuration is applied, the master checks, if there is a slave with
the given vendor id and product code at the given position. If this is the case,
the slave configuration is “attached” to the real slave on the bus and the slave is
configured according to the settings provided by the application. The state of a slave
configuration can either be queried via the application interface or via the command-
line tool (see subsection 7.1.3).

1.6.8, October 6, 2025 13

3 Application Interface

14

Master

Index

n
>

n

Slave Configuration

Alias

Position
Vendor ID
Product Code

Sync Manager

Index
Direction

PDO

Index

SDO Configuration
\n» Index

Subindex
Data

SDO Request

Index
Subindex

Figure 3.1: Master Configuration

PDO Entry

Index
Subindex
Bitlength

1.6.8,

3.2 Cyclic Operation

Slave Position The slave position has to be specified as a tuple of “alias” and
“position”. This allows addressing slaves either via an absolute bus position, or a
stored identifier called “alias”, or a mixture of both. The alias is a 16-bit value
stored in the slave’s E?PROM. It can be modified via the command-line tool (see
subsection 7.1.2). Table 3.1 shows, how the values are interpreted.

Table 3.1: Specifying a Slave Position

Alias Position | Interpretation

0 0 — 65535 | Position addressing. The position pa-
rameter is interpreted as the absolute
ring position in the bus.
1 — 65535 | 0 — 65535 | Alias addressing. The position param-
eter is interpreted as relative position
after the first slave with the given alias
address.

Figure 3.2 shows an example of how slave configurations are attached. Some of the
configurations were attached, while others remain detached. The below lists gives the
reasons beginning with the top slave configuration.

1. A zero alias means to use simple position addressing. Slave 1 exists and vendor
id and product code match the expected values.

2. Although the slave with position 0 is found, the product code does not match,
so the configuration is not attached.

3. The alias is non-zero, so alias addressing is used. Slave 2 is the first slave with
alias 0x2000. Because the position value is zero, the same slave is used.

4. There is no slave with the given alias, so the configuration can not be attached.

5. Slave 2 is again the first slave with the alias 0x2000, but position is now 1, so
slave 3 is attached.

If the master sources are configured with --enable-wildcards, then Oxffffffff matches
every vendor ID and/or product code.

3.2 Cyclic Operation

To enter cyclic operation mode, the master has to be “activated” to calculate the
process data image and apply the bus configuration for the first time. After activation,
the application is in charge to send and receive frames. The configuration can not be
changed after activation.

1.6.8, 15

3 Application Interface

16

Slaves Slave Configurations
0 [Vendor: 0x00000001 Alias: 0x0000
Product: 0x00000001 Position: 1
Alias: 0x0000 Vendor: 0x00000002
Product: 0x00000004
1 [Vendor: 0x00000002 Alias: 0x0000
Product: 0x00000004 -.|Position: 0
Alias: 0x1000 Vendor: 0x00000001
Product: 0x00000002
2 [Vendor: 0x00000001 Alias: 0x2000
Product: 0x00000002 ——— |Position: 0
Alias: 0x2000 Vendor: 0x00000001
Product: 0x00000002
3 [Vendor: 0x00000001 Alias: 0x3000
Product: 0x00000002 Position: 0
Alias: 0x0000 Vendor: 0x00000001
Product: 0x00000002
Alias: 0x2000
Position: 1
Vendor: 0x00000001
Product: 0x00000002

Figure 3.2: Slave Configuration Attachment

1.6.8,

3.3 VoE Handlers

3.3 VoE Handlers

During the configuration phase, the application can create handlers for the VoE mail-
box protocol described in section 6.3. One VoE handler always belongs to a certain
slave configuration, so the creation function is a method of the slave configuration.

A VoE handler manages the VoE data and the datagram used to transmit and receive
VoE messages. Is contains the state machine necessary to transfer VoE messages.

The VoE state machine can only process one operation at a time. As a result, either
a read or write operation may be issued at a time!. After the operation is initiated,
the handler must be executed cyclically until it is finished. After that, the results of
the operation can be retrieved.

A VoE handler has an own datagram structure, that is marked for exchange after each
execution step. So the application can decide, how many handlers to execute before
sending the corresponding EtherCAT frame(s).

For more information about the use of VoE handlers see the documentation of the
application interface functions and the example applications provided in the exzamples/
directory.

3.4 Concurrent Master Access

In some cases, one master is used by several instances, for example when an application
does cyclic process data exchange, and there are EoE-capable slaves that require to
exchange Ethernet data with the kernel (see section 6.1). For this reason, the master
is a shared resource, and access to it has to be sequentialized. This is usually done
by locking with semaphores, or other methods to protect critical sections.

The master itself can not provide locking mechanisms, because it has no chance to
know the appropriate kind of lock. For example if the application is in kernelspace
and uses RTAI functionality, ordinary kernel semaphores would not be sufficient. For
that, an important design decision was made: The application that reserved a master
must have the total control, therefore it has to take responsibility for providing the
appropriate locking mechanisms. If another instance wants to access the master, it has
to request the bus access via callbacks, that have to be provided by the application.
Moreover the application can deny access to the master if it considers it to be awkward
at the moment.

Figure 3.3 exemplary shows, how two processes share one master: The application’s
cyclic task uses the master for process data exchange, while the master-internal EoE
process uses it to communicate with EoE-capable slaves. Both have to access the bus
from time to time, but the EoE process does this by “asking” the application to do
the bus access for it. In this way, the application can use the appropriate locking

'Tf simultaneous sending and receiving is desired, two VoE handlers can be created for the slave
configuration.

1.6.8, 17

3 Application Interface

Master Module
Application Module

uoneoddy

2
3
S
o
8
3

Figure 3.3: Concurrent Master Access

1.6.8,

18

3.5 Distributed Clocks

mechanism to avoid accessing the bus at the same time. See the application interface
documentation (chapter 3) for how to use these callbacks.

3.5 Distributed Clocks

From version 1.5, the master supports EtherCAT’s “Distributed Clocks” feature. It
is possible to synchronize the slave clocks on the bus to the “reference clock” (which
is the local clock of the first slave with DC support) and to synchronize the reference
clock to the “master clock” (which is the local clock of the master). All other clocks
on the bus (after the reference clock) are considered as “slave clocks” (see Figure 3.4).

Local Clocks Any EtherCAT slave that supports DC has a local clock register with
nanosecond resolution. If the slave is powered, the clock starts from zero, meaning
that when slaves are powered on at different times, their clocks will have different
values. These “offsets” have to be compensated by the distributed clocks mechanism.
On the other hand, the clocks do not run exactly with the same speed, since the
used quarts units have a natural frequency deviation. This deviation is usually very
small, but over longer periods, the error would accumulate and the difference between
local clocks would grow. This clock “drift” has also to be compensated by the DC
mechanism.

Application Time The common time base for the bus has to be provided by the
application. This application time ¢, is used

1. to configure the slaves’ clock offsets (see below),
2. to program the slave’s start times for sync pulse generation (see below).

3. to synchronize the reference clock to the master clock (optional).

Offset Compensation For the offset compensation, each slave provides a “System
Time Offset” register t.g, that is added to the internal clock value t;,; to get the
“System Time” tgys:

tsys = tint + ot (31)
= liny = tsys — toft

The master reads the values of both registers to calculate a new system time offset in
a way, that the resulting system time shall match the master’s application time Z,pp:

1.6.8, 19

3 Application Interface

Slave 0 Slave 1 Slave 2 Slave n
Master Clock (No DC) @ @ o @
/ /

Reference Clock Slave Clocks

Figure 3.4: Distributed Clocks

20 1.6.8,

3.5 Distributed Clocks

tos = tapp (3.2)
= ting +lot = tapp
= tot = tapp — tint
= tof = lapp — (tsys — toft)
=t = tapp — teys + bofr (3.3)

The small time offset error resulting from the different times of reading and writing
the registers will be compensated by the drift compensation.

Drift Compensation The drift compensation is possible due to a special mechanism
in each DC-capable slave: A write operation to the “System time” register will cause
the internal time control loop to compare the written time (minus the programmed
transmission delay, see below) to the current system time. The calculated time error
will be used as an input to the time controller, that will tune the local clock speed to
be a little faster or slower?, according to the sign of the error.

Transmission Delays The Ethernet frame needs a small amount of time to get from
slave to slave. The resulting transmission delay times accumulate on the bus and
can reach microsecond magnitude and thus have to be considered during the drift
compensation. EtherCAT slaves supporting DC provide a mechanism to measure the
transmission delays: For each of the four slave ports there is a receive time register.
A write operation to the receive time register of port 0 starts the measuring and the
current system time is latched and stored in a receive time register once the frame
is received on the corresponding port. The master can read out the relative receive
times, then calculate time delays between the slaves (using its knowledge of the bus
topology), and finally calculate the time delays from the reference clock to each slave.
These values are programmed into the slaves’ transmission delay registers. In this
way, the drift compensation can reach nanosecond synchrony.

Checking Synchrony DC-capable slaves provide the 32-bit “System time difference”
register at address 0x092¢c, where the system time difference of the last drift compensa-
tion is stored in nanosecond resolution and in sign-and-magnitude coding®. To check
for bus synchrony, the system time difference registers can also be cyclically read via
the command-line-tool (see subsection 7.1.16):

$ watch -nO "ethercat reg.read -p4 -tsm32 0x92c"

2The local slave clock will be incremented either with 9 ns, 10 ns or 11 ns every 10 ns.
3This allows broadcast-reading all system time difference registers on the bus to get an upper
approximation

1.6.8, 21

© 0 N O O A W N

W W W W W NN NDNNDNDNDDNDNDN R = = e e e e e e e
W N R O O 000Utk WN RO ®© N0 WN = O

35
36

3 Application Interface

Sync Signals Synchronous clocks are only the prerequisite for synchronous events
on the bus. Each slave with DC support provides two “sync signals”, that can be
programmed to create events, that will for example cause the slave application to
latch its inputs on a certain time. A sync event can either be generated once or
cyclically, depending on what makes sense for the slave application. Programming
the sync signals is a matter of setting the so-called “AssignActivate” word and the
sync signals’ cycle- and shift times. The AssignActivate word is slave-specific and has
to be taken from the XML slave description (Device — Dc), where also typical sync
signal configurations “OpModes” can be found.

3.6 Application Interface Header

The application interface of the EtherCAT master is defined in the header file in-
clude/ecrt.h (acronym for “EtherCAT Real-Time”) which is listed in this section. The
calling conventions of all methods are documented in the comments of this header.
There is also a Doxygen-generated [13] online version at https://docs.etherlab.
org.

Listing 3.1: Application Interface Header ecrt.h

/3% s sk ok ok sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok sk sk sk sk ok ok ok sk sk sk ok ok ok sk sk ok sk ok ok ok sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk sk ok ok ok ok sk ok ok ok ok
Copyright (C) 2006-2024 Florian Pose, Ingenieurgemeinschaft IgH

This file is part of the IgH EtherCAT master userspace library.

The IgH EtherCAT master userspace library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser General

Public License as published by the Free Software Foundation; version 2.1
of the License.

it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License

along with the IgH EtherCAT master userspace library. If not, see
<http://www.gnu.org/licenses/>.

*
*
*
*
*
*
*
*
* The IgH EtherCAT master userspace library is distributed in the hope that
*
*
*
*
*
*
*
*
ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok k /
/*x \file

* EtherCAT master application interface.

*

* \defgroup ApplicationInterface EtherCAT Application Interface

*

* EtherCAT interface for realtime applications. This interface is designed
* for realtime modules that want to use EtherCAT. There are functions to
*
*
*
*
*
*

request a master, to map process data, to communicate with slaves via CoE
and to configure and activate the bus.

Changes in version 1.6.0:

22 1.6.8,

https://docs.etherlab.org
https://docs.etherlab.org

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

3.6 Application Interface Header

* X X X X K K K K K K K X X X X X X X K K K K K K K K X ¥ X ¥ X K K K K K K K K ¥ X ¥ X ¥ F ¥ K K K K K * * ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ * * *

1.6.8,

Added the ecrt_master_scan_progress () method, the
ec_master_scan_progress_t structure and the EC_HAVE_SCAN_PROGRESS
definition to check for its existence.

Added the EoE configuration methods ecrt_slave_config_eoe_mac_address (),
ecrt_slave_config_eoe_ip_address (), ecrt_slave_config_eoe_subnet_mask(),
ecrt_slave_config_eoe_default_gateway (),
ecrt_slave_config_eoe_dns_address (),

ecrt_slave_config_eoe_hostname () and the EC_HAVE_SET_IP

definition to check for its existence.

Added ecrt_slave_config_state_timeout() to set the application-layer
state change timeout and EC_HAVE_STATE_TIMEOUT to check for its
existence.

Changes since version 1.5.2:

Added the ecrt_slave_config_flag() method and the EC_HAVE_FLAGS
definition to check for its existence.

Added SoE IDN requests, including the datatype ec_soe_request_t and the
methods ecrt_slave_config_create_soe_request (),
ecrt_soe_request_object (), ecrt_soe_request_timeout (),
ecrt_soe_request_data(), ecrt_soe_request_data_size(),
ecrt_soe_request_state(), ecrt_soe_request_write() and
ecrt_soe_request_read (). Use the EC_HAVE_SOE_REQUESTS to check, if the
functionality is available.

Changes in version 1.5.2:

Added redundancy_active flag to ec_domain_state_t.

Added ecrt_master_link_state() method and ec_master_link_state_t to query
the state of a redundant link.

Added the EC_HAVE_REDUNDANCY define, to check, if the interface contains
redundancy features.

Added ecrt_sdo_request_index() to change SDO index and subindex after
request creation.

Added interface for retrieving CoE emergency messages, i. e.
ecrt_slave_config_emerg_size (), ecrt_slave_config_emerg_pop(),
ecrt_slave_config_emerg_clear (), ecrt_slave_config_emerg_overruns () and
the defines EC_HAVE_EMERGENCY and EC_COE_EMERGENCY_MSG_SIZE.

Added interface for direct EtherCAT register access: Added data type
ec_reg_request_t and methods ecrt_slave_config_create_reg_request (),
ecrt_reg_request_data(), ecrt_reg_request_state(),
ecrt_reg_request_write(), ecrt_reg_request_read() and the feature flag
EC_HAVE_REG_ACCESS.

Added method to select the reference clock,
ecrt_master_select_reference_clock() and the feature flag
EC_HAVE_SELECT_REF_CLOCK to check, if the method is available.

Added method to get the reference clock time,
ecrt_master_reference_clock_time () and the feature flag
EC_HAVE_REF_CLOCK_TIME to have the possibility to synchronize the master
clock to the reference clock.

Changed the data types of the shift times in ecrt_slave_config_dc() to
int32_t to correctly display negative shift times.

Added ecrt_slave_config_reg_pdo_entry_pos() and the feature flag
EC_HAVE_REG_BY_POS for registering PDO entries with non-unique indices
via their positions in the mapping.

Changes in version 1.5:

Added the distributed clocks feature and the respective method
ecrt_slave_config_dc() to configure a slave for cyclic operation, and
ecrt_master_application_time (), ecrt_master_sync_reference_clock() and
ecrt_master_sync_slave_clocks() for offset and drift compensation. The
EC_TIMEVAL2NANO () macro can be used for epoch time conversion, while the
ecrt_master_sync_monitor_queue () and ecrt_master_sync_monitor_process ()
methods can be used to monitor the synchrony.

Improved the callback mechanism. ecrt_master_callbacks() now takes two

23

103
104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162

164
165
166
167
168

3 Application Interface

callback functions for sending and receiving datagrams.
ecrt_master_send_ext () is used to execute the sending of non-application
datagrams.

- Added watchdog configuration (method ecrt_slave_config_watchdog(),
#ec_watchdog_mode_t, \a watchdog_mode parameter in ec_sync_info_t and
ecrt_slave_config_sync_manager ()).

- Added ecrt_slave_config_complete_sdo() method to download an SDO during
configuration via CompleteAccess.

- Added ecrt_master_deactivate() to remove the master configuration.

- Added ecrt_open_master () and ecrt_master_reserve() separation for
userspace.

- Added master information interface (methods ecrt_master (),
ecrt_master_get_slave (), ecrt_master_get_sync_manager (),
ecrt_master_get_pdo() and ecrt_master_get_pdo_entry()) to get information
about the currently connected slaves and the PDO entries provided.

- Added ecrt_master_sdo_download(), ecrt_master_sdo_download_complete() and
ecrt_master_sdo_upload () methods to let an application transfer SDOs
before activating the master.

- Changed the meaning of the negative return values of
ecrt_slave_config_reg_pdo_entry() and ecrt_slave_config_sdox*().

- Implemented the Vendor-specific over EtherCAT mailbox protocol. See
ecrt_slave_config_create_voe_handler ().

- Renamed ec_sdo_request_state_t to #ec_request_state_t, because it is also
used by VoE handlers.

- Removed ’const’ from argument of ecrt_sdo_request_state(), because the
userspace library has to modify object internals.

- Added 64-bit data access macros.

- Added ecrt_slave_config_idn() method for storing SoE IDN configurations,
and ecrt_master_read_idn() and ecrt_master_write_idn() to read/write IDNs
ad-hoc via the user-space library.

- Added ecrt_master_reset() to initiate retrying to configure slaves.

e{
/

¥ ¥ X X X K K K K K K K X X X X X X X K K K K K K K ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

/* ***/

#ifndef __ECRT_H__

#define __ECRT_H__

#ifdef __KERNEL__

#include <asm/byteorder.h>

#include <linux/types.h>

#include <linux/time.h>

#include <linux/in.h> // struct in_addr
#else

#include <stdlib.h> // for size_t
#include <stdint.h>

#include <sys/time.h> // for struct timeval
#include <netinet/in.h> // struct in_addr
#endif

/% % ok ok %k sk ok ok K k ok ok K ok ok %k k ok ok 3 3k ok ok %k K sk ok 5 3k ok ok %k K sk ok 5k 3K 3k ok ok 3k 3 ok ok 3 3 ok ok 3 3 5k ok 3 3k 5k ok % 5k ok %k % >k >k % %k * >k %k % * >k *k % * k
* Global definitions
5k ok 3K K sk ok K K ok ok K K sk ok K 3k sk ok K 3k sk ok ok K sk ok ok 3k sk ok ok 3k ok ok 3k ok ok 3k 3k ok ok K 3k ok ok %k 3 ok ok % %k sk ok % % sk ok %k %k sk ok %k % 3k ok K % %k ok k %k k k /

/** EtherCAT realtime interface major version number.
*/
#define ECRT_VER_MAJOR 1

/** EtherCAT realtime interface minor version number.
*/
#define ECRT_VER_MINOR 6

/** EtherCAT realtime interface version word generator.

*/

24 1.6.8,

3.6 Application Interface Header

169 #define ECRT_VERSION(a, b) (((a) << 8) + (b))

170
171 /** EtherCAT realtime interface version word.
172 */

173 #define ECRT_VERSION_MAGIC ECRT_VERSION(ECRT_VER_MAJOR, ECRT_VER_MINOR)

LT /% ok ookok ok okok s ok ok ook ok ook ok s ok ok ok ok o ok ko ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok Ok R ok Ok ok
176 * Feature flags

177 sk sk ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok sk sk K sk sk ok sk ok ok ok sk K sk ok ok ok ok ok sk ok ok ok K ok sk ok sk K ok ok ok ok sk o ok sk ok ok ok ok sk R ok sk ok ok ok ok /
178

179 /** Defined, if the redundancy features are available.

180 *

181 * I. e. if the \a redundancy_active flag in ec_domain_state_t and the

182 * ecrt_master_link_state() method are available.

183 */

184 #define EC_HAVE_REDUNDANCY

185

186 /** Defined, if the CoE emergency ring feature is available.

187 *

188 * I. e. if the ecrt_slave_config_emerg_x*() methods are available.

189 */

190 #define EC_HAVE_EMERGENCY

191

192 /** Defined, if the register access interface is available.

193 *

194 * I. e. if the methods ecrt_slave_config_create_reg_request(),

195 * ecrt_reg_request_data(), ecrt_reg_request_state(), ecrt_reg_request_write ()
196 * and ecrt_reg_request_read() are available.

197 */

198 #define EC_HAVE_REG_ACCESS

199

200 /** Defined if the method ecrt_master_select_reference_clock() is available.
201 */

202 #define EC_HAVE_SELECT_REF_CLOCK

203

204 /** Defined if the method ecrt_master_reference_clock_time() is available.
205 */

206 #define EC_HAVE_REF_CLOCK_TIME

207

208 /** Defined if the method ecrt_slave_config_reg_pdo_entry_pos() is available.
209 */

210 #define EC_HAVE_REG_BY_POS

211

212 /*x Defined if the method ecrt_master_sync_reference_clock_to() is available.
213 */

214 #define EC_HAVE_SYNC_TO

215

216 /** Defined if the method ecrt_slave_config_flag() is available.

217 */

218 #define EC_HAVE_FLAGS

219

220 /** Defined if the methods ecrt_slave_config_create_soe_request (),

221 * ecrt_soe_request_object (), ecrt_soe_request_timeout (),

222 * ecrt_soe_request_data(), ecrt_soe_request_data_size(),

223 * ecrt_soe_request_state(), ecrt_soe_request_write() and

224 * ecrt_soe_request_read() and the datatype ec_soe_request_t are available.
225 */

226 #define EC_HAVE_SOE_REQUESTS

227

228 /*x Defined, if the method ecrt_master_scan_progress () and the

229 * ec_master_scan_progress_t structure are available.

230 */

231 #define EC_HAVE_SCAN_PROGRESS

232

233 /** Defined, if the methods ecrt_slave_config_eoe_mac_address (),

234 * ecrt_slave_config_eoe_ip_address (), ecrt_slave_config_eoe_subnet_mask(),

1.6.8, 25

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257
258
259

261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294

296
297
298
299
300

3 Application Interface

* ecrt_slave_config_eoe_default_gateway(),
* ecrt_slave_config_eoe_dns_address (), ecrt_slave_config_eoe_hostname() are
* available.
*/
#define EC_HAVE_SET_IP

/** Defined, if the method ecrt_slave_config_state_timeout () is available.
*/
#define EC_HAVE_STATE_TIMEOQOUT

/**/

/** Symbol visibility control macro.
*/
#ifndef EC_PUBLIC_API
if defined(ethercat_EXPORTS) && !'defined(__KERNEL__)
define EC_PUBLIC_API _attribute_ ((Visibility ("default")))
else
define EC_PUBLIC_API
#
#

endif
endif

/3 % sk 5k sk ok ok sk ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok sk ok sk K ok 3k sk ok sk ok ok sk ok ok K sk K sk ok sk ok % ok ok sk ok ok %k sk ok %k ok ok ok sk K ok K sk ok k ok kok ok ok /

/** End of list marker.
*

* This can be used with ecrt_slave_config_pdos().
*/
#define EC_END ~0U

/** Maximum number of sync managers per slave.
*/
#define EC_MAX_SYNC_MANAGERS 16

/** Maximum string length.
*

* Used in ec_slave_info_t.
*/
#define EC_MAX_STRING_LENGTH 64

/** Maximum number of slave ports. */
#define EC_MAX_PORTS 4

/** Timeval to nanoseconds conversion.
*

This macro converts a Unix epoch time to EtherCAT DC time.

*
*
* \see void ecrt_master_application_time ()
*

* \param TV struct timeval containing epoch time.
*/
#define EC_TIMEVAL2NANO(TV) \
(C(TV) .tv_sec - 946684800ULL) * 1000000000ULL + (TV).tv_usec * 1000ULL)

/** Size of a CoE emergency message in byte.
*

* \see ecrt_slave_config_emerg_pop ().
*/
#define EC_COE_EMERGENCY_MSG_SIZE 8

/3 s 3k ok ok ok ok ok ok ok ok ok ok ok o oK ok o ok ok ok ok oK ok oK ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok sk K ok ok ok ok ok K ok sk K ok ok ok ok ok K ok ok K ok ok K oK K oK
* Data types

**/

struct ec_master;
typedef struct ec_master ec_master_t; /**< \see ec_master x*/

26 1.6.8,

3.6 Application Interface Header

301

302 struct ec_slave_config;

303 typedef struct ec_slave_config ec_slave_config_t; /**< \see ec_slave_config */
304

305 struct ec_domain;

306 typedef struct ec_domain ec_domain_t; /**< \see ec_domain */

307

308 struct ec_sdo_request;

309 typedef struct ec_sdo_request ec_sdo_request_t; /**< \see ec_sdo_request. */
310

311 struct ec_soe_request;

312 typedef struct ec_soe_request ec_soe_request_t; /**< \see ec_soe_request. */
313

314 struct ec_voe_handler;

315 typedef struct ec_voe_handler ec_voe_handler_t; /**< \see ec_voe_handler. x/
316

317 struct ec_reg_request;

318 typedef struct ec_reg_request ec_reg_request_t; /**< \see ec_reg_request. */
319

320/ % sk sk ok ok ok ok sk ok sk ok ok ok sk sk ok sk ok ok ok sk sk sk sk ok ok ok sk ok sk sk ok ok ok sk ok sk sk ok ok ok sk sk sk ok ok ok ok sk sk sk K ok ok sk ok sk s K ok ok ok ok sk K ok ok ok ok sk ok ok ok ok ok %k /
321

322 /*x Master state.

323 *

324 * This is used for the output parameter of ecrt_master_state ().

325 *

326 * \see ecrt_master_state().

327 */

328 typedef struct {

329 unsigned int slaves_responding; /**< Sum of responding slaves on all

330 Ethernet devices. */

331 unsigned int al_states : 4; /x*< Application-layer states of all slaves.
332 The states are coded in the lower 4 bits.
333 If a bit is set, it means that at least one
334 slave in the network is in the corresponding
335 state:

336 - Bit 0: \a INIT

337 - Bit 1: \a PREOP

338 - Bit 2: \a SAFEOQOP

339 - Bit 3: \a 0P */

340 unsigned int link_up : 1; /**< \a true, if at least one Ethernet link is
341 up. */

342 } ec_master_state_t;

343

344 /% ko ok K ok o ok ok ok ok /
345
346 /** Redundant link state.

347 *

348 * This is used for the output parameter of ecrt_master_link_state().

349 *

350 * \see ecrt_master_link_state().

351 */

352 typedef struct {

353 unsigned int slaves_responding; /**< Sum of responding slaves on the given
354 link. x/

355 unsigned int al_states : 4; /*x*< Application-layer states of the slaves on
356 the given link. The states are coded in the
357 lower 4 bits. If a bit is set, it means

358 that at least one slave in the network is in
359 the corresponding state:

360 - Bit 0: \a INIT

361 - Bit 1: \a PREOP

362 - Bit 2: \a SAFEOQOP

363 - Bit 3: \a 0P */

364 unsigned int link_up : 1; /**< \a true, if the given Ethernet link is up.
365 */

366 } ec_master_link_state_t;

1.6.8, 27

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

3 Application Interface

/% 3k %k 5k 3k %k ok sk %k ok ok %k %k ok sk %k ok sk %k ok 3k %k ok 5k % 5k >k %k 5k 5k %k % 5k %k %k 5k 3k %k >k 3k % 5k 3k % 5k 3k % 5k >k % 5k > % %k >k % % >k % % >k % % >k 3% % >k % % %k %k % *k *k *k x /

/** Slave configuration state.
*

* This is used as an output parameter of ecrt_slave_config_state().
*

* \see ecrt_slave_config_state().

*/
typedef struct {
unsigned int online : 1; /*%< The slave is online. */
unsigned int operational : 1; /**< The slave was brought into \a 0P state
using the specified configuration. */
unsigned int al_state : 4; /**< The application-layer state of the slave.
- 1: \a INIT
- 2: \a PREOP
- 4: \a SAFEOP
- 8: \a 0P

Note that each state is coded in a different
bit! */
¥ ec_slave_config_state_t;

/**/

/** Master information.

*
* This is used as an output parameter of ecrt_master ().
*

* \see ecrt_master ().

*/

typedef struct {
unsigned int slave_count; /**< Number of slaves in the network. */
unsigned int link_up : 1; /**< \a true, if the network link is up. */
uint8_t scan_busy; /**< \a true, while the master is scanning the network.
*/
uint64_t app_time; /**< Application time. */
} ec_master_info_t;

/**/

/** Master scan progress information.
*
* This is used as an output parameter of ecrt_master_scan_progress().
*
* \see ecrt_master_scan_progress ().
*/
typedef struct {
unsigned int slave_count; /**< Number of slaves detected. */
unsigned int scan_index; /**< Index of the slave that is currently

scanned. If it is less than the \a
slave_count, the network scan is in progress.
*/

} ec_master_scan_progress_t;
/3 3 s ok sk ok %k ok %k ok %k sk %k sk ok %k ok % ok %k 5k % 5k %k 3k ok % 5k % ok % 5k % 5k % 3k K % ok % >k % 5k % 5k % 5 %k % >k % >k % >k % > % 5k % % >k % >k % >k % > % k *k k *k k k% * /

/** EtherCAT slave port descriptor.
*/

typedef enum {
EC_PORT_NOT_IMPLEMENTED, /#**< Port is not implemented. */
EC_PORT_NOT_CONFIGURED, /*#*< Port is not configured. x*/
EC_PORT_EBUS, /**< Port is an E-Bus. x*/
EC_PORT_MII /**< Port is a MII. x*/

} ec_slave_port_desc_t;

28 1.6.8,

3.6 Application Interface Header

A33 /K Kk ok ok ok ok ok ok K ok ok K KoK K oK oK K oK K K KK K KoK K KK K KK K KK K KK K KK K KK KK KK KR K KK KO Ko K K K R kK Rk k k /
434
435 /** EtherCAT slave port information.

436 */

437 typedef struct {

438 uint8_t link_up; /#**< Link detected. */

439 uint8_t loop_closed; /#**< Loop closed. */

440 uint8_t signal_detected; /**< Detected signal on RX port. x/
441 } ec_slave_port_link_t;

442

A43 /% oskok sk sk ok sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk s sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk o sk ok sk ok sk ok sk o sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok % /
444
445 /** Slave information.

446 *

447 * This is used as an output parameter of ecrt_master_get_slave().

448 *

449 * \see ecrt_master_get_slave().

450 */

451 typedef struct {

452 uint16_t position; /**< Offset of the slave in the ring. */

453 uint32_t vendor_id; /**< Vendor-ID stored on the slave. */

454 uint32_t product_code; /*%x< Product-Code stored on the slave. */

455 uint32_t revision_number; /**< Revision-Number stored on the slave. */
456 uint32_t serial_number; /**< Serial-Number stored on the slave. */
457 uintl6_t alias; /**< The slaves alias if not equal to 0. */

458 int16_t current_on_ebus; /**< Used current in mA. %/

459 struct {

460 ec_slave_port_desc_t desc; /**< Physical port type. */

461 ec_slave_port_link_t link; /**< Port link state. */

462 uint32_t receive_time; /**< Receive time on DC transmission delay
463 measurement . */

464 uintl16_t next_slave; /**< Ring position of next DC slave on that
465 port. x/

466 uint32_t delay_to_next_dc; /**< Delay [ns] to next DC slave. */
467 } ports[EC_MAX_PORTS]; /#**< Port information. */

468 uint8_t al_state; /**< Current state of the slave. */

469 uint8_t error_flag; /**< Error flag for that slave. */

470 uint8_t sync_count; /**< Number of sync managers. */

471 uint16_t sdo_count; /**< Number of SDOs. */

472 char name [EC_MAX_STRING_LENGTH]; /**< Name of the slave. */

473 } ec_slave_info_t;

474

AT5 /% sk ok skok ok okok ok ok ok ok sk ok okok ok ok sk ok ko ok ok ok ok sk sk ok ok ok ok ok sk ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok /
476
477 /** Domain working counter interpretation.

478 *

479 * This is used in ec_domain_state_t.

480 */

481 typedef enum {

482 EC_WC_ZERO = O, /*x< No registered process data were exchanged. x/
483 EC_WC_INCOMPLETE, /**< Some of the registered process data were

484 exchanged. */

485 EC_WC_COMPLETE /**%< All registered process data were exchanged. */
486 } ec_wc_state_t;

487

U8R /% kak sk okok o ok ok o ok ok ok ok ok ok ok o ok ok o ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok k /
489
490 /** Domain state.

491 *

492 * This is used for the output parameter of ecrt_domain_state().

493/

494 typedef struct {

495 unsigned int working_counter; /**< Value of the last working counter. x/
496 ec_wc_state_t wc_state; /**< Working counter interpretation. */

497 unsigned int redundancy_active; /**< Redundant link is in use. */

498 } ec_domain_state_t;

1.6.8, 29

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

3 Application Interface

/3 3% sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok k ok k ok ok /

/** Direction type for PDO assignment functions.

*/

typedef enum {
EC_DIR_INVALID, /**< Invalid direction. Do not use this value. */
EC_DIR_OUTPUT, /**< Values written by the master. x/
EC_DIR_INPUT, /*#*< Values read by the master. x/
EC_DIR_COUNT /#**< Number of directions. For intermnal use only. */

} ec_direction_t;

/**/

/** Watchdog mode for sync manager configuration.
*
* Used to specify, if a sync manager’s watchdog is to be enabled.
*/
typedef enum {
EC_WD_DEFAULT, /#**< Use the default setting of the sync manager. */
EC_WD_ENABLE, /#*#*< Enable the watchdog. */
EC_WD_DISABLE, /#**< Disable the watchdog. */
} ec_watchdog_mode_t;

/3 % sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok ok ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok ko k k ok ok ok ok /

/** PDO entry configuration information.
*
* This is the data type of the \a entries field in ec_pdo_info_t.
*
* \see ecrt_slave_config_pdos ().
*/
typedef struct {
uint16_t index; /**< PDO entry index. x/
uint8_t subindex; /*x< PDO entry subindex. */
uint8_t bit_length; /**< Size of the PDO entry in bit. */
} ec_pdo_entry_info_t;

/3 % sk 5k sk ok ok sk ok ok ok sk ok sk ok sk sk ok ok ok sk ok sk 3k sk ok ok ok sk ok sk ok sk ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok %k ok k ok ok sk ok K k ok k ok kok ok ok /

/** PDO configuration information.
*
* This is the data type of the \a pdos field in ec_sync_info_t.
*
* \see ecrt_slave_config_pdos ().
*/
typedef struct {
uintl16_t index; /**< PDO index. */
unsigned int n_entries; /**< Number of PDO entries in \a entries to map.
Zero means, that the default mapping shall be
used (this can only be done if the slave is
present at configuration time). */
ec_pdo_entry_info_t const *entries; /**< Array of PDO entries to map. Can
either be \a NULL, or must contain
at least \a n_entries values. */
} ec_pdo_info_t;

/**/

/** Sync manager configuration information.

*

* This can be use to configure multiple sync managers including the PDO
* assignment and PDO mapping. It is used as an input parameter type in
* ecrt_slave_config_pdos ().

*/

typedef struct {

30 1.6.8,

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

3.6 Application Interface Header

uint8_t index; /**< Sync manager index. Must be less
than #EC_MAX_SYNC_MANAGERS for a valid sync manager,
but can also be \a Oxff to mark the end of the list. */
ec_direction_t dir; /**< Sync manager direction. */
unsigned int n_pdos; /**< Number of PDOs in \a pdos. */
ec_pdo_info_t const *pdos; /**< Array with PDOs to assign. This must
contain at least \a n_pdos PDOs. */
ec_watchdog_mode_t watchdog_mode; /**< Watchdog mode. */
} ec_sync_info_t;

/**/

/** List record type for PDO entry mass-registration.
*
* This type is used for the array parameter of the
* ecrt_domain_reg_pdo_entry_list ()
*/
typedef struct {
uint16_t alias; /#**< Slave alias address. *x/
uint16_t position; /**< Slave position. */
uint32_t vendor_id; /**< Slave vendor ID. x*/
uint32_t product_code; /**< Slave product code. */
uint16_t index; /**< PDO entry index. */
uint8_t subindex; /**< PDO entry subindex. */
unsigned int *offset; /**< Pointer to a variable to store the PDO entry’s
(byte-)offset in the process data. */
unsigned int *bit_position; /**< Pointer to a variable to store a bit
position (0-7) within the \a offset. Can be
NULL, in which case an error is raised if
the PDO entry does not byte-align. */
} ec_pdo_entry_reg_t;

/**/

/** Request state.
*
* This is used as return type for ecrt_sdo_request_state() and
* ecrt_voe_handler_state ().
*/
typedef enum {
EC_REQUEST_UNUSED, /**< Not requested. */
EC_REQUEST_BUSY, /**< Request is being processed. x/
EC_REQUEST_SUCCESS, /**< Request was processed successfully. */
EC_REQUEST_ERROR, /**< Request processing failed. */
} ec_request_state_t;

/**/

/** Application-layer state.

*/

typedef enum {
EC_AL_STATE_INIT = 1, /#**< Init. */
EC_AL_STATE_PREOP = 2, /**< Pre-operational. */
EC_AL_STATE_SAFEOP = 4, /**< Safe-operational. x/
EC_AL_STATE_OP = 8, /**< Operational. */

} ec_al_state_t;

/% K K K ok ok kK Kk Kk ko ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K Kk ko ok ok ok ok ok ok ok ok ok 3K oK K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok K K K K K K
* Global functions
K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok oK 3K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K Kk %/
#ifdef __cplusplus
extern "C" {

#endif

/** Returns the version magic of the realtime interface.

1.6.8,

31

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

3 Application Interface

* * ¥

*
*/
EC_

/* %
*

* X X ¥ X X X K K K X *

*

*/
EC_

#if

/* %
*

R O

*

*/
EC_

\apiusage{master_any,rt_safe}

\return Value of ECRT_VERSION_MAGIC() at EtherCAT master compile time.
PUBLIC_API unsigned int ecrt_version_magic(void);

Requests an EtherCAT master for realtime operation.

Before an application can access an EtherCAT master, it has to reserve one
for exclusive use.

In userspace, this is a convenience function for ecrt_open_master () and
ecrt_master_reserve ().

This function has to be the first function an application has to call to
use EtherCAT. The function takes the index of the master as its argument.
The first master has index 0O, the n-th master has index n - 1. The number
of masters has to be specified when loading the master module.

\apiusage{master_idle,blocking}
\return Pointer to the reserved master, otherwise \a NULL.
PUBLIC_API ec_master_t *ecrt_request_master(
unsigned int master_index /**< Index of the master to request. x/
)
ndef __KERNEL__
Opens an EtherCAT master for userspace access.
This function has to be the first function an application has to call to
use EtherCAT. The function takes the index of the master as its argument.
The first master has index 0O, the n-th master has index n - 1. The number
of masters has to be specified when loading the master module.
For convenience, the function ecrt_request_master() can be used.
\apiusage{master_idle ,blocking}
\return Pointer to the opened master, otherwise \a NULL.
PUBLIC_API ec_master_t #*ecrt_open_master (

unsigned int master_index /**< Index of the master to request. */

);

#endif // #ifndef __KERNEL__

/* %
*

* ¥ ¥ ¥ X ¥ *

*
*/
EC_

/* >k 3k 3k 3k 3k sk 3k 3k ok ok Kk 3k k >k %k %k %k %k %k >k k 3k 3k 3k sk 5k 5k 5k 3k 3k >k >k %k %k %k >k >k >k 3k 3k 3k 3k 3k 3k 5k 3k %k % %k %k %k >k >k >k >k >k 3k 3k 3k 3k 3k >k >k % % % % % %k %k %k >k *k k %

32

Releases a requested EtherCAT master.

After use, a master it has to be released to make it available for other
applications.

This method frees all created data structures. It should not be called in
realtime context.

If the master was activated, ecrt_master_deactivate() is called internally.
\apiusage{master_any,blocking}
PUBLIC_API void ecrt_release_master(

ec_master_t *master /**< EtherCAT master */

)

1.6.8,

3.6 Application Interface Header

697 * Master methods

698 sk sk ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok ok sk K sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok sk K ok ok ok ok sk ok sk K ok ok ok sk R ok sk ok ok ok ok /)
699

700 #ifndef __KERNEL__

701

702 /** Reserves an EtherCAT master for realtime operation.

703 *

704 * Before an application can use PDO/domain registration functions or SDO
705 * request functions on the master, it has to reserve one for exclusive use.
706 *

707 * \apiusage{master_idle,blocking}

708 *

709 * \return O in case of success, else < 0

710 */

711 EC_PUBLIC_API int ecrt_master_reserve (

712 ec_master_t *master /**x< EtherCAT master x/

713)

714

715 #endif // #ifndef __KERNEL__

716

717 #ifdef __KERNEL__

718

719 /** Sets the locking callbacks.

720 *

721 * For concurrent master access, i. e. if other instances than the application
722 * want to send and receive datagrams on the network, the application has to
723 * provide a callback mechanism. This method takes two function pointers as
724 * its parameters. Asynchronous master access (like EoE processing) is only
725 * possible if the callbacks have been set.

726 *

727 * The task of the send callback (\a send_cb) is to decide, if the network
728 * hardware is currently accessible and whether or not to call the

729 * ecrt_master_send_ext () method.

730 *

731 * The task of the receive callback (\a receive_cb) is to decide, if a call to
732 * ecrt_master_receive() is allowed and to execute it respectively.

733 *

734 * \apiusage{master_idle,blocking}

735 *

736 * \attention This method has to be called before ecrt_master_activate().

737 */

738 void ecrt_master_callbacks(

739 ec_master_t *master, /**< EtherCAT master x*/

740 void (*send_cb) (void *), /**< Datagram sending callback. */

741 void (*receive_cb)(void *), /**< Receive callback. x*/

742 void *cb_data /#*#*< Arbitrary pointer passed to the callback functions.
743 */

744)

745

746 #endif /* __KERNEL__ */

747

748 /** Creates a new process data domain.

749 *

750 * For process data exchange, at least one process data domain is needed.

751 * This method creates a new process data domain and returns a pointer to the
752 * new domain object. This object can be used for registering PDOs and

753 * exchanging them in cyclic operation.

754 *

755 * This method allocates memory and should be called in non-realtime context
756 * before ecrt_master_activate ().

757 *

758 * \apiusage{master_idle,blocking}

759 *

760 * \return Pointer to the new domain on success, else NULL.

761 */

762 EC_PUBLIC_API ec_domain_t *ecrt_master_create_domain(

1.6.8, 33

763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

3 Application Interface

/* %
*

* O X X X X X X K K K K K K K X ¥ X ¥ X ¥ X K K ¥ * *

*

*/
EC_

/ * %
*

* K ¥ X ¥

*
*/
EC_

/ * %
*
*
*
*
*
*

34

ec_master_t *master /**< EtherCAT master. x*/

)
Obtains a slave configuration.

Creates a slave configuration object for the given \a alias and \a position
tuple and returns it. If a configuration with the same \a alias and \a
position already exists, it will be re-used. In the latter case, the given
vendor ID and product code are compared to the stored ones. On mismatch, an
error message is raised and the function returmns \a NULL.

Slaves are addressed with the \a alias and \a position parameters.

- If \a alias is zero, \a position is interpreted as the desired slave’s
ring position.

- If \a alias is non-zero, it matches a slave with the given alias. In this
case, \a position is interpreted as ring offset, starting from the
aliased slave, so a position of zero means the aliased slave itself and a
positive value matches the n-th slave behind the aliased one.

If the slave with the given address is found during the configuration,
its vendor ID and product code are matched against the given value. On
mismatch, the slave is not configured and an error message is raised.

If different slave configurations are pointing to the same slave during
configuration, a warning is raised and only the first configuration is
applied.

This method allocates memory and should be called in non-realtime context
before ecrt_master_activate ().

\apiusage{master_idle ,blocking}

\retval >0 Pointer to the slave configuration structure.
\retval NULL in the error case.

PUBLIC_API ec_slave_config_t *ecrt_master_slave_config(
ec_master_t *master, /**< EtherCAT master */
uint16_t alias, /**< Slave alias. */
uintl16_t position, /#**< Slave position. */
uint32_t vendor_id, /**< Expected vendor ID. */
uint32_t product_code /**< Expected product code. */
)

Selects the reference clock for distributed clocks.
If this method is not called for a certain master, or if the slave
configuration pointer is NULL, then the first slave with DC functionality
will provide the reference clock.
\apiusage{master_idle,blocking}
\return O on success, otherwise negative error code.
PUBLIC_API int ecrt_master_select_reference_clock(
ec_master_t *master, /**< EtherCAT master. */
ec_slave_config_t *sc /**< Slave config of the slave to use as the
* reference slave (or NULL). */
)
Obtains master information.
No memory is allocated on the heap in this function.

\apiusage{master_any,rt_safe}

\attention The pointer to this structure must point to a valid variable.

1.6.8,

3.6 Application Interface Header

829 *

830 * \return O in case of success, else < 0

831 */

832 EC_PUBLIC_API int ecrt_master (

833 ec_master_t *master, /**< EtherCAT master x*/

834 ec_master_info_t *master_info /**< Structure that will output the
835 information */

836)

837

838 /** Obtains network scan progress information.

839 *

840 * No memory is allocated on the heap in this function.

841 *

842 * \apiusage{master_any,rt_safel

843 *

844 * \attention The pointer to this structure must point to a valid variable.
845 *

846 * \return O in case of success, else < 0

847 */

848 EC_PUBLIC_API int ecrt_master_scan_progress (

849 ec_master_t *master, /**< EtherCAT master */

850 ec_master_scan_progress_t *progress /**< Structure that will output
851 the progress information. */
852)

853

854 /** Obtains slave information.

855 *

856 * Tries to find the slave with the given ring position. The obtained

857 * information is stored in a structure. No memory is allocated on the heap in
858 * this function.

859 *

860 * \apiusage{master_any,blocking}

861 *

862 * \attention The pointer to this structure must point to a valid variable.
863 *

864 * \return O in case of success, else < 0

865 */

866 EC_PUBLIC_API int ecrt_master_get_slave(

867 ec_master_t *master, /**< EtherCAT master */

868 uint16_t slave_position, /**< Slave position. */

869 ec_slave_info_t *slave_info /**< Structure that will output the
870 information */

871)

872

873 #ifndef __KERNEL__

874

875 /** Returns the proposed configuration of a slave’s sync manager.
876 *
877 * Fills a given ec_sync_info_t structure with the attributes of a sync

878 * manager. The \a pdos field of the return value is left empty. Use
879 * ecrt_master_get_pdo() to get the PDO information.

880 *

881 * \apiusage{master_any ,blocking}

882 *

883 * \return zero on success, else non-zero

884 x/

885 EC_PUBLIC_API int ecrt_master_get_sync_manager (

886 ec_master_t *master, /**< EtherCAT master. x*/

887 uintl16_t slave_position, /**< Slave position. x/

888 uint8_t sync_index, /**< Sync manager index. Must be less
889 than #EC_MAX_SYNC_MANAGERS. x*/
890 ec_sync_info_t #*sync /**< Pointer to output structure. */
891)

892

893 /** Returns information about a currently assigned PDO.

894 *

1.6.8, 35

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

3 Application Interface

Fills a given ec_pdo_info_t structure with the attributes of a currently
assigned PDO of the given sync manager. The \a entries field of the return
value is left empty. Use ecrt_master_get_pdo_entry() to get the PDO

entry information.

\apiusage{master_any,blocking}

* K K X X X ¥

* \retval zero on success, else non-zero

*/

EC_PUBLIC_API int ecrt_master_get_pdo (
ec_master_t *master, /**< EtherCAT master. */
uintl6_t slave_position, /**< Slave position. */
uint8_t sync_index, /**< Sync manager index. Must be less

than #EC_MAX_SYNC_MANAGERS. x*/

uint16_t pos, /**< Zero-based PDO position. */
ec_pdo_info_t *pdo /**< Pointer to output structure. */

);

/** Returns information about a currently mapped PDO entry.
*

Fills a given ec_pdo_entry_info_t structure with the attributes of a
currently mapped PDO entry of the given PDO.

\apiusage{master_any,blocking}

* K X X ¥

* \retval zero on success, else non-zero

*/

EC_PUBLIC_API int ecrt_master_get_pdo_entry (
ec_master_t *master, /**< EtherCAT master. */
uintl16_t slave_position, /**< Slave position. */
uint8_t sync_index, /**< Sync manager index. Must be less

than #EC_MAX_SYNC_MANAGERS. x*/

uint16_t pdo_pos, /**< Zero-based PDO position. */
uintl6_t entry_pos, /**< Zero-based PDO entry position. x/
ec_pdo_entry_info_t *entry /**< Pointer to output structure. */
)

#endif /x #ifndef __KERNEL__ x*/

/** Executes an SDO download request to write data to a slave.

*

This request is processed by the master state machine. This method blocks,
until the request has been processed and may not be called in realtime
context.

\apiusage{master_any ,blocking}

R

\retval O Success.

* \retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_master_sdo_download(

ec_master_t *master, /**< EtherCAT master. x*/
uintl16_t slave_position, /**< Slave position. */
uint16_t index, /**< Index of the SDO. */

uint8_t subindex, /**< Subindex of the SDO. */

const uint8_t =*data, /**< Data buffer to download. */
size_t data_size, /**< Size of the data buffer. x*/
uint32_t *abort_code /**< Abort code of the SDO download. */
);

/** Executes an SDO download request to write data to a slave via complete
* access.

* %

This request is processed by the master state machine. This method blocks,
until the request has been processed and may not be called in realtime
context.

* *

36

1.6.8,

3.6 Application Interface Header

961 *

962 * \apiusage{master_any,blocking}

963 *

964 * \retval O Success.

965 * \retval <0 Error code.

966 */

967 EC_PUBLIC_API int ecrt_master_sdo_download_complete(

968 ec_master_t *master, /**< EtherCAT master. x*/

969 uintl16_t slave_position, /**< Slave position. */

970 uint16_t index, /**< Index of the SDO. */

971 const uint8_t *data, /**< Data buffer to download. */

972 size_t data_size, /**< Size of the data buffer. x/

973 uint32_t *abort_code /**< Abort code of the SDO download. x/
974)

975

976 /** Executes an SDO upload request to read data from a slave.

977 *

978 * This request is processed by the master state machine. This method blocks,
979 * until the request has been processed and may not be called in realtime
980 * context.

981 *

982 * \apiusage{master_any,blocking}

983 *

984 * \retval O Success.

985 * \retval <0 Error code.

986 */

987 EC_PUBLIC_API int ecrt_master_sdo_upload(

988 ec_master_t *master, /**< EtherCAT master. x*/

989 uintl16_t slave_position, /**< Slave position. x/

990 uint16_t index, /**< Index of the SDO. x/

991 uint8_t subindex, /**< Subindex of the SDO. x*/

992 uint8_t *target, /**< Target buffer for the upload. */

993 size_t target_size, /**< Size of the target buffer. */

994 size_t *result_size, /**< Uploaded data size. */

995 uint32_t #*abort_code /**< Abort code of the SDO upload. */
996)

997

998 /** Executes an SoE write request.

999 *

1000 * Starts writing an IDN and blocks until the request was processed, or an
1001 * error occurred.

1002 *

1003 * \apiusage{master_any,blocking}

1004 *

1005 * \retval O Success.

1006 * \retval <0 Error code.

1007 */

1008 EC_PUBLIC_API int ecrt_master_write_idn(

1009 ec_master_t *master, /**< EtherCAT master. x*/

1010 uint16_t slave_position, /**< Slave position. */

1011 uint8_t drive_no, /**< Drive number. */

1012 uint16_t idn, /**< SoE IDN (see ecrt_slave_config_idn()). x/
1013 const uint8_t *data, /**< Pointer to data to write. */

1014 size_t data_size, /**< Size of data to write. x*/

1015 uint16_t *error_code /**< Pointer to variable, where an SoE error code
1016 can be stored. */

1017)

1018

1019 /** Executes an SoE read request.

1020 *

1021 * Starts reading an IDN and blocks until the request was processed, or an
1022 * error occurred.

1023 *

1024 * \apiusage{master_any,blocking}

1025 *

1026 * \retval O Success.

1.6.8, 37

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

3 Application Interface

* \retval <0 Error code.
*/
EC_PUBLIC_API int ecrt_master_read_idn(
ec_master_t *master, /**< EtherCAT master. */
uintl6_t slave_position, /**< Slave position. */
uint8_t drive_no, /**< Drive number. x/
uint16_t idn, /**< SoE IDN (see ecrt_slave_config_idn()). */
uint8_t *target, /**< Pointer to memory where the read data can be
stored. */
size_t target_size, /**< Size of the memory \a target points to. */
size_t *result_size, /**< Actual size of the received data. */

uintl16_t *error_code /**< Pointer to variable, where an SoE error code

can be stored. */

);

/** Finishes the configuration phase and prepares for cyclic operation.
*

the realtime operation will begin. The function allocates internal memory
for the domains and calculates the logical FMMU addresses for domain
members. It tells the master state machine that the configuration is

now to be applied to the network.

\apiusage{master_idle ,blocking}

in charge of cyclically calling ecrt_master_send() and

in realtime context.

* O K XK X X X X X X K K K ¥ *

*

\return O in case of success, else < 0

*/

EC_PUBLIC_API int ecrt_master_activate(

ec_master_t *master /**< EtherCAT master. */

)
/** Deactivates the master.
*
* Removes the master configuration. All objects created by
* ecrt_master_create_domain(), ecrt_master_slave_config(), ecrt_domain_data()
* ecrt_slave_config_create_sdo_request() and
* ecrt_slave_config_create_voe_handler () are freed, so pointers to them
* become invalid.
*
* \apiusage{master_op,blocking}
*
* This method should not be called in realtime context.
* \return O on success, otherwise negative error code.
* \retval O Success.
* \retval -EINVAL Master has not been activated before.
*/

EC_PUBLIC_API int ecrt_master_deactivate(
ec_master_t *master /**< EtherCAT master. */

)
/** Set interval between calls to ecrt_master_send().
*
* This information helps the master to decide, how much data can be appended
* to a frame by the master state machine. When the master is configured with
* --enable-hrtimers, this is used to calculate the scheduling of the master
* thread.
*
* \apiusage{master_idle,blocking}
*

38

This function tells the master that the configuration phase is finished and

\attention After this function has been called, the realtime application is

ecrt_master_receive () to ensure network communication. Before calling this
function, the master thread is responsible for that, so these functions may
not be called! The method itself allocates memory and should not be called

1.6.8,

3.6 Application Interface Header

1093 * \retval O on success.

1094 * \retval <0 Error code.

1095 */

1096 EC_PUBLIC_API int ecrt_master_set_send_interval(

1097 ec_master_t *master, /**< EtherCAT master. x*/

1098 size_t send_interval /**< Send interval in us */

1099)

1100

1101 /** Sends all datagrams in the queue.

1102 *

1103 * This method takes all datagrams, that have been queued for transmission,
1104 * puts them into frames, and passes them to the Ethernet device for sending.
1105 *

1106 * Has to be called cyclically by the application after ecrt_master_activate()
1107 * has returned.

1108 *

1109 * \apiusage{master_op,rt_safe}

1110 *

1111 * \return Zero on success, otherwise negative error code.

1112 */

1113 EC_PUBLIC_API int ecrt_master_send(

1114 ec_master_t *master /**< EtherCAT master. x*/

1115);

1116

1117 /** Fetches received frames from the hardware and processes the datagrams.
1118 *
1119 * Queries the network device for received frames by calling the interrupt

1120 * service routine. Extracts received datagrams and dispatches the results to
1121 * the datagram objects in the queue. Received datagrams, and the ones that
1122 * timed out, will be marked, and dequeued.

1123 *

1124 * Has to be called cyclically by the realtime application after

1125 * ecrt_master_activate() has returned.

1126 *

1127 * \apiusage{master_op,rt_safe}

1128 *

1129 * \return Zero on success, otherwise negative error code.

1130 */

1131 EC_PUBLIC_API int ecrt_master_receive(

1132 ec_master_t *master /**< EtherCAT master. */

1133);

1134

1135 #ifdef KERNEL

1136 /** Sends non-application datagrams.

1137 *

1138 * This method has to be called in the send callback function passed via
1139 * ecrt_master_callbacks() to allow the sending of non-application datagrams.
1140 *

1141 * \apiusage{master_op,rt_safe}

1142 *

1143 * \return Zero on success, otherwise negative error code.

1144 * \retval -EAGAIN Lock could not be acquired, try again later.

1145 */

1146 int ecrt_master_send_ext (

1147 ec_master_t *master /**< EtherCAT master. x*/

1148)

1149 #endif

1150

1151 /** Reads the current master state.

1152 *

1153 * Stores the master state information in the given \a state structure.
1154 *

1155 * This method returns a global state. For the link-specific states in a
1156 * redundant network topology, use the ecrt_master_link_state() method.
1157 *

1158 * \apiusage{master_any,rt_safe}

1.6.8, 39

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

3 Application Interface

*
*

*/
EC_

\return Zero on success, otherwise negative error code.

PUBLIC_API int ecrt_master_state(
const ec_master_t *master, /**< EtherCAT master. x/
ec_master_state_t *state /**< Structure to store the information. */

);

/** Reads the current state of a redundant link.

*
*
*
*
*

*

*/

Stores the link state information in the given \a state structure.
\apiusage{master_any,rt_safel

\return Zero on success, otherwise negative error code.

EC_PUBLIC_API int ecrt_master_link_state(

const ec_master_t *master, /**< EtherCAT master. x/
unsigned int dev_idx, /**< Index of the device (0 = main device, 1 =
first backup device, ...). */

ec_master_link_state_t *state /**< Structure to store the information.

x/
)

/** Sets the application time.

*

* X X X X X X K K K K K K X X X ¥ ¥ ¥ *

*

*/

The master has to know the application’s time when operating slaves with
distributed clocks. The time is not incremented by the master itself, so
this method has to be called cyclically.

\attention The time passed to this method is used to calculate the phase of

the slaves’ SYNCO/1 interrupts. It should be called constantly at the same
point of the realtime cycle. So it is recommended to call it at the start
of the calculations to avoid deviancies due to changing execution times.
Avoid calling this method before the realtime cycle is established.

The time is used when setting the slaves’ <tt>System Time Offset</tt> and
<tt>Cyclic Operation Start Time</tt> registers and when synchronizing the
DC reference clock to the application time via
ecrt_master_sync_reference_clock ().

The time is defined as nanoseconds from 2000-01-01 00:00. Converting an
epoch time can be done with the EC_TIMEVAL2NANO () macro, but is not
necessary, since the absolute value is not of any interest.

\apiusage{master_op,rt_safel}

\return Zero on success, otherwise negative error code.

EC_PUBLIC_API int ecrt_master_application_time (

ec_master_t *master, /**< EtherCAT master. */
uint64_t app_time /**< Application time. */
);

/** Queues the DC reference clock drift compensation datagram for sending.

*

* X ¥ X ¥ *

*

*/

The reference clock will by synchronized to the application time provided
by the last call off ecrt_master_application_time().

\apiusage{master_op,rt_safel}
\return Zero on success, otherwise negative error code.

\retval O Success.
\retval -ENXIO No reference clock found.

EC_PUBLIC_API int ecrt_master_sync_reference_clock(

40

1.6.8,

3.6 Application Interface Header

1225 ec_master_t *master /**x< EtherCAT master. x*/
1226);
1227

1228 /** Queues the DC reference clock drift compensation datagram for sending.
1229 *

1230 * The reference clock will by synchronized to the time passed in the
1231 * sync_time parameter.

1232 *

1233 * Has to be called by the application after ecrt_master_activate ()

1234 * has returned.

1235 *

1236 * \apiusage{master_op,rt_safe}

1237 *

1238 * \return Zero on success, otherwise negative error code.

1239 * \retval O Success.

1240 * \retval -ENXIO No reference clock found.

1241 */

1242 EC_PUBLIC_API int ecrt_master_sync_reference_clock_to(

1243 ec_master_t *master, /**< EtherCAT master. x*/

1244 uint64_t sync_time /**< Sync reference clock to this time. */
1245)

1246

1247 /** Queues the DC clock drift compensation datagram for sending.

1248 *

1249 * All slave clocks synchronized to the reference clock.

1250 *

1251 * Has to be called by the application after ecrt_master_activate ()

1252 * has returned.

1253 *

1254 * \apiusage{master_op,rt_safe}

1255 *

1256 * \return O on success, otherwise negative error code.

1257 * \retval O Success.

1258 * \retval -ENXIO No reference clock found.

1259 */

1260 EC_PUBLIC_API int ecrt_master_sync_slave_clocks(

1261 ec_master_t *master /**< EtherCAT master. */

1262)

1263

1264 /** Get the lower 32 bit of the reference clock system time.

1265 *

1266 * This method can be used to synchronize the master to the reference clock.
1267 *

1268 * The reference clock system time is queried via the

1269 * ecrt_master_sync_slave_clocks() method, that reads the system time of the
1270 * reference clock and writes it to the slave clocks (so be sure to call it
1271 * cyclically to get valid data).

1272 *

1273 * \attention The returned time is the system time of the reference clock
1274 * minus the transmission delay of the reference clock.

1275 *

1276 * Calling this method makes only sense in realtime context (after master
1277 * activation), when the ecrt_master_sync_slave_clocks() method is called
1278 * cyclically.

1279 *

1280 * \apiusage{master_op,rt_safe}

1281 *

1282 * \retval O success, system time was written into \a time.

1283 * \retval -ENXIO No reference clock found.

1284 * \retval -EIO Slave synchronization datagram was not received.

1285 */

1286 EC_PUBLIC_API int ecrt_master_reference_clock_time(

1287 const ec_master_t *master, /**< EtherCAT master. */

1288 uint32_t *time /**< Pointer to store the queried system time. */
1289)

1290

1.6.8, 41

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

3 Application Interface

** (Queues the synchrony monitorin atagram or sending.

/*x Q he DC synchrony i ing datag £ ding

*

The datagram broadcast-reads all "System time difference" registers (\a
0x092c) to get an upper estimation of the DC synchrony. The result can be
checked with the ecrt_master_sync_monitor_process () method.

\apiusage{master_op,rt_safel}

* X ¥ X *

* \return Zero on success, otherwise a negative error code.

*/

EC_PUBLIC_API int ecrt_master_sync_monitor_queue (
ec_master_t *master /**< EtherCAT master. x*/

)
/** Processes the DC synchrony monitoring datagram.
*
If the sync monitoring datagram was sent before with
* ecrt_master_sync_monitor_queue(), the result can be queried with this
* method.
*
* \apiusage{master_op,rt_safe}
*
* \return Upper estimation of the maximum time difference in ns, -1 on error.

* \retval (uint32_t)-1 Error.

*/

EC_PUBLIC_API uint32_t ecrt_master_sync_monitor_process(
const ec_master_t *master /**x< EtherCAT master. x*/

)

/** Retry configuring slaves.
*

Via this method, the application can tell the master to bring all slaves to
* 0P state. In general, this is not necessary, because it is automatically
* done by the master. But with special slaves, that can be reconfigured by
* the vendor during runtime, it can be useful.
*
* Calling this method only makes sense in realtime context (after
* activation), because slaves will not be configured before.
*
* \apiusage{master_op,rt_safe}
*
* \return O on success, otherwise negative error code.
*/

EC_PUBLIC_API int ecrt_master_reset(
ec_master_t #*master /**< EtherCAT master. */

);

/3 % sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok ok K sk ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok

* Slave configuration methods
sk ok sk sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok K ok ok ok ok sk ok ok K ok K ok ok sk ok ok K ok ok ok ok sk ok ok K ok K ok ok ok ok ok K ok K K/

/** Configure a sync manager.
*

Sets the direction of a sync manager. This overrides the direction bits
from the default control register from SII.

This method has to be called in non-realtime context before
ecrt_master_activate ().

\apiusage{master_idle,blocking}

* X ¥ ¥ ¥ ¥ *

* \return zero on success, else non-zero

*/

EC_PUBLIC_API int ecrt_slave_config_sync_manager (
ec_slave_config_t *sc, /**< Slave configuration. */
uint8_t sync_index, /**< Sync manager index. Must be less

42

1.6.8,

3.6 Application Interface Header

1357 than #EC_MAX_SYNC_MANAGERS. */

1358 ec_direction_t direction, /**< Input/Output. */

1359 ec_watchdog_mode_t watchdog_mode /** Watchdog mode. */

1360)

1361

1362 /** Configure a slave’s watchdog times.

1363 *

1364 * This method has to be called in non-realtime context before

1365 * ecrt_master_activate().

1366 *

1367 * \apiusage{master_idle,blocking}

1368 *

1369 * \return O on success, otherwise negative error code.

1370 */

1371 EC_PUBLIC_API int ecrt_slave_config_watchdog(

1372 ec_slave_config_t #*sc, /*x< Slave configuration. */

1373 uint16_t watchdog_divider, /**< Number of 40 ns intervals (register
1374 0x0400). Used as a base unit for all
1375 slave watchdogs”™. If set to zero, the
1376 value is not written, so the default is
1377 used. */

1378 uintl6_t watchdog_intervals /**< Number of base intervals for sync
1379 manager watchdog (register 0x0420). If
1380 set to zero, the value is not written,
1381 so the default is used. */

1382)

1383

1384 /** Add a PDO to a sync manager’s PDO assignment.

1385 *

1386 * This method has to be called in non-realtime context before

1387 * ecrt_master_activate ().

1388 *

1389 * \apiusage{master_idle,blocking}

1390 *

1391 * \see ecrt_slave_config_pdos ()

1392 * \return zero on success, else non-zero

1393 */

1394 EC_PUBLIC_API int ecrt_slave_config_pdo_assign_add(

1395 ec_slave_config_t #*sc, /**< Slave configuration. */

1396 uint8_t sync_index, /**< Sync manager index. Must be less

1397 than #EC_MAX_SYNC_MANAGERS. x/

1398 uint16_t index /**< Index of the PDO to assign. */

1399)

1400

1401 /** Clear a sync manager’s PDO assignment.

1402 *

1403 * This can be called before assigning PDOs via

1404 * ecrt_slave_config_pdo_assign_add(), to clear the default assignment of a
1405 * sync manager.

1406 *

1407 * This method has to be called in non-realtime context before

1408 * ecrt_master_activate ().

1409 *

1410 * \apiusage{master_idle,blocking}

1411 *

1412 * \see ecrt_slave_config_pdos ()

1413 * \return O on success, otherwise negative error code.

1414 */

1415 EC_PUBLIC_API int ecrt_slave_config_pdo_assign_clear(

1416 ec_slave_config_t #*sc, /*x*< Slave configuration. */

1417 uint8_t sync_index /**< Sync manager index. Must be less

1418 than #EC_MAX_SYNC_MANAGERS. */

1419)

1420

1421 /** Add a PDO entry to the given PDO’s mapping.

1422 *

1.6.8, 43

1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

3 Application Interface

* ¥ ¥ X X *

*

*/

This method has to be called in non-realtime context before

ecrt_master_activate ().

\apiusage{master_idle ,blocking}

\see ecrt_slave_config_pdos ()

\return zero on success,

else non-zero

EC_PUBLIC_API int ecrt_slave_config_pdo_mapping_add(

ec_slave_config_t *sc,

uintl16_t pdo_index,

uintl16_t entry_index,
uint8_t entry_subindex,

uint8_t entry_bit_length /**< Size of the PDO entry in bit.

);

/**< Index of the PDO.

mapping. */

/**< Slave configuration.

*/

PDO’s mapping. */

/** Clear the mapping of a given PDO.

*

* Xk X X X ¥ X ¥ *

*

*/

EC_PUBLIC_API int ecrt_slave_config_pdo_mapping_clear(
/**< Slave configuration.

This can be called before mapping PDO entries via

ecrt_slave_config_pdo_mapping_add (),

This method has to be called in non-realtime context before

ecrt_master_activate ().

\apiusage{master_idle ,blocking}

\see ecrt_slave_config_pdos ()

\return O on success, otherwise negative error code.

ec_slave_config_t *sc,

uint16_t pdo_index /**< Index of the PDO.

);

/** Specify a complete PDO configuration.

*

* Xk X X X K K K K K K K K X X X ¥ X K K K K K K ¥ * * ¥

44

*/

*/

*/

This function is a convenience wrapper for the functions

ecrt_slave_config_sync_manager (),
ecrt_slave_config_pdo_assign_add (),
and ecrt_slave_config_pdo_mapping_add (),

automatic code generation.

The following example shows,
including the PDO mappings.
reserve the complete process data,

configuration time:

\code

ec_pdo_entry_info_t e13162_channell[] = {
{0x3101, 1, 8}, // status

{0x3101, 2, 16}
};

// value

ec_pdo_entry_info_t el13162_channel2[] = {
{0x3102, 1, 8}, // status

{0x3102, 2, 16}
};

// value

ec_pdo_info_t el3162_pdos[] = {
{0x1A00, 2, el3162_channelil},
{0x1A01, 2, el3162_channel2}

};

ec_sync_info_t el3162_syncs[] = {

/**< Index of the PDO entry to add to the PDO’s

/**< Subindex of the PDO entry to add to the

*/

to clear the default mapping.

ecrt_slave_config_pdo_assign_clear (),
ecrt_slave_config_pdo_mapping_clear ()
that are better suitable for

how to specify a complete configuration,
With this information, the master is able to

even if the slave is not present at

1.6.8,

3.6 Application Interface Header

1489 * {2, EC_DIR_OUTPUT},

1490 * {3, EC_DIR_INPUT, 2, el3162_pdos},

1491 * {0xff}

1492 *)

1493 *

1494 * if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3162_syncs)) {

1495 * // handle error

1496 * }

1497 * \endcode

1498 *

1499 * The next example shows, how to configure the PDO assignment only. The
1500 * entries for each assigned PDO are taken from the PDO’s default mapping.
1501 * Please note, that PDO entry registration will fail, if the PDO

1502 * configuration is left empty and the slave is offline.

1503 *

1504 * \code

1505 * ec_pdo_info_t pdos[] = {

1506 * {0x1600}, // Channel 1

1507 * {0x1601} // Channel 2

1508 * };

1509 *

1510 * ec_sync_info_t syncs[] = {

1511 * {3, EC_DIR_INPUT, 2, pdos},

1512 * };

1513 *

1514 * if (ecrt_slave_config_pdos(slave_config_ana_in, 1, syncs)) {

1515 * // handle error

1516 * }

1517 * \endcode

1518 *

1519 * Processing of \a syncs will stop, if

1520 * - the number of processed items reaches \a n_syncs, or

1521 * - the \a index member of an ec_sync_info_t item is Oxff. In this case,
1522 * \a n_syncs should set to a number greater than the number of list items;
1523 * using EC_END is recommended.

1524 *

1525 * This method has to be called in non-realtime context before

1526 * ecrt_master_activate ().

1527 *

1528 * \apiusage{master_idle,blocking}

1529 *

1530 * \return zero on success, else non-zero

1531 */

1532 EC_PUBLIC_API int ecrt_slave_config_pdos(

1533 ec_slave_config_t *sc, /**< Slave configuration. */

1534 unsigned int n_syncs, /**< Number of sync manager configurations in
1535 \a syncs. */

1536 const ec_sync_info_t syncs[] /**< Array of sync manager

1537 configurations. x/

1538)

1539

1540 /** Registers a PDO entry for process data exchange in a domain.

1541 *

1542 * Searches the assigned PDOs for the given PDO entry. An error is raised, if
1543 * the given entry is not mapped. Otherwise, the corresponding sync manager
1544 * and FMMU configurations are provided for slave configuration and the
1545 * respective sync manager’s assigned PDOs are appended to the given domain,
1546 * if not already done. The offset of the requested PDO entry’s data inside
1547 * the domain’s process data is returned. Optionally, the PDO entry bit
1548 * position (0-7) can be retrieved via the \a bit_position output parameter.
1549 * This pointer may be \a NULL, in this case an error is raised if the PDO
1550 * entry does not byte-align.

1551 *

1552 * This method has to be called in non-realtime context before

1553 * ecrt_master_activate().

1554 *

1.6.8, 45

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620

3 Application Interface

* \apiusage{master_idle,blocking}
*
* \retval >=0 Success: 0Offset of the PDO entry’s process data.
* \retval <0 Error code.
*/
EC_PUBLIC_API int ecrt_slave_config_reg_pdo_entry(
ec_slave_config_t #*sc, /**< Slave configuration. */
uint16_t entry_index, /**< Index of the PDO entry to register.

uint8_t entry_subindex, /**< Subindex of the PDO entry to register.

ec_domain_t *domain, /**< Domain. */

unsigned int *bit_position /**< Optional address if bit addressing

is desired */

)
/** Registers a PDO entry using its position.
*
* Similar to ecrt_slave_config_reg_pdo_entry(), but not using PDO indices
* offsets in the PDO mapping, because PDO entry indices may not be unique
* inside a slave’s PDO mapping. An error is raised, if
* one of the given positions is out of range.
*
* This method has to be called in non-realtime context before
* ecrt_master_activate().
*
* \apiusage{master_idle,blocking}
*
* \retval >=0 Success: 0Offset of the PDO entry’s process data.

*

\retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_slave_config_reg_pdo_entry_pos(
ec_slave_config_t *sc, /*x*< Slave configuration. */

uint8_t sync_index, /**< Sync manager index. */

unsigned int pdo_pos, /**< Position of the PDO inside the SM.

unsigned int entry_pos, /**< Position of the entry inside the PDO.

ec_domain_t *domain, /**< Domain. */

unsigned int *bit_position /**< Optional address if bit addressing

is desired */

*/

but

*/

)
/** Configure distributed clocks.
*
* Sets the AssignActivate word and the cycle and shift times for the sync
* signals.
*
* The AssignActivate word is vendor-specific and can be taken from the XML
* device description file (Device -> Dc -> AssignActivate). Set this to zero,
* if the slave shall be operated without distributed clocks (default).
*
* This method has to be called in non-realtime context before
* ecrt_master_activate ().
*
* \apiusage{master_idle,blocking}
*
* \attention The \a syncil_shift time is ignored.

*

\return O on success, otherwise negative error code.

*/

EC_PUBLIC_API int ecrt_slave_config_dc(

ec_slave_config_t *sc, /**< Slave configuration. */
uintl6_t assign_activate, /**< AssignActivate word. */
uint32_t syncO_cycle, /**< SYNCO cycle time [ns]. x/
int32_t syncO_shift, /**< SYNCO shift time [mns]. %/
uint32_t syncl_cycle, /**< SYNC1 cycle time [ns]. x/
int32_t syncl_shift /**< SYNC1 shift time [ns]. */

)

/** Add an SDO configuration.

46

1.6.8,

3.6 Application Interface Header

1621 *

1622 * An SDO configuration is stored in the slave configuration object and is
1623 * downloaded to the slave whenever the slave is being configured by the
1624 * master. This usually happens once on master activation, but can be repeated
1625 * subsequently, for example after the slave’s power supply failed.

1626 *

1627 * \attention The SDOs for PDO assignment (\p 0x1C10 - \p 0x1C2F) and PDO
1628 * mapping (\p 0x1600 - \p Ox17FF and \p 0x1A00 - \p Ox1BFF) should not be
1629 * configured with this function, because they are part of the slave

1630 * configuration done by the master. Please use ecrt_slave_config_pdos() and
1631 * friends instead.

1632 *

1633 * This is the generic function for adding an SDO configuration. Please note
1634 * that the this function does not do any endianness correction. If

1635 * datatype-specific functions are needed (that automatically correct the
1636 * endianness), have a look at ecrt_slave_config_sdo8(),

1637 * ecrt_slave_config_sdol16() and ecrt_slave_config_sdo32().

1638 *

1639 * This method has to be called in non-realtime context before

1640 * ecrt_master_activate().

1641 *

1642 * \apiusage{master_idle,blocking}

1643 *

1644 * \retval O Success.

1645 * \retval <0 Error code.

1646 */

1647 EC_PUBLIC_API int ecrt_slave_config_sdo(

1648 ec_slave_config_t *sc, /**< Slave configuration. */

1649 uint16_t index, /**< Index of the SDO to configure. x/

1650 uint8_t subindex, /**< Subindex of the SDO to configure. */

1651 const uint8_t =*data, /**< Pointer to the data. */

1652 size_t size /#**< Size of the \a data. */

1653)

1654

1655 /** Add a configuration value for an 8-bit SDO.

1656 *

1657 * This method has to be called in non-realtime context before

1658 * ecrt_master_activate ().

1659 *

1660 * \see ecrt_slave_config_sdo ().

1661 *

1662 * \apiusage{master_idle,blocking}

1663 *

1664 * \retval O Success.

1665 * \retval <0 Error code.

1666 */

1667 EC_PUBLIC_API int ecrt_slave_config_sdo8(

1668 ec_slave_config_t *sc, /**< Slave configuration x*/

1669 uint16_t sdo_index, /**< Index of the SDO to configure. */

1670 uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */
1671 uint8_t value /**< Value to set. */

1672)

1673

1674 /** Add a configuration value for a 16-bit SDO.

1675 *

1676 * This method has to be called in non-realtime context before

1677 * ecrt_master_activate().

1678 *

1679 * \see ecrt_slave_config_sdo ().

1680 *

1681 * \apiusage{master_idle,blocking}

1682 *

1683 * \retval O Success.

1684 * \retval <0 Error code.
1685 */
1686 EC_PUBLIC_API int ecrt_slave_config_sdo16(

1.6.8, 47

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752

3 Application Interface

ec_slave_config_t *sc, /**< Slave configuration x*/
uint16_t sdo_index, /**< Index of the SDO to configure. x/

uint8_t sdo_subindex, /**< Subindex of the SDO to configure.

uint16_t value /**< Value to set. */

);

/** Add a configuration value for a 32-bit SDO.
*

This method has to be called in non-realtime context before
* ecrt_master_activate ().
*
* \see ecrt_slave_config_sdo ().
*
* \apiusage{master_idle,blocking}
*
* \retval O Success.

* \retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_slave_config_sdo32(
ec_slave_config_t *sc, /**< Slave configuration x*/
uint16_t sdo_index, /**< Index of the SDO to configure. x/

uint8_t sdo_subindex, /**< Subindex of the SDO to configure.

uint32_t value /**< Value to set. */

*/

*/

)

/** Add configuration data for a complete SDO.

*

* The SDO data are transferred via CompleteAccess. Data for the first
* subindex (0) have to be included.

*

* This method has to be called in non-realtime context before
* ecrt_master_activate ().

*

* \see ecrt_slave_config_sdo ().

*

* \apiusage{master_idle,blocking}

*

* \retval O Success.

* \retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_slave_config_complete_sdo (
ec_slave_config_t *sc, /**< Slave configuration. */
uint16_t index, /**< Index of the SDO to configure. */
const uint8_t *data, /**< Pointer to the data. */
size_t size /**< Size of the \a data. */

);

/** Set the size of the CoE emergency ring buffer.
*

This method has to be called in non-realtime context before
ecrt_master_activate ().

\apiusage{master_idle ,blocking}

L R O

*

\return O on success, or negative error code.

*/

EC_PUBLIC_API int ecrt_slave_config_emerg_size (
ec_slave_config_t *sc, /*x*< Slave configuration. */

size_t elements /**< Number of records of the CoE emergency ring.

);

/** Read and remove one record from the CoE emergency ring buffer.
*

48

The initial size is zero, so all messages will be dropped. This method can
be called even after master activation, but it will clear the ring buffer!

*/

1.6.8,

3.6 Application Interface Header

1753 * A record consists of 8 bytes:

1754 *

1755 * Byte 0-1: Error code (little endian)

1756 * Byte 2: Error register

1757 * Byte 3-7: Data

1758 *

1759 * Calling this method makes only sense in realtime context (after master
1760 * activation).

1761 *

1762 * \return O on success (record popped), or negative error code (i. e.
1763 * —-ENOENT, if ring is empty).

1764 *

1765 * \apiusage{master_op,any_context}

1766 */

1767 EC_PUBLIC_API int ecrt_slave_config_emerg_pop(

1768 ec_slave_config_t #*sc, /*x< Slave configuration. */

1769 uint8_t *target /*x*< Pointer to target memory (at least

1770 EC_COE_EMERGENCY_MSG_SIZE bytes). */

1771)

1772

1773 /** Clears CoE emergency ring buffer and the overrun counter.

1774 *

1775 * Calling this method makes only sense in realtime context (after master
1776 * activation).

1777 *

1778 * \apiusage{master_op,any_context}

1779 *

1780 * \return O on success, or negative error code.

1781 *

1782 */

1783 EC_PUBLIC_API int ecrt_slave_config_emerg_clear(

1784 ec_slave_config_t *sc /**< Slave configuration. x*/

1785)

1786

1787 /** Read the number of CoE emergency overruns.

1788 *

1789 * The overrun counter will be incremented when a CoE emergency message could
1790 * not be stored in the ring buffer and had to be dropped. Call

1791 * ecrt_slave_config_emerg_clear () to reset the counter.

1792 *

1793 * Calling this method makes only sense in realtime context (after master
1794 * activation).

1795 *

1796 * \apiusage{master_op,any_context}

1797 *

1798 * \return Number of overruns since last clear, or negative error code.
1799 *

1800 */

1801 EC_PUBLIC_API int ecrt_slave_config_emerg_overruns (

1802 const ec_slave_config_t #*sc /**< Slave configuration. */

1803)

1804

1805 /** Create an SDO request to exchange SDOs during realtime operation.
1806 *

1807 * The created SDO request object is freed automatically when the master is
1808 * released.

1809 *

1810 * This method has to be called in non-realtime context before

1811 * ecrt_master_activate().

1812 *

1813 * \apiusage{master_idle,blocking}

1814 *

1815 * \return New SDO request, or NULL on error.

1816 */

1817 EC_PUBLIC_API ec_sdo_request_t *ecrt_slave_config_create_sdo_request(
1818 ec_slave_config_t *sc, /*x*< Slave configuration. */

1.6.8, 49

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884

3 Application Interface

uintl6_t index, /**< SDO index. */
uint8_t subindex, /**< SDO subindex. */
size_t size /**< Data size to reserve. */

)

/** Create an SoE request to exchange SoE IDNs during realtime operation.
*

The created SoE request object is freed automatically when the master is
released.

This method has to be called in non-realtime context before
ecrt_master_activate ().

\apiusage{master_idle,blocking}

* K ¥ ¥ ¥ ¥ *

* \return New SoE request, or NULL on error.
*/
EC_PUBLIC_API ec_soe_request_t *ecrt_slave_config_create_soe_request(
ec_slave_config_t *sc, /**< Slave configuration. */
uint8_t drive_no, /**< Drive number. x/
uint16_t idn, /**< Sercos ID-Number. x*/
size_t size /**< Data size to reserve. */

)

/** Create an VoE handler to exchange vendor-specific data during realtime
* operation.

* The number of VoE handlers per slave configuration is not limited, but

* usually it is enough to create one for sending and one for receiving, if
* both can be done simultaneously.

*

* The created VoE handler object is freed automatically when the master is
* released.

*

* This method has to be called in non-realtime context before

* ecrt_master_activate ().

*

* \apiusage{master_idle ,blocking}

*

* \return New VoE handler, or NULL on error.

*/

EC_PUBLIC_API ec_voe_handler_t *ecrt_slave_config_create_voe_handler(
ec_slave_config_t *sc, /*x*< Slave configuration. */
size_t size /**< Data size to reserve. */

)

/**% Create a register request to exchange EtherCAT register contents during
* realtime operation.

* This interface should not be used to take over master functionality,
* instead it is intended for debugging and monitoring reasons.

*

* The created register request object is freed automatically when the master
* is released.

*

* This method has to be called in non-realtime context before

* ecrt_master_activate().

*

* \apiusage{master_idle ,blocking}

*

* \return New register request, or NULL on error.

*/

EC_PUBLIC_API ec_reg_request_t *ecrt_slave_config_create_reg_request(
ec_slave_config_t *sc, /**< Slave configuration. */
size_t size /**< Data size to reserve. */

)

20

1.6.8,

3.6 Application Interface Header

1885

1886 /** Outputs the state of the slave configuration.

1887 *

1888 * Stores the state information in the given \a state structure. The state
1889 * information is updated by the master state machine, so it may take a few
1890 * cycles, until it changes.

1891 *

1892 * \attention If the state of process data exchange shall be monitored in
1893 * realtime, ecrt_domain_state() should be used.

1894 *

1895 * \apiusage{master_op,rt_safe}

1896 *

1897 * This method is meant to be called in realtime context (after master

1898 * activation).

1899 *

1900 * \retval O Success.

1901 * \retval <0 Error code.

1902 */

1903 EC_PUBLIC_API int ecrt_slave_config_state(

1904 const ec_slave_config_t *sc, /**< Slave configuration */

1905 ec_slave_config_state_t *state /**< State object to write to. */
1906)

1907

1908 /** Add an SoE IDN configuration.

1909 *

1910 * A configuration for a Sercos-over-EtherCAT IDN is stored in the slave
1911 * configuration object and is written to the slave whenever the slave is
1912 * being configured by the master. This usually happens once on master

1913 * activation, but can be repeated subsequently, for example after the slave’s
1914 * power supply failed.

1915 *

1916 * The \a idn parameter can be separated into several sections:

1917 * - Bit 15: Standard data (0) or Product data (1)

1918 * - Bit 14 - 12: Parameter set (0 - 7)

1919 * - Bit 11 - 0: Data block number (0 - 4095)

1920 *

1921 * Please note that the this function does not do any endianness correction.
1922 * Multi-byte data have to be passed in EtherCAT endianness (little-endian).
1923 *

1924 * This method has to be called in non-realtime context before

1925 * ecrt_master_activate().

1926 *

1927 * \apiusage{master_idle ,blocking}

1928 *

1929 * \retval O Success.

1930 * \retval <0 Error code.

1931 */

1932 EC_PUBLIC_API int ecrt_slave_config_idn(

1933 ec_slave_config_t *sc, /**< Slave configuration. */

1934 uint8_t drive_no, /**< Drive number. x/

1935 uint16_t idn, /**< SoE IDN. x/

1936 ec_al_state_t state, /**< AL state in which to write the IDN (PREOP or
1937 SAFEQP) . */

1938 const uint8_t =*data, /**< Pointer to the data. */

1939 size_t size /#**< Size of the \a data. */

1940);

1941

1942 /** Adds a feature flag to a slave configuration.

1943 *

1944 * Feature flags are a generic way to configure slave-specific behavior.
1945 *

1946 * Multiple calls with the same slave configuration and key will overwrite the
1947 * configuration.

1948 *

1949 * The following flags may be available:

1950 * - AssignToPdi: Zero (default) keeps the slave information interface (SII)

1.6.8, 51

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

3 Application Interface

* Xk X ¥ X X X K K K X * ¥

*

*/
EC_

assigned to EtherCAT (except during transition to PREOP). Non-zero
assigns the SII to the slave controller side before going to PREOP and
leaves it there until a write command happens.

- WaitBeforeSAFEOPms: Number of milliseconds to wait before commanding the

transition from PREOP to SAFEOP. This can be used as a workaround for
slaves that need a little time to initialize.

This method has to be called in non-realtime context before
ecrt_master_activate ().

\apiusage{master_idle ,blocking}

\retval O Success.
\retval <0 Error code.

PUBLIC_API int ecrt_slave_config_flag(
ec_slave_config_t #*sc, /**< Slave configuration. x*/
const char *key, /**< Key as null-terminated ASCII string. */
int32_t value /**< Value to store. */

)

/** Sets the 1link/MAC address for Ethernet-over-EtherCAT (EoE) operation.

*

N I R L R N

*

*/
EC_

This method has to be called in non-realtime context before
ecrt_master_activate ().

The MAC address is stored in the slave configuration object and will be
written to the slave during the configuration process.

\apiusage{master_idle,blocking}

\retval O Success.
\retval <0 Error code.

PUBLIC_API int ecrt_slave_config_eoe_mac_address/(
ec_slave_config_t *sc, /*x*< Slave configuration. */
const unsigned char *mac_address /**< MAC address. */

);

/** Sets the IP address for Ethernet-over-EtherCAT (EoE) operation.

*

* Xk X X X ¥ K K K K K K K X X ¥ X ¥ X K K K ¥ * *

52

This method has to be called in non-realtime context before
ecrt_master_activate ().

The IP address is stored in the slave configuration object and will be
written to the slave during the configuration process.

The IP address is passed by-value as a ‘struct in_addr ‘. This structure
contains the 32-bit IPv4 address in network byte order (big endian).

A string-represented IPv4 address can be converted to a ‘struct in_addr ¢
for example via the POSIX function ‘inet_pton()‘ (see man 3 inet_pton):

\code{.c}

#include <arpa/inet.h>

struct in_addr addr;

if (inet_aton("192.168.0.1", &addr) == 0) {
fprintf (stderr, "Failed to convert IP address.\n");
return -1;

}

if (ecrt_slave_config_eoe_ip_address(sc, addr)) {
fprintf (stderr, "Failed to set IP address.\n");
return -1;

}

\endcode

1.6.8,

3.6 Application Interface Header

2017 *

2018 * \apiusage{master_idle,blocking}

2019 *

2020 * \retval O Success.

2021 * \retval <0 Error code.

2022 */

2023 EC_PUBLIC_API int ecrt_slave_config_eoe_ip_address(

2024 ec_slave_config_t *sc, /**< Slave configuration. */
2025 struct in_addr ip_address /**< IPv4 address. */
2026);

2027

2028 /** Sets the subnet mask for Ethernet-over-EtherCAT (EoE) operation.
2029 *

2030 * This method has to be called in non-realtime context before

2031 * ecrt_master_activate ().

2032 *

2033 * The subnet mask is stored in the slave configuration object and will be
2034 * written to the slave during the configuration process.

2035 *

2036 * The subnet mask is passed by-value as a ‘struct in_addr ‘. This structure
2037 * contains the 32-bit mask in network byte order (big endian).

2038 *

2039 * See ecrt_slave_config_eoe_ip_address() on how to convert string-coded masks
2040 * to ‘struct in_addr ‘.

2041 *

2042 * \apiusage{master_idle,blocking}

2043 *

2044 * \retval O Success.

2045 * \retval <0 Error code.

2046 */

2047 EC_PUBLIC_API int ecrt_slave_config_eoe_subnet_mask(

2048 ec_slave_config_t *sc, /**< Slave configuration. */

2049 struct in_addr subnet_mask /**< IPv4 subnet mask. */

2050)

2051

2052 /** Sets the gateway address for Ethernet-over-EtherCAT (EoE) operation.
2053 *

2054 * This method has to be called in non-realtime context before

2055 * ecrt_master_activate().

2056 *

2057 * The gateway address is stored in the slave configuration object and will be
2058 * written to the slave during the configuration process.

2059 *

2060 * The address is passed by-value as a ‘struct in_addr . This structure

2061 * contains the 32-bit IPv4 address in network byte order (big endian).

2062 *

2063 * See ecrt_slave_config_eoe_ip_address() on how to convert string-coded IPvé4
2064 * addresses to ‘struct in_addr ‘.

2065 *

2066 * \apiusage{master_idle,blocking}

2067 *

2068 * \retval O Success.

2069 * \retval <0 Error code.

2070 */

2071 EC_PUBLIC_API int ecrt_slave_config_eoe_default_gateway (

2072 ec_slave_config_t *sc, /**< Slave configuration. */

2073 struct in_addr gateway_address /**< Gateway’s IPv4 address. */

2074)

2075

2076 /** Sets the IPv4 address of the DNS server for Ethernet-over-EtherCAT (EoE)
2077 * operation.

2078 *

2079 * This method has to be called in non-realtime context before

2080 * ecrt_master_activate().

2081 *

2082 * The DNS server address is stored in the slave configuration object and will

1.6.8, 53

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148

3 Application Interface

* be written to the slave during the configuration process.

*

* The address is passed by-value as a ‘struct in_addr ‘. This structure
* contains the 32-bit IPv4 address in network byte order (big endian).
*

* See ecrt_slave_config_eoe_ip_address() on how to convert string-coded IPv4
* addresses to ‘struct in_addr ‘.

*

* \apiusage{master_idle,blocking}

*

* \retval O Success.

* \retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_slave_config_eoe_dns_address(
ec_slave_config_t *sc, /*x*< Slave configuration. */

struct in_addr dns_address /**< IPv4 address of the DNS server.

);

/** Sets the host name for Ethernet-over-EtherCAT (EoE) operation.
*

This method has to be called in non-realtime context before
ecrt_master_activate ().

The host name is stored in the slave configuration object and will
be written to the slave during the configuration process.

The maximum size of the host name is 32 bytes (including the zero
terminator) .

\apiusage{master_idle,blocking}

* K K XK X X X X X X *

\retval O Success.
\retval <0 Error code.

*

*/

EC_PUBLIC_API int ecrt_slave_config_eoe_hostname (
ec_slave_config_t *sc, /*x*< Slave configuration. */
const char #*name /**< Zero-terminated host name. */

);

/** Sets the application-layer state transition timeout in ms.
*

*/

Change the maximum allowed time for a slave to make an application-layer

* state transition for the given state transition (for example from PREOP to
* SAFEOP). The default values are defined in ETG.2000.

*

* A timeout value of zero ms will restore the default value.
*

* This method has to be called in non-realtime context before
* ecrt_master_activate ().

*

* \apiusage{master_idle,blocking}

*

* \retval O Success.

* \retval <0 Error code.

*/

EC_PUBLIC_API int ecrt_slave_config_state_timeout(
ec_slave_config_t *sc, /**< Slave configuration. x*/
ec_al_state_t from_state, /**< Initial state. */
ec_al_state_t to_state, /*x*< Target state. */
unsigned int timeout_ms /#**< Timeout in [ms]. */

);

/***

* Domain methods

**/

o4

1.6.8,

3.6 Application Interface Header

2149 /** Registers a bunch of PDO entries for a domain.

2150 *

2151 * This method has to be called in non-realtime context before

2152 * ecrt_master_activate ().

2153 *

2154 * \see ecrt_slave_config_reg_pdo_entry ()

2155 *

2156 * \attention The registration array has to be terminated with an empty
2157 * structure, or one with the \a index field set to zero!
2158 *

2159 * \apiusage{master_idle,blocking}

2160 *

2161 * \return O on success, else non-zero.

2162 */

2163 EC_PUBLIC_API int ecrt_domain_reg_pdo_entry_list(

2164 ec_domain_t *domain, /**< Domain. */

2165 const ec_pdo_entry_reg_t *pdo_entry_regs /**< Array of PDO

2166 registrations. */
2167)

2168

2169 /** Returns the current size of the domain’s process data.

2170 *

2171 * The domain size is calculated after master activation.

2172 *

2173 * \apiusage{master_op,rt_safe}

2174 *

2175 * \return Size of the process data image, or a negative error code.
2176 */

2177 EC_PUBLIC_API size_t ecrt_domain_size(

2178 const ec_domain_t *domain /**< Domain. */

2179)

2180

2181 #ifdef __KERNEL__

2182

2183 /** Provide external memory to store the domain’s process data.

2184 *

2185 * Call this after all PDO entries have been registered and before activating
2186 * the master.

2187 *

2188 * The size of the allocated memory must be at least ecrt_domain_size(), after
2189 * all PDO entries have been registered.

2190 *

2191 * This method has to be called in non-realtime context before

2192 * ecrt_master_activate().

2193 *

2194 * \apiusage{master_idle,blocking}

2195 */

2196 void ecrt_domain_external_memory (

2197 ec_domain_t *domain, /**< Domain. */

2198 uint8_t *memory /x*< Address of the memory to store the process
2199 data in. */

2200)

2201

2202 #endif /* __KERNEL__ x*/

2203

2204 /** Returns the domain’s process data.

2205 *

2206 * - In kernel context: If external memory was provided with

2207 * ecrt_domain_external_memory (), the returned pointer will contain the
2208 * address of that memory. Otherwise it will point to the intermnally allocated
2209 * memory. In the latter case, this method may not be called before

2210 * ecrt_master_activate().

2211 *

2212 * - In userspace context: This method has to be called after

2213 * ecrt_master_activate() to get the mapped domain process data memory.
2214 *

1.6.8, 55

2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280

3 Application Interface

*
*
*
*/

EC_

/**
*

* X ¥ X ¥ *

*
*/
EC_

/* %
*
*
*
*
*
*
*

*/
EC_

/ * %
*

* K K X X X

*
*/
EC_

/3 % sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk %k sk ok %k ok ok ok ok sk %k ok ok sk ok sk ok ok % sk %k sk %k sk ok sk ok % ok %k sk % ok % sk %k %k 5k %k ok % 5k %k >k %k %k % %k ok k k k k k

*

sk sk ok ok ok sk ok ok ok sk ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk sk ok sk ok sk ok sk 3k sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok % sk ok sk ok sk ok k ok ok sk ok ok K ok K koK k ok kok ok ok /

/ %%
*

* ¥ ¥ ¥ ¥ ¥ *

o6

\apiusage{master_op,rt_safe}
\return Pointer to the process data memory.
PUBLIC_API uint8_t #*ecrt_domain_data(
const ec_domain_t *domain /**< Domain. x/
)
Determines the states of the domain’s datagrams.
Evaluates the working counters of the received datagrams and outputs
statistics, if necessary. This must be called after ecrt_master_receive()
is expected to receive the domain datagrams in order to make
ecrt_domain_state() return the result of the last process data exchange.
\apiusage{master_op,rt_safe}
\return O on success, otherwise negative error code.
PUBLIC_API int ecrt_domain_process(
ec_domain_t *domain /**< Domain. */
)

(Re-) queues all domain datagrams in the master’s datagram queue.

Call this function to mark the domain’s datagrams for exchanging at the
next call of ecrt_master_send().

\apiusage{master_op,rt_safe}
\return O on success, otherwise negative error code.
PUBLIC_API int ecrt_domain_queue (

ec_domain_t *domain /**< Domain. */

)
Reads the state of a domain.
Stores the domain state in the given \a state structure.
Using this method, the process data exchange can be monitored in realtime.
\apiusage{master_op,rt_safel}
\return O on success, otherwise negative error code.
PUBLIC_API int ecrt_domain_state (

const ec_domain_t *domain, /**< Domain. */

ec_domain_state_t *state /*x*< Pointer to a state object to store the
information. */

);

SDO request methods.

Set the SDO index and subindex.

\attention If the SDO index and/or subindex is changed while
ecrt_sdo_request_state() returns EC_REQUEST_BUSY, this may lead to
unexpected results.

This method is meant to be called in realtime context (after master
activation). To initialize the SDO request, the index and subindex can be
set via ecrt_slave_config_create_sdo_request().

1.6.8,

3.6 Application Interface Header

2281 * \apiusage{master_op,rt_safe}

2282 *

2283 * \return O on success, otherwise negative error code.

2284 */

2285 EC_PUBLIC_API int ecrt_sdo_request_index(

2286 ec_sdo_request_t *req, /**< SDO request. */

2287 uint16_t index, /**< SDO index. */

2288 uint8_t subindex /**< SDO subindex. */

2289)

2290

2291 /** Set the timeout for an SDO request.

2292 *

2293 * If the request cannot be processed in the specified time, if will be marked
2294 * as failed.

2295 *

2296 * The timeout is permanently stored in the request object and is valid until
2297 * the next call of this method.

2298 *

2299 * The timeout should be defined in non-realtime context, but can also be
2300 * changed afterwards.

2301 *

2302 * \apiusage{master_any,rt_safe}

2303 *

2304 * \return 0 on success, otherwise negative error code.

2305 */

2306 EC_PUBLIC_API int ecrt_sdo_request_timeout (

2307 ec_sdo_request_t *req, /**< SDO request. */

2308 uint32_t timeout /**< Timeout in milliseconds. Zero means no

2309 timeout. x/

2310)

2311

2312 /** Access to the SDO request’s data.

2313 *

2314 * This function returns a pointer to the request’s internal SDO data memory.
2315 *

2316 * - After a read operation was successful, integer data can be evaluated
2317 * using the EC_READ_*() macros as usual. Example:

2318 * \code

2319 * uint16_t value = EC_READ_U16(ecrt_sdo_request_data(sdo)));

2320 * \endcode

2321 * - If a write operation shall be triggered, the data have to be written to
2322 * the internal memory. Use the EC_WRITE_*() macros, if you are writing
2323 * integer data. Be sure, that the data fit into the memory. The memory size
2324 * is a parameter of ecrt_slave_config_create_sdo_request ().

2325 * \code

2326 * EC_WRITE_U16 (ecrt_sdo_request_data(sdo), OxFFFF);

2327 * \endcode

2328 *

2329 * \attention The return value can be invalid during a read operation, because
2330 * the internal SDO data memory could be re-allocated if the read SDO data do
2331 * not fit inside.

2332 *

2333 * This method is meant to be called in realtime context (after master

2334 * activation), but can also be used to initialize data before.

2335 *

2336 * \apiusage{master_any,rt_safe}

2337 *

2338 * \return Pointer to the intermnal SDO data memory.

2339 *

2340 */

2341 EC_PUBLIC_API uint8_t *ecrt_sdo_request_data(

2342 const ec_sdo_request_t *req /**< SDO request. */

2343);

2344

2345 /** Returns the current SDO data size.

2346 *

1.6.8, 57

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

3 Application Interface

* When the SDO request is created, the data size is set to the size of the
* reserved memory. After a read operation the size is set to the size of the
* read data. The size is not modified in any other situation.

*

* This method is meant to be called in realtime context (after master

* activation).

*

* \apiusage{master_any,rt_safel}

*

* \return SDO data size in bytes.

*

*/

EC_PUBLIC_API size_t ecrt_sdo_request_data_size(
const ec_sdo_request_t *req /**< SDO request. x*/

)

/** Get the current state of the SDO request.
*

The user-space implementation fetches incoming data and stores the received
* data size in the request object, so the request is not const.
*
* This method is meant to be called in realtime context (after master
* activation).
*
* \apiusage{master_op,rt_safe}
*
* \return Request state.
*
*/

EC_PUBLIC_API ec_request_state_t ecrt_sdo_request_state(
#ifdef KERNEL __

const
#endif
ec_sdo_request_t *req /**< SDO request. */
)
/** Schedule an SDO write operation.
*
\attention This method may not be called while ecrt_sdo_request_state()
* returns EC_REQUEST_BUSY.
*
* This method is meant to be called in realtime context (after master
* activation).
*
* \apiusage{master_op,rt_safe}
*
* \return O on success, otherwise negative error code.
* \retval -EINVAL Invalid input data, e.g. data size == 0.
* \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_sdo_request ()
* too small.
*/

EC_PUBLIC_API int ecrt_sdo_request_write(
ec_sdo_request_t *req /**< SDO request. */

)
/** Schedule an SDO read operation.
*
* \attention This method may not be called while ecrt_sdo_request_state ()
* returns EC_REQUEST_BUSY.
*
* \attention After calling this function, the return value of
* ecrt_sdo_request_data() must be considered as invalid while
* ecrt_sdo_request_state() returns EC_REQUEST_BUSY.
*
* This method is meant to be called in realtime context (after master
* activation).

o8

1.6.8,

3.6 Application Interface Header

2413 *

2414 * \apiusage{master_op,rt_safe}

2415 *

2416 * \return O on success, otherwise negative error code.
2417 */

2418 EC_PUBLIC_API int ecrt_sdo_request_read(

2419 ec_sdo_request_t *req /**< SDO request. */

2420);

2421

2422 /% ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok ok K ok sk ok ok ok K ok sk K ok sk ok ok ok ok ok sk K ok ok ok ok ok K ok ok K ok ok K ok ok K K K
2423 * SoE request methods.

2424 sk sk ok ok ok ok ok ok ok sk sk ok ok ok ok sk sk K ok sk ok sk ok K ok sk K ok sk ok ok ok K ok sk K ok ok ok ok ok K ok sk K ok ok ok ok ok o ok sk K ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok %/
2425

2426 /** Set the request’s drive and Sercos ID numbers.

2427 *

2428 * \attention If the drive number and/or IDN is changed while

2429 * ecrt_soe_request_state() returns EC_REQUEST_BUSY, this may lead to

2430 * unexpected results.

2431 *

2432 * This method is meant to be called in realtime context (after master

2433 * activation). To initialize the SoE request, the drive_no and IDN can be
2434 * set via ecrt_slave_config_create_soe_request().

2435 *

2436 * \apiusage{master_op,rt_safe}

2437 *

2438 * \return O on success, otherwise negative error code.

2439 */

2440 EC_PUBLIC_API int ecrt_soe_request_idn(

2441 ec_soe_request_t *req, /*x*< IDN request. */

2442 uint8_t drive_no, /**< SDO index. */

2443 uint16_t idn /**< SoE IDN. x/

2444);

2445

2446 /** Set the timeout for an SoE request.

2447 *

2448 * If the request cannot be processed in the specified time, if will be marked
2449 * as failed.

2450 *

2451 * The timeout is permanently stored in the request object and is valid until
2452 * the next call of this method.

2453 *

2454 * The timeout should be defined in non-realtime context, but can also be
2455 * changed afterwards.

2456 *

2457 * \apiusage{master_any,rt_safe}

2458 *

2459 * \return O on success, otherwise negative error code.

2460 */

2461 EC_PUBLIC_API int ecrt_soe_request_timeout (

2462 ec_soe_request_t *req, /**< SoE request. */

2463 uint32_t timeout /**< Timeout in milliseconds. Zero means no

2464 timeout. */

2465)

2466

2467 /** Access to the SoE request’s data.

2468 *

2469 * This function returns a pointer to the request’s internal IDN data memory.
2470 *

2471 * - After a read operation was successful, integer data can be evaluated
2472 * using the EC_READ_x*() macros as usual. Example:

2473 * \code

2474 * uint16_t value = EC_READ_U16 (ecrt_soe_request_data(idn_req)));

2475 * \endcode

2476 * - If a write operation shall be triggered, the data have to be written to
2477 * the internal memory. Use the EC_WRITE_*() macros, if you are writing
2478 * integer data. Be sure, that the data fit into the memory. The memory size

1.6.8, 59

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

3 Application Interface

* is a parameter of ecrt_slave_config_create_soe_request().

* \code

* EC_WRITE_Ul16(ecrt_soe_request_data(idn_req), OxFFFF);

* \endcode

*

* \attention The return value can be invalidated during a read operation,
* because the internal IDN data memory could be re-allocated if the read IDN
* data do not fit inside.

*

* This method is meant to be called in realtime context (after master

* activation), but can also be used to initialize data before.

*

* \apiusage{master_any,rt_safel}

*

* \return Pointer to the intermal IDN data memory.

*

*/

EC_PUBLIC_API uint8_t *ecrt_soe_request_data(
const ec_soe_request_t *req /**< SoE request. */

)

/** Returns the current IDN data size.
*

When the SoE request is created, the data size is set to the size of the
* reserved memory. After a read operation the size is set to the size of the
* read data. The size is not modified in any other situation.
*
* \apiusage{master_any,rt_safel}
*

* \return IDN data size in bytes.
*/
EC_PUBLIC_API size_t ecrt_soe_request_data_size(
const ec_soe_request_t *req /**< SoE request. */

)

/** Get the current state of the SoE request.
*

\return Request state.
*
* This method is meant to be called in realtime context (after master
* activation).
*
* In the user-space implementation, the method fetches the size of the
* incoming data, so the request object is not const.
*

* \apiusage{master_op,rt_safe}

*/

EC_PUBLIC_API ec_request_state_t ecrt_soe_request_state(
#ifdef KERNEL__

const
#endif
ec_soe_request_t *req /**< SoE request. */
)
/** Schedule an SoE IDN write operation.
*
\attention This method may not be called while ecrt_soe_request_state()
* returns EC_REQUEST_BUSY.
*
* This method is meant to be called in realtime context (after master
* activation).
*
* \apiusage{master_op,rt_safe}
*
* \return O on success, otherwise negative error code.
* \retval -EINVAL Invalid input data, e.g. data size == 0.

60

1.6.8,

3.6 Application Interface Header

2545 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_soe_request ()
2546 * too small.

2547 */

2548 EC_PUBLIC_API int ecrt_soe_request_write(

2549 ec_soe_request_t *req /**< SoE request. */

2550)

2551

2552 /** Schedule an SoE IDN read operation.

2553 *

2554 * \attention This method may not be called while ecrt_soe_request_state()
2555 * returns EC_REQUEST_BUSY.

2556 *

2557 * \attention After calling this function, the return value of

2558 * ecrt_soe_request_data() must be considered as invalid while

2559 * ecrt_soe_request_state() returns EC_REQUEST_BUSY.

2560 *

2561 * This method is meant to be called in realtime context (after master
2562 * activation).

2563 *

2564 * \apiusage{master_op,rt_safe}

2565 *

2566 * \return O on success, otherwise negative error code.

2567 */

2568 EC_PUBLIC_API int ecrt_soe_request_read(

2569 ec_soe_request_t *req /**< SoE request. */

2570)

2571

BT [k Kk ok kK kK kK ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok 3K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok K K K K K K
2573 * VoE handler methods.

2574 ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok /
2575

2576 /** Sets the VoE header for future send operations.

2577 *

2578 * A VoE message shall contain a 4-byte vendor ID, followed by a 2-byte vendor
2579 * type at as header. These numbers can be set with this function. The values
2580 * are valid and will be used for future send operations until the next call
2581 * of this method.

2582 *

2583 * This method is meant to be called in non-realtime context (before master
2584 * activation) to initialize the header data, but it is also safe to

2585 * change the header later on in realtime context.

2586 *

2587 * \apiusage{master_any,rt_safel}

2588 *

2589 * \return O on success, otherwise negative error code.

2590 */

2591 EC_PUBLIC_API int ecrt_voe_handler_send_header (

2592 ec_voe_handler_t *voe, /**< VoE handler. */

2593 uint32_t vendor_id, /**< Vendor ID. */

2594 uint16_t vendor_type /**< Vendor-specific type. */

2595)

2596

2597 /** Reads the header data of a received VoE message.

2598 *

2599 * This method can be used to get the received VoE header information after a
2600 * read operation has succeeded.

2601 *

2602 * The header information is stored at the memory given by the pointer

2603 * parameters.

2604 *

2605 * This method is meant to be called in realtime context (after master

2606 * activation).

2607 *

2608 * \apiusage{master_op,rt_safe}

2609 *

2610 * \return O on success, otherwise negative error code.

1.6.8, 61

2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

3 Application Interface

*/

EC_PUBLIC_API int ecrt_voe_handler_received_header(
const ec_voe_handler_t *voe, /**< VoE handler. x*/
uint32_t *vendor_id, /**< Vendor ID. x/
uintl16_t *vendor_type /**< Vendor-specific type. */

)

/** Access to the VoE handler’s data.
*

This function returns a pointer to the VoE handler’s internal memory, that
* points to the actual VoE data right after the VoE header (see
* ecrt_voe_handler_send_header ()).
*
* - After a read operation was successful, the memory contains the received
* data. The size of the received data can be determined via
* ecrt_voe_handler_data_size ().
* - Before a write operation is triggered, the data have to be written to the
* internal memory. Be sure, that the data fit into the memory. The reserved
* memory size is a parameter of ecrt_slave_config_create_voe_handler ().
*
* \attention The returned pointer is not necessarily persistent: After a read
* operation, the internal memory may have been reallocated. This can be
* avoided by reserving enough memory via the \a size parameter of
* ecrt_slave_config_create_voe_handler ().
*
* \apiusage{master_any,rt_safel}
*
* \return Pointer to the internal memory.
*/

EC_PUBLIC_API uint8_t *ecrt_voe_handler_data(
const ec_voe_handler_t *voe /**< VoE handler. x/

)

/** Returns the current data size.
*

The data size is the size of the VoE data without the header (see

* ecrt_voe_handler_send_header()).

*

* When the VoE handler is created, the data size is set to the size of the
* reserved memory. At a write operation, the data size is set to the number
* of bytes to write. After a read operation the size is set to the size of
* the read data. The size is not modified in any other situation.

*

* \apiusage{master_any,rt_safel}

*

* \return Data size in bytes.

*/

EC_PUBLIC_API size_t ecrt_voe_handler_data_size(
const ec_voe_handler_t *voe /**< VoE handler. %/

)

/** Start a VoE write operation.
*

After this function has been called, the ecrt_voe_handler_execute() method
* must be called in every realtime cycle as long as it returns
* EC_REQUEST_BUSY. No other operation may be started while the handler is
* busy.
*
* This method is meant to be called in realtime context (after master
* activation).
*
* \apiusage{master_op,rt_safe}
*
* \return O on success, otherwise negative error code.
* \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_voe_handler
* too small.

62

1.6.8,

3.6 Application Interface Header

2677 */

2678 EC_PUBLIC_API int ecrt_voe_handler_write(

2679 ec_voe_handler_t *voe, /*%*< VoE handler. */

2680 size_t size /#**< Number of bytes to write (without the VoE header). */
2681)

2682

2683 /** Start a VoE read operation.

2684 *

2685 * After this function has been called, the ecrt_voe_handler_execute () method
2686 * must be called in every realtime cycle as long as it returns

2687 * EC_REQUEST_BUSY. No other operation may be started while the handler is
2688 * busy.

2689 *

2690 * The state machine queries the slave’s send mailbox for new data to be send
2691 * to the master. If no data appear within the EC_VOE_RESPONSE_TIMEOUT

2692 * (defined in master/voe_handler.c), the operation fails.

2693 *

2694 * On success, the size of the read data can be determined via

2695 * ecrt_voe_handler_data_size (), while the VoE header of the received data
2696 * can be retrieved with ecrt_voe_handler_received_header ().

2697 *

2698 * This method is meant to be called in realtime context (after master

2699 * activation).

2700 *

2701 * \apiusage{master_op,rt_safe}

2702 *

2703 * \return O on success, otherwise negative error code.

2704 */

2705 EC_PUBLIC_API int ecrt_voe_handler_read(

2706 ec_voe_handler_t *voe /**< VoE handler. */

2707)

2708

2709 /** Start a VoE read operation without querying the sync manager status.
2710 *
2711 * After this function has been called, the ecrt_voe_handler_execute() method

2712 * must be called in every realtime cycle as long as it returmns

2713 * EC_REQUEST_BUSY. No other operation may be started while the handler is
2714 * busy.

2715 *

2716 * The state machine queries the slave by sending an empty mailbox. The slave
2717 * fills its data to the master in this mailbox. If no data appear within the
2718 * EC_VOE_RESPONSE_TIMEOUT (defined in master/voe_handler.c), the operation
2719 * fails.

2720 *

2721 * On success, the size of the read data can be determined via

2722 * ecrt_voe_handler_data_size (), while the VoE header of the received data
2723 * can be retrieved with ecrt_voe_handler_received_header ().

2724 *

2725 * This method is meant to be called in realtime context (after master

2726 * activation).

2727 *

2728 * \apiusage{master_op,rt_safe}

2729 *

2730 * \return O on success, otherwise negative error code.

2731 */

2732 EC_PUBLIC_API int ecrt_voe_handler_read_nosync(

2733 ec_voe_handler_t *voe /**< VoE handler. */

2734)

2735

2736 /** Execute the handler.

2737 *

2738 * This method executes the VoE handler. It has to be called in every realtime
2739 * cycle as long as it returns EC_REQUEST_BUSY.

2740 *

2741 * \return Handler state.

2742 *

1.6.8, 63

2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808

3 Application Interface

* This method is meant to be called in realtime context (after master
* activation).
*
*

\apiusage{master_op,rt_safel}
*
*/
EC_PUBLIC_API ec_request_state_t ecrt_voe_handler_execute(
ec_voe_handler_t *voe /**< VoE handler. */

)

/***

* Register request methods.
sk sk sk ok ok sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok sk ok sk ok ok sk ok sk sk ok ok ok ok ok sk ok sk ok ok ko ok ok sk ok sk ok ok ok k ok ok sk ok ok ok ok ok ok ok ok sk ok Kok ok ok R ok sk Rk ok ok /)

/*% Access to the register request’s data.
*

This function returns a pointer to the request’s internal memory.

*
*
* - After a read operation was successful, integer data can be evaluated

* using the EC_READ_*() macros as usual. Example:

* \code

* uint16_t value = EC_READ_U16(ecrt_reg_request_data(reg_request)));

* \endcode

* - If a write operation shall be triggered, the data have to be written to

* the internal memory. Use the EC_WRITE_*() macros, if you are writing

* integer data. Be sure, that the data fit into the memory. The memory size
* is a parameter of ecrt_slave_config_create_reg_request ().

* \code

* EC_WRITE_U16 (ecrt_reg_request_data(reg_request), OxFFFF);

* \endcode

*

*

*

*

*

*

*

This method is meant to be called in realtime context (after master
activation), but can also be used to initialize data before.

\apiusage{master_any,rt_safel}

\return Pointer to the internal memory.
*

*/
EC_PUBLIC_API uint8_t *ecrt_reg_request_data(
const ec_reg_request_t *req /**< Register request. */

)

/** Get the current state of the register request.
*

This method is meant to be called in realtime context (after master
* activation).
*
* \apiusage{master_op,rt_safe}
*
* \return Request state.
*
*/

EC_PUBLIC_API ec_request_state_t ecrt_reg_request_state(
const ec_reg_request_t *req /**< Register request. */

)

/** Schedule an register write operation.
*

\attention This method may not be called while ecrt_reg_request_state()
* returns EC_REQUEST_BUSY.
*
* \attention The \a size parameter is truncated to the size given at request
* creation.
*
* This method is meant to be called in realtime context (after master

64

3.6 Application Interface Header

2809 * activation).

2810 *

2811 * \apiusage{master_op,rt_safe}

2812 *

2813 * \return O on success, otherwise negative error code.
2814 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_reg_request
2815 * too small.

2816 */

2817 EC_PUBLIC_API int ecrt_reg_request_write(

2818 ec_reg_request_t *req, /**< Register request. */
2819 uint16_t address, /*x*< Register address. x*/

2820 size_t size /**< Size to write. x/

2821)

2822

2823 /** Schedule a register read operation.

2824 *

2825 * \attention This method may not be called while ecrt_reg_request_state()

2826 * returns EC_REQUEST_BUSY.

2827 *

2828 * \attention The \a size parameter is truncated to the size given at request
2829 * creation.

2830 *

2831 * This method is meant to be called in realtime context (after master

2832 * activation).

2833 *

2834 * \apiusage{master_op,rt_safe}

2835 *

2836 * \return O on success, otherwise negative error code.

2837 * \retval -ENOBUFS Reserved memory in ecrt_slave_config_create_reg_request
2838 * too small.

2839 */

2840 EC_PUBLIC_API int ecrt_reg_request_read(

2841 ec_reg_request_t *req, /**< Register request. */

2842 uint16_t address, /*x*< Register address. */

2843 size_t size /**< Size to write. x/

2844);

2845

DBAG /K Kk Kk ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K Kk koK ok ok ok ok ok ok ok ok oK oK K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok K K K K K K K
2847 * Bitwise read/write macros

2848 sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
2849

2850 /** Read a certain bit of an EtherCAT data byte.

2851 *

2852 * \param DATA EtherCAT data pointer

2853 * \param POS bit position

2854 */

2855 #define EC_READ_BIT(DATA, PO0S) ((*((uint8_t =) (DATA)) >> (P0OS)) & 0x01)
2856

2857 /** Write a certain bit of an EtherCAT data byte.

2858 *

2859 * \param DATA EtherCAT data pointer

2860 * \param POS bit position

2861 * \param VAL new bit value

2862 */

2863 #define EC_WRITE_BIT(DATA, POS, VAL) \

2864 do { \

2865 if (VAL) *((uint8_t *) (DATA)) |= (1 << (P0S)); \

2866 else *((uint8_t *) (DATA)) &= ~(1 << (P0S)); \

2867 } while (0)

2868

2869 /***
2870 * Byte-swapping functions for user space

2871 **/
2872

2873 #ifndef __KERNEL__

2874

1.6.8, 65

3 Application Interface

2875 #if __BYTE_ORDER == __LITTLE_ENDIAN
2876

2877 #define lel6_to_cpu(x) x

2878 #define le32_to_cpu(x)
2879 #define le64_to_cpu(x) x
2880

2881 #define cpu_to_lel6(x) x
2882 #define cpu_to_le32(x)
2883 #define cpu_to_le64(x) x

"

]

2884
2885 #elif __BYTE_ORDER == __BIG_ENDIAN

2886

2887 #define swapl16(x) \

2888 ((uint16_t) (\

2889 (((uint16_t)(x) & 0x00ffU) << 8) | \

2890 (((uint16_t) (x) & 0xff00U) >> 8)))

2891 #define swap32(x) \

2892 ((uint32_t) (\

2893 (((uint32_t) (x) & 0x000000ffUL) << 24) | \

2894 (((uint32_t) (x) & 0x0000ffO00UL) << 8) | \

2895 (((uint32_t)(x) & 0x00ff0000UL) >> 8) | \

2896 (((uint32_t)(x) & 0xff000000UL) >> 24)))

2897 #define swap64(x) \

2898 ((uint64_t) (\

2899 (((uint64_t)(x) & 0x00000000000000ffULL) << 56) | \
2900 (((uint64_t)(x) & 0x000000000000ff00QULL) << 40) | \
2901 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
2902 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
2903 (((uint64_t) (x) & 0x000000£ff00000000ULL) >> 8) | \
2904 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
2905 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
2906 (((uint64_t)(x) & 0xff00000000000000ULL) >> 56)))
2907

2008 #define lel6_to_cpu(x) swapl6(x)

2909 #define le32_to_cpu(x) swap32(x)

2910 #define le64_to_cpu(x) swap64(x)

2911

2912 #define cpu_to_lel6(x) swapl6(x)

2913 #define cpu_to_le32(x) swap32(x)

2914 #define cpu_to_le64(x) swap64(x)

2915

2916 #endif

2917

2918 #define lel6_to_cpup(x) lel6_to_cpu(*x((uinti6_t *)(x)))
2919 #define le32_to_cpup(x) le32_to_cpu(*((uint32_t *)(x)))
2920 #define le64_to_cpup(x) le64_to_cpu(*((uint64_t *) (x)))

2921

2922 #endif /* ifndef __KERNEL__ */

2923

2024 /% sk ok ok ok ok ok okok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok ok sk ok sk sk ok sk ok ok sk sk ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok
2925 * Read macros

2926 sk sk sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok sk ok sk ok ok ok sk ok sk sk ok sk ok ok ok sk ok sk sk ok sk ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok k kR R ok ok Rk ok ok /
2927

2928 /** Read an 8-bit unsigned value from EtherCAT data.

2929 *

2930 * \return EtherCAT data value

2031 */

20932 #define EC_READ_U8(DATA) \

2933 ((uint8_t) *((uint8_t *) (DATA)))

2934

2935 /** Read an 8-bit signed value from EtherCAT data.

2936 *

2937 * \param DATA EtherCAT data pointer
2938 * \return EtherCAT data value

2939 */

2940 #define EC_READ_S8(DATA) \

66 1.6.8,

3.6 Application Interface Header

2941 ((int8_t) *((uint8_t =*) (DATA)))

2942

2943 /** Read a 16-bit unsigned value from EtherCAT data.
2944 *

2945 * \param DATA EtherCAT data pointer
2946 * \return EtherCAT data value

2947 */

2948 #define EC_READ_U16 (DATA) \

2949 ((uint16_t) lel6_to_cpup ((void *) (DATA)))
2950

2951 /** Read a 16-bit signed value from EtherCAT data.
2952 *

2953 * \param DATA EtherCAT data pointer
2954 * \return EtherCAT data value

2955 */

2956 #define EC_READ_S16 (DATA) \

2957 ((int16_t) lel6_to_cpup ((void *) (DATA)))

2958

2959 /** Read a 32-bit unsigned value from EtherCAT data.
2960 *

2961 * \param DATA EtherCAT data pointer

2962 * \return EtherCAT data value

2963 */

2964 #define EC_READ_U32(DATA) \

2965 ((uint32_t) le32_to_cpup((void *) (DATA)))
2966

2967 /** Read a 32-bit signed value from EtherCAT data.
2968 *

2969 * \param DATA EtherCAT data pointer
2970 * \return EtherCAT data value

2971 */

2972 #define EC_READ_S32(DATA) \

2973 ((int32_t) 1le32_to_cpup ((void *) (DATA)))

2974

2975 /** Read a 64-bit unsigned value from EtherCAT data.
2976 *

2977 * \param DATA EtherCAT data pointer
2978 * \return EtherCAT data value

2979 */

2980 #define EC_READ_U64 (DATA) \

2981 ((uint64_t) le64_to_cpup((void *) (DATA)))
2982

2983 /** Read a 64-bit signed value from EtherCAT data.
2984 *

2985 * \param DATA EtherCAT data pointer
2986 * \return EtherCAT data value

2087 */

2088 #define EC_READ_S64 (DATA) \

2989 ((int64_t) le64_to_cpup((void *) (DATA)))

2990

2001 /% sk sk ok sk ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok o ok sk ok ok ok ok ok ok sk ok ok sk ok ok ok K ok sk K ok sk ok ok ok K ok sk ok ok ok ok ok ok o ok ok o ok ok K ok ok o K ok
2992 * Floating-point read functions and macros (userspace only)

2993 sk sk ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk K sk sk ok sk ok ok ok sk K sk sk ok sk ok o ok sk K sk sk ok ok ok o ok sk ok ok ok o ok ok o ok sk o ok ok o ok ok o ok ok o ok ok o ok ok ok ok sk Rk ok ok /
2994

2995 #ifndef __KERNEL__

2996

2997 /** Read a 32-bit floating-point value from EtherCAT data.

2998 *

2999 * \apiusage{master_any,rt_safel}

3000 *

3001 * \param data EtherCAT data pointer
3002 * \return EtherCAT data value

3003 */
3004 EC_PUBLIC_API float ecrt_read_real(const void *data);
3005

3006 /** Read a 32-bit floating-point value from EtherCAT data.

1.6.8, 67

3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072

3 Application Interface

*
* \param DATA EtherCAT data pointer
* \return EtherCAT data value
*/

#define EC_READ_REAL (DATA) ecrt_read_real (DATA)

/** Read a 64-bit floating-point value from EtherCAT data.

*
* \apiusage{master_any,rt_safel}

*

* \param data EtherCAT data pointer

* \return EtherCAT data value

*/

EC_PUBLIC_API double ecrt_read_lreal(const void *data);

/** Read a 64-bit floating-point value from EtherCAT data.

*
* \param DATA EtherCAT data pointer
* \return EtherCAT data value
*/

#define EC_READ_LREAL (DATA) ecrt_read_lreal (DATA)

#endif // ifndef __KERNEL__

/3 3% sk ok sk ok ok sk ok ok ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok

* Write macros

**/

/** Write an 8-bit unsigned value to EtherCAT data.
*
* \param DATA EtherCAT data pointer
* \param VAL new value
*/
#define EC_WRITE_U8(DATA, VAL) \
do { \
*((uint8_t *) (DATA)) = ((uint8_t) (VAL)); \
} while (0)

/%% VWrite an 8-bit signed value to EtherCAT data.
*
* \param DATA EtherCAT data pointer
* \param VAL new value
*/
#define EC_WRITE_S8(DATA, VAL) EC_WRITE_U8(DATA, VAL)

/** Write a 16-bit unsigned value to EtherCAT data.
*
* \param DATA EtherCAT data pointer
* \param VAL new value
*/
#define EC_WRITE_U16 (DATA, VAL) \
do { \

*((uint16_t *) (DATA)) = cpu_to_lel6((uint16_t) (VAL));

} while (0)

/** Write a 16-bit signed value to EtherCAT data.
*
* \param DATA EtherCAT data pointer
* \param VAL new value
*/
#define EC_WRITE_S16(DATA, VAL) EC_WRITE_U16 (DATA, VAL)

/*% VWrite a 32-bit unsigned value to EtherCAT data.
*

* \param DATA EtherCAT data pointer
* \param VAL new value

68

\

1.6.8,

3.6 Application Interface Header

3073 */

3074 #define EC_WRITE_U32(DATA, VAL) \

3075 do { \

3076 *((uint32_t *) (DATA)) = cpu_to_le32((uint32_t) (VAL)); \
3077 } while (0)

3078

3079 /** Write a 32-bit signed value to EtherCAT data.

3080 *

3081 * \param DATA EtherCAT data pointer

3082 * \param VAL new value

3083 */

3084 #define EC_WRITE_S32(DATA, VAL) EC_WRITE_U32(DATA, VAL)
3085

3086 /** Write a 64-bit unsigned value to EtherCAT data.

3087 *

3088 * \param DATA EtherCAT data pointer
3089 * \param VAL new value

3090 */

3091 #define EC_WRITE_U64 (DATA, VAL) \

3092 do { \

3093 *((uint64_t *) (DATA)) = cpu_to_le64((uint64_t) (VAL)); \
3094 } while (0)

3095

3096 /** Write a 64-bit signed value to EtherCAT data.

3097 *

3098 * \param DATA EtherCAT data pointer
3099 * \param VAL new value

3100 */

3101 #define EC_WRITE_S64 (DATA, VAL) EC_WRITE_U64 (DATA, VAL)

3102

3103 /% ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok oK o oK ok o ok ok ok ok ok ok K ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok K ok ok ok ok ok K ok ok K ok ok K ok ok K K K
3104 * Floating-point write functions and macros (userspace only)
3105 sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok K ok sk K ok sk ok ok ok K ok sk K ok ok ok ok ok K ok sk K ok ok K ok ok K ok ok K ok ok K ok ok o ok ok K ok ok K ok ok ok ok ok ok ok ok %k /
3106

3107 #ifndef __KERNEL__

3108

3109 /** Write a 32-bit floating-point value to EtherCAT data.

3110 *

3111 * \apiusage{master_any,rt_safel}

3112 *

3113 * \param data EtherCAT data pointer

3114 * \param value new value

3115 */

3116 EC_PUBLIC_API void ecrt_write_real(void *data, float value);
3117

3118 /** Write a 32-bit floating-point value to EtherCAT data.

3119 *

3120 * \param DATA EtherCAT data pointer

3121 * \param VAL new value

3122 */

3123 #define EC_WRITE_REAL (DATA, VAL) ecrt_write_real (DATA, VAL)
3124

3125 /** Write a 64-bit floating-point value to EtherCAT data.

3126 *

3127 * \apiusage{master_any,rt_safel}

3128 *

3129 * \param data EtherCAT data pointer

3130 * \param value new value

3131 */

3132 EC_PUBLIC_API void ecrt_write_lreal(void *data, double value);
3133

3134 /** Write a 64-bit floating-point value to EtherCAT data.

3135 *

3136 * \param DATA EtherCAT data pointer
3137 * \param VAL new value
3138 x/

1.6.8, 69

3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153

© 0N OO W N

R R R R R N R R R e T e e
SO WO AR WO O OO OAWN RO

3

Application Interface

#define EC_WRITE_LREAL (DATA, VAL) ecrt_write_lreal (DATA, VAL)

#endif // ifndef

_KERNEL__

/**/

#ifdef __cplusplus

}

#endif

/*

sk 3k ok sk %k ok 5k %k 3k ok %k %k ok sk %k ok sk %k ok 3k %k ok 5k % 3k >k %k %k 5k %k % 5k %k % >k 3k %k >k 3k % >k 3k % 5k 3k % >k >k % >k > %k %k >k % % >k % %k >k % % >k 3% % >k % % %k >k % *k *k k x /

/%% @} */

#endif

3

.7 Userspace Application Example

There are multiple examples of how to use the application interface included in the
master sources (under examples/). This section lists a very common application, the
usage of the master from the user-space. The example code reserves an EtherCAT
master, creates slave configurations and domains and goes into cyclic mode, where
the cyclic_task() function is called repeatedly. For more general information on how
to do real-time programming under Linux, please have a look at the code examples

n

/%

https://gitlab.com/etherlab.org/realtime.

Listing 3.2: Userspace application example example/user/main.c

sk sk sk ok sk ok ok sk ok ok ok sk ok ok ok o ok sk s ok sk o ok sk o ok ok o ok sk o ok ok o ok ok ok ok sk ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk K sk sk ok ok ok ok sk K ok ok ok ok ok o oKk
Copyright (C) 2007-2009 Florian Pose, Ingenieurgemeinschaft IgH
This file is part of the IgH EtherCAT Master.

The IgH EtherCAT Master is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License version 2, as
published by the Free Software Foundation.

The IgH EtherCAT Master is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with the IgH EtherCAT Master; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

***/

#include <errno.h>

#include <signal.h>

#include <stdio.h>

#include <string.h>

#include <sys/resource.h>

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

#include <time.h> /* clock_gettime () */

70

1.6.8,

https://gitlab.com/etherlab.org/realtime

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

3.7 Userspace Application Example

#include <sys/mman.h> /* mlockall() x/
#include <sched.h> /* sched_setscheduler () */

/% K K ok kK Kk Kk kK ok ok ok ok ok ok ok ok ok oK K K K K K Kk K K Kk K ok ok ok ok ok ok ok ok ok ok K K K K K K K kKK Kk Kk ok ok ok ok ok ok ok kR kK Kk K k /
#include "ecrt.h"
/% K K Kk kK Kk k k ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K Kk ok ok ok ok ok ok ok ok ok k kK kK k /

/** Task period in ns. x/
#define PERIOD_NS (1000000)

#define MAX_SAFE_STACK (8 * 1024) /* The maximum stack size which is
guranteed safe to access without
faulting */
/% % K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok K K ok ok ok ok K K ok ok ok kK K ok ok ok %/
/* Constants */
#define NSEC_PER_SEC (1000000000)
#define FREQUENCY (NSEC_PER_SEC / PERIOD_NS)

/3% % sk ok sk ok ok sk ok ok ok sk ok sk ok sk sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk K sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok k ok ok sk ok ok K sk ok %k ok ok % ok %k ok %k k ok k ok k ok ok ok /

// EtherCAT

static ec_master_t *master = NULL;

static ec_master_state_t master_state = {};

static ec_domain_t *domainl = NULL;

static ec_domain_state_t domainl_state = {};

static ec_slave_config_t *sc_ana_in = NULL;

static ec_slave_config_state_t sc_ana_in_state = {};

/**/

// process data
static uint8_t *domainl_pd = NULL;

#define BusCouplerPos 0, O
#define DiglOutSlavePos 0, 2
#define AnalInSlavePos 0, 3
#define AnaOutSlavePos 0, 4

#define Beckhoff_ _EK1100 0x00000002, 0x044c2cb52
#define Beckhoff_ EL2004 0x00000002, 0x07d43052
#define Beckhoff_EL2032 0x00000002, 0x07£f03052
#define Beckhoff_ EL3152 0x00000002, 0x0c503052
#define Beckhoff_ EL3102 0x00000002, 0x0cl1e3052
#define Beckhoff_ EL4102 0x00000002, 0x10063052

// offsets for PDO entries

static unsigned int off_ana_in_status;
static unsigned int off_ana_in_value;
static unsigned int off_ana_out;
static unsigned int off_dig_out;

const static ec_pdo_entry_reg_t domainl_regs[] = {
{AnaInSlavePos, Beckhoff_EL3102, 0x3101, 1, &off_ana_in_status},
{AnaInSlavePos, Beckhoff_EL3102, 0x3101, 2, &off_ana_in_valuel},
{AnaOutSlavePos, Beckhoff_EL4102, 0x3001, 1, &off_ana_out},
{DigOutSlavePos, Beckhoff_EL2032, 0x3001, 1, &off_dig_out},
{}

};

static unsigned int counter = O0;

1.6.8, 71

3 Application Interface

97 static unsigned int blink = 0;

98

00 /% sk sk ok ok ok sk ok sk ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok /
100

101 // Analog in --------------------------

102

103 static const ec_pdo_entry_info_t el13102_pdo_entries[] = {
104 {0x3101, 1, 8}, // channel 1 status

105 {0x3101, 2, 16}, // channel 1 value

106 {0x3102, 1, 8}, // channel 2 status

107 {0x3102, 2, 16}, // channel 2 value

108 {0x6401, 1, 16}, // channel 1 value (alt.)
109 {0x6401, 2, 16} // channel 2 value (alt.)
110 };

111

112 static const ec_pdo_info_t e13102_pdos[] = {
113 {0x1A00, 2, el1l3102_pdo_entries},

114 {0x1A01, 2, el3102_pdo_entries + 2}

115 };

116

117 static const ec_sync_info_t el3102_syncs[] = {
118 {2, EC_DIR_OQOUTPUT},

119 {3, EC_DIR_INPUT, 2, el3102_pdos},

120 {0xff}

121 };

122

123 // Analog out =—--------------————————————

124

125 static const ec_pdo_entry_info_t el14102_pdo_entries[] = {
126 {0x3001, 1, 16}, // channel 1 value

127 {0x3002, 1, 16}, // channel 2 value

128 };

129

130 static const ec_pdo_info_t e14102_pdos[] = {
131 {0x1600, 1, el4102_pdo_entries},

132 {0x1601, 1, el4102_pdo_entries + 1}

133 };

134

135 static const ec_sync_info_t el4102_syncs[] = {
136 {2, EC_DIR_OUTPUT, 2, el4102_pdos},

137 {3, EC_DIR_INPUT},

138 {oxff}

139 };

140

141 // Digital out ----------------—--——-——-——-

142

143 static const ec_pdo_entry_info_t el12004_channels[] = {
144 {0x3001, 1, 1}, // Value 1

145 {0x3001, 2, 1}, // Value 2

146 {0x3001, 3, 1}, // Value 3

147 {0x3001, 4, 1} // Value 4

148 };

149

150 static const ec_pdo_info_t el12004_pdos[] = {
151 {0x1600, 1, &e12004_channels[0]},

152 {0x1601, 1, &el2004_channels[1]},

153 {0x1602, 1, &el2004_channels[2]},

154 {0x1603, 1, &el12004_channels [3]}

155 };

156

157 static const ec_sync_info_t e12004_syncs[] = {
158 {0, EC_DIR_OUTPUT, 4, el2004_pdos},

159 {1, EC_DIR_INPUT},

160 {0xff}

161 };

162

72 1.6.8,

163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180
181

191
192
193
194

196
197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

3.7 Userspace Application Example

/**/

void check_domainl_state(void)

{
ec_domain_state_t ds;
ecrt_domain_state (domainl, &ds);
if (ds.working_counter != domainl_state.working_counter) {
printf ("Domainl: WCy%u.\n", ds.working_counter);
}
if (ds.wc_state != domainl_state.wc_state) {
printf ("Domainl: Statey%u.\n", ds.wc_state);
}
domainl_state = ds;
}

/**/

void check_master_state(void)

{
ec_master_state_t ms;
ecrt_master_state (master, &ms);
if (ms.slaves_responding != master_state.slaves_responding) {
printf ("%uyslave(s).\n", ms.slaves_responding);
}
if (ms.al_states != master_state.al_states) {
printf ("AL states:,0x%02X.\n", ms.al_states);
}
if (ms.link_up != master_state.link_up) {
printf ("Link,is %s.\n", ms.link_up ? "up" : "down");
}
master_state = ms;
}

/**/

void check_slave_config_states(void)

{
ec_slave_config_state_t s;
ecrt_slave_config_state(sc_ana_in, &s);
if (s.al_state != sc_ana_in_state.al_state) {
printf ("AnalIn:_ State ,0x%02X.\n", s.al_state);
}
if (s.online != sc_ana_in_state.online) {
printf ("Analn:%s.\n", s.online ? "online" : "offline");
}
if (s.operational != sc_ana_in_state.operational) {
printf ("AnalIn:_%soperational.\n", s.operational 7 "" : "Noty");
}
sc_ana_in_state = s;
}

/**/

void cyclic_task()

{
// receive process data
ecrt_master_receive (master);

1.6.8, 73

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

269
270
271
272
273
274

276
277
278
279
280
281
282
283
284
285
286
287
288

290
291
292
293
294

3 Application Interface

ecrt_domain_process (domainl);

// check process data state
check_domainl_state () ;

if (counter) {
counter —--—;

} else { // do this at 1 Hz
counter = FREQUENCY;

// calculate new process data
blink = !blink;

// check for master state (optiomnal)
check_master_state () ;

// check for slave configuration state(s) (optional)
check_slave_config_states ();

}

#if O
// read process data
printf ("Analn: statey%uyvaluey%ul\n",
EC_READ_U8(domainil_pd + off_ana_in_status),
EC_READ_U16 (domainl_pd + off_ana_in_value));
#endif

#if 1

// write process data

EC_WRITE_U8(domainl_pd + off_dig_out, blink 7 0x06 : 0x09);
#endif

// send process data
ecrt_domain_queue (domainl);
ecrt_master_send (master) ;

}

/**/

void stack_prefault(void)

{
unsigned char dummy [MAX_SAFE_STACK];

memset (dummy , O, MAX_SAFE_STACK);
}

/**/

int main(int argc, char x**argv)
{
ec_slave_config_t *sc;
struct timespec wakeup_time;
int ret = 0;

master = ecrt_request_master (0);
if (!master) {
return -1;

}

domainl = ecrt_master_create_domain(master);
if (!domainil) {
return -1;

}

if (!(sc_ana_in = ecrt_master_slave_config(
master, AnaInSlavePos, Beckhoff_EL3102))) {

74

1.6.8,

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

3.7 Userspace Application Example

1.6.8,

fprintf (stderr, "Failed, toygetyslave configuration.\n");
return -1;

}

printf ("Configuring PDOs...\n");

if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3102_syncs)) {
fprintf (stderr, "Failed,toy,configure PDOs.\n");
return -1;

}
if (!(sc = ecrt_master_slave_config(
master, AnaOutSlavePos, Beckhoff_EL4102))) {
fprintf (stderr, "Failed, to,get,slave configuration.\n");
return -1;
}

if (ecrt_slave_config_pdos(sc, EC_END, el4102_syncs)) {
fprintf (stderr, "Failed,to,configure_ PDOs.\n");
return -1;

}
if (!(sc = ecrt_master_slave_config(
master , DigOutSlavePos, Beckhoff_EL2032))) {
fprintf (stderr, "Failed, toygetyslave configuration.\n");
return -1;
}

if (ecrt_slave_config_pdos(sc, EC_END, el12004_syncs)) {
fprintf (stderr, "Failed,to,configure PDOs.\n");
return -1;

}

// Create configuration for bus coupler

sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100);
if (!sc) {

return -1;

if (ecrt_domain_reg_pdo_entry_list(domainl, domainil_regs)) {
fprintf (stderr, "PDOyentry registrationgyfailed!\n");
return -1;

}

printf ("Activating master...\n");
if (ecrt_master_activate(master)) {
return -1;

}

if (!(domainl_pd = ecrt_domain_data(domainil))) {
return -1;

}

/* Set priority */

struct sched_param param = {};
param.sched_priority = sched_get_priority_max (SCHED_FIFO);

printf ("Usingypriority %i.\n", param.sched_priority);
if (sched_setscheduler (0, SCHED_FIFO, ¶m) == -1) {
perror ("sched_setscheduler failed");

}

/* Lock memory x*/

if (mlockall (MCL_CURRENT | MCL_FUTURE) == -1) {
fprintf (stderr, "Warning:,Failed toylock memory: %s\n",

75

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

3 Application Interface

}

/3 % sk ok sk ok ok sk ok ok ok sk ok sk ok sk sk ok ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok ok ok ok sk ok ok ok sk ok ok ok sk ok sk ok k ok sk ok ok ok ok k ok ok /

76

strerror (errno));

}

stack_prefault ();
printf ("Starting RTtask with,dt=}uyns.\n", PERIOD_NS);

clock_gettime (CLOCK_MONOTONIC, &wakeup_time);
wakeup_time.tv_sec += 1; /x start in future x*/
wakeup_time.tv_nsec = 0;

while (1) {
ret = clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME,
&wakeup_time, NULL);
if (ret) {
fprintf (stderr, "clock_nanosleep():. %s\n", strerror(ret));
break;

cyclic_task();
wakeup_time.tv_nsec += PERIOD_NS;
while (wakeup_time.tv_nsec >= NSEC_PER_SEC) {

wakeup_time.tv_nsec -= NSEC_PER_SEC;
wakeup_time.tv_sec++;

return ret;

1.6.8,

4 Ethernet Devices

The EtherCAT protocol is based on the Ethernet standard, so a master relies on
standard Ethernet hardware to communicate with the bus.

The term device is used as a synonym for Ethernet network interface hardware.

Native Ethernet Device Drivers There are native device driver modules (see sec-
tion 4.2) that handle Ethernet hardware, which a master can use to connect to an
EtherCAT bus. They offer their Ethernet hardware to the master module via the
device interface (see section 4.6) and must be capable to prepare Ethernet devices
either for EtherCAT (realtime) operation or for “normal” operation using the kernel’s
network stack. The advantage of this approach is that the master can operate nearly
directly on the hardware, which allows a high performance. The disadvantage is, that
there has to be an EtherCAT-capable version of the original Ethernet driver.

Generic Ethernet Device Driver From master version 1.5, there is a generic Eth-
ernet device driver module (see section 4.3), that uses the lower layers of the network
stack to connect to the hardware. The advantage is, that arbitrary Ethernet hardware
can be used for EtherCAT operation, independently of the actual hardware driver (so
all Linux Ethernet drivers are supported without modifications). The disadvantage
is, that this approach does not support realtime extensions like RTAI, because the
Linux network stack is addressed. Moreover the performance is a little worse than
the native approach, because the Ethernet frame data have to traverse the network
stack.

4.1 Network Driver Basics

EtherCAT relies on Ethernet hardware and the master needs a physical Ethernet
device to communicate with the bus. Therefore it is necessary to understand how
Linux handles network devices and their drivers, respectively.

Tasks of a Network Driver Network device drivers usually handle the lower two
layers of the OSI model, that is the physical layer and the data-link layer. A network
device itself natively handles the physical layer issues: It represents the hardware to
connect to the medium and to send and receive data in the way, the physical layer

1.6.8, October 6, 2025 77

4 FEthernet Devices

protocol describes. The network device driver is responsible for getting data from the
kernel’s networking stack and forwarding it to the hardware, that does the physical
transmission. If data is received by the hardware respectively, the driver is notified
(usually by means of an interrupt) and has to read the data from the hardware memory
and forward it to the network stack. There are a few more tasks, a network device
driver has to handle, including queue control, statistics and device dependent features.

Driver Startup Usually, a driver searches for compatible devices on module loading.
For PCI drivers, this is done by scanning the PCI bus and checking for known device
IDs. If a device is found, data structures are allocated and the device is taken into
operation.

Interrupt Operation A network device usually provides a hardware interrupt that
is used to notify the driver of received frames and success of transmission, or errors,
respectively. The driver has to register an interrupt service routine (ISR), that is
executed each time, the hardware signals such an event. If the interrupt was thrown
by the own device (multiple devices can share one hardware interrupt), the reason
for the interrupt has to be determined by reading the device’s interrupt register. For
example, if the flag for received frames is set, frame data has to be copied from
hardware to kernel memory and passed to the network stack.

The net_device Structure The driver registers a net_device structure for each
device to communicate with the network stack and to create a “network interface”.
In case of an Ethernet driver, this interface appears as ethX, where X is a number
assigned by the kernel on registration. The net_device structure receives events
(either from userspace or from the network stack) via several callbacks, which have
to be set before registration. Not every callback is mandatory, but for reasonable
operation the ones below are needed in any case:

open() This function is called when network communication has to be started, for ex-
ample after a command ip link set ethX up from userspace. Frame reception
has to be enabled by the driver.

stop() The purpose of this callback is to “close” the device, i.e. make the hardware
stop receiving frames.

hard_start_xmit() This function is called for each frame that has to be transmitted.
The network stack passes the frame as a pointer to an sk_buff structure (“socket
buffer”, see below), which has to be freed after sending.

get_stats() This call has to return a pointer to the device’s net_device_stats struc-
ture, which permanently has to be filled with frame statistics. This means,
that every time a frame is received, sent, or an error happened, the appropriate
counter in this structure has to be increased.

The actual registration is done with the register_netdev() call, unregistering is done
with unregister_netdev().

78 1.6.8,

4.2 Native EtherCAT Device Drivers

The netif Interface All other communication in the direction interface — network
stack is done via the netif_x() calls. For example, on successful device opening,
the network stack has to be notified, that it can now pass frames to the interface.
This is done by calling netif_start_queue(). After this call, the hard_start_xmit ()
callback can be called by the network stack. Furthermore a network driver usually
manages a frame transmission queue. If this gets filled up, the network stack has
to be told to stop passing further frames for a while. This happens with a call
to netif_stop_queue(). If some frames have been sent, and there is enough space
again to queue new frames, this can be notified with netif_wake_queue(). Another
important call is netif_receive_skb()!: It passes a frame to the network stack, that
was just received by the device. Frame data has to be included in a so-called “socket
buffer” for that (see below).

Socket Buffers Socket buffers are the basic data type for the whole network stack.
They serve as containers for network data and are able to quickly add data headers
and footers, or strip them off again. Therefore a socket buffer consists of an allocated
buffer and several pointers that mark beginning of the buffer (head), beginning of data
(data), end of data (tail) and end of buffer (end). In addition, a socket buffer holds
network header information and (in case of received data) a pointer to the net_device,
it was received on. There exist functions that create a socket buffer (dev_alloc_skb
0)), add data either from front (skb_push()) or back (skb_put()), remove data from
front (skb_pull()) or back (skb_trim()), or delete the buffer (kfree_skb()). A socket
buffer is passed from layer to layer, and is freed by the layer that uses it the last time.
In case of sending, freeing has to be done by the network driver.

4.2 Native EtherCAT Device Drivers

There are a few requirements, that applies to Ethernet hardware when used with a
native Ethernet driver with EtherCAT functionality.

Dedicated Hardware For performance and realtime purposes, the EtherCAT master
needs direct and exclusive access to the Ethernet hardware. This implies that the
network device must not be connected to the kernel’s network stack as usual, because
the kernel would try to use it as an ordinary Ethernet device.

Interrupt-less Operation EtherCAT frames travel through the logical EtherCAT
ring and are then sent back to the master. Communication is highly deterministic: A
frame is sent and will be received again after a constant time, so there is no need to

!This function is part of the NAPI (“New API”), that replaces the kernel 2.4 technique for in-
terfacing to the network stack (with netif_rx()). NAPI is a technique to improve network
performance on Linux. Read more in http://www.cyberus.ca/~hadi/usenix-paper.tgz.

1.6.8, 79

http://www.cyberus.ca/~hadi/usenix-paper.tgz

4 FEthernet Devices

notify the driver about frame reception: The master can instead query the hardware
for received frames, if it expects them to be already received.

Figure 4.1 shows two workflows for cyclic frame transmission and reception with and
without interrupts.

In the left workflow “Interrupt Operation”, the data from the last cycle is first pro-
cessed and a new frame is assembled with new datagrams, which is then sent. The
cyclic work is done for now. Later, when the frame is received again by the hardware,
an interrupt is triggered and the ISR is executed. The ISR will fetch the frame data
from the hardware and initiate the frame dissection: The datagrams will be processed,
so that the data is ready for processing in the next cycle.

In the right workflow “Interrupt-less Operation”, there is no hardware interrupt en-
abled. Instead, the hardware will be polled by the master by executing the ISR. If the
frame has been received in the meantime, it will be dissected. The situation is now
the same as at the beginning of the left workflow: The received data is processed and
a new frame is assembled and sent. There is nothing to do for the rest of the cycle.

The interrupt-less operation is desirable, because hardware interrupts are not con-
ducive in improving the driver’s realtime behaviour: Their indeterministic incidences
contribute to increasing the jitter. Besides, if a realtime extension (like RTAT) is used,
some additional effort would have to be made to prioritize interrupts.

Ethernet and EtherCAT Devices Another issue lies in the way Linux handles de-
vices of the same type. For example, a PCI driver scans the PCI bus for devices it can
handle. Then it registers itself as the responsible driver for all of the devices found.
The problem is, that an unmodified driver can not be told to ignore a device because
it will be used for EtherCAT later. There must be a way to handle multiple devices
of the same type, where one is reserved for EtherCAT, while the other is treated as
an ordinary Ethernet device.

For all this reasons, the author decided that the only acceptable solution is to modify
standard Ethernet drivers in a way that they keep their normal functionality, but gain
the ability to treat one or more of the devices as EtherCAT-capable.

Below are the advantages of this solution:
e No need to tell the standard drivers to ignore certain devices.
e One networking driver for EtherCAT and non-EtherCAT devices.

e No need to implement a network driver from scratch and running into issues,
the former developers already solved.

The chosen approach has the following disadvantages:

e The modified driver gets more complicated, as it must handle EtherCAT and
non-EtherCAT devices.

e Many additional case differentiations in the driver code.

e Changes and bug fixes on the standard drivers have to be ported to the Ether-
CAT-capable versions from time to time.

80 1.6.8,

4.2 Native EtherCAT Device Drivers

1.6.8,

Time

Interrupt Operation

Realtime Cycle

Data Processing

Frame Assembly

Frame Sending

Interrupt

ISR

Frame Dissection

Data Processing

Interrupt-less Operation

Realtime Cycle

ISR

Frame Dissection

Data Processing

Frame Assembly

Frame Sending

ISR

Figure 4.1: Interrupt Operation versus Interrupt-less Operation

81

4 FEthernet Devices

4.3 Generic EtherCAT Device Driver

Since there are approaches to enable the complete Linux kernel for realtime operation
[12], it is possible to operate without native implementations of EtherCAT-capable
Ethernet device drivers and use the Linux network stack instead. Figure 2.1 shows
the “Generic Ethernet Driver Module”, that connects to local Ethernet devices via
the network stack. The kernel module is named ec_generic and can be loaded after
the master module like a native EtherCAT-capable Ethernet driver.

The generic device driver scans the network stack for interfaces, that have been reg-
istered by Ethernet device drivers. It offers all possible devices to the EtherCAT
master. If the master accepts a device, the generic driver creates a packet socket (see
man 7 packet) with socket_type set to SOCK_RAW, bound to that device. All functions
of the device interface (see section 4.6) will then operate on that socket.

Below are the advantages of this solution:

e Any Ethernet hardware, that is covered by a Linux Ethernet driver can be used

for EtherCAT.

e No modifications have to be made to the actual Ethernet drivers.
The generic approach has the following disadvantages:

e The performance is a little worse than the native approach, because the frame
data have to traverse the lower layers of the network stack.

e It is not possible to use in-kernel realtime extensions like RTAI with the generic
driver, because the network stack code uses dynamic memory allocations and
other things, that could cause the system to freeze in realtime context.

Device Activation In order to send and receive frames through a socket, the Eth-
ernet device linked to that socket has to be activated, otherwise all frames will be
rejected. Activation has to take place before the master module is loaded and can
happen in several ways:

e Ad-hoc, using the command ip link set dev ethX up (or the older ifconfig
ethX up),

e Configured, depending on the distribution, for example using ifcfg files (/etc
/sysconfig/network/ifcfg-ethX) in openSUSE and others. This is the better
choice, if the EtherCAT master shall start at system boot time. Since the
Ethernet device shall only be activated, but no IP address etc. shall be assigned,
it is enough to use STARTMODE=auto as configuration.

82 1.6.8,

4.4 Providing Ethernet Devices

4.4 Providing Ethernet Devices

After loading the master module, additional module(s) have to be loaded to offer
devices to the master(s) (see section 4.6). The master module knows the devices to
choose from the module parameters (see section 2.1). If the init script is used to start
the master, the drivers and devices to use can be specified in the sysconfig file (see
subsection 7.4.2).

Modules offering Ethernet devices can be

e native EtherCAT-capable network driver modules (see section 4.2) or

e the generic EtherCAT device driver module (see section 4.3).

4.5 Redundancy

Redundant bus operation means, that there is more than one Ethernet connection
from the master to the slaves. Process data exchange datagrams are sent out on
every master link, so that the exchange is still complete, even if the bus is disconnected
somewhere in between.

Prerequisite for fully redundant bus operation is, that every slave can be reached by
at least one master link. In this case a single connection failure (i. e. cable break) will
never lead to incomplete process data. Double-faults can not be handled with two
Ethernet devices.

Redundancy is configured with the -~—with-devices switch at configure time (see chap-
ter 9) and using the backup_devices parameter of the ec_master kernel module (see
section 2.1) or the appropriate variable MASTERx_BACKUP in the (sys-)config file (see
subsection 7.4.2).

Bus scanning is done after a topology change on any Ethernet link. The applica-
tion interface (see chapter 3) and the command-line tool (see section 7.1) both have
methods to query the status of the redundant operation.

4.6 EtherCAT Device Interface

An anticipation to the section about the master module (section 2.1) has to be made
in order to understand the way, a network device driver module can connect a device
to a specific EtherCAT master.

The master module provides a “device interface” for network device drivers. To use
this interface, a network device driver module must include the header devices/ecdev.h,
coming with the EtherCAT master code. This header offers a function interface for
EtherCAT devices. All functions of the device interface are named with the prefix
ecdev.

1.6.8, 83

4 FEthernet Devices

The documentation of the device interface can be found in the header file or in the
appropriate module of the interface documentation (see section 9.3 for generation
instructions).

4.7 Patching Native Network Drivers

This section will describe, how to make a standard Ethernet driver EtherCAT-capable,
using the native approach (see section 4.2). Unfortunately, there is no standard pro-
cedure to enable an Ethernet driver for use with the EtherCAT master, but there are
a few common techniques.

1. A first simple rule is, that netif_x() calls must be avoided for all EtherCAT
devices. As mentioned before, EtherCAT devices have no connection to the
network stack, and therefore must not call its interface functions.

2. Another important thing is, that EtherCAT devices should be operated without
interrupts. So any calls of registering interrupt handlers and enabling interrupts
at hardware level must be avoided, too.

3. The master does not use a new socket buffer for each send operation: In-
stead there is a fix one allocated on master initialization. This socket buffer
is filled with an EtherCAT frame with every send operation and passed to the
hard_start_xmit () callback. For that it is necessary, that the socket buffer is
not be freed by the network driver as usual.

An Ethernet driver usually handles several Ethernet devices, each described by a
net_device structure with a priv_data field to attach driver-dependent data to the
structure. To distinguish between normal Ethernet devices and the ones used by
EtherCAT masters, the private data structure used by the driver could be extended
by a pointer, that points to an ec_device_t object returned by ecdev_offer() (see
section 4.6) if the device is used by a master and otherwise is zero.

The RealTek RTL-8139 Fast Ethernet driver is a “simple” Ethernet driver and can
be taken as an example to patch new drivers. The interesting sections can be found
by searching the string “ecdev” in the file devices/8139too-2.6.24-ethercat.c.

84 1.6.8,

5 State Machines

Many parts of the EtherCAT master are implemented as finite state machines (FSMs).
Though this leads to a higher grade of complexity in some aspects, is opens many
new possibilities.

The below short code example exemplary shows how to read all slave states and
moreover illustrates the restrictions of “sequential” coding:

ec_datagram_brd(datagram, 0x0130, 2); // prepare datagram
if (ec_master_simple_io(master, datagram)) return -1;
slave_states = EC_READ_U8(datagram->data); // process datagram

The ec_master_simple_io() function provides a simple interface for synchronously send-
ing a single datagram and receiving the result’. Internally, it queues the specified
datagram, invokes the ec_master_send_datagrams() function to send a frame with the
queued datagram and then waits actively for its reception.

This sequential approach is very simple, reflecting in only three lines of code. The
disadvantage is, that the master is blocked for the time it waits for datagram reception.
There is no difficulty when only one instance is using the master, but if more instances
want to (synchronously?) use the master, it is inevitable to think about an alternative
to the sequential model.

Master access has to be sequentialized for more than one instance wanting to send
and receive datagrams synchronously. With the present approach, this would result in
having one phase of active waiting for each instance, which would be non-acceptable
especially in realtime circumstances, because of the huge time overhead.

A possible solution is, that all instances would be executed sequentially to queue
their datagrams, then give the control to the next instance instead of waiting for the
datagram reception. Finally, bus IO is done by a higher instance, which means that
all queued datagrams are sent and received. The next step is to execute all instances
again, which then process their received datagrams and issue new ones.

This approach results in all instances having to retain their state, when giving the
control back to the higher instance. It is quite obvious to use a finite state machine
model in this case. section 5.1 will introduce some of the theory used, while the

IFor all communication issues have been meanwhile sourced out into state machines, the function
is deprecated and stopped existing. Nevertheless it is adequate for showing it’s own restrictions.

2At this time, synchronous master access will be adequate to show the advantages of an FSM. The
asynchronous approach will be discussed in section 6.1

1.6.8, October 6, 2025 85

5 State Machines

listings below show the basic approach by coding the example from above as a state
machine:

// state 1

ec_datagram_brd(datagram, 0x0130, 2); // prepare datagram
ec_master_queue (master, datagram); // queue datagram
next_state = state_2;

// state processing finished

After all instances executed their current state and queued their datagrams, these are
sent and received. Then the respective next states are executed:

// state 2
if (datagram->state != EC_DGRAM_STATE_RECEIVED) A{
next_state = state_error;

return; // state processing finished

}
slave_states = EC_READ_U8(datagram->data); // process datagram
// state processing finished.

See section 5.2 for an introduction to the state machine programming concept used
in the master code.

5.1 State Machine Theory

A finite state machine [9] is a model of behavior with inputs and outputs, where the
outputs not only depend on the inputs, but the history of inputs. The mathematical
definition of a finite state machine (or finite automaton) is a six-tuple (X, I, S, s¢, d, w),
with

e the input alphabet X, with ¥ # (), containing all input symbols,
the output alphabet I', with I" # (), containing all output symbols,
the set of states S, with S # 0,

the set of initial states so with sq C S, s # 0

the transition function § : S x X — S x I’

e the output function w.

The state transition function ¢ is often specified by a state transition table, or by a
state transition diagram. The transition table offers a matrix view of the state machine
behavior (see Table 5.1). The matrix rows correspond to the states (S = {so, s1,52})
and the columns correspond to the input symbols (I' = {a, b, c}). The table contents
in a certain row 7 and column j then represent the next state (and possibly the output)
for the case, that a certain input symbol o; is read in the state s;.

86 1.6.8,

5.1 State Machine Theory

Table 5.1: A typical state transition table

a b ¢
So | S1 S1 52
S1 |82 S1 So
S2. |1 S0 So So

The state diagram for the same example looks like the one in Figure 5.1. The states
are represented as circles or ellipses and the transitions are drawn as arrows between
them. Close to a transition arrow can be the condition that must be fulfilled to
allow the transition. The initial state is marked by a filled black circle with an arrow
pointing to the respective state.

Figure 5.1: A typical state transition diagram

Deterministic and non-deterministic state machines A state machine can be de-
terministic, meaning that for one state and input, there is one (and only one) following
state. In this case, the state machine has exactly one starting state. Non-deterministic
state machines can have more than one transitions for a single state-input combina-
tion. There is a set of starting states in the latter case.

1.6.8, 87

IS

9] ~ =] ot

10

11

12

13

14

15

16

5 State Machines

Moore and Mealy machines There is a distinction between so-called Moore ma-
chines, and Mealy machines. Mathematically spoken, the distinction lies in the output
function w: If it only depends on the current state (w : S — I'), the machine corre-
sponds to the “Moore Model”. Otherwise, if w is a function of a state and the input
alphabet (w : S x ¥ — I') the state machine corresponds to the “Mealy model”.
Mealy machines are the more practical solution in most cases, because their design
allows machines with a minimum number of states. In practice, a mixture of both
models is often used.

Misunderstandings about state machines There is a phenomenon called “state
explosion”, that is often taken as a counter-argument against general use of state
machines in complex environments. It has to be mentioned, that this point is mis-
leading [10]. State explosions happen usually as a result of a bad state machine design:
Common mistakes are storing the present values of all inputs in a state, or not divid-
ing a complex state machine into simpler sub state machines. The EtherCAT master
uses several state machines, that are executed hierarchically and so serve as sub state
machines. These are also described below.

5.2 The Master’s State Model

This section will introduce the techniques used in the master to implement state
machines.

State Machine Programming There are certain ways to implement a state machine
in C' code. An obvious way is to implement the different states and actions by one
big case differentiation:

enum {STATE_1, STATE_2, STATE_3};
int state = STATE_1,;

void state_machine_run(void *priv_data) {
switch (state) {

case STATE_1:
action_1();
state = STATE_2;
break;

case STATE_2:
action_2()
if (some_condition) state = STATE_1;
else state = STATE_3;
break;

case STATE_3:
action_3();

88 1.6.8,

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

5.2 The Master’s State Model

state = STATE_1;
break;

}

For small state machines, this is an option. The disadvantage is, that with an increas-
ing number of states the code soon gets complex and an additional case differentiation
is executed each run. Besides, lots of indentation is wasted.

The method used in the master is to implement every state in an own function and
to store the current state function with a function pointer:

void (xstate) (void *) = statel;

void state_machine_run(void *priv_data) {
state (priv_data);

void statel(void *priv_data) {
action_1();
state = state2;

void state2(void #*priv_data) {
action_2Q);
if (some_condition) state = statel;
else state = state2;

void state3(void *priv_data) {
action_3();
state = statel;

}

In the master code, state pointers of all state machines® are gathered in a single
object of the ec_fsm_master_t class. This is advantageous, because there is always
one instance of every state machine available and can be started on demand.

Mealy and Moore If a closer look is taken to the above listing, it can be seen that
the actions executed (the “outputs” of the state machine) only depend on the current
state. This accords to the “Moore” model introduced in section 5.1. As mentioned,
the “Mealy” model offers a higher flexibility, which can be seen in the listing below:

void state7(void xpriv_data) {

3All except for the EoE state machine, because multiple EoE slaves have to be handled in parallel.
For this reason each EoE handler object has its own state pointer.

1.6.8, 89

IS

o ~ o S

10

1

© [od) -~ [}

10

5 State Machines

if (some_condition) {
action_7a();
state = statel;

}
else {
action_7b();
state = state8;
}

¥

(3) + (@) The state function executes the actions depending on the state transition,
that is about to be done.

The most flexible alternative is to execute certain actions depending on the state,
followed by some actions dependent on the state transition:

void state9(void *priv_data) {
action_9();
if (some_condition) {
action_9a();
state = state7;

}
else {
action_9b () ;
state = statelO;
}

}

This model is often used in the master. It combines the best aspects of both ap-
proaches.

Using Sub State Machines To avoid having too much states, certain functions of
the EtherCAT master state machine have been sourced out into sub state machines.
This helps to encapsulate the related workflows and moreover avoids the “state ex-
plosion” phenomenon described in section 5.1. If the master would instead use one
big state machine, the number of states would be a multiple of the actual number.
This would increase the level of complexity to a non-manageable grade.

Executing Sub State Machines If a state machine starts to execute a sub state
machine, it usually remains in one state until the sub state machine terminates. This
is usually done like in the listing below, which is taken out of the slave configuration
state machine code:

void ec_fsm_slaveconf_safeop(ec_fsm_t *fsm)

{

fsm->change_state(fsm); // exzecute state change

90 1.6.8,

© e ~ o S

10

11

12

13

14

5.3 The Master State Machine

// sub state machine

if (fsm->change_state == ec_fsm_error) {
fsm->slave_state = ec_fsm_end;
return;

}

if (fsm->change_state != ec_fsm_end) return;

// continue state processing

(3) change_state is the state pointer of the state change state machine. The state
function, the pointer points on, is executed. . .

(o) ...either until the state machine terminates with the error state ...

(1) ...or until the state machine terminates in the end state. Until then, the “higher”
state machine remains in the current state and executes the sub state machine
again in the next cycle.

State Machine Descriptions The below sections describe every state machine used
in the EtherCAT master. The textual descriptions of the state machines contain
references to the transitions in the corresponding state transition diagrams, that are
marked with an arrow followed by the name of the successive state. Transitions caused
by trivial error cases (i.e. no response from slave) are not described explicitly. These
transitions are drawn as dashed arrows in the diagrams.

5.3 The Master State Machine

The master state machine is executed in the context of the master thread. Figure 5.2
shows its transition diagram. Its purposes are:
Bus monitoring The bus topology is monitored. If it changes, the bus is (re-)scanned.

Slave configuration The application-layer states of the slaves are monitored. If a
slave is not in the state it supposed to be, the slave is (re-)configured.

Request handling Requests (either originating from the application or from external
sources) are handled. A request is a job that the master shall process asyn-
chronously, for example an SII access, SDO access, or similar.

5.4 The Slave Scan State Machine

The slave scan state machine, which can be seen in Figure 5.3, leads through the
process of reading desired slave information.

The scan process includes the following steps:

1.6.8, 91

5 State Machines

=

read_state

clear_addresses

dc_measure_delays

configure_slave

write_system_times

dc_read offset

dc_write_offset

sdo_dictionary

sdo_request

Figure 5.2: Transition diagram of the master state machine

92 1.6.8,

5.4 The Slave Scan State Machine

Figure 5.3: Transition diagram of the slave scan state machine

1.6.8, 93

5 State Machines

Node Address The node address is set for the slave, so that it can be node-addressed
for all following operations.

AL State The initial application-layer state is read.

Base Information Base information (like the number of supported FMMUs) is read
from the lower physical memory.

Data Link Information about the physical ports is read.
SIl Size The size of the SII contents is determined to allocate SII image memory.
SII Data The SII contents are read into the master’s image.

PREOP If the slave supports CoE, it is set to PREOP state using the State change
FSM (see section 5.6) to enable mailbox communication and read the PDO
configuration via CoE.

PDOs The PDOs are read via CoE (if supported) using the PDO Reading FSM (see
section 5.8). If this is successful, the PDO information from the SII (if any) is
overwritten.

5.5 The Slave Configuration State Machine

The slave configuration state machine, which can be seen in Figure 5.4, leads through
the process of configuring a slave and bringing it to a certain application-layer state.
INIT The state change FSM is used to bring the slave to the INIT state.

FMMU Clearing To avoid that the slave reacts on any process data, the FMMU
configuration are cleared. If the slave does not support FMMUs, this state is
skipped. If INIT is the requested state, the state machine is finished.

Mailbox Sync Manager Configuration If the slaves support mailbox communica-
tion, the mailbox sync managers are configured. Otherwise this state is skipped.

PREOP The state change FSM is used to bring the slave to PREOP state. If this is
the requested state, the state machine is finished.

SDO Configuration If there is a slave configuration attached (see section 3.1), and
there are any SDO configurations that are provided by the application, these
are sent to the slave.

PDO Configuration The PDO configuration state machine is executed to apply all
necessary PDO configurations.

PDO Sync Manager Configuration If any PDO sync managers exist, they are con-
figured.

FMMU Configuration If there are FMMUs configurations supplied by the applica-
tion (i.e. if the application registered PDO entries), they are applied.

SAFEOP The state change FSM is used to bring the slave to SAFEOP state. If this
is the requested state, the state machine is finished.

OP The state change FSM is used to bring the slave to OP state. If this is the
requested state, the state machine is finished.

94 1.6.8,

5.5 The Slave Configuration State Machine

1.6.8,

dc_write_offset

No mailboxes @

boot_preop

Config
etached

No IDNs
configured @'U’feup

o config
attached

\

@ conf
INIT
requested

PREOP
Nopposms (_ pdo_sync or BOOT
requested

0 FMMUs
Jconfigured

lo config
attached

Figure 5.4: Transition diagram of the slave configuration state machine

95

5 State Machines

5.6 The State Change State Machine

The state change state machine, which can be seen in Figure 5.5, leads through the
process of changing a slave’s application-layer state. This implements the states and
transitions described in [3, sec. 6.4.1].

Response
timeout

imeout Success

Figure 5.5: Transition Diagram of the State Change State Machine

Start The new application-layer state is requested via the “AL Control Request”
register (see [3, sec. 5.3.1]).

Check for Response Some slave need some time to respond to an AL state change
command, and do not respond for some time. For this case, the command is
issued again, until it is acknowledged.

Check AL Status If the AL State change datagram was acknowledged, the “AL Con-
trol Response” register (see [3, sec. 5.3.2]) must be read out until the slave
changes the AL state.

96 1.6.8,

5.7 The SII State Machine

AL Status Code If the slave refused the state change command, the reason can be
read from the “AL Status Code” field in the “AL State Changed” registers
(see [3, sec. 5.3.3]).

Acknowledge State If the state change was not successful, the master has to ac-
knowledge the old state by writing to the “AL Control request” register again.

Check Acknowledge After sending the acknowledge command, it has to read out the
“AL Control Response” register again.

The “start_ack” state is a shortcut in the state machine for the case, that the master
wants to acknowledge a spontaneous AL state change, that was not requested.

5.7 The SllI State Machine

The SII state machine (shown in Figure 5.6) implements the process of reading or
writing SII data via the Slave Information Interface described in [2, sec. 6.4].

start_reading start_writing

A
write_check

read_check

Figure 5.6: Transition Diagram of the SII State Machine

This is how the reading part of the state machine works:

Start Reading The read request and the requested word address are written to the
SII attribute.

Check Read Command If the SII read request command has been acknowledged, a
timer is started. A datagram is issued, that reads out the SII attribute for state
and data.

Fetch Data If the read operation is still busy (the SII is usually implemented as an
E?PROM), the state is read again. Otherwise the data are copied from the
datagram.

The writing part works nearly similar:

1.6.8, 97

5 State Machines

Start Writing A write request, the target address and the data word are written to
the SII attribute.

Check Write Command If the SII write request command has been acknowledged,
a timer is started. A datagram is issued, that reads out the SII attribute for the
state of the write operation.

Wait while Busy If the write operation is still busy (determined by a minimum wait
time and the state of the busy flag), the state machine remains in this state to
avoid that another write operation is issued too early.

5.8 The PDQO State Machines

The PDO state machines are a set of state machines that read or write the PDO
assignment and the PDO mapping via the “CoE Communication Area” described in
[3, sec. 5.6.7.4]. For the object access, the CANopen over EtherCAT access primitives
are used (see section 6.2), so the slave must support the CoE mailbox protocol.

PDO Reading FSM This state machine (Figure 5.7) has the purpose to read the
complete PDO configuration of a slave. It reads the PDO assignment for each Sync
Manager and uses the PDO Entry Reading FSM (Figure 5.8) to read the mapping
for each assigned PDO.

o more PDOs

CEEC)

pdo_entries

Figure 5.7: Transition Diagram of the PDO Reading State Machine

Basically it reads the every Sync manager’s PDO assignment SDO’s (0x1C1x) number
of elements to determine the number of assigned PDOs for this sync manager and
then reads out the subindices of the SDO to get the assigned PDO’s indices. When

98 1.6.8,

5.8 The PDO State Machines

a PDO index is read, the PDO Entry Reading FSM is executed to read the PDO’s
mapped PDO entries.

PDO Entry Reading FSM This state machine (Figure 5.8) reads the PDO mapping
(the PDO entries) of a PDO. It reads the respective mapping SDO (0x1600 — 0x17££,
or 0x1a00 — 0x1bff) for the given PDO by reading first the subindex zero (number of
elements) to determine the number of mapped PDO entries. After that, each subindex
is read to get the mapped PDO entry index, subindex and bit size.

w No more entries
pdo_entry

Figure 5.8: Transition Diagram of the PDO Entry Reading State Machine

1.6.8, 99

5 State Machines

read_mapping

Assign ok No PDOs

No PDOs

mapping

zero_pdo_count

First PDO
Y

Next PDO

No more PDOs

set_pdo_count

Figure 5.9: Transition Diagram of the PDO Configuration State Machine

100 1.6.8,

5.8 The PDO State Machines

No Entries

zero_entry_count

IAdd first entry
Y

Next entry

map_entry

No more Entries

set_entry_count

Figure 5.10: Transition Diagram of the PDO Entry Configuration State Machine

1.6.8,

101

5 State Machines

102 1.6.8,

6 Mailbox Protocol Implementations

The EtherCAT master implements the CANopen over EtherCAT (CoE), Ethernet
over EtherCAT (EoE), File-access over EtherCAT (FoE), Vendor-specific over Ether-
CAT (VoE) and Servo Profile over EtherCAT (SoE) mailbox protocols. See the below
sections for details.

6.1 Ethernet over EtherCAT (EoE)

The EtherCAT master implements the Ethernet over EtherCAT mailbox protocol [3,
sec. 5.7] to enable the tunneling of Ethernet frames to special slaves, that can either
have physical Ethernet ports to forward the frames to, or have an own IP stack to
receive the frames.

Virtual Network Interfaces The master creates a virtual EoE network interface for
every EoE-capable slave. These interfaces are called either

eoeXsY for a slave without an alias address (see subsection 7.1.2), where X is the
master index and Y is the slave’s ring position, or

eoeXaY for a slave with a non-zero alias address, where X is the master index and
Y is the decimal alias address.

For some hints on how to configure these virtual interfaces, see subsection 6.1.1.

Frames sent to these interfaces are forwarded to the associated slaves by the master.
Frames, that are received by the slaves, are fetched by the master and forwarded to
the virtual interfaces.

This bears the following advantages:
e Flexibility: The user can decide, how the EoE-capable slaves are interconnected
with the rest of the world.

e Standard tools can be used to monitor the EoE activity and to configure the
EoE interfaces.

e The Linux kernel’s layer-2-bridging implementation (according to the IEEE
802.1D MAC Bridging standard) can be used natively to bridge Ethernet traffic
between EoE-capable slaves.

e The Linux kernel’s network stack can be used to route packets between EokE-
capable slaves and to track security issues, just like having physical network
interfaces.

1.6.8, October 6, 2025 103

6 Mailbox Protocol Implementations

EoE Handlers The virtual EoE interfaces and the related functionality is encap-
sulated in the ec_eoce_t class. An object of this class is called “EoE handler”. For
example the master does not create the network interfaces directly: This is done inside
the constructor of an EoE handler. An EoE handler additionally contains a frame
queue. Each time, the kernel passes a new socket buffer for sending via the interface’s
hard_start_xmit () callback, the socket buffer is queued for transmission by the EoE
state machine (see below). If the queue gets filled up, the passing of new socket buffers
is suspended with a call to netif_stop_queue().

Creation of EoE Handlers During bus scanning (see section 5.4), the master deter-
mines the supported mailbox protocols for each slave. This is done by examining the
“Supported Mailbox Protocols” mask field at word address 0x001C of the SII. If bit
1 is set, the slave supports the EoE protocol. In this case, an EoE handler is created
for that slave.

EoE State Machine Every EoE handler owns an EoE state machine, that is used
to send frames to the corresponding slave and receive frames from the it via the EoE
communication primitives. This state machine is showed in Figure 6.1.

RX_START The beginning state of the EoE state machine. A mailbox check data-
gram is sent, to query the slave’s mailbox for new frames. — RX_CHECK

RX_CHECK The mailbox check datagram is received. If the slave’s mailbox did not
contain data, a transmit cycle is started. — TX_START

If there are new data in the mailbox, a datagram is sent to fetch the new data.
— RX_FETCH

RX_FETCH The fetch datagram is received. If the mailbox data do not contain
a “EoE Fragment request” command, the data are dropped and a transmit
sequence is started. — TX_START

If the received Ethernet frame fragment is the first fragment, a new socket buffer
is allocated. In either case, the data are copied into the correct position of the
socket buffer.

If the fragment is the last fragment, the socket buffer is forwarded to the network
stack and a transmit sequence is started. — TX_START

Otherwise, a new receive sequence is started to fetch the next fragment. — RX_-

START

TX_START The beginning state of a transmit sequence. It is checked, if the trans-
mission queue contains a frame to send. If not, a receive sequence is started.

— RX_START

If there is a frame to send, it is dequeued. If the queue was inactive before
(because it was full), the queue is woken up with a call to netif wake_queue().
The first fragment of the frame is sent. — TX_SENT

104 1.6.8,

6.1 Ethernet over EtherCAT (EoE)

Figure 6.1: Transition Diagram of the EoE State Machine

1.6.8, 105

6 Mailbox Protocol Implementations

TX_SENT It is checked, if the first fragment was sent successfully. If the current
frame consists of further fragments, the next one is sent. — TX_SENT

If the last fragment was sent, a new receive sequence is started. — RX_START

EoE Processing To execute the EoE state machine of every active EoE handler,
there must be a cyclic process. The easiest solution would be to execute the EoE
state machines synchronously with the master state machine (see section 5.3). This
approach has the following disadvantage:

Only one EoE fragment could be sent or received every few cycles. This causes the
data rate to be very low, because the EoE state machines are not executed in the
time between the application cycles. Moreover, the data rate would be dependent on
the period of the application task.

To overcome this problem, an own cyclic process is needed to asynchronously execute
the EoE state machines. For that, the master owns a kernel timer, that is executed
each timer interrupt. This guarantees a constant bandwidth, but poses the new
problem of concurrent access to the master. The locking mechanisms needed for this
are introduced in section 3.4.

6.1.1 EoE Interface Configuration

The configuration of the EoE network interfaces is a matter of using standard Linux
networking infrastructure commands like ifconfig, ip and brctl. Though this lies
not in the scope of this document, some hints and examples are provided in this
section.

In the below examples it is assumed, that there are two slaves (0 and 1) with EoE
support in the bus. The first decision to make is whether to use a bridged or routed
environment.

Bridging A common solution is to create a bridge containing all EoE interfaces:

brctl addbr brO

ip addr add 192.168.100.1/24 dev br0
brctl addif br0 eoe0sO

brctl addif br0O eoeOlsl

©h A H P

The above example allows to access IPv4 nodes using subnet 192.168.100.0/24 con-
nected to the EtherCAT bus via EoE. Please note, that the example only contains
ad-hoc configuration commands: If the bus topology changes, the EoE interfaces are
re-created and have to be added to the bridge again. Therefore it is highly recom-
mended to use the networking configuration infrastructure of the used Linux distribu-
tion to store this configuration permanently, so that appearing EoE devices are added
automatically.

106 1.6.8,

6.2 CANopen over EtherCAT (CoE)

Routing Another possibility is to create an IP subnet for each EoE interface:

$ ip addr add 192.168.200.1/24 dev eoe0sO
$ ip addr add 192.168.201.1/24 dev eoeOsl
$ echo 1 > /proc/sys/net/ipv4/ip_forward

This example is again only an ad-hoc configuration (see above). Please note, that it
is necessary to set the default gateways properly on the IP nodes connected to the
EoE slaves, if they shall be able to communicate between the different EoE interfaces
/ IP networks.

Setting IP Parameters If IP address and other parameters of the EoE remote nodes
(not the EoE interfaces on the master side) have to be set, this can be achieved via
the ethercat ip command-line tool (see subsection 7.1.13).

6.2 CANopen over EtherCAT (CoE)

The CANopen over EtherCAT protocol [3, sec. 5.6] is used to configure slaves and
exchange data objects on application level.

SDO Download State Machine The best time to apply SDO configurations is
during the slave’s PREOP state, because mailbox communication is already possible
and slave’s application will start with updating input data in the succeeding SAFEOP
state. Therefore the SDO configuration has to be part of the slave configuration state
machine (see section 5.5): It is implemented via an SDO download state machine, that
is executed just before entering the slave’s SAFEOP state. In this way, it is guaranteed
that the SDO configurations are applied each time, the slave is reconfigured.

The transition diagram of the SDO Download state machine can be seen in Figure 6.2.
START The beginning state of the CoE download state machine. The “SDO Down-
load Normal Request” mailbox command is sent. - REQUEST

REQUEST 1t is checked, if the CoE download request has been received by the
slave. After that, a mailbox check command is issued and a timer is started.
— CHECK

CHECK If no mailbox data is available, the timer is checked.
e If it timed out, the SDO download is aborted. — ERROR
e Otherwise, the mailbox is queried again. — CHECK
If the mailbox contains new data, the response is fetched. — RESPONSE

RESPONSE If the mailbox response could not be fetched, the data is invalid, the
wrong protocol was received, or a “Abort SDO Transfer Request” was received,
the SDO download is aborted. - ERROR

If a “SDO Download Normal Response” acknowledgement was received, the
SDO download was successful. — END

1.6.8, 107

6 Mailbox Protocol Implementations

Figure 6.2: Transition diagram of the CoE download state machine

108 1.6.8,

6.3 Vendor specific over EtherCAT (VoE)

END The SDO download was successful.
ERROR The SDO download was aborted due to an error.

6.3 Vendor specific over EtherCAT (VoE)

The VoE protocol opens the possibility to implement a vendor-specific mailbox com-
munication protocol. VoE mailbox messages are prepended by a VoE header con-
taining a 32-bit vendor ID and a 16-bit vendor-type. There are no more constraints
regarding this protocol.

The EtherCAT master allows to create multiple VoE handlers per slave configuration
via the application interface (see chapter 3). These handlers contain the state machine
necessary for the communication via VoE.

For more information about using VoE handlers, see section 3.3 or the example ap-
plications provided in the ezamples/ subdirectory.

6.4 Servo Profile over EtherCAT (SoE)

The SoE protocol implements the Service Channel layer, specified in TEC 61800-7 [1(]
via EtherCAT mailboxes.

The SoE protocol is quite similar to the CoE protocol (see section 6.2). Instead of SDO
indices and subindices, so-called identification numbers (IDNs) identify parameters.

The implementation covers the “SCC Read” and “SCC Write” primitives, each with
the ability to fragment data.

There are several ways to use the SoE implementation:

e Reading and writing IDNs via the command-line tool (see subsection 7.1.21).

e Storing configurations for arbitrary IDNs via the application interface (see chap-
ter 3, i.e. ecrt_slave_config_idn()). These configurations are written to the
slave during configuration in PREOP state, before going to SAFEOP.

e The user-space library (see section 7.2), offers functions to read/write IDNs in
blocking mode (ecrt_master_read_idn(), ecrt_master_write_idn()).

1.6.8, 109

6 Mailbox Protocol Implementations

110 1.6.8,

7 Userspace Interfaces

For the master runs as a kernel module, accessing it is natively limited to analyzing
Syslog messages and controlling using modutils.

It was necessary to implement further interfaces, that make it easier to access the
master from userspace and allow a finer influence. It should be possible to view and
to change special parameters at runtime.

Bus visualization is another point: For development and debugging purposes it is
necessary to show the connected slaves with a single command, for instance (see
section 7.1).

The application interface has to be available in userspace, to allow userspace programs
to use EtherCAT master functionality. This was implemented via a character device
and a userspace library (see section 7.2).

Another aspect is automatic startup and configuration. The master must be able to
automatically start up with a persistent configuration (see section 7.4).

A last thing is monitoring EtherCAT communication. For debugging purposes, there
had to be a way to analyze EtherCAT datagrams. The best way would be with a
popular network analyzer, like Wireshark [%] or others (see section 7.5).

This chapter covers all these points and introduces the interfaces and tools to make
all that possible.

7.1 Command-line Tool

7.1.1 Character Devices

Each master instance will get a character device as a userspace interface. The devices
are named /dev/EtherCATz, where x € {0...n} is the index of the master.

Device Node Creation The character device nodes are automatically created, if the
udev Package is installed. See section 9.5 for how to install and configure it.

1.6.8, October 6, 2025 111

7 Userspace Interfaces

7.1.2 Setting Alias Addresses

ethercat alias [OPTIONS] <ALIAS>
Write alias addresses.
Arguments:
ALTAS must be an unsigned 16 bit number. Zero means

removing an alias address.

If multiple slaves are selected, the --force option
is required.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--force -f Acknowledge writing aliases of

multiple slaves.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.3 Displaying the Bus Configuration

ethercat config [OPTIONS]
Show slave configurations.

Without the --verbose option, slave configurations are
output one-per-line. Example:

(0)3

|

\- Application-layer
state of the attached

1001:0 0x0000003b/0x02010000

|

|

|

| slave, or ’-’, if no
| slave is attached.

| - Absolute decimal ring

| position of the attached
| slave, or ’-’ if none
|

\ -

v —_———— — W

attached.
Expected vendor ID and product code (both
hexadecimal) .
- Alias address and relative position (both decimal).

With the --verbose option given, the configured PDOs and
SDOs are output in addition.

Configuration selection:
Slave configurations can be selected with

112

1.6.8,

7.1 Command-line Tool

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option
is given, all slave configurations are displayed.

2) If only the --position option is given, an alias
of zero is assumed (see 4)).

3) If only the --alias option is given, all slave

configurations with the given alias address
are displayed.

4) If both the --alias and the --position option are
given, the selection can match a single
configuration, that is displayed, if it exists.

Command -specific options:

--alias -a <alias> Configuration alias (see above).
--position -p <pos> Relative position (see above).
--verbose -V Show detailed configurations.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.4 Display CRC Error Counters

ethercat crc
ethercat crc reset

CRC error register diagnosis.

CRC - CRC Error Counter 0x300, 0x302, 0x304, 0x306
PHY - Physical Interface Error Counter 0x301, 0x303, 0x305, 0x307
FWD - Forwarded RX Error Counter 0x308, 0x309, 0x30a, 0x30Db

NXT - Next slave
7.1.5 Output PDO information in C Language

ethercat cstruct [OPTIONS]
Generate slave PDO information in C language.

The output C code can be used directly with the
ecrt_slave_config_pdos() function of the application
interface.

Command -specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

1.6.8,

113

7 Userspace Interfaces

7.1.6 Displaying Process Data

ethercat data [OPTIONS]
Output binary domain process data.
Data of multiple domains are concatenated.
Command -specific options:
--domain -d <index> Positive numerical domain index.
If omitted, data of all domains

are output.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.7 Setting a Master’s Debug Level

ethercat debug <LEVEL>
Set the master’s debug level.
Debug messages are printed to syslog.
Arguments:
LEVEL can have one of the following values:
0 for no debugging output,
1 for some debug messages, or

2 for printing all frame contents (use with caution!).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.8 Configured Domains

ethercat domains [OPTIONS]
Show configured domains.

Without the --verbose option, the domains are displayed
one-per-line. Example:

DomainO: LogBaseAddr 0x00000000, Size 6, WorkingCounter 0/1

The domain’s base address for the logical datagram
(LRD/LWR/LRW) is displayed followed by the domain’s
process data size in byte. The last values are the current
datagram working counter sum and the expected working
counter sum. If the values are equal, all PDOs were
exchanged during the last cycle.

114 1.6.8,

7.1 Command-line Tool

If the --verbose option is given, the participating slave
configurations/FMMUs and the current process data are
additionally displayed:

Domainl: LogBaseAddr 0x00000006, Size 6, WorkingCounter 0/1
SlaveConfig 1001:0, SM3 (Input), LogAddr 0x00000006, Size 6
00 00 00 00 00 OO

The process data are displayed as hexadecimal bytes.

Command -specific options:

--domain -d <index> Positive numerical domain index.
If omitted, all domains are
displayed.

--verbose -v Show FMMUs and process data

in addition.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.9 SDO Access

ethercat download [OPTIONS] <INDEX> <SUBINDEX> <VALUE>
[OPTIONS] <INDEX> <VALUE>

Write an SDO entry to a slave.
This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO
dictionary by default. It can be overridden with the
--type option. If the slave does not support the SDO
information service or the SDO is not in the dictionary,
the --type option is mandatory.

The second call (without <SUBINDEX>) uses the complete
access method.

These are valid data types to use with
the --type option:
bool,
int8, intl6, int32, int64,
uint8, uintl6, uint32, uinté64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Arguments:
INDEX is the SDO index and must be an unsigned

1.6.8, 115

7 Userspace Interfaces

16 bit number.

SUBINDEX is the SDO entry subindex and must be an
unsigned 8 bit number.

VALUE is the value to download and must correspond
to the SDO entry datatype (see above). Use
’-’ to read from standard input.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat upload [OPTIONS] <INDEX> <SUBINDEX>
Read an SDO entry from a slave.
This command requires a single slave to be selected.

The data type of the SDO entry is taken from the SDO
dictionary by default. It can be overridden with the
--type option. If the slave does not support the SDO
information service or the SDO is not in the dictionary,
the --type option is mandatory.

These are valid data types to use with
the --type option:
bool,
int8, intl6, int32, int64,
uint8, uintl16, uint32, uinté64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Arguments:
INDEX is the SDO index and must be an unsigned
16 bit number.
SUBINDEX is the SDO entry subindex and must be an
unsigned 8 bit number.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> SDO entry data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

116

1.6.8,

7.1 Command-line Tool

7.1.10 EoE Statistics

ethercat eoe
Display Ethernet over EtherCAT statictics.

The TxRate and RxRate are displayed in Byte/s.

7.1.11 File-Access over EtherCAT

ethercat foe_read [OPTIONS] <SOURCEFILE>
Read a file from a slave via FoE.
This command requires a single slave to be selected.

Arguments:
SOURCEFILE is the name of the source file on the slave.

Command -specific options:
--output-file -o <file> Local target filename. If
’-? (default), data are
printed to stdout.
--alias -a <alias>
--position -p <pos> Slave selection. See the help
of the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat foe_write [OPTIONS] <FILENAME>
Store a file on a slave via FoE.
This command requires a single slave to be selected.

Arguments:
FILENAME can either be a path to a file, or ’-’. In
the latter case, data are read from stdin and
the --output-file option has to be specified.

Command -specific options:

--output-file -o <file> Target filename on the slave.
If the FILENAME argument is
’-’, this is mandatory.
Otherwise, the basename () of
FILENAME is used by default.

--alias -a <alias>

--position -p <pos> Slave selection. See the help
of the ’slaves’ command.

1.6.8, 117

7 Userspace Interfaces

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.12 Creating Topology Graphs

ethercat graph [OPTIONS]
ethercat graph [OPTIONS] <INFO>

Output the bus topology as a graph.

The bus is output in DOT language (see
http://www.graphviz.org/doc/info/lang.html), which can
be processed with the tools from the Graphviz

package. Example:

ethercat graph | dot -Tsvg > bus.svg
See ’man dot’ for more information.

Additional information at edges and nodes is selected via
the first argument:

DC - DC timing

CRC - CRC error register information

7.1.13 Setting Ethernet-over-EtherCAT IP Parameters

Slaves can have own IP stack implementations accessible via EoE. Since some of them
do not provide other mechanisms to set IP parameters (because they only have an
EtherCAT interface), there is a possibility to set the below parameters via EoE:

e Ethernet MAC address!,
[Pv4 address,
IPv4 subnet mask,

[Pv4 default gateway,
[Pv4 DNS server,
DNS host name.

ethercat ip [OPTIONS] <ARGS>

Set EoE IP parameters.

This command requires a single slave to be selected.
IP parameters can be appended as argument pairs:

ip_address <IPv4d>[/prefix] IP address (optionally with

IThe MAC address of the virtual EoE remote interface, not the one of the EtherCAT interface.

118 1.6.8,

7.1 Command-line Tool

decimal subnet prefix)

mac_address <MAC> Link-layer address (may contain
colons or hyphens)

default_gateway <IPv4> Default gateway

dns_address <IPv4> DNS server address

hostname <hostname> Host name (max. 32 byte)

IPv4 adresses can be given either in dot notation or as
hostnames, which will be automatically resolved.

Command-specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of

the ’slaves’ command.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.14 Master and Ethernet Devices

ethercat master [OPTIONS]
Show master and Ethernet device information.
Command -specific options:
--master -m <indices> Master indices. A comma-separated
list with ranges is supported.

Example: 1,4,5,7-9. Default: - (all).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.15 Sync Managers, PDOs and PDO Entries

ethercat pdos [OPTIONS]

List Sync managers, PDO assignment and mapping.

For the default skin (see --skin option) the information

is displayed in three layers, which are

indented accordingly:

1) Sync managers - Contains the sync manager information
from the SII: Index, physical start address, default

size, control register and enable word. Example:

SM3: PhysAddr 0x1100, DefaultSize 0O, ControlRegister 0x20, Enable
1

2) Assigned PDOs - PDO direction, hexadecimal index and

1.6.8, 119

7 Userspace Interfaces

the PDO name, if available. Note that a ’Tx’ and ’Rx’
are seen from the slave’s point of view. Example:

TxPDO O0x1a00 "Channell"

3) Mapped PDO entries - PDO entry index and subindex (both
hexadecimal), the length in bit and the description, if
available. Example:

PDO entry 0x3101:01, 8 bit, "Status"

Note, that the displayed PDO assignment and PDO mapping

information can either originate from the SII or from the

CoE communication area.

The "etherlab" skin outputs a template configuration
for EtherlLab’s generic EtherCAT slave block.

Command -specific options:

--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.
--skin -s <skin> Choose output skin. Possible values are

"default" and "etherlab".

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.16 Register Access

ethercat reg_read [OPTIONS] <ADDRESS> [SIZE]
Output a slave’s register contents.
This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address. Must
be an unsigned 16 bit number.

SIZE is the number of bytes to read and must also be
an unsigned 16 bit number. ADDRESS plus SIZE
may not exceed 64k. The size is ignored (and
can be omitted), if a selected data type
implies a size.

These are valid data types to use with
the --type option:

bool,

int8, intl16, int32, int64,

uint8, uintl6, uint32, uint64,

float, double,

string, octet_string, unicode_string.

120

1.6.8,

7.1 Command-line Tool

For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat reg_write [OPTIONS] <OFFSET> <DATA>
Write data to a slave’s registers.
This command requires a single slave to be selected.

Arguments:

ADDRESS is the register address to write to.

DATA depends on whether a datatype was specified
with the --type option: If not, DATA must be
either a path to a file with data to write,
or ’-’, which means, that data are read from
stdin. If a datatype was specified, VALUE is
interpreted respective to the given type.

These are valid data types to use with
the --type option:
bool,
int8, intl6, int32, int64,
uint8, uintl6, uint32, uint64,
float, double,
string, octet_string, unicode_string.
For sign-and-magnitude coding, use the following types:
sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

--emergency -e Send as emergency request.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.17 Trigger a Bus Scan

ethercat rescan

1.6.8, 121

7 Userspace Interfaces

Rescan the bus.

Command a bus rescan. Gathered slave information will be
forgotten and slaves will be read in again.

7.1.18 SDO Dictionary

ethercat sdos [OPTIONS]
List SDO dictionaries.

SDO dictionary information is displayed in two layers,
which are indented accordingly:

1) SDOs - Hexadecimal SDO index and the name. Example:
SDO 0x1018, "Identity object"

2) SDO entries - SDO index and SDO entry subindex (both
hexadecimal) followed by the access rights (see
below), the data type, the length in bit, and the
description. Example:

0x1018:01, rwrwrw, uint32, 32 bit, "Vendor id"
The access rights are specified for the AL states PREOP,
SAFEOP and OP. An ’r’ means, that the entry is readable
in the corresponding state, an ’w’ means writable,
respectively. If a right is not granted, a dash ’-’ is
shown.

If the --quiet option is given, only the SDOs are output.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--quiet -q Only output SDOs (without the

SDO entries).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) Dbase.

7.1.19 SII Access

It is possible to directly read or write the complete SII contents of the slaves. This
was introduced for the reasons below:

e The format of the SII data is still in development and categories can be added
in the future. With read and write access, the complete memory contents can
be easily backed up and restored.

122 1.6.8,

7.1 Command-line Tool

e Some SII data fields have to be altered (like the alias address). A quick writing
must be possible for that.

e Through reading access, analyzing category data is possible from userspace.

ethercat sii_read [OPTIONS]
Output a slave’s SII contents.

This command requires a single slave to be selected.

Without the --verbose option, binary SII contents are
output.
With the --verbose option given, a textual representation

of the data is output, that is separated by SII category
names .

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--verbose -v Output textual data with

category names.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Reading out SII data is as easy as other commands. Though the data are in binary
format, analysis is easier with a tool like hexdump:

$ ethercat sii read --position 3 | hexdump

0000000 0103 0000 0000 0000 0000 0OOOO 0000 008c
0000010 0002 0000 3052 07f0 0000 0000 0000 0000
0000020 0000 0000 0000 0OOOO 0000 00OOO 0000 0OOO

Backing up SII contents can easily done with a redirection:
$ ethercat sii read --position 3 > sii-of-slave3.bin

To download SII contents to a slave, writing access to the master’s character device
is necessary (see subsection 7.1.1).

ethercat sii_write [OPTIONS] <FILENAME>
Write SII contents to a slave.
This command requires a single slave to be selected.

The file contents are checked for validity and integrity.
These checks can be overridden with the --force option.

1.6.8, 123

7 Userspace Interfaces

Arguments:

FILENAME must be a path to a file that contains a
positive number of words. If it is ’-’,
data are read from stdin.

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--force -f Override validity checks.

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

ethercat sii_write --position 3 sii-of-slave3.bin

The SIT contents will be checked for validity and then sent to the slave. The write
operation may take a few seconds.

7.1.20 Slaves on the Bus

Slave information can be gathered with the subcommand slaves:

ethercat slaves [OPTIONS]

Display slaves on the bus.

If the

displayed one-per-line. Example:

--verbose option is not given, the slaves are

EL3162 2C. Ana. Input 0-10V

\- Name from the SII if available,
otherwise vendor ID and product

’+’ means no error,

a detailed (multi-line)

1 5555:0 PREOP +

| | | | | |

| | | | |

| | | | |

| | | | | code (both hexadecimal).
[[\- Error flag.

| | | | ’E’ means that scan or

[[configuration failed.

[| \- Current application-layer state.

[\- Decimal relative position to the last

| | slave with an alias address set.

| \- Decimal alias address of this slave (if set),
| otherwise of the last slave with an alias set,
| or zero, if no alias was encountered up to this
| position.

\- Absolute ring position in the bus.

If the --verbose option is given,

description is output for each slave.

124

1.6.8,

7.1 Command-line Tool

Slave selection:
Slaves for this and other commands can be selected with

the --alias and --position parameters as follows:

1) If neither the --alias nor the --position option
is given, all slaves are selected.

2) If only the --position option is given, it is

interpreted as an absolute ring position and
a slave with this position is matched.

3) If only the --alias option is given, all slaves
with the given alias address and subsequent
slaves before a slave with a different alias
address match (use -p0 if only the slaves
with the given alias are desired, see 4)).

4) If both the --alias and the --position option are
given, the latter is interpreted as relative
position behind any slave with the given alias.

Command -specific options:

--alias -a <alias> Slave alias (see above).
--position -p <pos> Slave position (see above).
--verbose -V Show detailed slave information.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

Below is a typical output:

7.1.21 SoE IDN Access

ethercat soe_read [OPTIONS] <IDN>
ethercat soe_read [OPTIONS] <DRIVE> <IDN>

Read an SoE IDN from a slave.
This command requires a single slave to be selected.

Arguments:

DRIVE is the drive number (0 - 7). If omitted, O is assumed.

IDN is the IDN and must be either an unsigned
16 bit number acc. to IEC 61800-7-204:
Bit 15: (0) Standard data, (1) Product data
Bit 14 - 12: Parameter set (0 - 7)
Bit 11 - 0: Data block number

1.6.8,

$ ethercat slaves

0 0:0 PREOP + EK1100 Ethernet Kopplerklemme (2A E-Bus)
1 5555:0 PREOP + EL3162 2K. Ana. Eingang 0-10V

2 55655:1 PREOP + EL4102 2K. Ana. Ausgang 0-10V

3 b5555:2 PREOP + EL2004 4K. Dig. Ausgang 24V, 0,5A

125

7 Userspace Interfaces

or a string like ’P-0-150".

Data of the given IDN are read and displayed according to
the given datatype, or as raw hex bytes.

These are valid data types to use with
the --type option:

bool,

int8, intl1l6, int32, int64,

uint8, uintl6, uint32, uinté4,

float, double,

string, octet_string, unicode_string.

For sign-and-magnitude coding, use the following types:

sm8, sml6, sm32, sm64

Command-specific options:

--alias -a <alias>
--position -p <pos> Slave selection.

the ’slaves’ command.
--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix

ethercat soe_write [OPTIONS] <IDN> <VALUE>
ethercat soe_write [OPTIONS] <DRIVE> <IDN> <VALUE>

Write an SoE IDN to a slave.

This command requires a single slave to be selected.

Arguments:
DRIVE is the drive number (0 - 7).

Bit 15: (0) Standard data,

or a string like ’P-0-150".

VALUE is the value to write (see below).

The VALUE argument is interpreted as the given data type
(--type is mandatory) and written to the selected slave.

These are valid data types to use with
the --type option:

bool,

int8, intl16, int32, int64,

uint8, uintl6, uint32, uint64,

float, double,

string, octet_string, unicode_string.

For sign-and-magnitude coding, use the following types:

126

See the help of

’0x’) base.

If omitted, O is assumed.
IDN is the IDN and must be either an unsigned
16 bit number acc. to IEC 61800-7-204:
(1) Product data
Bit 14 - 12: Parameter set (O

Bit 11 - 0: Data block number

1.6.8,

7.1 Command-line Tool

sm8, sml6, sm32, sm64

Command -specific options:

--alias -a <alias>

--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

--type -t <type> Data type (see above).

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.22 Requesting Application-Layer States

ethercat states [OPTIONS] <STATE>
Request application-layer states.

Arguments:
STATE can be ’INIT’, ’PREOP’, ’B00T’, ’SAFEOP’, or ’0P’.

Command -specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

Numerical values can be specified either with decimal (no

prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.1.23 Displaying the Master Version

ethercat version [OPTIONS]

Show version information.

7.1.24 Generating Slave Description XML

ethercat xml [OPTIONS]
Generate slave information XML.

Note that the PDO information can either originate
from the SII or from the CoE communication area. For
slaves, that support configuring PDO assignment and
mapping, the output depends on the last configuration.

Command -specific options:
--alias -a <alias>
--position -p <pos> Slave selection. See the help of
the ’slaves’ command.

1.6.8,

127

7 Userspace Interfaces

Numerical values can be specified either with decimal (no
prefix), octal (prefix ’0’) or hexadecimal (prefix ’0x’) base.

7.2 Userspace Library

The native application interface (see chapter 3) resides in kernelspace and hence is
only accessible from inside the kernel. To make the application interface available
from userspace programs, a userspace library has been created, that can be linked to
programs under the terms and conditions of the LGPL, version 2 [7].

The library is named libethercat. Its sources reside in the lib/ subdirectory and are
build by default when using make. It is installed in the lib/ path below the installation
prefix as libethercat.a (for static linking), libethercat.la (for the use with libtool) and
libethercat.so (for dynamic linking).

For running an application without actual EtherCAT hardware or for simulation pur-
poses, there is a special library called libfakeethercat (see subsection 7.2.4).

7.2.1 Using the Library

The application interface header ecrt.h (see section 3.6) can be used both in kernel
and in user context.

The following minimal example shows how to build a program with EtherCAT func-
tionality. An entire example can be found in the examples/user/ path of the master
sources and in section 3.7.

#include <ecrt.h>

int main(void)

{
ec_master_t *master = ecrt_request_master (0);
if (!master)
return 1; // error
pause(); // watt for signal
return O;
3

The program can be compiled and dynamically linked to the library with the below
command:

Listing 7.1: Linker command for using the userspace library

gcc ethercat.c -o ectest -I/opt/etherlab/include \
-L/opt/etherlab/lib -lethercat \
-Wl,--rpath -Wl,/opt/etherlab/1lib

128 1.6.8,

7.2 Userspace Library

The library can also be linked statically to the program:

gcc -static ectest.c -o ectest -I/opt/etherlab/include \
/opt/etherlab/lib/libethercat.a

Please keep in mind, that your application has to be licensed under GPLv2 then,
because the LGPL does only allow dynamic linking.

7.2.2 Implementation

Basically the kernel API was transferred into userspace via the master character device
(see chapter 2, Figure 2.1 and subsection 7.1.1).

The function calls of the kernel API are mapped to the userspace via an ioctl()
interface. The userspace API functions share a set of generic ioct1() calls. The
kernel part of the interface calls the according API functions directly, what results in
a minimum additional delay (see subsection 7.2.3).

For performance reasons, the actual domain process data (see section 2.3) are not
copied between kernel and user memory on every access: Instead, the data are
memory-mapped to the userspace application. Once the master is configured and
activated, the master module creates one process data memory area spanning all
domains and maps it to userspace, so that the application can directly access the
process data. As a result, there is no additional delay when accessing process data
from userspace.

Kernel/User API Differences Because of the memory-mapping of the process data,
the memory is managed internally by the library functions. As a result, it is not possi-
ble to provide external memory for domains, like in the kernel API. The corresponding
functions are only available in kernelspace. This is the only difference when using the
application interface in userspace.

7.2.3 Timing

An interesting aspect is the timing of the userspace library calls compared to those of
the kernel API. Table 7.1 shows the call times and standard deviancies of typical (and
time-critical) API functions measured on an Intel Pentium 4 M CPU with 2.2 GHz
and a standard 2.6.26 kernel.

The test results show, that for this configuration, the userspace API causes about
1 us additional delay for each function, compared to the kernel API.

1.6.8, 129

7 Userspace Interfaces

Table 7.1: Application Interface Timing Comparison

Kernelspace Userspace
Function u(t) o(t) wu(t) | o(t)
ecrt_master_receive() 1.1 ps 0.3us |22us|0.5upus
ecrt_domain_process() | < 0.1 pus | <0.1pus | 1.0 us | 0.2 us
ecrt_domain_queue () <0lps|<01lwus|[1.0ps|0.1us
ecrt_master_send() 1.8 ps 0.2us |[25us | 0.5us

7.2.4 Simulation / Fake Library

Sometimes is is handy to run your EtherCAT realtime application without an actual
EtherCAT network connected, for example for test purposes. Though it is possible
to spin up an EtherCAT master and to connect it to a loopback device, this step is
not always wanted.

The EtherCAT master (since version 1.6.1) comes with a library libfakeethercat that
comes with a reasonable subset of the EtherCAT application interface (see chapter 3).

The ecrt method implementation in the fake library will just accept your input and
behave as if everything would be fine. Without further steps, the process data will be
all-zero then.

As a special feature, the libfakeethercat will create RtIPC [18] endpoints for registered
PDO entries to enable a simulation interface. Another application that either uses
RtIPC directly or another (inverted) instance of libfakeethercat will then connect to
these endpoints and thus create the possibility to provide simulated values to your
pristine application.

The fake library functions an usage is documented in Doxygen [I13] and the most
recent version can be found online: https://docs.etherlab.org/ethercat/1.6/
doxygen/libfakeethercat.html

7.3 RTDM Interface

When using the userspace interfaces of realtime extensions like Xenomai or RTAI,
the use of ioctl() is not recommended, because it may disturb realtime operation.
To accomplish this, the Real-Time Device Model (RTDM) [17] has been developed.
The master module provides an RTDM interface (see Figure 2.1) in addition to the
normal character device, if the master sources were configured with --enable-rtdm
(see chapter 9).

To force an application to use the RTDM interface instead of the normal character
device, it has to be linked with the libethercat_rtdm library instead of libethercat.
The use of the libethercat_rtdm is transparent, so the EtherCAT header ecrt.h (see
section 3.6) with the complete API can be used as usual.

130 1.6.8,

https://docs.etherlab.org/ethercat/1.6/doxygen/libfakeethercat.html
https://docs.etherlab.org/ethercat/1.6/doxygen/libfakeethercat.html

7.4 System Integration

To make the example in Listing 7.1 use the RTDM library, the linker command has
to be altered as follows:

gcc ethercat-with-rtdm.c -o ectest -I/opt/etherlab/include \
-L/opt/etherlab/1lib -lethercat_rtdm \
-Wl,--rpath -Wl,/opt/etherlab/lib

7.4 System Integration

To integrate the EtherCAT master as a service into a running system, it comes with
an init script and a sysconfig file, that are described below. Modern systems may
be managed by systemd [7]. Integration of the master with systemd is described in
subsection 7.4.4.

7.4.1 Init Script

The EtherCAT master init script conforms to the requirements of the “Linux Standard
Base” (LSB, [0]). The script is installed to etc/init.d/ethercat below the installation
prefix and has to be copied (or better: linked) to the appropriate location (see chap-
ter 9), before the master can be inserted as a service. Please note, that the init script
depends on the sysconfig file described below.

To provide service dependencies (i. e. which services have to be started before others)
inside the init script code, LSB defines a special comment block. System tools can
extract this information to insert the EtherCAT init script at the correct place in the
startup sequence:

Default-Stop: 0126
Short-Description: EtherCAT master
Description: EtherCAT master Q@VERSIONG

END INIT INFO

7.4.2 Sysconfig File

For persistent configuration, the init script uses a sysconfig file installed to etc/syscon-
fig/ethercat (below the installation prefix), that is mandatory for the init script. The
sysconfig file contains all configuration variables needed to operate one or more mas-
ters. The documentation is inside the file and included below:

1.6.8, 131

e
= O © 0 N O Ot Ww N =

AR R R R R R W W W W W W W W W W NN NN NN N NN = e e e e e
QTR W= O © N0 UEWN O YW NNOUEWN O OO0 W N

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7 Userspace Interfaces

The MASTER<X>_DEVICE wariable specifies the Ethernet device for a master
with tndex ’X7.

Specify the MAC address (hezadecimal with colons) of the Ethernet device to
use. Exzample: "00:00:08:44:ab:66"

Alternatively, a network interface mname can be specified. The interface
name will be resolved to a MAC address wusing the ’<p’ command.
Ezample: "ethO"

The broadcast address "ff:ff:ff:ff:ff:ff" has a special meaning: It tells
the master to accept the first device offered by any Ethernet driver.

The MASTER<X>_DEVICE wvariables also determine, how many masters will be
created: A nmon-empty wvartable MASTERO_DEVICE will create one master, adding a
non-empty variable MASTER1_DEVICE will create a second master, and so on.

Exzamples:
MASTERO_DEVICE="00:00:08:44:ab:66"
MASTERO_DEVICE="eth0"

HOR KR W oW R R W WO HR W OW R HR W OR R W RR

MASTERO_DEVICE=""
#MASTER1_DEVICE=""

Backup Ethernet devices

The MASTER<X>_BACKUP wariables spectify the devices used for redundancy. They
behaves nearly the same as the MASTER<X>_DEVICE wariable, exzcept that <t

does mnot interpret the ff:ff:ff:ff:ff:ff address.

H R OH OB R R R

#MASTERO_BACKUP=""

Ethernet driver modules to use for EtherCAT operation.

Specify a non-empty list of Ethernet drivers, that shall be used for
EtherCAT operation.

Except for the generic Ethernet driver module, the init script will try to
unload the usual Ethernet driver modules in the list and replace them with
the EtherCAT-capable ones. If a certain (EtherCAT-capable) driver %s not
found, a warning will appear.

O OH WK R W OWR R R W W

Possible walues: 8139too, el100, e1000, el1000e, r8169, generic, ccat, tgb, igc,
genet, dwmac-intel, stmmac-pct.

Separate multiple drivers with spaces.

A list of all matching kernel wversions can be found here:

https://docs.etherlab.org/ethercat/1.6/dozygen/devicedrivers.html

Note: The el100, e1000, el1000e, 18169, ccat, %9b and igc drivers are not built by
default. Enable them with the --enable-<driver> configure switches.

O % # % % % ¥ R

EVICE_MODULES=""

If you have any tissues about network interfaces mnot being configured
properly, systemd may need some additional infos about your setup.
Have a look at the service file, you’ll find some details there.

H*H R B W

List of interfaces to bring up and down automatically.

Specify a space-separated list of interface names (such as ethO or
enp0s1) that shall be brought up on ‘ethercatctl start‘ and down on

H oW R B W

132 1.6.8,

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

7.4 System Integration

‘ethercatctl stop ‘.

#
#
When using the generic driver, the corresponding Ethernet device has to be
activated before the master is started, otherwise all frames will time out.
This the perfect use-case for ‘UPDOWN_INTERFACES ‘.

#

U

PDOWN_INTERFACES=""

#

Flags for loading kernel modules.

#

This can usually be left empty. Adjust this wartadble, if you have prodblems
with module loading.

#

#MODPROBE_FLAGS="-b"

For systems managed by systemd (see subsection 7.4.4), the sysconfig file has moved
to /etc/ethercat.conf. Both versions are part of the master sources and are meant
to used alternatively.

7.4.3 Starting the Master as a Service

After the init script and the sysconfig file are placed into the right location, the
EtherCAT master can be inserted as a service. The different Linux distributions offer
different ways to mark a service for starting and stopping in certain runlevels. For
example, SUSE Linux provides the insserv command:

insserv ethercat

The init script can also be used for manually starting and stopping the EtherCAT
master. It has to be executed with one of the parameters start, stop, restart or
status.

/etc/init.d/ethercat restart
Shutting down EtherCAT master done
Starting EtherCAT master done

7.4.4 Integration with systemd

Distributions using systemd instead of the SysV init system are using service files to
describe how a service is to be maintained. Listing 7.2 lists the master’s service file:

Listing 7.2: Service file

#
EtherCAT master kernel modules
#

[Unit]
Description=EtherCAT Master Kernel Modules

1.6.8, 133

7 Userspace Interfaces

Fine tuning of the startup dependencies below are recommended
to provide a reliable startup routine.

The dependencies below can be either uncommented after copying
this file to /etc/systemd/system or by creating overrides:
Copy the needed dependencies into
/etc/systemd/system/ethercat.service.d/50-dependencies.conf

in a [Unit] section.

H H HHHEHH

Uncomment this, if the generic Ethernet driver is used. It assures, that the
network interfaces are configured, before the master starts.

H H ®

#
#Requires=network.target # Stop master, if network is stopped
#After=network.target # Start master, after network is ready

Uncomment this, if a native Ethernet driver is used. It assures, that the
network interfaces are configured, after the Ethernet drivers have been
replaced. Otherwise, the networking configuration tools could be confused.

H H HH

#
#Before=network-pre.target
#Wants=network-pre.target

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=0@sbindir@/ethercatctl start
ExecStop=@sbindir@/ethercatctl stop

[Install]
WantedBy=multi-user.target

The systemctl command is used to load and unload the master and network driver
modules in a similar way to the former init script (subsection 7.4.1).

systemctl start ethercat

When using systemd and/or the systemctl command, the master configuration must
be in /etc/ethercat.conf instead of /etc/sysconfig/ethercat! The latter is ig-
nored. The configuration options are exactly the same.

7.5 Debug Interfaces

EtherCAT buses can always be monitored by inserting a switch between master and
slaves. This allows to connect another PC with a network monitor like Wireshark [3],
for example. It is also possible to listen to local network interfaces on the machine
running the EtherCAT master directly. If the generic Ethernet driver (see section 4.3)
is used, the network monitor can directly listen on the network interface connected to
the EtherCAT bus.

When using native Ethernet drivers (see section 4.2), there are no local network inter-
faces to listen to, because the Ethernet devices used for EtherCAT are not registered
at the network stack. For that case, so-called “debug interfaces” are supported, which
are virtual network interfaces allowing to capture EtherCAT traffic with a network

134 1.6.8,

7.5 Debug Interfaces

monitor (like Wireshark or tcpdump) running on the master machine without using
external hardware. To use this functionality, the master sources have to be configured
with the --enable-debug-if switch (see chapter 9).

Every EtherCAT master registers a read-only network interface per attached physical
Ethernet device. The network interfaces are named ecdbgmX for the main device, and
ecdbgbX for the backup device, where X is the master index. The below listing shows
a debug interface among some standard network interfaces:

ip link

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

4: ethO: <BROADCAST ,MULTICAST> mtu 1500 gdisc noop qlen 1000
link/ether 00:13:46:3b:ad:d7 brd ff:ff:ff:ff:ff:£ff

8: ecdbgmO: <BROADCAST ,MULTICAST> mtu 1500 qdisc pfifo_fast

gqlen 1000

link/ether 00:04:61:03:d1:01 brd ff:ff:ff:ff:ff:ff

While a debug interface is enabled, all frames sent or received to or from the physical
device are additionally forwarded to the debug interface by the corresponding master.
Network interfaces can be enabled with the below command:

ip link set dev ecdbgmO up
Please note, that the frame rate can be very high. With an application connected,

the debug interface can produce thousands of frames per second.

Attention The socket buffers needed for the operation of debug interfaces have to
be allocated dynamically. Some Linux realtime extensions (like RTAI) do not allow
this in realtime context!

1.6.8, 135

7 Userspace Interfaces

136 1.6.8,

8 Timing Aspects

Although EtherCAT’s timing is highly deterministic and therefore timing issues are
rare, there are a few aspects that can (and should be) dealt with.

8.1 Application Interface Profiling

One of the most important timing aspects are the execution times of the application
interface functions, that are called in cyclic context. These functions make up an
important part of the overall timing of the application. To measure the timing of the
functions, the following code was used:

cO0 = get_cycles();
ecrt_master_receive (master) ;
cl = get_cycles();
ecrt_domain_process (domainl) ;
c2 = get_cycles();
ecrt_master_run (master) ;

c3 = get_cycles();
ecrt_master_send (master) ;

c4 = get_cycles();

Between each call of an interface function, the CPU timestamp counter is read. The
counter differences are converted to us with help of the cpu_khz variable, that contains
the number of increments per ms.

For the actual measuring, a system with a 2.0 GHz CPU was used, that ran the above
code in an RTAI thread with a period of 100 pus. The measuring was repeated n = 100
times and the results were averaged. These can be seen in Table 8.1.

Table 8.1: Profiling of an Application Cycle on a 2.0 GHz Processor

Element Mean Duration [s] | Standard Deviancy [ps]
ecrt_master_receive() 8.04 0.48
ecrt_domain_process() 0.14 0.03
ecrt_master_run() 0.29 0.12
ecrt_master_send() 2.18 0.17
Complete Cycle 10.65 0.69

1.6.8, October 6, 2025 137

8 Timing Aspects

It is obvious, that the functions accessing hardware make up the lion’s share. The
ec_master_receive() executes the ISR of the Ethernet device, analyzes datagrams and
copies their contents into the memory of the datagram objects. The ec_master_send()
assembles a frame out of different datagrams and copies it to the hardware buffers.
Interestingly, this makes up only a quarter of the receiving time.

The functions that only operate on the masters internal data structures are very
fast (At < 1 ps). Interestingly the runtime of ec_domain_process() has a small stan-
dard deviancy relative to the mean value, while this ratio is about twice as big for
ec_master_run(): This probably results from the latter function having to execute
code depending on the current state and the different state functions are more or less
complex.

For a realtime cycle makes up about 10 pus, the theoretical frequency can be up to
100 kHz. For two reasons, this frequency keeps being theoretical:

1. The processor must still be able to run the operating system between the real-
time cycles.

2. The EtherCAT frame must be sent and received, before the next realtime cycle
begins. The determination of the bus cycle time is difficult and covered in
section 8.2.

8.2 Bus Cycle Measuring

For measuring the time, a frame is “on the wire”, two timestamps must be taken:

1. The time, the Ethernet hardware begins with physically sending the frame.
2. The time, the frame is completely received by the Ethernet hardware.

Both times are difficult to determine. The first reason is, that the interrupts are
disabled and the master is not notified, when a frame is sent or received (polling
would distort the results). The second reason is, that even with interrupts enabled,
the time from the event to the notification is unknown. Therefore the only way to
confidently determine the bus cycle time is an electrical measuring.

Anyway, the bus cycle time is an important factor when designing realtime code,
because it limits the maximum frequency for the cyclic task of the application. In
practice, these timing parameters are highly dependent on the hardware and often a
trial and error method must be used to determine the limits of the system.

The central question is: What happens, if the cycle frequency is too high? The answer
is, that the EtherCAT frames that have been sent at the end of the cycle are not yet
received, when the next cycle starts. First this is noticed by ecrt_domain_process(),
because the working counter of the process data datagrams were not increased. The
function will notify the user via Syslog!. In this case, the process data keeps being the

ITo limit Syslog output, a mechanism has been implemented, that outputs a summarized notifica-
tion at maximum once a second.

138 1.6.8,

8.2 Bus Cycle Measuring

same as in the last cycle, because it is not erased by the domain. When the domain
datagrams are queued again, the master notices, that they are already queued (and
marked as sent). The master will mark them as unsent again and output a warning,
that datagrams were “skipped”.

On the mentioned 2.0 GHz system, the possible cycle frequency can be up to 25 kHz
without skipped frames. This value can surely be increased by choosing faster hard-
ware. Especially the RealTek network hardware could be replaced by a faster one.
Besides, implementing a dedicated ISR for EtherCAT devices would also contribute
to increasing the latency. These are two points on the author’s to-do list.

1.6.8, 139

8 Timing Aspects

140 1.6.8,

O Installation

9.1 Getting the Software

There are several ways to get the master software:

1. An official release (for example 1.6.8), can be downloaded from the master’s
website! at the EtherLab project [1] as a tarball.

2. The most recent development revision (and moreover any other revision) can
be obtained via the Git [14] repository on the master’s project page on Git-
Lab.com?. The whole repository can be cloned with the command

git clone https://gitlab.com/etherlab.org/ethercat.git
local-dir

3. Without a local Git installation, tarballs of arbitrary revisions can be down-
loaded via the “Download” button on GitLab.

9.2 Building the Software

After downloading a tarball or cloning the repository as described in section 9.1, the
sources have to be prepared and configured for the build process.

When a tarball was downloaded, it has to be extracted with the following commands:

$ tar xjf ethercat-1.6.8.tar.bz2
$ cd ethercat-1.6.8/

The software configuration is managed with Autoconf [15] so the released versions
contain a configure shell script, that has to be executed for configuration (see below).

Bootstrap When downloading or cloning directly from the repository, the configure
script does not yet exist. It can be created via the bootstrap.sh script in the master
sources. The autoconf and automake packages are required for this.

'https://etherlab.org/ethercat
’https://gitlab.com/etherlab.org/ethercat

1.6.8, October 6, 2025 141

https://etherlab.org/ethercat
https://gitlab.com/etherlab.org/ethercat

9 Installation

Configuration and Build The configuration and the build process follow the below
commands:

$./configure
$ make
$ make modules

Table 9.1 lists important configuration switches and options.

Table 9.1: Configuration options

Option/Switch Description Default
--prefix Installation prefix /opt/etherlab
--with-linux-dir Linux kernel sources Use running kernel
--with-module-dir Subdirectory in the kernel module | ethercat

tree, where the EtherCAT kernel

modules shall be installed.
--enable-generic Build the generic Ethernet driver | yes

(see section 4.3).
--enable-8139too Build the 8139too driver yes
--with-8139too-kernel 8139too kernel T
--enable-e100 Build the €100 driver no
--with-e100-kernel €100 kernel T
--enable-e1000 Enable 1000 driver no
--with-e1000-kernel €1000 kernel T
--enable-e1000e Enable €1000e driver no
--with-e1000e-kernel €1000e kernel T
--enable-r8169 Enable r8169 driver no
--with-r8169-kernel r8169 kernel T
--enable-ccat Enable ccat driver (independent of | no

kernel version)
--enable-igb Enable igbh driver no
--with-igb-kernel igh kernel T
--enable-kernel Build the master kernel modules | yes
--enable-rtdm Create the RTDM interface (RTAI | no

or Xenomai directory needed, see

below)
--with-rtai-dir RTAI path (for RTAI examples

and RTDM interface)
--with-xenomai-dir Xenomai path (for Xenomai ex-

amples and RTDM interface)
--with-devices Number of Ethernet devices for re- | 1

dundant operation (> 1 switches

redundancy on)

142

1.6.8,

9.3 Building the Interface Documentation

Option/Switch Description Default
--with-systemdsystemunitdir | Systemd unit directory ("no” dis- | auto
ables service file installation)
--enable-debug-if Create a debug interface for each | no
master
--enable-debug-ring Create a debug ring to record | no
frames
-—enable-eoe Enable EoE support yes
--enable-cycles Use CPU timestamp counter. En- | no
able this on Intel architecture to
get finer timing calculation.
--enable-hrtimer Use high-resolution timer to let | no
the master state machine sleep be-
tween sending frames.
--enable-regalias Read alias address from register no
--enable-tool Build the command-line tool | yes
“ethercat” (see section 7.1)
--enable-userlib Build the userspace library yes
--enable-tty Build the T'TY driver no
--enable-wildcards Enable 0Ozfffffiff to be wildcards | no
for vendor ID and product code
--enable-sii-assign Enable assigning SII access to the | no
PDI layer during slave configura-
tion
--enable-rt-syslog Enable syslog statements in real- | yes

time context

1 If this option is not specified, the kernel version to use is extracted from the Linux

kernel sources.

9.3 Building the Interface Documentation

The source code is documented using Doxygen |

|. To build the HTML documen-

tation, the Doxygen software has to be installed. The below command will generate
the documents in the subdirectory dozygen-output:

$ make doc

The interface documentation can be viewed by pointing a browser to the file dozygen-
output/html/index.html. The functions and data structures of the application interface
are covered by an own module “Application Interface”.

1.6.8,

143

9 Installation

9.4 Installing the Software

The below commands have to be entered as root: the first one will install the Ether-
CAT header, service scripts (systemd or init.d) and the userspace tool to the prefix
path. The second one will install the kernel modules to the kernel’s modules directory.
The final depmod call is necessary to include the kernel modules into the modules.dep
file to make it available to the modprobe command, used by the service scripts.

make install
make modules_install
depmod

If the target kernel’s modules directory is not under /lib/modules, a different destina-
tion directory can be specified with the DESTDIR make variable. For example:

make DESTDIR=/vol/nfs/root modules_install

This command will install the compiled kernel modules to /vol/nfs/root/lib/modules,
prepended by the kernel release.

Now the sysconfig file /etc/sysconfig/ethercat (see subsection 7.4.2), or the con-
figuration file /etc/ethercat.conf, if using systemd, has to be customized. The minimal
customization is to set the MASTERO_DEVICE variable to the MAC address of the Ether-
net device to use (or ff:ff:ff:ff:ff:£f to use the first device offered) and selecting
the driver(s) to load via the DEVICE_MODULES variable.

After the basic configuration is done, the master can be started with the below com-
mand:

systemctl start ethercat
When using init.d, the following command can be used alternatively:
/etc/init.d/ethercat start

At this time, the operation of the master can be observed by viewing the Syslog
messages, which should look like the ones below. If EtherCAT slaves are connected
to the master’s EtherCAT device, the activity indicators should begin to flash.

EtherCAT: Master driver 1.6.8

EtherCAT: 1 master waiting for devices.

EtherCAT Intel(R) PRO/1000 Network Driver - version 6.0.60-k2
Copyright (c) 1999-2005 Intel Corporation.

PCI: Found IRQ 12 for device 0000:01:01.0

PCI: Sharing IRQ 12 with 0000:00:1d.2

PCI: Sharing IRQ 12 with 0000:00:1f.1

EtherCAT: Accepting device 00:0E:0C:DA:A2:20 for master O.
EtherCAT: Starting master thread.

ec_el000: ecO: e1000_probe: Intel(R) PRO/1000 Network

144 1.6.8,

15

16

18

9.5 Automatic Device Node Creation

Connection

ec_el000: ecO: el1000_watchdog_task: NIC Link is Up 100 Mbps
Full Duplex

EtherCAT: Link state changed to UP.

EtherCAT: 7 slave(s) responding.

EtherCAT: Slave states: PREOP.

EtherCAT: Scanning bus.

EtherCAT: Bus scanning completed in 431 ms.

(1) — () The master module is loading, and one master is initialized.

G) - The EtherCAT-capable e1000 driver is loading. The master accepts the
device with the address 00:0E:0C:DA:A2:20.

(o) — (9 The master goes to idle phase, starts its state machine and begins scanning
the bus.

0.5 Automatic Device Node Creation

The ethercat command-line tool (see section 7.1) communicates with the master via
a character device. The corresponding device nodes are created automatically, if the
udev daemon is running. Note, that on some distributions, the udev package is not
installed by default.

The device nodes will be created with mode 0660 and group root by default. If “nor-
mal” users shall have reading access, a udev rule file (for example /etc/udev/rules.d/99-
EtherCAT.rules) has to be created with the following contents:

KERNEL=="EtherCAT[0-9]*", MODE="0664"

After the udev rule file is created and the EtherCAT master is restarted with /etc
/init.d/ethercat restart, the device node will be automatically created with the
desired rights:

1s -1 /dev/EtherCATO
crwu-rw-r-—- 1 root root 252, 0 2008-09-03 16:19 /dev/EtherCATO

Now, the ethercat tool can be used (see section 7.1) even as a non-root user.

If non-root users shall have writing access, the following udev rule can be used instead:

KERNEL=="EtherCAT [0-9]*", MODE="0664", GROUP="users"

1.6.8, 145

9 Installation

146 1.6.8,

Bibliography

1]

2]
3]

[4]

[10]
[11]
[12]

[13]

Ingenieurgemeinschaft [gH: EtherLab — Open Source Toolkit for rapid realtime
code generation under Linux with Simulink/RTW and EtherCAT technology.
https://etherlab.org, 2024.

[EC 61158-4-12: Data-link Protocol Specification. International Electrotechnical
Commission (IEC), 2005.

IEC 61158-6-12: Application Layer Protocol Specification. International Elec-
trotechnical Commission (IEC), 2005.

GNU General Public License, Version 2. http://www.gnu.org/licenses/
gpl-2.0.html. October 15, 2008.

GNU Lesser General Public License, Version 2.1. http://www.gnu.org/
licenses/old-licenses/1lgpl-2.1.html. October 15, 2008.

Linux Standard Base. http://www.linuxfoundation.org/en/LSB. August 9,
2006.

systemd System and Service Manager http://freedesktop.org/wiki/
Software/systemd. January 18, 2013.

Wireshark. http://www.wireshark.org. 2008.

Hopcroft, J. E. / Ullman, J. D.: Introduction to Automata Theory, Languages
and Computation. Adison-Wesley, Reading, Mass. 1979.

Wagner, F. / Wolstenholme, P.: State machine misunderstandings. In: IEE

journal “Computing and Control Engineering”, 2004.

RTAI. The RealTime Application Interface for Linux from DIAPM. https://
www.rtai.org, 2010.

RT PREEMPT HOWTO. http://rt.wiki.kernel.org/index.php/RT_
PREEMPT_HOWTO, 2010.

Doxygen. Source code documentation generator tool. http://www.stack.nl/
~dimitri/doxygen, 2008.

Git SCM. https://git-scm.com, 2021.

Autoconf — GNU Project — Free Software Foundation (FSF). http://www.gnu.
org/software/autoconf, 2010.

IEC 61800-7-304: Adjustable speed electrical power drive systems - Part 7-300:
Generic interface and use of profiles for power drive systems - Mapping of profiles
to network technologies. International Electrotechnical Commission (IEC), 2007.

1.6.8, October 6, 2025 147

https://etherlab.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.linuxfoundation.org/en/LSB
http://freedesktop.org/wiki/Software/systemd
http://freedesktop.org/wiki/Software/systemd
http://www.wireshark.org
https://www.rtai.org
https://www.rtai.org
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.stack.nl/~dimitri/doxygen
http://www.stack.nl/~dimitri/doxygen
https://git-scm.com
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf

Bibliography

(17 J. Kiszka: The Real-Time Driver Model and First Applications.
http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/
RTDM-and-Applications.pdf, 2013.

[18] Real-Time Inter-Process-Communication library. Part of the EtherLab toolkit.
https://gitlab.com/etherlab.org/rtipc, 2024.

148 1.6.8,

http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/RTDM-and-Applications.pdf
http://svn.gna.org/svn/xenomai/tags/v2.4.0/doc/nodist/pdf/RTDM-and-Applications.pdf
https://gitlab.com/etherlab.org/rtipc

Glossary

ADEOS Adaptive Domain Environment for Operating Systems, page 1
CoE CANopen over EtherCAT, Mailbox Protocol, page 107

ecdev EtherCAT Device, page 83

EoE Ethernet over EtherCAT, Mailbox Protocol, page 103

FSM Finite State Machine, page 85

ISR Interrupt Service Routine, page 78

LSB Linux Standard Base, page 3

PCI Peripheral Component Interconnect, Computer Bus, page 80

RTAI Realtime Application Interface, page 1

1.6.8, October 6, 2025 149

Glossary

150 1.6.8,

Index

Application, 5
Application Interface, 22
Application interface, 13

Bus cycle, 138

CoE, 107

Concurrency, 17

Debug Interfaces, 134
Device interface, 83
Device modules, 5
Distributed Clocks, 19
Domain, 9

EoE, 103
Example Applications, 13

FMMU
Configuration, 11
FSM, 85
FoE, 104
Master, 91
PDO, 98
SII, 97
Slave Configuration, 94
Slave Scan, 91
State Change, 96
Theory, 86

GPL, 3

Idle phase, 9

Init script, 7, 131
Interrupt, 78, 79
ISR, 78

LGPL, 3

1.6.8, October 6, 2025

LSB, 131

MAC address, 7
Mailbox, 103
Master
Architecture, 5
Features, 1
Installation, 141
Master Module, 5
Master module, 7
Master phases, 9

net_device, 78
netif, 79
Network drivers, 77, 84

Operation phase, 9
Orphaned phase, 9

PDO, 9
Process data, 9
Profiling, 137

Redundancy, 83

Service, 133
SII, 97, 104

Access, 122
Socket buffer, 78, 79
SoE, 109
Sysconfig file, 131
Syslog, 144
systemd, 133

Userspace, 111
VoE, 109

151

	Conventions
	The IgH EtherCAT Master
	Feature Summary
	License

	Architecture
	Master Module
	Master Phases
	Process Data

	Application Interface
	Master Configuration
	Slave Configuration

	Cyclic Operation
	VoE Handlers
	Concurrent Master Access
	Distributed Clocks
	Application Interface Header
	Userspace Application Example

	Ethernet Devices
	Network Driver Basics
	Native EtherCAT Device Drivers
	Generic EtherCAT Device Driver
	Providing Ethernet Devices
	Redundancy
	EtherCAT Device Interface
	Patching Native Network Drivers

	State Machines
	State Machine Theory
	The Master's State Model
	The Master State Machine
	The Slave Scan State Machine
	The Slave Configuration State Machine
	The State Change State Machine
	The SII State Machine
	The PDO State Machines

	Mailbox Protocol Implementations
	Ethernet over EtherCAT (EoE)
	EoE Interface Configuration

	CANopen over EtherCAT (CoE)
	Vendor specific over EtherCAT (VoE)
	Servo Profile over EtherCAT (SoE)

	Userspace Interfaces
	Command-line Tool
	Character Devices
	Setting Alias Addresses
	Displaying the Bus Configuration
	Display CRC Error Counters
	Output PDO information in C Language
	Displaying Process Data
	Setting a Master's Debug Level
	Configured Domains
	SDO Access
	EoE Statistics
	File-Access over EtherCAT
	Creating Topology Graphs
	Setting Ethernet-over-EtherCAT IP Parameters
	Master and Ethernet Devices
	Sync Managers, PDOs and PDO Entries
	Register Access
	Trigger a Bus Scan
	SDO Dictionary
	SII Access
	Slaves on the Bus
	SoE IDN Access
	Requesting Application-Layer States
	Displaying the Master Version
	Generating Slave Description XML

	Userspace Library
	Using the Library
	Implementation
	Timing
	Simulation / Fake Library

	RTDM Interface
	System Integration
	Init Script
	Sysconfig File
	Starting the Master as a Service
	Integration with systemd

	Debug Interfaces

	Timing Aspects
	Application Interface Profiling
	Bus Cycle Measuring

	Installation
	Getting the Software
	Building the Software
	Building the Interface Documentation
	Installing the Software
	Automatic Device Node Creation

	Bibliography
	Glossary
	Index

