aws

Database Developer Guide

Amazon Redshift

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Redshift Database Developer Guide

Amazon Redshift: Database Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Redshift Database Developer Guide

Table of Contents

INEFOAUCEION cevveerrriiiiiiiiiiiiiiiiiiiiiieieieiiiieessesssans 1
Prerequisites for using Amazon RedShift ... aens 1
AmMAzon RedShift arChit@CLUIEc.civueeieieeet ettt ettt s ssa st en 2

Data warehouse arChitE@CIUIE ..ottt a st sa e 2
PEITOIMIANCE ...ttt ettt st sa e st st st s b et et s e sbe b e e s b et e st ssessansesasassesasans 5
COLUMINGAE SEOTQAQE ..ueeeeieieteteeeeee et ree e ste e s te st e e se e e s e e s et e te b e stessassaesaesaessessensansansansansassassassaessanean 8
Workload Mana@gemMENT ...ttt et e teste s e se e e s a et e st e sae s e seeseena e e e naeaanes 10
Using Amazon Redshift with Other SErviCes ... 12
SAMPLE AALADASE ..ttt e e st e e ettt e b e be e seean e nes 13

BESt PracCtiCes ..ucccceiiiiiinneeennnniiiiiieceiiiennennsssnssssssseessass 21

Conduct @ Proof OF CONCEPL ...ttt e e sa ettt esaesba s e e saenaens 21
STEP T1: SCOPE YOUF PO ...ttt ettt setesseeeste s st s s aesssees e e s saessssesssaessaesssessssessssessaassseanns 22
Step 2: Launch AmMazon REdSHIft ...ttt et eaens 23
Step 3: LOAd YOUN dAta oottt ettt et este s e s e e e e e st e s et e sae st e b e ssaesne e ennennan 24
Step 4: ANALYZE YOUT At c.ocviieeeeeceeeeesee ettt teste et e e et et e st e st e st e s e sasraeaeaenaennan 26
STEP 5: OPTIMUZE ettt et s e e st e e s st e s e e s s aa e s s e s saa e s b e s saaesssesssaessnasssessssessses 28

Best practices for desSigning tables ...ttt nnens 29
ChOOSE the DESE SOt KEY ...eoueeeeeeeeeeeeeetetete ettt te s a et e st e besaessessneseennans 29
Choose the best distribution StYLE ...t 30
Use QUEOMALIC COMPIESSIONuviiuiieieiiiiieteeittietersreesteesaeeseessseesaessseesssessseessaesssessssessssesssesssssssaessnes 31
DEfiNE CONSLIAINTS .ttt ettt sa et sb e st b et e sse b e e s aases 32
Use the smallest possible COLUMN SIZE ...ttt ae e 32
Use date/time data types for date coOlUMNS ... 32

Best practices for l0ading data ...ttt 33
Learn how tO L0ad data ...ttt s et sttt s a e aas 33
Use a COPY command 0 10ad dataccoevuevirineniiieicneeteesetete ettt sa et saesa e snes 33
Use a single COPY COMMIANA ...ttt stesaessesve s s e sa e s st e aasaessessasse s e ennanes 34
LOAAING At fIlES ettt s e e a et st st et s e e e n e nnans 34
Compressing YOUr data fileS ...ttt ettt 35
Verify data files before and after @ load ... 35
USE @ MULLISFOW INSEIT ..ttt sttt ettt st et e s b et e e s e sa e e s e sasaesassaneen 35
USE @ DULK INSEIT ..ttt sttt ettt et et s s b et e sse b et e e ssanes 36
Load data in SOt KEY OFUEN ...ttt te et e e sa et et esaesbesseese e e e aeaesnantans 36

Load data in sequential BLOCKS ...ttt a e et aens 37

Amazon Redshift Database Developer Guide

USE tiME-SErIES TADLES ..ottt ettt sttt sa et st a s s b et e saa s 37
Schedule around MaiNteNaNCe WINAOWS ..ottt sse e sse e ene 38
Best practices for deSigNing QUETIESuccueieieeeeececeetetetetecte et s e et esaesaesaesse s e e e e snesaesnanaens 38
Follow AdVisor reCOMMENATIONS ...co.coveuiiiriiriiireirteeneste ettt st et se st e e s stesae e ssessesaesasaans 40
Amazon Redshift Regions where Advisor is SUPPOIrtedceeeeeveecieceeceececececee e 41
Viewing AdVvisor reCOmMmMENAAtioNscccciiieiieieeeeeceeee ettt e e sa et e sae st e sse s e e e s e enenes 42
AdVisor reCOMMENAALIONSccviirieriiirereteerertetreste ettt st e s e st et s e sbe st e e ssassesaesassessenas 43
TUROKHIALS ceveerriiiiiniiiiitiiitiiitiieiiiiitiiieieeeesses 58
Automatic table optimizationeiiiiiiiiiiiiiiiennniiiiiiiiiiiiieeeeeeiiiiieiietttssssssssssssssssssssssssssssns 59
Enabling, disabling, and monitoring automatic table optimizationccceceeeeenerenieccieceeieen, 60
Enabling automatic table optimization ... 60
Removing automatic table optimization from a table ..., 60
Monitoring automatic table optimization ... 61
COLUMN COMIPIESSION ..cveeiiieiictetetectecteee et et et e stestestestesse e e s e e ae s ebetessessassassesssensansensassansansasseesesnsenean 61
COMPreSSIiON ENCOAINGS ..c..couieiieieieietetertestee e se e e e e e e saestestestessessassae e esaesaessessessassassassessasssensessensansan 63
Testing comPression ENCOAINGSccviieieeiecieeececeeeee ettt stese e e e s e st e ssesaesaessasseese e s esnesesanes 73
DAta diSTrDULION ettt et sa et s s b st s s st et s sa st e e nas 80
Data distribution CONCEPES ..eeeeeeeeeeeee ettt s e et et ae e 80
DISEIDULION STYLES ..ttt st te s te e e e e e e et e b e s be st e aasseesaesnesnennanean 82
Viewing diStribDULION STYLES ...ttt sa et st e st st s ae e aens 83
EValuating QUENY PALEINS ...ttt e ss et et saesae s e se e e s a e aesaentans 85
Designating distribution StYLES ...ttt sae e 85
Evaluating the qQUEINY PLan ...ttt sttt ae st sa e aaennan 86
QUENY PLAN EXAMIPLE ..ttt et e et e s te st e st e s b e e e e e e s esa et esbasessassasseesaessensantans 89
DiStribULION @XAMIPLES ...eoeeeeeeeee ettt ettt st e st e e e e e et et e st et e saessesse e e e e e e esensanes 93
SOME KBYS ettt et e st e s te s te st e s e e e e e et et et e bessesseeseesae e e st et et e sessaeseeseesaententententessesseeseeraan 96
Multidimensional data layout sorting (PreVieW)eececeeceeceseeeeee et nens 97
COMPOUNT SOIE KEY ...ttt ettt e e e e s et st e s s et e s sesse s e e s e s e stesbessessassaesesseessensansansansanes 98
INEErLEAVE SOIt KEY ..ottt ettt et e st e e e e e et e st e s be st e s aeesaeseesa e e e s entanaansanes 99
TADLE CONSTIAINTS ..oviiiiieieieerce ettt sttt ettt e s b et et sse st et e e s aa b et ssassessenassenes 100
(oY T [T o« - | - T PPPO U 102
Loading tables With COPY ...ttt et ettt ae s re s s e e e e et et et e s nns 105
Credentials and acCeSS PEIMUISSIONSc.cceeieeereeieeieiete e e sesese e e e e e e e aesaesaessessessesseesesaessenean 107
Preparing your iNPUL data ...ttt ettt e te e a e et e nas 109
Loading data from AMAzon S3 ...ttt ste e e ss et et et sa e s e e eaeaeaens 110
Loading data from AmMAzon EMR ...ttt e e s et stessesaa e enenaennens 122

Amazon Redshift Database Developer Guide

Loading data from remote NOSLS ...t 128
Loading from Amazon DYNAamODB ...ttt sae st a e e saesaeaas 137
Verifying that the data loaded COrreCtly ... 140
Validating iNPUL data ..ottt re e e sa et et e s b e s ae s e e e e e e a e aenans 141
Loading tables with automatic COMPreSSIONc.cceeieiecieeeceee e 141
Optimizing fOr NArTOW TabLES ...ttt st s e e aenens 144
Loading default cOlUMN VALUES ...ttt a et sae s 144
Troubleshooting data LS ...ttt ste st se e s s e s et e saansans 145
Loading tables with continuous file ingestion (Preview) ... e 152
Loading tables With DML ...ttt ettt sve e ve e e st st e stesaesse s e e e ennesaantans 154
Updating and INSEITINGcecveeieeeeeeeceete ettt e tesaesse s s e s e s e e et e s s e sessassassaennenaanes 155
Performing @ EEP COPY .euooioiriieeeceetectetectes ettt e et etestestestessesse e e e s et et e tastassessassesssessessansansenssansans 163
ANQLYZING TADLES ...ttt ettt et e st e st e et e e e e e e et e b et e te e e s seeseesee e ennenaaneans 167
AULOMALIC @NALYZE ettt st et e e e et et e st e s b et e s se e e ssa e e et esteaantansans 167
AnNalysis Of NEW 1able data ...ttt st sae s 168
ANALYZE cOmMMANAd NISTOIY vttt steste s e se e e e e e saessestessessessessas s s s esaesansans 173
VaCUUMING TADLES .ttt te e e e et e st e st e st e s b e s e e e e e e e e s e sbestessassassassnenaansans 174
AULOMALIC TADLE SOIT ...ttt st ettt s s be st e e s e sae e e e saasaenees 175
AUtOMAtiC VACUUM AELELE ..ottt ettt ettt s e st e sa s sae s e sassans 176
VACUUM FrEAUENCY ..ottt ee s testestestestesses e s e e e st e ssestessassassassasssessessensensansassassessesssensanes 176
Sort stage and MEIGE SLAGE ...ttt et te st teste s e s e e e e e et e s e ssesaessesaassassnennaneans 176
VacuUM ThreSHOLA ..ottt ettt st et s e st e e s sae e esasnans 177
VACUUM TYPES ..ceeeiiiieieiteeeitecettesestte s steeseeessssesesssesssssesssssesssssesssssasssseesssssessssesssssesssssesssssesssssesssssases 177
MiNIMIZING VACUUM TIMIESoiiiiiiiieecteeteetcste st eete st e e stessseesseessaessaessseesaesssaesssesssaesssesssasssnasans 177
Managing concurrent Writ@ OPEratioNSccoviiciiriieiriereecteere et s e e e e sae s ra e s sae e s e essaesssaesanas 186
SErializable iSOLAtION ..ottt a e e e e 187
Write and read/Writ€ OPEIratioNS ... se et aestesre s e s e e e e nennens 192
CoNCUITENt WIILE EXAMPLES ..ottt ettt ste e re e s e e e et e s te st e saessasse e s ene e e esaenaenes 193
Tutorial: Loading data from Amazon S3 ...ttt saesae e s e s e s e se e e e e nnan 195
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 195
OVEIVIBW ...ttt sttt et s e st s st st et s b e et e e st s b e st e e st e b e et e e st s be st e st sseeste st essesasestensasans 196
StEP 1: Create @ CLUSLEN .ottt ettt st e st e e e e et a e b e st e aesaessesseesnennens 196
Step 2: Download the data files ... aas 197
Step 3: Upload the files to an Amazon S3 bucket ... 198
Step 4: Create the SAMPLEe tabLES ...t aas 200
Step 5: Run the COPY COMMANGS ...ccuooieieieiecteceeeeeee et te e et e e a et saeste s e sse s e e e s aesaessanes 203

Amazon Redshift Database Developer Guide

Step 6: Vacuum and analyze the database ... 221
Step 7: ClEAN UP YOUI FESOUICEScceeueerereresrestessessesesaesessessessessassessassesssssssssessessassassassessassssnsen 222
SUMIMAIY eetieitieteetteeteesrteeeeeseeeste s st s st e s stees st e s sasssaasssesssaasssesssaesssassssesssessseesssessseesssessseesssessseesssesssanns 222
UNLoAding data ...ccceeeeciiiiiiiiiiiiiieeeneeeiiiiiiceeieiiesesssssssssssssssessee 224
Unloading data t0 AMAzOon S3 ...ttt ste e s te s e s e e e et sae st e saesaessesse s e e e e saesaaansans 224
Unloading encrypted data fileS ...ttt 228
Unloading data in delimited or fixed-width format ... 229
Reloading unloaded data ...ttt s a e an 231
User-defined fUNCLIONSceeeeeeeeeneeennennnnnnnnennnennniiiiiiiiiiiiiiiiiiiieiiiieeesses 232
UDF security and PerMSSIONSc.cceceeeeeeieieiretesteceseeeeteeeeseessestestessessessessassseaessessessessessessesssensenes 232
Preventing UDF Naming CONTLICES ..cuouiuieeeceeeeee ettt et ae s san e nnens 233
Overloading fUNCLION NAMES ...ttt et ettt saesse s e sa e e e e aenaan 233
Avoiding conflict with built-in Amazon Redshift functions ..o, 234
SCALAT SQL UDFS ettt ettt eebe et e e e s st e sbs e aseesssesssesassessseesssssssessssesssesnssesssesnns 234
EXQIMIPLE ettt et et st e s te st e e e e e e et et et e b e e b e e s e e as e e e te b e banbasseeseenaentensentantans 235
SCALAr PYTRON UDFS ...ttt te et e et saesteste st e st e e e e s e e e s et e saestesaassasseesnessensensansansans 235
EXQIMIPLE ettt ettt e st e s ae st e et e e e e e et et et e b e e b e e s e e se e e et et e tanbasseeseenaentenaentantans 236
PYthon UDF data fYPES ..ottt ettt aesteste e s e e et e s st e sba b e s sa e e e e snnennan 237
Python languUage SUPPOIt ...ttt ettt ste s e s e e s ss s e aesa et e saesaassasseesnennannans 238
CONSTFAINTS ..ottt ettt ettt sa e st et s b s st e st s be st e e st e se et e e st s sesbesntesseensennesnsess 243
LOgging €rrors and WaArNINGSccceeeeeeereeieeieeeetestestestessessessesssessssessessessessessessessassesssesessessassanes 243
SCAlAr LAamMBA@ UDFS ...ttt ettt ee e st et s et et s et e e s e sse st s e ssesbesassassessenassassensenans 245
Managing Lambda UDF security and permisSSionscccceceeeeeeereeieereeseeseeseeseseeseseeseeseesennes 246
Configuring the authorization parameter for Lambda UDFscccoevieeiececeneneeeeeeeeceeeene. 247
Using the JSON interface between Amazon Redshift and Lambdacceoeevevrierrnennnee. 248
Use €ase eXamMPLES FOr UDFS ...ttt ste s e e e s e e et e saessesse s s e s e s e e s enaennennan 251
Creating Stored ProCeAUIEScccciiiieeeeecciiiiieiiiiiiieeeesssssssssseecsessass 253
StOred ProCEAUINE OVEIVIEWcuecueeeieieieieiecieeteeeeeeee e e testestestestessesses s e s essessessassessassassessassssssensensansans 253
NaAMING StOred ProCEAUIESocieieeeteceeeeee ettt te e te e e e re e e et e saestestassessessesseesaessensansansans 257
SECUNILY ANA PrIVILEGES ..ottt ettt teste s e s e e e e e et e s et e saesae s e s seesaesaesessansansans 258
RETUIMING @ FESULL ST ettt sa ettt esaesbe e e e e e e e e saeaeaantans 259
ManNaging traNSACTIONSciciiiiiiirierercteee ettt s et e s ste s s e e s steesaeessaesssaessseesseasssessssesssesssaesssannns 261
TrAPPING EITOFS ..ueiiieeieieteeitesrteestteetesseesstessseestessseesstessstesssessssesssessseasssessseesssesssessssessssesssessseesssesses 274
LOGQiNg STOred PrOCEAUIESooviceeieeeeeeeteeetete et e e sa et e stestesteste e e e e e s e aesaatessassassessnenaanes 283
LIMMIEQEIONS ettt ettt st st a e et et b e s b e s st s se s b e et e sessbe s st sssasananne 283
PL/PGSQL langUage FEFEIrENCE ...ttt e e ra et ste st e ae s e e se s s e e e aesaennan 284

Vi

Amazon Redshift Database Developer Guide

PL/PgSQL reference CONVENTIONScc.eouieieiiieieieiectecteseee et te e stesteste s e s e e e e s e s e s e saesesaanes 285
SErUCTUrE OF PL/PGSQL ettt ettt e ste s teste s e e e e e e e s e st e st e sa s e ssa e e e e e e e aanaansanean 285
Supported PL/PGSQL StatemMENTS ...ttt a e 291
MaterialiZed VIEWSccciiiiiiiiiiisnnisssssssssssssnnnnsssesss 308
MaterialiZEd VIEW QUEIIESc.eeeeeeeeeeeteteectetee ettt ettt testesse e e e e e e e e e s e stesaessassaesa e e esaesensansansans 311
Automatic query rewriting to use materialized VIEWScoeueeieieiecieceeececec ettt 312
USQGE NOTES ..ottt st te e st e st e e ste e st e e sae e st e ssse s saessseessaasssaesseesssaesseesssessssesssessssesssessssenssens 312
LIMIEQEIONS ettt ettt st st a e et et a e s b e st esse s b e et e sessbe s st essasananne 313
Refreshing @ MaterialiZe€d VIEW ...ttt st ns 314
Autorefreshing @ Materialized VIEW ...ttt aas 317
Automated MAterialiZEd VIEWS ...ttt ettt sse st e e s sa s e saesae e 318
SQL scope and considerations for automated materialized Viewsccooeeeeeeeeveecieceecnenen, 319
Automated materialized views lImMItationsccocveeivirvineneninencecseeee e 320
Billing for automated materialized VIEWS ...ttt 320
AdAItiONAl FESOUICESveviieirieteteeretet ettt s e st s e st se s e st et s sbe st e e s s asse st ssassessenassassensesens 321
Using a user-defined function (UDF) in @ materialized VIEWc.coeeereeiriecieceecececeeeeeeeee, 321
Referencing a UDF in @ Materialized VIEW ...ttt sae e 321
Streaming ingestion to @ Materialized VIEWcoeeieieieieececeeeee ettt 323
How data flows from a streaming service to Redshift ..., 323
Data parsing best practices for improving performanceooeeeeveeceeciecececececee e 324
Streaming ingestion behavior and data types ... 325
Getting started with streaming ingestion from Amazon Kinesis Data Streams 329
Getting started with streaming ingestion from Amazon Managed Streaming for Apache
Kafka (AMAZON MSK) ..ttt ettt eeateeeateseseesesseessssesesssesesssesssssessssesssssesessssessssesssssesssnsesas 334
Electric vehicle station-data streaming ingestion tutorial, using Kinesisccccccceevvevennene. 345
Data Catalog VIEWScceeeeeeeiiiiiiiiiiiiiennannnneesssssseeeesss 350
PrEIrEGQUISITES ..ottt ettt te st e s e e et e st e ssae e s e e e sa e s sbesssaessaes st asssesssaesssessssesssesssaesssaesseens 350
ENA-T0-ENA EXAMIPLE .ttt te e et e e e e e et e st et e b e saesbessaese e s enaessensensansansens 352
SECUME LOGGING wuvieieiieiieeeteteteeeee ettt e ste e testeste et e e e e e et e ae st e be st assessaessessessansassassassassasssessessensansensansans 353
CONSIAEIALIONS ..ottt ettt st st e st et s st e st e e s et et e e s s et e e s sesbe st esassassestesansensenassansessesans 358
Querying spatial data ...cciieeeeiiiiiiiiiiiininiineeeieeeeenieeesesssetsssseeeettessasssssssssssssssesssssssssssnsnnns 359
Tutorial: Using spatial SQL fUNCLIONS ...cueouieieeieeceeeeeeeeee ettt ettt 362
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 363
Step 1: Create tables and load test data ... 363
Step 2: Query spPatial data ...t 366
Step 3: ClEAN UP YOUI FESOUICESeeeeeeererrerresressessesseseesaesessessessessassessessssssssssssessessassessessessassssneen 370

vii

Amazon Redshift Database Developer Guide

LOAAING @ SNAPETILE .ttt et e s a et e st e e s e aneseennens 370
TEIMUNOLOGY vttt ettt et e st e st et e s tesse et e e e e s e s et e sa st essassasseeseesaassassansansansansassessaaseansans 372
BOUNING DOX ..ttt et e e et et e st e s ae s e s be e e e e e e e s et esaanbassassessassaensansansans 372
GEOMELIIC VALIAILY ..eeureieieeee ettt ettt s e et e e e et e st e ae st e s s e e se e e s e e s anaensanean 373
GEOMELIIC SIMPLICITY weeveieteeeceeeee ettt e e et e e re e e s et et esta s b e s s e e sa e e esaeaeaansansan 375

H B ettt ettt st s e s e a e s s e e s bt e e s a e e e a e e e b e e e sr s e e e a e e e aae e e aae e saeeeaaesenaesenraees 377
CONSIAEIALIONS ..ottt ettt et e st et s st e st e e s s et e e s e s b et e e ssebe st esasbassesessassentenassansessesans 377
Querying data with federated QUEKIEScuuuueeiiiiiiiiiiiiiinennneiiiiiiiceeiiinnneessesssssssssesssssssssssssssssnes 379
Getting started with using federated queries to PostgreSQLccoeeieieciecieciecenececeeeeeeee s 380
Getting started using federated queries to PostgreSQL with CloudFormationc........ 381
Launching a CloudFormation stack for Redshift federated queriesccooeeeeeeeneeerceeceennne 382
Querying data from the external SChemMa ...t 383
Getting started with using federated queries t0 MySQLcoiiirececieceeeeree et 384
Creating @ Secret and AN TAM TOLE .. ettt st re st a e e a e e aan 385
PrErEQUISITES .ottt ettt s e st e s ae s s e e st e s st e s b e s saessae e st essseesssesssaesssassseesssessseennnes 385
Examples of using @ federated QUENY ...ttt sa e sae e saens 388
Example of using a federated query with PostgreSQLccoceeeeeeeeceeveeceeecececeeeee s 388
Example of using @ MiXed-Cas@ NAMEcc.coeeieieieietetecteeee ettt s e s e s e e e sa e s e saesaensans 390
Example of using a federated query with MySQL ... 392
Data tyPe IfFEIrENCES ..ottt sa et sttt e s e e se e e e e e e e e e b aaanes 393
CONSIAEIALIONS ..ottt ettt et st e sttt e st e e s st e e e e st et e e ssesse st esassassesessassensenassansessasans 397
Supported versions of federated databasesccoeeceecececececee s 399
Amazon Redshift SPECLIUMuueeeiiiiiiiiiiiiiiienetniiiiiieeiitteeessssssssssssssessssssssssssssssssssssssssssssssssses 400
Amazon Redshift SPECLIUM OVEIVIEW ...ttt ettt stesresse e e e s s st saa s 400
Amazon Redshift SPectrum REGIONS ..ottt sre e e e s e st et neas 402
Amazon Redshift Spectrum LMitations ... 402
Getting started with Amazon Redshift SPectrum ... 403
PrErEQUISITES .ottt ettt sre s st e s s ae s st e st e s st e s ae s saesaa s s st esssaesstesssaessaessseasssessseennees 403
CLOUAFOIMATION .ttt ettt ettt e e st et sa s s et et e e b et e e s sebesaesassestenasaensensssasensesens 404
Getting started with Redshift Spectrum step by Step ..., 404
Step 1. Create an IAM IOl ..ttt sa e st et e s ae s aa s e e e e e s nnesae e nes 404
Step 2: Associate the IAM role With your ClUSEEN ... 408
Step 3: Create an external schema and an external table ..., 409
Step 4: Query your data in AMAzZOoN S3 ...ttt e e nnan 410
Launch your CloudFormation stack and then query your datacccoceeveciecevenenececeeeenne 414
IAM policies for Amazon Redshift SPECLIUM ..o 417

viii

Amazon Redshift Database Developer Guide

AMAZON S3 PEIMISSIONS ...uviiviieierireiriteeriteeteeseesrteesseesssessseesssesssessssessseesssesssessssesssessssessssssssesssssssaens 418
Cross-account AmMAzZOoN S3 PEITNISSIONScecvveeerieereerrreensreesreessserstessseesssesssessssesssessssesssessssesssesssaens 419
Grant or restrict access using Redshift SPectrum ... 420
MiINIMUM PEITMIISSIONS ...eviiiieeieirieeiteeeeeesteesteesteessteesseesstessseesssessseesssessssesssessssesssessssesssessseessasssssessses 420
CRAINING TAM TOLES ...ttt ettt e st e st e e e s e e e e e e st et et e bessaeseesaenaanaantansansanes 422
ACCESSING AWS GLUE dALA ..ottt te s tesse s e e a et e b e tesaa b e sassnenaans 423
Redshift Spectrum and Lake FOrmMationc.ccoieieiecieieeeceseeeeeeee et cve e e saesaesaenas 431
Using data filters for row-level and cell-level Securitycooueeevecenenieeeeeeeeeee e 433
Data files for queries in Amazon Redshift SPectrum ... 433
Data formats for Redshift SPECLIUMcv it 434
Compression types for Redshift SPeCIIrUM ..o 435
Encryption for Redshift SPeCtrUum ...ttt 436
EXEEINAL SCREMAS ..ttt ettt et sttt s st et e s b et e s e be st e e ssa b enaennnne 436
Working with external Catalogs ...t re e s e e e saennens 439
EXEEINAL TADLES .ttt ettt sttt b et et e st s e st et e sae b eaenan 443
PSEUAOCOLUMINS ...ttt sttt st et te st st st e st s e sae st e e s s e be e s e ssa st enassassessesesansesessansan 445
Partitioning Redshift Spectrum external tables ... 446
Mapping t0 ORC COLUMNS ...cviiiieeeceetetetecte ettt e e e e saestestesse e e e e s e e saesbesaessessassessaesaensensansanes 452
Creating external tables for Hudi-managed data ... 455
Creating external tables for Delta Lake data ... 456
Using APache 1CeDErg tables ...ttt ettt ste e s s e e e sa s saesaanaens 458
Considerations when using Apache Iceberg tables ..., 459
SUPPOIEEA At LYPES ettt ettt e sae s e e e e e e e et et et e stessassessessnenaannans 461
Amazon Redshift Spectrum query performance ... 463
Data handling OPLIONS ...ttt te st e st e st s e e e e s et e b e st e stessassnssaennenaansans 466
Performing correlated SUDQUETIEScueieeiecieceeececee ettt sa et saesae s e se e a e e ae s 467
MBEFICS ettt ettt ettt s b st e s et e et e be st e e st e be et e e st s eae st e e st e s e e st e ssessaessbesntebannt 468
QuErY troUBLESNOOTING ..ottt et e e e et et aan 468
RETIES EXCEEARM ...ttt sttt et sa et et e st e st e e ssasse st s e saassenaen 469
ACCESS tIOtELEA ...ttt sttt et b et e st et s s s et e s et e e esasan 469
RESOUICE LMt @XCEEBAERMcuoveeieiieeteeeterecte ettt ettt sttt et s sbe st sa s s se e nas 471
No rows returned for a partitioned table ... 471
NOt QUENOTMIZEA EITOK ..ttt ettt st et b et e e s be st e e saanns 471
Incompatible data FOrMALS ...ttt a e e e b saens 472
Syntax error when using Hive DDL in Amazon Redshiftcooeoiiiiieceieeeeceeeceeee, 472
Permission to create temporary tables ... 473

Amazon Redshift Database Developer Guide

INVALIA FANGE ettt a et e st e st e st e st e st e et e s e e e et et et e sessassasseessenaensessansansans 473
Invalid Parquet Version NUMDET ...ttt a e st ae b ns 473
Tutorial: Querying nested data with Amazon Redshift Spectrumccceveveienereneciceeeee 473
OVEIVIBW ...ttt sttt et s e s st st st et s b e et e e st s b e st e e st e b e et e e st s be st e st s saesbe st essesasestensasnns 474
Step 1: Create an external table that contains nested data ..o, 475
Step 2: Query your nested data in Amazon S3 with SQL extensionscccccceevevveeeeceeeennene 476
NESLEA AT USE CASES ..ottt ettt sttt et et s s st t s be st e e sbesae e saassenaesans 480
Nested data limitations (PreVIEW) ...ttt st ae e nnan 482
Serializing complex NEStEA JSON ...t ettt st esae e e sa e s e saesaennan 484
HyperLogLog SKEtChESuiiiiiiiiiiiiiieteeiiiiiieiiiiiniennesnenisssssceenenessans 488
CONSIAEIALIONS ..ottt ettt et e st et s st st e e s s et e e e e s s et et sse st et esassassestesassensenassansesaesans 489
LIMIEATIONS ettt ettt st st a e st st a e st et eeae e b e s e s esesabesntessaeane 490
EXQIMIPLES ..ttt sttt et e st et e st e st e et e e e e et et e st et e b e s b e e seeseesa et et et e ta st aeseeseessensententantan 490
Example: Return cardinality in @ SUDQUETY ...c..oueeeeuieeeeeeeeeee ettt 490
Example: Return an HLLSKETCH type from combined sketches in a subquery 491
Example: Return a HyperLogLog sketch from combining multiple sketches 492
Example: Generate HyperLoglLog sketches over S3 data using external tables 493
Cross-database QUENIEScccciiiiiiiiieeeneeiiiiiiiiiiiiiieneeessssesssseseeetnssasans 496
CONSIAEIALIONS ..ottt ettt et st e sttt e st e e s st e e e e st et e e ssesse st esassassesessassensenassansessasans 498
LIMIEQTIONS ettt ettt s a e st a e st be st e st eeae et e s e s enesabesntensasnne 498
EXQIMIPLES ..ttt et ettt et e st e s ae st e e e e e et et et et e b e s b e e seeseesa e st e tebatantaeseeseenaensententantn 499
Using cross-database queries with the query editor ... 504
Data SHariNg ccueeeeiiiiiiiiiiiiiiiinenniniieieiiiitieeeesssssssssssssesessnssss 506
Data SRHAMNG OVEIVIEW ...ttt e et e st e st e s v e e s e e e e s et e st astassassaesaesaensansansans 507
Data SHAriNG USE CASESooviieeeceeeeeeete ettt e st e s ae e s e e e e s e e et et e sassassasanenaaneans 507
Data sharing at differ@nt LEVELS ...ttt 508
Data sharing consistency Management ...ttt e et saesaesaens 508
Considerations when using data sharing in Amazon Redshiftccoooioiieinenccceeeeee, 509
Cluster encryption MaNAgEMENTc.cceeieeeeeeeeeeectecte et eeaestestestesse s e s e e s e s esaesaessansans 509
LIMMIEQEIONS ettt ettt st st a e et et b e s b e s st s se s b e et e sessbe s st sssasananne 510
Regions where data sharing is available ... 510
DATASNAIES ...ttt ettt ettt et ettt sttt b et et e ae e e b et et e s e e se s enaese b enaesaaans 514
StANAArd dQtAShArEScocoviiiicer ettt ettt et b et et s et e e aans 514
AWS Data EXChange datashares ...ttt te st n e aens 516
AWS Lake Formation-managed datashares ...ttt 519
Datashare producers and CONSUMIEKSccueouiciereeieieieeeeeeeste e steeseeee s e sseaessessessessessesssesseseens 521

Amazon Redshift Database Developer Guide

Datashare dELAILS ...ccecuiireeieiere ettt sttt sttt ettt et e s ea e 522
QUENYING AtASNAIES ..ottt re e s e st et e s te s e s e e s e e e e et et e aesaasbassaesaeseansenean 531
Monitoring and auditing data Sharing ... 532
Integrating Amazon Redshift data sharing with AWS CloudTrailcceovevecvecieceneceeeeeeee 534
Managing data Sharing Tasks ...t 534
Managing data sharing using the SQL interface ...t 534
Managing data sharing using the CONSOLE ..ot 579
Managing data sharing with CloudFormation ... 594
Managing data sharing with writes using the console (Preview)cceeeeveeeeceeceeceeceenene 599
Semistructured data in AmMazon RedShiftccccccvvvvvvvvrrrrnnnnnennnnnnnnnnnnnnnnnnninnniniiiiiiiieeencesssesssses 614
Use cases for the SUPER data tYPe ...ttt aestesteste e e s eaesaesaenaans 614
Concepts for SUPER data tYPE USE ...ttt sttt sae st e sse e s s sa e a e a e e ae s 615
Considerations for SUPER data ...ttt st esse s ssesseseesessessessesassessenens 617
SUPER SAMIPLE AAtASEL ...ttt teste e e e e a et e st e st e st e s sa s e e e e sa e s e e eaansansannas 618
Loading semistructured data into Amazon Redshift ... 620
Parsing JSON documents t0 SUPER COLUMNSoouveiiiecieeececeeeeeeteee ettt 620
Using COPY to load JSON data in Amazon Redshift ..o 621
Unloading semistructured data ...ttt ettt te e s re e s e e sa e aeaan 626
Querying semMistruCtured data ...ttt s et e e sa et aa e 627
NQVIGATION ittt ettt s rte e st e s ae s ssa e s st e s s aa e s b e s s sa e s beessaasssesssaesssaesssesssesssaesseensaens 628
UNNESTING QUEKIES ...ttt ettt cste st eseessaessaessaeesaessseesssesssaesssasssessssessssesssesssessssessssesssesssnanns 629
ODbjJECt UNPIVOLING ettt sa et e st e s tesbe s e s e e e e e e s et e saestasessassessasnnenaanes 631
DYNAMIUC TYPING ottt sttt ee st e s ste s st e s b e sssa e s s e e s st essaesssaessaaessaasssessssessseesssesssannn 632
LaX SEIMANTICS .eeeuiiiiiiieieeteeetect ettt ettt s et e st e st s e s b e et e s e s sa e s st s st st e s st e saessessessesnsesseesnanns 635
TYPES OF INTrOSPECLION ..ttt s e e ra e s et e st e be s e s e s e e e s snennan 636

(@] e 1= Sl o YOO OO E TSRO USRS 637
Operators anNd FUNCLIONS ..ottt e st e s aesse e e e e e e et e stestesaassasanesesnnans 638
ArthMETIC OPEIALOIS ..ottt e st e st e st e s ae st e s s e e sesse e e e s essesansansans 638
Arthmetic FUNCHIONS ..ttt be st st e s s sa e 639
ATTAY TUNCLIONS .ottt et e et et ae s b e st e e e e e s e e e et et e be b astassassassaesaensansanean 640
SUPER CONFIGUIALIONS ..ottt ettt et steste st e e e e s e e et e saa s et e sessaenaenaenaanean 641
Lax and strict Modes fOr SUPER ...ttt esse st e ssessesassesaessesassassenens 642
Accessing JSON fields with uppercase and mixedcase letterscoeveveciececeneneceeceeceenns 642
PArSiNg OPTIONS ..ottt sae s st e st e s sae e s saessaeesbessseessaesssaesssessseasssessseesssesssennnes 644
LIMIEQTIONS ettt ettt ettt a e st be st et e s ae et e st s enesabesntensesane 644
SUPER data type and materialized VIEWS ..ottt 647

Xi

Amazon Redshift Database Developer Guide

Accelerating PartiQL QUETIESuecueeieieeeeeecteeeeeeee et testesteste e e e e e e eae s e stesaessassassae e eaesaesessensansn 648
Limitations for using the SUPER data type with materialized viewscccoovevvevvrcrecrecrenenee. 652
MaChine LearNiNg ...uueeeeiiiiiiiiiiiiiieeenneiiiiiiieieiiteeassssssssssssssscesssnns 653
MacChing LEArNING OVEIVIEWccueieeieeieeiieieeeiete e ste e s te e e e e e se s e saestestessessassessaessessessessansassassassasssennan 654
How machine learning can solve @ problem ... 655
Terms and concepts for Amazon Redshift ML ... 656
Machine learning for NOVICES aNd EXPEItScoieieieciecieiececeseeee ettt e e e e saesaenaens 658
Costs for using AmMazon RedShift ML ...ttt 660
Getting started with Amazon RedShift ML ...t 662
AdMINISTIAtiVE SELUP .veveeieeeeee ettt e s e e e et ste st e st e s sessassessn e aennenaeaanes 662
Using model explainability with Amazon Redshift ML ..., 668
Amazon Redshift ML probability MEetriCs ... 668
Tutorials for AmMAazon REASNITE ML ..ottt ae s s sae e s 671
Tutorial: Build customer churn MOdELS ..ottt sae st saens 673
Tutorial: Building remote inference Models ... 682
Tutorial: Building K-means clustering models ...ttt 687
Tutorial: Building multi-class classification models ... 696
Tutorial: Building XGB0OSt MOAELSc.ccvereeeeeeeeceeeeere ettt nas 706
Tutorial: Building regression MOAELS ...ttt st ae e as 712
Tutorial: Building regression models with linear learnerooooeeeeeeeceececereseeeeeeeenne 725
Tutorial: Building multi-class classification models with linear learnercccovevevevennnneeee. 733
Query performance tUNING ..cccccciciiiiiieeeemeiiiiiiiiiiiiisesss 756
QUETY PrOCESSING ..eiuieeiiieierieieiteesttesstessreestessseessaesssessssessseesssesssessssesssessseesssessssesssessssssssessssesssessssesssesns 756
Query planning and execution WOIKFLOWcccoiieeieiicieiiecececec ettt e e e enens 757
Creating and interpreting @ qQUErY PLan ...ttt 759
REVIEWING QUENY PLAN SEEPS ..ottt a et saeste st e sa s e s e e s e s e aesnansaneans 767
Factors affecting query performanCe ...ttt aas 769
Query analysis and IMPrOVEMENT ...ttt e e saeste s e s e e e e e s e e s e saesseean 771
QuEry analysisS WOTKFLOWoeieeeeeee ettt st e e sae st naans 771
REVIEWING QUENY GLEIES .ottt ettt ste st et e s e e e e e e s et e st e bestessassesseesnenaensanean 772
ANAlyzZing the QUENY PLaN ...ttt a et e st s re s e s e e a e aenes 774
Analyzing the QUErY SUMMAIY ...ttt te e e e s et e stesaa b e s se s e e ans 775
QUETY IMPIOVEIMENT ...ttt ettt ste e st e s sre s s e e s sae e s st e s s e sssaessaeesssesssasssaesssessssessseessaennses 782
Diagnostic queries for QUEry tUNING ...ttt tesse st e e a e sae s 786
QuErY troUBLESNOOTING ..ottt e ae st e e e e e a et ean 790
CONNECLION TAILS ..eoviieiiireteerere ettt ettt s a et s sbe st e e et e st e e sbassesasnassansenaes 791

xii

Amazon Redshift Database Developer Guide

QUETY NANGS ..ottt e et e e e et a et e st e st e st e e be s e e e e s et asbastassassasseeseensensansansan 792
QUENY TAKES 100 LONG .ottt ettt et e et s e e e e e e e b e st e ae s s e seesnese e e enaensanes 793
LOQA FAILS ettt ettt sttt st st s bbb st et e s e e e e e se s e e enas 794
LOAd taKES 00 LONG ..ottt ettt et se et sttt s e e e e a et e naan 795
LOQd data iS INCOITECLooveiiiieeeereterertete ettt ettt et st et e e st et st e st e sse s e e snanes 795
Setting the JDBC fetch Size parameter ...ttt 796
Workload Managementcciiiiiiiiiieeeeneiiiiiiieeeiiess 797
SWItCHING WLM MOAE ..ttt e ettt e s ae e e e e e e et e st e st e sessessa s e ennanes 799
Modifying the WLM coNfiQUIation ...ttt stestesae e e e e ss et e saessasaens 799
Migrating from manual WLM to automatic WLM ...ttt 799
AUTOMATIC WLM Lttt ettt st s a et s b s b e st s b e et e s st s sbesbesntesesne 801
PrIOTITY ettt et s st st e s st e st e e s e e s e e s ra e s b e e s st e s b e e sa e e b e e s aa e e b e s sae e aee st aesseessaeeneas 802
Concurrency SCAlING MOAE ...ttt ettt te b e s s e e e s e e e e s e aesaenean 802
USEE GEOUPS «eeeeveeeeiieeeesieietessreestessseessessseessessseasssessssssssessssssssessssssssesssessssessssesssessseesssessssessaesssessssessn 802
QUETY GFOUPS .eeveiriieieenteeiteietessseestesssessseessseesseesssessssesssessssesssessssesssessssesssessssessssssssesssessssssssessseesssessns 802
WiLACAIAS ..ottt sttt sttt ettt s et et s b et e s b et et s sa st et e e sbantenassansansens 803
QUENY MONITONING FULES ..ttt te e a et et e st e s be s b e s se e e e e e sa e s enensenaanes 803
Checking for aULOMAtic WLM ...ttt e e ettt sae s s aennennan 803
QUETY PFIOTILY woiutiiiiiieieeiierteestesrte st eerte e st e s stessreessaeessaesssasssaesssessseasssassssessseesssesssessssessseesssesssessssenses 804
MANUAL WLM Lttt sttt sttt st s st et e s et et s e be st e e s besbe st ssassensenassansesassans 809
Concurrency SCAlING MOAE ...ttt re e e et et te st e st e e e e e e e e s e aesaenean 810
CONCUITENCY LEVEL ..ttt ettt e st e st e et e s e e s et e st e ba st e s e sseesesseenaanaansansan 811
USEE GEOUPS ..eeveeeieirieerieietessreestesssessssessseesssessseesssesssessssessssesssessssssssesssessssessssesssesssessssesssssssaesssesssaessns 813
QUETY GFOUPS .evveieeieeeerteeiieieeessteestesssessssessseesseesssessssesssessssesssessssssssessssesssessssessssssssesssessssssssessseesssensns 813
WILACAAS ..ottt ettt st ettt st s bt et s b et e s ba b et e sa st et e e ssantenassansensens 813
WLM MEMOrY PEICENT 10 USE ...oiiiiiiieeiiirtieitterteestsste st essteessesssaessseessesssessssessssesssassssssssesssssssaens 813
WLM TIMIEOUL ...ttt ettt st et ettt s ae st st e s st e st s ene s b e s st e snasnesneans 814
QUENY MONITONING FULES ..ttt ste e e e et te st e sae s b e e se e e e e e sne e eaensenaanes 815
WLM qUErY QUEUE NOPPING .ottt ettt te e teste s e s e e e e e saeste st e sessassa e e e e e e essessansansan 815
Tutorial: Configuring ManUal WLM QUEUESccueeieieeeeeeeeceeeee et ctetesae e s e eseesae s e ssesaesaasans 818
CONCUITENCY SCALING eviutiieieeeeeeeeetetecte et ste e e et et e st e st e s be s e e e e e essesaesesassessassessassaansessensansansansan 836
Concurrency Scaling CAPADIlItiesccueoueeuieieeeeeeeeeee ettt ere s 837
Limitations for concurrenCy SCAlINGc.coeeueeeeeeeceeceeeeee ettt a e 838
Regions for coNCUITENCY SCALINGcceiiiieieececeeeee ettt st et ae e s e nn e ns 839
Concurrency SCaliNng CANAIAAtESccueoueeieieeeeeeee ettt sae e e s e e e e aeneens 840
Configuring concurrency SCAliNG QUEUEScecveieieciereeceeeeee sttt ctestestesse s e s e s e s esaesaestessassanns 805

xiii

Amazon Redshift Database Developer Guide

Monitoring CONCUITENCY SCALING ..ooviieieieeeeee ettt ettt e ae st e st e e s e e e e e e e e saesaensans 841
Concurrency SCAliNG SYSTEM VIEWScueouieeeeieiiieectectectesecte et e e s e seestesaestesaesse s e e e e s e s esaessansansans 842
ShOrt QUENY @CCELEIATION ...ttt te st e st e st e s e e e et et e b e sae st e seeseesaesaennanes 843
MaximumM SQA FUNTIMIE .ottt ceeree e e e sessae e e e s saaeesesssaseeesssasesesssssessssssssesennnns 844
MONILOFING SQA ...ttt ettt et e st e e st e s sae s s e e s s ae e st e s saesssae s sa e s st essseessaessaesstessesssaessann 844
WLM quUEUE ASSIGNIMENT FULESooviieieieeeeeeeeteteteste e s tee e e e et e e e saesaesaestesse e e s e eaesaessessessassassassasnnans 845
Queue asSiIgNMENtS EXAMPLE ...ccveerieeeiirecieececeree et te e s e e e e e e e s et e testessasseesaesaessensansanes 847
ASSIgNING QUEIIES 1O QUEUES ...ceeeieeieiiiiereeiteetessreesiteesseesseessseessessseasssessssesssessseesssessssesssessseesssessssesssans 849
Assigning queries to queues based 0N USEr rOlEScvcviiececececeeeeeeeeee e 849
Assigning queries to queues based 0N USEr groUPSccceeeeceerierieneenieneneseereeseessessessessessessens 850
AsSIgNING @ QUErY tO @ QUENY GIOUP ..ueeieieeeeeirierireeneeesreessessseesssessssesssessssesssessssesssesssaesssessseasssessns 850
Assigning queries t0 the SUPErUSEr QUEUEcecveviecieriereereeeeeeteseestestestessee e eee e esaessessessessenes 851
Dynamic and StatiC PrOPEITIEScceeeeiiieietetecteceeee ettt et te e st e s e s te e e e e e e et e saesaessessassessassnesasnnans 851
WLM dynamic memory alloCation ...ttt a e aenan 853
DYNAMIC WLM @XAMIPLE ...ttt tesve s e e e e st e saeste st e ste s e e e e s e aesaa b e aassassessnennanes 854
QUErY MONITONING FULES ..ottt et e steste st e st e s se e e e e e s et e stesbessassaeseesesssensansansansan 856
Defining @ qUEery MONITOF FULE ...ttt st s te st ns 857
Query monitoring metrics for Amazon Redshift provisionedccceveeeneneneeveceecieceeenee. 859
Query monitoring metrics for Amazon Redshift Serverlesscveececececenecceeeereeeene 862
Query monitoring rules tEMPLAtES ...ttt a e aan 864
System tables and views for query monitoring rulesceeveececececececeeeeee e 865
WLM system tables @nd VIEWS ...ttt e e re e e et s st e stesaesse s e ssne e ennens 866
WLM SEIVICE ClASS IDS ...uevueeiiirierieteisientesteesteste e este et s e ste st e e ssesae e sse st et s e ssassesassassessensssansessesansans 868
Database SECUNILY ..ueciiiiiiiiiiiiineeeneneiiiiiieeeiiitensessnne 869
Amazon Redshift SECUMItY OVEIVIBW ...ttt sttt saeste st se e s aeaeaesaenan 870
Default database USer PErmiSSIONS ...ttt e et sa e testesteste s e e e e s e s e saesanaens 871
SUPEIUSELS ...eveiieeerieetessreeeiteestteestessseessteesseesssessssesssassstasssessssesssessstesssessssesssessstesssessseesssessseesssessssesssesssaens 872
USBIS ettt ettt ettt et b e st a et e bt st et e Rt et e et e R e s be et e Rt e b e et e e st e ebe st e atesaeeaes 872
Creating, altering, and deleting USEIS ...ttt st nnan 873
GIOUPS eevteeteierteeiteesteestesetessteesstesssessseessseesstasssesassesssaesstasssessssesssessstesssessssesssessstesssesssaesssessseesssessssesssesssnens 874
Creating, altering, and deleting GroUPScc ettt 874
Example for controlling user and group @CCESSviicieciecececeeeeectete et 874
SCREIMAS ...ttt sttt ettt e st e st e s s e st et s se b et e e s sesbe st esassessentssessastesassansesessansan 876
Y=Y el [oY | o o P OO OSSOSO 877
Creating, altering, and deleting SCheMAS ... 877
PEIIMISSIONS ...ttt ettt st et a et s st st st et s s se st e s st s be st e st s sbe st esnessesasannis 878

Xiv

Amazon Redshift Database Developer Guide

ROLE-DASE ACCESS CONLIOLovviuiiiieieieeteteeretcree ettt ettt s sb et s s s b e e sasae e nas 878
ROLE NIEIAICRY ..ttt et e st e e e e e et e st e st e st e s aeeseeseesa e e ennenaenaanes 879
ROLE @SSIGNIMENT ...ttt ettt e st e st e et e s s seese e e e s et e te st assassassaesnessensensansansans 879
Amazon Redshift system-defined roles ... 880
SYSTEM PEIMUSSIONS .ccvviiiiieieieteeireesteestesstessteesteesaesssaesssessstesssesssaesssassseesssessssesssessseesssessssesssessseasns 882
Database ObJECt PEIrMISSIONScucceeiieieeeeeceeeeeete et ra et e tesaesse s e e e e e s e e aeaetannan 888
ALTER DEFAULT PRIVILEGES fOr RBACuoiieteeeeeeeeetetetetestesteeve e e aesaesaesaessessassas s enesaanes 888
Considerations fOr rOlE USAQE ...ttt tesaesae s e s e e e e saesenean 888
MANAGING FOLES ...ttt e e et sae e e st et e st e s b e s be e e e e e e et et e tassessasessaesaensensansanes 889
Tutorial: Creating roles and querying with RBAC ...ttt 889

ROW-LEVEL SECUNILY vttt ettt et e e e et et e st e st e st e s ae s e esaess e s asaestessassassassesssensansansans 908
Using RLS policies in SQL Stat@mMents ...ttt eens 909
Combining MUuLltiple POLICIES PEI USEN ..c..eueeeeeieeeteteteecer ettt steste s e e e e e e s e sesaesaaaens 909
RLS policy ownership and managementccooieeeeeieceeeeeceseeee e e sae e ns 911
Policy-dependent objects and PrinCiPLes ...t 912
Considerations and LIMITationNs ..ottt sa e s e s 914
BEST PraACLICES ...ttt sttt sa e et s s a e s e e s s e e s e e s s ae e sa e s ae e st e e aeeesaesraenns 918
ENA-10-ENA EXAMPLE .ottt te s te s et a e e sa e sae st e b e s bassesseesa e s ennanaaneans 919

MELEAAALA SECUIILY ..ottt e e e et e st e s be s se e e s s e e et et e bessassessaeseesaensansansansan 924

DyNamic data Masking ...ttt ettt te st et a e e e aea e aennan 925
OVEIVIBW ...ttt st ettt st s st st st e st s b e et e e st s b e st e e st s b e et e s st s be st e st ssaesbe st essesasastensanane 925
SQL commands for DDM POLICIEScveveieeierieeeceeeetetete et ete e re s e saesaestessesse s e e e e s e aenenan 926
DDM POLICY RIEIAICRY ...ttt ettt te st e e et et e st e saesaessesseesnenaennens 927
Using DDM with SUPER type Paths ...ttt n s 929
Conditional dynamic data MASKINGcccecueeerereeeeeeeeee ettt e et sa e ae s 934
DDM SYSTEIM VIBWS ..neviieiieeieitintessreestee st esaessseesseessseesssesssessssessseesssesssessseesssessssesssessssesssessssesssessnes 935
CONSIAEIALIONS ...ttt sttt st et s s e st et e b et e e s e ae st s sasaastesassessensesassansensons 937
ENA-10-ENA EXAMPLE .ttt te s te e e re e et sa e st e st e b e s bassessaesaesaennannaneans 941

SCOPEA PEIMNISSIONS ...uviureiieretecieeeeeeeete st e stestestestesseessesesestestessassassassaesaessessassessansansassassassssssensansansansan 945
CONSIAEIALIONSoviteieiieteteerertet ettt st et ettt st e st et s e b et e e s e ae st s sassastesassessensesassensenerns 945

Y 0] I Y=Y =] =1 1 Tl SRR 947

AMAZON REASNITE SQL .ottt et et cae e e e e esbeessseesbeessseesssesssessseesssessseesssesnseessens 947
SQL functions supported on the leader NOAE ... 947
Amazon Redshift and PoStgreSQL ...ttt teste s e e e e saesaeean 950

USING SQL ettt ettt ettt es e e st e st e e s e e s st e s s e e s aesssa e s be s saesssas st esssassssesssassseesssessseesssessseesssennses 958
SQL reference CONVENTIONSeoiviieeeiteeceecteeceecte ettt cve e recsresseessesssecsssesssesssesssecnseesssesnns 958

XV

Amazon Redshift Database Developer Guide

BASIC ELEIMENTS ...ttt ettt et e et e a et et et e s b e e s e e e e e et et et e tentanseeseeraenean 959
EXPIESSIONS ...ttt ettt eeste st e s e e st e s sae s s st e s ste s s st esssesssaessseesssesssassssessseesssesssessssessseessaesssanns 1014
(@0 T 11 [0 o F-3 OO U RRRR 1019
SQL COMMENAS ..ottt ettt et et e ete e e e sbeessssssbeebsessbessssessseesssesssessssesssessssesssesssessssesnseenns 1047
ABORT .ttt rte e s e s e e e e s e et et et e st e st e st e s s e e s e e sa e st et et et et e s sa e b e e s e e ssese et et et atesaeteeseeseereenaenaan 1051
ALTER DATABASE ...ttt te e stesteste e e e e s tesaesteste st e st assasss e s et e s astessassassassaeseasasssansansansanses 1052
ALTER DATASHARE ...ttt tetete e ste s e ste s e e e e saesa e st e st essas e s ss s e e e e s ensessessassassassasssenaassensensanes 1056
ALTER DEFAULT PRIVILEGESo oottt stesteete e et e s e testesaessessassas e eaessesaensansansans 1060
ALTER EXTERNAL VIEW (PrEVIEW) ...ocviiieieeeeeeeeeetetectetestestesseseeseessesessessessessessssssssssssessessensanses 1064
ALTER FUNUCTION ...ttt stestesvesteete e e saseaessesaessessessesseesessaessessessensensassassassesssensensensansan 1066
ALTER GROUP ...ttt stesteeve e et e s et et e st e s tesae st e s e e sa e e et e s et et e b e sassassessasnsensansansansansans 1067
ALTER IDENTITY PROVIDERccuoitieeeteeetectectesteetee e et eesaesaestestessessesse e s esessesessessassassessasnsensansans 1069
ALTER MASKING POLICY oottt st tectestestesaessessessessaesae s e saesaassessessassasssensansensansanes 1071
ALTER MATERIALIZED VIEW ...oueeeeeeeetetetectectecteeee e testestestestessessessee s e s esaessansessassasssssssnsessansansan 1071
ALTER RLS POLICY ettt cte e steete e e e e e e et e saeste st e ssassessa e e esaasaesessessassasassessnsnsansensansansans 1073
ALTER ROLE ...ttt sttt s te st e testesae s e e s e e s e e et e s s e st assassassessaensassassansansansassaeseenaansan 1074
ALTER PROCEDUREootiteeectetetectectee e ste e e e e stesaestesaestessessas e s e e s et assassassassassassessssssensensansansansans 1075
ALTER SCHEMA ...ttt steste et e e e et et et et e ste st e st e e s e e sasaa et et et e tessassessassaesaaneansansanes 1077
ALTER SYSTEM ...ttt ettt ste st este s e s e et e s s et et et et e st e s be s b e s s e s sa e e et et ansansassassessassnensansans 1079
ALTER TABLE ...ttt te e ste s testeete et s e e e e et e sae st e st e s sasse e e e e e s s e s e b e sansensassassaesssssensansansans 1080
ALTER TABLE APPEND ...oueeeeeeeeteteteteste e e e e eestestestestesse s e s sassassa e sassessessassassassnssssnsensansans 1105
ALTER USER ...ttt te s te e s e e e et et e st e st e st e e s e e e e st et et e ta st e st e sassesssensansensansansans 1111
ANALYZE ...ttt testeste e e e e e e et et e st e s s e st e s sassa e e e s s e s et et assassasseesaessassasaansassansensaeseesaensansansansan 1117
ANALYZE COMPRESSIONcoieeecteeetecteteste e e e e et eaetestesteste s e ssessa s s e s essessansansassassessnsnsensansans 1120
ATTACH MASKING POLICY .ttt testestestesaessesses e e e e saessesaessassessassessassassssnsansansansans 1122
ATTACH RLS POLICY eeeeeeeeteteteteteste e ete et e s e tesaessestestasse s e s e s e esaese s astassassassassessasssensensansansan 1124
BEGIN ..ottt ettt te et eete e e e e e e et e s te st e s s e e s e e seesaese e st e st e ae st et e et e e s e esa et et entetentansaeraeseenaenean 1125
CALL ettt te e te e e e e et e st e st e st e et e e e et e e re e e et et et et e ba et aeaeeree st et etetetentenseeseeneenaennans 1128
CANCEL ..ttt ettt e ee et e st e s teste st e st e e se e e esa e s et et e s e s assassassaeseessassassansantansansansasssessansensansansans 1131
CLOSE ..ttt ettt et e s e et e st et e st et e st e st e e seesaesa e s e st e s et e basseeseese e st e st et etatenseesaeaeeneensensanes 1133
COMMENT ..ttt e e et e st e st e st e st e et e e se e e e s et et e sasbassaesaesaessessantantansansassansaessensansansansans 1134
COMMIT ettt ettt e st e st e st e st e e te st e e s e et et et et e s bassessaesaesseseassantassasasseesaessansansansansansans 1137
COPY ettt e te e e e e e e e e et et et e st e s b e e b e e s e e ae et et et e ta b et e e s e eseeate st et etetententasseeseeseeneantans 1138
CREATE DATABASE ...ttt ettt steste e te e s e e et e s e sae st e stessessa s e e s ssaeaessestensassassassaesasnsansan 1240
CREATE DATASHARE ...ttt e cte e stesteete e e eae s e saesaessessessessesse e s e s assessassassanssssessssnsansansans 1256
CREATE EXTERNAL FUNCTIONcoiiiteeeeeeeeetetete e steseesses e essesesaesessessassessessassasnsensansansassansans 1257

XVi

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA ...ttt ressesse st stssae b esnesaes 1268
CREATE EXTERNAL TABLE ..ottt sttt sa s esessessesassnssssens 1279
CREATE EXTERNAL VIEW ...oouiiiiiiiiitititcicriccntntet sttt sttt st sae b saesses e s e st s s ssnennes 1308
CREATE FUNCTION ..ttt ettt st sttt s sb b sae s sse s e st st e s 1309
CREATE GROUP ...ttt ese ettt et s b b s st s sttt n b 1316
CREATE IDENTITY PROVIDERcoctiiiiiiiiiiiintitetnteictcieeesitetst et ssesses st sse s enenne 1317
CREATE LIBRARY ..ottt sttt st ss b sttt st e sb s sse e s e st et 1318
CREATE MASKING POLICY ..ottt sttt esne s saessessss e st esasnessessesne 1322
CREATE MATERIALIZED VIEWcuoiiiiiiiiiitiiiiccttntetetsressesses sttt ssessessessesses s s sns 1323
CREATE MODEL ..ottt sttt ss sttt st sa s b e b ae e st st s b b 1328
CREATE PROGCEDURE ...ttt sttt rerese sttt st sbesse s sse st st st sasnesnes 1358
CREATE RLS POLICY .ttt sttt ese st sttt et s s s ssesses e st s e sanenen 1363
CREATE ROLE ..ottt sttt st sb bt st sa b e b sa s 1365
CREATE SCHEMA ...ttt sttt et b et sttt sb e b b a e s st e a st 1366
CREATE TABLE ...ttt sa b st ettt b s sa s st s it et s 1370
CREATE TABLE AS ..ttt sttt st sb b st s a st s b b e b 1393
CREATE USER ...ttt sttt sae sttt st st sb e s s s st st sa s b nes 1405
CREATE VIEW ..ottt ettt sttt b et st st st sb b e b e se s e st st e s ssnens 1413
DEALLOGCATE ...ttt sttt ettt st et b sttt et b e b e s sse s e st st e b 1418
DECLARE ...ttt sa sttt st b bbb sttt b e b b nes 1418
00 I T 1423
DESC DATASHARE ...ttt sttt st b e sttt st e saesaessesse s e smnens 1426
DESC IDENTITY PROVIDERcotiiiiiiiiitiiiccntnttntetetcreeeiesie sttt ss s s saesse e ssssse s eaens 1427
DETACH MASKING POLICY oottt etesessessesse st st sst et s essessessessesssenssssens 1428
DETACH RLS POLICY ..ttt ettt sttt sr s essesses e st st et st esaesnesnesnes 1429
DROP DATABASE ...ttt sttt sttt e b b ss s se s st s e st st e b enenn 1430
DROP DATASHARE ...ttt sttt sttt s a e s s sttt e sa s b b snesne 1432
DROP EXTERNAL VIEW (PrVIEW) .ccueuiieinieieieieieieiteteieteieeeteetssetese et et s et e et esesessesesaesens 1433
DROP FUNCTION ..ttt sttt aessesses et sttt et s b esesaessessessessasnsenassnens 1436
DROP GROUP ...ttt sttt sttt sttt b b s s st s st st s b e b 1437
DROP IDENTITY PROVIDERcoiiiiiiiiiiiititiceitntctctetetercssesee sttt enessessesse e sses s e 1438
DROP LIBRARY ..ttt sttt ss st sat st st s b e sb e b e sessessesanenasnnens 1439
DROP MASKING POLICY .ottt teresse e et sttt esaesaessessessessesssesaesns 1440
DROP MODEL ..ottt sttt sae ettt st st et a e b st s st st e b esnens 1440
DROP MATERIALIZED VIEW ..ottt sttt ssesaesse st ee st s s ssnesnesnes 1441
DROP PROCEDUREooiiiitiiititetctciticicntet st tcrescsse st sttt bessessessesse s st et sa b e s e 1443

XVii

Amazon Redshift Database Developer Guide

DROP RLS POLICY ettt eeeeeeeeveeesstaesesaeesssasesesaaesssaesssssassssassssasssssssssssessnsssssnssessnsasennns 1444
DROP ROLE ...ttt ettt e tee s e rte e s e rae s s e e e e e e saa e e e b e e s eaa e e s saa e s saaenssaesnssaesnssassnsaeesnsanann 1445
DROP SCHEMA ...ttt rtte et e e e ste e e s ae e s e sta e e et e e e e ba e s e b e e e st e esesaasessaaassaesnsaesssssesnssanannes 1446
DROP TABLE ... ettt ettt ctte e e cttese st e seste e s e aeeseae e s s aaesesseesssaaesesaaeassaesesaaesssaaenssaesnssaesnssaanns 1448
DROP USER ...ttt ettt e s ee s s eaae s e sae e s e aa e s e aa e s e e e e e esaa e s sae s s saeaessaaesssassnsseesnssasssasannns 1452
DROP VIEW ..ttt ettt et e e st e s e ae e s e te e s e ea e s esae s s sa e s e sae e e saeasnsaesessaesnssesanssasenssassssesssssesnnsens 1454
EINID ettt et e e e e s a e e s e s ae e e e s e e e e e e e e e e e e et e e e e e e aae e e et aae e e e rraaeeeeasraaeeeerraas 1457
EXECUTE ..ottt ettt e st e e te e e et e s e seese st e e e sae e e saeesssaaesssaeaesseaesssaaesssasensaaesnssaeansaesssseensaeens 1457
EXPLAIN ettt et s et e s e ate e s s s aa e s s s s s e e e e e s aa e e s e s ssaeessssaaasesssaaesssnssaaessnsssaeeesssaesennn 1459
FETCH ettt e e e e ee e e et e e e e e e e e se e s e b e e e e sa e e sbaeessaaaesssaeeasaaaesaaaesasasssaeessaeenssaeanssasensses 1467
GRAINT e e te e e e te e e te e e s tee s e b e e e e ae e s e s e e e e ssa e e s s e eansaaeasaaasnsaaeasaeeassaeenssaeensseesnssaenn 1469
IN S ERT ettt e e e rte e e e rte e s e ee e e e e e e s esae e e sae e e saae s saaesssaaessaeesssaeenssaaanssaeenssaeenssaesnsseennns 1494
INSERT (EXEEIrNAL TADLE) weeeeeeeeiieeeeeeeeeeeett ettt e et ce st e eesaeesesbeesssseessssessssssessssesssssessnne 1501
LOCK etteeeteeette et e e et e e e te e e e te e s e sa e e e s tae e e saeasaa e e e saesesasesasse e s ssaeassaaansaasasaaeasaesasaeanssaeenssaeensseesnssees 1504
MERGE ...ttt e e e e te e s ae e e et e e s e ae e s e ba e e s ba e e et e e eesaaesssaaassaaeesaeeensaeeansaeennsaesnssanan 1505
PREPARE ...ttt ettt e e s e s ae e e s e s sas e e e e s e e e e s e s e b e e e e e s aaa e e e s s saaeeaessaaesessssaaessnsssaesssnssenens 1512
REFRESH MATERIALIZED VIEWuueieoeeeeeeecteeecttesecteesecteesseeeseaeesssaessssaessssaessssassssssssnssassnsasennns 1514
RESET ettt e et e e e ae e e e ae e e ta e e e bee e e aa e s e b e e s e b e e e e s s e e e sbeaeesae e e sbaeasaeeesaeeesaeennsaaensaeenaes 1517
REVOKE ...ttt ete e te e s tae e s te e e s aa e s e sae e s e e e e s e sa e e s e sae e e saeesssaesessaesassaaenssasenssessnssesssanannns 1518
ROLLBAGCKeeteeeteeetteeectte et e eeteeseteeeeaeesetaessssaessseesessassssasesssssassssasasaaasssesassasenssasenssassnssessnssesnsees 1537
1Y =1 I G OSSR 1538
SELECT INTO ettt ettt teeecttese vt e s e stee s e saaesetaesesaaessssasessaasessaaasnsaeassaeenssaeenssssenssaeensseessssannn 1611
1) = USSPt 1612
SET SESSION AUTHORIZATION ...ttt et e eeteesctesssveesessaessssasssssasssssasssssesssssassnsaesnnns 1617
SET SESSION CHARACTERISTICS ...ttt st setresete e s aeessaaeesesaeesssaesssaessaasssssasssanas 1618
SHOW ...ttt et et e e be b e s e et et e e e s e s et ese s e st esaesastantessesansensesesansessesansensesansansensens 1618
SHOW COLUMNES ...ttt e eese st se e e tesae e se st e sae e se st e s esa s essesaesansessesasansessssensensesansans 1620
SHOW EXTERNAL TABLEeeeeeeeeeeecteeecteeecteeecte e s eraesesaeesesaeesesaesesasssssaessssasssssessnsasssnssesnnnnes 1622
SHOW DATABASES ...ttt sttt sttt s rte e e e rte e e s ae e s s sae e e ssa e e s ssaaessaee s saeesssaaesssaeesssassnssessnsaeasnns 1625
SHOW MODEL ...ttt eecteee e eeete s e eesssaaesesaeesesaaesessaesessaesessasssssasssssssnssassssaeensesenssanens 1628
SHOW DATASHARES ...ttt rtte s ste e s e ste e s e ae e s e ae e s e ae e s st e s s seeessaaesensaaesnsaasnssassnssaesnsees 1631
SHOW PROCEDURE ...ttt escteesetesecseesesseesessaesesssessssasssssssssssssssssessnsassssssesssassssseesnns 1632
SHOW SCHEMAS ...ttt rtte st e s te e s s ae e s s ae e s s sae e s ssaeesssaaessaeessaeesssaeesssaeenssasenssessnsseeenses 1633
SHOW TABLE ...ttt ctte e e ctte e et e e s saa e e s saeeestaeeeaaeessaeessssasssaasssaeesssasessasessseessssaesnsssesnns 1635
SHOW TABLES ...ttt ettt tee s te e s e rte e s e ae e e s ae s e s e e e s saessssaaesssae e s saaesssaassssasenssaesnssasenssennnns 1637
SHOW VIEW ...ttt tte et e s e ste e s e sae e s e te s e e ate e e ssaa e s sa e s e saaaessaa e saessssaeenssaeassaesnsseeenssassnsees 1638

xviii

Amazon Redshift Database Developer Guide

START TRANSACTION ..ttt st este s st e s seessaeessessseesaessseesssesssassssessssssssessssesssessssessaesnses 1640
TRUNGATE ...ttt sttt esteestess e e s saees st e s sae s saesssesssaasssesssaesssassstesssessssesssessseesssessssesseessaesssenne 1640
UNLOAD ...ttt st este et estessaeessae s st ssssesssesssaessssasssesssessssesssessssesssessssessseesseesssessssessseessaenns 1642
UPDATE ..ceeteeeteectteeettee et ettt eeste e e s aesssaee s e sat e sssaeessaaasenstesensaasessasssnsesssssesssssessseesssssesssseesssssessssens 1675
VACUUM Lttt sttt st te s sae e s ae s s st e st e s sae s s s e s sae e s st e s sa e st e s saeessaassseasaessseesssesssessseesssensseens 1684

Y O] I 0] g [t o] I =L (=] =] 4 Lo ISR 1691
Leader Node—0nly fUNCLIONS ..ottt ettt st s aenan 1692
AGGregate FUNCLIONS ..ottt s e et st e st a e s e s b s e e se e s eaesaeaanes 1693
ATTAY TUNCLIONS ..ttt et et et e st e st e e e e s et et et e st e s b e saeseesaesaesaansansanean 1722
Bit-wise aggregate fUNCLIONS ...ttt ae st nnens 1728
CoNAItIONAL EXPIrESSIONSocveieieietetetectece ettt e te e stestesteste e s e e s e s esessessessassassessaesssssensansansans 1736
Data type formatting fUNCLIONScooveieeeeee ettt 1751
Date and time FUNCLIONS ..ottt ettt s b st e ssasaesa e 1785
HASH TUNCHIONS ettt ettt sb e st a et sb e s e e sanaan 1857
HYPEerLogLog FUNCLIONSceoeeeeeeeeteetee ettt te e sa et stesae s b s b s e e e nnennan 1867
JSON TUNCLIONS ..ttt ettt et st s bt e s b et e s e b et s e ssa st esassesensnas 1872
Machine 1earning fUNCLIONSou it e ettt ns 1891
MAth FUNCLIONS ..ottt st ettt e st e a s b e e e e ssasaastesans 1894

(@] o T=Tex flt {01 3 (et Lo - OO SRS 1933
SPALIAL FUNCLIONS .ttt et e et sae s te st e s e e e e e e e e n et e saanes 1943
SEHNG FUNCLIONS ..ottt et e st e st e s e s e e et e st et e aassessesnnenaaneans 2083
SUPER type information fUNCLIONS ..ottt 2162
VARBYTE fUNCLIONS ..ottt sttt sae st sse sttt e st s e st et s e se st s e saassesnssans 2178
WiINAOW TUNCLIONS ..ottt ettt st ettt st et e s e st e e s e sba st e e sasaesaenas 2187
System administration fUNCLIONScceoiiieeeeee ettt aenens 2253
System iNformation FUNCLIONS ...ttt eens 2264
RESEIVEA WOIASovevitiirieiitrerieteesteste et e e ste st e st st e s e e sse st e e ssestesessessestesassessessssessessessssansensesasen 2296
System tables and VIieWs referenceeeeeecciiiiiiiiiiinnnenennnnniiiiiiciiiiineeesssssssssssssssssssssssssses 2301
SysStem tableS ANA VIEWS ..ottt s te ettt ae s e e e e e e e e e naennan 2301
Types of system tables and VIEWS ...ttt sae st e e e e nenens 2302
Visibility of data in system tables and VIEWS ...t 2303
Filtering system-generated QUEKIEScoeoieeeieieeeieeecee ettt st teste s e e s s s e s e srenaans 2304
Migrating provisioned-only queries to SYS monitoring View qQUENIEsc.ccceeveeveeceecvevrecvesrennnn 2304
Migrating from provisioned clusters to Amazon Redshift Serverlessccccoevevvevvrcrenennene. 2304
Updating queries while staying on a provisioned clusterccccooeoeveeecinieececceeceececenene, 2305
Improving query identifier tracking using the SYS monitoring viewscccoeeevecieciecnenene 2305

Xix

Amazon Redshift Database Developer Guide

EXQIMIPLE ettt et et e st et e et e e e e e e et et et et e e s e e aeeRe e e e e et et e teeaeeseereensentententanes 2305
System table query, process, and SESSSION idScceceevieeererieeeceeeeee e sae e 2313
SVV MEtAdAta VIEWS ...ttt sttt ettt sttt s sa et s e s b et s e sse s e e ssassessesens 2313

SVV_ACTIVE_CURSORSeteiteettcrteesttcstee st sstessaesstessseessaesssasssessssssssessssesssessssssssessssesssessseans 2315

SVV_ALL_COLUMNS ...ttt ettt sstestesstes st sstessaessssessassssaesssaesssessssasssessssssssassssasssessssessees 2316

SVV_ALL_SCHEMASeetiettrrtteteesteste st esaessseestesssasssaesssaasssesssessssassssesssesssessssessssesssesssessnes 2318

SVV_ALL_TABLES ...ttt este st e s aessveessaesssaessaesssaesssassssasssesssaesssessseesssessseesssessseesssennne 2320

SVV_ALTER_TABLE_RECOMMENDATIONSoootiteettecteeteestesresseessressseessnessssessessssessnesssasssns 2321

SVV_ATTACHED_MASKING_POLICY ..utioeitieieenierierstessreestesssesssesssessseesssessseesssessssssssesssssssens 2323

SVV_COLUMNS ..ttt sttt s te st sstessae s st e s sae st e s saeessae s sa e st essaeasssesssaesssessssesssesssaesssensseans 2325

SVV_COLUMN_PRIVILEGESotiotiiiirteettisteriteestessseessessseessesssessssessssesssssssessssessssssssesssessssesnns 2328

SVV_DATABASE_PRIVILEGEScuteititeeteteectcsteesteste st ssee s st e saessvaessessseessaesssassssasssnesssessnns 2329

SVV_DATASHARE_PRIVILEGESccttiteitirteeteeterctesseeestesstesseeesstessseesssesssaesssessseesssessssessesssenns 2331

SVV_DATASHARES ...ttt este st e s stessseessaesssaessaessaeesaesssaesssasssaasssessaesssassssasssesssaesnees 2332

SVV_DATASHARE_CONSUMERSctiitetiterttesteesntssees st sstessaesssaessseesaesssssssaessssesssesssesssaesans 2335

SVV_DATASHARE_OBUJECTS ..ottt sseesseeesatessaesssaesssessseesssessssesssessssasssessssesssessnnens 2336

SVV_DEFAULT_PRIVILEGEScutieitietteterttrstesvecstes st sssessaeestessaesssaesssessssessssssssessssesssasssennne 2338

SVV_DISKUSAGE ...ttt stess e e s ste s st e s saessseesssessaaessaesssaesssesssassssassssesnsesssassssennns 2340

SVV_EXTERNAL_COLUMNS ...ttt esteestesssessseessseesseasssesssaessssssssesssesssassssesssaesssesnes 2343

SVV_EXTERNAL_DATABASES ...t otiteetecterieestes e sseeessessstesssessseessaesssaesssessssesssassssssssessssessees 2344

SVV_EXTERNAL_PARTITIONS ..ottt ssteesressseessaessseesssesssaesssasssaesssessssesssassssssssessnes 2345

SVV_EXTERNAL_SCHEMAS ... eeteeterteettesteste st esste s st e ssaessseesssessseasssesssaesssessssssssesssssssnessssanns 2346

SVV_EXTERNAL_TABLES ...ttt te st et e sste s aessaeesssesssesssaesssesssnesssesssnesssaasneans 2347

SVV_FUNCTION_PRIVILEGESoottreeteetrcterctesteestteseesssesstessaesssaesssaesssesssessssessssssssessssssssesnns 2349

SVV_GEOGRAPHY_COLUMNSeetecteteesteste st sstessseestessaessnessseesssesssssssaesssassssesssesssaessnes 2350

SVV_GEOMETRY_COLUMNS ...ttt sstestessaeessaesssaessaesssaesssessssesssessssasssesssaessssssses 2352

SVV_IAM_PRIVILEGESooititeetittetertteteste st sstessaeestessaessaessseesssesssassssassssssssesssesssssssssssssanns 2353

SVV_IDENTITY_PROVIDERSottititeertintersterteesreestessteesstessseesaessssesssessssasssessssssssassssasssesssaessees 2354

SVV_INTEGRATION ..ottt sstee st sstesstessrtessaessatesssessssessessssesssessssssssesssessssessssesssessssesssessnes 2356

SVV_INTEGRATION_TABLE_STATEoeitieteeeterteecrteetessreeseessveessessaessssessseesssesssessssesssssssnesssesnns 2357

SVV_INTERLEAVED_COLUMNESoiitiettecteriertesieestessressseesssessseesssessssesssessssesssesssassssssssesssessnes 2359

SVV_LANGUAGE_PRIVILEGESotitieiiteeteecteetesstesstessreesssesssessssessssesssesssessssessssssssesssessssassnes 2360

SVV_MASKING_POLICY .eetiteeteeteeitestessieeseee st eseeessessseesssesssaesssessssesssessssssssessssesssesssessssessssssssens 2361

SVV_ML_MODEL_INFO ..ottt estessreesstessaeesssessssessessssasssessssesssessssssssessssssssessseanns 2362

SVV_ML_MODEL_PRIVILEGEScottititieitinteestteetessteeseesseesseeesseesseesssessssesssessssesssessssssssassseasns 2363

SVV_MV_DEPENDENCQYertitiiieeiterteeteesteesteestesssessstessseessaesssessssessssssssessssssssessssssssessssessasssssanns 2365

XX

Amazon Redshift Database Developer Guide

SVV_MVL_INFO ..ttt sttt stestesse st st et st et et essessassasse st et sssensessessassassessesnsensensens 2366
SVV_QUERY_INFLIGHT utitiiietetetetesterestesteseses et st e ssesaessessessessesee e sstessessessessassessesasessensenses 2368
SVV_QUERY_STATE ...ttt stetestestesae st et et st e st et e sessesse st st e e ssaesbessessassessassesnsensenes 2370
SVV_REDSHIFT_COLUMNES ...coiiieeeeeetetetestetesressee e st e testestessessessesses e sseentestessessassassassesnesneens 2373
SVV_REDSHIFT_DATABASES ...ttt sttt estessessasse st e e st esse st essessassessasnsenesnnens 2376
SVV_REDSHIFT_FUNCTIONS ..etiieeeetetetetetetesreereee sttt estessessessessesesseentesaessessessassassesnseneens 2377
SVV_REDSHIFT_SCHEMA_QUOTA ...ttt stessesse st et st et esaessessessassessesnesseensensessens 2379
SVV_REDSHIFT_SCHEMAS ...ttt stestesaessese st et st esaestessessessassessessesssenssssensansansens 2380
SVV_REDSHIFT_TABLES ...ttt ettt stestessessesaes e st st e st et essessassassesnssneeneessenes 2381
SVV_RELATION_PRIVILEGESoostititiienteneeeetetestetertesseseessesseeessteeessessessessessessessesssessessessenses 2383
SVV_RLS_APPLIED_POLICY ...uoitititetertenieneneetstetetetessessessessessesseessesaessessessessessessessesnsensensessenes 2384
SVV_RLS_ATTACHED_POLICY ..eettiieeeeetetrtertertesresseeeseestestetessessessessessessesnsensessessessessessessessesns 2386
SVV_RLS_POLICY ettt et s te st sstestestessessessessessae e st essessessessassassesnsssssnsensessensensanes 2387
SVV_RLS_RELATION ..utiiiieeeeeetrtetestestestesesesste st ete st estessessessessesstenssstessessessessassassesnsenssnsensensansens 2389
SVV_ROLE_GRANTS .eteetetetetetestesteseestesse st st et et estesaessessesses e s e st e e st et essessessassassssnsssssnsensensens 2390
SVV_ROLES ...ttt ettt e ste st st st ettt st e s s e s s e sse s e st s e e e st et e b e sessassassnensessensensensans 2391
SVV_SCHEMA_PRIVILEGESooottetiteteteneneeeeeetetetestessessessesaeeesstestessessessessessesssensensessessenes 2392
SVV_SCHEMA_QUOTAL_STATE ..ttt stessessesse st st et et et esaessessesses e st e e sssessessenes 2394
SVV_SYSTEM_PRIVILEGESooutittteeeeeeeetrte ettt sttt et et essessessesse s e s e st e saesaenes 2395
SVV_TABLE_INFO ...ttt st et sttt esaesaesses e st et st st e saesaessassassesnnenssnsensensanes 2396
SVV_TABLES ...ttt ettt et sttt et s b ss e s s s s e s et s b et e sbessessassassesaeenssnnensensansens 2400
SVV_TRANSACTIONS ..ttt et stestestestes e st s st e st et esaessessesses e et sstesessessassassassasasensensens 2401
SVV_USER_GRANTS .ttt et stestessesses e st et et st estessessessassesse st esasntessessessessassassesnesneens 2403
SVV_USER_INFO ..ottt stesseseesaes e st st et estesaessessesse st e e st e st essessassassassesnsensensensensanes 2404
SVV_VACUUM_PROGRESS ..ottt rtete e stestessessessessessesstestessessessessessessassassessseseens 2406
SVV_VACUUM_SUMDMARYcoctitrtetintenenesenteststestestestessessessessesssssesssessessessessessessessessassessessessenes 2408
SYS MONITONING VIEWS ...cuiiiiiiiiieieecteeierstessteestes st sseesteesstessaesssaesssessseesssessssesssessssesssessssesssessssasssesns 2410
SYS_ANALYZE_COMPRESSION_HISTORY ...cuueoirieertetetetetenrenresesseseetetetessessessessessessessesseens 2412
SYS_ANALYZE_HISTORY ...ttt etetestetessessessesse st et stessestessessassessessssnesnsensessessessanes 2414
SYS_APPLIED_MASKING_POLICY_LOG ..coottririeieirtetetestesteneneseseeseestessessessessessesssessessessessenes 2416
SYS_AUTO_TABLE_OPTIMIZATION ...cetrtititeeerieneeeetetetestestessessessesesseeseestessessessessessessessensenes 2418
SYS_CONNECTION_LOG .uueoirieirtetententeneeeeessteseetestessessessessessesstesssssessessessessassassesssessessessessassens 2420
SYS_COPY_JOB (PrEVIEW) .ueeueiuirieieieierientetsienteteesiestesessessessesessessessssessessssessessessssessessesessessesssanes 2424
SYS_COPY_REPLACEMENTScutitiietereerieneseetetertestestessessesseseete st seessessessessessessesnsensessessessassans 2425
SYS_DATASHARE_CHANGE_LOG ..ottt sttt stesses e s e see st et e saessessessessassessesnees 2427
SYS_DATASHARE_CROSS_REGION_USAGEc.ooieirtrtetetectentenesee ettt ssessessessessesseeneens 2430

XXi

Amazon Redshift Database Developer Guide

SYS_DATASHARE_USAGE_CONSUMERcootitiieerienietetertentestessesseseseeeetsstessessessessessessesnees 2431
SYS_DATASHARE_USAGE_PRODUCERccuooieirirtetrtetenteneeeeeststestessessessessesseseesessaessessessens 2432
SYS_EXTERNAL_QUERY_DETAIL ...ttt tetessessessesseeste st sstessessessessessessesneessessenses 2434
SYS_EXTERNAL_QUERY_ERRORcoctititiieerentetetetetesteseesiesesee e st et stesaessesses e ssnesassaessessenes 2437
SYS_INTEGRATION_ACTIVITY eeeeeetetetetestesieseeseeeeseste st estessessessessesseesesstessessessessessessesnsenssssens 2440
SYS_INTEGRATION_TABLE_STATE_CHANGEccoeritieerereetrteeeteteseeseesaesee st seeseeseessenne 2441
SYS_LOAD_DETAIL .ttt teste e e s e st et st et et essessassessas st et ssaessessessassessesnssnsensessensens 2443
SYS_LOAD_ERROR_DETAIL .ueerieiitetetetestenteneseeeetestestesaessessessesstssesstessessessessassessesssensessessensenes 2446
SYS_LOAD_HISTORY ..uiirtetetetetestesiesresesiee e stetestestessessessesses e sste st e e essessassassessassasasenssnsensensanssens 2448
SYS_MV_REFRESH_HISTORYeoititiirireeteteertetetesteste st ssessee st sttt estessessessessesessnessesaessessenes 2452
SYS_MV_STATE ...ttt ettt ste s e s e s e st e st st et e st e s e s e s e s e s st et et essessassassesasenssnsensessansans 2455
SYS_PROCEDURE_CALL ...utititeteeeeeeeetetestestesteseessessesee st etestessessessessessesssensesssssessessassessassesssenses 2458
SYS_PROCEDURE_MESSAGESoooiieietetetrtetestesteseseseeses st e stestessessessessessessessasssesssssessessassens 2460
SYS_QUERY_DETAIL .ttt ettt e ste st essessessesses e st st e stessessassassasssssesnsensessansansanes 2461
SYS_QUERY_HISTORY ... uteteeeeeetetrtetetestesiesae st et s e ste st et essessesses e ssessestessessassessassassesnsenesssensen 2467
SYS_QUERY_TEXT eeeeeeeeeetrtetetetentestessessee e st et et e stessessessessessesssensensessenssessessassassessesnssnsensessensens 2477
SYS_RESTORE_LOG ...utiiiiiiieieetetrtetetestesseses e stet st et essessessessessesstesesssessessessassessessssnsensessensessanes 2479
SYS_RESTORE_STATE ..ottt ettt et ettt e s essessas e st et et et e b essessasaessesneenesnnns 2482
SYS_SCHEMA_QUOTA_VIOLATIONS ...ueiieetetetetertestesteseeeeeestestestessessessessessessessesssssessessessens 2484
SYS_SERVERLESS _USAGE ...ttt sttt stessessesses e s e st et e e estessessessassassesnssnseneens 2486
SYS_SESSION_HISTORY ...oouiiieietrtetetetesiesresesee e ste st e stestessessessesses e ste st esaesaessessessessesnesssensenes 2488
SYS_SPATIAL_SIMPLIFY ...ctrtitetenteneeeeentetetetesteseessessee e s stestessestessessassessessesstensessessessessassessesnsenes 2490
SYS_STREAM_SCAN_ERRORScoititeteeneneeeetetetetestessesses st ststestessessessessessesnsenesssessessensens 2491
SYS_STREAM_SCAN_STATES ...ttt stesteseessesses st et st essessessessesses e s s e sassaessessanne 2493
SYS_TRANSACTION_HISTORY ...ttt stetestessessesse st et st estesaessessessessesssssesssensenes 2495
SYS_UDF_LOG ..ttt sttt stessesse st st et st e st e ssessessassasse st et stessessassassassessesnsensensens 2497
SYS_UNLOAD _DETAIL «uteteieeeeeetetetetestesteseesesseseestetestestessessessessessessssstensessessessessessassassesssensenes 2499
SYS_UNLOAD_HISTORY ...uieeetetetetetesteseeseeeste st et stessessessessessesstessesessessessassessessesssensessessenses 2501
SYS_USERLOGeiiiieieteteteteeesteseseee st st et sstestessessessesses e st et sstestessessessassassesnsssesnsensessensansassans 2504
SYS_VACUUM_HISTORY ...coititiiiniieeetrtetestetestessessessee e stestessessessessessessessssssensessessessessassassesssseens 2506
System view mapping for migrating to SYS monitoring VIeWsccceceeeeenenecceceeceeceeceeceene. 2509
SYS_QUERY_HISTORY ...ttt st et st ste st et essessessessesse e e stessessessessassassesnsenesssenses 2510
SYS_QUERY_DETAIL .ttt eeeste st ste st essessessesses e st et et essessassassasnsssesnsensessansansanes 2511
SYS_RESTORE_LOG ...utiiiiiiieieeeetntetetestesseses e ste e sstestessessessessessesntesesssessessessessassessesnsensessessensenns 2512
SYS_RESTORE_STATE ..ottt sttt st ettt e s s ssasse st e st et st e b essessasaessesneenssnnons 2512
SYS_TRANSACTION_HISTORY ...ttt etestessessesse st et stesaesaessessessessessessssssensenes 2512

xxii

Amazon Redshift Database Developer Guide

SYS_QUERY _TEXT ettt erteesttestessae s tessaeesseessae s saesssessseesssessssasssessseasssessssesssessssesssessnes 2513
SYS_CONNECTION_LOG ...uviitieieiertirreectentessreestessseessessseesssessssesssessssssssessssssssessssssssessssssssessssssses 2513
SYS_SESSION_HISTORY ...ttt estessresstessaessseesssesssaesssessssasssessssesssessssesssessssesssesssaens 2513
SYS_LOAD_DETAIL «.eeeeteeeeeteeteeetessteestee st estessaeestessaesssaesssaesssessssssssessssssssessssasssesssessssessssesssessnes 2513
SYS_LOAD_HISTORY ...ttt estee st estessseessessssesssessssesssessssssssessssesssessssssssesssssssaessseanns 2513
SYS_LOAD_ERROR_DETALL .coottieteeteecteeterceeesteestesstessseessseesseesssessssesssessssssssesssassssessssesssesssassssens 2514
SYS_UNLOAD_HISTORY ..ceeteieieteeterierstessteestestessseesssessseesssessseesssessssesssessssssssessssssssessssesssesssaenns 2514
SYS_UNLOAD _DETAIL .oeteeteeetesteeeteesreesteeseeestessaessaessaesssesssessssessssssssesssessssessssesssessssssssesssaessees 2514
SYS_COPY_REPLACEMENTS ...ttt estesseeestesssessaesssessseesssessssesssessssesssessssessssesseesssesnes 2514
SYS_DATASHARE_USAGE_CONSUMERoiiiiiiiitirtirtenstestessrtsseessseeseesssesssesssessssassssssssennns 2514
SYS_DATASHARE_USAGE_PRODUCERoooittiiterteetertereteestecseesstesssessaeeseesssessssessssesssesssessnes 2514
SYS_DATASHARE_CROSS_REGION_USAGEcotitetetereccteesieestesreseeessessseesssessnsesssessseens 2515
SYS_DATASHARE_CHANGE_LOG ...ttt cctestessreeseesseeessaessseesnessseesssessssesssesssessssesnns 2515
SYS_EXTERNAL_QUERY _DETAIL ...uvtiteiteeteectieterceesteesttestessseessseesseesssessssesssesssessssessssessaassseans 2515
SYS_EXTERNAL_QUERY_ERRORuutiitiiiitirteecteett st eseessneessressveesseessseesssesssaesssessssesssesssaasseens 2515
SYS_VACUUM_HISTORY .eoitiitrctisiteesteestesseessteesstesssessseessseesseesssessssssssesssessssessssssssesssessssssssssssees 2515
SYS_ANALYZE_HISTORY ...etiiieteeeertescttsstessrecste st ssssessseesstesssessssesssessssasssesssssssssssssesssssssasssses 2516
SYS_ANALYZE_COMPRESSION_HISTORYuutiiiitietinteesiecnteesreestessaesseessaesssaessssessesssessssesnns 2516
SYS_MV_REFRESH_HISTORYoeitiititeettentersitcstesseteseesssesseessaesssnesssassssessssesssessssssssassssssssessnes 2516
SYS_MV_STATE ..ottt ettt sttt et s st e st e e sae s st e s se e st e s sae e s b e s sa e s ae s saasssesssaesssassssesssensnes 2516
SYS_PROCEDURE_CALL .cevtiteeeteeteecteesteeeteetesereesseeesstesssessseessessssasssessssesssessseesssessssesssasssesssenane 2516
SYS_PROCEDURE_MESSAGEStiteitiettecteetesctessteestesstessseessseesseesssessssesssessssesssessssessssssssenns 2517
SYS_UDF_LOG ..etieeiieteeetestessitestessteestessaessssesssesssaessaessssassssssssesssessssessssesssessssssssesssssssaesssesssasssnes 2517
SYS_USERLOG ...coeiiiiteeteetecsiteste st es e ssaeessteesseessaesssaesssessssesssesssaesssessssassssssssessssssssesssessssessssssssesss 2517
SYS_SCHEMA_QUOTA_VIOLATIONS ...eetiteiterterrtestessresstessreeseesssessssessseesaesssesssssssssssssessssssnes 2517
SYS_SPATIAL_SIMPLIFY coeoteeteeteestestessrteste st estessseesstessaesssaesssaesssesssessssesssassssessssasssessssesssassseans 2517
System monitoring (ProviSioN@d ONLY) ...t 2517
STL VIEWS TOIr LOGQING c.eeeeiieeeeeeee ettt e et et e st e st e sse s e e e e s e s et et e saasaessassnesasnnns 2518
STV tables for sNapsShot data ...ttt 2656
SVCS views for main and concurrency scaling clUSLErsScovveeeeieceeciecececeeeceee e 2711
SVL VIEWS FOr Main CLUSTEN ..ottt sttt sttt sa e st aas 2740
SYStEM CALALOG tADLES ...ttt et s a et et a et r e ae e e nnennan 2813
PG_ATTRIBUTE_INFO ..ottt sttt st eesressseessaessseessesssessssessssssssesssessssessssssnsesssassssennns 2814
PG_CLASS_INFO ettt cstesste s st e ssae s st e s saesssaessae s st e ssaeesssesssassssessassssesssassssessssesssasssannns 2814
PG_DATABASE_INFO ...ooitieeteetcsteesteste st sstee et estesssesstes st assaesssaesssassssesssessssssssessseasssessssesssans 2816
PG_DEFAULT _ACL ..ceeiteeteeeteeceeesteesteeste s st e stessaeessaesssaasaessssasssesssassssessssasssessseesssessssesssessssessessseans 2817

xxiii

Amazon Redshift Database Developer Guide

PG_EXTERNAL_SCHEMA ...ttt ettt cte e s ctte s e stae s s aae e s steessaaesssaaesssaasessaesesaessssasenssaesnssanan 2820
PG_LIBRARY ...ttt ettt ettt st e se e e s e te e e s ae e s s aeesesae s e e sae s s saaesssaasesaassssaeesssaeenssaeenssaeenssessnsseesssseenn 2821
PG_PROC_INFO ...ttt et e stestestestesse e e e e e s st e sesbe s s e st assassa e e e s ansassansansansassessasnsansansans 2822
PG_STATISTIC_INDICATOR ...ttt escteeectesectaesesaaesessaeseaaessssaesssaassssaessssaesnsssesnnssssnnsenan 2823
PG_TABLE_DEF ...ttt eetee st e e e te e s e sae e e s te e s s sae e e sa e s s ssa e e s saessssaeessaeesssaaenssasensseesnsseenn 2824
PG_USER_INFO ..ottt erete e stesecvee s s saee s s sae e s e aa e s et e e s esaaesssaaassaaessaesnssassnssasensseesnsenenn 2827
Querying the catalog tables ... ettt 2828
Configuration ref@reNCeccciiiiiiiieeeeriiiiiiieciiiiteeneesneisiieseeeettssass 2834
Modifying the server conNfiQUration ...ttt aenan 2835
analyze_threShold_PerceNnt ...ttt st e st e s e e s e e s e aesaenean 2836
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2836
DESCIIPTION <ttt ettt s e s et e st e s s e e s e e st e s st e s sae s st essseessaesssesssesssesssaesssessseenssans 2836
EXQIMIPLES ..ottt ettt et e st e et e et s e sa e e et et et e s asseeaeeseessense st entensanseeseeseenaenaans 2836
CASE_SUPET_NMULL_ON_BITON ettt ete e e e e e et e st e stesae st e ssessaese e e e s e sesaessessassassessasssensansans 2837
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2837
DESCIIPTION <ttt et s st e s e e et e st e e st e e s e e st e s st e s saesssaes b e e st esssassaesssaessaesssessssenseans 2837
datashare_break_glass_SESSION_VArcccccerieeeieeieeriecieciesteseeee e e e e eestesaesaessessesseesaesaesessessassansens 2837
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2837
DESCIIPTION ettt et e s e e s et e s e e s st e e s e e s b e e st e s saesssaessbaessaesssassssessseessaesssesseenssens 2837
EXQIMIPLE ettt te st e st e e e e e e e et e st et et e b e e aeeRe e e e e et et e teeaeeseeneensentententanes 2838
ALESTYLE ettt ra et st e st st e et e s e e e e e e e et e aeste b e beereesaeaeeneententantantans 2838
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2838
DESCIIPTION ettt et e s e e s et e s e e s st e e s e e s b e e st e s saesssaessbaessaesssassssessseessaesssesseenssens 2837
EXQIMIPLE .ttt ettt et e st e et e e e e e e et et et et e b e e aeeRe e e e e et et e teeaeeseeneensentententanes 2838
default_geometry_€NCOAING ...ttt e e et e st e saesse s e s e e e e e e saesaantans 2838
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2838
DESCIIPTION ettt ettt s e st e e s e e s st e e s e e st e s st e s saesssae s b e e saesssasssessseessaesssessseenseens 2837
describe_field_Name_iN_UPPEICASEuceeeeeeeeeeeetetectectestesteee e e e e e e saesaestessesse s e e e essesaessessessansans 2839
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2839
DESCIIPTION <.ttt ettt s e s et e st e s st e e s e e st e et e s sae s saes b e e st esssasssesssesssaesssessseennsens 2837
EXQIMIPLE ettt et et te st et e et e e e e e e et e st e b et e s e e aeeRe e e e e et et e teeaeeseeneensentententanes 2838

(o o3V g [et= I =Ie (=] KTn TR =Y I Te (=] a1 2 (=] SRRSO 2839
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2839
DESCIIPTION ettt ettt st s e e st e st e e st e e s e e s b e s st e s saesssaessbeessaesssassaessseessaesssessseennsans 2837
USQGE NOLES ...ttt s st ste st e s ae e s e e s sae s aa e s b e s saassbesssaessse s saesssessssesssessstesssesssaessees 2840
eNable_case_SeNSItiVe _IAENTITIOI c....oieeeieeeeeeeeet ettt et ce et e eeresessbeesssreessssesssseesssesssnne 2841

XXiv

Amazon Redshift Database Developer Guide

VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2841
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2841
EXQIMIPLES ettt ettt ae st e e e e e e e e et et et e st et e s e e s e e aeere e s et eae b e tensaeaeeseennenaantans 2841
USQGE NOLES ...ttt st s e st e sae e s e e s sae s aa e s b e s saassbesssaessa s saasssessssesssessstesssesssaensees 2842
enable_case_sensitive_super_attribUte ... saesae e 2844
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2844
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2844
EXQIMIPLES ettt ettt ae st e e e e e e e e et et et e st et e s e e s e e aeere e s et eae b e tensaeaeeseennenaantans 2844
USQGE NOLES ...ttt sttt s e st e s ae e st e s sae s ae e s b e s st e s besssaesae s saasssesssesssessssesssesssaennees 2845
eNable_NUMENIC_TOUNING ..ottt et et et e e s e e e e e e e e s et estesbe s e sassneseennennan 2846
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2846
DESCIIPLION ettt ettt et s e s te e s te s sae e s b e s ba e s s e s saeassbessaesssessneesssassaesssessseesssensnes 2846
EXAIMIPLE ottt ettt e e e ettt et et e st et a e s e s ae e e et e ae st et e teeaeeseeneensentetentanes 2846
(I b= o] (I g =Ky | A o= el g L= (0 Y= 0] ISR 2848
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2848
DESCIIPLION ettt sttt s ve e s ste s sa e e st e s s sa e s b e s st assbesssaesssessneesssassseesssessseesssessnes 2848
EXAIMIPLE ottt ettt e ettt bbb e et e et r e e e e e et e ae st e teeteeaeeseeseensentententenes 2848
[T F=] 0] C=IYZ= Lol U 1015 o T o Yo Yo 13 AR SRR 2848
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2848
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2837
error_on_nondeterminiStiC_UPAAte ...ttt ste et saesraaans 2848
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2848
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2837
EXAIMIPLE ottt et ettt et et e st b e e s e e ae e e et e ae st e teeseeaeeseeneeneentetentanes 2838
() = T 1 (o =Y fla [o [3OO USRS 2849
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2849
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s sa e s b e e saeassbessaesssessstesssassseesssessseesssessnes 2849
EXAIMIPLE ottt ettt e ettt et e b b e s s e e ae e e et e ae et et e aeeaeeseeseensentententanes 2849
interval_forbid_composite_LItErals ...t 2850
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2850
DESCIIPLION ettt ettt e st s e s te e s e e e sae e s b e s sa e s b e s sseassbesssaesssassntesssesssaesssessseesssessnes 2837
jSON_SErialiZatioN_€NABLEcuoeeeeeeeee ettt aeaan 2851
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2851
DESCIIPLION ettt ettt ettt s te e st e s sae e s b e s s sa e s b e s saeassbesssaesssessseesssassseesssessseesssesnnes 2837
json_serialization_parse_Nested_StriNgs ...ttt 2851
VLN L= (123 = 10 1 L 1 T o Yo] U) ISR 2851

XXV

Amazon Redshift Database Developer Guide

DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2837
Max_concurrenCy_SCAlING_CLUSTEIS ...ttt 2852
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2852
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2852
INAX_CUISOE_FESULE_SET_SIZE weeeeeeeeeiieeeeeeeeeeeeee ettt et eeateeesteesebeesssaesssssesesssesesssesssssesssseessnsesssssesssnes 2852
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2852
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2852
MV_enNable_agmV_fOr_SESSION ...ttt sttt st st ae e 2853
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2853
DESCIIPLION ettt ettt et s it e s ve e st e e sae e s b e s s sa e s s e s saeessbesssaesssessnsesssasseesssessseesssessnes 2853
NAVIGAte_SUPEI_NMULL_ON_BITON ..ottt ettt steste e s e e e e e sa e st e b e s aa s e s sessa e e ennenenes 2853
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2853
DESCIIPLION ettt ettt et s e s te e s te s sae e s b e s ba e s s e s saeassbessaesssessneesssassaesssessseesssensnes 2837
PArSE_SUPEI_NULLON_BITON ..oeeiieeeeetetetetetecteee e e e et st et e stestestesse s e e e e e e e e s esessastessassessessaesesnsensanes 2853
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2853
DESCIIPLION ettt sttt s ve e s ste s sa e e st e s s sa e s b e s st assbesssaesssessneesssassseesssessseesssessnes 2837
pg_federation_repeatable_read ... e 2853
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2853
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2837
EXQIMIPLES ettt ettt te st e e e e e e e et et e st et et e s e s e e aeese e st et e bebantensaeaeeseenneneanaans 2854
QUETY_GEOUP .eveeeurerereenueeseeesersseesssessseesssessssssssesssessssessssssssessssesssessssesssessseesssessssesssesssessssessssesssessssasssessses 2854
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2854
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2855
== 1 (el g I oY | o o EPU OO O USRS 2855
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2855
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s sa e s b e e saeassbessaesssessstesssassseesssessseesssessnes 2856
EXAIMIPLE ottt ettt e ettt et e b b e s s e e ae e e et e ae et et e aeeaeeseeseensentententanes 2856
spectrum_enable_pseudo_COLUMNS ...ttt te e a e st aesaa e 2857
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2857
DESCIIPLION ettt sttt te s ve e s ste e s st e s b e s s sa e s b e s sseesssesssaesssassstesssassssesssessseesssensnes 2857
EXAIMIPLE ottt ettt ettt e b b er e s e e ae e e et e aesbenteeteeaeeseeneensentetentanes 2858
E€NADLE_SPECLIUM_OIM ..ottt ettt te e e e e e e et e s ae st e b e e e e e snena e e enaanaanes 2858
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2858
DESCIIPLION ettt ettt ettt s te e st e s sae e s b e s s sa e s b e s saeassbesssaesssessseesssassseesssessseesssesnnes 2858
EXAIMIPLE ottt ettt te st e e e ettt ettt e e b e e s s e s ae e e et e ae st e teeteeaeeseeneensentententenes 2858
SPECIIUM_QUENY_IMAXEITON .uvteereieeeeirerseeessesseessseesssesssesssessssessssssssessssssssessssesssessssssssessssesssesssessssessses 2858

XXVi

Amazon Redshift Database Developer Guide

VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2858
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2858
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2859

Y = 10] 0 A L1 n L A1 1 [<T0 1 U SRR 2859
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2859
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2859
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2859
stored_proC_lOg_MIN_MESSAGEScccccveeeeriectecteerenteeeeeeeetestestestessessessesssessessessessessessassassesssssessansens 2860
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2860
DESCIIPLION ettt ettt et s it e s ve e st e e sae e s b e s s sa e s s e s saeessbesssaesssessnsesssasseesssessseesssessnes 2837

L[0 4 T=Vdo] o= USRS 2860
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2860
SYNEAX ettt ettt et et e s st e st e et e st s s a e e st e e a e e s ae e s e e et e e a e e e ae e e r e e b e e aa e aesssa e seeaeeentanane 2860
DESCIIPLION ettt ettt re et te s te e st e e sae e st e s sa e s b e s s e asssesssaesssessseesssassaesssessseesssesnnes 2861
TiME ZONE FOIMALS ettt et e ete et e e e se e sae e s e seesbeessesssensessseseensesssensenns 2861
EXQIMIPLES ettt ettt te st e e e e e e e et et e st et et e s e s e e aeese e st et e bebantensaeaeeseenneneanaans 2863
USE TIPS _SSL ettt et et ettt e st et e e a e e e e e e et et e te st e tesseeaeeaeena et enteaanes 2864
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2864
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2837
WLM_QUETNY_SLOT_COUNT ...ttt ettt te st e s te s e e e e e e e e b e stesaessassasnnennannans 2864
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2864
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2865
EXQIMIPLES ettt ettt te st e e e e e e e et et e st et et e s e s e e aeese e st et e bebantensaeaeeseenneneanaans 2865
DOCUMENE NISTOIY auuuiiiiiiiiiiiiiiieennnniiiiiieiiiiineeessssssssssssssssssesses 2800
EQrlIEr UPAALES ..ottt e s sttt e st e s essesseesa e e e s et e tasbensassassaesessnanean 2876

XXVii

Amazon Redshift Database Developer Guide

Introduction

Welcome to the Amazon Redshift Database Developer Guide. This guide focuses on helping you
understand how to use Amazon Redshift to create and manage a data warehouse. If you work with
databases as a designer, software developer, or administrator, this guide gives you the information
you need to design, build, query, and maintain your data warehouse.

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. Amazon
Redshift Serverless lets you access and analyze data without the usual configurations of a
provisioned data warehouse. Resources are automatically provisioned and data warehouse capacity
is intelligently scaled to deliver fast performance for even the most demanding and unpredictable
workloads. You don't incur charges when the data warehouse is idle, so you only pay for what you
use. Regardless of the size of the dataset, you can load data and start querying right away in the
Amazon Redshift query editor v2 or in your favorite business intelligence (BI) tool. Enjoy the best
price performance and familiar SQL features in an easy-to-use, zero administration environment.

Topics

» Prerequisites for using Amazon Redshift

« Amazon Redshift architecture

« Sample database

Prerequisites for using Amazon Redshift

This topic describes prerequisites you need to use Amazon Redshift.

Before you use this guide, you should read Get started with Redshift Serverless data warehouses,

which goes over how to complete the following tasks.

» Create a data warehouse with Amazon Redshift Serverless.
» Loading in sample data with Amazon Redshift query editor v2

» Loading in data from Amazon S3.

You should also know how to use your SQL client and should have a fundamental understanding of
the SQL language.

Prerequisites for using Amazon Redshift 1

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html

Amazon Redshift Database Developer Guide

Amazon Redshift architecture

This topic helps you understand the components that make up Amazon Redshift.

An Amazon Redshift data warehouse is an enterprise-class relational database query and
management system.

Amazon Redshift supports client connections with many types of applications, including business
intelligence (BI), reporting, data, and analytics tools.

When you run analytic queries, you are retrieving, comparing, and evaluating large amounts of
data in multiple-stage operations to produce a final result.

Amazon Redshift achieves efficient storage and optimum query performance through a
combination of massively parallel processing, columnar data storage, and very efficient, targeted
data compression encoding schemes. This section presents an introduction to the Amazon Redshift
system architecture.

Topics

Data warehouse system architecture

Amazon Redshift Performance

Columnar storage

Workload management

Using Amazon Redshift with other services

Data warehouse system architecture

This section explains the components that make up the Amazon Redshift data warehouse
architecture, as shown in the following figure.

Amazon Redshift architecture 2

Amazon Redshift Database Developer Guide

@ JDBC/ODBC @ @ Data API

¥ ¥
Amazon Redshift Serverless or Provisioned
o Data sharing Query Live Data
+ clusters
=
o
g Incremental MVs
(& i Leadsr Node Operational
r ai AWS Databases

© Nitro

S 8[CN1||CN2 || CN3 || CN4

£ E Redshift ML
5 C<|un |(|lue ||mm ||mm
B
% Cluster Amazon
] Serverless data warehouse Sagemaker
<
:é: :'R_eas_hi_ft_M_aEa_gEd_s_tJrigE_"____"""_"""_____""_: iAmazons3 7 !
e 1 1

1

;% | " Fm " . - T o {JSON} !

Client applications

Amazon Redshift integrates with various data loading and ETL (extract, transform, and load) tools
and business intelligence (BI) reporting, data mining, and analytics tools. Amazon Redshift is
based on open standard PostgreSQL, so most existing SQL client applications will work with only
minimal changes. For information about important differences between Amazon Redshift SQL and
PostgreSQL, see Amazon Redshift and PostgreSQL.

Clusters
The core infrastructure component of an Amazon Redshift data warehouse is a cluster.

A cluster is composed of one or more compute nodes. If a cluster is provisioned with two or more
compute nodes, an additional leader node coordinates the compute nodes and handles external
communication. Your client application interacts directly only with the leader node. The compute
nodes are transparent to external applications.

Leader node

The leader node manages communications with client programs and all communication with
compute nodes. It parses and develops execution plans to carry out database operations, in
particular, the series of steps necessary to obtain results for complex queries. Based on the
execution plan, the leader node compiles code, distributes the compiled code to the compute
nodes, and assigns a portion of the data to each compute node.

Data warehouse architecture 3

Amazon Redshift Database Developer Guide

The leader node distributes SQL statements to the compute nodes only when a query references
tables that are stored on the compute nodes. All other queries run exclusively on the leader node.
Amazon Redshift is designed to implement certain SQL functions only on the leader node. A
query that uses any of these functions will return an error if it references tables that reside on the
compute nodes. For more information, see SQL functions supported on the leader node.

Compute nodes

The leader node compiles code for individual elements of the execution plan and assigns the code
to individual compute nodes. The compute nodes run the compiled code and send intermediate
results back to the leader node for final aggregation.

Each compute node has its own dedicated CPU and memory, which are determined by the node
type. As your workload grows, you can increase the compute capacity of a cluster by increasing the
number of nodes, upgrading the node type, or both.

Amazon Redshift provides several node types for your compute needs. For details of each node
type, see Amazon Redshift clusters in the Amazon Redshift Management Guide.

Redshift Managed Storage

Data warehouse data is stored in a separate storage tier Redshift Managed Storage (RMS). RMS
provides the ability to scale your storage to petabytes using Amazon S3 storage. RMS lets you scale
and pay for computing and storage independently, so that you can size your cluster based only on
your computing needs. It automatically uses high-performance SSD-based local storage as tier-1
cache. It also takes advantage of optimizations, such as data block temperature, data block age,
and workload patterns to deliver high performance while scaling storage automatically to Amazon
S3 when needed without requiring any action.

Node slices

A compute node is partitioned into slices. Each slice is allocated a portion of the node's memory
and disk space, where it processes a portion of the workload assigned to the node. The leader
node manages distributing data to the slices and apportions the workload for any queries or other
database operations to the slices. The slices then work in parallel to complete the operation.

The number of slices per node is determined by the node size of the cluster. For more information
about the number of slices for each node size, go to About clusters and nodes in the Amazon
Redshift Management Guide.

Data warehouse architecture 4

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

When you create a table, you can optionally specify one column as the distribution key. When the
table is loaded with data, the rows are distributed to the node slices according to the distribution
key that is defined for a table. Choosing a good distribution key enables Amazon Redshift to use
parallel processing to load data and run queries efficiently. For information about choosing a
distribution key, see Choose the best distribution style.

Internal network

Amazon Redshift takes advantage of high-bandwidth connections, close proximity, and custom
communication protocols to provide private, very high-speed network communication between
the leader node and compute nodes. The compute nodes run on a separate, isolated network that
client applications never access directly.

Databases

A cluster contains one or more databases. User data is stored on the compute nodes. Your SQL
client communicates with the leader node, which in turn coordinates query run with the compute
nodes.

Amazon Redshift is a relational database management system (RDBMS), so it is compatible with
other RDBMS applications. Although it provides the same functionality as a typical RDBMS,
including online transaction processing (OLTP) functions such as inserting and deleting data,
Amazon Redshift is optimized for high-performance analysis and reporting of very large datasets.

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number of
very important differences that you need to take into account as you design and develop your data
warehouse applications. For information about how Amazon Redshift SQL differs from PostgreSQL,
see Amazon Redshift and PostgreSQL.

Amazon Redshift Performance

This topic describes the Amazon Redshift components that drive performance. Understanding
these components will help you tune performance and troubleshoot poor performance with
Amazon Redshift.

Amazon Redshift achieves extremely fast query run by employing these performance features.

Topics

» Massively parallel processing

Performance 5

Amazon Redshift Database Developer Guide

Columnar data storage

Data compression

Query optimizer

Result caching

Compiled code

Massively parallel processing

Massively parallel processing (MPP) enables fast run of the most complex queries operating on

large amounts of data. Multiple compute nodes handle all query processing leading up to final

result aggregation, with each core of each node running the same compiled query segments on
portions of the entire data.

Amazon Redshift distributes the rows of a table to the compute nodes so that the data can be
processed in parallel. By selecting an appropriate distribution key for each table, you can optimize
the distribution of data to balance the workload and minimize movement of data from node to
node. For more information, see Choose the best distribution style.

Loading data from flat files takes advantage of parallel processing by spreading the workload
across multiple nodes while simultaneously reading from multiple files. For more information
about how to load data into tables, see Amazon Redshift best practices for loading data.

Columnar data storage

Columnar storage for database tables drastically reduces the overall disk 1/0 requirements and is
an important factor in optimizing analytic query performance. For more information, see Columnar

storage.

When columns are sorted appropriately, the query processor is able to rapidly filter out a large
subset of data blocks. For more information, see Choose the best sort key.

Data compression

Data compression reduces storage requirements, thereby reducing disk I/O, which improves query
performance. When you run a query, the compressed data is read into memory, then uncompressed
during query run. Loading less data into memory enables Amazon Redshift to allocate more
memory to analyzing the data. Because columnar storage stores similar data sequentially, Amazon

Performance 6

Amazon Redshift Database Developer Guide

Redshift is able to apply adaptive compression encodings specifically tied to columnar data types.
The best way to enable data compression on table columns is by allowing Amazon Redshift to
apply optimal compression encodings when you load the table with data. To learn more about
using automatic data compression, see Loading tables with automatic compression.

Query optimizer

The Amazon Redshift query run engine incorporates a query optimizer that is MPP-aware and also
takes advantage of the columnar-oriented data storage. The Amazon Redshift query optimizer
implements significant enhancements and extensions for processing complex analytic queries
that often include multi-table joins, subqueries, and aggregation. To learn more about optimizing
queries, see Query performance tuning.

Result caching

To reduce query runtime and improve system performance, Amazon Redshift caches the results
of certain types of queries in memory on the leader node. When a user submits a query, Amazon
Redshift checks the results cache for a valid, cached copy of the query results. If a match is found
in the result cache, Amazon Redshift uses the cached results and doesn't run the query. Result
caching is transparent to the user.

Result caching is turned on by default. To turn off result caching for the current session, set the
enable_result_cache_for_session parameter to off.

Amazon Redshift uses cached results for a new query when all of the following are true:

« The user submitting the query has access permission to the objects used in the query.

» The table or views in the query haven't been modified.

« The query doesn't use a function that must be evaluated each time it's run, such as GETDATE.
» The query doesn't reference Amazon Redshift Spectrum external tables.

« Configuration parameters that might affect query results are unchanged.

» The query syntactically matches the cached query.

To maximize cache effectiveness and efficient use of resources, Amazon Redshift doesn't cache
some large query result sets. Amazon Redshift determines whether to cache query results based on
a number of factors. These factors include the number of entries in the cache and the instance type
of your Amazon Redshift cluster.

Performance 7

Amazon Redshift

Database Developer Guide

To determine whether a query used the result cache, query the SVL_QLOG system view. If a query
used the result cache, the source_query column returns the query ID of the source query. If result

caching wasn't used, the source_query column value is NULL.

The following example shows that queries submitted by userid 104 and userid 102 use the result

cache from queries run by userid 100.

select userid, query, elapsed, source_query from svl_qglog

where userid > 1
order by query d

userid | query

_______ .
104 | 629035
104 | 629034
104 | 629033
102 | 629017
102 | 628942
102 | 628941
102 | 628940
100 | 628919
100 | 628900
100 | 628891

Compiled code

esc;

|
+
|
I
| 23
| 1229393
| 28
| 57
| 26
| 84295686
| 87015637
| 58808694

628919
628900
628891

628919
628900
628891

The leader node distributes fully optimized compiled code across all of the nodes of a cluster.

Compiling the query decreases the overhead associated with an interpreter and therefore increases

the runtime speed, especially for complex queries. The compiled code is cached and shared across

sessions on the same cluster. As a result, future runs of the same query will be faster, often even

with different parameters.

The query run engine compiles different code for the JDBC and ODBC connection protocols, so two
clients using different protocols each incur the first-time cost of compiling the code. Clients that

use the same protocol, however, benefit from sharing the cached code.

Columnar storage

This section describes columnar storage, which is the method Amazon Redshift uses to store

tabular data efficiently.

Columnar storage

Amazon Redshift Database Developer Guide

Columnar storage for database tables is an important factor in optimizing analytic query
performance, because it drastically reduces the overall disk 1/0 requirements. It reduces the
amount of data you need to load from disk.

The following series of illustrations describe how columnar data storage implements efficiencies,
and how that translates into efficiencies when retrieving data into memory.

This first illustration shows how records from database tables are typically stored into disk blocks
by row.

SSN Name Age Addr City 5t
101259797 SMITH 88 899 FIRST ST JUNO AL
892375862 CHIN 37 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

101250787 |SMITH| 88| 899 FIRST ST|JUNO|AL |892375862 | CHIN |37 16137 MAIN ST|POMONA |CA|318370701 [HANDU |12 |42 JUNE ST|CHICAGO|IL

Block 1 Block 2 Elock 3

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the
entire row. If block size is smaller than the size of a record, storage for an entire record may take
more than one block. If block size is larger than the size of a record, storage for an entire record
may take less than one block, resulting in an inefficient use of disk space. In online transaction
processing (OLTP) applications, most transactions involve frequently reading and writing all of the
values for entire records, typically one record or a small number of records at a time. As a result,
row-wise storage is optimal for OLTP databases.

The next illustration shows how with columnar storage, the values for each column are stored
sequentially into disk blocks.

SSN Name Age Addr City 5t
101259797 SMITH 88 |899 FIRST ST JUNO AL
892375862 CHIN 37 168137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGOD IL

101259787 | 892375662 | 318370701)| 466248180 | 378568310 | 231346875 | 317346551 | 770336528 | 277332171 | 455124508 | 735885647 | 387586301

Block 1

Columnar storage 9

Amazon Redshift Database Developer Guide

Using columnar storage, each data block stores values of a single column for multiple rows. As
records enter the system, Amazon Redshift transparently converts the data to columnar storage for
each of the columns.

In this simplified example, using columnar storage, each data block holds column field values
for as many as three times as many records as row-based storage. This means that reading the
same number of column field values for the same number of records requires a third of the I/O
operations compared to row-wise storage. In practice, using tables with very large numbers of
columns and very large row counts, storage efficiency is even greater.

An added advantage is that, since each block holds the same type of data, block data can use a
compression scheme selected specifically for the column data type, further reducing disk space and
I/0. For more information about compression encodings based on data types, see Compression

encodings.

The savings in space for storing data on disk also carries over to retrieving and then storing that
data in memory. Since many database operations only need to access or operate on one or a small
number of columns at a time, you can save memory space by only retrieving blocks for columns
you actually need for a query. Where OLTP transactions typically involve most or all of the columns
in a row for a small number of records, data warehouse queries commonly read only a few columns
for a very large number of rows. This means that reading the same number of column field values
for the same number of rows requires a fraction of the 1/0 operations. It uses a fraction of the
memory that would be required for processing row-wise blocks. In practice, using tables with

very large numbers of columns and very large row counts, the efficiency gains are proportionally
greater. For example, suppose a table contains 100 columns. A query that uses five columns will
only need to read about five percent of the data contained in the table. This savings is repeated for
possibly billions or even trillions of records for large databases. In contrast, a row-wise database
would read the blocks that contain the 95 unneeded columns as well.

Typical database block sizes range from 2 KB to 32 KB. Amazon Redshift uses a block size of 1 MB,
which is more efficient and further reduces the number of I/0 requests needed to perform any
database loading or other operations that are part of query run.

Workload management

This section describes workload management (WLM), which helps you understand how Amazon
Redshift prepares and runs queries.

Workload management 10

Amazon Redshift Database Developer Guide

Amazon Redshift workload management (WLM) enables flexible management priorities within
workloads so that short, fast-running queries don't get stuck in queues behind long-running
queries. Amazon Redshift creates query queues at runtime according to service classes, which
define the configuration parameters for various types of queues, including internal system queues
and user-accessible queues. From a user perspective, a user-accessible service class and a queue are
functionally equivalent. For consistency, this documentation uses the term queue to mean a user-
accessible service class as well as a runtime queue.

Redshift offers automatic workload management, called automatic WLM, which is tuned to handle
varying workloads and is the recommended default. With automatic WLM, Redshift determines
resource utilization as queries arrive and dynamically determines whether to run them on the

main cluster, on a currency-scaling cluster, or to send each to a queue. (When queries are queued,
automatic WLM prioritizes shorter-duration queries.) Automatic WLM maximizes total throughput
and enables you to maintain efficient data-warehouse resources. You run workloads without
having to be concerned with their size or how they're scheduled. Automatic WLM is the default for
provisioned clusters. For more information, see Implementing automatic WLM.

® Note

Amazon Redshift Serverless workgroups always use automatic WLM.

In times where a lot of queries or resource-intensive queries are running, workload management
can scale to additional compute resources when workloads queue on local resources. Concurrency
scaling with automatic WLM supports consistent performance for virtually unlimited concurrent
users and queries.

Redshift provisioned clusters offer manual WLM if you need fine-grained manual optimization.
Here, the customer manages resource allocation, query concurrency and queuing. When a query
runs, WLM assigns the query to a queue according to the user's user group or by matching a query
group that is listed in the queue configuration. This is configured with a query-group label that the
user sets. For more information, see Implementing manual WLM.

Though Manual WLM can be fine tuned over time to match your workload patterns, in most
cases we discourage its use because its static nature can make it more difficult for you to adapt
to changing workloads through the course of a day or over an extended period. It requires more
monitoring and ongoing tuning. In addition, Manual WLM in many cases doesn't use compute

Workload management 11

https://docs.aws.amazon.com/redshift/latest/dg/automatic-wlm.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-defining-query-queues.html

Amazon Redshift Database Developer Guide

resources as efficiently as automatic WLM, such as for example if queues are set manually to limit
memory allocated to them.

An important metric to measure the success of workload management configuration is system
throughput, which in other words is how many queries are completed successfully. System
throughput is measured in queries per second. For more information about system metrics, see
Monitoring Amazon Redshift cluster performance.

The easiest way to manage your WLM configuration is by using the Amazon Redshift Management
console. You can also use the Amazon Redshift command line interface (CLI) or the Amazon
Redshift API. For more information about implementing and using workload management, see
Implementing workload management.

Using Amazon Redshift with other services

This section describes how you can use other services as sources and destinations for Amazon
Redshift data.

Amazon Redshift integrates with other AWS services to enable you to move, transform, and load
your data quickly and reliably, using data security features.

S3

Amazon Simple Storage Service (Amazon S3) is a web service that stores data in the cloud.
Amazon Redshift leverages parallel processing to read and load data from multiple data files
stored in Amazon S3 buckets. For more information, see Loading data from Amazon S3.

You can also use parallel processing to export data from your Amazon Redshift data warehouse
to multiple data files on Amazon S3. For more information, see Unloading data in Amazon
Redshift.

DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service. You can use the COPY
command to load an Amazon Redshift table with data from a single Amazon DynamoDB table.
For more information, see Loading data from an Amazon DynamoDB table.

SSH

You can use the COPY command in Amazon Redshift to load data from one or more remote
hosts, such as Amazon EMR clusters, Amazon EC2 instances, or other computers. COPY connects

Using Amazon Redshift with other services 12

https://docs.aws.amazon.com/redshift/latest/mgmt/metrics.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/
https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-implementing-workload-management.html

Amazon Redshift Database Developer Guide

to the remote hosts using SSH and runs commands on the remote hosts to generate data.
Amazon Redshift supports multiple simultaneous connections. The COPY command reads and
loads the output from multiple host sources in parallel. For more information, see Loading data
from remote hosts.

AWS Data Pipeline

You can use AWS Data Pipeline to automate data movement and transformation into and out
of Amazon Redshift. By using the built-in scheduling capabilities of AWS Data Pipeline, you
can schedule and run recurring jobs without having to write your own complex data transfer
or transformation logic. For example, you can set up a recurring job to automatically copy
data from Amazon DynamoDB into Amazon Redshift. For a tutorial that walks you through
the process of creating a pipeline that periodically moves data from Amazon S3 to Amazon
Redshift, see Copy data to Amazon Redshift using AWS Data Pipeline in the AWS Data Pipeline
Developer Guide.

AWS DMS

You can migrate data to Amazon Redshift using AWS Database Migration Service. AWS DMS can
migrate your data to and from most widely used commercial and open-source databases such
as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, Aurora DB cluster, DynamoDB,
Amazon S3, MariaDB, and MySQL. For more information, see Using an Amazon Redshift
database as a target for AWS Database Migration Service.

Sample database

This section describes TICKIT, a sample database that Amazon Redshift documentation examples
use.

This small database consists of seven tables: two fact tables and five dimensions. You can load the
TICKIT dataset by following the steps in Step 4: Load data from Amazon S3 to Amazon Redshift in
the Amazon Redshift Getting Started Guide.

Sample database 13

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

CATEGORY
DATE
SALES
|Iiiiiii|||||

USERS
LISTING

This sample database application helps analysts track sales activity for the fictional TICKIT web

site, where users buy and sell tickets online for sporting events, shows, and concerts. In particular,
analysts can identify ticket movement over time, success rates for sellers, and the best-selling
events, venues, and seasons. Analysts can use this information to provide incentives to buyers and
sellers who frequent the site, to attract new users, and to drive advertising and promotions.

For example, the following query finds the top five sellers in San Diego, based on the number of
tickets sold in 2008:

select sellerid, username, (firstname ||' '|| lastname) as name,
city, sum(qtysold)

from sales, date, users

where sales.sellerid = users.userid

and sales.dateid = date.dateid

and year = 2008

and city 'San Diego'

group by sellerid, username, name, city

order by 5 desc

limit 5;

sellerid | username name city | sum

Sample database 14

Amazon Redshift Database Developer Guide

—————————— R et ettt ittt ittt
49977 | JIK84WTE | Julie Hanson | San Diego | 22
19750 | AAS23BDR | Charity Zimmerman | San Diego | 21
29069 | SVL81IMEQ | Axel Grant | San Diego | 17
43632 | VAGO8HKW | Griffin Dodson | San Diego | 16
36712 | RXT4OMKU | Hiram Turner | San Diego | 14

(5 rows)

The database used for the examples in this guide contains a small data set; the two fact tables each
contain less than 200,000 rows, and the dimensions range from 11 rows in the CATEGORY table up
to about 50,000 rows in the USERS table.

In particular, the database examples in this guide demonstrate the key features of Amazon Redshift
table design:

« Data distribution
o Data sort

» Columnar compression

For information about the schemas of the tables in the TICKIT database, choose the following tabs:

CATEGORY table

Column name Data type Description

CATID SMALLINT Primary key, a unique ID value for each row. Each row
represents a specific type of event for which tickets are
bought and sold.

CATGROUP VARCHAR(10) Descriptive name for a group of events, such as Shows
and Sports.

CATNAME VARCHAR(10) Short descriptive name for a type of event within a
group, such as Opera and Musicals.

CATDESC VARCHAR(50) Longer descriptive name for the type of event, such as

Musical theatre.

Sample database 15

Amazon Redshift

Database Developer Guide

DATE table

Column name

DATEID

CALDATE
DAY
WEEK
MONTH
QTR
YEAR

HOLIDAY

EVENT table

Column name

EVENTID

VENUEID

CATID

DATEID

EVENTNAME

Data type

SMALLINT

DATE
CHAR(3)
SMALLINT
CHAR(5)
CHAR(5)
SMALLINT

BOOLEAN

Data type

INTEGER

SMALLINT
SMALLINT
SMALLINT

VARCHAR(200)

Description

Primary key, a unique ID value for each row. Each
row represents a day in the calendar year.

Calendar date, such as 2008-06-24 .
Day of week (short form), such as SA.
Week number, such as 26.

Month name (short form), such as JUN.
Quarter number (1 through 4).
Four-digit year (2008).

Flag that denotes whether the day is a public holiday
(U.S.).

Description

Primary key, a unique ID value for each row. Each
row represents a separate event that takes place at a
specific venue at a specific time.

Foreign-key reference to the VENUE table.
Foreign-key reference to the CATEGORY table.
Foreign-key reference to the DATE table.

Name of the event, such as Hamlet or La
Traviata.

Sample database

16

Amazon Redshift Database Developer Guide

Column name Data type Description

STARTTIME TIMESTAMP Full date and start time for the event, such as
2008-10-10 19:30:00 .

VENUE table
Column name Data type Description
VENUEID SMALLINT Primary key, a unique ID value for each row.
Each row represents a specific venue where
events take place.
VENUENAME VARCHAR(100) Exact name of the venue, such as Cleveland
Browns Stadium.
VENUECITY VARCHAR(30) City name, such as Cleveland .
VENUESTATE CHAR(2) Two-letter state or province abbreviation
(United States and Canada), such as OH.
VENUESEATS INTEGER Maximum number of seats available at the
venue, if known, such as 73200. For demonstra
tion purposes, this column contains some null
values and zeroes.
USERS table
Column name Data type Description
USERID INTEGER Primary key, a unique ID value for each row. Each

row represents a registered user (a buyer or seller
or both) who has listed or bought tickets for at
least one event.

Sample database 17

Amazon Redshift

Database Developer Guide

Column name

USERNAME

FIRSTNAME

LASTNAME

CITYy

STATE

EMAIL

PHONE

LIKESPORTS, ...

LISTING table

Column name

LISTID

SELLERID

EVENTID

DATEID

Data type

CHAR(8)

VARCHAR(30)
VARCHAR(30)
VARCHAR(30)
CHAR(2)

VARCHAR(100)

CHAR(14)

BOOLEAN

Data type

INTEGER

INTEGER

INTEGER

SMALLINT

Description

An 8-character alphanumeric username, such as
PGLOSLII.

The user's first name, such as Victor.

The user's last name, such as Hexrnandez .
The user's home city, such as Naperville .
The user's home state, such as GA.

The user's email address; this column contains
random Latin values, such as turpiseac
cumsanlaoreet.oxg

The user's 14-character phone number, such as
(818) 765-4255.

A series of 10 different columns that identify the
user's likes and dislikes with true and false
values.

Description

Primary key, a unique ID value for each row. Each
row represents a listing of a batch of tickets for a
specific event.

Foreign-key reference to the USERS table, identifyi
ng the user who is selling the tickets.

Foreign-key reference to the EVENT table.

Foreign-key reference to the DATE table.

Sample database

18

Amazon Redshift

Database Developer Guide

Column name

NUMTICKETS

PRICEPERT

ICKET

TOTALPRICE

LISTTIME

SALES table

Column name

SALESID

LISTID

SELLERID

BUYERID

EVENTID
DATEID

QTYSOLD

Data type

SMALLINT

DECIMAL(8,2)

DECIMAL(8,2)

TIMESTAMP

Data type

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER
SMALLINT

SMALLINT

Description

The number of tickets available for sale, such as 2
or 20.

The fixed price of an individual ticket, such as
27 .00 or 206.00.

The total price for this listing (NUMTICKETS*PRICEP
ERTICKET).

The full date and time when the listing was posted,
such as 2008-03-18 07:19:35 .

Description

Primary key, a unique ID value for each row. Each row
represents a sale of one or more tickets for a specific
event, as offered in a specific listing.

Foreign-key reference to the LISTING table.

Foreign-key reference to the USERS table (the user
who sold the tickets).

Foreign-key reference to the USERS table (the user
who bought the tickets).

Foreign-key reference to the EVENT table.
Foreign-key reference to the DATE table.

The number of tickets that were sold, from 1 to 8. (A
maximum of 8 tickets can be sold in a single transacti
on.)

Sample database

19

Amazon Redshift

Database Developer Guide

Column name

PRICEPAID

COMMISSION

SALETIME

Data type

DECIMAL(8,2)

DECIMAL(8,2)

TIMESTAMP

Description

The total price paid for the tickets, such as 75.00 or
488.00. The individual price of a ticket is PRICEPAID/
QTYSOLD.

The 15% commission that the business collects from
the sale, such as 11.25 or 73.20. The seller receives
859% of the PRICEPAID value.

The full date and time when the sale was completed,
such as 2008-05-24 06:21:47 .

Sample database

20

Amazon Redshift Database Developer Guide

Amazon Redshift best practices

Following, you can find best practices for planning a proof of concept, designing tables, loading
data into tables, and writing queries for Amazon Redshift, and also a discussion of working with
Amazon Redshift Advisor.

Amazon Redshift is not the same as other SQL database systems. To fully realize the benefits of
the Amazon Redshift architecture, you must specifically design, build, and load your tables to use
massively parallel processing, columnar data storage, and columnar data compression. If your data
loading and query execution times are longer than you expect, or longer than you want, you might
be overlooking key information.

If you are an experienced SQL database developer, we strongly recommend that you review this
topic before you begin developing your Amazon Redshift data warehouse.

If you are new to developing SQL databases, this topic is not the best place to start. We
recommend that you begin by reading Run commands to define and use a database in your data

warehouse in the Amazon Redshift Getting Started Guide, and trying the examples yourself.

In this topic, you can find an overview of the most important development principles, along with
specific tips, examples, and best practices for implementing those principles. No single practice
can apply to every application. Evaluate all of your options before finishing a database design.
For more information, see Automatic table optimization, Loading data in Amazon Redshift, Query

performance tuning, and the reference chapters.

Topics

» Conduct a proof of concept (POC) for Amazon Redshift

Amazon Redshift best practices for designing tables

Amazon Redshift best practices for loading data

Amazon Redshift best practices for designing queries

Follow recommendations from Amazon Redshift Advisor

Conduct a proof of concept (POC) for Amazon Redshift

Amazon Redshift is a popular cloud data warehouse, which offers a fully managed cloud-based
service that integrates with an organization’s Amazon Simple Storage Service data lake, real-time

Conduct a proof of concept 21

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift Database Developer Guide

streams, machine learning (ML) workflows, transactional workflows, and much more. The following
sections guide you through the process of doing a proof of concept (POC) on Amazon Redshift. The
information here helps you set goals for your POC, and takes advantage of tools that can automate
the provisioning and configuration of services for your POC.

® Note

For a copy of this information as a PDF, choose the link Run your own Redshift POC on the
Amazon Redshift resources page.

When doing a POC of Amazon Redshift, you test, prove out, and adopt features ranging from
best-in-class security capabilities, elastic scaling, easy integration and ingestion, and flexible
decentralized data architecture options.

- - =2 ®

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Follow the these steps to conduct a successful POC.

Step 1: Scope your POC

B R =R RR O

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

When conducting a POC, you can either choose to use your own data, or you can choose to use
benchmarking datasets. When you choose your own data you run your own queries against the
data. With benchmarking data, sample queries are provided with the benchmark. See Use sample
datasets for more details if you are not ready to conduct a POC with your own data just yet.

In general, we recommend using two weeks of data for an Amazon Redshift POC.

Start by doing the following:

Step 1: Scope your POC 22

https://aws.amazon.com/redshift/resources/

Amazon Redshift Database Developer Guide

1.

Identify your business and functional requirements, then work backwards. Common examples
are: faster performance, lower costs, test a new workload or feature, or comparison between
Amazon Redshift and another data warehouse.

. Set specific targets which become the success criteria for the POC. For example, from faster

performance, come up with a list of the top five processes you wish to accelerate, and include
the current run times along with your required run time. These can be reports, queries, ETL
processes, data ingestion, or whatever your current pain points are.

. Identify the specific scope and artifacts needed to run the tests. What datasets do you need

to migrate or continuously ingest into Amazon Redshift, and what queries and processes are
needed to run the tests to measure against the success criteria? There are two ways to do this:

Bring your own data

» To test your own data, come up with the minimum viable list of data artifacts which is
required to test for your success criteria. For example, if your current data warehouse has 200
tables, but the reports you want to test only need 20, your POC can be run faster by using
only the smaller subset of tables.

Use sample datasets

« If you don't have your own datasets ready, you can still get started doing a POC on Amazon
Redshift by using the industry-standard benchmark datasets such as TPC-DS or TPC-H and run
sample benchmarking queries to harness the power of Amazon Redshift. These datasets can

be accessed from within your Amazon Redshift data warehouse after it is created. For detailed
instructions on how to access these datasets and sample queries, see Step 2: Launch Amazon
Redshift.

Step 2: Launch Amazon Redshift

B % 2= ®

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Step 2: Launch Amazon Redshift 23

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

Amazon Redshift Database Developer Guide

Amazon Redshift accelerates your time to insights with fast, easy, and secure cloud data
warehousing at scale. You can start quickly by launching your warehouse on the Redshift Serverless
console and get from data to insights in seconds. With Redshift Serverless, you can focus on
delivering on your business outcomes without worrying about managing your data warehouse.

Set up Amazon Redshift Serverless

The first time you use Redshift Serverless, the console leads you through the steps required to
launch your warehouse. You might also be eligible for a credit towards your Redshift Serverless
usage in your account. For more information about choosing a free trial, see Amazon Redshift free

trial. Follow the steps in the Creating a data warehouse with Redshift Serverless in the Amazon
Redshift Getting Started Guide to create a data warehouse with Redshift Serverless. If you do not
have a dataset that you would like to load, the guide also contains steps on how to load a sample
data set.

If you have previously launched Redshift Serverless in your account, follow the steps in Creating
a workgroup with a namespace in the Amazon Redshift Management Guide. After your warehouse

is available, you can opt to load the sample data available in Amazon Redshift. For information
about using Amazon Redshift query editor v2 to load data, see Loading sample data in the Amazon
Redshift Management Guide.

If you are bringing your own data instead of loading the sample data set, see Step 3: Load your
data.

Step 3: Load your data

@ B @ = ®

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

After launching Redshift Serverless, the next step is to load your data for the POC. Whether you
are uploading a simple CSV file, ingesting semi-structured data from S3, or streaming data directly,
Amazon Redshift provides the flexibility to quickly and easily move the data into Amazon Redshift
tables from the source.

Choose one of the following methods to load your data.

Step 3: Load your data 24

https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html#serverless-console-resource-creation
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-sample-data

Amazon Redshift Database Developer Guide

Upload a local file

For quick ingestion and analysis, you can use Amazon Redshift query editor v2 to easily load data

files from your local desktop. It has the capability to process files in various formats such as CSV,
JSON, AVRO, PARQUET, ORC, and more. To enable your users, as an administrator, to load data
from a local desktop using query editor v2 you have to specify a common Amazon S3 bucket, and
the user account must be configured with the proper permissions. You can follow Data load made

easy and secure in Amazon Redshift using Query Editor V2 for step-by-step guidance.

Load an Amazon S3 file

To load data from an Amazon S3 bucket into Amazon Redshift, begin by using the COPY command,
specifying the source Amazon S3 location and target Amazon Redshift table. Ensure that the IAM
roles and permissions are properly configured to allow Amazon Redshift access to the designated
Amazon S3 bucket. Follow Tutorial: Loading data from Amazon S3 for step-by-step guidance. You
can also choose the Load data option in query editor v2 to directly load data from your S3 bucket.

Continuous data ingestion

Autocopy (in preview) is an extension of the COPY command and automates continuous data

loading from Amazon S3 buckets. When you create a copy job, Amazon Redshift detects when new
Amazon S3 files are created in a specified path, and then loads them automatically without your
intervention. Amazon Redshift keeps track of the loaded files to verify that they are loaded only
one time. For instructions on how to create copy jobs, see COPY JOB (preview)

® Note

Autocopy is currently in preview and supported only in provisioned clusters in specific AWS
Regions. To create a preview cluster for autocopy, see Loading tables with continuous file

ingestion from Amazon S3 (preview).

Load your streaming data

Streaming ingestion provides low-latency, high-speed ingestion of stream data from Amazon
Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka into Amazon Redshift.
Amazon Redshift streaming ingestion uses a materialized view, which is updated directly from

the stream utilizing auto refresh. The materialized view maps to the stream data source. You can

Step 3: Load your data 25

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-loading-data.html
https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-job.html
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/msk/
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html#materialized-view-auto-refresh

Amazon Redshift Database Developer Guide

perform filtering and aggregations on the stream data as part of the materialized view definition.
For step-by-step guidance to load data from a stream, see Getting started with Amazon Kinesis

Data Streams or an Getting started with Amazon Managed Streaming for Apache Kafka.

Step 4: Analyze your data

B

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

After creating your Redshift Serverless workgroup and namespace, and loading your data, you can
immediately run queries by opening the Query editor v2 from the navigation panel of the Redshift
Serverless console. You can use query editor v2 to test query functionality or query performance
against your own datasets.

Query using Amazon Redshift query editor v2

You can access query editor v2 from the Amazon Redshift console. See Simplify your data analysis

with Amazon Redshift query editor v2 for a complete guide on how to configure, connect, and run

queries with query editor v2.

Alternatively, if you want to run a load test as part of your POC, you can do this by the following
steps to install and run Apache JMeter.

Run a load test using Apache JMeter

To perform a load test to simulate “N" users submitting queries concurrently to Amazon Redshift,
you can use Apache JMeter, an open-source Java based tool.

To install and configure Apache JMeter to run against your Redshift Serverless workgroup, follow
the instructions in Automate Amazon Redshift load testing with the AWS Analytics Automation
Toolkit. It uses the AWS Analytics Automation toolkit (AAA), an open source utility for dynamically
deploying Redshift solutions, to automatically launch these resources. If you have loaded your own
data into Amazon Redshift, be sure to perform the Step #5 — Customize SQL option, to make sure
you supply the appropriate SQL statements you would like to test against your tables. Test each of
these SQL statements one time using query editor v2 to make sure they run without errors.

Step 4: Analyze your data 26

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started-MSK.html
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://jmeter.apache.org/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://github.com/aws-samples/amazon-redshift-infrastructure-automation/tree/main

Amazon Redshift Database Developer Guide

After you complete customizing your SQL statements and finalizing your test plan, save and run
your test plan against your Redshift Serverless workgroup. To monitor the progress of your test,
open the Redshift Serverless console, navigate to Query and database monitoring, choose the
Query history tab and view information about your queries.

For performance metrics, choose the Database performance tab on the Redshift Serverless
console, to monitor metrics such as Database Connections and CPU utilization. Here you can
view a graph to monitor the RPU capacity used and observe how Redshift Serverless automatically
scales to meet concurrent workload demands while the load test is running on your workgroup.

RPU capacity used

Overall capacity in Redshift processing units (RPUs).

Average capacity used
70
60
50
40
30

20

10

0

Feb 22 Feb 22 Feb 22 Feb 23 Feb 23 Feb 23 Feb 23
6:00 AM 12:00 PM 6:00 PM 12:00 AM 6:00 AM 12:00 PM 6:00 PM

Time (UTC -05:00)

Database connections is another useful metric to monitor while running the load test to see
how your workgroup is handling numerous concurrent connections at a given time to meet the
increasing workload demands.

Step 4: Analyze your data 27

https://console.aws.amazon.com/redshiftv2/home?#serverless-query-and-database-monitoring

Amazon Redshift Database Developer Guide

Database connections
The number of active database connections.

Count

0
Thu Feb 22 2024 12:00:00 GMT-0500 (Eastern Standard Time)

Time (UTC -05:00)

== awsdatacatalog == dev = testdrive

Step 5: Optimize

~-B % 2 {9

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Amazon Redshift empowers tens of thousands of users to process exabytes of data every day and
power their analytics workloads by offering a variety of configurations and features to support
individual use cases. When choosing between these options, customers are looking for tools that
help them determine the most optimal data warehouse configuration to support their Amazon
Redshift workload.

Test drive

You can use Test Drive to automatically replay your existing workload on potential configurations
and analyze the corresponding outputs to evaluate the optimal target to migrate your workload to.

Step 5: Optimize 28

https://github.com/aws/redshift-test-drive/tree/main

Amazon Redshift Database Developer Guide

See Find the best Amazon Redshift configuration for your workload using Redshift Test Drive for

information about using Test Drive to evaluate different Amazon Redshift configurations.

Amazon Redshift best practices for designing tables

As you plan your database, certain key table design decisions heavily influence overall query
performance. These design choices also have a significant effect on storage requirements, which
in turn affects query performance by reducing the number of I/O operations and minimizing the
memory required to process queries.

In this section, you can find a summary of the most important design decisions and best practices
for optimizing query performance. Automatic table optimization provides more detailed

explanations and examples of table design options.

Topics

o Choose the best sort key

» Choose the best distribution style

o Let COPY choose compression encodings

» Define primary key and foreign key constraints

o Use the smallest possible column size

» Use date/time data types for date columns

Choose the best sort key

Amazon Redshift stores your data on disk in sorted order according to the sort key. The Amazon
Redshift query optimizer uses sort order when it determines optimal query plans.

® Note

When you use automatic table optimization, you don't need to choose the sort key of your
table. For more information, see Automatic table optimization.

Some suggestions for the best approach follow:

» To have Amazon Redshift choose the appropriate sort order, specify AUTO for the sort key.

Best practices for designing tables 29

https://aws.amazon.com/blogs/big-data/find-the-best-amazon-redshift-configuration-for-your-workload-using-redshift-test-drive/

Amazon Redshift Database Developer Guide

« If recent data is queried most frequently, specify the timestamp column as the leading column
for the sort key.

Queries are more efficient because they can skip entire blocks that fall outside the time range.

« If you do frequent range filtering or equality filtering on one column, specify that column as the
sort key.

Amazon Redshift can skip reading entire blocks of data for that column. It can do so because it
tracks the minimum and maximum column values stored on each block and can skip blocks that
don't apply to the predicate range.

« If you frequently join a table, specify the join column as both the sort key and the distribution
key.

Doing this enables the query optimizer to choose a sort merge join instead of a slower hash join.
Because the data is already sorted on the join key, the query optimizer can bypass the sort phase
of the sort merge join.

Choose the best distribution style

When you run a query, the query optimizer redistributes the rows to the compute nodes as

needed to perform any joins and aggregations. The goal in selecting a table distribution style is to
minimize the impact of the redistribution step by locating the data where it needs to be before the
query is run.

(® Note

When you use automatic table optimization, you don't need to choose the distribution style
of your table. For more information, see Automatic table optimization.

Some suggestions for the best approach follow:
1. Distribute the fact table and one dimension table on their common columns.

Your fact table can have only one distribution key. Any tables that join on another key aren't
collocated with the fact table. Choose one dimension to collocate based on how frequently it is
joined and the size of the joining rows. Designate both the dimension table's primary key and
the fact table's corresponding foreign key as the DISTKEY.

Choose the best distribution style 30

Amazon Redshift Database Developer Guide

2. Choose the largest dimension based on the size of the filtered dataset.

Only the rows that are used in the join must be distributed, so consider the size of the dataset
after filtering, not the size of the table.

3. Choose a column with high cardinality in the filtered result set.

If you distribute a sales table on a date column, for example, you should probably get fairly
even data distribution, unless most of your sales are seasonal. However, if you commonly use a
range-restricted predicate to filter for a narrow date period, most of the filtered rows occur on a
limited set of slices and the query workload is skewed.

4. Change some dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.

To have Amazon Redshift choose the appropriate distribution style, specify AUTO for the
distribution style.

For more information about choosing distribution styles, see Data distribution for query
optimization.

Let COPY choose compression encodings

You can specify compression encodings when you create a table, but in most cases, automatic
compression produces the best results.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

The COPY command analyzes your data and applies compression encodings to an empty table
automatically as part of the load operation.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression chooses a less efficient
compression encoding to keep the sort key columns balanced with other columns.

Use automatic compression 31

Amazon Redshift Database Developer Guide

Suppose that your table's sort key is a date or timestamp and the table uses many large varchar
columns. In this case, you might get better performance by not compressing the sort key column
at all. Run the ANALYZE COMPRESSION command on the table, then use the encodings to create a
new table, but leave out the compression encoding for the sort key.

There is a performance cost for automatic compression encoding, but only if the table is empty
and does not already have compression encoding. For short-lived tables and tables that you
create frequently, such as staging tables, load the table once with automatic compression or run
the ANALYZE COMPRESSION command. Then use those encodings to create new tables. You can
add the encodings to the CREATE TABLE statement, or use CREATE TABLE LIKE to create a new
table with the same encoding.

For more information, see Loading tables with automatic compression.

Define primary key and foreign key constraints

Define primary key and foreign key constraints between tables wherever appropriate. Even though
they are informational only, the query optimizer uses those constraints to generate more efficient
query plans.

Do not define primary key and foreign key constraints unless your application enforces the
constraints. Amazon Redshift does not enforce unique, primary-key, and foreign-key constraints.

See Table constraints for additional information about how Amazon Redshift uses constraints.

Use the smallest possible column size

Don't make it a practice to use the maximum column size for convenience.

Instead, consider the largest values you are likely to store in your columns and size them
accordingly. For instance, a CHAR column for storing U.S. state and territory abbreviations used by
the post office only needs to be CHAR(2).

Use date/time data types for date columns

Amazon Redshift stores DATE and TIMESTAMP data more efficiently than CHAR or VARCHAR, which
results in better query performance. Use the DATE or TIMESTAMP data type, depending on the
resolution you need, rather than a character type when storing date/time information. For more
information, see Datetime types.

Define constraints 32

Amazon Redshift Database Developer Guide

Amazon Redshift best practices for loading data

Loading very large datasets can take a long time and consume a lot of computing resources. How
your data is loaded can also affect query performance. This section presents best practices for
loading data efficiently using COPY commands, bulk inserts, and staging tables.

Topics

« Learn how to load data with a tutorial

¢ Use a COPY command to load data

« Use a single COPY command to load from multiple files

» Loading data files

« Compressing your data files

« Verify data files before and after a load

e Use a multi-row insert

« Use a bulk insert

» Load data in sort key order

» Load data in sequential blocks

« Use time-series tables

¢ Schedule around maintenance windows

Learn how to load data with a tutorial

Tutorial: Loading data from Amazon S3 walks you beginning to end through the steps to upload
data to an Amazon S3 bucket and then use the COPY command to load the data into your tables.
The tutorial includes help with troubleshooting load errors and compares the performance

difference between loading from a single file and loading from multiple files.

Use a COPY command to load data

The COPY command loads data in parallel from Amazon S3, Amazon EMR, Amazon DynamoDB, or
multiple data sources on remote hosts. COPY loads large amounts of data much more efficiently
than using INSERT statements, and stores the data more effectively as well.

For more information about using the COPY command, see Loading data from Amazon S3 and
Loading data from an Amazon DynamoDB table.

Best practices for loading data 33

Amazon Redshift Database Developer Guide

Use a single COPY command to load from multiple files

Amazon Redshift can automatically load in parallel from multiple compressed data files. You can
specify the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

However, if you use multiple concurrent COPY commands to load one table from multiple files,
Amazon Redshift is forced to perform a serialized load. This type of load is much slower and
requires a VACUUM process at the end if the table has a sort column defined. For more information
about using COPY to load data in parallel, see Loading data from Amazon S3.

Loading data files

Source-data files come in different formats and use varying compression algorithms. When loading
data with the COPY command, Amazon Redshift loads all of the files referenced by the Amazon S3
bucket prefix. (The prefix is a string of characters at the beginning of the object key name.) If the
prefix refers to multiple files or files that can be split, Amazon Redshift loads the data in parallel,
taking advantage of Amazon Redshift's MPP architecture. This divides the workload among the
nodes in the cluster. In contrast, when you load data from a file that can't be split, Amazon Redshift
is forced to perform a serialized load, which is much slower. The following sections describe the
recommended way to load different file types into Amazon Redshift, depending on their format
and compression.

Loading data from files that can be split

The following files can be automatically split when their data is loaded:

« an uncompressed CSV file
» a CSV file compressed with BZIP
« a columnar file (Parquet/ORC)

Amazon Redshift automatically splits files 128MB or larger into chunks. Columnar files, specifically
Parquet and ORC, aren't split if they're less than 128MB. Redshift makes use of slices working in
parallel to load the data. This provides fast load performance.

Loading data from files that can't be split

File types such as JSON, or CSV, when compressed with other compression algorithms, such as
GZIP, aren't automatically split. For these we recommend manually splitting the data into multiple

Use a single COPY command 34

Amazon Redshift Database Developer Guide

smaller files that are close in size, from 1 MB to 1 GB after compression. Additionally, make the
number of files a multiple of the number of slices in your cluster. For more information about how
to split your data into multiple files and examples of loading data using COPY, see Loading data
from Amazon S3.

Compressing your data files

When you want to compress large load files, we recommend that you use gzip, lzop, bzip2, or
Zstandard to compress them and split the data into multiple smaller files.

Specify the GZIP, LZOP, BZIP2, or ZSTD option with the COPY command. This example loads the
TIME table from a pipe-delimited lzop file.

copy time

from 's3://amzn-s3-demo-bucket/data/timerows.l1zo'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
1zop

delimiter '|';

There are instances when you don't have to split uncompressed data files. For more information
about splitting your data and examples of using COPY to load data, see Loading data from Amazon
S3.

Verify data files before and after a load

Before you load data from Amazon S3, first verify that your Amazon S3 bucket contains all the
correct files, and only those files. For more information, see Verifying that the correct files are

present in your bucket.

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. For more information, see Verifying that the data loaded correctly.

Use a multi-row insert

If a COPY command is not an option and you require SQL inserts, use a multi-row insert whenever
possible. Data compression is inefficient when you add data only one row or a few rows at a time.

Multi-row inserts improve performance by batching up a series of inserts. The following example
inserts three rows into a four-column table using a single INSERT statement. This is still a small
insert, shown simply to illustrate the syntax of a multi-row insert.

Compressing your data files 35

https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html

Amazon Redshift Database Developer Guide

insert into category_stage values
(default, default, default, default),
(20, default, 'Country', default),
(21, 'Concerts', 'Rock', default);

For more details and examples, see INSERT.

Use a bulk insert

Use a bulk insert operation with a SELECT clause for high-performance data insertion.

Use the INSERT and CREATE TABLE AS commands when you need to move data or a subset of data
from one table into another.

For example, the following INSERT statement selects all of the rows from the CATEGORY table and
inserts them into the CATEGORY_STAGE table.

insert into category_stage
(select * from category);

The following example creates CATEGORY_STAGE as a copy of CATEGORY and inserts all of the
rows in CATEGORY into CATEGORY_STAGE.

create table category_stage as
select * from category;

Load data in sort key order

Load your data in sort key order to avoid needing to vacuum.

If each batch of new data follows the existing rows in your table, your data is properly stored in
sort order, and you don't need to run a vacuum. You don't need to presort the rows in each load
because COPY sorts each batch of incoming data as it loads.

For example, suppose that you load data every day based on the current day's activity. If your sort
key is a timestamp column, your data is stored in sort order. This order occurs because the current
day's data is always appended at the end of the previous day's data. For more information, see
Load your data in sort key order. For more information about vacuum operations, see Vacuuming
tables.

Use a bulk insert 36

https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html

Amazon Redshift Database Developer Guide

Load data in sequential blocks

If you need to add a large quantity of data, load the data in sequential blocks according to sort
order to eliminate the need to vacuum.

For example, suppose that you need to load a table with events from January 2017 to December
2017. Assuming each month is in a single file, load the rows for January, then February, and so on.
Your table is completely sorted when your load completes, and you don't need to run a vacuum.
For more information, see Use time-series tables.

When loading very large datasets, the space required to sort might exceed the total available
space. By loading data in smaller blocks, you use much less intermediate sort space during each
load. In addition, loading smaller blocks make it easier to restart if the COPY fails and is rolled
back.

Use time-series tables

If your data has a fixed retention period, you can organize your data as a sequence of time-series
tables. In such a sequence, each table is identical but contains data for different time ranges.

You can easily remove old data simply by running a DROP TABLE command on the corresponding
tables. This approach is much faster than running a large-scale DELETE process and saves you

from having to run a subsequent VACUUM process to reclaim space. To hide the fact that the data
is stored in different tables, you can create a UNION ALL view. When you delete old data, refine
your UNION ALL view to remove the dropped tables. Similarly, as you load new time periods into
new tables, add the new tables to the view. To signal the optimizer to skip the scan on tables that
don't match the query filter, your view definition filters for the date range that corresponds to each
table.

Avoid having too many tables in the UNION ALL view. Each additional table adds a small processing
time to the query. Tables don't need to use the same time frame. For example, you might have
tables for differing time periods, such as daily, monthly, and yearly.

If you use time-series tables with a timestamp column for the sort key, you effectively load your
data in sort key order. Doing this eliminates the need to vacuum to re-sort the data. For more
information, see Load your data in sort key order.

Load data in sequential blocks 37

Amazon Redshift Database Developer Guide

Schedule around maintenance windows

If a scheduled maintenance occurs while a query is running, the query is terminated and rolled
back and you need to restart it. Schedule long-running operations, such as large data loads or
VACUUM operation, to avoid maintenance windows. You can also minimize the risk, and make
restarts easier when they are needed, by performing data loads in smaller increments and
managing the size of your VACUUM operations. For more information, see Load data in sequential

blocks and Vacuuming tables.

Amazon Redshift best practices for designing queries

To maximize query performance, follow these recommendations when creating queries:

» Design tables according to best practices to provide a solid foundation for query performance.
For more information, see Amazon Redshift best practices for designing tables.

« Avoid using select *.Include only the columns you specifically need.

« Use a CASE conditional expression to perform complex aggregations instead of selecting from

the same table multiple times.

» Don't use cross-joins unless absolutely necessary. These joins without a join condition result in
the Cartesian product of two tables. Cross-joins are typically run as nested-loop joins, which are
the slowest of the possible join types.

» Use subqueries in cases where one table in the query is used only for predicate conditions and
the subquery returns a small number of rows (less than about 200). The following example uses
a subquery to avoid joining the LISTING table.

select sum(sales.qtysold)
from sales
where salesid in (select listid from listing where listtime > '2008-12-26');

» Use predicates to restrict the dataset as much as possible.

« In the predicate, use the least expensive operators that you can. Comparison condition operators
are preferable to LIKE operators. LIKE operators are still preferable to SIMILAR TO or POSIX
operators.

» Avoid using functions in query predicates. Using them can drive up the cost of the query by

requiring large numbers of rows to resolve the intermediate steps of the query.

Schedule around maintenance windows 38

Amazon Redshift Database Developer Guide

« If possible, use a WHERE clause to restrict the dataset. The query planner can then use row order
to help determine which records match the criteria, so it can skip scanning large numbers of disk
blocks. Without this, the query execution engine must scan participating columns entirely.

« Add predicates to filter tables that participate in joins, even if the predicates apply the same
filters. The query returns the same result set, but Amazon Redshift is able to filter the join tables
before the scan step and can then efficiently skip scanning blocks from those tables. Redundant
filters aren't needed if you filter on a column that's used in the join condition.

For example, suppose that you want to join SALES and LISTING to find ticket sales for tickets
listed after December, grouped by seller. Both tables are sorted by date. The following query
joins the tables on their common key and filters for 1isting.listtime values greater than
December 1.

select listing.sellerid, sum(sales.qtysold)
from sales, listing

where sales.salesid = listing.listid

and listing.listtime > '2008-12-01'

group by 1 order by 1;

The WHERE clause doesn't include a predicate for sales.saletime, so the execution engine
is forced to scan the entire SALES table. If you know the filter would result in fewer rows
participating in the join, then add that filter as well. The following example cuts execution time
significantly.

select listing.sellerid, sum(sales.qtysold)
from sales, listing

where sales.salesid = listing.listid

and listing.listtime > '2008-12-01'

and sales.saletime > '2008-12-01'

group by 1 order by 1;

» Use sort keys in the GROUP BY clause so the query planner can use more efficient aggregation.
A query might qualify for one-phase aggregation when its GROUP BY list contains only sort key
columns, one of which is also the distribution key. The sort key columns in the GROUP BY list
must include the first sort key, then other sort keys that you want to use in sort key order. For
example, it is valid to use the first sort key, the first and second sort keys, the first, second, and
third sort keys, and so on. It is not valid to use the first and third sort keys.

Best practices for designing queries 39

Amazon Redshift Database Developer Guide

You can confirm the use of one-phase aggregation by running the EXPLAIN command and
looking for XN GroupAggregate in the aggregation step of the query.

« If you use both GROUP BY and ORDER BY clauses, make sure that you put the columns in the
same order in both. That is, use the approach just following.

group by a, b, c
order by a, b, c

Don't use the following approach.

group by b, c, a
order by a, b, ¢

Follow recommendations from Amazon Redshift Advisor

To help you improve the performance and decrease the operating costs for your Amazon Redshift
cluster, Amazon Redshift Advisor offers you specific recommendations about changes to make.
Advisor develops its customized recommendations by analyzing performance and usage metrics for
your cluster. These tailored recommendations relate to operations and cluster settings. To help you
prioritize your optimizations, Advisor ranks recommendations by order of impact.

Advisor bases its recommendations on observations regarding performance statistics or operations
data. Advisor develops observations by running tests on your clusters to determine if a test value is
within a specified range. If the test result is outside of that range, Advisor generates an observation
for your cluster. At the same time, Advisor creates a recommendation about how to bring the
observed value back into the best-practice range. Advisor only displays recommendations that
should have a significant impact on performance and operations. When Advisor determines that a
recommendation has been addressed, it removes it from your recommendation list.

For example, suppose that your data warehouse contains a large number of uncompressed

table columns. In this case, you can save on cluster storage costs by rebuilding tables using the
ENCODE parameter to specify column compression. In another example, suppose that Advisor
observes that your cluster contains a significant amount of data in uncompressed table data. In
this case, it provides you with the SQL code block to find the table columns that are candidates for
compression and resources that describe how to compress those columns.

Follow Advisor recommendations 40

Amazon Redshift Database Developer Guide

Amazon Redshift Regions where Advisor is supported

The Amazon Redshift Advisor feature is available only in the following AWS Regions:

« US East (N. Virginia) Region (us-east-1)

« US East (Ohio) Region (us-east-2)

« US West (N. California) Region (us-west-1)

» US West (Oregon) Region (us-west-2)
 Africa (Cape Town) Region (af-south-1)

« Asia Pacific (Hong Kong) Region (ap-east-1)

« Asia Pacific (Hyderabad) Region (ap-south-2)
« Asia Pacific (Jakarta) Region (ap-southeast-3)
« Asia Pacific (Melbourne) Region (ap-southeast-4)
« Asia Pacific (Mumbai) Region (ap-south-1)

« Asia Pacific (Osaka) Region (ap-northeast-3)
« Asia Pacific (Seoul) Region (ap-northeast-2)

« Asia Pacific (Singapore) Region (ap-southeast-1)
« Asia Pacific (Sydney) Region (ap-southeast-2)
« Asia Pacific (Tokyo) Region (ap-northeast-1)
« Canada (Central) Region (ca-central-1)

» Canada West (Calgary) Region (ca-west-1)

« China (Beijing) Region (cn-north-1)

« China (Ningxia) Region (cn-northwest-1)

» Europe (Frankfurt) Region (eu-central-1)

» Europe (Ireland) Region (eu-west-1)

» Europe (London) Region (eu-west-2)

» Europe (Milan) Region (eu-south-1)

» Europe (Paris) Region (eu-west-3)

» Europe (Spain) Region (eu-south-2)

» Europe (Stockholm) Region (eu-north-1)

Amazon Redshift Regions where Advisor is supported 41

Amazon Redshift Database Developer Guide

» Europe (Zurich) Region (eu-central-2)

o Israel (Tel Aviv) Region (il-central-1)

» Middle East (Bahrain) Region (me-south-1)
» Middle East (UAE) Region (me-central-1)

» South America (Sao Paulo) Region (sa-east-1)

Topics

« Viewing Amazon Redshift Advisor recommendations

« Amazon Redshift Advisor recommendations

Viewing Amazon Redshift Advisor recommendations

You can access Amazon Redshift Advisor recommendations using the Amazon Redshift console,
Amazon Redshift API, or AWS CLI. To access recommendations you must have permission
redshift:ListRecommendations attached to your IAM role or identity.

Viewing Amazon Redshift Advisor recommendations on the Amazon Redshift
provisioned console

You can view Amazon Redshift Advisor recommendations on the AWS Management Console.

To view Amazon Redshift Advisor recommendations for Amazon Redshift clusters on the
console

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Advisor.

3. Expand each recommendation to see more details. On this page, you can sort and group
recommendations.

Viewing Amazon Redshift Advisor recommendations using Amazon Redshift API
operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
Amazon Redshift API. Typically, you develop and application in your programming language of

Viewing Advisor recommendations 42

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

your choice to call the redshift:ListRecommendations API using an AWS SDK. For more
information, see ListRecommendations in the Amazon Redshift APl Reference.

Viewing Amazon Redshift Advisor recommendations using AWS Command Line
Interface operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
AWS Command Line Interface. For more information, see list-recommendations in the AWS CLI

Command Reference.

Amazon Redshift Advisor recommendations

Amazon Redshift Advisor offers recommendations about how to optimize your Amazon Redshift
cluster to increase performance and save on operating costs. You can find explanations for each
recommendation in the console, as described preceding. You can find further details on these
recommendations in the following sections.

Topics

o Compress Amazon S3 file objects loaded by COPY

« Isolate multiple active databases

» Reallocate workload management (WLM) memory

» Skip compression analysis during COPY

« Split Amazon S3 objects loaded by COPY

« Update table statistics

« Enable short query acceleration

« Alter distribution keys on tables

« Alter sort keys on tables

« Alter compression encodings on columns

» Data type recommendations

Compress Amazon S3 file objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data in parallel. It can read files from Amazon S3, DynamoDB
tables, and text output from one or more remote hosts.

Advisor recommendations 43

https://docs.aws.amazon.com/redshift/latest/APIReference/API_ListRecommendations.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/list-recommendations.html

Amazon Redshift Database Developer Guide

When loading large amounts of data, we strongly recommend using the COPY command to load
compressed data files from S3. Compressing large datasets saves time uploading the files to
Amazon S3. COPY can also speed up the load process by uncompressing the files as they are read.

Analysis

Long-running COPY commands that load large uncompressed datasets often have an opportunity
for considerable performance improvement. The Advisor analysis identifies COPY commands

that load large uncompressed datasets. In such a case, Advisor generates a recommendation to
implement compression on the source files in Amazon S3.

Recommendation

Ensure that each COPY that loads a significant amount of data, or runs for a significant duration,
ingests compressed data objects from Amazon S3. You can identify the COPY commands that
load large uncompressed datasets from Amazon S3 by running the following SQL command as a
superuser.

SELECT
wq.userid, query, exec_start_time AS starttime, COUNT(*) num_files,
ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
SUBSTRING(querytxt,1,60) copy_sql

FROM stl_s3client s

JOIN stl_query q USING (query)

JOIN stl_wlm_query wg USING (query)

WHERE s.userid>1 AND http_method = 'GET'
AND POSITION('COPY ANALYZE' IN querytxt) = 0
AND aborted = @ AND final_state='Completed'

GROUP BY 1, 2, 3, 7

HAVING SUM(transfer_size) = SUM(data_size)

AND SUM(transfer_size)/(1024*1024) >= 5

ORDER BY 6 DESC, 5 DESC;

If the staged data remains in Amazon S3 after you load it, which is common in data lake
architectures, storing this data in a compressed form can reduce your storage costs.

Implementation tips

« The ideal object size is 1-128 MB after compression.

Advisor recommendations 44

Amazon Redshift Database Developer Guide

» You can compress files with gzip, lzop, or bzip2 format.

Isolate multiple active databases

As a best practice, we recommend isolating databases in Amazon Redshift from one another.
Queries run in a specific database and can't access data from any other database on the cluster.
However, the queries that you run in all databases of a cluster share the same underlying cluster
storage space and compute resources. When a single cluster contains multiple active databases,
their workloads are usually unrelated.

Analysis

The Advisor analysis reviews all databases on the cluster for active workloads running at the same
time. If there are active workloads running at the same time, Advisor generates a recommendation
to consider migrating databases to separate Amazon Redshift clusters.

Recommendation

Consider moving each actively queried database to a separate dedicated cluster. Using a separate
cluster can reduce resource contention and improve query performance. It can do so because

it allows you to set the size for each cluster for the storage, cost, and performance needs of

each workload. Also, unrelated workloads often benefit from different workload management
configurations.

To identify which databases are actively used, you can run this SQL command as a superuser.

SELECT database,
COUNT(*) as num_queries,
AVG(DATEDIFF(sec,starttime,endtime)) avg_duration,
MIN(starttime) as oldest_ts,
MAX(endtime) as latest_ts

FROM stl_query

WHERE userid > 1

GROUP BY database;

Implementation tips

« Because a user must connect to each database specifically, and queries can only access a single
database, moving databases to separate clusters has minimal impact for users.

Advisor recommendations 45

Amazon Redshift Database Developer Guide

« One option to move a database is to take the following steps:
1. Temporarily restore a snapshot of the current cluster to a cluster of the same size.
2. Delete all databases from the new cluster except the target database to be moved.

3. Resize the cluster to an appropriate node type and count for the database's workload.

Reallocate workload management (WLM) memory

Amazon Redshift routes user queries to Implementing manual WLM for processing. Workload

management (WLM) defines how those queries are routed to the queues. Amazon Redshift
allocates each queue a portion of the cluster's available memory. A queue's memory is divided
among the queue's query slots.

When a queue is configured with more slots than the workload requires, the memory allocated to
these unused slots goes underutilized. Reducing the configured slots to match the peak workload
requirements redistributes the underutilized memory to active slots, and can result in improved
query performance.

Analysis

The Advisor analysis reviews workload concurrency requirements to identify query queues with
unused slots. Advisor generates a recommendation to reduce the number of slots in a queue when
it finds the following:

« A queue with slots that are completely inactive throughout the analysis.

« A queue with more than four slots that had at least two inactive slots throughout the analysis.

Recommendation

Reducing the configured slots to match peak workload requirements redistributes underutilized
memory to active slots. Consider reducing the configured slot count for queues where the slots
have never been fully used. To identify these queues, you can compare the peak hourly slot
requirements for each queue by running the following SQL command as a superuser.

WITH
generate_dt_series AS (select sysdate - (n * interval '5 second') as dt from (select
row_number() over () as n from stl_scan limit 17280)),
apex AS (

Advisor recommendations 46

Amazon Redshift Database Developer Guide

SELECT iq.dt, iq.service_class, iq.num_query_tasks, count(ig.slot_count) as
service_class_queries, sum(iq.slot_count) as service_class_slots
FROM
(select gds.dt, wq.service_class, wscc.num_query_tasks, wqg.slot_count
FROM stl_wlm_query wq
JOIN stv_wlm_service_class_config wscc ON (wscc.service_class =
wqg.service_class AND wscc.service_class > 5)
JOIN generate_dt_series gds ON (wqg.service_class_start_time <= gds.dt AND
wq.service_class_end_time > gds.dt)
WHERE wq.userid > 1 AND wq.service_class > 5) iq
GROUP BY iqg.dt, iq.service_class, iqg.num_query_tasks),
maxes as (SELECT apex.service_class, trunc(apex.dt) as d, date_part(h,apex.dt) as
dt_h, max(service_class_slots) max_service_class_slots
from apex group by apex.service_class, apex.dt,
date_part(h,apex.dt))
SELECT apex.service_class - 5 AS queue, apex.service_class, apex.num_query_tasks AS

max_wlm_concurrency, maxes.d AS day, maxes.dt_h || ':00 - ' || maxes.dt_h || ':59' as
hour, MAX(apex.service_class_slots) as max_service_class_slots
FROM apex

JOIN maxes ON (apex.service_class = maxes.service_class AND apex.service_class_slots =
maxes.max_service_class_slots)

GROUP BY apex.service_class, apex.num_query_tasks, maxes.d, maxes.dt_h

ORDER BY apex.service_class, maxes.d, maxes.dt_h;

The max_service_class_slots column represents the maximum number of WLM query slots
in the query queue for that hour. If underutilized queues exist, implement the slot reduction
optimization by modifying a parameter group, as described in the Amazon Redshift Management
Guide.

Implementation tips

« If your workload is highly variable in volume, make sure that the analysis captured a peak
utilization period. If it didn't, run the preceding SQL repeatedly to monitor peak concurrency
requirements.

» For more details on interpreting the query results from the preceding SQL code, see the
wlm_apex_hourly.sgl script on GitHub.

Advisor recommendations 47

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify
https://github.com/awslabs/amazon-redshift-utils/blob/master/src/AdminScripts/wlm_apex_hourly.sql

Amazon Redshift Database Developer Guide

Skip compression analysis during COPY

When you load data into an empty table with compression encoding declared with the COPY
command, Amazon Redshift applies storage compression. This optimization ensures that data in
your cluster is stored efficiently even when loaded by end users. The analysis required to apply
compression can require significant time.

Analysis

The Advisor analysis checks for COPY operations that were delayed by automatic compression
analysis. The analysis determines the compression encodings by sampling the data while it's being
loaded. This sampling is similar to that performed by the ANALYZE COMPRESSION command.

When you load data as part of a structured process, such as in an overnight extract, transform,
load (ETL) batch, you can define the compression beforehand. You can also optimize your table
definitions to skip this phase permanently without any negative impacts.

Recommendation

To improve COPY responsiveness by skipping the compression analysis phase, implement either of
the following two options:

» Use the column ENCODE parameter when creating any tables that you load using the COPY
command.

« Turn off compression altogether by supplying the COMPUPDATE OFF parameter in the COPY
command.

The best solution is generally to use column encoding during table creation, because this
approach also maintains the benefit of storing compressed data on disk. You can use the ANALYZE
COMPRESSION command to suggest compression encodings, but you must recreate the table to
apply these encodings. To automate this process, you can use the AWSColumnEncodingUrtility,
found on GitHub.

To identify recent COPY operations that triggered automatic compression analysis, run the
following SQL command.

WITH xids AS (
SELECT xid FROM stl_query WHERE userid>1 AND aborted=0
AND querytxt = 'analyze compression phase 1' GROUP BY xid

Advisor recommendations 48

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/ColumnEncodingUtility

Amazon Redshift Database Developer Guide

INTERSECT SELECT xid FROM stl_commit_stats WHERE node=-1)

SELECT a.userid, a.query, a.xid, a.starttime, b.complyze_sec,
a.copy_sec, a.copy_sql

FROM (SELECT q.userid, g.query, q.xid, date_trunc('s',qg.starttime)
starttime, substring(querytxt,1,100) as copy_sql,
ROUND(datediff(ms,starttime,endtime): :numeric / 1000.0, 2) copy_sec
FROM stl_query g JOIN xids USING (xid)
WHERE (querytxt ilike 'copy %from%' OR querytxt ilike '$% copy %from%')
AND querytxt not like 'COPY ANALYZE %') a

LEFT JOIN (SELECT xid,
ROUND(sum(datediff(ms,starttime,endtime)): :numeric / 1000.0,2) complyze_sec
FROM stl_query g JOIN xids USING (xid)
WHERE (querytxt like 'COPY ANALYZE %'
OR querytxt like 'analyze compression phase %')
GROUP BY xid) b ON a.xid = b.xid

WHERE b.complyze_sec IS NOT NULL ORDER BY a.copy_sql, a.starttime;

Implementation tips

« Ensure that all tables of significant size created during your ETL processes (for example, staging
tables and temporary tables) declare a compression encoding for all columns except the first sort
key.

» Estimate the expected lifetime size of the table being loaded for each of the COPY commands
identified by the SQL command preceding. If you are confident that the table will remain
extremely small, turn off compression altogether with the COMPUPDATE OFF parameter.
Otherwise, create the table with explicit compression before loading it with the COPY command.

Split Amazon S3 objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data from files on Amazon S3. The COPY command loads the
data in parallel from multiple files, dividing the workload among the nodes in your cluster. To
achieve optimal throughput, we strongly recommend that you divide your data into multiple files
to take advantage of parallel processing.

Analysis

The Advisor analysis identifies COPY commands that load large datasets contained in a small
number of files staged in Amazon S3. Long-running COPY commands that load large datasets

Advisor recommendations 49

Amazon Redshift Database Developer Guide

from a few files often have an opportunity for considerable performance improvement. When
Advisor identifies that these COPY commands are taking a significant amount of time, it creates a
recommendation to increase parallelism by splitting the data into additional files in Amazon S3.

Recommendation

In this case, we recommend the following actions, listed in priority order:

1. Optimize COPY commands that load fewer files than the number of cluster nodes.
2. Optimize COPY commands that load fewer files than the number of cluster slices.

3. Optimize COPY commands where the number of files is not a multiple of the number of cluster
slices.

Certain COPY commands load a significant amount of data or run for a significant duration. For
these commands, we recommend that you load a number of data objects from Amazon S3 that
is equivalent to a multiple of the number of slices in the cluster. To identify how many S3 objects
each COPY command has loaded, run the following SQL code as a superuser.

SELECT
query, COUNT(*) num_files,
ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
SUBSTRING(querytxt,1,60) copy_sql

FROM stl_s3client s

JOIN stl_query q USING (query)

JOIN stl_wlm_query wg USING (query)

WHERE s.userid>1 AND http_method = 'GET'
AND POSITION('COPY ANALYZE' IN querytxt) = 0
AND aborted = @ AND final_state='Completed'

GROUP BY query, querytxt

HAVING (SUM(transfer_size)/(1024*1024))/COUNT(*) >= 2

ORDER BY CASE

WHEN COUNT(*) < (SELECT max(node)+1 FROM stv_slices) THEN 1

WHEN COUNT(*) < (SELECT COUNT(*) FROM stv_slices WHERE node=@) THEN 2

ELSE 2+((COUNT(*) % (SELECT COUNT(*) FROM stv_slices))/(SELECT COUNT(*)::DECIMAL FROM

stv_slices))

END, (SUM(transfer_size)/(1024.0*1024.0))/COUNT(*) DESC;

Advisor recommendations 50

Amazon Redshift Database Developer Guide

Implementation tips

« The number of slices in a node depends on the node size of the cluster. For more information
about the number of slices in the various node types, see Clusters and Nodes in Amazon Redshift
in the Amazon Redshift Management Guide.

» You can load multiple files by specifying a common prefix, or prefix key, for the set, or by
explicitly listing the files in a manifest file. For more information about loading files, see Loading
data from compressed and uncompressed files.

« Amazon Redshift doesn't take file size into account when dividing the workload. Split your load
data files so that the files are about equal size, between 1 MB and 1 GB after compression.

Update table statistics

Amazon Redshift uses a cost-based query optimizer to choose the optimum execution plan for
queries. The cost estimates are based on table statistics gathered using the ANALYZE command.
When statistics are out of date or missing, the database might choose a less efficient plan for query
execution, especially for complex queries. Maintaining current statistics helps complex queries run
in the shortest possible time.

Analysis

The Advisor analysis tracks tables whose statistics are out-of-date or missing. It reviews table
access metadata associated with complex queries. If tables that are frequently accessed with
complex patterns are missing statistics, Advisor creates a critical recommendation to run ANALYZE.
If tables that are frequently accessed with complex patterns have out-of-date statistics, Advisor
creates a suggested recommendation to run ANALYZE.

Recommendation

Whenever table content changes significantly, update statistics with ANALYZE. We recommend
running ANALYZE whenever a significant number of new data rows are loaded into an existing
table with COPY or INSERT commands. We also recommend running ANALYZE whenever a
significant number of rows are modified using UPDATE or DELETE commands. To identify tables
with missing or out-of-date statistics, run the following SQL command as a superuser. The results
are ordered from largest to smallest table.

To identify tables with missing or out-of-date statistics, run the following SQL command as a
superuser. The results are ordered from largest to smallest table.

Advisor recommendations 51

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

SELECT
ti.schema||'.'||ti."table" tablename,
ti.size table_size_mb,
ti.stats_off statistics_accuracy
FROM svv_table_info ti
WHERE ti.stats_off > 5.00
ORDER BY ti.size DESC;

Implementation tips

The default ANALYZE threshold is 10 percent. This default means that the ANALYZE command
skips a given table if fewer than 10 percent of the table's rows have changed since the last
ANALYZE. As a result, you might choose to issue ANALYZE commands at the end of each ETL
process. Taking this approach means that ANALYZE is often skipped but also ensures that ANALYZE
runs when needed.

ANALYZE statistics have the most impact for columns that are used in joins (for example, JOIN
tbl_a ON col_b) or as predicates (for example, WHERE col_b = 'xyz'). By default, ANALYZE
collects statistics for all columns in the table specified. If needed, you can reduce the time required
to run ANALYZE by running ANALYZE only for the columns where it has the most impact. You can
run the following SQL command to identify columns used as predicates. You can also let Amazon
Redshift choose which columns to analyze by specifying ANALYZE PREDICATE COLUMNS.

WITH predicate_column_info as (
SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
a.attname as col_name,

CASE
WHEN 10002 = s.stakindl THEN array_to_string(stavaluesl, '|]|')
WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '||')
WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')

ELSE NULL::varchar

END AS pred_ts
FROM pg_statistic s
JOIN pg_class c ON c.oid = s.starelid
JOIN pg_namespace ns ON c.relnamespace = ns.oid
JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)

SELECT schema_name, table_name, col_num, col_name,
pred_ts NOT LIKE '2000-01-01%' AS is_predicate,

Advisor recommendations 52

Amazon Redshift Database Developer Guide

CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
"|]',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
CASE WHEN pred_ts NOT LIKE '%]||2000-01-01%' THEN (split_part(pred_ts,
"I1',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

For more information, see Analyzing tables.

Enable short query acceleration

Short query acceleration (SQA) prioritizes selected short-running queries ahead of longer-running
queries. SQA runs short-running queries in a dedicated space, so that SQA queries aren't forced to
wait in queues behind longer queries. SQA only prioritizes queries that are short-running and are in
a user-defined queue. With SQA, short-running queries begin running more quickly and users see
results sooner.

If you turn on SQA, you can reduce or eliminate workload management (WLM) queues that are
dedicated to running short queries. In addition, long-running queries don't need to contend with
short queries for slots in a queue, so you can configure your WLM queues to use fewer query slots.
When you use lower concurrency, query throughput is increased and overall system performance is
improved for most workloads. For more information, see Short query acceleration.

Analysis

Advisor checks for workload patterns and reports the number of recent queries where SQA would
reduce latency and the daily queue time for SQA-eligible queries.

Recommendation

Modify the WLM configuration to turn on SQA. Amazon Redshift uses a machine learning algorithm
to analyze each eligible query. Predictions improve as SQA learns from your query patterns. For
more information, see Configuring Workload Management.

When you turn on SQA, WLM sets the maximum runtime for short queries to dynamic by default.
We recommend keeping the dynamic setting for SQA maximum runtime.

Implementation tips

To check whether SQA is turned on, run the following query. If the query returns a row, then SQA is
turned on.

select * from stv_wlm_service_class_config

Advisor recommendations 53

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

where service_class = 14;

For more information, see Monitoring SQA.

Alter distribution keys on tables

Amazon Redshift distributes table rows throughout the cluster according to the table distribution
style. Tables with KEY distribution require a column as the distribution key (DISTKEY). A table row
is assigned to a node slice of a cluster based on its DISTKEY column value.

An appropriate DISTKEY places a similar number of rows on each node slice and is frequently
referenced in join conditions. An optimized join occurs when tables are joined on their DISTKEY
columns, accelerating query performance.

Analysis

Advisor analyzes your cluster’s workload to identify the most appropriate distribution key for the
tables that can significantly benefit from a KEY distribution style.

Recommendation

Advisor provides ALTER TABLE statements that alter the DISTSTYLE and DISTKEY of a table based
on its analysis. To realize a significant performance benefit, make sure to implement all SQL
statements within a recommendation group.

Redistributing a large table with ALTER TABLE consumes cluster resources and requires temporary
table locks at various times. Implement each recommendation group when other cluster workload
is light. For more details on optimizing table distribution properties, see the Amazon Redshift
Engineering's Advanced Table Design Playbook: Distribution Styles and Distribution Keys.

For more information about ALTER DISTSYLE and DISTKEY, see ALTER TABLE.

(® Note

If you don't see a recommendation that doesn't necessarily mean that the current
distribution styles are the most appropriate. Advisor doesn't provide recommendations
when there isn't enough data or the expected benefit of redistribution is small.

Advisor recommendations apply to a particular table and don't necessarily apply to a table
that contains a column with the same name. Tables that share a column name can have
different characteristics for those columns unless data inside the tables is the same.

Advisor recommendations 54

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/

Amazon Redshift Database Developer Guide

If you see recommendations for staging tables that are created or dropped by ETL jobs,
modify your ETL processes to use the Advisor recommended distribution keys.

Alter sort keys on tables

Amazon Redshift sorts table rows according to the table sort key. The sorting of table rows is
based on the sort key column values.

Sorting a table on an appropriate sort key can accelerate performance of queries, especially those
with range-restricted predicates, by requiring fewer table blocks to be read from disk.

Analysis

Advisor analyzes your cluster's workload over several days to identify a beneficial sort key for your
tables.

Recommendation

Advisor provides two groups of ALTER TABLE statements that alter the sort key of a table based on
its analysis:

« Statements that alter a table that currently doesn't have a sort key to add a COMPOUND sort
key.

» Statements that alter a sort key from INTERLEAVED to COMPOUND or no sort key.

Using compound sort keys significantly reduces maintenance overhead. Tables with compound
sort keys don't need the expensive VACUUM REINDEX operations that are necessary for
interleaved sorts. In practice, compound sort keys are more effective than interleaved sort
keys for the vast majority of Amazon Redshift workloads. However, if a table is small, it's more
efficient not to have a sort key to avoid sort key storage overhead.

When sorting a large table with the ALTER TABLE, cluster resources are consumed and table locks
are required at various times. Implement each recommendation when a cluster's workload is
moderate. More details on optimizing table sort key configurations can be found in the Amazon
Redshift Engineering's Advanced Table Design Playbook: Compound and Interleaved Sort Keys.

For more information about ALTER SORTKEY, see ALTER TABLE.

Advisor recommendations 55

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/

Amazon Redshift Database Developer Guide

® Note

If you don't see a recommendation for a table, that doesn't necessarily mean that the
current configuration is the best. Advisor doesn't provide recommendations when there
isn't enough data or the expected benefit of sorting is small.

Advisor recommendations apply to a particular table and don't necessarily apply to a table
that contains a column with the same name and data type. Tables that share column names
can have different recommendations based on the data in the tables and the workload.

Alter compression encodings on columns

Compression is a column-level operation that reduces the size of data when it's stored.
Compression is used in Amazon Redshift to conserve storage space and improve query
performance by reducing the amount of disk I/O. We recommend an optimal compression
encoding for each column based on its data type and on query patterns. With optimal
compression, queries can run more efficiently and the database can take up minimal storage space.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
the optimal compression encoding for each table column.

Recommendation

Advisor provides ALTER TABLE statements that change the compression encoding of particular
columns, based on its analysis.

Changing column compression encodings with ALTER TABLE consumes cluster resources and
requires table locks at various times. It's best to implement recommendations when the cluster
workload is light.

For reference, ALTER TABLE examples shows several statements that change the encoding for a

column.

(® Note

Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the encoding is small.

Advisor recommendations 56

Amazon Redshift Database Developer Guide

Data type recommendations

Amazon Redshift has a library of SQL data types for various use cases. These include integer types
like INT and types to store characters, like VARCHAR. Redshift stores types in an optimized way

to provide fast access and good query performance. Also, Redshift provides functions for specific
types, which you can use to format or perform calculations on query results.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
columns that can benefit significantly from a data type change.

Recommendation

Advisor provides an ALTER TABLE statement that adds a new column with the suggested data
type. An accompanying UPDATE statement copies data from the existing column to the new
column. After you create the new column and load the data, change your queries and ingestion
scripts to access the new column. Then leverage features and functions specialized to the new data
type, found in SQL functions reference.

Copying existing data to the new column can take time. We recommend that you implement each
advisor recommendation when the cluster’s workload is light. Reference the list of available data

types at Data types.

Note that Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the data type is small.

Advisor recommendations 57

Amazon Redshift

Database Developer Guide

Tutorials for Amazon Redshift

Follow the steps in these tutorials to learn about Amazon Redshift features:

Tutorial: Loading data from Amazon S3

Tutorial: Querying nested data with Amazon

Redshift Spectrum

Tutorial: Configuring manual workload

management (WLM) queues

Tutorial: Using spatial SQL functions with
Amazon Redshift

Tutorials for Amazon Redshift ML

Tutorial: Creating roles and querying with
RBAC

In this tutorial, you walk through the process
of loading data into your Amazon Redshift
database tables from data files in an S3
bucket from beginning to end.

In this tutorial, you use Redshift Spectrum to
query nested data. Redshift Spectrum lets you
query data in Parquet, ORC, JSON, or lon file
formats.

In this tutorial, you configure Amazon Redshift
to use manual workload management (WLM)
queues. Amazon Redshift uses WLM queues

to manage how resources are divided to

run concurrent queries. You must configure
Amazon Redshift to use manual WLM if you
need to use multiple WLM WLM queues.

In this tutorial, you query data using spatial
functions. You use spatial functions to query
geometry and geography data.

In these tutorials, you create and use machine
learning models.

In this tutorial, you use role-based access
control (RBAC) to create and use permissions
in a database you create. With RBAC, you can
create roles with specific permissions, such as
read-only or read-write permissions. You can
then assign these roles to users to grant them
the specified permissions.

58

Amazon Redshift Database Developer Guide

Automatic table optimization

Automatic table optimization is a self-tuning capability that automatically optimizes the design of
tables by applying sort and distribution keys without the need for administrator intervention. By
using automation to tune the design of tables, you can get started and get the fastest performance
without investing time to manually tune and implement table optimizations.

Automatic table optimization continuously observes how queries interact with tables. It uses
advanced artificial intelligence methods to choose sort and distribution keys to optimize
performance for the cluster's workload. If Amazon Redshift determines that applying a key
improves cluster performance, tables are automatically altered within hours from the time the
cluster was created, with minimal impact to queries.

To take advantage of this automation, an Amazon Redshift administrator creates a new table,
or alters an existing table to enable it to use automatic optimization. Existing tables with a
distribution style or sort key of AUTO are already enabled for automation. When you run queries
against those tables, Amazon Redshift determines if a sort key or distribution key will improve
performance. If so, then Amazon Redshift automatically modifies the table without requiring
administrator intervention. If a minimum number of queries are run, optimizations are applied
within hours of the cluster being launched.

If Amazon Redshift determines that a distribution key improves the performance of queries, tables
where distribution style is AUTO can have their distribution style changed to KEY.

Topics

Enabling, disabling, and monitoring automatic table optimization

Column compression to reduce the size of stored data

Data distribution for query optimization

Sort keys

Table constraints

59

Amazon Redshift Database Developer Guide

Enabling, disabling, and monitoring automatic table
optimization

By default, tables created without explicitly defining sort keys or distributions keys are set to AUTO.
At the time of table creation, you can also explicitly set a sort or a distribution key manually. If you
set the sort or distribution key, then the table is not automatically managed.

Enabling automatic table optimization

To enable an existing table to be automatically optimized, use the ALTER statement options
to change the table to AUTO. You might choose to define automation for sort keys, but not for
distribution keys (and vice versa). If you run an ALTER statement to convert a table to be an
automated table, existing sort keys and distribution styles are preserved.

ALTER TABLE table_name ALTER SORTKEY AUTO;

ALTER TABLE table_name ALTER DISTSTYLE AUTO;

For more information, see ALTER TABLE.

Initially, a table has no distribution key or sort key. The distribution style is set to either EVEN or
ALL depending on table size. As the table grows in size, Amazon Redshift applies the optimal
distribution keys and sort keys. Optimizations are applied within hours after a minimum number
of queries are run. When determining sort key optimizations, Amazon Redshift attempts to
optimize the data blocks read from disk during a table scan. When determining distribution style
optimizations, Amazon Redshift tries to optimize the number of bytes transferred between cluster
nodes.

Removing automatic table optimization from a table

You can remove a table from automatic optimization. Removing a table from automation involves
selecting a sort key or distribution style. To change distribution style, specify a specific distribution
style.

ALTER TABLE table_name ALTER DISTSTYLE EVEN;

ALTER TABLE table_name ALTER DISTSTYLE ALL;

Enabling, disabling, and monitoring automatic table optimization 60

Amazon Redshift Database Developer Guide

ALTER TABLE table_name ALTER DISTSTYLE KEY DISTKEY c1;

To change a sort key, you can define a sort key or choose none.

ALTER TABLE table_name ALTER SORTKEY(cl1, c2);
ALTER TABLE table_name ALTER SORTKEY NONE;

Monitoring automatic table optimization

The system view SVV_ALTER_TABLE_RECOMMENDATIONS records the current Amazon Redshift
Advisor recommendations for tables. This view shows recommendations for all tables, those that
are defined for automatic optimization and those that aren't.

To view if a table is defined for automatic optimization, query the system view SVV_TABLE_INFO.
Entries appear only for tables visible in the current session's database. Recommendations are
inserted into the view twice per day starting within hours from the time the cluster was created.
After a recommendation is available, it's started within an hour. After a recommendation has been
applied (either by Amazon Redshift or by you), it no longer appears in the view.

The system view SVL_AUTO_WORKER_ACTION shows an audit log of all actions taken by Amazon
Redshift, and the previous state of the table.

The system view SVV_TABLE_INFO lists all of the tables in the system, along with a column to
indicate whether the sort key and distribution style of the table is set to AUTO.

For more information about these system views, see System monitoring (provisioned only).

Column compression to reduce the size of stored data

Compression is a column-level operation that reduces the size of data when it is stored.
Compression conserves storage space and reduces the size of data that is read from storage, which
reduces the amount of disk I/0 and therefore improves query performance.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

Monitoring automatic table optimization 61

Amazon Redshift Database Developer Guide

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

You can apply a compression type, or encoding, to the columns in a table manually when you create
the table. Or you can use the COPY command to analyze and apply compression automatically.
For more information, see Let COPY choose compression encodings. For details about applying

automatic compression, see Loading tables with automatic compression.

(® Note

We strongly recommend using the COPY command to apply automatic compression.

You might choose to apply compression encodings manually if the new table shares the same data
characteristics as another table. Or you might do so if you discover in testing that the compression
encodings applied during automatic compression are not the best fit for your data. If you choose
to apply compression encodings manually, you can run the ANALYZE COMPRESSION command
against an already populated table and use the results to choose compression encodings.

To apply compression manually, you specify compression encodings for individual columns as part
of the CREATE TABLE statement. The syntax is as follows.

CREATE TABLE table_name (column_name
data_type ENCODE encoding-type)[, ...]

Here, encoding-type is taken from the keyword table in the following section.

For example, the following statement creates a two-column table, PRODUCT. When data is loaded
into the table, the PRODUCT_ID column is not compressed, but the PRODUCT_NAME column is
compressed, using the byte dictionary encoding (BYTEDICT).

create table product(
product_id int encode raw,
product_name char(20) encode bytedict);

You can specify the encoding for a column when it is added to a table using the ALTER TABLE
command.

Column compression 62

Amazon Redshift Database Developer Guide

ALTER TABLE table-name ADD [COLUMN] column_name column_type ENCODE encoding-type

Topics

» Compression encodings

» Testing compression encodings

Compression encodings

A compression encoding specifies the type of compression that is applied to a column of data values
as rows are added to a table.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

When you use CREATE TABLE, ENCODE AUTO is disabled when you specify compression encoding
for any column in the table. If ENCODE AUTO is disabled, Amazon Redshift automatically assigns
compression encoding to columns for which you don't specify an ENCODE type as follows:

o Columns that are defined as sort keys are assigned RAW compression.

« Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types are assigned
RAW compression.

o Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIMESTAMP, or
TIMESTAMPTZ data types are assigned AZ64 compression.

« Columns that are defined as CHAR or VARCHAR data types are assigned LZO compression.

You can change a table's encoding after creating it by using ALTER TABLE. If you disable ENCODE
AUTO using ALTER TABLE, Amazon Redshift no longer automatically manages compression
encodings for your columns. All columns will keep the compression encoding types that they had
when you disabled ENCODE AUTO until you change them or you enable ENCODE AUTO again.

Amazon Redshift supports the following compression encodings:

Compression encodings 63

Amazon Redshift Database Developer Guide

Raw

Raw encoding is the default encoding for columns that are designated as sort keys and columns
that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types. With raw encoding,
data is stored in raw, uncompressed form.

AZ64

AZ64 is a proprietary compression encoding algorithm designed by Amazon to achieve a high

compression ratio and improved query processing. At its core, the AZ64 algorithm compresses
smaller groups of data values and uses single instruction, multiple data (SIMD) instructions for
parallel processing. Use AZ64 to achieve significant storage savings and high performance for

numeric, date, and time data types.

You can use AZ64 as the compression encoding when defining columns using CREATE TABLE
and ALTER TABLE statements with the following data types:

o SMALLINT

« INTEGER

o BIGINT

« DECIMAL

« DATE

« TIMESTAMP

« TIMESTAMPTZ

Byte-dictionary

In byte dictionary encoding, a separate dictionary of unique values is created for each block

of column values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary
contains up to 256 one-byte values that are stored as indexes to the original data values. If
more than 256 values are stored in a single block, the extra values are written into the block in
raw, uncompressed form. The process repeats for each disk block.

This encoding is very effective on low cardinality string columns. This encoding is optimal when
the data domain of a column is fewer than 256 unique values.

For columns with the string data type (CHAR and VARCHAR) encoded with BYTEDICT, Amazon
Redshift performs vectorized scans and predicate evaluations that operate over compressed

Compression encodings 64

Amazon Redshift Database Developer Guide

data directly. These scans use hardware-specific single instruction and multiple data (SIMD)
instructions for parallel processing. This significantly speeds up the scanning of string columns.
Byte-dictionary encoding is especially space-efficient if a CHAR/VARCHAR column holds long
character strings.

Suppose that a table has a COUNTRY column with a CHAR(30) data type. As data is loaded,
Amazon Redshift creates the dictionary and populates the COUNTRY column with the index
value. The dictionary contains the indexed unique values, and the table itself contains only the
one-byte subscripts of the corresponding values.

® Note

Trailing blanks are stored for fixed-length character columns. Therefore, in a CHAR(30)
column, every compressed value saves 29 bytes of storage when you use the byte-
dictionary encoding.

The following table represents the dictionary for the COUNTRY column.

Unique data value Dictionary index Size (fixed length, 30 bytes
per value)

England 0 30

United States of America 1 30

Venezuela 2 30

Sri Lanka 3 30

Argentina 4 30

Japan 5 30

Total 180

The following table represents the values in the COUNTRY column.

Compression encodings 65

Amazon Redshift Database Developer Guide

Original data value Original size (fixed Compressed value New size (bytes)
length, 30 bytes per (index)
value)
England 30 0 1
England 30 0 1
United States of 30 1 1
America
United States of 30 1 1
America
Venezuela 30 2 1
Sri Lanka 30 3 1
Argentina 30 4 1
Japan 30 5 1
Sri Lanka 30 3 1
Argentina 30 4 1
Total 300 10

The total compressed size in this example is calculated as follows: 6 different entries are stored
in the dictionary (6 * 30 = 180), and the table contains 10 1-byte compressed values, for a total
of 190 bytes.

Delta
Delta encodings are very useful for date time columns.

Delta encoding compresses data by recording the difference between values that follow each
other in the column. This difference is recorded in a separate dictionary for each block of
column values on disk. (An Amazon Redshift disk block occupies 1 MB.) For example, suppose
that the column contains 10 integers in sequence from 1 to 10. The first are stored as a 4-byte

Compression encodings 66

Amazon Redshift Database Developer Guide

integer (plus a 1-byte flag). The next nine are each stored as a byte with the value 1, indicating
that it is one greater than the previous value.

Delta encoding comes in two variations:

» DELTA records the differences as 1-byte values (8-bit integers)
» DELTA32K records differences as 2-byte values (16-bit integers)

If most of the values in the column could be compressed by using a single byte, the 1-byte
variation is very effective. However, if the deltas are larger, this encoding, in the worst case, is
somewhat less effective than storing the uncompressed data. Similar logic applies to the 16-bit
version.

If the difference between two values exceeds the 1-byte range (DELTA) or 2-byte range
(DELTA32K), the full original value is stored, with a leading 1-byte flag. The 1-byte range is
from -127 to 127, and the 2-byte range is from -32K to 32K.

The following table shows how a delta encoding works for a numeric column.

Original data Original size Difference Compressed Compressed
value (bytes) (delta) value size (bytes)
1 4 1 1+4 (flag +

actual value)

5 4 4 4 1
50 4 45 45 1
200 4 150 150 1+4 (flag +

actual value)

185 4 -15 -15 1
220 4 35 35 1
221 4 1 1 1
Totals 28 15

Compression encodings 67

Amazon Redshift Database Developer Guide

LZO

LZO encoding provides a very high compression ratio with good performance. LZO encoding
works especially well for CHAR and VARCHAR columns that store very long character strings.
They are especially good for free-form text, such as product descriptions, user comments, or
JSON strings.

Mostly

Mostly encodings are useful when the data type for a column is larger than most of the stored
values require. By specifying a mostly encoding for this type of column, you can compress the
majority of the values in the column to a smaller standard storage size. The remaining values
that cannot be compressed are stored in their raw form. For example, you can compress a 16-bit
column, such as an INT2 column, to 8-bit storage.

In general, the mostly encodings work with the following data types:

SMALLINT/INT2 (16-bit)
INTEGER/INT (32-bit)
BIGINT/INT8 (64-bit)
DECIMAL/NUMERIC (64-bit)

Choose the appropriate variation of the mostly encoding to suit the size of the data type for the
column. For example, apply MOSTLY8 to a column that is defined as a 16-bit integer column.
Applying MOSTLY 16 to a column with a 16-bit data type or MOSTLY32 to a column with a 32-
bit data type is disallowed.

Mostly encodings might be less effective than no compression when a relatively high number
of the values in the column can't be compressed. Before applying one of these encodings to a
column, perform a check. Most of the values that you are going to load now (and are likely to
load in the future) should fit into the ranges shown in the following table.

Encoding Compressed storage Range of values that can be
size compressed (values outside the
range are stored raw)

MOSTLY8 1 byte (8 bits) -128 to 127

MOSTLY16 2 bytes (16 bits) -32768 to 32767

Compression encodings 68

Amazon Redshift

Database Developer Guide

Encoding

MOSTLY32

® Note

Compressed storage

size

4 bytes (32 bits)

Range of values that can be

compressed (values outside the

range are stored raw)

-2147483648 to +2147483647

For decimal values, ignore the decimal point to determine whether the value fits into
the range. For example, 1,234.56 is treated as 123,456 and can be compressed in a
MOSTLY32 column.

For example, the VENUEID column in the VENUE table is defined as a raw integer column, which
means that its values consume 4 bytes of storage. However, the current range of values in the
column is @ to 309. Therefore, recreating and reloading this table with MOSTLY16 encoding for
VENUEID would reduce the storage of every value in that column to 2 bytes.

If the VENUEID values referenced in another table were mostly in the range of 0 to 127, it might
make sense to encode that foreign-key column as MOSTLY8. Before making the choice, run
several queries against the referencing table data to find out whether the values mostly fall into

the 8-bit, 16-bit, or 32-bit range.

The following table shows compressed sizes for specific numeric values when the MOSTLYS,
MOSTLY16, and MOSTLY32 encodings are used:

Original
value

10
100

1000

Original INT
or BIGINT
size (bytes)

4

4

MOSTLYS8
compressed
size (bytes)

1

Same as raw
data size

MOSTLY16
compressed size
(bytes)

2

2

MOSTLY32
compressed size
(bytes)

4

4

Compression encodings

69

Amazon Redshift Database Developer Guide

Original Original INT MOSTLYS8 MOSTLY16 MOSTLY32
value or BIGINT compressed compressed size compressed size
size (bytes) size (bytes) (bytes) (bytes)

10000 4 2 4

20000 4 2 4

40000 8 Same as raw data 4

size
100000 8 4
2000000000 8 4
Run length

Run length encoding replaces a value that is repeated consecutively with a token that consists
of the value and a count of the number of consecutive occurrences (the length of the run). A
separate dictionary of unique values is created for each block of column values on disk. (An
Amazon Redshift disk block occupies 1 MB.) This encoding is best suited to a table in which data
values are often repeated consecutively, for example, when the table is sorted by those values.

For example, suppose that a column in a large dimension table has a predictably small domain,
such as a COLOR column with fewer than 10 possible values. These values are likely to fall in
long sequences throughout the table, even if the data is not sorted.

We don't recommend applying run length encoding on any column that is designated as a sort
key. Range-restricted scans perform better when blocks contain similar numbers of rows. If sort
key columns are compressed much more highly than other columns in the same query, range-
restricted scans might perform poorly.

The following table uses the COLOR column example to show how the run length encoding
works.

Original data value Original size (bytes) Compressed value Compressed size
(token) (bytes)
Blue 4 {2,Blue} 5

Compression encodings 70

Amazon Redshift Database Developer Guide

Original data value Original size (bytes) Compressed value Compressed size
(token) (bytes)

Blue 4 0
Green 5 {3,Green} 6
Green 5 0
Green 5 0

Blue 4 {1,Blue} 5
Yellow 6 {4,Yellow} 7
Yellow 6 0
Yellow 6 0
Yellow 6 0

Total 51 23

Text255 and Text32k

Text255 and text32k encodings are useful for compressing VARCHAR columns in which the
same words recur often. A separate dictionary of unique words is created for each block of
column values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary contains
the first 245 unique words in the column. Those words are replaced on disk by a one-byte
index value representing one of the 245 values, and any words that are not represented in

the dictionary are stored uncompressed. The process repeats for each 1-MB disk block. If the
indexed words occur frequently in the column, the column yields a high compression ratio.

For the text32k encoding, the principle is the same, but the dictionary for each block does not
capture a specific number of words. Instead, the dictionary indexes each unique word it finds
until the combined entries reach a length of 32K, minus some overhead. The index values are
stored in two bytes.

For example, consider the VENUENAME column in the VENUE table. Words such as Arena,
Center, and Theatre recur in this column and are likely to be among the first 245 words

Compression encodings 71

Amazon Redshift Database Developer Guide

encountered in each block if text255 compression is applied. If so, this column benefits from
compression. This is because every time those words appear, they occupy only 1 byte of storage
(instead of 5, 6, or 7 bytes, respectively).

ZSTD

Zstandard (ZSTD) encoding provides a high compression ratio with very good performance
across diverse datasets. ZSTD works especially well with CHAR and VARCHAR columns that
store a wide range of long and short strings, such as product descriptions, user comments,
logs, and JSON strings. Where some algorithms, such as Delta encoding or Mostly encoding,
can potentially use more storage space than no compression, ZSTD is unlikely to increase disk
usage.

ZSTD supports SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE PRECISION, BOOLEAN,
CHAR, VARCHAR, DATE, TIMESTAMP, and TIMESTAMPTZ data types.

The following table identifies the supported compression encodings and the data types that
support the encoding.

Encoding type Keyword in CREATE TABLE Data types
and ALTER TABLE
Raw (no compression) RAW All
AZ64 AZ64 SMALLINT, INTEGER, BIGINT,

DECIMAL, DATE, TIMESTAMP,
TIMESTAMPTZ

Byte dictionary BYTEDICT SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, CHAR, VARCHAR,
DATE, TIMESTAMP, TIMESTAMPTZ

Delta DELTA SMALLINT, INT, BIGINT, DATE,

TIMESTAMP, DECIMAL
DELTA32K

INT, BIGINT, DATE, TIMESTAMP,
DECIMAL

Compression encodings 72

Amazon Redshift

Database Developer Guide

Encoding type

LZO

Mostlyn

Run-length

Text

Zstandard

Keyword in CREATE TABLE
and ALTER TABLE

LZO

MOSTLY8
MOSTLY16
MOSTLY32

RUNLENGTH

TEXT255
TEXT32K

ZSTD

Testing compression encodings

Data types

SMALLINT, INTEGER, BIGINT,
DECIMAL, CHAR, VARCHAR, DATE,
TIMESTAMP, TIMESTAMPTZ, SUPER

SMALLINT, INT, BIGINT, DECIMAL
INT, BIGINT, DECIMAL
BIGINT, DECIMAL

SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ

VARCHAR only
VARCHAR only

SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ, SUPER

If you decide to manually specify column encodings, you might want to test different encodings

with your data.

(® Note

We recommend that you use the COPY command to load data whenever possible, and

allow the COPY command to choose the optimal encodings based on your data. Or you can
use the ANALYZE COMPRESSION command to view the suggested encodings for existing

Testing compression encodings

73

Amazon Redshift Database Developer Guide

data. For details about applying automatic compression, see Loading tables with automatic
compression.

To perform a meaningful test of data compression, you must have a large number of rows. For
this example, we create a table and insert rows by using a statement that selects from two tables;
VENUE and LISTING. We leave out the WHERE clause that would normally join the two tables. The
result is that each row in the VENUE table is joined to all of the rows in the LISTING table, for a
total of over 32 million rows. This is known as a Cartesian join and normally is not recommended.
However, for this purpose, it's a convenient method of creating many rows. If you have an existing
table with data that you want to test, you can skip this step.

After we have a table with sample data, we create a table with seven columns. Each has a different
compression encoding: raw, bytedict, lzo, run length, text255, text32k, and zstd. We populate each
column with exactly the same data by running an INSERT command that selects the data from the
first table.

To test compression encodings, do the following:

1. (Optional) First, use a Cartesian join to create a table with a large number of rows. Skip this step
if you want to test an existing table.

create table cartesian_venue(

venueid smallint not null distkey sortkey,
venuename varchar(100),

venuecity varchar(30),

venuestate char(2),

venueseats integer);

insert into cartesian_venue
select venueid, venuename, venuecity, venuestate, venueseats
from venue, listing;

2. Next, create a table with the encodings that you want to compare.

create table encodingvenue (

venueraw varchar(100) encode raw,
venuebytedict varchar(100) encode bytedict,
venuelzo varchar(100) encode 1zo,
venuerunlength varchar(10@0) encode runlength,
venuetext255 varchar(100) encode text255,

Testing compression encodings 74

Amazon Redshift Database Developer Guide

venuetext32k varchar(100) encode text32k,
venuezstd varchar(100) encode zstd);

3. Insert the same data into all of the columns using an INSERT statement with a SELECT clause.

insert into encodingvenue

select venuename as venueraw, venuename as venuebytedict, venuename as venuelzo,
venuename as venuerunlength, venuename as venuetext32k, venuename as venuetext255,
venuename as venuezstd

from cartesian_venue;

4. Verify the number of rows in the new table.

select count(*) from encodingvenue

38884394
(1 row)

5. Query the STV_BLOCKLIST system table to compare the number of 1 MB disk blocks used by
each column.

The MAX aggregate function returns the highest block number for each column. The
STV_BLOCKLIST table includes details for three system-generated columns. This example uses
col < 6inthe WHERE clause to exclude the system-generated columns.

select col, max(blocknum)

from stv_blocklist b, stv_tbl_perm p

where (b.tbl=p.id) and name ='encodingvenue'
and col < 7

group by name, col

order by col;

The query returns the following results. The columns are numbered beginning with zero.
Depending on how your cluster is configured, your result might have different numbers, but
the relative sizes should be similar. You can see that BYTEDICT encoding on the second column
produced the best results for this dataset. This approach has a compression ratio of better

than 20:1. LZO and ZSTD encoding also produced excellent results. Different datasets produce
different results, of course. When a column contains longer text strings, LZO often produces the
best compression results.

Testing compression encodings 75

Amazon Redshift Database Developer Guide

col | max

_____ Fmm e
0 | 203
1] 10
2 | 22
3 | 204
4 | 56
5 72
6 | 20

(7 rows)

If you have data in an existing table, you can use the ANALYZE COMPRESSION command to

view the suggested encodings for the table. For example, the following example shows the
recommended encoding for a copy of the VENUE table, CARTESIAN_VENUE, that contains 38
million rows. Notice that ANALYZE COMPRESSION recommends LZO encoding for the VENUENAME
column. ANALYZE COMPRESSION chooses optimal compression based on multiple factors, which
include percent of reduction. In this specific case, BYTEDICT provides better compression, but LZO
also produces greater than 90 percent compression.

analyze compression cartesian_venue;

Table | Column | Encoding | Est_reduction_pct
——————————————— et et
reallybigvenue | venueid | 1zo | 97.54
reallybigvenue | venuename | lzo | 91.71
reallybigvenue | venuecity | lzo | 96.01
reallybigvenue | venuestate | 1lzo | 97.68
reallybigvenue | venueseats | lzo | 98.21
Example

The following example creates a CUSTOMER table that has columns with various data types. This
CREATE TABLE statement shows one of many possible combinations of compression encodings for
these columns.

create table customer(

custkey int encode delta,
custname varchar(30) encode raw,
gender varchar(7) encode text255,

Testing compression encodings 76

Amazon Redshift Database Developer Guide

address varchar(200) encode text255,
city varchar(30) encode text255,
state char(2) encode raw,

zipcode char(5) encode bytedict,
start_date date encode delta32k);

The following table shows the column encodings that were chosen for the CUSTOMER table and
gives an explanation for the choices:

Column Data type Encoding Explanation

CUSTKEY int delta CUSTKEY consists
of unique, consecuti
ve integer values.
Because the differenc
es are one byte,
DELTA is a good
choice.

CUSTNAME varchar(30) raw CUSTNAME has a
large domain with
few repeated values.
Any compression
encoding would
probably be ineffecti
ve.

GENDER varchar(7) text255 GENDER is very small
domain with many
repeated values.
Text255 works well
with VARCHAR
columns in which the
same words recur.

ADDRESS varchar(200) text255 ADDRESS is a large
domain, but contains
many repeated

Testing compression encodings 77

Amazon Redshift

Database Developer Guide

Column

CITY

Data type

varchar(30)

Encoding

text255

Explanation

words, such as
Street, Avenue,
North, South, and
so on. Text 255 and
text 32k are useful
for compressing
VARCHAR columns
in which the same
words recur. The
column length is
short, so text255 is a
good choice.

CITY is a large
domain, with some
repeated values.
Certain city names
are used much more
commonly than
others. Text255 is

a good choice for
the same reasons as
ADDRESS.

Testing compression encodings

78

Amazon Redshift

Database Developer Guide

Column

STATE

ZIPCODE

START_DATE

Data type

char(2)

char(5)

date

Encoding

raw

bytedict

delta32k

Explanation

In the United States,
STATE is a precise
domain of 50 two-
character values.
Bytedict encoding
would yield some
compression, but
because the column
size is only two
characters, compressi
on might not be
worth the overhead
of uncompressing the
data.

ZIPCODE is a known
domain of fewer
than 50,000 unique
values. Certain zip
codes occur much
more commonly
than others. Bytedict
encoding is very
effective when a
column contains a
limited number of
unique values.

Delta encodings

are very useful for
date time columns,
especially if the rows
are loaded in date
order.

Testing compression encodings

79

Amazon Redshift Database Developer Guide

Data distribution for query optimization

When you load data into a table, Amazon Redshift distributes the rows of the table to each of
the compute nodes according to the table's distribution style. When you run a query, the query
optimizer redistributes the rows to the compute nodes as needed to perform any joins and
aggregations. The goal in choosing a table distribution style is to minimize the impact of the
redistribution step by locating the data where it must be before the query is run.

(® Note

This section will introduce you to the principles of data distribution in an Amazon Redshift
database. We recommend that you create your tables with DISTSTYLE AUTO. If you do so,
then Amazon Redshift uses automatic table optimization to choose the data distribution
style. For more information, see Automatic table optimization. The rest of this section

provides details about distribution styles.

Topics

« Data distribution concepts

« Distribution styles

 Viewing distribution styles

« Evaluating query patterns

» Designating distribution styles

« Evaluating the query plan

e Query plan example

 Distribution examples

Data distribution concepts
Some data distribution concepts for Amazon Redshift follow.
Nodes and slices

An Amazon Redshift cluster is a set of nodes. Each node in the cluster has its own operating
system, dedicated memory, and dedicated disk storage. One node is the leader node, which

Data distribution 80

Amazon Redshift Database Developer Guide

manages the distribution of data and query processing tasks to the compute nodes. The compute
nodes provide resources to do those tasks.

The disk storage for a compute node is divided into a number of slices. The number of slices per
node depends on the node size of the cluster. The nodes all participate in running parallel queries,
working on data that is distributed as evenly as possible across the slices. For more information
about the number of slices that each node size has, see About clusters and nodes in the Amazon
Redshift Management Guide.

Data redistribution

When you load data into a table, Amazon Redshift distributes the rows of the table to each of

the node slices according to the table's distribution style. As part of a query plan, the optimizer
determines where blocks of data must be located to best run the query. The data is then physically
moved, or redistributed, while the query runs. Redistribution might involve either sending specific
rows to nodes for joining or broadcasting an entire table to all of the nodes.

Data redistribution can account for a substantial portion of the cost of a query plan, and the
network traffic it generates can affect other database operations and slow overall system
performance. To the extent that you anticipate where best to locate data initially, you can minimize
the impact of data redistribution.

Data distribution goals

When you load data into a table, Amazon Redshift distributes the table's rows to the compute
nodes and slices according to the distribution style that you chose when you created the table.
Data distribution has two primary goals:

» To distribute the workload uniformly among the nodes in the cluster. Uneven distribution, or
data distribution skew, forces some nodes to do more work than others, which impairs query
performance.

« To minimize data movement as a query runs. If the rows that participate in joins or aggregates
are already collocated on the nodes with their joining rows in other tables, the optimizer doesn't
need to redistribute as much data when queries run.

The distribution strategy that you choose for your database has important consequences for
query performance, storage requirements, data loading, and maintenance. By choosing the best
distribution style for each table, you can balance your data distribution and significantly improve
overall system performance.

Data distribution concepts 81

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

Distribution styles

When you create a table, you can designate one of the following distribution styles: AUTO, EVEN,
KEY, or ALL.

If you don't specify a distribution style, Amazon Redshift uses AUTO distribution.
AUTO distribution

With AUTO distribution, Amazon Redshift assigns an optimal distribution style based on the size

of the table data. For example, if AUTO distribution style is specified, Amazon Redshift initially
assigns the ALL distribution style to a small table. When the table grows larger, Amazon Redshift
might change the distribution style to KEY, choosing the primary key (or a column of the composite
primary key) as the distribution key. If the table grows larger and none of the columns are suitable
to be the distribution key, Amazon Redshift changes the distribution style to EVEN. The change in
distribution style occurs in the background with minimal impact to user queries.

To view actions that Amazon Redshift automatically performed to alter a table distribution key,
see SVL_AUTO_WORKER_ACTION. To view current recommendations regarding altering a table
distribution key, see SVV_ALTER_TABLE_RECOMMENDATIONS.

To view the distribution style applied to a table, query the PG_CLASS_INFO system catalog view.
For more information, see Viewing distribution styles. If you don't specify a distribution style with
the CREATE TABLE statement, Amazon Redshift applies AUTO distribution.

EVEN distribution

The leader node distributes the rows across the slices in a round-robin fashion, regardless of the
values in any particular column. EVEN distribution is appropriate when a table doesn't participate
in joins. It's also appropriate when there isn't a clear choice between KEY distribution and ALL
distribution.

KEY distribution

The rows are distributed according to the values in one column. The leader node places matching
values on the same node slice. If you distribute a pair of tables on the joining keys, the leader node
collocates the rows on the slices according to the values in the joining columns. This way, matching
values from the common columns are physically stored together.

ALL distribution

Distribution styles 82

Amazon Redshift Database Developer Guide

A copy of the entire table is distributed to every node. Where EVEN distribution or KEY distribution
place only a portion of a table's rows on each node, ALL distribution ensures that every row is
collocated for every join that the table participates in.

ALL distribution multiplies the storage required by the number of nodes in the cluster, and

so it takes much longer to load, update, or insert data into multiple tables. ALL distribution is
appropriate only for relatively slow moving tables; that is, tables that are not updated frequently
or extensively. Because the cost of redistributing small tables during a query is low, there isn't a
significant benefit to define small dimension tables as DISTSTYLE ALL.

(® Note

After you have specified a distribution style for a column, Amazon Redshift handles data
distribution at the cluster level. Amazon Redshift does not require or support the concept
of partitioning data within database objects. You don't need to create table spaces or
define partitioning schemes for tables.

In certain scenarios, you can change the distribution style of a table after it is created. For more
information, see ALTER TABLE. For scenarios when you can't change the distribution style of a table
after it's created, you can recreate the table and populate the new table with a deep copy. For more
information, see Performing a deep copy

Viewing distribution styles

To view the distribution style of a table, query the PG_CLASS_INFO view or the SVV_TABLE_INFO
view.

The RELEFFECTIVEDISTSTYLE column in PG_CLASS_INFO indicates the current distribution style
for the table. If the table uses automatic distribution, RELEFFECTIVEDISTSTYLE is 10, 11, or 12,
which indicates whether the effective distribution style is AUTO (ALL), AUTO (EVEN), or AUTO
(KEY). If the table uses automatic distribution, the distribution style might initially show AUTO
(ALL), then change to AUTO (EVEN) or AUTO (KEY) when the table grows.

The following table gives the distribution style for each value in RELEFFECTIVEDISTSTYLE column:

RELEFFECTIVEDISTSTYLE Current distribution style

0 EVEN

Viewing distribution styles 83

Amazon Redshift Database Developer Guide

RELEFFECTIVEDISTSTYLE Current distribution style
1 KEY

8 ALL

10 AUTO (ALL)

11 AUTO (EVEN)

12 AUTO (KEY)

The DISTSTYLE column in SVV_TABLE_INFO indicates the current distribution style for the table. If
the table uses automatic distribution, DISTSTYLE is AUTO (ALL), AUTO (EVEN), or AUTO (KEY).

The following example creates four tables using the three distribution styles and automatic
distribution, then queries SVV_TABLE_INFO to view the distribution styles.

create table public.dist_key (coll int)
diststyle key distkey (coll);

insert into public.dist_key values (1);

create table public.dist_even (coll int)
diststyle even;

insert into public.dist_even values (1);

create table public.dist_all (coll int)
diststyle all;

insert into public.dist_all values (1);
create table public.dist_auto (coll int);
insert into public.dist_auto values (1);

select "schema", "table", diststyle from SVV_TABLE_INFO
where "table" like 'dist%';

schema | table | diststyle

Viewing distribution styles 84

Amazon Redshift Database Developer Guide

____________ S S
public | dist_key | KEY(coll)
public | dist_even | EVEN
public | dist_all | ALL
public | dist_auto | AUTO(ALL)

Evaluating query patterns

Choosing distribution styles is only one aspect of database design. Consider distribution styles
within the context of the entire system, balancing distribution with other important factors such as
cluster size, compression encoding methods, sort keys, and table constraints.

Test your system with data that is as close to real data as possible.

To make good choices for distribution styles, you must understand the query patterns for your
Amazon Redshift application. Identify the most costly queries in your system and base your initial
database design on the demands of those queries. Factors that determine the total cost of a query
include how long the query takes to run and how much computing resources it consumes. Other
factors that determine query cost are how often it is run, and how disruptive it is to other queries
and database operations.

Identify the tables that are used by the most costly queries, and evaluate their role in query
runtime. Consider how the tables are joined and aggregated.

Use the guidelines in this section to choose a distribution style for each table. When you have done
so, create the tables and load them with data that is as close as possible to real data. Then test the
tables for the types of queries that you expect to use. You can evaluate the query explain plans to
identify tuning opportunities. Compare load times, storage space, and query runtimes to balance
your system's overall requirements.

Designating distribution styles

The considerations and recommendations for designating distribution styles in this section use a
star schema as an example. Your database design might be based on a star schema, some variant
of a star schema, or an entirely different schema. Amazon Redshift is designed to work effectively
with whatever schema design you choose. The principles in this section can be applied to any
design schema.

1. Specify the primary key and foreign keys for all your tables.

Evaluating query patterns 85

Amazon Redshift Database Developer Guide

Amazon Redshift does not enforce primary key and foreign key constraints, but the query
optimizer uses them when it generates query plans. If you set primary keys and foreign keys,
your application must maintain the validity of the keys.

2. Distribute the fact table and its largest dimension table on their common columns.

Choose the largest dimension based on the size of dataset that participates in the most common
join, not only the size of the table. If a table is commonly filtered, using a WHERE clause, only

a portion of its rows participate in the join. Such a table has less impact on redistribution than

a smaller table that contributes more data. Designate both the dimension table's primary key
and the fact table's corresponding foreign key as DISTKEY. If multiple tables use the same
distribution key, they are also collocated with the fact table. Your fact table can have only one
distribution key. Any tables that join on another key isn't collocated with the fact table.

3. Designate distribution keys for the other dimension tables.

Distribute the tables on their primary keys or their foreign keys, depending on how they most
commonly join with other tables.

4. Evaluate whether to change some of the dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.
The following section explains how to identify candidates for ALL distribution by evaluating the
EXPLAIN plan.

5. Use AUTO distribution for the remaining tables.

If a table is largely denormalized and does not participate in joins, or if you don't have a clear
choice for another distribution style, use AUTO distribution.

To let Amazon Redshift choose the appropriate distribution style, don't explicitly specify a
distribution style.

Evaluating the query plan

You can use query plans to identify candidates for optimizing the distribution style.

Evaluating the query plan 86

Amazon Redshift Database Developer Guide

After making your initial design decisions, create your tables, load them with data, and test them.
Use a test dataset that is as close as possible to the real data. Measure load times to use as a
baseline for comparisons.

Evaluate queries that are representative of the most costly queries you expect to run, specifically
queries that use joins and aggregations. Compare runtimes for various design options. When you
compare runtimes, don't count the first time the query is run, because the first runtime includes
the compilation time.

DS_DIST_NONE

No redistribution is required, because corresponding slices are collocated on the compute
nodes. You typically have only one DS_DIST_NONE step, the join between the fact table and
one dimension table.

DS_DIST_ALL_NONE

No redistribution is required, because the inner join table used DISTSTYLE ALL. The entire table
is located on every node.

DS_DIST_INNER

The inner table is redistributed.

DS_DIST_OUTER

The outer table is redistributed.
DS_BCAST_INNER

A copy of the entire inner table is broadcast to all the compute nodes.

DS_DIST_ALL_INNER

The entire inner table is redistributed to a single slice because the outer table uses DISTSTYLE
ALL.

DS_DIST_BOTH

Both tables are redistributed.

DS_DIST_NONE and DS_DIST_ALL_NONE are good. They indicate that no distribution was required
for that step because all of the joins are collocated.

Evaluating the query plan 87

Amazon Redshift Database Developer Guide

DS_DIST_INNER means that the step probably has a relatively high cost because the inner table is
being redistributed to the nodes. DS_DIST_INNER indicates that the outer table is already properly
distributed on the join key. Set the inner table's distribution key to the join key to convert this to
DS_DIST_NONE. In some cases, distributing the inner table on the join key isn't possible because
the outer table isn't distributed on the join key. If this is the case, evaluate whether to use ALL
distribution for the inner table. If the table isn't updated frequently or extensively, and it's large
enough to carry a high redistribution cost, change the distribution style to ALL and test again.

ALL distribution causes increased load times, so when you retest, include the load time in your
evaluation factors.

DS_DIST_ALL_INNER is not good. It means that the entire inner table is redistributed to a single
slice because the outer table uses DISTSTYLE ALL, so that a copy of the entire outer table is located
on each node. This results in inefficient serial runtime of the join on a single node, instead taking
advantage of parallel runtime using all of the nodes. DISTSTYLE ALL is meant to be used only for
the inner join table. Instead, specify a distribution key or use even distribution for the outer table.

DS_BCAST_INNER and DS_DIST_BOTH are not good. Usually these redistributions occur because
the tables are not joined on their distribution keys. If the fact table does not already have a
distribution key, specify the joining column as the distribution key for both tables. If the fact table
already has a distribution key on another column, evaluate whether changing the distribution key
to collocate this join improve overall performance. If changing the distribution key of the outer
table isn't an optimal choice, you can achieve collocation by specifying DISTSTYLE ALL for the inner
table.

The following example shows a portion of a query plan with DS_BCAST_INNER and DS_DIST_NONE
labels.

-> XN Hash Join DS_BCAST_INNER (cost=112.50..3272334142.59 rows=170771 width=84)
Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Hash Join DS_BCAST_INNER (cost=109.98..3167290276.71 rows=172456
width=47)

Hash Cond: ("outer".eventid = "inner".eventid)
-> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid = "inner".listid)

-> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
width=14)
-> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

After changing the dimension tables to use DISTSTYLE ALL, the query plan for the same query
shows DS_DIST_ALL_NONE in place of DS_BCAST_INNER. Also, there is a dramatic change in the

Evaluating the query plan 88

Amazon Redshift Database Developer Guide

relative cost for the join steps. The total cost is 14142 .59 compared to 3272334142 .59 in the
previous query.

-> XN Hash Join DS_DIST_ALL_NONE (cost=112.50..14142.59 rows=170771 width=84)

Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Hash Join DS_DIST_ALL_NONE (cost=109.98..10276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid = "inner".eventid)
-> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid = "inner".listid)

-> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
width=14)
-> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

Query plan example

This example shows how to evaluate a query plan to find opportunities to optimize the
distribution.

Run the following query with an EXPLAIN command to produce a query plan.

explain

select lastname, catname, venuename, venuecity, venuestate, eventname,
month, sum(pricepaid) as buyercost, max(totalprice) as maxtotalprice
from category join event on category.catid = event.catid

join venue on venue.venueid = event.venueid

join sales on sales.eventid = event.eventid

join listing on sales.listid = listing.listid

join date on sales.dateid = date.dateid

join users on users.userid = sales.buyerid

group by lastname, catname, venuename, venuecity, venuestate, eventname, month
having sum(pricepaid)>9999

order by catname, buyercost desc;

In the TICKIT database, SALES is a fact table and LISTING is its largest dimension. In order to
collocate the tables, SALES is distributed on the LISTID, which is the foreign key for LISTING, and
LISTING is distributed on its primary key, LISTID. The following example shows the CREATE TABLE
commands for SALES and LISTING.

create table sales(
salesid integer not null,
listid integer not null distkey,

Query plan example 89

Amazon Redshift Database Developer Guide

sellerid integer not null,

buyerid integer not null,

eventid integer not null encode mostlyl6,

dateid smallint not null,

gtysold smallint not null encode mostlyS8,

pricepaid decimal(8,2) encode delta32k,

commission decimal(8,2) encode delta32k,

saletime timestamp,

primary key(salesid),

foreign key(listid) references listing(listid),

foreign key(sellerid) references users(userid),

foreign key(buyerid) references users(userid),

foreign key(dateid) references date(dateid))
sortkey(listid,sellerid);

create table listing(

listid integer not null distkey sortkey,
sellerid integer not null,

eventid integer not null encode mostlyl6,
dateid smallint not null,

numtickets smallint not null encode mostlyS,
priceperticket decimal(8,2) encode bytedict,
totalprice decimal(8,2) encode mostly32,
listtime timestamp,

primary key(listid),

foreign key(sellerid) references users(userid),
foreign key(eventid) references event(eventid),
foreign key(dateid) references date(dateid));

In the following query plan, the Merge Join step for the join on SALES and LISTING shows
DS_DIST_NONE, which indicates that no redistribution is required for the step. However, moving up
the query plan, the other inner joins show DS_BCAST_INNER, which indicates that the inner table

is broadcast as part of the query execution. Because only one pair of tables can be collocated using
key distribution, five tables must be rebroadcast.

QUERY PLAN
XN Merge (cost=1015345167117.54..1015345167544.46 rows=1000 width=103)
Merge Key: category.catname, sum(sales.pricepaid)
-> XN Network (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)
Send to leader
-> XN Sort (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)
Sort Key: category.catname, sum(sales.pricepaid)

Query plan example 90

Amazon Redshift Database Developer Guide

-> XN HashAggregate (cost=15345150568.37..15345152276.08 rows=170771
width=103)
Filter: (sum(pricepaid) > 9999.00)
-> XN Hash Join DS_BCAST_INNER (cost=742.08..15345146299.10
rows=170771 width=103)
Hash Cond: ("outer".catid = "inner".catid)
-> XN Hash Join DS_BCAST_INNER
(cost=741.94..15342942456.61 rows=170771 width=97)
Hash Cond: ("outer".dateid = "inner".dateid)
-> XN Hash Join DS_BCAST_INNER
(cost=737.38..15269938609.81 rows=170766 width=90)
Hash Cond: ("outer".buyerid = "inner".userid)
-> XN Hash Join DS_BCAST_INNER
(cost=112.50..3272334142.59 rows=170771 width=84)
Hash Cond: ("outer".venueid =
"inner".venueid)
-> XN Hash Join DS_BCAST_INNER
(cost=109.98..3167290276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid =
"inner".eventid)
-> XN Merge Join DS_DIST_NONE
(cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid =
"inner".listid)
-> XN Seq Scan on listing
(cost=0.00..1924.97 rows=192497 width=14)
-> XN Seq Scan on sales
(cost=0.00..1724.56 rows=172456 width=24)
-> XN Hash (cost=87.98..87.98
rows=8798 width=25)
-> XN Seq Scan on event
(cost=0.00..87.98 rows=8798 width=25)
-> XN Hash (cost=2.02..2.02 rows=202
width=41)
-> XN Seq Scan on venue
(cost=0.00..2.02 rows=202 width=41)
-> XN Hash (cost=499.90..499.90 rows=49990
width=14)
-> XN Seq Scan on users
(cost=0.00..499.90 rows=49990 width=14)
-> XN Hash (cost=3.65..3.65 rows=365 width=11)
-> XN Seq Scan on date (cost=0.00..3.65
rows=365 width=11)
-> XN Hash (cost=0.11..0.11 rows=11 width=10)

Query plan example 91

Amazon Redshift Database Developer Guide

-> XN Seq Scan on category (cost=0.00..0.11 rows=11
width=10)

One solution is to alter the tables to have DISTSTYLE ALL.

ALTER TABLE users ALTER DISTSTYLE ALL;
ALTER TABLE venue ALTER DISTSTYLE ALL;
ALTER TABLE category ALTER DISTSTYLE ALL;
ALTER TABLE date ALTER DISTSTYLE ALL;
ALTER TABLE event ALTER DISTSTYLE ALL;

Run the same query with EXPLAIN again, and examine the new query plan. The joins now show
DS_DIST_ALL_NONIE, indicating that no redistribution is required because the data was distributed
to every node using DISTSTYLE ALL.

QUERY PLAN
XN Merge (cost=1000000047117.54..1000000047544.46 rows=1000 width=103)
Merge Key: category.catname, sum(sales.pricepaid)
-> XN Network (cost=1000000047117.54..1000000047544.46 rows=170771 width=103)
Send to leader
-> XN Sort (cost=1000000047117.54..1000000047544 .46 rows=170771 width=103)
Sort Key: category.catname, sum(sales.pricepaid)
-> XN HashAggregate (cost=30568.37..32276.08 rows=170771 width=103)
Filter: (sum(pricepaid) > 9999.00)
-> XN Hash Join DS_DIST_ALL_NONE (cost=742.08..26299.10
rows=170771 width=103)
Hash Cond: ("outer".buyerid = "inner".userid)
-> XN Hash Join DS_DIST_ALL_NONE (cost=117.20..21831.99
rows=170766 width=97)
Hash Cond: ("outer".dateid = "inner".dateid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=112.64..17985.08 rows=170771 width=90)
Hash Cond: ("outer".catid = "inner".catid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=112.50..14142.59 rows=170771 width=84)
Hash Cond: ("outer".venueid =
"inner".venueid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=109.98..10276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid =
"inner".eventid)
-> XN Merge Join DS_DIST_NONE
(cost=0.00..6286.47 rows=172456 width=30)

Query plan example 92

Amazon Redshift Database Developer Guide

Merge Cond: ("outer".listid =
"inner".listid)
-> XN Seq Scan on listing
(cost=0.00..1924.97 rows=192497 width=14)
-> XN Seq Scan on sales
(cost=0.00..1724.56 rows=172456 width=24)
-> XN Hash (cost=87.98..87.98
rows=8798 width=25)
-> XN Seq Scan on event
(cost=0.00..87.98 rows=8798 width=25)
-> XN Hash (cost=2.02..2.02 rows=202
width=41)
-> XN Seq Scan on venue
(cost=0.00..2.02 rows=202 width=41)
-> XN Hash (cost=0.11..0.11 rows=11 width=10)
-> XN Seq Scan on category
(cost=0.00..0.11 rows=11 width=10)
-> XN Hash (cost=3.65..3.65 rows=365 width=11)
-> XN Seq Scan on date (cost=0.00..3.65
rows=365 width=11)
-> XN Hash (cost=499.90..499.90 rows=49990 width=14)
-> XN Seq Scan on users (cost=0.00..499.90 rows=49990
width=14)

Distribution examples

The following examples show how data is distributed according to the options that you define in
the CREATE TABLE statement.

DISTKEY examples

Look at the schema of the USERS table in the TICKIT database. USERID is defined as the SORTKEY
column and the DISTKEY column:

select "column", type, encoding, distkey, sortkey

from pg_table_def where tablename = 'users';
column | type | encoding | distkey | sortkey
——————————————— ettt ittt ettt ettt
userid | integer | none | t | 1
username | character(8) | none | f | 0
firstname | character varying(30) | text32k | f | 0

Distribution examples 93

Amazon Redshift Database Developer Guide

USERID is a good choice for the distribution column on this table. If you query the SVV_DISKUSAGE
system view, you can see that the table is very evenly distributed. Column numbers are zero-based,
so USERID is column O.

select slice, col, num_values as rows, minvalue, maxvalue
from svv_diskusage

where name='users' and col=0 and rows>0

order by slice, col;

slice| col | rows | minvalue | maxvalue
————— e e e S e e
0 | | 12496 | 4 | 49987

1 | @ | 12498 | 1 | 49988

2 | | 12497 | 2 | 49989

3 | | 12499 | 3 | 49990

(4 rows)

The table contains 49,990 rows. The rows (num_values) column shows that each slice contains
about the same number of rows. The minvalue and maxvalue columns show the range of values on
each slice. Each slice includes nearly the entire range of values, so there's a good chance that every
slice participates in running a query that filters for a range of user IDs.

This example demonstrates distribution on a small test system. The total number of slices is
typically much higher.

If you commonly join or group using the STATE column, you might choose to distribute on the
STATE column. The following example shows a case where you create a new table with the same
data as the USERS table but set the DISTKEY to the STATE column. In this case, the distribution
isn't as even. Slice 0 (13,587 rows) holds approximately 30 percent more rows than slice 3 (10,150
rows). In a much larger table, this amount of distribution skew can have an adverse impact on
query processing.

create table userskey distkey(state) as select * from users;
select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userskey' and col=0 and rows>0

order by slice, col;

slice | col | rows | minvalue | maxvalue

Distribution examples 94

Amazon Redshift Database Developer Guide

—————— e i T T e i
0 | @ | 13587 | 5| 49989
1| @ | 11245 | 2 | 49990
2 | @ | 15008 | 1| 49976
3 | 0 | 10150 | 4 | 49986
(4 rows)

DISTSTYLE EVEN example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to EVEN,
rows are always evenly distributed across slices.

create table userseven diststyle even as
select * from users;

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userseven' and col=0 and rows>0
order by slice, col;

slice | col | rows | minvalue | maxvalue
—————— e e e S e e
0 | Q | 12497 | 4 | 49990
1| @ | 12498 | 8 | 49984
2 | Q@ | 12498 | 2 | 49988
3| @ | 12497 | 1| 49989
(4 rows)

However, because distribution is not based on a specific column, query processing can be degraded,
especially if the table is joined to other tables. The lack of distribution on a joining column often
influences the type of join operation that can be performed efficiently. Joins, aggregations, and
grouping operations are optimized when both tables are distributed and sorted on their respective
joining columns.

DISTSTYLE ALL example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to ALL, all
the rows are distributed to the first slice of each node.

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'usersall' and col=0 and rows > 0
order by slice, col;

Distribution examples 95

Amazon Redshift Database Developer Guide

slice | col | rows | minvalue | maxvalue
—————— R e e e e e T
0 | Q@ | 49990 | 4 | 49990
2 | 0 | 49990 | 2 | 49990
(4 rows)
Sort keys
(® Note

We recommend that you create your tables with SORTKEY AUTO. If you do so, then
Amazon Redshift uses automatic table optimization to choose the sort key. For more
information, see Automatic table optimization. The rest of this section provides details

about the sort order.

When you create a table, you can alternatively define one or more of its columns as sort keys.
When data is initially loaded into the empty table, the rows are stored on disk in sorted order.
Information about sort key columns is passed to the query planner, and the planner uses this
information to construct plans that exploit the way that the data is sorted. For more information,
see CREATE TABLE. For information on best practices when creating a sort key, see Choose the best

sort key.

Sorting enables efficient handling of range-restricted predicates. Amazon Redshift stores
columnar data in 1 MB disk blocks. The min and max values for each block are stored as part of the
metadata. If a query uses a range-restricted predicate, the query processor can use the min and
max values to rapidly skip over large numbers of blocks during table scans. For example, suppose
that a table stores five years of data sorted by date and a query specifies a date range of one
month. In this case, you can remove up to 98 percent of the disk blocks from the scan. If the data is
not sorted, more of the disk blocks (possibly all of them) have to be scanned.

You can specify either a compound or interleaved sort key. A compound sort key is more efficient
when query predicates use a prefix, which is a subset of the sort key columns in order. An
interleaved sort key gives equal weight to each column in the sort key, so query predicates can use
any subset of the columns that make up the sort key, in any order.

To understand the impact of the chosen sort key on query performance, use the EXPLAIN
command. For more information, see Query planning and execution workflow.

Sort keys 96

Amazon Redshift Database Developer Guide

To define a sort type, use either the INTERLEAVED or COMPOUND keyword with your CREATE
TABLE or CREATE TABLE AS statement. The default is COMPOUND. COMPOUND is recommended
when you update your tables regularly with INSERT, UPDATE, or DELETE operations. An
INTERLEAVED sort key can use a maximum of eight columns. Depending on your data and

cluster size, VACUUM REINDEX takes significantly longer than VACUUM FULL because it makes

an additional pass to analyze the interleaved sort keys. The sort and merge operation can take
longer for interleaved tables because the interleaved sort might have to rearrange more rows than
a compound sort.

To view the sort keys for a table, query the SVV_TABLE_INFO system view.

Topics

» Multidimensional data layout sorting (preview)

o Compound sort key

 Interleaved sort key

Multidimensional data layout sorting (preview)

The following is prerelease documentation for the multidimensional data layout sorting of
tables, which is in preview release. The documentation and the feature are both subject to
change. We recommend that you use this feature only with test clusters, and not in production
environments. For preview terms and conditions, see Beta Service Participation in AWS Service
Terms.

(® Note

This feature is only available using a preview cluster or preview workgroup. To create a
preview cluster, see Creating a preview cluster in the Amazon Redshift Management Guide.
To create a preview workgroup, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

A multidimensional data layout sort key is a type of AUTO sort key that is based on repetitive
predicates found in a workload. If your workload has repetitive predicates, then Amazon Redshift
can improve table scan performance by colocating data rows that satisfy the repetitive predicates.

Multidimensional data layout sorting (preview) 97

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

Instead of storing data of a table in strict column order, a multidimensional data layout sort key
stores data by analyzing repetitive predicates that appear in a workload. More than one repetitive
predicate can be found in a workload. Depending on your workload, this kind of sort key can
improve performance of many predicates. Amazon Redshift automatically determines if this sort
key method should be used for tables that are defined with an AUTO sort key.

For example, suppose you have a table that has data sorted in column order. Many data blocks
might need to be examined to determine if they satisfy the predicates in your workload. But, if
the data is stored on disk in a predicate order, then fewer blocks need to be scanned to satisfy the
query. Using a multidimensional data layout sort key is beneficial in this case.

To view whether a query is using a multidimensional data layout key, see the step_attribute
column of the SYS_QUERY_DETAIL view. When the value ismulti-dimensional then
multidimensional data layout was used for the query. To view whether a table defined

with the AUTO sort key is using a multidimensional data layout, see the sortkeyl column
of the SVV_TABLE_INFO view. When the value is padb_internal_mddl_key_col then
multidimensional data layout was used for the table sort key.

To prevent Amazon Redshift from using a multidimensional data layout sort key, choose a different
table sort key option other than SORTKEY AUTO. For more information on SORTKEY options, see
CREATE TABLE.

Compound sort key

A compound key is made up of all of the columns listed in the sort key definition, in the order they
are listed. A compound sort key is most useful when a query's filter applies conditions, such as
filters and joins, that use a prefix of the sort keys. The performance benefits of compound sorting
decrease when queries depend only on secondary sort columns, without referencing the primary
columns. COMPOUND is the default sort type.

Compound sort keys might speed up joins, GROUP BY and ORDER BY operations, and window
functions that use PARTITION BY and ORDER BY. For example, a merge join, which is often faster
than a hash join, is feasible when the data is distributed and presorted on the joining columns.
Compound sort keys also help improve compression.

As you add rows to a sorted table that already contains data, the unsorted region grows, which
has a significant effect on performance. The effect is greater when the table uses interleaved
sorting, especially when the sort columns include data that increases monotonically, such as date

Compound sort key 98

Amazon Redshift Database Developer Guide

or timestamp columns. Run a VACUUM operation regularly, especially after large data loads, to re-
sort and re-analyze the data. For more information, see Reduce the size of the unsorted region.
After vacuuming to resort the data, it's a good practice to run an ANALYZE command to update the
statistical metadata for the query planner. For more information, see Analyzing tables.

Interleaved sort key

An interleaved sort gives equal weight to each column, or subset of columns, in the sort key.

If multiple queries use different columns for filters, then you can often improve performance

for those queries by using an interleaved sort style. When a query uses restrictive predicates on
secondary sort columns, interleaved sorting significantly improves query performance as compared
to compound sorting.

/A Important

Don't use an interleaved sort key on columns with monotonically increasing attributes, such
as identity columns, dates, or timestamps.

The performance improvements you gain by implementing an interleaved sort key should be
weighed against increased load and vacuum times.

Interleaved sorts are most effective with highly selective queries that filter on one or more of the
sort key columns in the WHERE clause, for example select c_name from customer where
c_region = 'ASIA'. The benefits of interleaved sorting increase with the number of sorted
columns that are restricted.

An interleaved sort is more effective with large tables. Sorting is applied on each slice. Thus, an
interleaved sort is most effective when a table is large enough to require multiple 1 MB blocks
per slice. Here, the query processor can skip a significant proportion of the blocks using restrictive
predicates. To view the number of blocks a table uses, query the STV_BLOCKLIST system view.

When sorting on a single column, an interleaved sort might give better performance than a
compound sort if the column values have a long common prefix. For example, URLs commonly
begin with "http://www". Compound sort keys use a limited number of characters from the prefix,
which results in a lot of duplication of keys. Interleaved sorts use an internal compression scheme
for zone map values that enables them to better discriminate among column values that have a
long common prefix.

Interleaved sort key 99

Amazon Redshift Database Developer Guide

When migrating Amazon Redshift provisioned clusters to Amazon Redshift Serverless, Redshift
converts tables with interleaved sort keys and DISTSTYLE KEY to compound sort keys. The
DISTSTYLE doesn't change. For more information on distribution styles, see Working with data
distribution styles.

VACUUM REINDEX

As you add rows to a sorted table that already contains data, performance might deteriorate over
time. This deterioration occurs for both compound and interleaved sorts, but it has a greater effect
on interleaved tables. A VACUUM restores the sort order, but the operation can take longer for
interleaved tables because merging new interleaved data might involve modifying every data
block.

When tables are initially loaded, Amazon Redshift analyzes the distribution of the values in the sort
key columns and uses that information for optimal interleaving of the sort key columns. As a table
grows, the distribution of the values in the sort key columns can change, or skew, especially with
date or timestamp columns. If the skew becomes too large, performance might be affected. To re-
analyze the sort keys and restore performance, run the VACUUM command with the REINDEX key
word. Because it must take an extra analysis pass over the data, VACUUM REINDEX can take longer
than a standard VACUUM for interleaved tables. To view information about key distribution skew
and last reindex time, query the SVV_INTERLEAVED_COLUMNS system view.

For more information about how to determine how often to run VACUUM and when to run a
VACUUM REINDEX, see Decide whether to reindex.

Table constraints

Uniqueness, primary key, and foreign key constraints are informational only; they are not enforced
by Amazon Redshift when you populate a table. For example, if you insert data into a table with
dependencies, the insert can succeed even if it violates the constraint. Nonetheless, primary keys
and foreign keys are used as planning hints and they should be declared if your ETL process or
some other process in your application enforces their integrity.

For example, the query planner uses primary and foreign keys in certain statistical computations.
It does this to infer uniqueness and referential relationships that affect subquery decorrelation
techniques. By doing this, it can order large numbers of joins and remove redundant joins.

The planner leverages these key relationships, but it assumes that all keys in Amazon Redshift
tables are valid as loaded. If your application allows invalid foreign keys or primary keys, some

Table constraints 100

https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html

Amazon Redshift Database Developer Guide

queries could return incorrect results. For example, a SELECT DISTINCT query might return
duplicate rows if the primary key is not unique. Do not define key constraints for your tables if you
doubt their validity. However, always declare primary and foreign keys and uniqueness constraints
when you know that they are valid.

Amazon Redshift does enforce NOT NULL column constraints.

For more information about table constraints, see CREATE TABLE. For information about how to
drop a table with dependencies, see DROP TABLE.

Table constraints 101

Amazon Redshift

Database Developer Guide

Loading data in Amazon Redshift

There are several ways to load data into an Amazon Redshift database. One popular source of data
to load are Amazon S3 files. The following table summarizes some of the methods to use with

starting from an Amazon S3 source.

Method to use

COPY command

COPY... CREATE JOB
command (auto-copy)

Load from data lake queries

Description

Runs a batch file ingestion

to load data from your
Amazon S3 files. This method
leverages parallel processin

g capabilities of Amazon
Redshift. For more informati
on, see Loading tables with
the COPY command.

Runs your COPY commands
automatically when a new file
is created on tracked Amazon
S3 paths. For more informati
on, see Loading tables with

continuous file ingestion from

Amazon S3 (preview).

Create external tables to run
data lake queries on your
Amazon S3 files and then run
INSERT INTO command to
load results from your data
lake queries into local tables.
For more information, see

When method needed

Should be used when basic
data loading requirements to
initiate batch file ingestion
manually is needed. This
method is used mostly with
custom and third-party file
ingestion pipelines or one-
time, or ad hoc, file ingestion
workloads.

Should be used when a file
ingestion pipeline needs to
automatically ingest data
when a new file is created on
Amazon S3. Amazon Redshift
keeps track of ingested files
to prevent data duplicati

on. This method requires
configuration by Amazon S3
bucket owners.

Should be used in any of the
following scenarios:

« Loading from AWS Glue
and open table formats
(such as Apache Iceberg,
Apache Hudi, or Delta
Lake).

102

Amazon Redshift

Database Developer Guide

Method to use

Description

External tables for Redshift
Spectrum.

Other methods that you can consider

Streaming ingestion

Streaming ingestion provides
low-latency, high-speed
ingestion of stream data from
Amazon Kinesis Data Streams
and Amazon Managed
Streaming for Apache Kafka
into an Amazon Redshift
provisioned or Redshift
Serverless materialized

view. For more informati

on, see Getting started with

streaming ingestion from

Amazon Kinesis Data Streams
and Getting started with
streaming ingestion from

Amazon Managed Streaming

for Apache Kafka (Amazon
MSK).

When method needed

» Source files need to be
ingested partially (for
example, needed for
running a WHERE clause to
ingest particular rows).

» More flexibility needed to
ingest particular columns
(like running a SELECT
command) or doing basic
data transformation on
the go (such as applying
basic operations or calling
UDFs on the values from
the source file).

Should be considered for

use cases when data is

first streamed into files

on Amazon S3 and then
loaded from Amazon S3. If
keeping data on Amazon S3

is not needed, you can often
consider streaming your data
directly into Amazon Redshift.

103

Amazon Redshift

Database Developer Guide

Method to use

Running data lake queries

Batch loading using Amazon
Redshift query editor v2

Load data from a local file
using Amazon Redshift query
editor v2

Description

Running queries directly from
a data lake table instead

of ingesting contents of

the table into a local table.
For more information, see
Amazon Redshift Spectrum.

You can prepare and run your
batch file ingestion workloads
visually on Amazon Redshift
query editor v2. For more
information, see Loading

data from S3 in the Amazon
Redshift Management Guide.

You can directly upload

files from your desktop

into Amazon Redshift

tables without the need for
manually uploading your files
into Amazon S3. For more
information, see Loading
data from a local file setup

and workflow in the Amazon

Redshift Management Guide.

When method needed

Should be used when the
use case doesn't require the
performance of local table
queries in Amazon Redshift.

Should be used when you
want the query editor v2 to
prepare COPY statements
and you want a visual tool to
simplify the COPY statement
preparation process.

Should be used when you
need to quickly load files
from your local computer for
one-time querying purposes.
With this method, Amazon
Redshift query editor v2
temporarily stores the file on
a customer-owned Amazon
S3 bucket and runs a copy
command using this Amazon
S3 path.

A COPY command is the most efficient way to load a table. You can also add data to your tables

using INSERT commands, though it is much less efficient than using COPY. The COPY command

is able to read from multiple data files or multiple data streams simultaneously. Amazon Redshift
allocates the workload to the Amazon Redshift nodes and performs the load operations in parallel,
including sorting the rows and distributing data across node slices.

104

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local

Amazon Redshift Database Developer Guide

® Note

Amazon Redshift Spectrum external tables are read-only. You can't COPY or INSERT to an
external table.

To access data on other AWS resources, Amazon Redshift must have permission to access those
resources and to perform the necessary actions to access the data. You can use AWS Identity and
Access Management (IAM) to limit the access users have to Amazon Redshift resources and data.

After your initial data load, if you add, modify, or delete a significant amount of data, you should
follow up by running a VACUUM command to reorganize your data and reclaim space after deletes.
You should also run an ANALYZE command to update table statistics.

Topics

» Loading tables with the COPY command

» Loading tables with continuous file ingestion from Amazon S3 (preview)

» Loading tables with DML commands

» Performing a deep copy

« Analyzing tables

« Vacuuming tables

» Managing concurrent write operations

» Tutorial: Loading data from Amazon S3

Loading tables with the COPY command

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)
architecture to read and load data in parallel from files on Amazon S3, from a DynamoDB table, or
from text output from one or more remote hosts.

Before learning all the options of the COPY command, we recommend learning the basic options
to load Amazon S3 data. The Amazon Redshift Getting Started Guide demonstrates a simple use of
the COPY command to load Amazon S3 data using a default IAM role. See Step 4: Load data from

Amazon S3 to Amazon Redshift for details.

Loading tables with COPY 105

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

® Note

We strongly recommend using the COPY command to load large amounts of data. Using
individual INSERT statements to populate a table might be prohibitively slow. Alternatively,
if your data already exists in other Amazon Redshift database tables, use INSERT INTO ...
SELECT or CREATE TABLE AS to improve performance. For information, see INSERT or
CREATE TABLE AS.

To load data from another AWS resource, Amazon Redshift must have permission to access the
resource and perform the necessary actions.

To grant or revoke privilege to load data into a table using a COPY command, grant or revoke the
INSERT privilege.

Your data needs to be in the proper format for loading into your Amazon Redshift table. This
section presents guidelines for preparing and verifying your data before the load and for validating
a COPY statement before you run it.

To protect the information in your files, you can encrypt the data files before you upload them
to your Amazon S3 bucket; COPY will decrypt the data as it performs the load. You can also limit
access to your load data by providing temporary security credentials to users. Temporary security
credentials provide enhanced security because they have short life spans and cannot be reused
after they expire.

Amazon Redshift has features built in to COPY to load uncompressed, delimited data quickly. But
you can compress your files using gzip, lzop, or bzip2 to save time uploading the files.

If the following keywords are in the COPY query, automatic splitting of uncompressed data is not
supported: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH. But the CSV keyword is supported.

To help keep your data secure in transit within the AWS Cloud, Amazon Redshift uses hardware
accelerated SSL to communicate with Amazon S3 or Amazon DynamoDB for COPY, UNLOAD,
backup, and restore operations.

When you load your table directly from an Amazon DynamoDB table, you have the option to
control the amount of Amazon DynamoDB provisioned throughput you consume.

You can optionally let COPY analyze your input data and automatically apply optimal compression
encodings to your table as part of the load process.

Loading tables with COPY 106

Amazon Redshift Database Developer Guide

Topics

» Credentials and access permissions

 Preparing your input data

» Loading data from Amazon S3

» Loading data from Amazon EMR

» Loading data from remote hosts

» Loading data from an Amazon DynamoDB table

 Verifying that the data loaded correctly

» Validating input data

» Loading tables with automatic compression

« Optimizing storage for narrow tables

» Loading default column values

» Troubleshooting data loads

Credentials and access permissions

To load or unload data using another AWS resource, such as Amazon S3, Amazon DynamoDB,
Amazon EMR, or Amazon EC2, Amazon Redshift must have permission to access the resource and
perform the necessary actions to access the data. For example, to load data from Amazon S3, COPY
must have LIST access to the bucket and GET access for the bucket objects.

To obtain authorization to access a resource, Amazon Redshift must be authenticated. You can
choose either role-based access control or key-based access control. This section presents an
overview of the two methods. For complete details and examples, see Permissions to access other

AWS Resources.

Role-based access control

With role-based access control, Amazon Redshift temporarily assumes an AWS Identity and Access
Management (IAM) role on your behalf. Then, based on the authorizations granted to the role,
Amazon Redshift can access the required AWS resources.

We recommend using role-based access control because it is provides more secure, fine-grained
control of access to AWS resources and sensitive user data, in addition to safeguarding your AWS
credentials.

Credentials and access permissions 107

Amazon Redshift Database Developer Guide

To use role-based access control, you must first create an IAM role using the Amazon Redshift
service role type, and then attach the role to your data warehouse. The role must have, at a
minimum, the permissions listed in IAM permissions for COPY, UNLOAD, and CREATE LIBRARY. For
steps to create an IAM role and attach it to your cluster, see Creating an IAM Role to Allow Your
Amazon Redshift Cluster to Access AWS Services in the Amazon Redshift Management Guide.

You can add a role to a cluster or view the roles associated with a cluster by using the Amazon
Redshift Management Console, CLI, or API. For more information, see Authorizing COPY and
UNLOAD Operations Using IAM Roles in the Amazon Redshift Management Guide.

When you create an IAM role, IAM returns an Amazon Resource Name (ARN) for the role. To run
a COPY command using an 1AM role, provide the role ARN using the IAM_ROLE parameter or the
CREDENTIALS parameter.

The following COPY command example uses IAM_ROLE parameter with the role MyRedshiftRole
for authentication.

COPY customer FROM 's3://amzn-s3-demo-bucket/mydata’
TAM_ROLE 'arn:aws:iam::12345678901:role/MyRedshiftRole’;

The AWS user must have, at a minimum, the permissions listed in IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY.

Key-based access control

With key-based access control, you provide the access key ID and secret access key for a user that is
authorized to access the AWS resources that contain the data.

® Note

We strongly recommend using an IAM role for authentication instead of supplying a plain-
text access key ID and secret access key. If you choose key-based access control, never use
your AWS account (root) credentials. Always create an IAM user and provide that user's
access key ID and secret access key. For steps to create an IAM user, see Creating an IAM
User in Your AWS Account.

Credentials and access permissions 108

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon Redshift Database Developer Guide

Preparing your input data

If your input data is not compatible with the table columns that will receive it, the COPY command
will fail.

Use the following guidelines to help ensure that your input data is valid:

« Your data can only contain UTF-8 characters up to four bytes long.

» Verify that CHAR and VARCHAR strings are no longer than the lengths of the corresponding
columns. VARCHAR strings are measured in bytes, not characters, so, for example, a four-
character string of Chinese characters that occupy four bytes each requires a VARCHAR(16)
column.

o Multibyte characters can only be used with VARCHAR columns. Verify that multibyte characters
are no more than four bytes long.

« Verify that data for CHAR columns only contains single-byte characters.

« Do not include any special characters or syntax to indicate the last field in a record. This field can
be a delimiter.

o If your data includes null terminators, also referred to as NUL (UTF-8 0000) or binary zero
(0x000), you can load these characters as NULLS into CHAR or VARCHAR columns by using the
NULL AS option in the COPY command: null as '\@' ornull as '\@00' . If you do not use
NULL AS, null terminators will cause your COPY to fail.

« If your strings contain special characters, such as delimiters and embedded newlines, use the
ESCAPE option with the COPY command.

« Verify that all single and double quotation marks are appropriately matched.

 Verify that floating-point strings are in either standard floating-point format, such as 12.123, or
an exponential format, such as 1.0E4.

» Verify that all timestamp and date strings follow the specifications for DATEFORMAT and
TIMEFORMAT strings. The default timestamp format is YYYY-MM-DD hh:mm:ss, and the default
date format is YYYY-MM-DD.

« For more information about boundaries and limitations on individual data types, see Data types.
For information about multibyte character errors, see Multibyte character load errors

Preparing your input data 109

Amazon Redshift Database Developer Guide

Loading data from Amazon S3

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)
architecture to read and load data in parallel from a file or multiple files in an Amazon S3 bucket.
You can take maximum advantage of parallel processing by splitting your data into multiple
files, in cases where the files are compressed. (There are exceptions to this rule. These are
detailed in Loading data files.) You can also take maximum advantage of parallel processing by

setting distribution keys on your tables. For more information about distribution keys, see Data
distribution for query optimization.

Data is loaded into the target table, one line per row. The fields in the data file are matched

to table columns in order, left to right. Fields in the data files can be fixed-width or character
delimited; the default delimiter is a pipe (|). By default, all the table columns are loaded, but you
can optionally define a comma-separated list of columns. If a table column is not included in the
column list specified in the COPY command, it is loaded with a default value. For more information,
see Loading default column values.

Topics

» Loading data from compressed and uncompressed files

« Uploading files to Amazon S3 to use with COPY

e Using the COPY command to load from Amazon S3

Loading data from compressed and uncompressed files

When you load compressed data, we recommend that you split the data for each table into
multiple files. When you load uncompressed, delimited data, the COPY command uses massively
parallel processing (MPP) and scan ranges to load data from large files in an Amazon S3 bucket.

Loading data from multiple compressed files

In cases where you have compressed data, we recommend that you split the data for each table
into multiple files. The COPY command can load data from multiple files in parallel. You can load
multiple files by specifying a common prefix, or prefix key, for the set, or by explicitly listing the
files in a manifest file.

Split your data into files so that the number of files is a multiple of the number of slices in your
cluster. That way, Amazon Redshift can divide the data evenly among the slices. The number of
slices per node depends on the node size of the cluster. For example, each dc2.large compute node

Loading data from Amazon S3 110

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-use-multiple-files.html

Amazon Redshift Database Developer Guide

has two slices, and each dc2.8xlarge compute node has 16 slices. For more information about the
number of slices that each node size has, see About clusters and nodes in the Amazon Redshift
Management Guide.

The nodes all participate in running parallel queries, working on data that is distributed as evenly
as possible across the slices. If you have a cluster with two dc2.large nodes, you might split your
data into four files or some multiple of four. Amazon Redshift doesn't take file size into account
when dividing the workload. Thus, you need to ensure that the files are roughly the same size, from
1 MB to 1 GB after compression.

To use object prefixes to identify the load files, name each file with a common prefix. For example,
you might split the venue. txt file might be split into four files, as follows.

venue.txt.1
venue.txt.2
venue.txt.3
venue.txt.4

If you put multiple files in a folder in your bucket and specify the folder name as the prefix, COPY
loads all of the files in the folder. If you explicitly list the files to be loaded by using a manifest file,
the files can reside in different buckets or folders.

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading data from uncompressed, delimited files

When you load uncompressed, delimited data, the COPY command uses the massively parallel
processing (MPP) architecture in Amazon Redshift. Amazon Redshift automatically uses slices
working in parallel to load ranges of data from a large file in an Amazon S3 bucket. The file must
be delimited for parallel loading to occur. For example, pipe delimited. Automatic, parallel data
loading with the COPY command is also available for CSV files. You can also take advantage

of parallel processing by setting distribution keys on your tables. For more information about
distribution keys, see Data distribution for query optimization.

Automatic, parallel data loading isn't supported when the COPY query includes any of the
following keywords: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH.

Data from the file or files is loaded into the target table, one line per row. The fields in the data
file are matched to table columns in order, left to right. Fields in the data files can be fixed-width

Loading data from Amazon S3 111

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

or character delimited; the default delimiter is a pipe (]). By default, all the table columns are
loaded, but you can optionally define a comma-separated list of columns. If a table column isn't
included in the column list specified in the COPY command, it's loaded with a default value. For
more information, see Loading default column values.

Follow this general process to load data from Amazon S3, when your data is uncompressed and
delimited:

1. Upload your files to Amazon S3.
2. Run a COPY command to load the table.

3. Verify that the data was loaded correctly.

For examples of COPY commands, see COPY examples. For information about data loaded into
Amazon Redshift, check the STL_LOAD_COMMITS and STL_LOAD_ERRORS system tables.

For more information about nodes and the slices contained in each, see About clusters and nodes
in the Amazon Redshift Management Guide.

Uploading files to Amazon S3 to use with COPY

There are a couple approaches to take when uploading text files to Amazon S3:
« If you have compressed files, we recommend that you split large files to take advantage of
parallel processing in Amazon Redshift.

« On the other hand, COPY automatically splits large, uncompressed, text-delimited file data to
facilitate parallelism and effectively distribute the data from large files.

Create an Amazon S3 bucket to hold your data files, and then upload the data files to the bucket.
For information about creating buckets and uploading files, see Working with Amazon S3 Buckets

in the Amazon Simple Storage Service User Guide.

/A Important

The Amazon S3 bucket that holds the data files must be created in the same AWS Region as
your cluster unless you use the REGION option to specify the Region in which the Amazon
S3 bucket is located.

Loading data from Amazon S3 112

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

Amazon Redshift Database Developer Guide

Ensure that the S3 IP ranges are added to your allowlist. To learn more about the required S3 IP
ranges, see Network isolation.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 console, or by specifying an endpoint when you create
the bucket using the Amazon S3 API or CLI.

Following the data load, verify that the correct files are present on Amazon S3.

Topics

« Managing data consistency

» Uploading encrypted data to Amazon S3

 Verifying that the correct files are present in your bucket

Managing data consistency

Amazon S3 provides strong read-after-write consistency for COPY, UNLOAD, INSERT (external
table), CREATE EXTERNAL TABLE AS, and Amazon Redshift Spectrum operations on Amazon S3
buckets in all AWS Regions. In addition, read operations on Amazon S3 Select, Amazon S3 Access
Control Lists, Amazon S3 Object Tags, and object metadata (for example, HEAD object) are strongly
consistent. For more information about data consistency, see Amazon S3 Data Consistency Model
in the Amazon Simple Storage Service User Guide.

Uploading encrypted data to Amazon S3

Amazon S3 supports both server-side encryption and client-side encryption. This topic discusses
the differences between the server-side and client-side encryption and describes the steps to use
client-side encryption with Amazon Redshift. Server-side encryption is transparent to Amazon
Redshift.

Server-side encryption

Server-side encryption is data encryption at rest—that is, Amazon S3 encrypts your data as

it uploads it and decrypts it for you when you access it. When you load tables using a COPY
command, there is no difference in the way you load from server-side encrypted or unencrypted
objects on Amazon S3. For more information about server-side encryption, see Using Server-Side
Encryption in the Amazon Simple Storage Service User Guide.

Loading data from Amazon S3 113

https://docs.aws.amazon.com/redshift/latest/mgmt/security-network-isolation.html#network-isolation
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon Redshift Database Developer Guide

Client-side encryption

In client-side encryption, your client application manages encryption of your data, the encryption
keys, and related tools. You can upload data to an Amazon S3 bucket using client-side encryption,
and then load the data using the COPY command with the ENCRYPTED option and a private
encryption key to provide greater security.

You encrypt your data using envelope encryption. With envelope encryption, your application
handles all encryption exclusively. Your private encryption keys and your unencrypted data are
never sent to AWS, so it's very important that you safely manage your encryption keys. If you
lose your encryption keys, you won't be able to unencrypt your data, and you can't recover your
encryption keys from AWS. Envelope encryption combines the performance of fast symmetric
encryption while maintaining the greater security that key management with asymmetric keys
provides. A one-time-use symmetric key (the envelope symmetric key) is generated by your
Amazon S3 encryption client to encrypt your data, then that key is encrypted by your root key
and stored alongside your data in Amazon S3. When Amazon Redshift accesses your data during a
load, the encrypted symmetric key is retrieved and decrypted with your real key, then the data is
decrypted.

To work with Amazon S3 client-side encrypted data in Amazon Redshift, follow the steps outlined
in Protecting Data Using Client-Side Encryption in the Amazon Simple Storage Service User Guide,

with the additional requirements that you use:

« Symmetric encryption — The AWS SDK for Java AmazonS3EncryptionClient class uses
envelope encryption, described preceding, which is based on symmetric key encryption. Use this
class to create an Amazon S3 client to upload client-side encrypted data.

« A 256-bit AES root symmetric key - A root key encrypts the envelope key. You pass the root
key to your instance of the AmazonS3EncryptionClient class. Save this key, because you will
need it to copy data into Amazon Redshift.

« Object metadata to store encrypted envelope key - By default, Amazon S3 stores the envelope
key as object metadata for the AmazonS3EncryptionClient class. The encrypted envelope
key that is stored as object metadata is used during the decryption process.

(® Note

If you get a cipher encryption error message when you use the encryption API for
the first time, your version of the JDK may have a Java Cryptography Extension (JCE)

Loading data from Amazon S3 114

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

jurisdiction policy file that limits the maximum key length for encryption and decryption

transformations to 128 bits. For information about addressing this issue, go to Specifying
Client-Side Encryption Using the AWS SDK for Java in the Amazon Simple Storage Service

User Guide.

For information about loading client-side encrypted files into your Amazon Redshift tables using
the COPY command, see Loading encrypted data files from Amazon S3.

Example: Uploading client-side encrypted data

For an example of how to use the AWS SDK for Java to upload client-side encrypted data, go to
Protecting data using client-side encryption in the Amazon Simple Storage Service User Guide.

The second option shows the choices you must make during client-side encryption so that the data
can be loaded in Amazon Redshift. Specifically, the example shows using object metadata to store
the encrypted envelope key and the use of a 256-bit AES root symmetric key.

This example provides example code using the AWS SDK for Java to create a 256-bit AES
symmetric root key and save it to a file. Then the example upload an object to Amazon S3 using an
S3 encryption client that first encrypts sample data on the client-side. The example also downloads
the object and verifies that the data is the same.

Verifying that the correct files are present in your bucket

After you upload your files to your Amazon S3 bucket, we recommend listing the contents of the
bucket to verify that all of the correct files are present and that no unwanted files are present. For
example, if the bucket amzn-s3-demo-bucket holds a file named venue. txt.back, that file will
be loaded, perhaps unintentionally, by the following command:

COPY venue FROM 's3://amzn-s3-demo-bucket/venue' .. ;

If you want to control specifically which files are loaded, you can use a manifest file to

explicitly list the data files. For more information about using a manifest file, see the
copy_from_s3_manifest_file option for the COPY command and Example: COPY from Amazon S3
using a manifest in the COPY examples.

For more information about listing the contents of the bucket, see Listing Object Keys in the
Amazon S3 Developer Guide.

Loading data from Amazon S3 115

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/encrypt-client-side-symmetric-master-key.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysUsingAPIs.html

Amazon Redshift Database Developer Guide

Using the COPY command to load from Amazon S3

Use the COPY command to load a table in parallel from data files on Amazon S3. You can specify
the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

The syntax to specify the files to be loaded by using a prefix is as follows:

COPY <table_name> FROM 's3://<bucket_name>/<object_prefix>'
authorization;

The manifest file is a JSON-formatted file that lists the data files to be loaded. The syntax to
specify the files to be loaded by using a manifest file is as follows:

COPY <table_name> FROM 's3://<bucket_name>/<manifest_file>'
authorization
MANIFEST;

The table to be loaded must already exist in the database. For information about creating a table,
see CREATE TABLE in the SQL Reference.

The values for authorization provide the AWS authorization Amazon Redshift needs to access
the Amazon S3 objects. For information about required permissions, see IAM permissions for
COPY, UNLOAD, and CREATE LIBRARY. The preferred method for authentication is to specify the
IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role with the
necessary permissions. For more information, see Role-based access control .

To authenticate using the IAM_ROLE parameter, replace <aws-account-id> and <role-name>
as shown in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'
The following example shows authentication using an IAM role.

COPY customer
FROM 's3://amzn-s3-demo-bucket/mydata'’
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

Loading data from Amazon S3 116

Amazon Redshift Database Developer Guide

The following example shows the first few rows of a pipe-delimited data in a file named
venue.txt.

1|Toyota Park|Bridgeview|IL|@
2|Columbus Crew Stadium|Columbus|OH|®@
3|RFK Stadium|Washington|DC|@

Before uploading the file to Amazon S3, split the file into multiple files so that the COPY command
can load it using parallel processing. The number of files should be a multiple of the number of
slices in your cluster. Split your load data files so that the files are about equal size, between 1

MB and 1 GB after compression. For more information, see Loading data from compressed and

uncompressed files.

For example, the venue. txt file might be split into four files, as follows:

venue.txt.1l
venue.txt.2
venue.txt.3
venue.txt.4

The following COPY command loads the VENUE table using the pipe-delimited data in the data
files with the prefix 'venue' in the Amazon S3 bucket amzn-s3-demo-bucket.

(® Note

The Amazon S3 bucket amzn-s3-demo-bucket in the following examples does not exist.
For sample COPY commands that use real data in an existing Amazon S3 bucket, see Load

sample data.

COPY venue FROM 's3://amzn-s3-demo-bucket/venue'
IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
DELIMITER '|';

If no Amazon S3 objects with the key prefix 'venue' exist, the load fails.

Topics

« Using a manifest to specify data files

» Loading compressed data files from Amazon S3

Loading data from Amazon S3 117

https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html
https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html

Amazon Redshift Database Developer Guide

» Loading fixed-width data from Amazon S3

» Loading multibyte data from Amazon S3

» Loading encrypted data files from Amazon S3

Using a manifest to specify data files

You can use a manifest to make sure that the COPY command loads all of the required files,

and only the required files, for a data load. You can use a manifest to load files from different
buckets or files that do not share the same prefix. Instead of supplying an object path for the COPY
command, you supply the name of a JSON-formatted text file that explicitly lists the files to be
loaded. The URL in the manifest must specify the bucket name and full object path for the file, not
just a prefix.

For more information about manifest files, see the COPY example Using a manifest to specify data

files.

The following example shows the JSON to load files from different buckets and with file names
that begin with date stamps.

{
"entries": [
{"url":"s3://amzn-s3-demo-bucketl/2013-10-04-custdata", "mandatory":true},
{"url":"s3://amzn-s3-demo-bucketl/2013-10-05-custdata", "mandatory":true},
{"url":"s3://amzn-s3-demo-bucket2/2013-10-04-custdata", "mandatory":true},
{"url":"s3://amzn-s3-demo-bucket2/2013-10-05-custdata", "mandatory":true}

The optional mandatory flag specifies whether COPY should return an error if the file is not found.
The default of mandatory is false. Regardless of any mandatory settings, COPY will terminate if
no files are found.

The following example runs the COPY command with the manifest in the previous example, which
is named cust.manifest.

COPY customer

FROM 's3://amzn-s3-demo-bucket/cust.manifest’

TAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
MANIFEST;

Loading data from Amazon S3 118

Amazon Redshift Database Developer Guide

Using a manifest created by UNLOAD

A manifest created by an UNLOAD operation using the MANIFEST parameter might have keys that
are not required for the COPY operation. For example, the following UNLOAD manifest includes a
meta key that is required for an Amazon Redshift Spectrum external table and for loading data
files in an ORC or Parquet file format. The meta key contains a content_length key with a value
that is the actual size of the file in bytes. The COPY operation requires only the url key and an
optional mandatory key.

{
"entries": [
{"url":"s3://amzn-s3-demo-bucket/unload/manifest_0000_part_00", "meta":
{ "content_length": 5956875 }},
{"url":"s3://amzn-s3-demo-bucket/unload/unload/manifest_0001_part_00", "meta":
{ "content_length": 5997091 }}
]
}

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading compressed data files from Amazon S3

To load data files that are compressed using gzip, lzop, or bzip2, include the corresponding option:
GZIP, LZOP, or BZIP2.

For example, the following command loads from files that were compressing using lzop.

COPY customer FROM 's3://amzn-s3-demo-bucket/customer.lzo'
IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
DELIMITER '|' LZOP;

® Note

If you compress a data file with [zop compression and use the --filter option, the COPY
command doesn't support it.

Loading fixed-width data from Amazon S3

Fixed-width data files have uniform lengths for each column of data. Each field in a fixed-width
data file has exactly the same length and position. For character data (CHAR and VARCHAR) in a

Loading data from Amazon S3 119

Amazon Redshift Database Developer Guide

fixed-width data file, you must include leading or trailing spaces as placeholders in order to keep
the width uniform. For integers, you must use leading zeros as placeholders. A fixed-width data file
has no delimiter to separate columns.

To load a fixed-width data file into an existing table, USE the FIXEDWIDTH parameter in the COPY
command. Your table specifications must match the value of fixedwidth_spec in order for the data
to load correctly.

To load fixed-width data from a file to a table, issue the following command:

COPY table_name FROM 's3://amzn-s3-demo-bucket/prefix'’
IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
FIXEDWIDTH 'fixedwidth_spec';

The fixedwidth_spec parameter is a string that contains an identifier for each column and the width
of each column, separated by a colon. The column:width pairs are delimited by commas. The
identifier can be anything that you choose: numbers, letters, or a combination of the two. The
identifier has no relation to the table itself, so the specification must contain the columns in the
same order as the table.

The following two examples show the same specification, with the first using numeric identifiers
and the second using string identifiers:

'0:3,1:25,2:12,3:2,4:6"

'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6'

The following example shows fixed-width sample data that could be loaded into the VENUE table
using the preceding specifications:

1 Toyota Park Bridgeview ILO
2 Columbus Crew Stadium Columbus OHO
3 RFK Stadium Washington DCO
4 CommunityAmerica Ballpark Kansas City KS@
5 Gillette Stadium Foxborough MA68756

The following COPY command loads this data set into the VENUE table:

COPY venue

Loading data from Amazon S3 120

Amazon Redshift Database Developer Guide

FROM 's3://amzn-s3-demo-bucket/data/venue_fw.txt'
IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
FIXEDWIDTH 'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6"';

Loading multibyte data from Amazon S3

If your data includes non-ASCIl multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

To check which encoding an input file uses, use the Linux file command:

$ file ordersdata.txt

ordersdata.txt: ASCII English text

$ file uni_ordersdata.dat
uni_ordersdata.dat: UTF-8 Unicode text

Loading encrypted data files from Amazon S3

You can use the COPY command to load data files that were uploaded to Amazon S3 using server-
side encryption, client-side encryption, or both.

The COPY command supports the following types of Amazon S3 encryption:

» Server-side encryption with Amazon S3-managed keys (SSE-S3)
» Server-side encryption with AWS KMS keys (SSE-KMS)

« Client-side encryption using a client-side symmetric root key

The COPY command doesn't support the following types of Amazon S3 encryption:

» Server-side encryption with customer-provided keys (SSE-C)
 Client-side encryption using an AWS KMS key

 Client-side encryption using a customer-provided asymmetric root key

For more information about Amazon S3 encryption, see Protecting Data Using Server-Side

Encryption and Protecting Data Using Client-Side Encryption in the Amazon Simple Storage

Service User Guide.

Loading data from Amazon S3 121

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

The UNLOAD command automatically encrypts files using SSE-S3. You can also unload using SSE-
KMS or client-side encryption with a customer managed symmetric key. For more information, see
Unloading encrypted data files

The COPY command automatically recognizes and loads files encrypted using SSE-S3 and SSE-
KMS. You can load files encrypted using a client-side symmetric root key by specifying the
ENCRYPTED option and providing the key value. For more information, see Uploading encrypted

data to Amazon S3.

To load client-side encrypted data files, provide the root key value using the
MASTER_SYMMETRIC_KEY parameter and include the ENCRYPTED option.

COPY customer FROM 's3://amzn-s3-demo-bucket/encrypted/customer’
TAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
MASTER_SYMMETRIC_KEY '<root_key>'

ENCRYPTED

DELIMITER '|';

To load encrypted data files that are gzip, lzop, or bzip2 compressed, include the GZIP, LZOP, or
BZIP2 option along with the root key value and the ENCRYPTED option.

COPY customer FROM 's3://amzn-s3-demo-bucket/encrypted/customer"’
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
MASTER_SYMMETRIC_KEY '<root_key>"

ENCRYPTED

DELIMITER '|'

GZIP;

Loading data from Amazon EMR

You can use the COPY command to load data in parallel from an Amazon EMR cluster configured
to write text files to the cluster's Hadoop Distributed File System (HDFS) as fixed-width files,
character-delimited files, CSV files, or JSON-formatted files.

Process for loading data from Amazon EMR

This section walks you through the process of loading data from an Amazon EMR cluster. The
following sections provide the details that you must accomplish each step.

« Step 1: Configure IAM permissions

Loading data from Amazon EMR 122

Amazon Redshift Database Developer Guide

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command
must have the necessary permissions.

o Step 2: Create an Amazon EMR cluster

Configure the cluster to output text files to the Hadoop Distributed File System (HDFS). You will
need the Amazon EMR cluster ID and the cluster's main public DNS (the endpoint for the Amazon
EC2 instance that hosts the cluster).

» Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
hosts. You will use the IP address for each cluster node to configure the host security groups to
permit access from your Amazon Redshift cluster using these IP addresses.

» Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's authorized

keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

» Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP addresses

Modify the Amazon EMR instance's security groups to add input rules to accept the Amazon
Redshift IP addresses.

« Step 6: Run the COPY command to load the data

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.
Step 1: Configure IAM permissions

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command must
have the necessary permissions.

To configure IAM permissions

1. Add the following permissions for the user that will create the Amazon EMR cluster.

ec2:DescribeSecurityGroups
ec2:RevokeSecurityGroupIngress
ec2:AuthorizeSecurityGroupIngress

Loading data from Amazon EMR 123

Amazon Redshift Database Developer Guide

redshift:DescribeClusters

2. Add the following permission for the IAM role or user that will run the COPY command.

elasticmapreduce:ListInstances

3. Add the following permission to the Amazon EMR cluster's IAM role.

redshift:DescribeClusters

Step 2: Create an Amazon EMR cluster

The COPY command loads data from files on the Amazon EMR Hadoop Distributed File System
(HDFS). When you create the Amazon EMR cluster, configure the cluster to output data files to the
cluster's HDFS.

To create an Amazon EMR cluster

1. Create an Amazon EMR cluster in the same AWS Region as the Amazon Redshift cluster.

If the Amazon Redshift cluster is in a VPC, the Amazon EMR cluster must be in the same VPC
group. If the Amazon Redshift cluster uses EC2-Classic mode (that is, it is not in a VPC), the
Amazon EMR cluster must also use EC2-Classic mode. For more information, see Managing
Clusters in Virtual Private Cloud (VPC) in the Amazon Redshift Management Guide.

2. Configure the cluster to output data files to the cluster's HDFS. The HDFS file names must not
include asterisks (*) or question marks (?).

/A Important

The file names must not include asterisks (*) or question marks (?).

3. Specify No for the Auto-terminate option in the Amazon EMR cluster configuration so that the
cluster remains available while the COPY command runs.

/A Important

If any of the data files are changed or deleted before the COPY completes, you might
have unexpected results, or the COPY operation might fail.

Loading data from Amazon EMR 124

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift

Database Developer Guide

4. Note the cluster ID and the main public DNS (the endpoint for the Amazon EC2 instance that

hosts the cluster). You will use that information in later steps.

Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP
addresses

To retrieve the Amazon Redshift cluster public key and cluster node IP addresses for your
cluster using the console

1.

2
3.
4

Access the Amazon Redshift Management Console.
Choose the Clusters link in the navigation pane.
Select your cluster from the list.

Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.
L

55H Ingestion Settings
Cluster Public Key:

ssh-r=a

| »

ExanpleFKeyDAQRBRARARAOCKIVREZENI 92 xM4ZimOaleW
g3 IDXB3halmiMpevnnili /wERgpcomi TEoc3Fk+ELTgLlkd
gUgvDM1iaxMOBE2XJRWZBULdQCI1DUcuprnEth4XnnIRk
1x1pUPg/re/E8nQ95pVRS

S eYHHwtOraZlrbECLghJ40GQLeB5oFJOMLIMIVEDI 1xC
JfeekOgIeGAEWNOvdgMMPHS 12 IbvDA4ES+r=1HEgEO
gVhMiTiB4PE+9pnwSi
faEthXzuhEStbt2t1cuHOZqZHcynGtvDLint&Qc+06-_
EEBESCEyvu/ r6rafblI50oxddiopvnSSMpihiExample=/ :j
Amazon-Redshift

Mode IP Addresses:

Node Public IP Private IP
Leader 192.0.2.0 198.51.100.0
Compute-0 203.0.113.0 1024 34.0
Compute-1 198.51.100.0 192.02.0

You will use the private IP addresses in Step 3 to configure the Amazon EC2 host to accept the
connection from Amazon Redshift.

Loading data from Amazon EMR 125

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command. For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include a ClusterPublicKey value and the list of private and public IP addresses,
similar to the following:

{
"Clusters": [
{
"VpcSecurityGroups": [],
"ClusterStatus": "available",
"ClusterNodes": [
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "LEADER",
"PublicIPAddress": "1@.nnn.nnn.nnn"
b
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-Q",
"PublicIPAddress": "1@.nnn.nnn.nnn"
1,
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-1",
"PublicIPAddress": "1@.nnn.nnn.nnn"
}
1,
"AutomatedSnapshotRetentionPeriod": 1,
"PreferredMaintenanceWindow": "wed:05:30-wed:06:00",
"AvailabilityZone": "us-east-1la",
"NodeType": "dc2.large",
"ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-
Redshift",
}

Loading data from Amazon EMR 126

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in
the Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift API Guide.

Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's
authorized keys file

You add the cluster public key to each host's authorized keys file for all of the Amazon EMR cluster
nodes so that the hosts will recognize Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1. Access the host using an SSH connection.

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

2. Copy the Amazon Redshift public key from the console or from the CLI response text.

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the host. Include the complete string, including the prefix "ssh-
rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh.. uA70BnMHCaMiRdmvsDOedZD0OedZ Amazon-
Redshift

Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP
addresses

To allow inbound traffic to the host instances, edit the security group and add one Inbound rule for
each Amazon Redshift cluster node. For Type, select SSH with TCP protocol on Port 22. For Source,
enter the Amazon Redshift cluster node private IP addresses you retrieved in Step 3: Retrieve the

Amazon Redshift cluster public key and cluster node IP addresses. For information about adding

rules to an Amazon EC2 security group, see Authorizing Inbound Traffic for Your Instances in the
Amazon EC2 User Guide.

Loading data from Amazon EMR 127

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Redshift Database Developer Guide

Step 6: Run the COPY command to load the data

Run a COPY command to connect to the Amazon EMR cluster and load the data into an Amazon
Redshift table. The Amazon EMR cluster must continue running until the COPY command
completes. For example, do not configure the cluster to auto-terminate.

/A Important

If any of the data files are changed or deleted before the COPY completes, you might have
unexpected results, or the COPY operation might fail.

In the COPY command, specify the Amazon EMR cluster ID and the HDFS file path and file name.

COPY sales
FROM 'emr://myemrclusterid/myoutput/part*' CREDENTIALS
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

You can use the wildcard characters asterisk (*) and question mark (?) as part of the file name
argument. For example, part* loads the files part-0000, part-0001, and so on. If you specify
only a folder name, COPY attempts to load all files in the folder.

/A Important

If you use wildcard characters or use only the folder name, verify that no unwanted files
will be loaded or the COPY command will fail. For example, some processes might write a
log file to the output folder.

Loading data from remote hosts

You can use the COPY command to load data in parallel from one or more remote hosts, such as
Amazon EC2 instances or other computers. COPY connects to the remote hosts using SSH and runs
commands on the remote hosts to generate text output.

The remote host can be an Amazon EC2 Linux instance or another Unix or Linux computer
configured to accept SSH connections. This guide assumes your remote host is an Amazon EC2
instance. Where the procedure is different for another computer, the guide will point out the
difference.

Loading data from remote hosts 128

Amazon Redshift Database Developer Guide

Amazon Redshift can connect to multiple hosts, and can open multiple SSH connections to each
host. Amazon Redshifts sends a unique command through each connection to generate text output
to the host's standard output, which Amazon Redshift then reads as it would a text file.

Before you begin

Before you begin, you should have the following in place:

« One or more host machines, such as Amazon EC2 instances, that you can connect to using SSH.

« Data sources on the hosts.

You will provide commands that the Amazon Redshift cluster will run on the hosts to generate
the text output. After the cluster connects to a host, the COPY command runs the commands,
reads the text from the hosts' standard output, and loads the data in parallel into an Amazon
Redshift table. The text output must be in a form that the COPY command can ingest. For more
information, see Preparing your input data

» Access to the hosts from your computer.

For an Amazon EC2 instance, you will use an SSH connection to access the host. You must access
the host to add the Amazon Redshift cluster's public key to the host's authorized keys file.

« A running Amazon Redshift cluster.

For information about how to launch a cluster, see Amazon Redshift Getting Started Guide.

Loading data process

This section walks you through the process of loading data from remote hosts. The following
sections provide the details that that you must accomplish in each step.

« Step 1: Retrieve the cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
remote hosts. You will use the IP address for each cluster node to configure the host security
groups or firewall to permit access from your Amazon Redshift cluster using these IP addresses.

» Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

Loading data from remote hosts 129

https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP addresses

For Amazon EC2, modify the instance's security groups to add input rules to accept the Amazon
Redshift IP addresses. For other hosts, modify the firewall so that your Amazon Redshift nodes
are able to establish SSH connections to the remote host.

Step 4: Get the public key for the host

You can optionally specify that Amazon Redshift should use the public key to identify the host.
You must locate the public key and copy the text into your manifest file.

Step 5: Create a manifest file

The manifest is a JSON-formatted text file with the details Amazon Redshift needs to connect to
the hosts and fetch the data.

Step 6: Upload the manifest file to an Amazon S3 bucket

Amazon Redshift reads the manifest and uses that information to connect to the remote host. If
the Amazon S3 bucket does not reside in the same Region as your Amazon Redshift cluster, you
must use the REGION option to specify the Region in which the data is located.

Step 7: Run the COPY command to load the data

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.

Step 1: Retrieve the cluster public key and cluster node IP addresses

To retrieve the cluster public key and cluster node IP addresses for your cluster using the
console

P WD

Access the Amazon Redshift Management Console.
Choose the Clusters link in the navigation pane.
Select your cluster from the list.

Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.

Loading data from remote hosts 130

Amazon Redshift Database Developer Guide

55H Ingestion Settings
Cluster Public Key:

ssh-r=a

| »

ExanpleFKeyDAQRBRARARAOCKIVREZENI 92 xM4ZimOaleW
g3 IDXB3halmiMpevnnili /wERgpcomi TEoc3Fk+ELTgLlkd
gUgvDM1iaxMOBE2XJRWZBULdQCI1DUcuprnEth4XnnIRk
1x1pUPg/re/E8nQ95pVRS

S eYHHwtOraZlrbECLghJ40GQLeB5oFJOMLIMIVEDI 1xC
JfeekOgIeGAEWNOvdgMMPHS 12 IbvDA4ES+r=1HEgEO
gVhMiTiB4PE+9pnwSi
faEthXzuhEStbt2t1cuHOZqZHcynGtvDLint&Qc+06-_
EEBESCEyvu/ r6rafblI50oxddiopvnSSMpihiExample=/ :j
Amazon-Redshift

Mode IP Addresses:

Node Public IP Private IP
Leader 192.0.2.0 198.51.100.0
Compute-0 203.0.113.0 1024 34.0
Compute-1 198.51.100.0 192.02.0

You will use the IP addresses in Step 3 to configure the host to accept the connection from
Amazon Redshift. Depending on what type of host you connect to and whether it is in a VPC,
you will use either the public IP addresses or the private IP addresses.

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command.

For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include the ClusterPublicKey and the list of private and public IP addresses,
similar to the following:

"Clusters": [
{
"VpcSecurityGroups": [],
"ClusterStatus": "available",

Loading data from remote hosts 131

Amazon Redshift Database Developer Guide

"ClusterNodes": [

{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "LEADER",
"PublicIPAddress": "1@.nnn.nnn.nnn"

.

{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-Q",
"PublicIPAddress": "1@.nnn.nnn.nnn"

},

{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-1",
"PublicIPAddress": "1@.nnn.nnn.nnn"

}

1,

"AutomatedSnapshotRetentionPeriod": 1,

"PreferredMaintenanceWindow": "wed:05:30-wed:06:00",

"AvailabilityZone": "us-east-1la",

"NodeType": "dc2.large",

"ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-
Redshift",

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in the
Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift APl Guide.

Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys
file

You add the cluster public key to each host's authorized keys file so that the host will recognize
Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1. Access the host using an SSH connection.

Loading data from remote hosts 132

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html

Amazon Redshift Database Developer Guide

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

2. Copy the Amazon Redshift public key from the console or from the CLI response text.

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the remote host. The <ssh_username> must match the value
for the "username" field in the manifest file. Include the complete string, including the prefix
"ssh-rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh.. uA70BnMHCaMiRdmvsDOedZD0OedZ Amazon-
Redshift

Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP
addresses

If you are working with an Amazon EC2 instance or an Amazon EMR cluster, add Inbound rules

to the host's security group to allow traffic from each Amazon Redshift cluster node. For Type,
select SSH with TCP protocol on Port 22. For Source, enter the Amazon Redshift cluster node IP
addresses you retrieved in Step 1: Retrieve the cluster public key and cluster node IP addresses. For

information about adding rules to an Amazon EC2 security group, see Authorizing Inbound Traffic

for Your Instances in the Amazon EC2 User Guide.

Use the private IP addresses when:

« You have an Amazon Redshift cluster that is not in a Virtual Private Cloud (VPC), and an Amazon
EC2 -Classic instance, both of which are in the same AWS Region.

« You have an Amazon Redshift cluster that is in a VPC, and an Amazon EC2 -VPC instance, both of
which are in the same AWS Region and in the same VPC.

Otherwise, use the public IP addresses.

For more information about using Amazon Redshift in a VPC, see Managing Clusters in Virtual
Private Cloud (VPC) in the Amazon Redshift Management Guide.

Loading data from remote hosts 133

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift Database Developer Guide

Step 4: Get the public key for the host

You can optionally provide the host's public key in the manifest file so that Amazon Redshift
can identify the host. The COPY command does not require the host public key but, for security
reasons, we strongly recommend using a public key to help prevent 'man-in-the-middle' attacks.

You can find the host's public key in the following location, where <ssh_host_rsa_key_name> is
the unique name for the host's public key:

/etc/ssh/<ssh_host_rsa_key_name>.pub

(® Note
Amazon Redshift only supports RSA keys. We do not support DSA keys.

When you create your manifest file in Step 5, you will paste the text of the public key into the
"Public Key" field in the manifest file entry.

Step 5: Create a manifest file

The COPY command can connect to multiple hosts using SSH, and can create multiple SSH
connections to each host. COPY runs a command through each host connection, and then loads
the output from the commands in parallel into the table. The manifest file is a text file in JSON
format that Amazon Redshift uses to connect to the host. The manifest file specifies the SSH

host endpoints and the commands that are run on the hosts to return data to Amazon Redshift.
Optionally, you can include the host public key, the login user name, and a mandatory flag for each
entry.

Create the manifest file on your local computer. In a later step, you upload the file to Amazon S3.

The manifest file is in the following format:

"entries": [
{"endpoint":"<ssh_endpoint_or_IP>",
"command": "<remote_command>",
"mandatory":true,
"publickey": "<public_key>",
"username": "<host_user_name>"},

Loading data from remote hosts 134

Amazon Redshift Database Developer Guide

{"endpoint":"<ssh_endpoint_or_IP>",
"command": "<remote_command>",
"mandatory":true,

"publickey": "<public_key>",
"username": "host_user_name"}

The manifest file contains one "entries" construct for each SSH connection. Each entry represents a
single SSH connection. You can have multiple connections to a single host or multiple connections
to multiple hosts. The double quotation marks are required as shown, both for the field names and
the values. The only value that does not need double quotation marks is the Boolean value true or
false for the mandatory field.

The following describes the fields in the manifest file.
endpoint

The URL address or IP address of the host. For example,
"ec2-111-222-333.compute-1.amazonaws.com"or"22.33.44.56"

command

The command that will be run by the host to generate text or binary (gzip, lzop, or bzip2)
output. The command can be any command that the user "host_user_name" has permission to
run. The command can be as simple as printing a file, or it could query a database or launch

a script. The output (text file, gzip binary file, lzop binary file, or bzip2 binary file) must be in
a form the Amazon Redshift COPY command can ingest. For more information, see Preparing
your input data.

publickey

(Optional) The public key of the host. If provided, Amazon Redshift will use the public key

to identify the host. If the public key is not provided, Amazon Redshift will not attempt host
identification. For example, if the remote host's public key is: ssh-rsa AbcCbaxxx..xxxDHKJ
root@amazon. com, enter the following text in the public key field: AbcCbaxxx...xxxDHKJ.

mandatory

(Optional) Indicates whether the COPY command should fail if the connection fails. The default
is false. If Amazon Redshift does not successfully make at least one connection, the COPY
command fails.

Loading data from remote hosts 135

Amazon Redshift Database Developer Guide

username

(Optional) The username that will be used to log on to the host system and run the remote
command. The user login name must be the same as the login that was used to add the public
key to the host's authorized keys file in Step 2. The default username is "redshift".

The following example shows a completed manifest to open four connections to the same host and
run a different command through each connection:

{
"entries": [

{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddatal.txt",
"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",
"username": "ec2-user"},

{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata2.txt",
"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",
"username": "ec2-user"},

{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata3.txt",
"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",
"username": "ec2-user"},

{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata4.txt",
"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",
"username": "ec2-user"}

]
}

Step 6: Upload the manifest file to an Amazon S3 bucket

Upload the manifest file to an Amazon S3 bucket. If the Amazon S3 bucket does not reside in the
same AWS Region as your Amazon Redshift cluster, you must use the REGION option to specify the
AWS Region in which the manifest is located. For information about creating an Amazon S3 bucket
and uploading a file, see Amazon Simple Storage Service User Guide.

Loading data from remote hosts 136

https://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Redshift Database Developer Guide

Step 7: Run the COPY command to load the data

Run a COPY command to connect to the host and load the data into an Amazon Redshift table. In
the COPY command, specify the explicit Amazon S3 object path for the manifest file and include
the SSH option. For example,

COPY sales

FROM 's3://amzn-s3-demo-bucket/ssh_manifest'

IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
DELIMITER '|'

SSH;

(® Note

If you use automatic compression, the COPY command performs two data reads, which
means it runs the remote command twice. The first read is to provide a sample for
compression analysis, then the second read actually loads the data. If running the remote
command twice might cause a problem because of potential side effects, you should turn
off automatic compression. To turn off automatic compression, run the COPY command
with the COMPUPDATE option set to OFF. For more information, see Loading tables with
automatic compression.

Loading data from an Amazon DynamoDB table

You can use the COPY command to load a table with data from a single Amazon DynamoDB table.

/A Important

The Amazon DynamoDB table that provides the data must be created in the same AWS
Region as your cluster unless you use the REGION option to specify the AWS Region in
which the Amazon DynamoDB table is located.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture

to read and load data in parallel from an Amazon DynamoDB table. You can take maximum
advantage of parallel processing by setting distribution styles on your Amazon Redshift tables. For
more information, see Data distribution for query optimization.

Loading from Amazon DynamoDB 137

Amazon Redshift Database Developer Guide

/A Important

When the COPY command reads data from the Amazon DynamoDB table, the resulting
data transfer is part of that table's provisioned throughput.

To avoid consuming excessive amounts of provisioned read throughput, we recommend that you
not load data from Amazon DynamoDB tables that are in production environments. If you do load
data from production tables, we recommend that you set the READRATIO option much lower than
the average percentage of unused provisioned throughput. A low READRATIO setting will help
minimize throttling issues. To use the entire provisioned throughput of an Amazon DynamoDB
table, set READRATIO to 100.

The COPY command matches attribute names in the items retrieved from the DynamoDB table to
column names in an existing Amazon Redshift table by using the following rules:

« Amazon Redshift table columns are case-insensitively matched to Amazon DynamoDB item
attributes. If an item in the DynamoDB table contains multiple attributes that differ only in case,
such as Price and PRICE, the COPY command will fail.

« Amazon Redshift table columns that do not match an attribute in the Amazon DynamoDB table
are loaded as either NULL or empty, depending on the value specified with the EMPTYASNULL
option in the COPY command.

« Amazon DynamoDB attributes that do not match a column in the Amazon Redshift table
are discarded. Attributes are read before they are matched, and so even discarded attributes
consume part of that table's provisioned throughput.

« Only Amazon DynamoDB attributes with scalar STRING and NUMBER data types are supported.
The Amazon DynamoDB BINARY and SET data types are not supported. If a COPY command tries
to load an attribute with an unsupported data type, the command will fail. If the attribute does
not match an Amazon Redshift table column, COPY does not attempt to load it, and it does not
raise an error.

The COPY command uses the following syntax to load data from an Amazon DynamoDB table:

COPY <redshift_tablename> FROM 'dynamodb://<dynamodb_table_name>'
authorization
readratio '<integer>';

Loading from Amazon DynamoDB 138

Amazon Redshift Database Developer Guide

The values for authorization are the AWS credentials needed to access the Amazon DynamoDB
table. If these credentials correspond to a user, that user must have permission to SCAN and
DESCRIBE the Amazon DynamoDB table that is being loaded.

The values for authorization provide the AWS authorization your cluster needs to access the
Amazon DynamoDB table. The permission must include SCAN and DESCRIBE for the Amazon
DynamoDB table that is being loaded. For more information about required permissions, see IAM
permissions for COPY, UNLOAD, and CREATE LIBRARY. The preferred method for authentication is
to specify the IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role

with the necessary permissions. For more information, see Role-based access control.

To authenticate using the IAM_ROLE parameter, <aws-account-id> and <role-name> as shown
in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'
The following example shows authentication using an IAM role.

COPY favoritemovies
FROM 'dynamodb://ProductCatalog'’
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

The following example loads the FAVORITEMOVIES table with data from the DynamoDB table my-
favorite-movies-table. The read activity can consume up to 50% of the provisioned throughput.

COPY favoritemovies FROM 'dynamodb://my-favorite-movies-table'
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
READRATIO 50;

To maximize throughput, the COPY command loads data from an Amazon DynamoDB table in
parallel across the compute nodes in the cluster.

Provisioned throughput with automatic compression

By default, the COPY command applies automatic compression whenever you specify an empty
target table with no compression encoding. The automatic compression analysis initially samples a

Loading from Amazon DynamoDB 139

Amazon Redshift Database Developer Guide

large number of rows from the Amazon DynamoDB table. The sample size is based on the value of
the COMPROWS parameter. The default is 100,000 rows per slice.

After sampling, the sample rows are discarded and the entire table is loaded. As a result, many
rows are read twice. For more information about how automatic compression works, see Loading
tables with automatic compression.

/A Important

When the COPY command reads data from the Amazon DynamoDB table, including the
rows used for sampling, the resulting data transfer is part of that table's provisioned
throughput.

Loading multibyte data from Amazon DynamoDB

If your data includes non-ASCIlI multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

Verifying that the data loaded correctly

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. Run the COPY command and load verification within the same
transaction so that if there is problem with the load you can roll back the entire transaction.

The following query returns entries for loading the tables in the TICKIT database:

SELECT quexry, trim(filename) AS filename, curtime, status
FROM stl_load_commits
WHERE filename like 'S%tickit%' oxrder by query;

query | filename | curtime | status
——————— e e e e e e se TP
22475 | tickit/allusers_pipe.txt | 2013-02-08 20:58:23.274186 | 1
22478 | tickit/venue_pipe.txt | 2013-02-08 20:58:25.070604 | 1
22480 | tickit/category_pipe.txt | 2013-02-08 20:58:27.333472 | 1

Verifying that the data loaded correctly 140

Amazon Redshift Database Developer Guide

22482 | tickit/date2008_pipe.txt | 2013-02-08 20:58:28.608305 | 1
22485 | tickit/allevents_pipe.txt | 2013-02-08 20:58:29.99489 | 1
22487 | tickit/listings_pipe.txt | 2013-02-08 20:58:37.632939 | 1
22489 | tickit/sales_tab.txt | 2013-02-08 20:58:37.632939 | 1
(6 rows)

Validating input data

To validate the data in the Amazon S3 input files or Amazon DynamoDB table before you actually
load the data, use the NOLOAD option with the COPY command. Use NOLOAD with the same
COPY commands and options you would use to load the data. NOLOAD checks the integrity of all
of the data without loading it into the database. The NOLOAD option displays any errors that occur
if you attempt to load the data.

For example, if you specified the incorrect Amazon S3 path for the input file, Amazon Redshift
would display the following error.

ERROR: No such file or directory

DETAIL:

Amazon Redshift error: The specified key does not exist
code: 2

context: S3 key being read :

location: step_scan.cpp:1883

process: xenmaster [pid=22199]

To troubleshoot error messages, see the Load error reference.

For an example using the NOLOAD option, see COPY command with the NOLOAD option.

Loading tables with automatic compression

You can apply compression encodings to columns in tables manually, based on your own
evaluation of the data. Or you can use the COPY command with COMPUPDATE set to ON to
analyze and apply compression automatically based on sample data.

You can use automatic compression when you create and load a brand new table. The COPY
command performs a compression analysis. You can also perform a compression analysis without
loading data or changing the compression on a table by running the ANALYZE COMPRESSION
command on an already populated table. For example, you can run ANALYZE COMPRESSION when

Validating input data 141

Amazon Redshift Database Developer Guide

you want to analyze compression on a table for future use, while preserving the existing data
definition language (DDL) statements.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression skips the data analyzing
phase on the sort key columns and keeps the user-defined encoding types.

Automatic compression chooses RAW encoding if you haven't explicitly defined a type of encoding.
ANALYZE COMPRESSION behaves the same. For optimal query performance, consider using RAW
for sort keys.

How automatic compression works

When the COMPUPDATE parameter is ON, the COPY command applies automatic compression
whenever you run the COPY command with an empty target table and all of the table columns
either have RAW encoding or no encoding.

To apply automatic compression to an empty table, regardless of its current compression
encodings, run the COPY command with the COMPUPDATE option set to ON. To turn off automatic
compression, run the COPY command with the COMPUPDATE option set to OFF.

You cannot apply automatic compression to a table that already contains data.

(@ Note

Automatic compression analysis requires enough rows in the load data (at least 100,000
rows per slice) to generate a meaningful sample.

Automatic compression performs these operations in the background as part of the load
transaction:

1. An initial sample of rows is loaded from the input file. Sample size is based on the value of the
COMPROWS parameter. The default is 100,000.

. Compression options are chosen for each column.
. The sample rows are removed from the table.

. The table is recreated with the chosen compression encodings.

o A W DN

. The entire input file is loaded and compressed using the new encodings.

Loading tables with automatic compression 142

Amazon Redshift Database Developer Guide

After you run the COPY command, the table is fully loaded, compressed, and ready for use. If you
load more data later, appended rows are compressed according to the existing encoding.

If you only want to perform a compression analysis, run ANALYZE COMPRESSION, which is more
efficient than running a full COPY. Then you can evaluate the results to decide whether to use
automatic compression or recreate the table manually.

Automatic compression is supported only for the COPY command. Alternatively, you can
manually apply compression encoding when you create the table. For information about manual
compression encoding, see Column compression to reduce the size of stored data.

Automatic compression example

In this example, assume that the TICKIT database contains a copy of the LISTING table called
BIGLIST, and you want to apply automatic compression to this table when it is loaded with
approximately 3 million rows.

To load and automatically compress the table

1. Make sure that the table is empty. You can apply automatic compression only to an empty
table:

TRUNCATE biglist;

2. Load the table with a single COPY command. Although the table is empty, some earlier
encoding might have been specified. To facilitate that Amazon Redshift performs a
compression analysis, set the COMPUPDATE parameter to ON.

COPY biglist FROM 's3://amzn-s3-demo-bucket/biglist.txt'
IAM_ROLE 'arn:aws:iam::0123456789012:r0le/MyRedshiftRole’
DELIMITER '|' COMPUPDATE ON;

Because no COMPROWS option is specified, the default and recommended sample size of
100,000 rows per slice is used.

3. Look at the new schema for the BIGLIST table in order to review the automatically chosen
encoding schemes.

SELECT "column", type, encoding
from pg_table_def where tablename = 'biglist';

Loading tables with automatic compression 143

Amazon Redshift Database Developer Guide

Column | Type | Encoding
________________ S K
listid | integer | az64
sellerid | integer | az64
eventid | integer | az64
dateid | smallint | none
numtickets | smallint | az64
priceperticket | numeric(8,2) | az64
totalprice | numeric(8§,2) | az64
listtime | timestamp without time zone | az64

4. Verify that the expected number of rows were loaded:

select count(*) from biglist;

3079952
(1 row)

When rows are later appended to this table using COPY or INSERT statements, the same
compression encodings are applied.

Optimizing storage for narrow tables

If you have a table with very few columns but a very large number of rows, the three hidden
metadata identity columns (INSERT_XID, DELETE_XID, ROW_ID) will consume a disproportionate
amount of the disk space for the table.

In order to optimize compression of the hidden columns, load the table in a single COPY
transaction where possible. If you load the table with multiple separate COPY commands, the
INSERT_XID column will not compress well. You must perform a vacuum operation if you use
multiple COPY commands, but it will not improve compression of INSERT_XID.

Loading default column values

You can optionally define a column list in your COPY command. If a column in the table is omitted
from the column list, COPY will load the column with either the value supplied by the DEFAULT

Optimizing for narrow tables 144

Amazon Redshift Database Developer Guide

option that was specified in the CREATE TABLE command, or with NULL if the DEFAULT option was
not specified.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails. For information about assigning the DEFAULT option, see CREATE TABLE.

When loading from data files on Amazon S3, the columns in the column list must be in the same
order as the fields in the data file. If a field in the data file does not have a corresponding column in
the column list, the COPY command fails.

When loading from Amazon DynamoDB table, order does not matter. Any fields in the Amazon
DynamoDB attributes that do not match a column in the Amazon Redshift table are discarded.

The following restrictions apply when using the COPY command to load DEFAULT values into a
table:

o If an IDENTITY column is included in the column list, the EXPLICIT_IDS option must also be
specified in the COPY command, or the COPY command will fail. Similarly, if an IDENTITY column
is omitted from the column list, and the EXPLICIT_IDS option is specified, the COPY operation
will fail.

» Because the evaluated DEFAULT expression for a given column is the same for all loaded rows, a
DEFAULT expression that uses a RANDOM() function will assign to same value to all the rows.

o DEFAULT expressions that contain CURRENT_DATE or SYSDATE are set to the timestamp of the
current transaction.

For an example, see "Load data from a file with default values" in COPY examples.

Troubleshooting data loads

When you load data into Amazon Redshift tables you might encounter errors from Amazon S3,
invalid input data, and COPY command errors. The following sections provide information about
identifying and resolving data load errors.

Topics

» S3ServiceException errors

» System tables for troubleshooting data loads

« Multibyte character load errors

Troubleshooting data loads 145

Amazon Redshift Database Developer Guide

« Load error reference

S3ServiceException errors

The most common s3ServiceException errors are caused by an improperly formatted or incorrect
credentials string, having your cluster and your bucket in different AWS Regions, and insufficient
Amazon S3 permissions.

The section provides troubleshooting information for each type of error.
Invalid credentials string

If your credentials string was improperly formatted, you will receive the following error message:

ERROR: Invalid credentials. Must be of the format: credentials
'aws_access_key_id=<access-key-id>;aws_secret_access_key=<secret-access-key>
[; token=<temporary-session-token>]"'

Verify that the credentials string does not contain any spaces or line breaks, and is enclosed in
single quotation marks.

Invalid access key ID

If your access key ID does not exist, you will receive the following error message:

[Amazon](500310) Invalid operation: S3ServiceException:The AWS Access Key Id you
provided does not exist in our records.

This is often a copy and paste error. Verify that the access key ID was entered correctly. Also, if you
are using temporary session keys, check that the value for token is set.

Invalid secret access key

If your secret access key is incorrect, you will receive the following error message:

[Amazon](500310) Invalid operation: S3ServiceException:The request signature we
calculated does not match the signature you provided.
Check your key and signing method.,Status 403,Error SignatureDoesNotMatch

This is often a copy and paste error. Verify that the secret access key was entered correctly and that
it is the correct key for the access key ID.

Troubleshooting data loads 146

Amazon Redshift Database Developer Guide

Bucket is in a different Region

The Amazon S3 bucket specified in the COPY command must be in the same AWS Region as the
cluster. If your Amazon S3 bucket and your cluster are in different Regions, you will receive an error
similar to the following:

ERROR: S3ServiceException:The bucket you are attempting to access must be addressed
using the specified endpoint.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 Management Console, or by specifying an endpoint
when you create the bucket using the Amazon S3 API or CLI. For more information, see Uploading
files to Amazon S3 to use with COPY.

For more information about Amazon S3 regions, see Accessing a Bucket in the Amazon Simple

Storage Service User Guide.
Alternatively, you can specify the Region using the REGION option with the COPY command.
Access denied

If the user does not have sufficient permissions, you will receive the following error message:

ERROR: S3ServiceException:Access Denied,Status 403,Error AccessDenied

One possible cause is the user identified by the credentials does not have LIST and GET access to
the Amazon S3 bucket. For other causes, see Troubleshoot Access Denied (403 Forbidden) errors in

Amazon S3 in the Amazon Simple Storage Service User Guide.

For information about managing user access to buckets, see Identity and access management in

Amazon S3 in the Amazon Simple Storage Service User Guide.
System tables for troubleshooting data loads
The following Amazon Redshift system tables can be helpful in troubleshooting data load issues:

o Query STL_LOAD_ERRORS to discover the errors that occurred during specific loads.

o Query STL_FILE_SCAN to view load times for specific files or to see if a specific file was even

read.

e Query STL_S3CLIENT_ERROR to find details for errors encountered while transferring data from
Amazon S3.

Troubleshooting data loads 147

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro
https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html

Amazon Redshift Database Developer Guide

To find and diagnose load errors

1. Create a view or define a query that returns details about load errors. The following example
joins the STL_LOAD_ERRORS table to the STV_TBL_PERM table to match table IDs with actual
table names.

create view loadview as

(select distinct tbl, trim(name) as table_name, query, starttime,
trim(filename) as input, line_number, colname, err_code,
trim(err_reason) as reason

from stl_load_errors sl, stv_tbl_perm sp

where sl.tbl = sp.id);

2. Set the MAXERRORS option in your COPY command to a large enough value to enable COPY
to return useful information about your data. If the COPY encounters errors, an error message
directs you to consult the STL_LOAD_ERRORS table for details.

3. Query the LOADVIEW view to see error details. For example:

select * from loadview where table_name='venue';

tbl | table_name | query | starttime
———————— e e i S e
100551 | venue | 20974 | 2013-01-29 19:05:58.365391
| input | line_number | colname | err_code | reason
R L e Fem - R R e
| venue_pipe.txt | 1] 0 | 1214 | Delimiter not found

4. Fix the problem in the input file or the load script, based on the information that the view
returns. Some typical load errors to watch for include:

« Mismatch between data types in table and values in input data fields.
» Mismatch between number of columns in table and number of fields in input data.

« Mismatched quotation marks. Amazon Redshift supports both single and double quotation
marks; however, these quotation marks must be balanced appropriately.

« Incorrect format for date/time data in input files.
o Out-of-range values in input files (for numeric columns).

« Number of distinct values for a column exceeds the limitation for its compression encoding.

Troubleshooting data loads 148

Amazon Redshift Database Developer Guide

Multibyte character load errors

Columns with a CHAR data type only accept single-byte UTF-8 characters, up to byte value 127, or
7F hex, which is also the ASCII character set. VARCHAR columns accept multibyte UTF-8 characters,
to a maximum of four bytes. For more information, see Character types.

If a line in your load data contains a character that is not valid for the column data type, COPY
returns an error and logs a row in the STL_LOAD_ERRORS system log table with error number
1220. The ERR_REASON field includes the byte sequence, in hex, for the invalid character.

An alternative to fixing not valid characters in your load data is to replace the not valid characters
during the load process. To replace not valid UTF-8 characters, specify the ACCEPTINVCHARS
option with the COPY command. If the ACCEPTINVCHARS option is set, the character you specify
replaces the code point. If the ACCEPTINVCHARS option isn't set, Amazon Redshift accepts the
characters as valid UTF-8. For more information, see ACCEPTINVCHARS.

The following list of code points are valid UTF-8, COPY operations don't return an error if the
ACCEPTINVCHARS option is not set. However, these code points are not valid characters. You can
use the ACCEPTINVCHARS option to replace a code point with a character that you specify. These

code points include the range of values from @xFDD® to @xFDEF and values up to @x10FFFF,
ending with FFFE or FFFF:

« OxFFFE, @x1FFFE, Ox2FFFE, ..., OxFFFFE, 0x1QFFFE

« OxFFFF, Ox1FFFF, Ox2FFFF, ..., OxFFFFF, Ox1QFFFF

The following example shows the error reason when COPY attempts to load UTF-8 character e@
al c7a4 into a CHAR column.

Multibyte character not supported for CHAR
(Hint: Try using VARCHAR). Invalid char: e@ al c7a4

If the error is related to a VARCHAR data type, the error reason includes an error code as well as the
not valid UTF-8 hex sequence. The following example shows the error reason when COPY attempts
to load UTF-8 a4 into a VARCHAR field.

String contains invalid or unsupported UTF-8 codepoints.
Bad UTF-8 hex sequence: a4 (error 3)

Troubleshooting data loads 149

Amazon Redshift

Database Developer Guide

The following table lists the descriptions and suggested workarounds for VARCHAR load errors. If
one of these errors occurs, replace the character with a valid UTF-8 code sequence or remove the

character.

Error code

Description

The UTF-8 byte sequence exceeds the four-byte maximum supported by
VARCHAR.

The UTF-8 byte sequence is incomplete. COPY did not find the expected number
of continuation bytes for a multibyte character before the end of the string.

The UTF-8 single-byte character is out of range. The starting byte must not be
254, 255 or any character between 128 and 191 (inclusive).

The value of the trailing byte in the byte sequence is out of range. The continuat
ion byte must be between 128 and 191 (inclusive).

The UTF-8 character is reserved as a surrogate. Surrogate code points (U+D800
through U+DFFF) are not valid.

The byte sequence exceeds the maximum UTF-8 code point.

The UTF-8 byte sequence does not have a matching code point.

Load error reference

If any errors occur while loading data from a file, query the STL_LOAD_ERRORS table to identify
the error and determine the possible explanation. The following table lists all error codes that
might occur during data loads:

Load error codes

Error code

1200

1201

Description
Unknown parse error. Contact support.

Field delimiter was not found in the input file.

Troubleshooting data loads 150

Amazon Redshift Database Developer Guide

Error code Description

1202 Input data had more columns than were defined in the DDL.

1203 Input data had fewer columns than were defined in the DDL.

1204 Input data exceeded the acceptable range for the data type.

1205 Date format is not valid. See DATEFORMAT and TIMEFORMAT strings for valid
formats.

1206 Timestamp format is not valid. See DATEFORMAT and TIMEFORMAT strings for

valid formats.

1207 Data contained a value outside of the expected range of 0-9.
1208 FLOAT data type format error.

1209 DECIMAL data type format error.

1210 BOOLEAN data type format error.

1211 Input line contained no data.

1212 Load file was not found.

1213 A field specified as NOT NULL contained no data.

1214 Delimiter not found.

1215 CHAR field error.

1216 Input line is not valid.

1217 Identity column value is not valid.

1218 When using NULL AS '\0', a field containing a null terminator (NUL, or UTF-8

0000) contained more than one byte.
1219 UTF-8 hexadecimal contains an invalid digit.

1220 String contains invalid or unsupported UTF-8 code points.

Troubleshooting data loads 151

Amazon Redshift

Database Developer Guide

Error code

1221

1222

1223

1224

8001

9005

Description

Encoding of the file is not the same as that specified in the COPY command.
Integer value overflow error.

Data type not valid.

Input data not well formed JSON format or super data type.

COPY with MANIFEST parameter requires full path of an Amazon S3 object.

Invalid end key specified.

Loading tables with continuous file ingestion from Amazon S3

(preview)

This is prerelease documentation for autocopy (SQL COPY JOB), which is in preview release.
The documentation and the feature are both subject to change. We recommend that you use
this feature only in test environments, and not in production environments. Public preview will
end on October 31, 2024. Preview clusters will be removed automatically two weeks after the
end of the preview. For preview terms and conditions, see Betas and Previews in AWS Service

Terms.

(® Note

You can create an Amazon Redshift cluster in Preview to test new features of Amazon
Redshift. You can't use those features in production or move your Preview cluster to a
production cluster or a cluster on another track. For preview terms and conditions, see Beta

and Previews in AWS Service Terms.

To create a cluster in Preview

1. Signin to the AWS Management Console and open the Amazon Redshift console at
https://console.aws.amazon.com/redshiftv2/.

Loading tables with continuous file ingestion (preview) 152

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

2.

On the navigation menu, choose Provisioned clusters dashboard, and choose
Clusters. The clusters for your account in the current AWS Region are listed. A subset
of properties of each cluster is displayed in columns in the list.

A banner displays on the Clusters list page that introduces preview. Choose the button
Create preview cluster to open the create cluster page.

Enter properties for your cluster. Choose the Preview track that contains the features
you want to test. We recommend entering a name for the cluster that indicates that
it is on a preview track. Choose options for your cluster, including options labeled as
-preview, for the features you want to test. For general information about creating
clusters, see Creating a cluster in the Amazon Redshift Management Guide.

Choose Create cluster to create a cluster in preview.

When your preview cluster is available, use your SQL client to load and query data.

Your cluster must be created with the preview track named: preview_2023. Use a new
cluster for testing, restoring a cluster into this track is not supported. The autocopy feature
is not available with Amazon Redshift Serverless workgroup.

This preview is available in the following AWS Regions:

US East (Ohio) Region (us-east-2)

US East (N. Virginia) Region (us-east-1)

US West (Oregon) Region (us-west-2)

Asia Pacific (Tokyo) Region (ap-northeast-1)
Europe (Stockholm) Region (eu-north-1)

Europe (Ireland) Region (eu-west-1)

You can use a COPY JOB to load data into your Amazon Redshift tables from files that are stored
in Amazon S3. Amazon Redshift detects when new Amazon S3 files are added to the path specified
in your COPY command. A COPY command is then automatically run without you having to create
an external data ingestion pipeline. Amazon Redshift keeps track of which files have been loaded.
Amazon Redshift determines the number of files batched together per COPY command. You can
see the resulting COPY commands in system views.

You define a COPY JOB one time. The same parameters are used for future runs.

Loading tables with continuous file ingestion (preview) 153

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

You manage the load operations using options to CREATE, LIST, SHOW, DROP, ALTER, and RUN
jobs. For more information, see COPY JOB (preview).

You can query system views to see the COPY JOB status and progress. Views are provided as
follows:

SYS_COPY_JOB (preview) — contains a row for each currently defined COPY JOB.
STL_LOAD_ERRORS - contains errors from COPY commands.

STL_LOAD_COMMITS - contains information used to troubleshoot a COPY command data load.
SYS_LOAD_HISTORY - contains details of COPY commands.

SYS_LOAD_ERROR_DETAIL - contains details of COPY command errors.

To get the list of files loaded by a COPY JOB, run the following example replacing <job_id>:

SELECT job_id, job_name, data_source, copy_query,filename,status, curtime
FROM sys_copy_job copyjob

JOIN stl_load_commits loadcommit

ON copyjob.job_id = loadcommit.copy_job_id

WHERE job_id = <job_id>;

Loading tables with DML commands

Amazon Redshift supports standard data manipulation language (DML) commands (INSERT,
UPDATE, and DELETE) that you can use to modify rows in tables. You can also use the TRUNCATE
command to do fast bulk deletes.

(® Note

We strongly encourage you to use the COPY command to load large amounts of data.
Using individual INSERT statements to populate a table might be prohibitively slow.
Alternatively, if your data already exists in other Amazon Redshift database tables,
use INSERT INTO ... SELECT FROM or CREATE TABLE AS to improve performance. For
information, see INSERT or CREATE TABLE AS.

If you insert, update, or delete a significant number of rows in a table, relative to the number
of rows before the changes, run the ANALYZE and VACUUM commands against the table when

Loading tables with DML 154

Amazon Redshift Database Developer Guide

you are done. If a number of small changes accumulate over time in your application, you might
want to schedule the ANALYZE and VACUUM commands to run at regular intervals. For more
information, see Analyzing tables and Vacuuming tables.

Topics

« Updating and inserting new data

Updating and inserting new data

You can efficiently add new data to an existing table by using the MERGE command. Perform a
merge operation by creating a staging table and then using one of the methods described in this
section to update the target table from the staging table. For more information on the MERGE
command, see MERGE.

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As a
prerequisite, you can set up the TICKIT tables and data by following the instructions available in
Getting started with common database tasks. More detailed information about the sample data set
is found at Sample database.

Merge method 1: Replacing existing rows

If you are overwriting all of the columns in the target table, the fastest method to perform a merge
is to replace the existing rows. This scans the target table only once, by using an inner join to delete
rows that will be updated. After the rows are deleted, they are replaced with new rows by a single
insert operation from the staging table.

Use this method if all of the following are true:

« Your target table and your staging table contain the same columns.

« You intend to replace all of the data in the target table columns with all of the staging table
columns.

« You will use all of the rows in the staging table in the merge.

If any of these criteria do not apply, use Merge method 2: Specifying a column list without using
MERGE, described in the following section.

If you will not use all of the rows in the staging table, filter the DELETE and INSERT statements
by using a WHERE clause to leave out rows that are not changing. However, if most of the rows in

Updating and inserting 155

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

the staging table will not participate in the merge, we recommend performing an UPDATE and an
INSERT in separate steps, as described later in this section.

Merge method 2: Specifying a column list without using MERGE

Use this method to update specific columns in the target table instead of overwriting entire rows.
This method takes longer than the previous method because it requires an extra update step and
doesn't use the MERGE command. Use this method if any of the following are true:

» Not all of the columns in the target table are to be updated.

» Most rows in the staging table will not be used in the updates.

Topics

Creating a temporary staging table

Performing a merge operation by replacing existing rows

Performing a merge operation by specifying a column list without using the MERGE command

Merge examples

Creating a temporary staging table

The staging table is a temporary table that holds all of the data that will be used to make changes
to the target table, including both updates and inserts.

A merge operation requires a join between the staging table and the target table. To collocate
the joining rows, set the staging table's distribution key to the same column as the target table's
distribution key. For example, if the target table uses a foreign key column as its distribution key,
use the same column for the staging table's distribution key. If you create the staging table by
using a CREATE TABLE LIKE statement, the staging table will inherit the distribution key from
the parent table. If you use a CREATE TABLE AS statement, the new table does not inherit the
distribution key. For more information, see Data distribution for query optimization

If the distribution key is not the same as the primary key and the distribution key is not updated
as part of the merge operation, add a redundant join predicate on the distribution key columns to
enable a collocated join. For example:

where target.primarykey = stage.primarykey

Updating and inserting 156

Amazon Redshift Database Developer Guide

and target.distkey = stage.distkey

To verify that the query will use a collocated join, run the query with EXPLAIN and check for
DS_DIST_NONE on all of the joins. For more information, see Evaluating the query plan

Performing a merge operation by replacing existing rows

When you run the merge operation detailed in the procedure, put all of the steps except for
creating and dropping the temporary staging table in a single transaction. The transaction rolls
back if any step fails. Using a single transaction also reduces the number of commits, which saves
time and resources.

To perform a merge operation by replacing existing rows

1. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

CREATE temp table stage (like target);

INSERT INTO stage
SELECT * FROM source
WHERE source.filter = 'filter_expression';

2. Use MERGE to perform an inner join with the staging table to update the rows from the target
table that match the staging table, then insert all the remaining rows into the target table that
don't match the staging table.

We recommend you run the update and insert operations in a single MERGE command.

MERGE INTO target

USING stage [optional alias] on (target.primary_key = stage.primary_key)

WHEN MATCHED THEN

UPDATE SET col_namel = stage.col_namel , col_name2= stage.col_name2, col_name3 =
{expr}

WHEN NOT MATCHED THEN

INSERT (col_namel , col_name2, col_name3) VALUES (stage.col_namel, stage.col_name2,
{expr});

3. Drop the staging table.

DROP TABLE stage;

Updating and inserting 157

Amazon Redshift Database Developer Guide

Performing a merge operation by specifying a column list without using the
MERGE command

When you run the merge operation detailed in the procedure, put all of the steps in a single
transaction. The transaction rolls back if any step fails. Using a single transaction also reduces the
number of commits, which saves time and resources.

To perform a merge operation by specifying a column list

1. Put the entire operation in a single transaction block.

BEGIN transaction;
END transaction;

2. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

create temp table stage (like target);
insert into stage

select * from source

where source.filter = 'filter_expression';

3. Update the target table by using an inner join with the staging table.

» In the UPDATE clause, explicitly list the columns to be updated.
o Perform an inner join with the staging table.

« If the distribution key is different from the primary key and the distribution key is not being
updated, add a redundant join on the distribution key. To verify that the query will use a
collocated join, run the query with EXPLAIN and check for DS_DIST_NONE on all of the joins.
For more information, see Evaluating the query plan

« If your target table is sorted by timestamp, add a predicate to take advantage of range-
restricted scans on the target table. For more information, see Amazon Redshift best

practices for designing queries.

o If you will not use all of the rows in the merge, add a clause to filter the rows that you want
to change. For example, add an inequality filter on one or more columns to exclude rows
that have not changed.

Updating and inserting 158

Amazon Redshift Database Developer Guide

« Put the update, delete, and insert operations in a single transaction block so that if there is a

problem, everything will be rolled back.

For example:

begin transaction;

update target

set coll = stage.coll,

col?2 = stage.col2,

col3 = 'expression'

from stage

where target.primarykey = stage.primarykey
and target.distkey = stage.distkey
and target.col3 > 'last_update_time'
and (target.coll != stage.coll

or target.col2 != stage.col2

or target.col3 = 'filter_expression');

4. Delete unneeded rows from the staging table by using an inner join with the target table.

Some rows in the target table already match the corresponding rows in the staging table, and

others were updated in the previous step. In either case, they are not needed for the insert.

delete from stage
using target
where stage.primarykey = target.primarykey;

5. Insert the remaining rows from the staging table. Use the same column list in the VALUES
clause that you used in the UPDATE statement in step two.

insert into target
(select coll, col2, 'expression'
from stage);

end transaction;

6. Drop the staging table.

drop table stage;

Updating and inserting

159

Amazon Redshift Database Developer Guide

Merge examples

The following examples perform a merge to update the SALES table. The first example uses the
simpler method of deleting from the target table and then inserting all of the rows from the
staging table. The second example requires updating on select columns in the target table, so it
includes an extra update step.

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As
a prerequisite, you can set up the TICKIT tables and data by following the instructions available

in the guide Getting started with common database tasks. More detailed information about the
sample data set is found at Sample database.

Sample merge data source

The examples in this section need a sample data source that includes both updates and inserts.

For the examples, we will create a sample table named SALES_UPDATE that uses data from the
SALES table. We'll populate the new table with random data that represents new sales activity for
December. We will use the SALES_UPDATE sample table to create the staging table in the examples
that follow.

-- Create a sample table as a copy of the SALES table.

create table tickit.sales_update as
select * from tickit.sales;

-- Change every fifth row to have updates.

update tickit.sales_update
set qtysold = qtysold*2,
pricepaid = pricepaid*0.8,
commission = commission*1.1
where saletime > '2008-11-30'
and mod(sellerid, 5) = 0;

-- Add some new rows to have inserts.
-- This example creates a duplicate of every fourth row.

insert into tickit.sales_update

select (salesid + 172456) as salesid, listid, sellerid, buyerid, eventid, dateid,
gtysold, pricepaid, commission, getdate() as saletime

from tickit.sales_update

Updating and inserting 160

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

where saletime > '2008-11-30'
and mod(sellerid, 4) = 0;

Example of a merge that replaces existing rows based on matching keys

The following script uses the SALES_UPDATE table to perform a merge operation on the SALES
table with new data for December sales activity. This example replaces rows in the SALES table
that have updates. For this example, we will update the qtysold and pricepaid columns, but leave

commission and saletime unchanged.

MERGE into tickit.sales

USING tickit.sales_update sales_update

on (sales.salesid = sales_update.salesid

and sales.listid = sales_update.listid

and sales_update.saletime > '2008-11-30'

and (sales.qtysold != sales_update.qtysold

or sales.pricepaid != sales_update.pricepaid))

WHEN MATCHED THEN

update SET qtysold = sales_update.qtysold,

pricepaid = sales_update.pricepaid

WHEN NOT MATCHED THEN

INSERT (salesid, listid, sellerid, buyerid, eventid, dateid, qtysold , pricepaid,
commission, saletime)

values (sales_update.salesid, sales_update.listid, sales_update.sellerid,
sales_update.buyerid, sales_update.eventid,

sales_update.dateid, sales_update.qtysold , sales_update.pricepaid,
sales_update.commission, sales_update.saletime);

-- Drop the staging table.
drop table tickit.sales_update;

-- Test to see that commission and salestime were not impacted.

SELECT sales.salesid, sales.commission, sales.salestime, sales_update.commission,
sales_update.salestime

FROM tickit.sales

INNER JOIN tickit.sales_update sales_update

ON

sales.salesid = sales_update.salesid

AND sales.listid = sales_update.listid

AND sales_update.saletime > '2008-11-30'

AND (sales.commission != sales_update.commission

OR sales.salestime != sales_update.salestime);

Updating and inserting

161

Amazon Redshift Database Developer Guide

Example of a merge that specifies a column list without using MERGE

The following example performs a merge operation to update SALES with new data for December
sales activity. We need sample data that includes both updates and inserts, along with rows that
have not changed. For this example, we want to update the QTYSOLD and PRICEPAID columns but
leave COMMISSION and SALETIME unchanged. The following script uses the SALES_UPDATE table
to perform a merge operation on the SALES table.

-- Create a staging table and populate it with rows from SALES_UPDATE for Dec
create temp table stagesales as select * from sales_update
where saletime > '2008-11-30';

-- Start a new transaction
begin transaction;

-- Update the target table using an inner join with the staging table
-- The join includes a redundant predicate to collocate on the distribution key -- A
filter on saletime enables a range-restricted scan on SALES

update sales

set qtysold = stagesales.qtysold,

pricepaid = stagesales.pricepaid

from stagesales

where sales.salesid = stagesales.salesid
and sales.listid = stagesales.listid

and stagesales.saletime > '2008-11-30'

and (sales.qtysold != stagesales.qtysold

or sales.pricepaid != stagesales.pricepaid);

-- Delete matching rows from the staging table
-- using an inner join with the target table

delete from stagesales

using sales

where sales.salesid = stagesales.salesid
and sales.listid = stagesales.listid;

-- Insert the remaining rows from the staging table into the target table
insert into sales
select * from stagesales;

-- End transaction and commit
end transaction;

Updating and inserting 162

Amazon Redshift Database Developer Guide

-- Drop the staging table
drop table stagesales;

Performing a deep copy

A deep copy recreates and repopulates a table by using a bulk insert, which automatically sorts
the table. If a table has a large unsorted Region, a deep copy is much faster than a vacuum. We
recommend that you only make concurrent updates during a deep copy operation if you can track
them. After the process has completed, move the delta updates into the new table. A VACUUM
operation supports concurrent updates automatically.

You can choose one of the following methods to create a copy of the original table:

« Use the original table DDL.

If the CREATE TABLE DDL is available, this is the fastest and preferred method. If you create a
new table, you can specify all table and column attributes, including primary key and foreign
keys. You can find the original DDL by using the SHOW TABLE function.

» Use CREATE TABLE LIKE.

If the original DDL is not available, you can use CREATE TABLE LIKE to recreate the original table.
The new table inherits the encoding, distribution key, sort key, and not-null attributes of the
parent table. The new table doesn't inherit the primary key and foreign key attributes of the
parent table, but you can add them using ALTER TABLE.

« Create a temporary table and truncate the original table.

If you must retain the primary key and foreign key attributes of the parent table. If the parent
table has dependencies, you can use CREATE TABLE ... AS (CTAS) to create a temporary table.
Then truncate the original table and populate it from the temporary table.

Using a temporary table improves performance significantly compared to using a permanent
table, but there is a risk of losing data. A temporary table is automatically dropped at the
end of the session in which it is created. TRUNCATE commits immediately, even if it is inside a
transaction block. If the TRUNCATE succeeds but the session shuts down before the following
INSERT completes, the data is lost. If data loss is unacceptable, use a permanent table.

Performing a deep copy 163

Amazon Redshift Database Developer Guide

After you create a copy of a table, you might have to grant access to the new table. You can use
GRANT to define access privileges. To view and grant all of a table's access privileges, you must be
one of the following:

« A superuser.
» The owner of the table you want to copy.

« A user with the ACCESS SYSTEM TABLE privilege to see the table's privileges, and with the grant
privilege for all relevant permissions.

Additionally, you might have to grant usage permission for the schema your deep copy is in.
Granting usage permission is necessary if your deep copy's schema is different from the original
table's schema, and also isn't the public schema. To view and grant usage privileges you must be
one of the following:

« A superuser.

» A user who can grant the USAGE permission for the deep copy's schema.

To perform a deep copy using the original table DDL

1. (Optional) Recreate the table DDL by running a script called v_generate_tbl_ddl.
2. Create a copy of the table using the original CREATE TABLE DDL.

3. Use an INSERT INTO ... SELECT statement to populate the copy with data from the original
table.

4. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

5. If necessary, grant the permissions of the old table to the new table.

6. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, oris in the same schema
as the original table.

7. Drop the original table.

8. Use an ALTER TABLE statement to rename the copy to the original table name.

The following example performs a deep copy on the SAMPLE table using a duplicate of SAMPLE
named sample_copy.

Performing a deep copy 164

Amazon Redshift Database Developer Guide

--Create a copy of the original table in the sample_namespace namespace using the
original CREATE TABLE DDL.
create table sample_namespace.sample_copy (..);

--Populate the copy with data from the original table in the public namespace.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
= 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.

grant DELETE on table sample_namespace.sample_copy to group groupl;

grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to userl;

grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

--Grant usage permission to every group and user that has privileges in the original
table.
grant USAGE on schema sample_namespace to group groupl, group group2, userl, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy using CREATE TABLE LIKE

1. Create a new table using CREATE TABLE LIKE.

2. Use an INSERT INTO ... SELECT statement to copy the rows from the current table to the new
table.

3. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

4. If necessary, grant the permissions of the old table to the new table.

5. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, oris in the same schema
as the original table.

6. Drop the current table.

Performing a deep copy 165

Amazon Redshift Database Developer Guide

7. Use an ALTER TABLE statement to rename the new table to the original table name.

The following example performs a deep copy on the SAMPLE table using CREATE TABLE LIKE.

--Create a copy of the original table in the sample_namespace namespace using CREATE
TABLE LIKE.
create table sameple_namespace.sample_copy (like public.sample);

--Populate the copy with data from the original table.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
= 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.

grant DELETE on table sample_namespace.sample_copy to group groupl;

grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to userl;

grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

--Grant usage permission to every group and user that has privileges in the original
table.
grant USAGE on schema sample_namespace to group groupl, group group2, userl, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy by creating a temporary table and truncating the original table

1. Use CREATE TABLE AS to create a temporary table with the rows from the original table.
2. Truncate the current table.

3. Use an INSERT INTO ... SELECT statement to copy the rows from the temporary table to the
original table.

4. Drop the temporary table.

Performing a deep copy 166

Amazon Redshift Database Developer Guide

The following example performs a deep copy on the SALES table by creating a temporary table
and truncating the original table. Since the original table remains, you don't need to grant
permissions to the copy table.

--Create a temp table copy using CREATE TABLE AS.
create temp table salestemp as select * from sales;

--Truncate the original table.
truncate sales;

--Copy the rows from the temporary table to the original table.
insert into sales (select * from salestemp);

--Drop the temporary table.
drop table salestemp;

Analyzing tables

The ANALYZE operation updates the statistical metadata that the query planner uses to choose
optimal plans.

In most cases, you don't need to explicitly run the ANALYZE command. Amazon Redshift monitors
changes to your workload and automatically updates statistics in the background. In addition, the
COPY command performs an analysis automatically when it loads data into an empty table.

To explicitly analyze a table or the entire database, run the ANALYZE command.

Automatic analyze

Amazon Redshift continuously monitors your database and automatically performs analyze
operations in the background. To minimize impact to your system performance, automatic analyze
runs during periods when workloads are light.

Automatic analyze is enabled by default. To turn off automatic analyze, set the auto_analyze
parameter to false by modifying your cluster's parameter group.

To reduce processing time and improve overall system performance, Amazon Redshift skips
automatic analyze for any table where the extent of modifications is small.

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current

Analyzing tables 167

Amazon Redshift Database Developer Guide

statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

Analysis of new table data

By default, the COPY command performs an ANALYZE after it loads data into an empty table. You
can force an ANALYZE regardless of whether a table is empty by setting STATUPDATE ON. If you
specify STATUPDATE OFF, an ANALYZE is not performed. Only the table owner or a superuser can
run the ANALYZE command or run the COPY command with STATUPDATE set to ON.

Amazon Redshift also analyzes new tables that you create with the following commands:

« CREATE TABLE AS (CTAS)
« CREATE TEMP TABLE AS
o SELECT INTO

Amazon Redshift returns a warning message when you run a query against a new table that was
not analyzed after its data was initially loaded. No warning occurs when you query a table after
a subsequent update or load. The same warning message is returned when you run the EXPLAIN
command on a query that references tables that have not been analyzed.

Whenever adding data to a nonempty table significantly changes the size of the table, you can
explicitly update statistics. You do so either by running an ANALYZE command or by using the
STATUPDATE ON option with the COPY command. To view details about the number of rows that
have been inserted or deleted since the last ANALYZE, query the PG_STATISTIC_INDICATOR system
catalog table.

You can specify the scope of the ANALYZE command to one of the following:

The entire current database

A single table

One or more specific columns in a single table

Columns that are likely to be used as predicates in queries

The ANALYZE command gets a sample of rows from the table, does some calculations, and saves
resulting column statistics. By default, Amazon Redshift runs a sample pass for the DISTKEY

Analysis of new table data 168

Amazon Redshift Database Developer Guide

column and another sample pass for all of the other columns in the table. If you want to generate
statistics for a subset of columns, you can specify a comma-separated column list. You can run
ANALYZE with the PREDICATE COLUMNS clause to skip columns that aren’t used as predicates.

ANALYZE operations are resource intensive, so run them only on tables and columns that actually
require statistics updates. You don't need to analyze all columns in all tables regularly or on the
same schedule. If the data changes substantially, analyze the columns that are frequently used in
the following:

« Sorting and grouping operations

e Joins

e Query predicates

To reduce processing time and improve overall system performance, Amazon Redshift skips
ANALYZE for any table that has a low percentage of changed rows, as determined by the
analyze_threshold_percent parameter. By default, the analyze threshold is set to 10 percent. You

can change the analyze threshold for the current session by running a SET command.

Columns that are less likely to require frequent analysis are those that represent facts and
measures and any related attributes that are never actually queried, such as large VARCHAR
columns. For example, consider the LISTING table in the TICKIT database.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'listing’';

column | type | encoding | distkey | sortkey
——————————————— R el et el et
listid | integer | none | t | 1
sellerid | integer | none | f | 0
eventid | integer | mostlyle | f | ©
dateid | smallint | none | f | 0
numtickets | smallint | mostly8 | f | ©
priceperticket | numeric(8,2) | bytedict | f | 0
totalprice | numeric(8,2) | mostly32 | f | @
listtime | timestamp with... | none | f | 0

If this table is loaded every day with a large number of new records, the LISTID column, which is
frequently used in queries as a join key, must be analyzed regularly. If TOTALPRICE and LISTTIME

Analysis of new table data 169

Amazon Redshift Database Developer Guide

are the frequently used constraints in queries, you can analyze those columns and the distribution
key on every weekday.

analyze listing(listid, totalprice, listtime);

Suppose that the sellers and events in the application are much more static, and the date IDs refer
to a fixed set of days covering only two or three years. In this case,the unique values for these
columns don't change significantly. However, the number of instances of each unique value will
increase steadily.

In addition, consider the case where the NUMTICKETS and PRICEPERTICKET measures are queried
infrequently compared to the TOTALPRICE column. In this case, you can run the ANALYZE
command on the whole table once every weekend to update statistics for the five columns that are
not analyzed daily:

Predicate columns

As a convenient alternative to specifying a column list, you can choose to analyze only the columns
that are likely to be used as predicates. When you run a query, any columns that are used in a

join, filter condition, or group by clause are marked as predicate columns in the system catalog.
When you run ANALYZE with the PREDICATE COLUMNS clause, the analyze operation includes only
columns that meet the following criteria:

o The column is marked as a predicate column.
o The column is a distribution key.

o The column is part of a sort key.

If none of a table's columns are marked as predicates, ANALYZE includes all of the columns, even
when PREDICATE COLUMNS is specified. If no columns are marked as predicate columns, it might
be because the table has not yet been queried.

You might choose to use PREDICATE COLUMNS when your workload's query pattern is relatively
stable. When the query pattern is variable, with different columns frequently being used as
predicates, using PREDICATE COLUMNS might temporarily result in stale statistics. Stale statistics
can lead to suboptimal query runtime plans and long runtimes. However, the next time you run
ANALYZE using PREDICATE COLUMNS, the new predicate columns are included.

To view details for predicate columns, use the following SQL to create a view named
PREDICATE_COLUMNS.

Analysis of new table data 170

Amazon Redshift Database Developer Guide

CREATE VIEW predicate_columns AS

WITH predicate_column_info as (

SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
a.attname as col_name,

CASE
WHEN 10002 = s.stakindl THEN array_to_string(stavaluesl, '||')
WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '||')
WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')

ELSE NULL::varchar
END AS pred_ts
FROM pg_statistic s
JOIN pg_class c ON c.oid = s.starelid
JOIN pg_namespace ns ON c.relnamespace = ns.oid
JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)
SELECT schema_name, table_name, col_num, col_name,
pred_ts NOT LIKE '2000-01-01%' AS is_predicate,
CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
"|]',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
CASE WHEN pred_ts NOT LIKE '%]||2000-01-01%' THEN (split_part(pred_ts,
"|]',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

Suppose that you run the following query against the LISTING table. Note that LISTID, LISTTIME,
and EVENTID are used in the join, filter, and group by clauses.

select s.buyerid,l.eventid, sum(l.totalprice)
from listing 1

join sales s on 1l.listid = s.listid

where 1.listtime > '2008-12-01'

group by 1l.eventid, s.buyerid;

When you query the PREDICATE_COLUMNS view, as shown in the following example, you see that
LISTID, EVENTID, and LISTTIME are marked as predicate columns.

select * from predicate_columns
where table_name = 'listing';

schema_name | table_name | col_num | col_name | is_predicate |
first_predicate_use | last_analyze

Analysis of new table data 171

Amazon Redshift

Database Developer Guide

———————————— - e -
R e e R e
public | listing | listid
19:27:59 | 2017-05-03 18:27:41
public | listing | sellerid
| 2017-05-03 18:27:41
public | listing | eventid
20:54:32 | 2017-05-03 18:27:41
public | listing | dateid
| 2017-05-03 18:27:41
public | listing | numtickets
| 2017-05-03 18:27:41
public | listing | priceperticket
| 2017-05-03 18:27:41
public | listing | totalprice
| 2017-05-03 18:27:41
public | listing | listtime

20:54:32 | 2017-05-03 18:27:41

true

false

true

false

false

false

false

true

| 2017-05-05

| 2017-05-16

| 2017-05-16

Keeping statistics current improves query performance by enabling the query planner to choose

optimal plans. Amazon Redshift refreshes statistics automatically in the background, and you
can also explicitly run the ANALYZE command. If you choose to explicitly run ANALYZE, do the

following:

» Run the ANALYZE command before running queries.

« Run the ANALYZE command on the database routinely at the end of every regular load or update

cycle.

e Run the ANALYZE command on any new tables that you create and any existing tables or

columns that undergo significant change.

» Consider running ANALYZE operations on different schedules for different types of tables and
columns, depending on their use in queries and their propensity to change.

« To save time and cluster resources, use the PREDICATE COLUMNS clause when you run ANALYZE.

You don't have to explicitly run the ANALYZE command after restoring a snapshot to a provisioned

cluster or serverless namespace, nor after resuming a paused provisioned cluster. Amazon
Redshift preserves system table information in these cases, making manual ANALYZE commands
unnecessary. Amazon Redshift will continue to run automatic analyze operations as needed.

Analysis of new table data

172

Amazon Redshift Database Developer Guide

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current
statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

ANALYZE command history

It's useful to know when the last ANALYZE command was run on a table or database. When an
ANALYZE command is run, Amazon Redshift runs multiple queries that look like this:

padb_fetch_sample: select * from table_name

Query STL_ANALYZE to view the history of analyze operations. If Amazon Redshift analyzes a table
using automatic analyze, the is_background column is set to t (true). Otherwise, it is set to f
(false). The following example joins STV_TBL_PERM to show the table name and runtime details.

select distinct a.xid, trim(t.name) as name, a.status, a.rows, a.modified_rows,
a.starttime, a.endtime

from stl_analyze a

join stv_tbl_perm t on t.id=a.table_id

where name = 'users'

oxrder by starttime;

xid | name | status rows | modified_rows | starttime

endtime
——————— B i il e el ettt
oo e e e, —

1582 | users | Full | 49990 | 49990 | 2016-09-22 22:02:23 |
2016-09-22 22:02:28
244287 | users | Full | 24992 | 74988 | 2016-10-04 22:50:58 |
2016-10-04 22:51:01
244712 | users | Full | 49984 | 24992 | 2016-10-04 22:56:07 |
2016-10-04 22:56:07
245071 | users | Skipped | 49984 | 0 | 2016-10-04 22:58:17 |
2016-10-04 22:58:17
245439 | users | Skipped | 49984 | 1982 | 2016-10-04 23:00:13 |
2016-10-04 23:00:13
(5 rows)

ANALYZE command history 173

Amazon Redshift Database Developer Guide

Alternatively, you can run a more complex query that returns all the statements that ran in every
completed transaction that included an ANALYZE command:

select xid, to_char(starttime, 'HH24:MM:SS.MS') as starttime,
datediff(sec,starttime,endtime) as secs, substring(text, 1, 40)

from svl_statementtext

where sequence = 0

and xid in (select xid from svl_statementtext s where s.text like 'padb_fetch_sample
%')

oxder by xid desc, starttime;

xid | starttime | secs | substring

————— R i et ettt
1338 | 12:04:28.511 | 4 | Analyze date

1338 | 12:04:28.511 | 1 | padb_fetch_sample: select count(*) from
1338 | 12:04:29.443 | 2 | padb_fetch_sample: select * from date
1338 | 12:04:31.456 | 1 | padb_fetch_sample: select * from date
1337 | 12:04:24.388 | 1 | padb_fetch_sample: select count(*) from
1337 | 12:04:24.388 | 4 | Analyze sales

1337 | 12:04:25.322 | 2 | padb_fetch_sample: select * from sales
1337 | 12:04:27.363 | 1 | padb_fetch_sample: select * from sales

Vacuuming tables

Amazon Redshift can automatically sort and perform a VACUUM DELETE operation on tables in the
background. To clean up tables after a load or a series of incremental updates, you can also run the
VACUUM command, either against the entire database or against individual tables.

(® Note

Only users with the necessary table permissions can effectively vacuum a table. If VACUUM
is run without the necessary table permissions, the operation completes successfully but
has no effect. For a list of valid table permissions to effectively run VACUUM, see VACUUM.
For this reason, we recommend vacuuming individual tables as needed. We also
recommend this approach because vacuuming the entire database is potentially an
expensive operation.

Vacuuming tables 174

Amazon Redshift Database Developer Guide

Automatic table sort

Amazon Redshift automatically sorts data in the background to maintain table data in the order of
its sort key. Amazon Redshift keeps track of your scan queries to determine which sections of the
table will benefit from sorting.

Depending on the load on the system, Amazon Redshift automatically initiates the sort. This
automatic sort lessens the need to run the VACUUM command to keep data in sort key order. If
you need data fully sorted in sort key order, for example after a large data load, then you can still
manually run the VACUUM command. To determine whether your table will benefit by running
VACUUM SORT, monitor the vacuum_sort_benefit column in SVV_TABLE_INFO.

Amazon Redshift tracks scan queries that use the sort key on each table. Amazon Redshift
estimates the maximum percentage of improvement in scanning and filtering of data for each
table (if the table was fully sorted). This estimate is visible in the vacuum_sort_benefit column
in SVV_TABLE_INFO. You can use this column, along with the unsorted column, to determine

when queries can benefit from manually running VACUUM SORT on a table. The unsorted column
reflects the physical sort order of a table. The vacuum_sort_benefit column specifies the
impact of sorting a table by manually running VACUUM SORT.

For example, consider the following query:

select "table", unsorted,vacuum_sort_benefit from svv_table_info order by 1;

table | unsorted | vacuum_sort_benefit
_______ e e e e, —————

sales | 85.71 | 5.00
event | 45.24 | 67.00

For the table “sales”, even though the table is ~86% physically unsorted, the query performance
impact from the table being 86% unsorted is only 5%. This might be either because only a

small portion of the table is accessed by queries, or very few queries accessed the table. For the
table “event”, the table is ~45% physically unsorted. But the query performance impact of 67%
indicates that either a larger portion of the table was accessed by queries, or the number of queries
accessing the table was large. The table "event" can potentially benefit from running VACUUM
SORT.

Automatic table sort 175

Amazon Redshift Database Developer Guide

Automatic vacuum delete

When you perform a delete, the rows are marked for deletion, but not removed. Amazon Redshift
automatically runs a VACUUM DELETE operation in the background based on the number of
deleted rows in database tables. Amazon Redshift schedules the VACUUM DELETE to run during
periods of reduced load and pauses the operation during periods of high load.

Topics

« VACUUM frequency

Sort stage and merge stage

Vacuum threshold

Vacuum types

Minimizing vacuum times

VACUUM frequency

You should vacuum as often as necessary to maintain consistent query performance. Consider
these factors when determining how often to run your VACUUM command:

e Run VACUUM during time periods when you expect minimal activity on the cluster, such as
evenings or during designated database administration windows.

e Run VACUUM commands outside of maintenance windows. For more information, see Schedule
around maintenance windows.

« A large unsorted region results in longer vacuum times. If you delay vacuuming, the vacuum will
take longer because more data has to be reorganized.

« VACUUM is an I/0 intensive operation, so the longer it takes for your vacuum to complete, the
more impact it will have on concurrent queries and other database operations running on your
cluster.

« VACUUM takes longer for tables that use interleaved sorting. To evaluate whether interleaved
tables must be re-sorted, query the SVV_INTERLEAVED _COLUMNS view.

Sort stage and merge stage

Amazon Redshift performs a vacuum operation in two stages: first, it sorts the rows in the unsorted
region, then, if necessary, it merges the newly sorted rows at the end of the table with the existing

Automatic vacuum delete 176

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html

Amazon Redshift Database Developer Guide

rows. When vacuuming a large table, the vacuum operation proceeds in a series of steps consisting
of incremental sorts followed by merges. If the operation fails or if Amazon Redshift goes offline
during the vacuum, the partially vacuumed table or database will be in a consistent state, but you
must manually restart the vacuum operation. Incremental sorts are lost, but merged rows that
were committed before the failure do not need to be vacuumed again. If the unsorted region is
large, the lost time might be significant. For more information about the sort and merge stages,
see Reduce the volume of merged rows.

Users can access tables while they are being vacuumed. You can perform queries and write
operations while a table is being vacuumed, but when DML and a vacuum run concurrently,
both might take longer. If you run UPDATE and DELETE statements during a vacuum, system
performance might be reduced. Incremental merges temporarily block concurrent UPDATE and
DELETE operations, and UPDATE and DELETE operations in turn temporarily block incremental
merge steps on the affected tables. DDL operations, such as ALTER TABLE, are blocked until the
vacuum operation finishes with the table.

(@ Note

Various modifiers to VACUUM control the way that it works. You can use them to tailor the
vacuum operation for the current need. For example, using VACUUM RECLUSTER shortens
the vacuum operation by not performing a full merge operation. For more information, see
VACUUM.

Vacuum threshold

By default, VACUUM skips the sort phase for any table where more than 95 percent of the table's
rows are already sorted. Skipping the sort phase can significantly improve VACUUM performance.
To change the default sort threshold for a single table, include the table name and the TO
threshold PERCENT parameter when you run the VACUUM command.

Vacuum types
For information about different vacuum types, see VACUUM.
Minimizing vacuum times

Amazon Redshift automatically sorts data and runs VACUUM DELETE in the background. This
lessens the need to run the VACUUM command. Vacuuming is potentially a time consuming

Vacuum threshold 177

Amazon Redshift Database Developer Guide

process. Depending on the nature of your data, we recommend the following practices to minimize
vacuum times.

Topics

+ Decide whether to reindex

» Reduce the size of the unsorted region

» Reduce the volume of merged rows

» Load your data in sort key order

« Use time series tables to reduce stored data

Decide whether to reindex

You can often significantly improve query performance by using an interleaved sort style, but over
time performance might degrade if the distribution of the values in the sort key columns changes.

When you initially load an empty interleaved table using COPY or CREATE TABLE AS, Amazon
Redshift automatically builds the interleaved index. If you initially load an interleaved table using
INSERT, you need to run VACUUM REINDEX afterwards to initialize the interleaved index.

Over time, as you add rows with new sort key values, performance might degrade if the
distribution of the values in the sort key columns changes. If your new rows fall primarily within
the range of existing sort key values, you don't need to reindex. Run VACUUM SORT ONLY or
VACUUM FULL to restore the sort order.

The query engine is able to use sort order to efficiently select which data blocks need to be
scanned to process a query. For an interleaved sort, Amazon Redshift analyzes the sort key column
values to determine the optimal sort order. If the distribution of key values changes, or skews, as
rows are added, the sort strategy will no longer be optimal, and the performance benefit of sorting
will degrade. To reanalyze the sort key distribution you can run a VACUUM REINDEX. The reindex
operation is time consuming, so to decide whether a table will benefit from a reindex, query the
SVV_INTERLEAVED_COLUMNS view.

For example, the following query shows details for tables that use interleaved sort keys.

select tbl as tbl_id, stv_tbl_perm.name as table_name,
col, interleaved_skew, last_reindex

from svv_interleaved_columns, stv_tbl_perm

where svv_interleaved_columns.tbl = stv_tbl_perm.id

Minimizing vacuum times 178

Amazon Redshift Database Developer Guide

and interleaved_skew is not null;

tbl_id | table_name | col | interleaved_skew | last_reindex
———————— - e - - -
100048 | customer | 0 | 3.65 | 2015-04-22 22:05:45
100068 | lineorder | 1] 2.65 | 2015-04-22 22:05:45
100072 | part | 0 | 1.65 | 2015-04-22 22:05:45
100077 | supplier | 1] 1.00 | 2015-04-22 22:05:45
(4 rows)

The value for interleaved_skew is a ratio that indicates the amount of skew. A value of 1 means
that there is no skew. If the skew is greater than 1.4, a VACUUM REINDEX will usually improve
performance unless the skew is inherent in the underlying set.

You can use the date value in 1last_reindex to determine how long it has been since the last
reindex.

Reduce the size of the unsorted region

The unsorted region grows when you load large amounts of new data into tables that already
contain data or when you do not vacuum tables as part of your routine maintenance operations. To
avoid long-running vacuum operations, use the following practices:

« Run vacuum operations on a regular schedule.

If you load your tables in small increments (such as daily updates that represent a small
percentage of the total number of rows in the table), running VACUUM regularly will help ensure
that individual vacuum operations go quickly.

o Run the largest load first.

If you need to load a new table with multiple COPY operations, run the largest load first. When
you run an initial load into a new or truncated table, all of the data is loaded directly into the
sorted region, so no vacuum is required.

« Truncate a table instead of deleting all of the rows.

Deleting rows from a table does not reclaim the space that the rows occupied until you perform
a vacuum operation; however, truncating a table empties the table and reclaims the disk space,
so no vacuum is required. Alternatively, drop the table and re-create it.

« Truncate or drop test tables.

Minimizing vacuum times 179

Amazon Redshift Database Developer Guide

If you are loading a small number of rows into a table for test purposes, don't delete the rows
when you are done. Instead, truncate the table and reload those rows as part of the subsequent
production load operation.

o Perform a deep copy.

If a table that uses a compound sort key table has a large unsorted region, a deep copy is much
faster than a vacuum. A deep copy recreates and repopulates a table by using a bulk insert,
which automatically re-sorts the table. If a table has a large unsorted region, a deep copy is
much faster than a vacuum. The trade off is that you cannot make concurrent updates during

a deep copy operation, which you can do during a vacuum. For more information, see Amazon
Redshift best practices for designing queries.

Reduce the volume of merged rows

If a vacuum operation needs to merge new rows into a table's sorted region, the time required for a
vacuum will increase as the table grows larger. You can improve vacuum performance by reducing
the number of rows that must be merged.

Before a vacuum, a table consists of a sorted region at the head of the table, followed by an
unsorted region, which grows whenever rows are added or updated. When a set of rows is added
by a COPY operation, the new set of rows is sorted on the sort key as it is added to the unsorted
region at the end of the table. The new rows are ordered within their own set, but not within the
unsorted region.

The following diagram illustrates the unsorted region after two successive COPY operations, where
the sort key is CUSTID. For simplicity, this example shows a compound sort key, but the same
principles apply to interleaved sort keys, except that the impact of the unsorted region is greater
for interleaved tables.

Minimizing vacuum times 180

Amazon Redshift Database Developer Guide

300 D8/08/2013 300 09/05/2013

100 DE/06/2013 100 09/05/2013

200 D8/14/2013 200 09/13/2013
COPY #1 COPY #2

TN

CUSTID DATE CUSTID DATE
sortkey sortkey
100 07/04/2013 100 07/04/2013
200 07/02/2013 200 07/02/2013
300 07/03/2013 300 07/03/2013
100 08/06/2013 100 08/06/2013
Unsorted
Region 200 08/14/2013 200 08/14/2013
300 0B/08/2013 U“S(’r!:ed 300 0B8/08/2013 :I
Region 100 09/05/2013
200 09/13/2013
300 09/09/2013

~_

A vacuum restores the table's sort order in two stages:

1. Sort the unsorted region into a newly-sorted region.

The first stage is relatively cheap, because only the unsorted region is rewritten. If the range of
sort key values of the newly sorted region is higher than the existing range, only the new rows
need to be rewritten, and the vacuum is complete. For example, if the sorted region contains ID
values 1 to 500 and subsequent copy operations add key values greater than 500, then only the
unsorted region needs to be rewritten.

2. Merge the newly-sorted region with the previously-sorted region.

If the keys in the newly sorted region overlap the keys in the sorted region, then VACUUM needs
to merge the rows. Starting at the beginning of the newly-sorted region (at the lowest sort key),

Minimizing vacuum times 181

Amazon Redshift Database Developer Guide

the vacuum writes the merged rows from the previously sorted region and the newly sorted
region into a new set of blocks.

The extent to which the new sort key range overlaps the existing sort keys determines the extent
to which the previously-sorted region will need to be rewritten. If the unsorted keys are scattered
throughout the existing sort range, a vacuum might need to rewrite existing portions of the table.

The following diagram shows how a vacuum would sort and merge rows that are added to a table
where CUSTID is the sort key. Because each copy operation adds a new set of rows with key values
that overlap the existing keys, almost the entire table needs to be rewritten. The diagram shows
single sort and merge, but in practice, a large vacuum consists of a series of incremental sort and
merge steps.

R
N

CUSTID DATE //_\
sortkey

100 07/04/2013 \-//
200 07/02/2013 vacuum //—\
300 07/03/2013 P CUSTID DATE
| [to0 08/06/2013 s v
200 08/14/2013 100 07/04/2013 VACUUM
Unsorted 300 08/08/2013 200 07/02/2013 2. Merge > CUSTID DATE
Region 100 09/05/2013 300 07/03/2013 sortkey
200 09/13/2013 e 100 08/06/2013 100 07/04/2013
300 09/09/2013 Newly 100 09/05/2013 — | [100 08/06/2013
A Sorted 200 08/14/2013 100 09/05/2013
Region 200 09/13/2013 200 07/02/2013
Jole 08/08/2013 200 08/14/2013
. w Re:’;ﬁﬁ: 200 09/13/2013
300 07/03/2013
300 08/08/2013
300 05/09/2013

If the range of sort keys in a set of new rows overlaps the range of existing keys, the cost of the
merge stage continues to grow in proportion to the table size as the table grows while the cost of

the sort stage remains proportional to the size of the unsorted region. In such a case, the cost of
the merge stage overshadows the cost of the sort stage, as the following diagram shows.

Minimizing vacuum times 182

Amazon Redshift

R
N

Database Developer Guide

VACUUM
—_— >
1. Sort //—\
VACUUM v
2. Merge
Unsorted
Region
Newly Rewritten
SOrEed Portion
Region

~_

~_

To determine what proportion of a table was remerged, query SVV_VACUUM_SUMMARY after the
vacuum operation completes. The following query shows the effect of six successive vacuums as
CUSTSALES grew larger over time.

select * from svv_vacuum_summaxry
where table_name = 'custsales';

table_name | xid | sort_ | merge_ | elapsed_ | row_ | sortedrow_ | block_
| max_merge_
| | partitions | increments | time | delta | delta | delta
| partitions
——————————— e e e e . R e i PP
Fem e Fem - ==
custsales | 7072 | 3 2 | 143918314 | @ | 88297472 | 1524
| 47
custsales | 7122 | 3 164157882 | 0 | 88297472 | 772
| 47
custsales | 7212 | 3 187433171 | 0 | 88297472 | 767
| 47
custsales | 7289 | 3| 255482945 | 0 | 88297472 | 770
| 47

Minimizing vacuum times

183

Amazon Redshift Database Developer Guide

custsales | 7420 | 3 5 | 316583833 | 0 | 88297472 | 769
| 47

custsales | 9007 | 3 6 | 306685472 | 0 | 88297472 | 772
| 47
(6 rows)

The merge_increments column gives an indication of the amount of data that was merged for
each vacuum operation. If the number of merge increments over consecutive vacuums increases
in proportion to the growth in table size, it indicates that each vacuum operation is remerging an
increasing number of rows in the table because the existing and newly sorted regions overlap.

Load your data in sort key order

If you load your data in sort key order using a COPY command, you might reduce or even remove
the need to vacuum.

COPY automatically adds new rows to the table's sorted region when all of the following are true:

» The table uses a compound sort key with only one sort column.
o The sort column is NOT NULL.
« The table is 100 percent sorted or empty.

« All the new rows are higher in sort order than the existing rows, including rows marked for
deletion. In this instance, Amazon Redshift uses the first eight bytes of the sort key to determine
sort order.

For example, suppose you have a table that records customer events using a customer ID and time.
If you sort on customer ID, it's likely that the sort key range of new rows added by incremental
loads will overlap the existing range, as shown in the previous example, leading to an expensive
vacuum operation.

If you set your sort key to a timestamp column, your new rows will be appended in sort order
at the end of the table, as the following diagram shows, reducing or even removing the need to
vacuum.

Minimizing vacuum times 184

Amazon Redshift Database Developer Guide

08/08/2013 | 300 05/09/2013 | 300

08/06/2013 |100 05/05/2013 | 100

08/14/2013 | 200 05/13/2013 | 200
COPY COPY

//—‘\ //—‘\

DATE CUSTID DATE CUSTID
sortkey sortkey
Q7/02/2013 200 — 07/02/2013 (200
07/03/2013 | 300 07/03/2013 |300
Sorted 07/04/2013 100 07/04/2013 (100
Region 08/06/2013 |100 Sorted 08/06/2013 | 100
08/08/2013 |300 Region 08/08/2013 | 300
08/14/2013 |200 08/14/2013 | 200
- 09/05/2013 | 100
_// 09/09/2013 | 300
09/13/2013 | 200

~_

Use time series tables to reduce stored data

If you maintain data for a rolling time period, use a series of tables, as the following diagram
illustrates.

Minimizing vacuum times 185

Amazon Redshift Database Developer Guide

ustdata_q
Jan
Feb custdata_qg2
Apr 2013
201 May 50 custdata_g3
Tuul 2013
Create view cust data ww 20 CUStdata—cH
select * from custdata_gl 20| Aug 013
union all Mov 7 custdata_gl
Ezizﬁtaj':l:rm custdata g2 Dec 4 Jan 2014
select * from custdata g3 Feb 2014
unicn 211 Mar 2014
gelect * from cuatdata g¢

\/—\

Create a new table each time you add a set of data, then delete the oldest table in the series. You
gain a double benefit:

» You avoid the added cost of deleting rows, because a DROP TABLE operation is much more
efficient than a mass DELETE.

o If the tables are sorted by timestamp, no vacuum is needed. If each table contains data for one
month, a vacuum will at most have to rewrite one month’s worth of data, even if the tables are
not sorted by timestamp.

You can create a UNION ALL view for use by reporting queries that hides the fact that the data is
stored in multiple tables. If a query filters on the sort key, the query planner can efficiently skip
all the tables that aren't used. A UNION ALL can be less efficient for other types of queries, so you
should evaluate query performance in the context of all queries that use the tables.

Managing concurrent write operations

Amazon Redshift allows tables to be read while they are being incrementally loaded or modified.

In some traditional data warehousing and business intelligence applications, the database is
available to users only when the nightly load is complete. In such cases, no updates are allowed
during regular work hours, when analytic queries are run and reports are generated; however, an
increasing number of applications remain live for long periods of the day or even all day, making
the notion of a load window obsolete.

Amazon Redshift supports these types of applications by allowing tables to be read while they
are being incrementally loaded or modified. Queries simply see the latest committed version,

Managing concurrent write operations 186

Amazon Redshift Database Developer Guide

or snapshot, of the data, rather than waiting for the next version to be committed. If you want
a particular query to wait for a commit from another write operation, you have to schedule it
accordingly.

The following topics describe some of the key concepts and use cases that involve transactions,
database snapshots, updates, and concurrent behavior.

Topics

« Serializable isolation

o Write and read/write operations

« Concurrent write examples

Serializable isolation

Some applications require not only concurrent querying and loading, but also the ability to write to
multiple tables or the same table concurrently. In this context, concurrently means overlapping, not
scheduled to run at precisely the same time. Two transactions are considered to be concurrent if
the second one starts before the first commits. Concurrent operations can originate from different
sessions that are controlled either by the same user or by different users.

(@ Note

Amazon Redshift supports a default automatic commit behavior in which each separately
run SQL command commits individually. If you enclose a set of commands in a transaction
block (defined by BEGIN and END statements), the block commits as one transaction,

so you can roll it back if necessary. Exceptions to this behavior are the TRUNCATE and
VACUUM commands, which automatically commit all outstanding changes made in the
current transaction.

Some SQL clients issue BEGIN and COMMIT commands automatically, so the client controls
whether a group of statements are run as a transaction or each individual statement is

run as its own transaction. Check the documentation for the interface you are using. For
example, when using the Amazon Redshift JDBC driver, a JDBC PreparedStatement
with a query string that contains multiple (semicolon separated) SQL commands runs all
the statements as a single transaction. In contrast, if you use SQL Workbench/J and set
AUTO COMMIT ON, then if you run multiple statements, each statement runs as its own
transaction.

Serializable isolation 187

Amazon Redshift Database Developer Guide

Concurrent write operations are supported in Amazon Redshift in a protective way, using write
locks on tables and the principle of serializable isolation. Serializable isolation preserves the illusion
that a transaction running against a table is the only transaction that is running against that table.
For example, two concurrently running transactions, T1 and T2, must produce the same results as
at least one of the following:

o T1and T2 run serially in that order.

o T2 and T1 run serially in that order.

Concurrent transactions are invisible to each other; they cannot detect each other's changes. Each
concurrent transaction will create a snapshot of the database at the beginning of the transaction.
A database snapshot is created within a transaction on the first occurrence of most SELECT
statements, DML commands such as COPY, DELETE, INSERT, UPDATE, and TRUNCATE, and the
following DDL commands:

o ALTER TABLE (to add or drop columns)
« CREATE TABLE

« DROP TABLE

« TRUNCATE TABLE

If any serial execution of the concurrent transactions produces the same results as their concurrent
execution, those transactions are deemed "serializable" and can be run safely. If no serial execution
of those transactions can produce the same results, the transaction that runs a statement that
might break the ability to serialize is stopped and rolled back.

System catalog tables (PG) and other Amazon Redshift system tables (STL and STV) are not locked
in a transaction. Therefore, changes to database objects that arise from DDL and TRUNCATE
operations are visible on commit to any concurrent transactions.

For example, suppose that table A exists in the database when two concurrent transactions, T1
and T2, start. Suppose that T2 returns a list of tables by selecting from the PG_TABLES catalog
table. Then T1 drops table A and commits, and then T2 lists the tables again. Table A is now no
longer listed. If T2 tries to query the dropped table, Amazon Redshift returns a "relation does not
exist" error. The catalog query that returns the list of tables to T2 or checks that table A exists isn't
subject to the same isolation rules as operations performed on user tables.

Serializable isolation 188

Amazon Redshift Database Developer Guide

Transactions for updates to these tables run in a read committed isolation mode. PG-prefix catalog
tables don't support snapshot isolation.

Serializable isolation for system tables and catalog tables

A database snapshot is also created in a transaction for any SELECT query that references a
user-created table or Amazon Redshift system table (STL or STV). SELECT queries that don't
reference any table don't create a new transaction database snapshot. INSERT, DELETE, and
UPDATE statements that operate solely on system catalog tables (PG) also don't create a new
transaction database snapshot.

How to fix serializable isolation errors
ERROR:1023 DETAIL: Serializable isolation violation on a table in Redshift

When Amazon Redshift detects a serializable isolation error, you see an error message such as the
following.

ERROR:1023 DETAIL: Serializable isolation violation on table in Redshift

To address a serializable isolation error, you can try the following methods:

» Retry the canceled transaction.

Amazon Redshift detected that a concurrent workload is not serializable. It suggests gaps in
the application logic, which can usually be worked around by retrying the transaction that
encountered the error. If the issue persists, try one of the other methods.

« Move any operations that don't have to be in the same atomic transaction outside of the
transaction.

This method applies when individual operations inside two transactions cross-reference each
other in a way that can affect the outcome of the other transaction. For example, the following
two sessions each start a transaction.

Sessionl_Redshift=# begin;

Session2_Redshift=# begin;

Serializable isolation 189

Amazon Redshift Database Developer Guide

The result of a SELECT statement in each transaction might be affected by an INSERT statement
in the other. In other words, suppose that you run the following statements serially, in any order.
In every case, the result is one of the SELECT statements returning one more row than if the
transactions were run concurrently. There is no order in which the operations can run serially that
produces the same result as when run concurrently. Thus, the last operation that is run results in
a serializable isolation error.

Sessionl_Redshift=# select * from tabl;
Sessionl_Redshift=# insert into tab2 values (1);

Session2_Redshift=# insert into tabl values (1);
Session2_Redshift=# select * from tab2;

In many cases, the result of the SELECT statements isn't important. In other words, the atomicity
of the operations in the transactions isn't important. In these cases, move the SELECT statements
outside of their transactions, as shown in the following examples.

Sessionl_Redshift=# begin;

Sessionl_Redshift=# insert into tabl values (1)
Sessionl_Redshift=# end;

Sessionl_Redshift=# select * from tab2;

Session2_Redshift # select * from tabl;
Session2_Redshift=# begin;

Session2_Redshift=# insert into tab2 values (1)
Session2_Redshift=# end;

In these examples, there are no cross-references in the transactions. The two INSERT statements
don't affect each other. In these examples, there is at least one order in which the transactions
can run serially and produce the same result as if run concurrently. This means that the
transactions are serializable.

» Force serialization by locking all tables in each session.

The LOCK command blocks operations that can result in serializable isolation errors. When you

use the LOCK command, be sure to do the following:

 Lock all tables affected by the transaction, including those affected by read-only SELECT
statements inside the transaction.

Serializable isolation 190

Amazon Redshift Database Developer Guide

o Lock tables in the same order, regardless of the order that operations are performed in.
 Lock all tables at the beginning of the transaction, before performing any operations.

» Use snapshot isolation for concurrent transactions

Use an ALTER DATABASE command with snapshot isolation. For more information about the
SNAPSHOT parameter for ALTER DATABASE, see Parameters.

ERROR:1018 DETAIL: Relation does not exist

When you run concurrent Amazon Redshift operations in different sessions, you see an error
message such as the following.

ERROR: 1018 DETAIL: Relation does not exist.

Transactions in Amazon Redshift follow snapshot isolation. After a transaction begins, Amazon
Redshift takes a snapshot of the database. For the entire lifecycle of the transaction, the
transaction operates on the state of the database as reflected in the snapshot. If the transaction
reads from a table that doesn't exist in the snapshot, it throws the 1018 error message shown
previously. Even when another concurrent transaction creates a table after the transaction has
taken the snapshot, the transaction can't read from the newly created table.

To address this serialization isolation error, you can try to move the start of the transaction to a
point where you know the table exists.

If the table is created by another transaction, this point is at least after that transaction has been
committed. Also, ensure that no concurrent transaction has been committed that might have
dropped the table.

sessionl = # BEGIN;
sessionl = DROP TABLE A;
sessionl = # COMMIT,;

H*

session2 = # BEGIN;

session3 = # BEGIN;
session3 = CREATE TABLE A (id INT);
session3 = # COMMIT,;

H*

Serializable isolation 191

Amazon Redshift Database Developer Guide

session2 = # SELECT * FROM A;

The last operation that is run as the read operation by session2 results in a serializable isolation
error. This error happens when session2 takes a snapshot and the table has already been dropped
by a committed session1. In other words, even though a concurrent session3 has created the table,
session2 doesn't see the table because it's not in the snapshot.

To resolve this error, you can reorder the sessions as follows.

sessionl = # BEGIN;
sessionl = DROP TABLE A;
sessionl = # COMMIT;

E=3

session3 = # BEGIN;
session3 = # CREATE TABLE A (id INT);
session3 = # COMMIT;

session2 = # BEGIN;
session2 # SELECT * FROM A;

Now when session2 takes its snapshot, session3 has already been committed, and the table is in
the database. Session2 can read from the table without any error.

Write and read/write operations

You can manage the specific behavior of concurrent write operations by deciding when and how to
run different types of commands. The following commands are relevant to this discussion:

COPY commands, which perform loads (initial or incremental)

INSERT commands that append one or more rows at a time

UPDATE commands, which modify existing rows

DELETE commands, which remove rows

COPY and INSERT operations are pure write operations, but DELETE and UPDATE operations are
read/write operations. (For rows to be deleted or updated, they have to be read first.) The results
of concurrent write operations depend on the specific commands that are being run concurrently.

Write and read/write operations 192

Amazon Redshift Database Developer Guide

COPY and INSERT operations against the same table are held in a wait state until the lock is
released, then they proceed as normal.

UPDATE and DELETE operations behave differently because they rely on an initial table read before
they do any writes. Given that concurrent transactions are invisible to each other, both UPDATEs
and DELETEs have to read a snapshot of the data from the last commit. When the first UPDATE or
DELETE releases its lock, the second UPDATE or DELETE needs to determine whether the data that
it is going to work with is potentially stale. It will not be stale, because the second transaction does
not obtain its snapshot of data until after the first transaction has released its lock.

Potential deadlock situation for concurrent write transactions

Whenever transactions involve updates of more than one table, there is always the possibility of
concurrently running transactions becoming deadlocked when they both try to write to the same
set of tables. A transaction releases all of its table locks at once when it either commits or rolls
back; it does not relinquish locks one at a time.

For example, suppose that transactions T1 and T2 start at roughly the same time. If T1 starts
writing to table A and T2 starts writing to table B, both transactions can proceed without conflict;
however, if T1 finishes writing to table A and needs to start writing to table B, it will not be able to
proceed because T2 still holds the lock on B. Conversely, if T2 finishes writing to table B and needs
to start writing to table A, it will not be able to proceed either because T1 still holds the lock on

A. Because neither transaction can release its locks until all its write operations are committed,
neither transaction can proceed.

In order to avoid this kind of deadlock, you need to schedule concurrent write operations carefully.
For example, you should always update tables in the same order in transactions and, if specifying
locks, lock tables in the same order before you perform any DML operations.

Concurrent write examples

The following pseudo-code examples demonstrate how transactions either proceed or wait when
they are run concurrently.

Concurrent COPY operations into the same table

Transaction 1 copies rows into the LISTING table:

begin;
copy listing from ...;

Concurrent write examples 193

Amazon Redshift Database Developer Guide

end;

Transaction 2 starts concurrently in a separate session and attempts to copy more rows into the
LISTING table. Transaction 2 must wait until transaction 1 releases the write lock on the LISTING
table, then it can proceed.

begin;

[waits]

copy listing from ;
end;

The same behavior would occur if one or both transactions contained an INSERT command instead
of a COPY command.

Concurrent DELETE operations from the same table

Transaction 1 deletes rows from a table:

begin;
delete from listing where ...;
end;

Transaction 2 starts concurrently and attempts to delete rows from the same table. It will succeed
because it waits for transaction 1 to complete before attempting to delete rows.

begin

[waits]

delete from listing where ;
end;

The same behavior would occur if one or both transactions contained an UPDATE command to the
same table instead of a DELETE command.

Concurrent transactions with a mixture of read and write operations

In this example, transaction 1 deletes rows from the USERS table, reloads the table, runs a
COUNT(*) query, and then ANALYZE, before committing:

begin;
delete one row from USERS table;

Concurrent write examples 194

Amazon Redshift Database Developer Guide

copy ;

select count(*) from users;
analyze ;

end;

Meanwhile, transaction 2 starts. This transaction attempts to copy additional rows into the USERS
table, analyze the table, and then run the same COUNT(*) query as the first transaction:

begin;

[waits]

copy users from ...;

select count(*) from users;
analyze;

end;

The second transaction will succeed because it must wait for the first to complete. Its COUNT query
will return the count based on the load it has completed.

Tutorial: Loading data from Amazon S3

In this tutorial, you walk through the process of loading data into your Amazon Redshift database
tables from data files in an Amazon S3 bucket from beginning to end.

In this tutorial, you do the following:

Download data files that use comma-separated value (CSV), character-delimited, and fixed width
formats.

Create an Amazon S3 bucket and then upload the data files to the bucket.

Launch an Amazon Redshift cluster and create database tables.

Use COPY commands to load the tables from the data files on Amazon S3.

Troubleshoot load errors and modify your COPY commands to correct the errors.

Estimated time: 60 minutes

Estimated cost: $1.00 per hour for the cluster

Prerequisites

You need the following prerequisites:

Tutorial: Loading data from Amazon S3 195

Amazon Redshift Database Developer Guide

« An AWS account to launch an Amazon Redshift cluster and to create a bucket in Amazon S3.

» Your AWS credentials (IAM role) to load test data from Amazon S3. If you need a new IAM role,
go to Creating IAM roles.

» An SQL client such as the Amazon Redshift console query editor.

This tutorial is designed so that it can be taken by itself. In addition to this tutorial, we recommend
completing the following tutorials to gain a more complete understanding of how to design and
use Amazon Redshift databases:

« Amazon Redshift Getting Started Guide walks you through the process of creating an Amazon

Redshift cluster and loading sample data.

Overview

You can add data to your Amazon Redshift tables either by using an INSERT command or by using
a COPY command. At the scale and speed of an Amazon Redshift data warehouse, the COPY
command is many times faster and more efficient than INSERT commands.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture to
read and load data in parallel from multiple data sources. You can load from data files on Amazon
S3, Amazon EMR, or any remote host accessible through a Secure Shell (SSH) connection. Or you
can load directly from an Amazon DynamoDB table.

In this tutorial, you use the COPY command to load data from Amazon S3. Many of the principles
presented here apply to loading from other data sources as well.

To learn more about using the COPY command, see these resources:

Amazon Redshift best practices for loading data

Loading data from Amazon EMR

Loading data from remote hosts

Loading data from an Amazon DynamoDB table

Step 1: Create a cluster

If you already have a cluster that you want to use, you can skip this step.

Overview 196

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

For the exercises in this tutorial, use a four-node cluster.
To create a cluster

1. Signin to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

Using the navigation menu, choose the Provisioned clusters dashboard.

/A Important

Make sure that you have the necessary permissions to perform the cluster operations.
For information on granting the necessary permissions, see Authorizing Amazon
Redshift to access AWS services.

2. At top right, choose the AWS Region in which you want to create the cluster. For the purposes
of this tutorial, choose US West (Oregon).

3. On the navigation menu, choose Clusters, then choose Create cluster. The Create cluster page
appears.

4. On the Create cluster page enter parameters for your cluster. Choose your own values for the
parameters, except change the following values:
» Choose dc2.1large for the node type.
« Choose 4 for the Number of nodes.

« In the Cluster permissions section, choose an IAM role from Available IAM roles. This role
should be one that you previously created and that has access to Amazon S3. Then choose
Associate IAM role to add it to the list of Associated IAM roles for the cluster.

5. Choose Create cluster.

Follow the Amazon Redshift Getting Started Guide steps to connect to your cluster from a SQL
client and test a connection. You don't need to complete the remaining Getting Started steps to
create tables, upload data, and try example queries.

Step 2: Download the data files

In this step, you download a set of sample data files to your computer. In the next step, you upload
the files to an Amazon S3 bucket.

Step 2: Download the data files 197

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

To download the data files

1. Download the zipped file: LoadingDataSampleFiles.zip.

2. Extract the files to a folder on your computer.

3. Verify that your folder contains the following files.

customer-fw-manifest
customer-fw.tbl-000
customer-fw.tbl-000.bak
customer-fw.tbhl-001
customer-fw.tbl-002
customer-fw.tbhl-003
customer-fw.tbl-004
customer-fw.tbl-005
customer-fw.tbl-006
customer-fw.tbl-007
customer-fw.tbl.log
dwdate-tab.tbl-000
dwdate-tab.tbl-001
dwdate-tab.tbl-002
dwdate-tab.tbhl-003
dwdate-tab.tbl-004
dwdate-tab.tbl-005
dwdate-tab.tbl-006
dwdate-tab.tbhl-007
part-csv.tbl-000
part-csv.tbl-001
part-csv.tbl-002
part-csv.tbl-003
part-csv.tbl-004
part-csv.tbl-005
part-csv.tbl-006
part-csv.tbl-007

Step 3: Upload the files to an Amazon S3 bucket

In this step, you create an Amazon S3 bucket and upload the data files to the bucket.

Step 3: Upload the files to an Amazon S3 bucket 198

samples/LoadingDataSampleFiles.zip

Amazon Redshift Database Developer Guide

To upload the files to an Amazon S3 bucket

1. Create a bucket in Amazon S3.

For more information about creating a bucket, see Creating a bucket in the Amazon Simple
Storage Service User Guide.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. Choose Create bucket.

c. Choose an AWS Region.

Create the bucket in the same Region as your cluster. If your cluster is in the US West
(Oregon) Region, choose US West (Oregon) Region (us-west-2).

d. Inthe Bucket Name box of the Create bucket dialog box, enter a bucket name.

The bucket name you choose must be unique among all existing bucket names in Amazon
S3. One way to help ensure uniqueness is to prefix your bucket names with the name of
your organization. Bucket names must comply with certain rules. For more information, go
to Bucket restrictions and limitations in the Amazon Simple Storage Service User Guide.

e. Choose the recommended defaults for the rest of the options.

f. Choose Create bucket.

When Amazon S3 successfully creates your bucket, the console displays your empty
bucket in the Buckets panel.

2. Create a folder.

a. Choose the name of the new bucket.
b. Choose the Create Folder button.

c. Name the new folder 1load.

(@ Note

The bucket that you created is not in a sandbox. In this exercise, you add objects
to a real bucket. You're charged a nominal amount for the time that you store the

Step 3: Upload the files to an Amazon S3 bucket 199

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

Amazon Redshift Database Developer Guide

objects in the bucket. For more information about Amazon S3 pricing, go to the
Amazon S3 pricing page.

3. Upload the data files to the new Amazon S3 bucket.

a. Choose the name of the data folder.

b. Inthe Upload wizard, choose Add files.

Follow the Amazon S3 console instructions to upload all of the files you downloaded and
extracted,

c. Choose Upload.

User Credentials

The Amazon Redshift COPY command must have access to read the file objects in the Amazon

S3 bucket. If you use the same user credentials to create the Amazon S3 bucket and to run the
Amazon Redshift COPY command, the COPY command has all necessary permissions. If you want
to use different user credentials, you can grant access by using the Amazon S3 access controls. The
Amazon Redshift COPY command requires at least ListBucket and GetObject permissions to access
the file objects in the Amazon S3 bucket. For more information about controlling access to Amazon
S3 resources, go to Managing access permissions to your Amazon S3 resources.

Step 4: Create the sample tables

For this tutorial, you use a set of five tables based on the Star Schema Benchmark (SSB) schema.
The following diagram shows the SSB data model.

Step 4: Create the sample tables 200

https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift

Database Developer Guide

PART

p_partkey

p_name
p_mfgr
p_category
p_color
p_type
p_size
p_container

SUPPLIER

LINEORDER

lo_orderkey

s_suppkey
s_address

s _city
s_nation
s_region
s_phone

Yy

lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_shippriority
lo_gquantity
lo_extendedprice
lo_ordertotalprice
lo_discount
lo_revenue
lo_supplycost
lo_tax
lo_commdate
lo_shipmode

CUSTOMER

c_custhkey

c_custkey
C_name
¢_address
C_ ity
¢_nation
C_region

DWDATE

d_datekey

F Y

d_date
d_dayofweek
d_manth

d_year
d_vearmonthnum
d_yearmonth
d_daynuminweek
d_daynuminyear
d_monthnuminyear
d_weeknuminyear
d_sellingseason
d_lastdayinweekfl
d_lastdayinmaonthf
d_halidayfl
d_weekdayfl

The SSB tables might already exist in the current database. If so, drop the tables to remove them
from the database before you create them using the CREATE TABLE commands in the next step.

The tables used in

this tutorial might have different attributes than the existing tables.

To create the sample tables

1. To drop the SSB tables, run the following commands in your SQL client.

drop table
drop table
drop table
drop table
drop table

part cascade;
supplier;
customer;
dwdate;
lineorder;

2. Run the following CREATE TABLE commands in your SQL client.

CREATE TABL

(
p_partkey
p_name

E part

INTEGER NOT NULL,
VARCHAR(22) NOT NULL,

Step 4: Create the sample tables

201

Amazon Redshift

Database Developer Guide

p_mfgr

p_category

p_brandl
p_color
p_type
p_size

p_container

);

VARCHAR(6),

VARCHAR(7) NO
VARCHAR(9) NO
VARCHAR(11) N
VARCHAR(25) N
INTEGER NOT N
VARCHAR(10@) N

CREATE TABLE supplier

T NULL,
T NULL,
OT NULL,
OT NULL,
ULL,

0T NULL

(
s_suppkey INTEGER NOT NULL,
S_name VARCHAR(25) NOT NULL,
s_address VARCHAR(25) NOT NULL,
s_city VARCHAR(1@) NOT NULL,
s_nation VARCHAR(15) NOT NULL,
s_region VARCHAR(12) NOT NULL,
s_phone VARCHAR(15) NOT NULL

);

CREATE TABLE customer

(
c_custkey INTEGER NOT NULL,
Cc_name VARCHAR(25) NOT NULL,
c_address VARCHAR(25) NOT NULL,
c_city VARCHAR(1@) NOT NULL,
c_nation VARCHAR(15) NOT NULL,
c_region VARCHAR(12) NOT NULL,
c_phone VARCHAR(15) NOT NULL,
c_mktsegment VARCHAR(1@) NOT NULL

);

CREATE TABLE dwdate

(

d_datekey
d_date
d_dayofweek
d_month

d_year
d_yearmonthnum
d_yearmonth
d_daynuminweek
d_daynuminmonth
d_daynuminyear

INTEGER NOT
VARCHAR(19)
VARCHAR(10)
VARCHAR(10)
INTEGER NOT
INTEGER NOT

NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NULL,
NULL,

VARCHAR(8) NOT NULL,

INTEGER NOT
INTEGER NOT
INTEGER NOT

NULL,
NULL,
NULL,

Step 4: Create the sample tables

202

Amazon Redshift

Database Developer Guide

);

CREATE TABLE lineorder

(

);

d_monthnuminyear
d_weeknuminyear
d_sellingseason
d_lastdayinweekfl
d_lastdayinmonthfl
d_holidayfl
d_weekdayfl

lo_orderkey
lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_orderpriority
lo_shippriority
lo_quantity
lo_extendedprice
lo_ordertotalprice
lo_discount
lo_revenue
lo_supplycost
lo_tax
lo_commitdate
lo_shipmode

INTEGER NOT NULL,
INTEGER NOT NULL,

VARCHAR(13) NOT NULL,
VARCHAR(1) NOT NULL,
VARCHAR(1) NOT NULL,
VARCHAR(1) NOT NULL,

VARCHAR(1) NOT NULL

INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,

VARCHAR(15) NOT NULL,
VARCHAR(1) NOT NULL,

INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,
INTEGER NOT NULL,

VARCHAR(1@) NOT NULL

Step 5: Run the COPY commands

You run COPY commands to load each of the tables in the SSB schema. The COPY command

examples demonstrate loading from different file formats, using several COPY command options,

and troubleshooting load errors.

COPY command syntax

The basic COPY command syntax is as follows.

COPY table_name [column_list] FROM data_source CREDENTIALS access_credentials

[options]

Step 5: Run

the COPY commands

203

Amazon Redshift Database Developer Guide

To run a COPY command, you provide the following values.
Table name

The target table for the COPY command. The table must already exist in the database. The table
can be temporary or persistent. The COPY command appends the new input data to any existing
rows in the table.

Column list

By default, COPY loads fields from the source data to the table columns in order. You can
optionally specify a column list, that is a comma-separated list of column names, to map data
fields to specific columns. You don't use column lists in this tutorial. For more information, see
Column List in the COPY command reference.

Data source

You can use the COPY command to load data from an Amazon S3 bucket, an Amazon EMR cluster,
a remote host using an SSH connection, or an Amazon DynamoDB table. For this tutorial, you load
from data files in an Amazon S3 bucket. When loading from Amazon S3, you must provide the
name of the bucket and the location of the data files. To do this, provide either an object path for
the data files or the location of a manifest file that explicitly lists each data file and its location.

» Key prefix

An object stored in Amazon S3 is uniquely identified by an object key, which includes the bucket
name, folder names, if any, and the object name. A key prefix refers to a set of objects with the
same prefix. The object path is a key prefix that the COPY command uses to load all objects that
share the key prefix. For example, the key prefix custdata.txt can refer to a single file or to a
set of files, including custdata.txt.001, custdata.txt.002, and so on.

« Manifest file
In some cases, you might need to load files with different prefixes, for example from multiple
buckets or folders. In others, you might need to exclude files that share a prefix. In these cases,

you can use a manifest file. A manifest file explicitly lists each load file and its unique object key.
You use a manifest file to load the PART table later in this tutorial.

Credentials

Step 5: Run the COPY commands 204

Amazon Redshift Database Developer Guide

To access the AWS resources that contain the data to load, you must provide AWS access
credentials for a user with sufficient privileges. These credentials include an IAM role Amazon
Resource Name (ARN). To load data from Amazon S3, the credentials must include ListBucket and
GetObject permissions. Additional credentials are required if your data is encrypted. For more
information, see Authorization parameters in the COPY command reference. For more information

about managing access, go to Managing access permissions to your Amazon S3 resources.

Options

You can specify a number of parameters with the COPY command to specify file formats, manage
data formats, manage errors, and control other features. In this tutorial, you use the following
COPY command options and features:

» Key prefix

For information on how to load from multiple files by specifying a key prefix, see Load the PART
table using NULL AS.

o CSV format

For information on how to load data that is in CSV format, see Load the PART table using NULL
AS.

« NULL AS

For information on how to load PART using the NULL AS option, see Load the PART table using
NULL AS.

o Character-delimited format

For information on how to use the DELIMITER option, see Load the SUPPLIER table using
REGION.

« REGION

For information on how to use the REGION option, see Load the SUPPLIER table using REGION.

o Fixed-format width

For information on how to load the CUSTOMER table from fixed-width data, see Load the
CUSTOMER table using MANIFEST.

« MAXERROR

Step 5: Run the COPY commands 205

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift Database Developer Guide

For information on how to use the MAXERROR option, see Load the CUSTOMER table using
MANIFEST.

« ACCEPTINVCHARS

For information on how to use the ACCEPTINVCHARS option, see Load the CUSTOMER table
using MANIFEST.

« MANIFEST

For information on how to use the MANIFEST option, see Load the CUSTOMER table using
MANIFEST.

« DATEFORMAT

For information on how to use the DATEFORMAT option, see Load the DWDATE table using
DATEFORMAT.

« GZIP, LZOP and BZIP2

For information on how to compress your files, see Load the LINEORDER table using multiple

files.

« COMPUPDATE

For information on how to use the COMPUPDATE option, see Load the LINEORDER table using
multiple files.
o Multiple files

For information on how to load multiple files, see Load the LINEORDER table using multiple files.

Loading the SSB tables

You use the following COPY commands to load each of the tables in the SSB schema. The
command to each table demonstrates different COPY options and troubleshooting techniques.

To load the SSB tables, follow these steps:

1. Replace the bucket name and AWS credentials

2. Load the PART table using NULL AS

3. Load the SUPPLIER table using REGION

Step 5: Run the COPY commands 206

Amazon Redshift Database Developer Guide

4. Load the CUSTOMER table using MANIFEST
5. Load the DWDATE table using DATEFORMAT
6. Load the LINEORDER table using multiple files

Replace the bucket name and AWS credentials

The