
User Guide

AWS Batch

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Batch User Guide

AWS Batch: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Batch User Guide

Table of Contents

What is AWS Batch? .. 1
Components of AWS Batch .. 1

Jobs .. 1
Job definitions ... 2
Job queues .. 2
Compute environment ... 2

The AWS Batch dashboard ... 2
Tutorial: Add the Single job queue widget .. 3
Tutorial: Add the CloudWatch Container Insights widget .. 4
Tutorial: Add the Job logs widget ... 4

Getting started tutorials ... 5
Complete the prerequisites .. 5

Create IAM account and administrative user ... 6
Tutorial: Create IAM roles .. 8
Tutorial: Create a key pair ... 8
Tutorial: Create a VPC .. 10
Tutorial: Create a security group ... 11
Tutorial: Install the AWS CLI .. 13

Tutorial: Getting started with Amazon EC2 ... 13
Create a compute environment ... 13
Create a job queue ... 18
Create a job definition ... 18
Create a job .. 22
Review and create .. 22

Tutorial: Getting started with Fargate ... 23
Create a compute environment ... 23
Create a job queue ... 24
Create a job definition ... 24
Create a job .. 28
Review and create .. 28

Tutorial: Getting started with Amazon EKS ... 28
Prerequisites ... 29
Prepare your Amazon EKS cluster for AWS Batch ... 30
Create an Amazon EKS compute environment ... 34

iii

AWS Batch User Guide

Create a job queue and attach the compute environment .. 36
Create a job definition ... 36
Submit a job .. 37
(Optional) Submit a job with overrides .. 38

Tutorial: Getting started with AWS Batch on Amazon EKS Private Clusters 39
Prerequisites ... 40
Prepare your EKS cluster for AWS Batch ... 42
Create an Amazon EKS compute environment ... 45
Create a job queue and attach the compute environment .. 47
Create a job definition ... 48
Submit a job .. 37
(Optional) Submit a job with overrides .. 38
Troubleshooting .. 50

Compute environments for AWS Batch .. 52
Managed compute environments ... 52

Consideration when creating multi-node parallel jobs ... 54
Unmanaged compute environments .. 55
Create a compute environment .. 56

Tutorial: Create a managed compute environment using Fargate resources 56
Tutorial: Create a managed compute environment using Amazon EC2 resources 58
Tutorial: Create an unmanaged compute environment using Amazon EC2 resources 64
Tutorial: Create a managed compute environment using Amazon EKS resources 65
Resource: Compute environment template ... 68

Compute resource AMIs .. 70
Compute resource AMI specification .. 72
Tutorial: Create a compute resource AMI .. 73
Use a GPU workload AMI .. 76
Amazon Linux deprecation ... 82

Use Amazon EC2 launch templates ... 83
Amazon EC2 user data in launch templates ... 84
Reference: Launch template examples ... 86

EC2 configurations ... 88
Instance type allocation strategies ... 89
Memory management ... 91

Reserve system memory ... 92
Tutorial: View compute resource memory ... 92

iv

AWS Batch User Guide

Memory and vCPU considerations for AWS Batch on Amazon EKS ... 93
Updating compute environments ... 98

Updating AWS Fargate compute environments ... 98
Updating the AMI ID .. 101

Fargate compute environments .. 102
When to use Fargate ... 103
Job definitions on Fargate .. 103
Job queues on Fargate .. 105
Compute environments on Fargate .. 105

Amazon EKS compute environments .. 106
Amazon EKS ... 109
Default AMI .. 109
Supported Kubernetes versions .. 110
Update the Kubernetes version of the compute environment ... 111
Shared responsibility of the Kubernetes nodes ... 112
Run a DaemonSet on AWS Batch managed nodes ... 113
Customize Amazon EKS launch templates .. 113

Job queues ... 118
Create a job queue .. 118

Tutorial: Create an Amazon EC2 job queue .. 118
Tutorial: Create a Fargate job queue .. 120
Tutorial: Create an Amazon EKS job queue .. 121
Reference: Job queue template ... 122

View job queue status .. 123
View job queue information .. 123

Fair share scheduling policies ... 124
Use share identifiers .. 125
Use scheduling policies ... 126
Use fair share scheduling ... 126
Tutorial: Create a scheduling policy ... 127
Reference: Scheduling policy template .. 129

Job definitions ... 130
Create a single-node job definition ... 130

Tutorial: Create a single-node job definition on Amazon EC2 resources 131
Tutorial: Create a single-node job definition on Fargate resources .. 136
Tutorial: Create a single-node job definition on Amazon EKS resources 142

v

AWS Batch User Guide

Create a multi-node parallel job definition .. 146
Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 147

Reference: Job definition template using ContainerProperties .. 154
Reference: Job definition parameters for ContainerProperties ... 161

Create job definitions using EcsProperties ... 205
ContainerProperties versus EcsProperties job definitions .. 205
General changes to the AWS Batch APIs ... 206
Multi-container job definitions for Amazon ECS ... 207
Multi-container job definitions for Amazon EKS ... 208
Reference: AWS Batch job scenarios using EcsProperties .. 209

Use the awslogs log driver .. 215
awslogs log driver options in the AWS Batch JobDefiniton data type 215
Specify a log configuration in your job definition ... 218

Specify sensitive data ... 219
Use Secrets Manager ... 220
Use Systems Manager Parameter Store .. 227

Private registry authentication for jobs .. 231
Required IAM permissions for private registry authentication .. 233
Tutorial: Create a secret for private registry authentication ... 233

Amazon EFS volumes .. 234
Amazon EFS volume considerations ... 235
Use Amazon EFS access points .. 236
Specify an Amazon EFS file system in your job definition .. 236

Reference: Job definition examples ... 239
Reference: Environment variables ... 240
Reference: Parameter substitution .. 241
Reference: Test GPU functionality .. 242
Reference: Multi-node parallel job ... 243

Jobs ... 244
Tutorial: submit a job ... 244
Job states .. 247
Job environment variables ... 250
Automated job retries ... 251
Job dependencies .. 253
Job timeouts ... 253
Amazon EKS jobs ... 254

vi

AWS Batch User Guide

Tutorial: Map a running job to a pod and a node ... 255
Tutorial: Map a running pod back to its job ... 256

Multi-node parallel jobs ... 258
Environment variables ... 259
Node groups .. 259
Job lifecycle ... 260
Compute environment considerations ... 261

Multi-node parallel jobs on Amazon EKS ... 262
Running MNP jobs .. 262
Create an Amazon EKS MNP job definition .. 264
Submit an Amazon EKS MNP job ... 266
Override an Amazon EKS MNP job definition .. 267

Array jobs ... 267
Reference: Example of an array job workflow ... 270
Tutorial: Using array job index .. 274

Run GPU jobs .. 279
Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS .. 282
Tutorial: Create an Amazon EKS GPU job definition ... 284
Tutorial: Run a GPU job in your Amazon EKS cluster ... 284

Search AWS Batch jobs in a job queue ... 285
Tutorial: Search and filter AWS Batch jobs ... 285
Tutorial: (Beta) Search and filter AWS Batch jobs ... 287

Tutorial: Send AWS Batch job logs to CloudWatch Logs ... 288
Tutorial: Review AWS Batch job information ... 289

Security in AWS Batch .. 290
Identity and Access Management .. 291

Audience ... 291
Authenticating with identities ... 292
Managing access using policies ... 295
How AWS Batch works with IAM .. 297

IAM policies, roles, and permissions .. 320
IAM policy structure ... 321
Resource: Example policies ... 324
Resource: AWS Batch managed policy ... 331

AWS Batch IAM execution role ... 333
Supported resource-level permissions ... 334

vii

AWS Batch User Guide

Tutorial: Create the IAM execution role ... 347
Tutorial: Check the IAM execution role .. 347
Use service-linked roles ... 348
Amazon ECS instance role .. 356
Amazon EC2 spot fleet role ... 359
EventBridge IAM role ... 362

Create a virtual private cloud ... 363
Create a VPC .. 364
Next steps .. 364

VPC endpoints .. 365
Considerations ... 365
Create an interface endpoint ... 366
Create an endpoint policy .. 367

Compliance validation .. 368
Infrastructure security ... 369
Cross-service confused deputy prevention ... 370

Example: Role for accessing only one compute environment ... 371
Example: Role for accessing multiple compute environments .. 371

CloudTrail ... 372
AWS Batch information in CloudTrail .. 373
Reference: Understanding AWS Batch log file entries .. 373

Troubleshoot AWS Batch IAM ... 375
I am not authorized to perform an action in AWS Batch .. 376
I am not authorized to perform iam:PassRole ... 376
I want to allow people outside of my AWS account to access my AWS Batch resources 377

AWS Step Functions .. 378
Tutorial: View state machine details .. 378
Tutorial: Edit a state machine ... 379
Tutorial: Run a state machine ... 379

Amazon EventBridge ... 380
AWS Batch events .. 381

Resource: Job state change events ... 381
Resource: Job queue blocked events .. 383

Tutorial: Use AWS user notifications with AWS Batch ... 385
AWS Batch jobs as EventBridge targets .. 385

Tutorial: Create a scheduled job ... 386

viii

AWS Batch User Guide

Tutorial: Create a rule with an event pattern ... 389
Tutorial: Pass input transformer .. 391

Tutorial: Listen for AWS Batch job events .. 394
Prerequisites .. 394
Tutorial: Create the Lambda function .. 394
Tutorial: Register the event rule ... 395
Tutorial: Test your configuration ... 397

Tutorial: Sending Amazon Simple Notification Service alerts for failed job events 398
Prerequisites .. 398
Tutorial: Create and subscribe to an Amazon SNS topic .. 398
Tutorial: Register an event rule ... 399
Tutorial: Test your rule .. 401
Alternate rule: Batch job queue blocked ... 401

Elastic Fabric Adapter ... 402
Monitor AWS Batch ... 405

CloudWatch Logs ... 405
Tutorial: Add a CloudWatch Logs IAM policy ... 406
Install and configure the CloudWatch agent .. 408
Tutorial: View CloudWatch Logs ... 408

CloudWatch Container Insights .. 410
Tutorial: Turn on Container Insights ... 411

Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs ... 412
Prerequisites .. 412
Install AWS for Fluent Bit ... 412
Turn on Fluent Bit for AWS Batch nodes .. 412

Tag your resources .. 413
Tag basics .. 413
Tag your resources ... 414
Tag restrictions ... 415
Tutorial: Manage tags using the console .. 416

Add tags on an individual resource on creation .. 416
Add and delete tags on an individual resource .. 416

Manage tags using the CLI or API .. 416
Best practices ... 419

When to use AWS Batch .. 419
Checklist to run at scale ... 420

ix

AWS Batch User Guide

Optimize containers and AMIs .. 421
Choose the right compute environment resource .. 422
Amazon EC2 On-Demand or Amazon EC2 Spot ... 422
Use Amazon EC2 Spot best practices for AWS Batch .. 423
Common errors and troubleshooting .. 425

Troubleshooting ... 428
AWS Batch ... 429

INVALID compute environment ... 429
Jobs stuck in a RUNNABLE status .. 432
Spot Instances not tagged on creation ... 436
Spot Instances not scaling down .. 437
Can't retrieve Secrets Manager secrets .. 438
Can't override job definition resource requirements ... 439
Error message when you update the desiredvCpus setting .. 440

AWS Batch on Amazon EKS .. 440
INVALID compute environment ... 441
AWS Batch on Amazon EKS job is stuck in RUNNABLE status ... 444
Verify that the aws-auth ConfigMap is configured correctly ... 445
RBAC permissions or bindings aren't configured properly ... 446

Resource: Service quotas .. 448
Document history .. 449

x

AWS Batch User Guide

What is AWS Batch?

AWS Batch helps you to run batch computing workloads on the AWS Cloud. Batch computing
is a common way for developers, scientists, and engineers to access large amounts of compute
resources. AWS Batch removes the undifferentiated heavy lifting of configuring and managing the
required infrastructure, similar to traditional batch computing software. This service can efficiently
provision resources in response to jobs submitted in order to eliminate capacity constraints, reduce
compute costs, and deliver results quickly.

As a fully managed service, AWS Batch helps you to run batch computing workloads of any scale.
AWS Batch automatically provisions compute resources and optimizes the workload distribution
based on the quantity and scale of the workloads. With AWS Batch, there's no need to install or
manage batch computing software, so you can focus your time on analyzing results and solving
problems.

Topics

• Components of AWS Batch

• The AWS Batch dashboard

Components of AWS Batch

AWS Batch simplifies running batch jobs across multiple Availability Zones within a Region. You
can create AWS Batch compute environments within a new or existing VPC. After a compute
environment is up and associated with a job queue, you can define job definitions that specify
which Docker container images to run your jobs. Container images are stored in and pulled from
container registries, which may exist within or outside of your AWS infrastructure.

Jobs

A unit of work (such as a shell script, a Linux executable, or a Docker container image) that you
submit to AWS Batch. It has a name, and runs as a containerized application on AWS Fargate or
Amazon EC2 resources in your compute environment, using parameters that you specify in a job
definition. Jobs can reference other jobs by name or by ID, and can be dependent on the successful
completion of other jobs. For more information, see Jobs.

Components of AWS Batch 1

AWS Batch User Guide

Job definitions

A job definition specifies how jobs are to be run. You can think of a job definition as a blueprint for
the resources in your job. You can supply your job with an IAM role to provide access to other AWS
resources. You also specify both memory and CPU requirements. The job definition can also control
container properties, environment variables, and mount points for persistent storage. Many of
the specifications in a job definition can be overridden by specifying new values when submitting
individual Jobs. For more information, see Job definitions

Job queues

When you submit an AWS Batch job, you submit it to a particular job queue, where the
job resides until it's scheduled onto a compute environment. You associate one or more
compute environments with a job queue. You can also assign priority values for these compute
environments and even across job queues themselves. For example, you can have a high priority
queue that you submit time-sensitive jobs to, and a low priority queue for jobs that can run
anytime when compute resources are cheaper.

Compute environment

A compute environment is a set of managed or unmanaged compute resources that are used to
run jobs. With managed compute environments, you can specify desired compute type (Fargate
or EC2) at several levels of detail. You can set up compute environments that use a particular type
of EC2 instance, a particular model such as c5.2xlarge or m5.10xlarge. Or, you can choose
only to specify that you want to use the newest instance types. You can also specify the minimum,
desired, and maximum number of vCPUs for the environment, along with the amount that you're
willing to pay for a Spot Instance as a percentage of the On-Demand Instance price and a target
set of VPC subnets. AWS Batch efficiently launches, manages, and terminates compute types as
needed. You can also manage your own compute environments. As such, you're responsible for
setting up and scaling the instances in an Amazon ECS cluster that AWS Batch creates for you. For
more information, see Compute environments for AWS Batch.

The AWS Batch dashboard

Through the AWS Batch dashboard, you can monitor recent jobs, job queues, and compute
environments. By default, the following dashboard widgets are displayed:

• Job overview – For more information about AWS Batch jobs, see Jobs.

Job definitions 2

AWS Batch User Guide

• Job queue overview – For more information about AWS Batch job queues, see Job queues.

• Compute environment overview – For more information about AWS Batch compute
environments, see Compute environments for AWS Batch.

You can customize the widgets that are displayed on the Dashboard page. The following sections
describe additional widgets that you can install.

Topics

• Tutorial: Add the Single job queue widget to the AWS Batch dashboard

• Tutorial: Add the CloudWatch Container Insights widget to the AWS Batch dashboard

• Tutorial: Add the Job logs widget to the AWS Batch dashboard

Tutorial: Add the Single job queue widget to the AWS Batch dashboard

The Single job queue widget displays detailed information about a single job queue.

To add this widget, follow these steps.

1. Open the AWS Batch console.

2. From the navigation bar, select the AWS Region that you want.

3. In the navigation pane, choose Dashboard.

4. Choose Add widgets.

5. For Single job queue, choose Add widget.

6. For Job queue, select the job queue that you want.

7. For Job status, choose the job statuses that you want to display.

8. (Optional) Turn off Show connected compute environments if you don't want to display the
properties for compute environments.

9. For Compute environment properties, select the properties that you want.

10.Choose Add.

Tutorial: Add the Single job queue widget 3

https://console.aws.amazon.com/batch

AWS Batch User Guide

Tutorial: Add the CloudWatch Container Insights widget to the AWS
Batch dashboard

This widget displays aggregated metrics for AWS Batch compute environments and jobs. For more
information about Container Insights, see the section called “CloudWatch Container Insights”.

To add this widget, follow these steps.

1. Open the AWS Batch console.

2. From the navigation bar, select the AWS Region that you want.

3. In the navigation pane, choose Dashboard.

4. Choose Add widgets.

5. For Container insights, choose Add widget.

6. For Compute environment, choose the compute environment that you want.

7. Choose Add.

Tutorial: Add the Job logs widget to the AWS Batch dashboard

This widget displays different logs from your jobs in one convenient location. For more information
about job logs, see the section called “Tutorial: Send AWS Batch job logs to CloudWatch Logs”.

To add this widget, follow these steps.

1. Open the AWS Batch console.

2. From the navigation bar, select the AWS Region that you want.

3. In the navigation pane, choose Dashboard.

4. Choose Add widgets.

5. For Job logs, choose Add widget.

6. For Job id, enter the job ID for the job that you want.

7. Choose Add.

Tutorial: Add the CloudWatch Container Insights widget 4

https://console.aws.amazon.com/batch
https://console.aws.amazon.com/batch

AWS Batch User Guide

Getting started with AWS Batch tutorials

You can use the AWS Batch first-run wizard to get started quickly with AWS Batch. After you
complete the Prerequisites, you can use the first-run wizard to create a compute environment, a job
definition, and a job queue.

You can also submit a sample "Hello World" job using the AWS Batch first-run wizard to test your
configuration. If you already have a Docker image that you want to launch in AWS Batch, you can
use that image to create a job definition.

Be sure to complete the AWS Batch prerequisites before you start the AWS Batch getting started
tutorials.

Afterward, you can use the AWS Batch first-run wizard to create a compute environment, job
queue, and submit a sample Hello World job. If you already have a Docker image you want to
launch in AWS Batch, you can create a job definition with that image and submit that to your
queue instead.

Complete the AWS Batch prerequisites

If you've already signed up for Amazon Web Services (AWS) and are using Amazon Elastic Compute
Cloud (Amazon EC2) or Amazon Elastic Container Service (Amazon ECS), you can soon use AWS
Batch. The setup process for these services is similar. This is because AWS Batch uses Amazon ECS
container instances in its compute environments. To use the AWS CLI with AWS Batch , you must
use a version of the AWS CLI that supports the latest AWS Batch features. If you don't see support
for an AWS Batch feature in the AWS CLI, upgrade to the latest version. For more information, see
http://aws.amazon.com/cli/.

Note

Because AWS Batch uses components of Amazon EC2, you use the Amazon EC2 console for
many of these steps.

Complete the following tasks to get set up for AWS Batch. If you already completed any of these
steps, you can skip directly to installing the AWS CLI.

Topics

Complete the prerequisites 5

https://docs.aws.amazon.com/get-set-up-for-aws-batch
http://aws.amazon.com/cli/

AWS Batch User Guide

• Create IAM account and administrative user

• Tutorial: Create IAM roles for your compute environments and container instances

• Tutorial: Create a key pair for your instances

• Tutorial: Create a VPC

• Tutorial: Create a security group

• Tutorial: Install the AWS CLI

Create IAM account and administrative user

To get started, you need to create an AWS account and a single user that is typically granted
administrative rights. To accomplish this, complete the following tutorials:

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Create IAM account and administrative user 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/

AWS Batch User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create IAM account and administrative user 7

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS Batch User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Tutorial: Create IAM roles for your compute environments and
container instances

Your AWS Batch compute environments and container instances require AWS account credentials
to make calls to other AWS APIs on your behalf. Create an AWS Identity and Access Management
role that provides these credentials to your compute environments and container instances, then
associate that role with your compute environments.

Note

To verify that your AWS account has the required permissions, see Initial IAM service set up
for your account.
The AWS Batch compute environment and container instance roles are automatically
created for you in the console first-run experience. So, if you intend to use the AWS Batch
console, you can move ahead to the next section. If you plan to use the AWS CLI instead,
complete the procedures in Use service-linked roles for AWS Batch and Amazon ECS
instance role before creating your first compute environment.

Tutorial: Create a key pair for your instances

AWS uses public-key cryptography to secure the login information for your instance. A Linux
instance, such as an AWS Batch compute environment container instance, has no password to use
for SSH access. You use a key pair to log in to your instance securely. You specify the name of the
key pair when you create your compute environment, then provide the private key when you log in
using SSH.

If you didn't create a key pair already, you can create one using the Amazon EC2 console. Note that,
if you plan to launch instances in multiple AWS Regions, create a key pair in each Region. For more
information about Regions, see Regions and Availability Zones in the Amazon EC2 User Guide.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Tutorial: Create IAM roles 8

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://console.aws.amazon.com/ec2/

AWS Batch User Guide

2. From the navigation bar, select an AWS Region for the key pair. You can select any Region
that's available to you, regardless of your location: however, key pairs are specific to a Region.
For example, if you plan to launch an instance in the US West (Oregon) Region, create a key
pair for the instance in the same Region.

3. In the navigation pane, choose Key Pairs, Create Key Pair.

4. In the Create Key Pair dialog box, for Key pair name, enter a name for the new key pair , and
choose Create. Choose a name that you can remember, such as your user name, followed by -
key-pair, plus the Region name. For example, me-key-pair-uswest2.

5. The private key file is automatically downloaded by your browser. The base file name is the
name that you specified as the name of your key pair, and the file name extension is .pem.
Save the private key file in a safe place.

Important

This is the only chance for you to save the private key file. You need to provide the
name of your key pair when you launch an instance and the corresponding private key
each time that you connect to the instance.

6. If you use an SSH client on a Mac or Linux computer to connect to your Linux instance, use the
following command to set the permissions of your private key file. That way, only you can read
it.

$ chmod 400 your_user_name-key-pair-region_name.pem

For more information, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide.

To connect to your instance using your key pair

To connect to your Linux instance from a computer running Mac or Linux, specify the .pem file
to your SSH client with the -i option and the path to your private key. To connect to your Linux
instance from a computer running Windows, use either MindTerm or PuTTY. If you plan to use
PuTTY, install it and use the following procedure to convert the .pem file to a .ppk file.

(Optional) To prepare to connect to a Linux instance from Windows using PuTTY

1. Download and install PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/. Be
sure to install the entire suite.

Tutorial: Create a key pair 9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

AWS Batch User Guide

2. Start PuTTYgen (for example, from the Start menu, choose All Programs, PuTTY, and
PuTTYgen).

3. Under Type of key to generate, choose RSA. If you're using an earlier version of PuTTYgen,
choose SSH-2 RSA.

4. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To locate your
.pem file, choose the option to display files of all types.

5. Select the private key file that you created in the previous procedure and choose Open.
Choose OK to dismiss the confirmation dialog box.

6. Choose Save private key. PuTTYgen displays a warning about saving the key without a
passphrase. Choose Yes.

7. Specify the same name for the key that you used for the key pair. PuTTY automatically adds
the .ppk file extension.

Tutorial: Create a VPC

With Amazon Virtual Private Cloud (Amazon VPC), you can launch AWS resources into a virtual
network that you've defined. We strongly recommend that you launch your container instances in a
VPC.

If you have a default VPC, you also can skip this section and move to the next task Tutorial: Create
a security group. To determine whether you have a default VPC, see Supported Platforms in the
Amazon EC2 Console in the Amazon EC2 User Guide

For information about how to create an Amazon VPC, see Create a VPC only in the Amazon VPC
User Guide. Refer to the following table to determine what options to select.

Tutorial: Create a VPC 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html#console-updates
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#create-vpc-vpc-only

AWS Batch User Guide

Option Value

Resources to create VPC only

Name Optionally provide a name for
your VPC.

IPv4 CIDR block IPv4 CIDR manual input

The CIDR block size must
have a size between /16
and /28.

IPv6 CIDR block No IPv6 CIDR block

Tenancy Default

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Tutorial: Create a security group

Security groups act as a firewall for associated compute environment container instances,
controlling both inbound and outbound traffic at the container instance level. A security group can
be used only in the VPC for which it is created.

You can add rules to a security group that enable you to connect to your container instance from
your IP address using SSH. You can also add rules that allow inbound and outbound HTTP and
HTTPS access from anywhere. Add any rules to open ports that are required by your tasks.

Note that if you plan to launch container instances in multiple Regions, you need to create a
security group in each Region. For more information, see Regions and Availability Zones in the
Amazon EC2 User Guide.

Note

You need the public IP address of your local computer, which you can get using a service.
For example, we provide the following service: http://checkip.amazonaws.com/ or https://
checkip.amazonaws.com/. To locate another service that provides your IP address, use the
search phrase "what is my IP address." If you're connecting through an Internet service

Tutorial: Create a security group 11

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://checkip.amazonaws.com/
https://checkip.amazonaws.com/
https://checkip.amazonaws.com/

AWS Batch User Guide

provider (ISP) or from behind a firewall without a static IP address, find out the range of IP
addresses that are used by client computers.

To create a security group using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Security Groups.

3. Choose Create security group.

4. Enter a name and description for the security group. You cannot change the name and
description of a security group after it is created.

5. From VPC, choose the VPC.

6. (Optional) By default, new security groups start with only an outbound rule that allows all
traffic to leave the resource. You must add rules to enable any inbound traffic or to restrict the
outbound traffic.

AWS Batch container instances don't require any inbound ports to be open. However, you
might want to add an SSH rule. That way, you can log into the container instance and examine
the containers in jobs with Docker commands. If you want your container instance to host a job
that runs a web server, you can also add rules for HTTP. Complete the following steps to add
these optional security group rules.

On the Inbound tab, create the following rules and choose Create:

• Choose Add Rule. For Type, choose HTTP. For Source, choose Anywhere (0.0.0.0/0).

• Choose Add Rule. For Type, choose SSH. For Source, choose Custom IP, and specify the
public IP address of your computer or network in Classless Inter-Domain Routing (CIDR)
notation. If your company allocates addresses from a range, specify the entire range, such as
203.0.113.0/24. To specify an individual IP address in CIDR notation, choose My IP. This
adds the routing prefix /32 to the public IP address.

Note

For security reasons, we don't recommend that you allow SSH access from all IP
addresses (0.0.0.0/0) to your instance but only for testing purposes and only for a
short time.

Tutorial: Create a security group 12

https://console.aws.amazon.com/vpc/

AWS Batch User Guide

7. You can add tags now, or you can add them later. To add a tag, choose Add new tag and enter
the tag key and value.

8. Choose Create security group.

To create a security group using the command line, see create-security-group (AWS CLI)

For more information about security groups, see Work with security groups.

Tutorial: Install the AWS CLI

To use the AWS CLI with AWS Batch, install the latest AWS CLI version. For information about
installing the AWS CLI or upgrading it to the latest version, see Installing the AWS Command Line
Interface in the AWS Command Line Interface User Guide.

Tutorial: Getting started with Amazon EC2 orchestration

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the AWS
Cloud. Using Amazon EC2 eliminates your need to invest in hardware up front, so you can develop
and deploy applications faster.

You can use Amazon EC2 to launch as many or as few virtual servers as you need, configure
security and networking, and manage storage. Amazon EC2 enables you to scale up or down to
handle changes in requirements or spikes in popularity, reducing your need to forecast traffic.

Create a compute environment

To create a compute environment for an Amazon EC2 orchestration, do the following:

1. Open the AWS Batch console first-run wizard.

2. For Select orchestration type, choose Amazon Elastic Compute Cloud(Amazon EC2).

3. Choose Next.

4. In the Compute environment configuration section for Name, specify a unique name for
your compute environment. The name can be up to 128 characters in length. It can contain
uppercase and lowercase letters, numbers, hyphens (-), and underscores (_).

5. For Instance role, choose an existing instance profile that has the required IAM permissions
attached. This instance profile allows the Amazon ECS container instances in your compute
environment to make calls to the required AWS API operations. For more information, see
Amazon ECS instance role.

Tutorial: Install the AWS CLI 13

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-security-group.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#working-with-security-groups
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://console.aws.amazon.com/batch/home#wizard

AWS Batch User Guide

6. (Optional) A tag is a label that's assigned to a resource. To add a tag or an Amazon EC2 tag,
expand Tags, then choose Add tag. Enter a key-value pair, and then choose Add tag again.

Important

If you choose Add tag, you must enter a key-value pair and choose Add tag again or
choose Remove tag.

7. (Optional) In the Instance configuration section for Use Amazon EC2 Spot instances, turn on
Enable using Spot instances.

8. (Spot only) For Maximum % on-demand price, enter the maximum percentage of On-demand
pricing that you want to pay for Spot resources.

9. (Optional) (Spot only) For Spot fleet role, choose an existing Amazon EC2 Spot Fleet IAM role
to apply to your Spot compute environment. If you don't already have an existing Amazon EC2
Spot Fleet IAM role, you must create one first. For more information, see Amazon EC2 spot
fleet role.

Important

To tag your Spot Instances on creation, your Amazon EC2 Spot Fleet IAM role
must use the newer AmazonEC2SpotFleetTaggingRole managed policy. The
AmazonEC2SpotFleetRole managed policy doesn't have the required permissions to
tag Spot Instances. For more information, see Spot Instances not tagged on creation
and Tag your resources.

10. For Minimum vCPUs, choose the minimum number of EC2 vCPUs that your compute
environment maintains, regardless of job queue demand.

11. For Desired vCPUs, choose the number of EC2 vCPUs that your compute environment
launches with. As job queue demand increases, AWS Batch increases the desired number of
vCPUs and add EC2 instances. The number of vCPUs can increase up to the maximum number
of vCPUs. As demand decreases, AWS Batch decreases the desired number of vCPUs and
remove instances. The number of decrease all the way to the minimum number of vCPUs.

12. For Maximum vCPUs, choose the maximum number of EC2 vCPUs that your compute
environment can scale out to, regardless of job queue demand.

13. For Allowed instance types, choose the Amazon EC2 instance types that can be launched. You
can specify instance families to launch any instance type within those families (for example,

Create a compute environment 14

AWS Batch User Guide

c5, c5n, or p3). Or, you can specify specific sizes within a family (such as c5.8xlarge). Metal
instance types aren't in the instance families. For example, c5 doesn't include c5.metal. You
can also choose optimal to select instance types (from the C4, M4, and R4 instance families)
that match the demand of your job queues.

Note

When you create a compute environment, the instance types that you select for the
compute environment must share the same architecture. For example, you can't mix
x86 and ARM instances in the same compute environment.

Note

AWS Batch scales GPUs based on the required amount in your job queues. To use GPU
scheduling, the compute environment must include instance types from the p2, p3, p4,
p5, g3, g3s, g4, or g5 family.

Note

Currently, optimal uses instance types from the C4, M4, and R4 instance families.
In AWS Regions that don't have instance types from those instance families, instance
types from the C5, M5, and R5 instance families are used.

14. Expand Additional configuration.

15. (Optional) For Placement group, enter a placement group name to group resources in the
compute environment.

16. (Optional) For EC2 key pair, choose a public and private key pair as security credentials when
you connect to the instance. For more information about Amazon EC2 key pairs, see Amazon
EC2 key pairs and Linux instances.

17. For Allocation strategy, choose the allocation strategy to use when selecting instance types
from the list of allowed instance types. BEST_FIT_PROGRESSIVE is usually the better choice
for EC2 On-Demand compute environments, and SPOT_CAPACITY_OPTIMIZED for EC2 Spot
compute environments. For more information, see Instance type allocation strategies for AWS
Batch.

Create a compute environment 15

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS Batch User Guide

18. (Optional) For EC2 configuration, choose Add EC2 configuration. Choose Image type and
Image ID override values to provide information for AWS Batch to select Amazon Machine
Images (AMIs) for instances in the compute environment. If the Image ID override isn't
specified for each Image type, AWS Batch selects a recent Amazon ECS optimized AMI. If no
Image type is specified, the default is a Amazon Linux 2 for non-GPU, non AWS Graviton
instance.

Important

To use a custom AMI, choose the image type and then enter the custom AMI ID in the
Image ID override box.

Amazon Linux 2

Default for all AWS Graviton-based instance families (for example, C6g, M6g, R6g, and T4g)
and can be used for all non-GPU instance types.

Amazon Linux 2 (GPU)

Default for all GPU instance families (for example P4 and G4) and can be used for all non
AWS Graviton-based instance types.

Amazon Linux

Can be used for non-GPU, non AWS Graviton instance families. The standard support for
Amazon Linux AMI has ended. For more information, see Amazon Linux AMI.

Note

The AMI that you choose for a compute environment must match the architecture of
the instance types that you want to use for that compute environment. For example, if
your compute environment uses A1 instance types, the compute resource AMI that you
choose must support Arm instances. Amazon ECS vends both x86 and Arm versions of
the Amazon ECS optimized Amazon Linux 2 AMI. For more information, see Amazon
ECS optimized Amazon Linux 2 AMI in the Amazon Elastic Container Service Developer
Guide.

Create a compute environment 16

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#al2ami
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#gpuami
https://aws.amazon.com/amazon-linux-ami/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html

AWS Batch User Guide

19. (Optional) For Launch template, select an existing Amazon EC2 launch template to configure
your compute resources. The default version of the template is automatically populated. For
more information, see Use Amazon EC2 launch template with AWS Batch.

Note

In a launch template, you can specify a custom AMI that you created.

20. (Optional) For Launch template version, enter $Default, $Latest, or a specific version
number to use.

Important

After the compute environment is created, the launch template version used isn't
changed even if the $Default or $Latest version for the launch template is updated.
To use a new launch template version, first create a new compute environment,
add the new compute environment to the existing job queue. Then, remove the old
compute environment from the job queue, and delete the old compute environment.

21. In the Network configuration section:

a. For Virtual Private Cloud (VPC) ID, choose an Amazon VPC.

b. For Subnets, the subnets for your AWS account are listed. If you want to create a custom
set of subnets, choose Clear subnets, and then choose the subnets that you want.

Important

Compute resources must communicate with the Amazon ECS VPC endpoint
through a VPC endpoint or multiple public IP address. For more information, see
Amazon ECS interface VPC endpoints (AWS PrivateLink). If your instance doesn't
have a VPC endpoint configured or a public IP address, you can use network
address translation (NAT). For more information about NAT, see NAT gateways and
Create a virtual private cloud .

c. For Security groups, choose the Amazon EC2 security groups that you want to associate
with the instance. If you want to create a custom set of security groups, choose Clear
security groups. Then, choose the security groups that you want.

22. Choose Next.

Create a compute environment 17

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Batch User Guide

Create a job queue

A job queue stores your submitted jobs until the AWS Batch Scheduler runs the job on a resource in
your compute environment. For more information, see Job queues

To create a job queue for an Amazon EC2 orchestration, do the following:

1. In the Job queue configuration section for Name, specify a unique name for your compute
environment. The name can be up to 128 characters in length. It can contain uppercase and
lowercase letters, numbers, hyphens (-), and underscores (_).

2. For Priority, enter an integer between 0 and 100 for the job queue.

Important

Higher integer values are assigned a higher priority by the AWS Batch Scheduler.

3. Choose Next.

Create a job definition

AWS Batch job definitions specify how jobs are to be run. Even though each job must reference a
job definition, many of the parameters that are specified in the job definition can be overridden at
runtime.

To create the job definition:

1. In the General configuration section:

a. In the General configuration section for Name, specify a unique name for your compute
environment. The name can be up to 128 characters in length. The name can contain
uppercase and lowercase letters, numbers, hyphens (-), and underscores (_).

b. (Optional) For Execution timeout, enter the amount of time (in seconds) that an
unfinished job terminates after.

Important

The minimum timeout is 60 seconds.

Create a job queue 18

AWS Batch User Guide

c. (Optional) A tag is a label that's assigned to a resource. To add a tag, expand Tags, then
choose Add tag. Enter a key-value pair, and then choose Add tag again.

Important

If you choose Add tag, you must enter a key-value pair and choose Add tag again
or choose Remove tag.

d. (Optional) Turn on Propagate tags to propagate tags to the Amazon Elastic Container
Service task.

2. In the Container configuration section:

a. For Image, enter the name of the image that's used to launch the container. By default, all
the images in the Docker Hub registry are available. You can also specify other repositories
in repository-url/image:tag format. The parameter can be up to 255 characters in length.
The parameter can contain uppercase and lowercase letters, numbers, hyphens (-),
underscores (_), colons (:), periods (.), forward slashes (/), and number signs (#). The
parameter maps to Image in the Create a container section of the Docker Remote API and
the IMAGE parameter of docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can
only run on Arm based compute resources.

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/repository:tag naming
convention (for example, aws_account_id.dkr.ecr.region.amazonaws.com/my-
web-app:latest).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

Create a job definition 19

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

b. For Command, specify the command to pass to the container. This parameter maps
to Cmd in the Create a container section of the Docker Remote API and the COMMAND
parameter to docker run. For more information about the Docker CMD parameter, see
https://docs.docker.com/engine/reference/builder/#cmd.

Note

You can use parameter substitution default values and placeholders in your
command. For more information, see Parameters.

c. (Optional) For Execution role, specify an IAM role that grants the Amazon ECS container
agents permission to make AWS API calls on your behalf. This feature uses Amazon ECS
IAM roles for tasks. For more information, see Amazon ECS task execution IAM roles in the
Amazon Elastic Container Service Developer Guide.

d. (Optional) For Job Role configuration, choose an IAM role that has permissions to the
AWS APIs. This feature uses Amazon ECS IAM roles for tasks. For more information, see
IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

Note

Only roles that have the Amazon Elastic Container Service Task Role trust
relationship are shown here. For more information about creating an IAM role for
your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in the
Amazon Elastic Container Service Developer Guide.

e. (Optional) You can add parameters to the job definition as key-value mappings to override
the job definition defaults. To add a parameter:

• For Parameters, choose Add parameter. Enter a key-value pair and then choose Add
parameter again.

Create a job definition 20

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role

AWS Batch User Guide

Important

If you choose Add parameter, you must configure at least one parameter or
choose Remove parameter.

f. In the Environment configuration section for vCPUs, specify the number of vCPUs to
reserve for the container. This parameter maps to CpuShares in the Create a container
section of the Docker Remote API and the --cpu-shares option to docker run. Each
vCPU is equivalent to 1,024 CPU shares.

g. For Memory, specify the hard limit (in MiB) of memory to present to the job container. If
your container attempts to exceed the memory specified here, the container is stopped.
This parameter maps to Memory in the Create a container section of the Docker Remote
API and the --memory option to docker run.

h. For Number of GPUs, choose the number of GPUs to reserve for the container.

i. (Optional) For Environment variables configuration, choose Add environment variables
to add environment variables to pass to the container. This parameter maps to Env in the
Create a container section of the Docker Remote API and the --env option to docker run.

j. (Optional) For Secrets, choose Add secret to add secrets as a name-value
pairs. These secrets are exposed in the container. For more information, see
LogConfiguration:secretOptions.

k. (Optional) In the Linux configuration section:

i. For User, enter the user name to use inside the container. This parameter maps to
User in the Create a container section of the Docker Remote API and the --user
option to docker run.

ii. To give the job container elevated permissions on the host instance (similar to
the root user), drag the Privileged slider to the right. This parameter maps to
Privileged in the Create a container section of the Docker Remote API and the --
privileged option to docker run.

iii. Turn on Enable init process to run an init process inside the container. This process
forwards signals and reaps processes.

l. (Optional) In the Filesystem configuration section:

i. Turn on Enable read only filesystem to remove write access to the volume.

ii. For Shared memory size, enter the size (in MiB) of the /dev/shm volume.

Create a job definition 21

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

iii. For Max swap size, enter the total amount of swap memory (in MiB) that the
container can use.

iv. For Swappiness enter a value between 0 and 100 to indicate the swappiness behavior
of the container. If you don't specify a value and swapping is enabled, the value
defaults to 60. For more information, see LinuxParameters:swappiness.

v. (Optional) Expand Additional configuration.

vi. For Tmpfs, choose Add tmpfs to add a tmpfs mount.

vii. For Devices, choose Add device to add a device:

A. For Container path, specify the path of in the container instance to expose the
device mapped to the host instance. If you keep this blank, the host path is used
in the container.

B. For Host path, specify the path of a device in the host instance.

C. For Permissions, choose one or more permissions to apply to the device. The
available permissions are READ, WRITE, and MKNOD.

viii. (Optional) For Ulimits configuration, choose Add ulimit to add a ulimits value for
the container. Enter Name, Soft limit, and Hard limit values, and then choose Add
ulimit.

3. Choose Next.

Create a job

To create a job, do the following:

1. In the Job configuration section for Name, specify a unique name for the job. The name can
be up to 128 characters in length. It can contain uppercase and lowercase letters, numbers,
hyphens (-), and underscores (_).

2. Choose Next.

Review and create

On the Review and create page, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create resources.

Create a job 22

https://docs.aws.amazon.com/batch/latest/APIReference/API_LinuxParameters.html#Batch-Type-LinuxParameters-swappiness

AWS Batch User Guide

Tutorial: Getting started with AWS Batch and Fargate
orchestration

AWS Fargate launches and scales the compute to closely match the resource requirements that
you specify for the container. With Fargate, you don't need to over-provision or pay for additional
servers. For more information, see Fargate.

Create a compute environment

To create a compute environment for a Fargate orchestration, do the following:

1. Open the AWS Batch console first-run wizard.

2. For Select orchestration type, choose Fargate.

3. Choose Next.

4. In the Compute environment configuration section for Name, specify a unique name for
your compute environment. The name can be up to 128 characters in length. It can contain
uppercase and lowercase letters, numbers, hyphens (-), and underscores (_).

5. (Optional) A tag is a label that's assigned to a resource. To add a tag, expand Tags, then choose
Add tag. Enter a key-value pair, and then choose Add tag again.

Important

If you choose Add tag, you must enter a key-value pair and choose Add tag again or
choose Remove tag.

6. (Optional) In the Instance configuration section for Use Fargate Spot capacity, turn on
Enable using Spot instances.

7. For Maximum vCPUs, enter the maximum number of vCPUs that the instance can use.

8. In the Network configuration section:

a. For Virtual Private Cloud (VPC) ID, choose an Amazon VPC.

b. For Subnets, the subnets for your AWS account are listed. If you want to create a custom
set of subnets, choose Clear subnets, and then choose the subnets that you want.

Tutorial: Getting started with Fargate 23

https://docs.aws.amazon.com/batch/latest/userguide/fargate.html#when-to-use-fargate
https://console.aws.amazon.com/batch/home#wizard

AWS Batch User Guide

Important

Compute resources must communicate with the Amazon ECS VPC endpoint
through a VPC endpoint or multiple public IP address. For more information, see
Amazon ECS interface VPC endpoints (AWS PrivateLink). If your instance doesn't
have a VPC endpoint configured or a public IP address, you can use network
address translation (NAT). For more information about NAT, see NAT gateways and
Create a virtual private cloud .

c. For Security groups, choose the Amazon EC2 security groups that you want to associate
with the instance. If you want to create a custom set of security groups, choose Clear
security groups. Then, choose the security groups that you want.

9. Choose Next.

Create a job queue

A job queue stores your submitted jobs until the AWS Batch Scheduler runs the job on a resource in
your compute environment. To create a job queue:

To create a job queue for a Fargate orchestration, do the following:

1. In the Job queue configuration section for Name, specify a unique name for your compute
environment. The name can be up to 128 characters in length. It can contain uppercase and
lowercase letters, numbers, hyphens (-), and underscores (_).

2. For Priority, enter an integer between 0 and 100 for the job queue.

Important

Higher integer values are assigned a higher priority by the AWS Batch Scheduler.

3. Choose Next.

Create a job definition

To create the job definition:

1. In the General configuration section:

Create a job queue 24

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Batch User Guide

a. For Name, enter a custom job definition name.

In the General configuration section for Name, specify a unique name for your compute
environment. The name can be up to 128 characters in length. It can contain uppercase
and lowercase letters, numbers, hyphens (-), and underscores (_).

b. (Optional) For Execution timeout, enter the amount of time (in seconds) that an
unfinished job terminates after.

Important

The minimum timeout is 60 seconds.

c. (Optional) A tag is a label that's assigned to a resource. To add a tag, expand Tags, then
choose Add tag. Enter a key-value pair, and then choose Add tag again.

Important

If you choose Add tag, you must enter a key-value pair and choose Add tag again
or choose Remove tag.

d. (Optional) Turn on Propagate tags to propagate tags to the Amazon Elastic Container
Service task.

2. In the Fargate platform configuration section:

a. (Optional) For Fargate platform version, enter the specific runtime environment that you
want.

b. For Runtime platform, select a LINUX or Windows.

c. (Windows only) For Operating System Family, select an operating system.

d. For CPU architecture, select the CPU architecture that you want.

e. (Optional) Turn on Assign public IP to assign a public IP address.

f. For Ephemeral storage, enter the amount of ephemeral storage that you want.

Note

By default, 20 GiB of ephemeral storage is used. To use additional ephemeral
storage, enter a value between 21 GiB and 100 GiB.

Create a job definition 25

AWS Batch User Guide

g. For Execution role, choose a task execution role that lets Amazon Elastic Container
Service (Amazon ECS) agents make AWS calls on your behalf. For example, you can choose
ecsTaskExecutionRole.

3. In the Container configuration section:

a. For Image, enter the name of the image that's used to launch the container. By default, all
the images in the Docker Hub registry are available. You can also specify other repositories
in repository-url/image:tag format. The parameter can be up to 255 characters in length. It
can contain uppercase and lowercase letters, numbers, hyphens (-), underscores (_), colons
(:), periods (.), forward slashes (/), and number signs (#). The parameter maps to Image
in the Create a container section of the Docker Remote API and the IMAGE parameter of
docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can
only run on Arm based compute resources.

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/repository:tag naming
convention (for example, aws_account_id.dkr.ecr.region.amazonaws.com/my-
web-app:latest).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

b. For Command, specify the command to pass to the container. This parameter maps
to Cmd in the Create a container section of the Docker Remote API and the COMMAND
parameter to docker run. For more information about the Docker CMD parameter, see
https://docs.docker.com/engine/reference/builder/#cmd.

Create a job definition 26

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd

AWS Batch User Guide

Note

You can use parameter substitution default values and placeholders in your
command. For more information, see Parameters.

Tip

Choose Info to review Bash and JSON code examples.

c. (Optional) You can add parameters to the job definition as key-value mappings to override
the job definition defaults. To add a parameter:

• For Parameters, choose Add parameter. Enter a key-value pair and then choose Add
parameter again.

Important

If you choose Add parameter, you must configure at least one parameter or
choose Remove parameter.

d. (Optional) In the Environment configuration section for Job role configuration, choose
an IAM role that provides permission to use the AWS APIs.

e. In the Environment configuration section for vCPUs, specify the number of vCPUs to
reserve for the container. This parameter maps to CpuShares in the Create a container
section of the Docker Remote API and the --cpu-shares option to docker run. Each
vCPU is equivalent to 1,024 CPU shares.

f. For Memory, specify the hard limit (in MiB) of memory to present to the job container. If
your container attempts to exceed the memory specified here, the container is stopped.
This parameter maps to Memory in the Create a container section of the Docker Remote
API and the --memory option to docker run.

g. (Optional) For Environment variables, choose Add environment variables to add
environment variables to pass to the container. This parameter maps to Env in the Create
a container section of the Docker Remote API and the --env option to docker run.

4. Choose Next.

Create a job definition 27

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Create a job

To create a Fargate job, do the following:

1. In the Job configuration section for Name, specify a unique name for the job. The name can
be up to 128 characters in length. It can contain uppercase and lowercase letters, numbers,
hyphens (-), and underscores (_).

2. Choose Next.

Review and create

On the Review and create page, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create resources.

Tutorial: Getting started with AWS Batch on Amazon EKS

AWS Batch on Amazon EKS is a managed service for scheduling and scaling batch workloads
into existing Amazon EKS clusters. AWS Batch doesn't create, administer, or perform lifecycle
operations of your Amazon EKS clusters on your behalf. AWS Batch orchestration scales up and
down nodes managed by AWS Batch and run pods on those nodes.

AWS Batch doesn't touch nodes, auto scaling node groups or pods lifecycles that aren't associated
with AWS Batch compute environments within your Amazon EKS cluster. For AWS Batch to operate
effectively, its service-linked role needs Kubernetes role-based access control (RBAC) permissions
in your existing Amazon EKS cluster. For more information, see Using RBAC Authorization in the
Kubernetes documentation.

AWS Batch requires a Kubernetes namespace where it can scope pods as AWS Batch jobs into.
We recommend a dedicated namespace to isolate the AWS Batch pods from your other cluster
workloads.

After AWS Batch has been given RBAC access and a namespace has been established, you
can associate that Amazon EKS cluster to an AWS Batch compute environment using the
CreateComputeEnvironment API operation. A job queue can be associated with this new Amazon
EKS compute environment. AWS Batch jobs are submitted to the job queue based on an Amazon
EKS job definition using the SubmitJob API operation. AWS Batch then launches AWS Batch
managed nodes and place jobs from job queue as Kubernetes pods into the EKS cluster associated
with an AWS Batch compute environment.

Create a job 28

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

The following sections cover how to get set up for AWS Batch on Amazon EKS.

Contents

• Prerequisites

• Prepare your Amazon EKS cluster for AWS Batch

• Create an Amazon EKS compute environment

• Create a job queue and attach the compute environment

• Create a job definition

• Submit a job

• (Optional) Submit a job with overrides

Prerequisites

Before starting this tutorial, you must install and configure the following tools and resources that
you need to create and manage both AWS Batch and Amazon EKS resources.

• AWS CLI – A command line tool for working with AWS services, including Amazon EKS. This
guide requires that you use version 2.8.6 or later or 1.26.0 or later. For more information,
see Installing, updating, and uninstalling the AWS CLI in the AWS Command Line Interface
User Guide. After installing the AWS CLI, we recommend that you also configure it. For more
information, see Quick configuration with aws configure in the AWS Command Line Interface
User Guide.

• kubectl – A command line tool for working with Kubernetes clusters. This guide requires that
you use version 1.23 or later. For more information, see Installing or updating kubectl in the
Amazon EKS User Guide.

• eksctl – A command line tool for working with Amazon EKS clusters that automates many
individual tasks. This guide requires that you use version 0.115.0 or later. For more information,
see Installing or updating eksctl in the Amazon EKS User Guide.

• Required IAM permissions – The IAM security principal that you're using must have permissions
to work with Amazon EKS IAM roles and service linked roles, AWS CloudFormation, and a VPC
and related resources. For more information, see Actions, resources, and condition keys for
Amazon Elastic Kubernetes Service and Using service-linked roles in the IAM User Guide. You
must complete all steps in this guide as the same user.

• Creating an Amazon EKS cluster – For more information, see Getting started with Amazon EKS –
eksctl in the Amazon EKS User Guide.

Prerequisites 29

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

AWS Batch User Guide

Note

AWS Batch only supports Amazon EKS clusters with API server endpoints that have
public access, accessible to the public internet. By default, Amazon EKS clusters API
server endpoints have public access. For more information, see Amazon EKS cluster
endpoint access control in the Amazon EKS User Guide.

Note

AWS Batch doesn't provide managed-node orchestration for CoreDNS or other
deployment pods. If you need CoreDNS, see Adding the CoreDNS Amazon EKS add-on in
the Amazon EKS User Guide. Or, use eksctl create cluster create to create the
cluster, it includes CoreDNS by default.

• Permissions – Users calling the CreateComputeEnvironment API operation to create
a compute environment that uses Amazon EKS resources require permissions to the
eks:DescribeCluster API operation. Using the AWS Management Console to
create a compute resource using Amazon EKS resources requires permissions to both
eks:DescribeCluster and eks:ListClusters.

Prepare your Amazon EKS cluster for AWS Batch

All steps are required.

1. Create a dedicated namespace for AWS Batch jobs

Use kubectl to create a new namespace.

$ namespace=my-aws-batch-namespace
$ cat - <<EOF | kubectl create -f -
{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "name": "${namespace}",
 "labels": {
 "name": "${namespace}"

Prepare your Amazon EKS cluster for AWS Batch 30

https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html#adding-coredns-eks-add-on
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

 }
 }
}
EOF

Output:

namespace/my-aws-batch-namespace created

2. Enable access via role-based access control (RBAC)

Use kubectl to create a Kubernetes role for the cluster to allow AWS Batch to watch nodes
and pods, and to bind the role. You must do this once for each EKS cluster.

Note

For more information about using RBAC authorization, see Using RBAC Authorization
in the Kubernetes User Guide.

$ cat - <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: aws-batch-cluster-role
rules:
 - apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get"]
 - apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["apps"]
 resources: ["daemonsets", "deployments", "statefulsets", "replicasets"]
 verbs: ["get", "list", "watch"]

Prepare your Amazon EKS cluster for AWS Batch 31

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

AWS Batch User Guide

 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["clusterroles", "clusterrolebindings"]
 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: aws-batch-cluster-role-binding
subjects:
- kind: User
 name: aws-batch
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: aws-batch-cluster-role
 apiGroup: rbac.authorization.k8s.io
EOF

Output:

clusterrole.rbac.authorization.k8s.io/aws-batch-cluster-role created
clusterrolebinding.rbac.authorization.k8s.io/aws-batch-cluster-role-binding created

Create namespace-scoped Kubernetes role for AWS Batch to manage and lifecycle pods and
bind it. You must do this once for each unique namespace.

$ namespace=my-aws-batch-namespace
$ cat - <<EOF | kubectl apply -f - --namespace "${namespace}"
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: aws-batch-compute-environment-role
 namespace: ${namespace}
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["create", "get", "list", "watch", "delete", "patch"]
 - apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["get", "list"]
 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]

Prepare your Amazon EKS cluster for AWS Batch 32

AWS Batch User Guide

 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: aws-batch-compute-environment-role-binding
 namespace: ${namespace}
subjects:
- kind: User
 name: aws-batch
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: aws-batch-compute-environment-role
 apiGroup: rbac.authorization.k8s.io
EOF

Output:

role.rbac.authorization.k8s.io/aws-batch-compute-environment-role created
rolebinding.rbac.authorization.k8s.io/aws-batch-compute-environment-role-binding
 created

Update Kubernetes aws-auth configuration map to map the preceding RBAC permissions to
the AWS Batch service-linked role.

$ eksctl create iamidentitymapping \
 --cluster my-cluster-name \
 --arn "arn:aws:iam::<your-account>:role/AWSServiceRoleForBatch" \
 --username aws-batch

Output:

2022-10-25 20:19:57 [#] adding identity "arn:aws:iam::<your-account>:role/
AWSServiceRoleForBatch" to auth ConfigMap

Note

The path aws-service-role/batch.amazonaws.com/ has been removed from
the ARN of the service-linked role. This is because of an issue with the aws-auth

Prepare your Amazon EKS cluster for AWS Batch 33

AWS Batch User Guide

configuration map. For more information, see Roles with paths don't work when the
path is included in their ARN in the aws-authconfigmap.

Create an Amazon EKS compute environment

AWS Batch compute environments define compute resource parameters to meet your batch
workload needs. In a managed compute environment, AWS Batch helps you to manage the
capacity and instance types of the compute resources (Kubernetes nodes) within your Amazon EKS
cluster. This is based on the compute resource specification that you define when you create the
compute environment. You can use EC2 On-Demand Instances or EC2 Spot Instances.

Now that the AWSServiceRoleForBatch service-linked role has access to your Amazon EKS cluster,
you can create AWS Batch resources. First, create a compute environment that points to your
Amazon EKS cluster.

$ cat <<EOF > ./batch-eks-compute-environment.json
{
 "computeEnvironmentName": "My-Eks-CE1",
 "type": "MANAGED",
 "state": "ENABLED",
 "eksConfiguration": {
 "eksClusterArn": "arn:aws:eks:<region>:123456789012:cluster/<cluster-name>",
 "kubernetesNamespace": "my-aws-batch-namespace"
 },
 "computeResources": {
 "type": "EC2",
 "allocationStrategy": "BEST_FIT_PROGRESSIVE",
 "minvCpus": 0,
 "maxvCpus": 128,
 "instanceTypes": [
 "m5"
],
 "subnets": [
 "<eks-cluster-subnets-with-access-to-internet-for-image-pull>"
],
 "securityGroupIds": [
 "<eks-cluster-sg>"
],
 "instanceRole": "<eks-instance-profile>"
 }

Create an Amazon EKS compute environment 34

https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268
https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268

AWS Batch User Guide

}
EOF
$ aws batch create-compute-environment --cli-input-json file://./batch-eks-compute-
environment.json

Notes

• The serviceRole parameter should not be specified, then the AWS Batch service-linked role
will be used. AWS Batch on Amazon EKS only supports the AWS Batch service-linked role.

• Only BEST_FIT_PROGRESSIVE, SPOT_CAPACITY_OPTIMIZED, and
SPOT_PRICE_CAPACITY_OPTIMIZED allocation strategies are supported for Amazon EKS
compute environments.

Note

We recommend that you use SPOT_PRICE_CAPACITY_OPTIMIZED rather than
SPOT_CAPACITY_OPTIMIZED in most instances.

• For the instanceRole, see Creating the Amazon EKS node IAM role and Enabling IAM principal
access to your cluster in the Amazon EKS User Guide. If you're using pod networking, see
Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts in
the Amazon EKS User Guide.

• A way to get working subnets for the subnets parameter is to use the Amazon EKS managed
node groups public subnets that were created by eksctl when creating an Amazon EKS cluster.
Otherwise, use subnets that have a network path that supports pulling images.

• The securityGroupIds parameter can use the same security group as the Amazon EKS cluster.
This command retrieves the security group ID for the cluster.

$ eks describe-cluster \
 --name <cluster-name> \
 --query cluster.resourcesVpcConfig.clusterSecurityGroupId

• Maintenance of an Amazon EKS compute environment is a shared responsibility. For more
information, see Shared responsibility of the Kubernetes nodes.

Create an Amazon EKS compute environment 35

https://docs.aws.amazon.com/eks/latest/userguide/create-node-role.html#create-worker-node-role
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-iam-role.html

AWS Batch User Guide

Important

It's important to confirm that the compute environment is healthy before proceeding. The
DescribeComputeEnvironments API operation can be used to do this.

$ aws batch describe-compute-environments --compute-environments My-Eks-CE1

Confirm that the status parameter is not INVALID. If it is, look at the statusReason
parameter for the cause. For more information, see Troubleshooting AWS Batch.

Create a job queue and attach the compute environment

$ aws batch describe-compute-environments --compute-environments My-Eks-CE1

Jobs submitted to this new job queue are run as pods on AWS Batch managed nodes that joined
the Amazon EKS cluster that's associated with your compute environment.

$ cat <<EOF > ./batch-eks-job-queue.json
 {
 "jobQueueName": "My-Eks-JQ1",
 "priority": 10,
 "computeEnvironmentOrder": [
 {
 "order": 1,
 "computeEnvironment": "My-Eks-CE1"
 }
]
 }
EOF
$ aws batch create-job-queue --cli-input-json file://./batch-eks-job-queue.json

Create a job definition

$ cat <<EOF > ./batch-eks-job-definition.json
{
 "jobDefinitionName": "MyJobOnEks_Sleep",
 "type": "container",
 "eksProperties": {

Create a job queue and attach the compute environment 36

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeComputeEnvironments.html

AWS Batch User Guide

 "podProperties": {
 "hostNetwork": true,
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "sleep",
 "60"
],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 }
 }
],
 "metadata": {
 "labels": {
 "environment": "test"
 }
 }
 }
 }
}
EOF
$ aws batch register-job-definition --cli-input-json file://./batch-eks-job-
definition.json

Notes

• Only single container jobs are supported.

• There are considerations for the cpu and memory parameters. For more information, see
Memory and vCPU considerations for AWS Batch on Amazon EKS.

Submit a job

$ aws batch submit-job --job-queue My-Eks-JQ1 \
 --job-definition MyJobOnEks_Sleep --job-name My-Eks-Job1
$ aws batch describe-jobs --job <jobId-from-submit-response>

Submit a job 37

AWS Batch User Guide

Notes

• Only single container jobs are supported.

• Make sure you're familiar with all the relevant considerations for the cpu and memory
parameters. For more information, see Memory and vCPU considerations for AWS Batch on
Amazon EKS.

• For more information about running jobs on Amazon EKS resources, see Amazon EKS jobs.

(Optional) Submit a job with overrides

This job overrides the command passed to the container.

$ cat <<EOF > ./submit-job-override.json
{
 "jobName": "EksWithOverrides",
 "jobQueue": "My-Eks-JQ1",
 "jobDefinition": "MyJobOnEks_Sleep",
 "eksPropertiesOverride": {
 "podProperties": {
 "containers": [
 {
 "command": [
 "/bin/sh"
],
 "args": [
 "-c",
 "echo hello world"
]
 }
]
 }
 }
}
EOF
$ aws batch submit-job --cli-input-json file://./submit-job-override.json

(Optional) Submit a job with overrides 38

AWS Batch User Guide

Notes

• AWS Batch aggressively cleans up the pods after the jobs complete to reduce the load to
Kubernetes. To examine the details of a job, logging must be configured. For more information,
see Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs.

• For improved visibility into the details of the operations, enable Amazon EKS control plane
logging. For more information, see Amazon EKS control plane logging in the Amazon EKS User
Guide.

• Daemonsets and kubelets overhead affects available vCPU and memory resources, specifically
scaling and job placement. For more information, see Memory and vCPU considerations for AWS
Batch on Amazon EKS.

Tutorial: Getting started with AWS Batch on Amazon EKS
Private Clusters

AWS Batch is a managed service that orchestrates batch workloads in your Amazon Elastic
Kubernetes Service (Amazon EKS) clusters. This includes queuing, dependency tracking, managed
job retries and priorities, pod management, and node scaling. This feature connects your existing
private Amazon EKS cluster with AWS Batch to run your jobs at scale. You can use eksctl (a
command line interface for Amazon EKS), the AWS console, or the AWS Command Line Interface
to create a private Amazon EKS cluster with all the other necessary resources. Support for private
Amazon EKS clusters on AWS Batch is generally available in commercial AWS Regions where AWS
Batch is available.

Amazon EKS private only clusters have no inbound/outbound internet access, and only have
private subnets. Amazon VPC endpoints are used to enable private access to other AWS services.
eksctl supports creating fully-private clusters using a pre-existing Amazon VPC and subnets.
eksctl also creates Amazon VPC endpoints in the supplied Amazon VPC and modifies route tables
for the supplied subnets.

Each subnet should have an explicit route table associated with it because eksctl does not
modify the main route table. Your cluster must pull images from a container registry that's in
your Amazon VPC. As well, you can create an Amazon Elastic Container Registry in your Amazon
VPC and copy container images to it for your nodes to pull from. For more information, see Copy
a container image from one repository to another repository. To get started with Amazon ECR
private repositories, see Amazon ECR private repositories.

Tutorial: Getting started with AWS Batch on Amazon EKS Private Clusters 39

https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://eksctl.io/usage/eks-private-cluster/
https://aws.amazon.com/cli/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html#private-access
https://quip-amazon.com/ix4aAvT9cHbr/Onboarding-on-Batch-on-Private-EKS-Cluster#temp:C:ZKe5e40f5c2a8fc4e888379142bd
https://docs.aws.amazon.com/eks/latest/userguide/copy-image-to-repository.html
https://docs.aws.amazon.com/eks/latest/userguide/copy-image-to-repository.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html

AWS Batch User Guide

You can optionally create a pull through cache rule with Amazon ECR. Once a pull through cache
rule is created for an external public registry, you can pull an image from that external public
registry using your Amazon ECR private registry uriform resource idetifier (URI). Then Amazon ECR
creates a repository and caches the image. When a cached image is pulled using the Amazon ECR
private registry URI, Amazon ECR checks the remote registry to see if there is a new version of the
image and updates your private registry up to once every 24 hours.

Contents

• Prerequisites

• Prepare your EKS cluster for AWS Batch

• Create an Amazon EKS compute environment

• Create a job queue and attach the compute environment

• Create a job definition

• Submit a job

• (Optional) Submit a job with overrides

• Troubleshooting

Prerequisites

Before starting this tutorial, you must install and configure the following tools and resources
that you need to create and manage both AWS Batch and Amazon EKS resources. You also need
to create all the necessary resources including VPC, subnets, route-tables, VPC endpoints, and
Amazon EKS cluster. You need to use the AWS CLI.

• AWS CLI – A command line tool to work with AWS services, including Amazon EKS. This guide
requires that you use version 2.8.6 or later or 1.26.0 or later. For more information, see Installing,
updating, and uninstalling the AWS CLI in the AWS Command Line Interface User Guide.

After installing the AWS CLI, we recommend that you configure it. For more information, see
Quick configuration with aws configure in the AWS Command Line Interface User Guide.

• kubectl – A command line tool to work with Kubernetes clusters. This guide requires that
you use version 1.23 or later. For more information, see Installing or updating kubectl in the
Amazon EKS User Guide.

Prerequisites 40

https://docs.aws.amazon.com/AmazonECR/latest/userguide/pull-through-cache.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

AWS Batch User Guide

• eksctl – A command line tool to work with Amazon EKS clusters that automates many
individual tasks. This guide requires that you use version 0.115.0 or later. For more information,
see Installing or updating eksctl in the Amazon EKS User Guide.

• Required AWS Identity and Access Management (IAM) permissions – The IAM security principal
that you're using must have permissions to work with Amazon EKS IAM roles and service linked
roles, AWS CloudFormation, and a VPC and related resources. For more information, see Actions,
resources, and condition keys for Amazon Elastic Kubernetes Service and Using service-linked
roles in the IAM User Guide. You must complete all steps in this guide as the same user.

• Creating an Amazon EKS cluster – For more information, see Getting started with Amazon EKS –
eksctl in the Amazon EKS User Guide.

Note

AWS Batch doesn't provide managed-node orchestration for CoreDNS or other
deployment pods. If you need CoreDNS, see Adding the CoreDNS Amazon EKS add-on in
the Amazon EKS User Guide. Or, use eksctl create cluster create to create the
cluster, it includes CoreDNS by default.

• Permissions – Users calling the CreateComputeEnvironment API operation to create
a compute environment that uses Amazon EKS resources require permissions to the
eks:DescribeCluster API operation. Using the AWS Management Console to
create a compute resource using Amazon EKS resources requires permissions to both
eks:DescribeCluster and eks:ListClusters.

• Create a private EKS cluster in the us-east-1 region using the sample eksctl config file.

kind: ClusterConfig
apiVersion: eksctl.io/v1alpha5
availabilityZones:
 - us-east-1a
 - us-east-1b
 - us-east-1d
managedNodeGroups:
 privateNetworking: true
privateCluster:
 enabled: true
 skipEndpointCreation: false

Prerequisites 41

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html#adding-coredns-eks-add-on
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

AWS Batch User Guide

Create your resources using the command: eksctl create cluster -f
clusterConfig.yaml

• Batch managed nodes must be deployed to subnets that have the VPC interface endpoints that
you require. For more information, see Private cluster requirements.

Prepare your EKS cluster for AWS Batch

All steps are required.

1. Create a dedicated namespace for AWS Batch jobs

Use kubectl to create a new namespace.

$ namespace=my-aws-batch-namespace
$ cat - <<EOF | kubectl create -f -
{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "name": "${namespace}",
 "labels": {
 "name": "${namespace}"
 }
 }
}
EOF

Output:

namespace/my-aws-batch-namespace created

2. Enable access via role-based access control (RBAC)

Use kubectl to create a Kubernetes role for the cluster to allow AWS Batch to watch nodes
and pods, and to bind the role. You must do this once for each Amazon EKS cluster.

Prepare your EKS cluster for AWS Batch 42

https://docs.aws.amazon.com/eks/latest/userguide/private-clusters.html

AWS Batch User Guide

Note

For more information about using RBAC authorization, see Using RBAC Authorization
in the Kubernetes documentation.

$ cat - <<EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: aws-batch-cluster-role
rules:
 - apiGroups: [""]
 resources: ["namespaces"]
 verbs: ["get"]
 - apiGroups: [""]
 resources: ["nodes"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "list", "watch"]
 - apiGroups: [""]
 resources: ["configmaps"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["apps"]
 resources: ["daemonsets", "deployments", "statefulsets", "replicasets"]
 verbs: ["get", "list", "watch"]
 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["clusterroles", "clusterrolebindings"]
 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: aws-batch-cluster-role-binding
subjects:
- kind: User
 name: aws-batch
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole

Prepare your EKS cluster for AWS Batch 43

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

AWS Batch User Guide

 name: aws-batch-cluster-role
 apiGroup: rbac.authorization.k8s.io
EOF

Output:

clusterrole.rbac.authorization.k8s.io/aws-batch-cluster-role created
clusterrolebinding.rbac.authorization.k8s.io/aws-batch-cluster-role-binding created

Create namespace-scoped Kubernetes role for AWS Batch to manage and lifecycle pods and
bind it. You must do this once for each unique namespace.

$ namespace=my-aws-batch-namespace
$ cat - <<EOF | kubectl apply -f - --namespace "${namespace}"
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: aws-batch-compute-environment-role
 namespace: ${namespace}
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["create", "get", "list", "watch", "delete", "patch"]
 - apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["get", "list"]
 - apiGroups: ["rbac.authorization.k8s.io"]
 resources: ["roles", "rolebindings"]
 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: aws-batch-compute-environment-role-binding
 namespace: ${namespace}
subjects:
- kind: User
 name: aws-batch
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: aws-batch-compute-environment-role

Prepare your EKS cluster for AWS Batch 44

AWS Batch User Guide

 apiGroup: rbac.authorization.k8s.io
EOF

Output:

role.rbac.authorization.k8s.io/aws-batch-compute-environment-role created
rolebinding.rbac.authorization.k8s.io/aws-batch-compute-environment-role-binding
 created

Update Kubernetes aws-auth configuration map to map the preceding RBAC permissions to
the AWS Batch service-linked role.

$ eksctl create iamidentitymapping \
 --cluster my-cluster-name \
 --arn "arn:aws:iam::<your-account>:role/AWSServiceRoleForBatch" \
 --username aws-batch

Output:

2022-10-25 20:19:57 [#] adding identity "arn:aws:iam::<your-account>:role/
AWSServiceRoleForBatch" to auth ConfigMap

Note

The path aws-service-role/batch.amazonaws.com/ has been removed from
the ARN of the service-linked role. This is because of an issue with the aws-auth
configuration map. For more information, see Roles with paths don't work when the
path is included in their ARN in the aws-authconfigmap.

Create an Amazon EKS compute environment

AWS Batch compute environments define compute resource parameters to meet your batch
workload needs. In a managed compute environment, AWS Batch helps you to manage the
capacity and instance types of the compute resources (Kubernetes nodes) within your Amazon EKS
cluster. This is based on the compute resource specification that you define when you create the
compute environment. You can use EC2 On-Demand Instances or EC2 Spot Instances.

Create an Amazon EKS compute environment 45

https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268
https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268

AWS Batch User Guide

Now that the AWSServiceRoleForBatch service-linked role has access to your Amazon EKS cluster,
you can create AWS Batch resources. First, create a compute environment that points to your
Amazon EKS cluster.

$ cat <<EOF > ./batch-eks-compute-environment.json
{
 "computeEnvironmentName": "My-Eks-CE1",
 "type": "MANAGED",
 "state": "ENABLED",
 "eksConfiguration": {
 "eksClusterArn": "arn:aws:eks:<region>:123456789012:cluster/<cluster-name>",
 "kubernetesNamespace": "my-aws-batch-namespace"
 },
 "computeResources": {
 "type": "EC2",
 "allocationStrategy": "BEST_FIT_PROGRESSIVE",
 "minvCpus": 0,
 "maxvCpus": 128,
 "instanceTypes": [
 "m5"
],
 "subnets": [
 "<eks-cluster-subnets-with-access-to-the-image-for-image-pull>"
],
 "securityGroupIds": [
 "<eks-cluster-sg>"
],
 "instanceRole": "<eks-instance-profile>"
 }
}
EOF
$ aws batch create-compute-environment --cli-input-json file://./batch-eks-compute-
environment.json

Notes

• The serviceRole parameter should not be specified, then the AWS Batch service-linked role
will be used. AWS Batch on Amazon EKS only supports the AWS Batch service-linked role.

• Only BEST_FIT_PROGRESSIVE, SPOT_CAPACITY_OPTIMIZED, and
SPOT_PRICE_CAPACITY_OPTIMIZED allocation strategies are supported for Amazon EKS
compute environments.

Create an Amazon EKS compute environment 46

AWS Batch User Guide

Note

We recommend that you use SPOT_PRICE_CAPACITY_OPTIMIZED rather than
SPOT_CAPACITY_OPTIMIZEDn in most instances.

• For the instanceRole, see Creating the Amazon EKS node IAM role and Enabling IAM principal
access to your cluster in the Amazon EKS User Guide. If you're using pod networking, see
Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts in
the Amazon EKS User Guide.

• A way to get working subnets for the subnets parameter is to use the Amazon EKS managed
node groups public subnets that were created by eksctl when creating an Amazon EKS cluster.
Otherwise, use subnets that have a network path that supports pulling images.

• The securityGroupIds parameter can use the same security group as the Amazon EKS cluster.
This command retrieves the security group ID for the cluster.

$ eks describe-cluster \
 --name <cluster-name> \
 --query cluster.resourcesVpcConfig.clusterSecurityGroupId

• Maintenance of an Amazon EKS compute environment is a shared responsibility. For more
information, see Security in Amazon EKS.

Important

It's important to confirm that the compute environment is healthy before proceeding. The
DescribeComputeEnvironments API operation can be used to do this.

$ aws batch describe-compute-environments --compute-environments My-Eks-CE1

Confirm that the status parameter is not INVALID. If it is, look at the statusReason
parameter for the cause. For more information, see Troubleshooting AWS Batch.

Create a job queue and attach the compute environment

$ aws batch describe-compute-environments --compute-environments My-Eks-CE1

Create a job queue and attach the compute environment 47

https://docs.aws.amazon.com/eks/latest/userguide/create-node-role.html#create-worker-node-role
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-iam-role.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/eks/latest/userguide/security.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeComputeEnvironments.html

AWS Batch User Guide

Jobs submitted to this new job queue are run as pods on AWS Batch managed nodes that joined
the Amazon EKS cluster that's associated with your compute environment.

$ cat <<EOF > ./batch-eks-job-queue.json
 {
 "jobQueueName": "My-Eks-JQ1",
 "priority": 10,
 "computeEnvironmentOrder": [
 {
 "order": 1,
 "computeEnvironment": "My-Eks-CE1"
 }
]
 }
EOF
$ aws batch create-job-queue --cli-input-json file://./batch-eks-job-queue.json

Create a job definition

In the image field of the job definition, instead of providing a link to image in a public ECR
repository, provide the link to the image stored in our private ECR repository. See the following
sample job-definition:

$ cat <<EOF > ./batch-eks-job-definition.json
{
 "jobDefinitionName": "MyJobOnEks_Sleep",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "hostNetwork": true,
 "containers": [
 {
 "image": "account-id.dkr.ecr.region.amazonaws.com/amazonlinux:2",
 "command": [
 "sleep",
 "60"
],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }

Create a job definition 48

AWS Batch User Guide

 }
 }
],
 "metadata": {
 "labels": {
 "environment": "test"
 }
 }
 }
 }
}
EOF
$ aws batch register-job-definition --cli-input-json file://./batch-eks-job-
definition.json

To run kubectl commands, you will need private access to your Amazon EKS cluster. This means all
traffic to your cluster API server must come from within your cluster's VPC or a connected network.

Submit a job

$ aws batch submit-job - -job-queue My-Eks-JQ1 \
 - -job-definition MyJobOnEks_Sleep - -job-name My-Eks-Job1
$ aws batch describe-jobs - -job <jobId-from-submit-response>

Notes

• Only single container jobs are supported.

• Make sure you're familiar with all the relevant considerations for the cpu and memory
parameters. For more information, see Memory and vCPU considerations for AWS Batch on
Amazon EKS.

• For more information about running jobs on Amazon EKS resources, see Amazon EKS jobs.

(Optional) Submit a job with overrides

This job overrides the command passed to the container.

$ cat <<EOF > ./submit-job-override.json
{
 "jobName": "EksWithOverrides",

Submit a job 49

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html

AWS Batch User Guide

 "jobQueue": "My-Eks-JQ1",
 "jobDefinition": "MyJobOnEks_Sleep",
 "eksPropertiesOverride": {
 "podProperties": {
 "containers": [
 {
 "command": [
 "/bin/sh"
],
 "args": [
 "-c",
 "echo hello world"
]
 }
]
 }
 }
}
EOF
$ aws batch submit-job - -cli-input-json file://./submit-job-override.json

Notes

• AWS Batch aggressively cleans up the pods after the jobs complete to reduce the load to
Kubernetes. To examine the details of a job, logging must be configured. For more information,
see Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs.

• For improved visibility into the details of the operations, enable Amazon EKS control plane
logging. For more information, see Amazon EKS control plane logging in the Amazon EKS User
Guide.

• Daemonsets and kubelets overhead affects available vCPU and memory resources, specifically
scaling and job placement. For more information, see Memory and vCPU considerations for AWS
Batch on Amazon EKS.

Troubleshooting

If nodes launched by AWS Batch don't have access to the Amazon ECR repository (or any other
repository) that stores your image, then your jobs could remain in the STARTING state. This is
because the pod will not be able to download the image and run your AWS Batch job. If you click
on the pod name launched by AWS Batch you should be able to see the error message and confirm
the issue. The error message should look similar to the following:

Troubleshooting 50

https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html

AWS Batch User Guide

Failed to pull image "public.ecr.aws/amazonlinux/amazonlinux:2": rpc error: code =
Unknown desc = failed to pull and unpack image
"public.ecr.aws/amazonlinux/amazonlinux:2": failed to resolve reference
"public.ecr.aws/amazonlinux/amazonlinux:2": failed to do request: Head
"https://public.ecr.aws/v2/amazonlinux/amazonlinux/manifests/2": dial tcp: i/o timeout

For other common troubleshooting scenarios, see Troubleshooting AWS Batch. For troubleshooting
bases on pod-status, see How do I troubleshoot the pod status in Amazon EKS?.

Troubleshooting 51

https://docs.aws.amazon.com/batch/latest/userguide/troubleshooting.html#batch-eks-troubleshooting
https://quip-amazon.com/RgwMAT2dh641#temp:C:BAMbb9a4adc65fd450c9cc7af275

AWS Batch User Guide

Compute environments for AWS Batch

Job queues are mapped to one or more compute environments. Compute environments contain
the Amazon ECS container instances that are used to run containerized batch jobs. A specific
compute environment can also be mapped to one or more than one job queue. Within a job
queue, the associated compute environments each have an order that's used by the scheduler to
determine where jobs that are ready to be run will run. If the first compute environment has a
status of VALID and has available resources, the job is scheduled to a container instance within
that compute environment. If the first compute environment has a status of INVALID or can't
provide a suitable compute resource, the scheduler attempts to run the job on the next compute
environment.

Topics

• Managed compute environments

• Unmanaged compute environments

• Create a compute environment

• Compute resource AMIs

• Use Amazon EC2 launch template with AWS Batch

• EC2 configurations

• Instance type allocation strategies for AWS Batch

• Compute resource memory management

• Updating compute environments

• Fargate compute environments

• Amazon EKS compute environments

Managed compute environments

You can use a managed compute environment to have AWS Batch manage the capacity and
instance types of the compute resources within the environment. This is based on the compute
resource specifications that you define when you create the compute environment. You can choose
either to use Amazon EC2 On-Demand Instances and Amazon EC2 Spot Instances. Or, you can
alternatively use Fargate and Fargate Spot capacity in your managed compute environment. When

Managed compute environments 52

AWS Batch User Guide

using Spot Instances, you can optionally set a maximum price. This way, Spot Instances only launch
when the Spot Instance price is under a specified percentage of the On-Demand price.

Important

Fargate Spot instances are not supported on Windows containers on AWS Fargate. A job
queue will be blocked if a FargateWindows job is submitted to a job queue that only uses
Fargate Spot compute environments.

Managed compute environments launch Amazon EC2 instances into the VPC and subnets that
you specify and then registers them with an Amazon ECS cluster. The Amazon EC2 instances need
external network access to communicate with the Amazon ECS service endpoint. Some subnets
don't provide Amazon EC2 instances with public IP addresses. If your Amazon EC2 instances don't
have a public IP address, they must use network address translation (NAT) to gain this access. For
more information, see NAT gateways in the Amazon VPC User Guide. For more information about
how to create a VPC, see Create a virtual private cloud .

By default, AWS Batch managed compute environments use a recent, approved version of the
Amazon ECS optimized AMI for compute resources. However, you might want to create your own
AMI to use for your managed compute environments for various reasons. For more information, see
Compute resource AMIs.

Note

AWS Batch doesn't automatically upgrade the AMIs in a compute environment after it's
created. For example, it doesn't update the AMIs in your compute environment when
a newer version of the Amazon ECS optimized AMI is released. You're responsible for
the management of the guest operating system. This includes any updates and security
patches. You're also responsible for any additional application software or utilities that you
install on the compute resources. There are two ways to use a new AMI for your AWS Batch
jobs. The original method is to complete these steps:

1. Create a new compute environment with the new AMI.

2. Add the compute environment to an existing job queue.

3. Remove the earlier compute environment from your job queue.

4. Delete the earlier compute environment.

Managed compute environments 53

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Batch User Guide

In April 2022, AWS Batch added enhanced support for updating compute environments.
For more information, see Updating compute environments. To use the enhanced updating
of compute environments to update AMIs, follow these rules:

• Either don't set the service role (serviceRole) parameter or set it to the
AWSServiceRoleForBatch service-linked role.

• Set the allocation strategy (allocationStrategy) parameter
to BEST_FIT_PROGRESSIVE, SPOT_CAPACITY_OPTIMIZED or
SPOT_PRICE_CAPACITY_OPTIMIZED.

• Set the update to latest image version (updateToLatestImageVersion) parameter to
true.

• Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration),
or in the launch template (launchTemplate). In that case, AWS Batch selects the
latest Amazon ECS optimized AMI that's supported by AWS Batch at the time the
infrastructure update is initiated. Alternatively, you can specify the AMI ID in the
imageId or imageIdOverride parameters, or the launch template identified by the
LaunchTemplate properties. Changing any of these properties starts an infrastructure
update. If the AMI ID is specified in the launch template, it can't be replaced by specifying
an AMI ID in either the imageId or imageIdOverride parameters. It can only be
replaced by specifying a different launch template. Or, if the launch template version
is set to $Default or $Latest, by setting either a new default version for the launch
template (if it's $Default) or by adding a new version to the launch template (if it's
$Latest).

If these rules are followed, any update that starts an infrastructure update will
cause the AMI ID to be re-selected. If the version setting in the launch template
(launchTemplate) is set to $Latest or $Default, the latest or default version of the
launch template are evaluated up at the time of the infrastructure update, even if the
launchTemplate was not updated.

Consideration when creating multi-node parallel jobs

AWS Batch recommends creating dedicated compute environments for running multi-node parallel
(MNP) jobs and non-MNP jobs. This is due to the way compute capacity is created in your managed

Consideration when creating multi-node parallel jobs 54

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html#Batch-CreateComputeEnvironment-request-serviceRole
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResource.html#Batch-Type-ComputeResource-allocationStrategy
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-updateToLatestImageVersion
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-imageId
https://docs.aws.amazon.com/batch/latest/APIReference/API_Ec2Configuration.html#Batch-Type-Ec2Configuration-imageIdOverride
https://docs.aws.amazon.com/batch/latest/APIReference/API_Ec2Configuration.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate
https://docs.aws.amazon.com/batch/latest/APIReference/API_LaunchTemplateSpecification.html#Batch-Type-LaunchTemplateSpecification-version
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate

AWS Batch User Guide

compute environment. When creating a new managed compute environment, if you specify a
minvCpu value greater than zero then AWS Batch creates an instance pool for use with non-MNP
jobs only. If a multi-node parallel job is submitted, AWS Batch creates new instance capacity to run
the multi-node parallel jobs. In cases where there are both single-node and multi-node parallel
jobs running in the same compute environment where either a minvCpus or maxvCpus value is
set, if the required compute resources are unavailable AWS Batch will wait for the current jobs to
finish before creating the compute resources necessary to run the new jobs.

Unmanaged compute environments

In an unmanaged compute environment, you manage your own compute resources. You must
verify that the AMI you use for your compute resources meets the Amazon ECS container instance
AMI specification. For more information, see Compute resource AMI specification and Tutorial:
Create a compute resource AMI.

Note

AWS Fargate resources aren't supported in unmanaged compute environments.

After you created your unmanaged compute environment, use the DescribeComputeEnvironments
API operation to view the compute environment details. Find the Amazon ECS cluster that's
associated with the environment and then manually launch your container instances into that
Amazon ECS cluster.

The following AWS CLI command also provides the Amazon ECS cluster ARN.

$ aws batch describe-compute-environments \
 --compute-environments unmanagedCE \
 --query "computeEnvironments[].ecsClusterArn"

For more information, see Launching an Amazon ECS container instance in the Amazon Elastic
Container Service Developer Guide. When you launch your compute resources, specify the Amazon
ECS cluster ARN that the resources register with the following Amazon EC2 user data. Replace
ecsClusterArn with the cluster ARN that you obtained with the previous command.

#!/bin/bash
echo "ECS_CLUSTER=ecsClusterArn" >> /etc/ecs/ecs.config

Unmanaged compute environments 55

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeComputeEnvironments.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch_container_instance.html

AWS Batch User Guide

Create a compute environment

Before you can run jobs in AWS Batch, you need to create a compute environment. You can create
a managed compute environment where AWS Batch manages the Amazon EC2 instances or AWS
Fargate resources within the environment based on your specifications. Or, alternatively, you
can create an unmanaged compute environment where you handle the Amazon EC2 instance
configuration within the environment.

Important

Fargate Spot instances are not supported in the following scenarios:

• On Amazon Linux containers with ARM64 architecture.

• Windows containers on AWS Fargate

A job queue will be blocked in these scenarios if a job is submitted to a job queue that only
uses Fargate Spot compute environments.

Topics

• Tutorial: Create a managed compute environment using Fargate resources

• Tutorial: Create a managed compute environment using Amazon EC2 resources

• Tutorial: Create an unmanaged compute environment using Amazon EC2 resources

• Tutorial: Create a managed compute environment using Amazon EKS resources

• Resource: Compute environment template

Tutorial: Create a managed compute environment using Fargate
resources

Complete the following steps to create a mangaed compute environment using AWS Fargate
resources.

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Compute environments.

Create a compute environment 56

https://console.aws.amazon.com/batch/

AWS Batch User Guide

4. Choose Create.

5. Configure the compute environment.

Note

Compute environments for Windows containers on AWS Fargate jobs must at least one
vCPU.

a. For Compute environment configuration, choose Fargate.

b. For Name, specify a unique name for your compute environment. The name can contain
up to 128 characters in length. It can contain uppercase and lowercase letters, numbers,
hyphens (-), and underscores (_).

c. For Service role, choose service-linked role that lets the AWS Batch service to
make calls to the required AWS API operations on your behalf. For example, choose
AWSServiceRoleForBatch. For more information, see Service-linked role permissions for
AWS Batch.

d. (Optional) Expand Tags. To add a tag, choose Add tag. Then, enter a Key name and
optional Value. Choose Add tag.

e. Choose Next page.

6. In the Instance configuration section:

a. (Optional) For Use Fargate Spot capacity, turn on Fargate Spot. For information about
Fargate Spot, see Using Amazon EC2 Spot and Fargate_SPOT.

b. For Maximum vCPUs, choose the maximum number of vCPUs that your compute
environment can scale out to, regardless of job queue demand.

c. Choose Next page.

7. Configure networking.

Important

Compute resources need access to communicate with the Amazon ECS service
endpoint. This can be through an interface VPC endpoint or through your compute
resources having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS Interface VPC
Endpoints (AWS PrivateLink) in the Amazon Elastic Container Service Developer Guide.

Tutorial: Create a managed compute environment using Fargate resources 57

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/ec2-and-fargate-spot.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html

AWS Batch User Guide

If you do not have an interface VPC endpoint configured and your compute resources
do not have public IP addresses, then they must use network address translation (NAT)
to provide this access. For more information, see NAT gateways in the Amazon VPC
User Guide. For more information, see the section called “Tutorial: Create a VPC”.

a. For Virtual Private Cloud (VPC) ID, choose a VPC where you want to launch your
instances.

b. For Subnets, choose the subnets to use. By default, all subnets within the selected VPC are
available.

Note

AWS Batch on Fargate doesn't currently support Local Zones. For more
information, see Amazon ECS clusters in Local Zones, Wavelength Zones, and AWS
Outposts in the Amazon Elastic Container Service Developer Guide.

c. For Security groups, choose a security group to attach to your instances. By default, the
default security group for your VPC is chosen.

d. Choose Next page.

8. For Review, review the configuration steps. If you need to make changes, choose Edit. When
you're finished, choose Create compute environment.

Tutorial: Create a managed compute environment using Amazon EC2
resources

Complete the following steps to create a mangaed compute environment using Amazon Elastic
Compute Cloud (Amazon EC2) resources.

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Compute environments.

4. Choose Create.

5. Configure the environment.

Tutorial: Create a managed compute environment using Amazon EC2 resources 58

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html#clusters-local-zones
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html#clusters-local-zones
https://console.aws.amazon.com/batch/

AWS Batch User Guide

a. For Compute environment configuration, choose Amazon Elastic Compute Cloud
(Amazon EC2).

b. For Orchestration type, choose Managed.

c. For Name, specify a unique name for your compute environment. The name can contain
up to 128 characters in length. It can contain uppercase and lowercase letters, numbers,
hyphens (-), and underscores (_).

d. For Service role, choose service-linked role that lets the AWS Batch service make
calls to the required AWS API operations on your behalf. For example, choose
AWSServiceRoleForBatch. For more information, see Service-linked role permissions for
AWS Batch.

e. For Instance role, choose to create a new instance profile or use an existing instance
profile that has the required IAM permissions attached. This instance profile allows the
Amazon ECS container instances that are created for your compute environment to
make calls to the required AWS API operations on your behalf. For more information, see
Amazon ECS instance role. If you choose to create a new instance profile, the required role
(ecsInstanceRole) is created for you.

f. (Optional) Expand Tags.

g. (Optional) For EC2 tags, choose Add tag to add a tag to resources that are launched in the
compute environment. Then, enter a Key name and optional Value. Choose Add tag.

h. (Optional) For Tags, choose Add tag. Then, enter a Key name and optional Value. Choose
Add tag.

For more information, see Tag your AWS Batch resources.

i. Choose Next page.

6. In the Instance configuration section:

a. (Optional) For Enable using Spot instances, turn on Spot. For more information, see Spot
Instances.

b. (Spot only) For Maximum % on-demand price, choose the maximum percentage that a
Spot Instance price can be when compared with the On-Demand price for that instance
type before instances are launched. For example, if your maximum price is 20%, then the
Spot price must be less than 20% of the current On-Demand price for that EC2 instance.
You always pay the lowest (market) price and never more than your maximum percentage.
If you leave this field empty, the default value is 100% of the On-Demand price.

Tutorial: Create a managed compute environment using Amazon EC2 resources 59

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS Batch User Guide

c. (Spot only) For Spot fleet role, choose an existing Amazon EC2 Spot Fleet IAM role to
apply to your Spot compute environment. If you don't already have an existing Amazon
EC2 Spot Fleet IAM role, you must create one first. For more information, see Amazon EC2
spot fleet role.

Important

To tag your Spot Instances on creation, your Amazon EC2 Spot Fleet IAM role
must use the newer AmazonEC2SpotFleetTaggingRole managed policy. The
AmazonEC2SpotFleetRole managed policy doesn't have the required permissions
to tag Spot Instances. For more information, see Spot Instances not tagged on
creation and the section called “Tag your resources”.

d. For Minimum vCPUs, choose the minimum number of vCPUs that your compute
environment maintains, regardless of job queue demand.

e. For Desired vCPUs, choose the number of vCPUs that your compute environment
launches with. As your job queue demand increases, AWS Batch can increase the desired
number of vCPUs in your compute environment and add EC2 instances, up to the
maximum vCPUs. As demand decreases, AWS Batch can decrease the desired number of
vCPUs in your compute environment and remove instances, down to the minimum vCPUs.

f. For Maximum vCPUs, choose the maximum number of vCPUs that your compute
environment can scale out to, regardless of job queue demand.

g. For Allowed instance types, choose the Amazon EC2 instance types that can be launched.
You can specify instance families to launch any instance type within those families
(for example, c5, c5n, or p3). Or, you can specify specific sizes within a family (such
as c5.8xlarge). Metal instance types aren't in the instance families. For example, c5
doesn't include c5.metal. You can also choose optimal to select instance types (from
the C4, M4, and R4 instance families) that match the demand of your job queues.

Note

When you create a compute environment, the instance types that you select for
the compute environment must share the same architecture. For example, you
can't mix x86 and ARM instances in the same compute environment.

Tutorial: Create a managed compute environment using Amazon EC2 resources 60

AWS Batch User Guide

Note

AWS Batch will scale GPUs based on the required amount in your job queues. To
use GPU scheduling, the compute environment must include instance types from
the p2, p3, p4, p5, g3, g3s, g4, or g5 families.

Note

Currently, optimal uses instance types from the C4, M4, and R4 instance families.
In AWS Regions that don't have instance types from those instance families,
instance types from the C5, M5, and R5 instance families are used.

h. Expand Additional configuration.

i. (Optional) For Placement group, enter a placement group name to group resources in the
compute environment.

j. (Optional) For EC2 key pair, choose a public and private key pair as security credentials
when you connect to the instance. For more information about Amazon EC2 key pairs, see
Amazon EC2 key pairs and Linux instances.

k. For Allocation strategy, choose the allocation strategy to use when selecting instance
types from the list of allowed instance types. BEST_FIT_PROGRESSIVE is usually the
better choice for EC2 On-Demand compute environments, SPOT_CAPACITY_OPTIMIZED,
and SPOT_PRICE_CAPACITY_OPTIMIZED for EC2 Spot compute environments. For more
information, see the section called “Instance type allocation strategies”.

l. (Optional) For EC2 configuration choose Image type and Image ID override values to
provide information for AWS Batch to select Amazon Machine Images (AMIs) for instances
in the compute environment. If the Image ID override isn't specified for each Image type,
AWS Batch selects a recent Amazon ECS optimized AMI. If no Image type is specified, the
default is a Amazon Linux 2 for non-GPU, non AWS Graviton instance.

Important

To use a custom AMI, choose the image type and then enter the custom AMI ID in
the Image ID override box.

Tutorial: Create a managed compute environment using Amazon EC2 resources 61

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

AWS Batch User Guide

Amazon Linux 2

Default for all AWS Graviton-based instance families (for example, C6g, M6g, R6g, and
T4g) and can be used for all non-GPU instance types.

Amazon Linux 2 (GPU)

Default for all GPU instance families (for example P4 and G4) and can be used for all
non AWS Graviton-based instance types.

Amazon Linux

Can be used for non-GPU, non AWS Graviton instance families. The standard support
for Amazon Linux AMI has ended. For more information, see Amazon Linux AMI.

Note

The AMI that you choose for a compute environment must match the architecture
of the instance types that you want to use for that compute environment. For
example, if your compute environment uses A1 instance types, the compute
resource AMI that you choose must support Arm instances. Amazon ECS vends
both x86 and Arm versions of the Amazon ECS optimized Amazon Linux 2 AMI. For
more information, see Amazon ECS optimized Amazon Linux 2 AMI in the Amazon
Elastic Container Service Developer Guide.

m. (Optional) For Launch template, select an existing Amazon EC2 launch template to
configure your compute resources. The default version of the template is automatically
populated. For more information, see Use Amazon EC2 launch template with AWS Batch.

Note

In a launch template, you can specify a custom AMI that you created.

n. (Optional) For Launch template version, enter $Default, $Latest, or a specific version
number to use.

Tutorial: Create a managed compute environment using Amazon EC2 resources 62

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#al2ami
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#gpuami
https://aws.amazon.com/amazon-linux-ami/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html

AWS Batch User Guide

Important

If the version parameter of the launch template is $Default or $Latest, the
default or latest version of the specified launch template is evaluated during an
infrastructure update. If a different AMI ID is selected by the default or the latest
version of the launch template is selected, that AMI ID is used in the update. For
more information, see the section called “Updating the AMI ID”.

o. Choose Next page.

7. In the Network configuration section:

Important

Compute resources need access to communicate with the Amazon ECS service
endpoint. This can be through an interface VPC endpoint or through your compute
resources having public IP addresses.
For more information about interface VPC endpoints, see Amazon ECS Interface VPC
Endpoints (AWS PrivateLink) in the Amazon Elastic Container Service Developer Guide.
If you do not have an interface VPC endpoint configured and your compute resources
do not have public IP addresses, then they must use network address translation (NAT)
to provide this access. For more information, see NAT gateways in the Amazon VPC
User Guide. For more information, see the section called “Tutorial: Create a VPC”.

a. For Virtual Private Cloud (VPC) ID, choose a VPC where to launch your instances.

b. For Subnets, choose the subnets to use. By default, all subnets within the selected VPC are
available.

Note

AWS Batch on Amazon EC2 supports Local Zones. For more information, see Local
Zones in the Amazon EC2 User Guide and Amazon ECS clusters in Local Zones,
Wavelength Zones, and AWS Outposts in the Amazon Elastic Container Service
Developer Guide.

Tutorial: Create a managed compute environment using Amazon EC2 resources 63

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html?icmpid=docs_ec2_console#concepts-local-zones
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html?icmpid=docs_ec2_console#concepts-local-zones
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html#clusters-local-zones
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html#clusters-local-zones

AWS Batch User Guide

c. (Optional) For Security groups, choose a security group to attach to your instances. By
default, the default security group for your VPC is chosen.

8. Choose Next page.

9. For Review, review the configuration steps. If you need to make changes, choose Edit. When
you're finished, choose Create compute environment.

Tutorial: Create an unmanaged compute environment using Amazon
EC2 resources

Complete the following steps to create an unmangaed compute environment using Amazon Elastic
Compute Cloud (Amazon EC2) resources.

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. On the Compute Environments page, choose Create.

4. Configure the environment.

a. For Compute environment configuration, choose Amazon Elastic Compute Cloud
(Amazon EC2).

b. For Orchestration type, choose Unmanaged.

5. For Name, specify a unique name for your compute environment. The name can be up to 128
characters in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

6. For Service role, choose a role that lets the AWS Batch service make calls to the required AWS
API operations on your behalf.

Note

You can't use AWSServiceRoleForBatch for unmanaged compute environments.

7. For Maximum vCPUs, choose the maximum number of vCPUs that your compute environment
can scale out to, regardless of job queue demand.

8. (Optional) Expand Tags. To add a tag, choose Add tag. Then, enter a Key name and optional
Value. Choose Add tag. For more information, see Tag your AWS Batch resources.

Tutorial: Create an unmanaged compute environment using Amazon EC2 resources 64

https://console.aws.amazon.com/batch/

AWS Batch User Guide

9. Choose Next page.

10. For Review, review the configuration steps. If you need to make changes, choose Edit. When
you're finished, choose Create compute environment.

Tutorial: Create a managed compute environment using Amazon EKS
resources

Complete the following steps to create a mangaed compute environment using Amazon Elastic
Kubernetes Service (Amazon EKS) resources.

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Compute environments.

4. Choose Create.

5. For Compute environment configuration, choose Amazon Elastic Kubernetes Service
(Amazon EKS).

6. For Name, specify a unique name for your compute environment. The name can be up to 128
characters in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

7. For Instance role, choose an existing instance profile that has the required IAM permissions
attached.

Note

To create a compute environment in the AWS Batch console, choose an instance profile
that has the eks:ListClusters and eks:DescribeCluster permissions.

8. For EKS cluster, choose an existing Amazon EKS cluster.

9. For Namespace, enter a Kubernetes namespace to group your AWS Batch processes in the
cluster.

10. (Optional) Expand Tags. Choose Add tag and then enter a key-value pair.

11. Choose Next page.

12. (Optional) For Use EC2 Spot Instances, turn on Enable using Spot instances to use Amazon
EC2 Spot Instances.

Tutorial: Create a managed compute environment using Amazon EKS resources 65

https://console.aws.amazon.com/batch/

AWS Batch User Guide

13. (Spot only) For Maximum % on-demand price, choose the maximum percentage that a Spot
Instance price can be when compared with the On-Demand price for that instance type before
instances are launched. For example, if your maximum price is 20%, then the Spot price must
be less than 20% of the current On-Demand price for that EC2 instance. You always pay the
lowest (market) price and never more than your maximum percentage. If you leave this field
empty, the default value is 100% of the On-Demand price.

14. (Spot only) For Spot fleet role, choose the Amazon EC2 Spot fleet IAM role for the SPOT
compute environment.

Important

This role is required if the allocation strategy is set to BEST_FIT or not specified.

15. (Optional) For Minimum vCPUs, choose the minimum number of vCPUs that your compute
environment maintains, regardless of job queue demand.

16. (Optional) For Maximum vCPUs, choose the maximum number of vCPUs that your compute
environment can scale out to, regardless of job queue demand.

17. For Allowed instance types, choose the Amazon EC2 instance types that can be launched.
You can specify instance families to launch any instance type within those families (for
example, c5, c5n, or p3). Or, you can specify specific sizes within a family (for example,
c5.8xlarge). Metal instance types aren't in the instance families. For example, c5 doesn't
include c5.metal. You can also choose optimal to select instance types (from the C4, M4,
and R4 instance families) because you need that match the demand of your job queues.

Note

When you create a compute environment, the instance types that you select for the
compute environment must share the same architecture. For example, you can't mix
x86 and ARM instances in the same compute environment.

Note

AWS Batch scales GPUs based on the required amount in your job queues. To use GPU
scheduling, the compute environment must include instance types from the p2, p3, p4,
p5, g3, g3s, g4, or g5 families.

Tutorial: Create a managed compute environment using Amazon EKS resources 66

AWS Batch User Guide

Note

Currently, optimal uses instance types from the C4, M4, and R4 instance families.
In AWS Regions that don't have instance types from those instance families, instance
types from the C5, M5, and R5 instance families are used.

18. (Optional) Expand Additional configuration.

a. (Optional) For Placement group, enter a placement group name to group resources in the
compute environment.

b. For Allocation strategy, choose BEST_FIT_PROGRESSIVE.

c. (Optional) For Amazon Machine Images (AMIs) Configuration, choose Add amazon
machine images (amis) configuration. Then, choose an Image Type, enter an Image ID
override, and Kubernetes version.

Important

To use a custom AMI, choose the image type and then enter the custom AMI ID in
the Image ID override box.

Note

If the Image ID override isn't specified for each Image type, AWS Batch selects a
recent Amazon ECS optimized AMI. If no Image type is specified, the default is a
Amazon Linux 2 for non-GPU, non AWS Graviton instance.

Amazon Linux 2

Default for all AWS Graviton-based instance families (for example, C6g, M6g,
R6g, and T4g) and can be used for all non-GPU instance types.

Amazon Linux 2 (GPU)

Default for all GPU instance families (for example, P4 and G4) and can be used
for all non AWS Graviton-based instance types.

Tutorial: Create a managed compute environment using Amazon EKS resources 67

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#al2ami
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#gpuami

AWS Batch User Guide

d. (Optional) For Launch template, choose an existing launch template.

e. (Optional) For Launch template version, enter $Default, $Latest, or a version number.

19. Choose Next page.

20. For Virtual Private Cloud (VPC) ID, choose a VPC where to launch the instances.

21. For Subnets, choose the subnets to use. By default, all subnets within the selected VPC are
available.

Note

AWS Batch on Amazon EKS supports Local Zones. For more information, see Amazon
EKS and AWS Local Zones in the Amazon EKS User Guide.

22. (Optional) For Security groups, choose a security group to attach to your instances. By default,
the default security group for your VPC is selected.

23. Choose Next page.

24. For Review, review the configuration steps. If you need to make changes, choose Edit. When
you're finished, choose Create compute environment.

Resource: Compute environment template

The following example shows an empty compute environment template. You can use this
template to create your compute environment that can then be saved to a file and used with
the AWS CLI --cli-input-json option. For more information about these parameters, see
CreateComputeEnvironment in the AWS Batch API Reference.

Note

You can generate a compute environment template with the following AWS CLI command.

$ aws batch create-compute-environment --generate-cli-skeleton

{
 "computeEnvironmentName": "",
 "type": "UNMANAGED",
 "state": "DISABLED",

Resource: Compute environment template 68

https://docs.aws.amazon.com/eks/latest/userguide/local-zones.html
https://docs.aws.amazon.com/eks/latest/userguide/local-zones.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

 "unmanagedvCpus": 0,
 "computeResources": {
 "type": "EC2",
 "allocationStrategy": "BEST_FIT_PROGRESSIVE",
 "minvCpus": 0,
 "maxvCpus": 0,
 "desiredvCpus": 0,
 "instanceTypes": [
 ""
],
 "imageId": "",
 "subnets": [
 ""
],
 "securityGroupIds": [
 ""
],
 "ec2KeyPair": "",
 "instanceRole": "",
 "tags": {
 "KeyName": ""
 },
 "placementGroup": "",
 "bidPercentage": 0,
 "spotIamFleetRole": "",
 "launchTemplate": {
 "launchTemplateId": "",
 "launchTemplateName": "",
 "version": ""
 },
 "ec2Configuration": [
 {
 "imageType": "",
 "imageIdOverride": "",
 "imageKubernetesVersion": ""
 }
]
 },
 "serviceRole": "",
 "tags": {
 "KeyName": ""
 },
 "eksConfiguration": {
 "eksClusterArn": "",

Resource: Compute environment template 69

AWS Batch User Guide

 "kubernetesNamespace": ""
 }
}

Compute resource AMIs

By default, AWS Batch managed compute environments use a recent, approved version of the
Amazon ECS optimized AMI for compute resources. However, you might want to create your own
AMI to use for your managed and unmanaged compute environments. If you require any of the
following, we recommend you create your own AMI:

• Increasing the storage size of your AMI root or data volumes

• Adding instance storage volumes for supported Amazon EC2 instance types

• Customizing the Amazon ECS container agent

• Customizing Docker

• Configuring a GPU workload AMI to allow containers to access GPU hardware on supported
Amazon EC2 instance types

Note

After a compute environment is created, AWS Batch doesn't upgrade the AMIs in the
compute environment. AWS Batch also doesn't update the AMIs in your compute
environment when a newer version of the Amazon ECS optimized AMI is available. You're
responsible for the management of the guest operating system. This includes any updates
and security patches. You're also responsible for any additional application software or
utilities that you install on the compute resources. To use a new AMI for your AWS Batch
jobs, do the following:

1. Create a new compute environment with the new AMI.

2. Add the compute environment to an existing job queue.

3. Remove the earlier compute environment from your job queue.

4. Delete the earlier compute environment.

Compute resource AMIs 70

AWS Batch User Guide

In April 2022, AWS Batch added enhanced support for updating compute environments.
For more information, see Updating compute environments. To use the enhanced updating
of compute environments to update AMIs, follow these rules:

• Either don't set the service role (serviceRole) parameter or set it to the
AWSServiceRoleForBatch service-linked role.

• Set the allocation strategy (allocationStrategy) parameter
to BEST_FIT_PROGRESSIVE, SPOT_CAPACITY_OPTIMIZED, or
SPOT_PRICE_CAPACITY_OPTIMIZED.

• Set the update to latest image version (updateToLatestImageVersion) parameter to
true.

• Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration), or
in the launch template (launchTemplate). When you don't specify an AMI ID, AWS
Batch selects the latest Amazon ECS optimized AMI that AWS Batch supports at the time
the infrastructure update is initiated. Alternatively, you can specify the AMI ID in the
imageId or imageIdOverride parameters. Or, you can specify the launch template
that's identified by the LaunchTemplate properties. Changing any of these properties
starts an infrastructure update. If the AMI ID is specified in the launch template, the AMI
ID can't be replaced by specifying an AMI ID in either the imageId or imageIdOverride
parameters. The AMI ID can only be replaced by specifying a different launch template. If
the launch template version is set to $Default or $Latest, the AMI ID can be replaced
by setting either a new default version for the launch template (if $Default) or by
adding a new version to the launch template (if $Latest).

If these rules are followed, any update that starts an infrastructure update causes the AMI
ID to be re-selected. If the version setting in the launch template (launchTemplate)
is set to $Latest or $Default, the latest or default version of the launch template is
evaluated up at the time of the infrastructure update, even if the launchTemplate wasn't
updated.

Topics

• Compute resource AMI specification

• Tutorial: Create a compute resource AMI

Compute resource AMIs 71

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html#Batch-CreateComputeEnvironment-request-serviceRole
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResource.html#Batch-Type-ComputeResource-allocationStrategy
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-updateToLatestImageVersion
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-imageId
https://docs.aws.amazon.com/batch/latest/APIReference/API_Ec2Configuration.html#Batch-Type-Ec2Configuration-imageIdOverride
https://docs.aws.amazon.com/batch/latest/APIReference/API_Ec2Configuration.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate
https://docs.aws.amazon.com/batch/latest/APIReference/API_LaunchTemplateSpecification.html#Batch-Type-LaunchTemplateSpecification-version
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-launchTemplate

AWS Batch User Guide

• Use a GPU workload AMI

• Amazon Linux deprecation

Compute resource AMI specification

The basic AWS Batch compute resource AMI specification consists of the following:

Required

• A modern Linux distribution that's running at least version 3.10 of the Linux kernel on an HVM
virtualization type AMI. Windows containers aren't supported.

Important

Multi-node parallel jobs can only run on compute resources that were launched on an
Amazon Linux instance with the ecs-init package installed. We recommend that you
use the default Amazon ECS optimized AMI when you create your compute environment.
You can do this by not specifying a custom AMI. For more information, see Multi-node
parallel jobs.

• The Amazon ECS container agent. We recommend that you use the latest version. For more
information, see Installing the Amazon ECS Container Agent in the Amazon Elastic Container
Service Developer Guide.

• The awslogs log driver must be specified as an available log driver with the
ECS_AVAILABLE_LOGGING_DRIVERS environment variable when the Amazon ECS container
agent is started. For more information, see Amazon ECS Container Agent Configuration in the
Amazon Elastic Container Service Developer Guide.

• A Docker daemon that's running at least version 1.9, and any Docker runtime dependencies. For
more information, see Check runtime dependencies in the Docker documentation.

Note

We recommend the Docker version that ships with and is tested with the corresponding
Amazon ECS agent version that you're using. Amazon ECS provides a changelog for the
Linux variant of the Amazon ECS-optimized AMI on GitHub. For more information, see
Changelog.

Compute resource AMI specification 72

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html
https://docs.docker.com/engine/installation/binaries/#check-runtime-dependencies
https://github.com/aws/amazon-ecs-ami/blob/main/CHANGELOG.md

AWS Batch User Guide

Recommended

• An initialization and nanny process to run and monitor the Amazon ECS agent. The Amazon
ECS optimized AMI uses the ecs-init upstart process, and other operating systems might
use systemd. For more information and examples, see Example container instance User
Data Configuration Scripts in the Amazon Elastic Container Service Developer Guide. For more
information about ecs-init, see the ecs-init project on GitHub. At a minimum, managed
compute environments require the Amazon ECS agent to start at boot. If the Amazon ECS agent
isn't running on your compute resource, then it can't accept jobs from AWS Batch.

The Amazon ECS optimized AMI is preconfigured with these requirements and recommendations.
We recommend that you use the Amazon ECS optimized AMI or an Amazon Linux AMI with the
ecs-init package that's installed for your compute resources. Choose another AMI if your
application requires a specific operating system or a Docker version that's not yet available in those
AMIs. For more information, see Amazon ECS-Optimized AMI in the Amazon Elastic Container
Service Developer Guide.

Tutorial: Create a compute resource AMI

You can create your own custom compute resource AMI to use for your managed and unmanaged
compute environments. For instructions, see the Compute resource AMI specification. Then, after
you created a custom AMI, you can create a compute environment that uses that AMI that you can
associate a job queue with. Last, start submitting jobs to that queue.

To create a custom compute resource AMI

1. Choose a base AMI to start from. The base AMI must use HVM virtualization. The base AMI
can't be a Windows AMI.

Note

The AMI that you choose for a compute environment must match the architecture of
the instance types that you want to use for that compute environment. For example, if
your compute environment uses A1 instance types, the compute resource AMI that you
choose must support Arm instances. Amazon ECS vends both x86 and Arm versions of
the Amazon ECS optimized Amazon Linux 2 AMI. For more information, see Amazon

Tutorial: Create a compute resource AMI 73

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/example_user_data_scripts.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/example_user_data_scripts.html
https://github.com/aws/amazon-ecs-init
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html

AWS Batch User Guide

ECS optimized Amazon Linux 2 AMI in the Amazon Elastic Container Service Developer
Guide.

The Amazon ECS optimized Amazon Linux 2 AMI is the default AMI for compute resources
in managed compute environments. The Amazon ECS optimized Amazon Linux 2 AMI is
preconfigured and tested on AWS Batch by AWS engineers. It's a minimal AMI that you can get
started with and to get your compute resources that are running on AWS quickly. For more
information, see Amazon ECS Optimized AMI in the Amazon Elastic Container Service Developer
Guide.

Alternatively, you can choose another Amazon Linux 2 variant and install the ecs-init
package with the following commands. For more information, see Installing the Amazon ECS
container agent on an Amazon Linux 2 EC2 instance in the Amazon Elastic Container Service
Developer Guide:

$ sudo amazon-linux-extras disable docker
$ sudo amazon-linux-extras install ecs-init

For example, if you want to run GPU workloads on your AWS Batch compute resources, you
can start with the Amazon Linux Deep Learning AMI. Then, configure the AMI to run AWS
Batch jobs. For more information, see Use a GPU workload AMI.

Important

You can choose a base AMI that doesn't support the ecs-init package. However, if
you do, you must configure a way to start the Amazon ECS agent at boot and keep it
running. You can also view several example user data configuration scripts that use
systemd to start and monitor the Amazon ECS container agent. For more information,
see Example container instance user data configuration scripts in the Amazon Elastic
Container Service Developer Guide.

2. Launch an instance from your selected base AMI with the appropriate storage options for your
AMI. You can configure the size and number of attached Amazon EBS volumes, or instance
storage volumes if the instance type you selected supports them. For more information, see
Launching an Instance and Amazon EC2 Instance Store in the Amazon EC2 User Guide.

Tutorial: Create a compute resource AMI 74

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html#ecs-agent-install-al2
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html#ecs-agent-install-al2
https://aws.amazon.com/marketplace/pp/B01M0AXXQB
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/example_user_data_scripts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

AWS Batch User Guide

3. Connect to your instance with SSH and perform any necessary configuration tasks. This might
include any or all of the following steps:

• Installing the Amazon ECS container agent. For more information, see Installing the Amazon
ECS Container Agent in the Amazon Elastic Container Service Developer Guide.

• Configuring a script to format instance store volumes.

• Adding instance store volume or Amazon EFS file systems to the /etc/fstab file so that
they're mounted at boot.

• Configuring Docker options, such as enabling debugging or adjusting base image size.

• Installing packages or copying files.

For more information, see Connecting to Your Linux Instance Using SSH in the Amazon EC2
User Guide.

4. If you started the Amazon ECS container agent on your instance, you must stop it and remove
any persistent data checkpoint files before creating your AMI. Otherwise, if you don't do this,
the agent doesn't start on instances that are launched from your AMI.

a. Stop the Amazon ECS container agent.

• Amazon ECS-optimized Amazon Linux 2 AMI:

sudo systemctl stop ecs

• Amazon ECS-optimized Amazon Linux AMI:

sudo stop ecs

b. Remove the persistent data checkpoint files. By default, these files are located in the /
var/lib/ecs/data/ directory. Use the following command to remove these files, if
there are any.

sudo rm -rf /var/lib/ecs/data/*

5. Create a new AMI from your running instance. For more information, see Creating an Amazon
EBS Backed Linux AMI in the Amazon EC2 User Guide guide.

Tutorial: Create a compute resource AMI 75

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-install.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html

AWS Batch User Guide

To use your new AMI with AWS Batch

1. After the new AMI is created, create a compute environment with the new AMI. To do
this,choose the image type and enter the custom AMI ID in the Image ID override box when
you create the AWS Batch compute environment. For more information, see the section called
“Tutorial: Create a managed compute environment using Amazon EC2 resources”.

Note

The AMI that you choose for a compute environment must match the architecture of
the instance types that you want to use for that compute environment. For example, if
your compute environment uses A1 instance types, the compute resource AMI that you
choose must support Arm instances. Amazon ECS vends both x86 and Arm versions of
the Amazon ECS optimized Amazon Linux 2 AMI. For more information, see Amazon
ECS optimized Amazon Linux 2 AMI in the Amazon Elastic Container Service Developer
Guide.

2. Create a job queue and associate your new compute environment. For more information, see
Create a job queue.

Note

All compute environments that are associated with a job queue must share the same
architecture. AWS Batch doesn't support mixing compute environment architecture
types in a single job queue.

3. (Optional) Submit a sample job to your new job queue. For more information, see Reference:
Job definition examples, Create a single-node job definition , and Tutorial: submit a job.

Use a GPU workload AMI

To run GPU workloads on your AWS Batch compute resources, you must use an AMI with GPU
support. For more information, see Working with GPUs on Amazon ECS and Amazon ECS-
optimized AMIs in Amazon Elastic Container Service Developer Guide.

In managed compute environments, if the compute environment specifies any p2, p3, p4, p5,
g3, g3s, g4, or g5 instance types or instance families, then AWS Batch uses an Amazon ECS GPU
optimized AMI.

Use a GPU workload AMI 76

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#ecs-optimized-ami-linux-variants.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-gpu.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html

AWS Batch User Guide

In unmanaged compute environments, an Amazon ECS GPU-optimized AMI is recommended.
You can use the AWS Command Line Interface or AWS Systems Manager Parameter Store
GetParameter, GetParameters, and GetParametersByPath operations to retrieve the metadata for
the recommended Amazon ECS GPU-optimized AMIs.

Note

The p5 instance family is only supported on versions equal or later than 20230912
of the Amazon ECS GPU-optimized AMI and they are incompatible with p2 and g2
instance types. If you need to use p5 instances, ensure that your compute environment
doesn’t contain p2 or g2 instances and uses the latest default Batch AMI. Creating a
new compute environment will use the latest AMI but If you are updating your compute
environment to include p5, you can ensure you are using the latest AMI by setting
updateToLatestImageVersion to true in ComputeResource properties. For more
information on AMI compatibility with GPU instances, see Working with GPUs on Amazon
ECS in Amazon Elastic Container Service Developer Guide.

The following examples show how to use the GetParameter command.

AWS CLI

$ aws ssm get-parameter --name /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended \
 --region us-east-2 --output json

The output includes the AMI information in the Value parameter.

{
 "Parameter": {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended",
 "LastModifiedDate": 1555434128.664,
 "Value": "{\"schema_version\":1,\"image_name\":\"amzn2-ami-ecs-gpu-
hvm-2.0.20190402-x86_64-ebs\",\"image_id\":\"ami-083c800fe4211192f\",\"os\":\"Amazon
 Linux 2\",\"ecs_runtime_version\":\"Docker version 18.06.1-ce\",\"ecs_agent_version
\":\"1.27.0\"}",
 "Version": 9,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended"

Use a GPU workload AMI 77

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResourceUpdate.html#Batch-Type-ComputeResourceUpdate-updateToLatestImageVersion
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-gpu.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-gpu.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html

AWS Batch User Guide

 }
}

Python

from __future__ import print_function

import json
import boto3

ssm = boto3.client('ssm', 'us-east-2')

response = ssm.get_parameter(Name='/aws/service/ecs/optimized-ami/amazon-linux-2/
gpu/recommended')
jsonVal = json.loads(response['Parameter']['Value'])
print("image_id = " + jsonVal['image_id'])
print("image_name = " + jsonVal['image_name'])

The output only includes the AMI ID and AMI name:

image_id = ami-083c800fe4211192f
image_name = amzn2-ami-ecs-gpu-hvm-2.0.20190402-x86_64-ebs

The following examples demonstrate the use of GetParameters.

AWS CLI

$ aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended/image_name \
 /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/
recommended/image_id \
 --region us-east-2 --output json

The output includes the full metadata for each of the parameters:

{
 "InvalidParameters": [],
 "Parameters": [
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_id",

Use a GPU workload AMI 78

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameters.html

AWS Batch User Guide

 "LastModifiedDate": 1555434128.749,
 "Value": "ami-083c800fe4211192f",
 "Version": 9,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/image_id"
 },
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_name",
 "LastModifiedDate": 1555434128.712,
 "Value": "amzn2-ami-ecs-gpu-hvm-2.0.20190402-x86_64-ebs",
 "Version": 9,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/image_name"
 }
]
}

Python

from __future__ import print_function

import boto3

ssm = boto3.client('ssm', 'us-east-2')

response = ssm.get_parameters(
 Names=['/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_name',
 '/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_id'])
for parameter in response['Parameters']:
 print(parameter['Name'] + " = " + parameter['Value'])

The output includes the AMI ID and AMI name, using the full path for the names.

/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/image_id =
 ami-083c800fe4211192f
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/image_name = amzn2-
ami-ecs-gpu-hvm-2.0.20190402-x86_64-ebs

Use a GPU workload AMI 79

AWS Batch User Guide

The following examples show how to use the GetParametersByPath command.

AWS CLI

$ aws ssm get-parameters-by-path --path /aws/service/ecs/optimized-ami/amazon-
linux-2/gpu/recommended \
 --region us-east-2 --output json

The output includes the full metadata for all of the parameters under the specified path.

{
 "Parameters": [
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
ecs_agent_version",
 "LastModifiedDate": 1555434128.801,
 "Value": "1.27.0",
 "Version": 8,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/ecs_agent_version"
 },
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
ecs_runtime_version",
 "LastModifiedDate": 1548368308.213,
 "Value": "Docker version 18.06.1-ce",
 "Version": 1,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/ecs_runtime_version"
 },
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_id",
 "LastModifiedDate": 1555434128.749,
 "Value": "ami-083c800fe4211192f",
 "Version": 9,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/image_id"
 },
 {

Use a GPU workload AMI 80

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParametersByPath.html

AWS Batch User Guide

 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
image_name",
 "LastModifiedDate": 1555434128.712,
 "Value": "amzn2-ami-ecs-gpu-hvm-2.0.20190402-x86_64-ebs",
 "Version": 9,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/image_name"
 },
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
os",
 "LastModifiedDate": 1548368308.143,
 "Value": "Amazon Linux 2",
 "Version": 1,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/os"
 },
 {
 "Name": "/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/
schema_version",
 "LastModifiedDate": 1548368307.914,
 "Value": "1",
 "Version": 1,
 "Type": "String",
 "ARN": "arn:aws:ssm:us-east-2::parameter/aws/service/ecs/optimized-ami/
amazon-linux-2/gpu/recommended/schema_version"
 }
]
}

Python

from __future__ import print_function

import boto3

ssm = boto3.client('ssm', 'us-east-2')

response = ssm.get_parameters_by_path(Path='/aws/service/ecs/optimized-ami/amazon-
linux-2/gpu/recommended')
for parameter in response['Parameters']:

Use a GPU workload AMI 81

AWS Batch User Guide

 print(parameter['Name'] + " = " + parameter['Value'])

The output includes the values of all the parameter names at the specified path, using the full
path for the names.

/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/ecs_agent_version =
 1.27.0
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/ecs_runtime_version =
 Docker version 18.06.1-ce
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/image_id =
 ami-083c800fe4211192f
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/image_name = amzn2-
ami-ecs-gpu-hvm-2.0.20190402-x86_64-ebs
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/os = Amazon Linux 2
/aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended/schema_version = 1

For more information, see Retrieving Amazon ECS-Optimized AMI Metadata in the Amazon Elastic
Container Service Developer Guide.

Amazon Linux deprecation

The Amazon Linux AMI (also called Amazon Linux 1) reached its end of life on December 31, 2023.
AWS Batch has ended support for Amazon Linux AMI as it will not receive any security updates or
bug fixes starting January 1, 2024. For more information about the Amazon Linux end-of-life, see
AL FAQ.

We recommend that you update existing Amazon Linux based compute environments to Amazon
Linux 2023 to prevent unforeseen workload interruptions, and continue to receive security and
other updates.

Your compute environments using the Amazon Linux AMI may continue functioning beyond the
December 31, 2023 end-of-life date. However, these compute environments will no longer receive
any new software updates, security patches, or bug fixes from AWS. It is your responsibility to
maintain these compute environments on the Amazon Linux AMI after end-of-life. We recommend
migrating AWS Batch compute environments to Amazon Linux 2023 or Amazon Linux 2 to
maintain optimal performance and security.

For help migrating AWS Batch from the Amazon Linux AMI to Amazon Linux 2023 or Amazon Linux
2, see Updating compute environments - AWS Batch.

Amazon Linux deprecation 82

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/retrieve-ecs-optimized_AMI.html
https://aws.amazon.com/amazon-linux-ami/faqs/
https://docs.aws.amazon.com/batch/latest/userguide/updating-compute-environments.html

AWS Batch User Guide

Use Amazon EC2 launch template with AWS Batch

AWS Batch supports using Amazon EC2 launch templates with your EC2 compute environments.
With launch templates, you can modify the default configuration of your AWS Batch compute
resources without needing to create customized AMIs.

Note

Launch templates aren't supported on AWS Fargate resources.

You must create a launch template before you can associate it with a compute environment. You
can create a launch template in the Amazon EC2 console. Or, you can use the AWS CLI or an AWS
SDK. For example, the following JSON file represents a launch template that resizes the Docker
data volume for the default AWS Batch compute resource AMI and also sets it to be encrypted.

{
 "LaunchTemplateName": "increase-container-volume-encrypt",
 "LaunchTemplateData": {
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/xvda",
 "Ebs": {
 "Encrypted": true,
 "VolumeSize": 100,
 "VolumeType": "gp2"
 }
 }
]
 }
}

You can create the previous launch template by saving the JSON to a file that's called lt-
data.json and running the following AWS CLI command.

aws ec2 --region <region> create-launch-template --cli-input-json file://lt-data.json

For more information about launch templates, see Launching an Instance from a Launch Template
in the Amazon EC2 User Guide.

Use Amazon EC2 launch templates 83

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html

AWS Batch User Guide

If you use a launch template to create your compute environment, you can move the following
existing compute environment parameters to your launch template:

Note

Suppose that any of these parameters (except the Amazon EC2 tags) are specified both in
the launch template and in the compute environment configuration. Then, the compute
environment parameters take precedence. Amazon EC2 tags are merged between the
launch template and the compute environment configuration. If there's a collision on the
tag's key, the value in the compute environment configuration takes precedence.

• Amazon EC2 key pair

• Amazon EC2 AMI ID

• Security group IDs

• Amazon EC2 tags

The following launch template parameters are ignored by AWS Batch:

• Instance type (specify your desired instance types when you create your compute environment)

• Instance role (specify your desired instance role when you create your compute environment)

• Network interface subnets (specify your desired subnets when you create your compute
environment)

• Instance market options (AWS Batch must control Spot Instance configuration)

• Disable API termination (AWS Batch must control instance lifecycle)

AWS Batch only updates the launch template with a new launch template version during
infrastructure updates. For more information, see Updating compute environments.

Amazon EC2 user data in launch templates

You can supply Amazon EC2 user data in your launch template that's run by cloud-init when your
instances launch. Your user data can perform common configuration scenarios, including but not
limited to the following:

• Including users or groups

Amazon EC2 user data in launch templates 84

https://cloudinit.readthedocs.io/en/latest/index.html
https://cloudinit.readthedocs.io/en/latest/topics/examples.html#including-users-and-groups

AWS Batch User Guide

• Installing packages

• Creating partitions and file systems

Amazon EC2 user data in launch templates must be in the MIME multi-part archive format. This is
because your user data is merged with other AWS Batch user data that's required to configure your
compute resources. You can combine multiple user data blocks together into a single MIME multi-
part file. For example, you might want to combine a cloud boothook that configures the Docker
daemon with a user data shell script that writes configuration information for the Amazon ECS
container agent.

If you're using AWS CloudFormation, the AWS::CloudFormation::Init type can be used with the cfn-
init helper script to perform common configuration scenarios.

A MIME multi-part file consists of the following components:

• The content type and part boundary declaration: Content-Type: multipart/mixed;
boundary="==BOUNDARY=="

• The MIME version declaration: MIME-Version: 1.0

• One or more user data blocks that contain the following components:

• The opening boundary that signals the beginning of a user data block: --==BOUNDARY==. You
must keep the line before this boundary blank.

• The content type declaration for the block: Content-Type: text/cloud-config;
charset="us-ascii". For more information about content types, see the Cloud-Init
documentation. You must keep the line after the content type declaration blank.

• The content of the user data, such as a list of shell commands or cloud-init directives.

• The closing boundary that signals the end of the MIME multi-part file: --==BOUNDARY==--. You
must keep the line before the closing boundary blank.

Note

If you add user data to a launch template in the Amazon EC2 console, you can paste it in as
plaintext. Or, you can upload it from a file. If you use the AWS CLI or an AWS SDK, you must
first base64 encode the user data and submit that string as the value of the UserData
parameter when you call CreateLaunchTemplate, as shown in this JSON file.

{

Amazon EC2 user data in launch templates 85

https://cloudinit.readthedocs.io/en/latest/topics/examples.html#install-arbitrary-packages
https://cloudinit.readthedocs.io/en/latest/topics/examples.html#create-partitions-and-filesystems
https://cloudinit.readthedocs.io/en/latest/topics/format.html#mime-multi-part-archive
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-init.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-init.html
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://cloudinit.readthedocs.io/en/latest/topics/format.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateLaunchTemplate.html

AWS Batch User Guide

 "LaunchTemplateName": "base64-user-data",
 "LaunchTemplateData": {
 "UserData":
 "ewogICAgIkxhdW5jaFRlbXBsYXRlTmFtZSI6ICJpbmNyZWFzZS1jb250YWluZXItdm9sdW..."
 }
}

Topics

• Reference: Amazon EC2 launch template examples

Reference: Amazon EC2 launch template examples

The following are example MIME multi-part files that you can use to create your own templates.

Examples

• Example: Mount an existing Amazon EFS file system

• Example: Override default Amazon ECS container agent configuration

• Example: Mount an existing Amazon FSx for Lustre file system

Example: Mount an existing Amazon EFS file system

Example

This example MIME multi-part file configures the compute resource to install the amazon-efs-
utils package and mount an existing Amazon EFS file system at /mnt/efs.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/cloud-config; charset="us-ascii"

packages:
- amazon-efs-utils

runcmd:
- file_system_id_01=fs-abcdef123
- efs_directory=/mnt/efs

Reference: Launch template examples 86

AWS Batch User Guide

- mkdir -p ${efs_directory}
- echo "${file_system_id_01}:/ ${efs_directory} efs tls,_netdev" >> /etc/fstab
- mount -a -t efs defaults

--==MYBOUNDARY==--

Example: Override default Amazon ECS container agent configuration

Example

This example MIME multi-part file overrides the default Docker image cleanup settings for a
compute resource.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
echo ECS_IMAGE_CLEANUP_INTERVAL=60m >> /etc/ecs/ecs.config
echo ECS_IMAGE_MINIMUM_CLEANUP_AGE=60m >> /etc/ecs/ecs.config

--==MYBOUNDARY==--

Example: Mount an existing Amazon FSx for Lustre file system

Example

This example MIME multi-part file configures the compute resource to install the lustre2.10
package from the Extras Library and mount an existing FSx for Lustre file system at /scratch and
a mount name of fsx. This example is for Amazon Linux 2. For installation instructions for other
Linux distributions, see Installing the Lustre Client in the Amazon FSx for Lustre User Guide. For
more information, see Mounting your Amazon FSx file system automatically in the Amazon FSx for
Lustre User Guide.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/cloud-config; charset="us-ascii"

Reference: Launch template examples 87

https://docs.aws.amazon.com/fsx/latest/LustreGuide/install-lustre-client.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/mount-fs-auto-mount-onreboot.html

AWS Batch User Guide

runcmd:
- file_system_id_01=fs-0abcdef1234567890
- region=us-east-2
- fsx_directory=/scratch
- amazon-linux-extras install -y lustre2.10
- mkdir -p ${fsx_directory}
- mount -t lustre ${file_system_id_01}.fsx.${region}.amazonaws.com@tcp:fsx
 ${fsx_directory}

--==MYBOUNDARY==--

In the volumes and mountPoints members of the container properties the mount points must be
mapped into the container.

{
 "volumes": [
 {
 "host": {
 "sourcePath": "/scratch"
 },
 "name": "Scratch"
 }
],
 "mountPoints": [
 {
 "containerPath": "/scratch",
 "sourceVolume": "Scratch"
 }
],
}

EC2 configurations

AWS Batch uses Amazon ECS optimized AMIs for EC2 and EC2 Spot compute environments. The
default is Amazon Linux 2 (ECS_AL2). Before March 31, 2021, this default was Amazon Linux
(ECS_AL1) for non-GPU, non AWS Graviton instances.

Note

AWS Batch also supports Amazon Linux 2023.

EC2 configurations 88

https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html#Batch-Type-ContainerProperties-volumes
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html#Batch-Type-ContainerProperties-mountPoints
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#al2ami
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html#alami

AWS Batch User Guide

The Amazon Linux AMI (also called Amazon Linux 1) reached its end of life on December 31, 2023.
AWS Batch has ended support for Amazon Linux AMI as it will not receive any security updates or
bug fixes starting January 1, 2024. For more information about the Amazon Linux end-of-life, see
AL FAQ.

We recommend that you update existing Amazon Linux based compute environments to Amazon
Linux 2023 to prevent unforeseen workload interruptions, and continue to receive security and
other updates.

Your compute environments using the Amazon Linux AMI may continue functioning beyond the
December 31, 2023 end-of-life date. However, these compute environments will no longer receive
any new software updates, security patches, or bug fixes from AWS. It is your responsibility to
maintain these compute environments on the Amazon Linux AMI after end-of-life. We recommend
migrating AWS Batch compute environments to Amazon Linux 2023 or Amazon Linux 2 to
maintain optimal performance and security.

For help migrating AWS Batch from the Amazon Linux AMI to Amazon Linux 2023 or Amazon Linux
2, seeUpdating compute environments - AWS Batch

Instance type allocation strategies for AWS Batch

When a managed compute environment is created, AWS Batch selects instance types from the
instanceTypes specified that best fit the needs of the jobs. The allocation strategy defines
behavior when AWS Batch needs additional capacity. This parameter isn't applicable to jobs that
run on Fargate resources. Don't specify this parameter.

BEST_FIT (default)

AWS Batch selects an instance type that best fits the needs of the jobs with a preference for the
lowest-cost instance type. If additional instances of the selected instance type aren't available,
AWS Batch waits for the additional instances to be available. If there aren't enough instances
available, or if the user is reaching the Amazon EC2 service quotas, then additional jobs don't
run until currently running jobs are complete. This allocation strategy keeps costs lower but
can limit scaling. If you're using Spot Fleets with BEST_FIT, the Spot Fleet IAM Role must
be specified. BEST_FIT isn't supported when updating compute environments. For more
information, see Updating compute environments.

Instance type allocation strategies 89

https://aws.amazon.com/amazon-linux-ami/faqs/
https://docs.aws.amazon.com/batch/latest/userguide/updating-compute-environments.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResource.html#Batch-Type-ComputeResource-instanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html

AWS Batch User Guide

Note

AWS Batch manages AWS resources in your account. Compute environments with
the BEST_FIT allocation strategy originally utilized launch configurations by default.
However, the use of launch configurations with new AWS accounts will be restricted
over time. Therefore, beginning in late April 2024, newly-created BEST_FIT compute
environments will default to launch templates. If your service role lacks permissions to
manage launch templates, AWS Batch may continue to utilize launch configurations.
Existing compute environments will continue to use launch configurations.

BEST_FIT_PROGRESSIVE

AWS Batch selects additional instance types that are large enough to meet the requirements
of the jobs in the queue. Instance types with a lower cost for each unit vCPU are preferred.
If additional instances of the previously selected instance types aren't available, AWS Batch
selects new instance types.

SPOT_CAPACITY_OPTIMIZED

AWS Batch selects one or more instance types that are large enough to meet the requirements
of the jobs in the queue. Instance types that are less likely to be interrupted are preferred. This
allocation strategy is only available for Spot Instance compute resources.

SPOT_PRICE_CAPACITY_OPTIMIZED

The price and capacity optimized allocation strategy looks at both price and capacity to select
the Spot Instance pools that are the least likely to be interrupted and have the lowest possible
price. This allocation strategy is only available for Spot Instance compute resources.

Note

We recommend that you use SPOT_PRICE_CAPACITY_OPTIMIZED rather than
SPOT_CAPACITY_OPTIMIZED in most instances.

The BEST_FIT_PROGRESSIVE and BEST_FIT strategies use On-Demand or Spot Instances, and
the SPOT_CAPACITY_OPTIMIZED and SPOT_PRICE_CAPACITY_OPTIMIZED strategies uses
Spot Instances. However, AWS Batch might need to exceed maxvCpus to meet your capacity
requirements. In this event, AWS Batch never exceeds maxvCpus by more than a single instance.

Instance type allocation strategies 90

AWS Batch User Guide

Compute resource memory management

When the Amazon ECS container agent registers a compute resource into a compute environment,
the agent must determine how much memory the compute resource has available to reserve for
your jobs. Because of platform memory overhead and memory occupied by the system kernel, this
number is different than the installed memory amount for Amazon EC2 instances. For example,
an m4.large instance has 8 GiB of installed memory. However, this doesn't always translate to
exactly 8192 MiB of memory available for jobs when the compute resource registers.

Suppose that you specify 8192 MiB for the job, and none of your compute resources have 8192 MiB
or greater of memory available to satisfy this requirement. Then, the job can't be placed in your
compute environment. If you're using a managed compute environment, AWS Batch must launch a
larger instance type to accommodate the request.

The default AWS Batch compute resource AMI also reserves 32 MiB of memory for the Amazon ECS
container agent and other critical system processes. This memory isn't available for job allocation.
For more information, see Reserve system memory.

The Amazon ECS container agent uses the Docker ReadMemInfo() function to query the total
memory available to the operating system. Linux provides command line utilities to determine the
total memory.

Example - Determine Linux total memory

The free command returns the total memory that's recognized by the operating system.

$ free -b

The following is example output for an m4.large instance that's running the Amazon ECS-
optimized Amazon Linux AMI.

 total used free shared buffers cached
Mem: 8373026816 348180480 8024846336 90112 25534464 205418496
-/+ buffers/cache: 117227520 8255799296

This instance has 8373026816 bytes of total memory. This means that there's 7985 MiB available
for tasks.

Topics

• Reserve system memory

Memory management 91

AWS Batch User Guide

• Tutorial: View compute resource memory

• Memory and vCPU considerations for AWS Batch on Amazon EKS

Reserve system memory

If you occupy all of the memory on a compute resource with your jobs, it's possible that
your jobs contend with critical system processes for memory and possibly cause a system
failure. The Amazon ECS container agent provides a configuration variable that's called
ECS_RESERVED_MEMORY. You can use this configuration variable to remove a specified number of
MiB of memory from the pool that's allocated to your jobs. This effectively reserves that memory
for critical system processes.

The default AWS Batch compute resource AMI reserves 32 MiB of memory for the Amazon ECS
container agent and other critical system processes.

Tutorial: View compute resource memory

You can view how much memory a compute resource registers with in the Amazon ECS console
or with the DescribeContainerInstances API operation. If you're trying to maximize your resource
utilization by providing your jobs as much memory as possible for a particular instance type, you
can observe the memory available for that compute resource and then assign your jobs that much
memory.

To view compute resource memory

1. Open the console at https://console.aws.amazon.com/ecs/v2.

2. Choose Clusters, and then choose the cluster that hosts your compute resources to view.

The cluster name for your compute environment begins with your compute environment
name.

3. Choose Infrastructure.

4. Under Container instances, choose the container instance.

5. The Resources and networking section shows the registered and available memory for the
compute resource.

The Registered memory value is what the compute resource registered with Amazon ECS
when it was first launched, and the Available memory value is what hasn't already been
allocated to jobs.

Reserve system memory 92

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_DescribeContainerInstances.html
https://console.aws.amazon.com/ecs/v2

AWS Batch User Guide

Memory and vCPU considerations for AWS Batch on Amazon EKS

In AWS Batch on Amazon EKS, you can specify the resources that are made available to a container.
For example, you can specify requests or limits values for vCPU and memory resources.

The following are constraints for specifying vCPU resources:

• At least one vCPU requests or limits value must be specified.

• One vCPU unit is equivalent to one physical or virtual core.

• The vCPU value must be entered in whole numbers or in increments of 0.25.

• The smallest valid vCPU value is 0.25.

• If both are specified, the requests value must be less than or equal to the limits value. This
way, you can configure both soft and hard vCPU configurations.

• vCPU values can't be specified in milliCPU form. For example, 100m isn't a valid value.

• AWS Batch uses the requests value for scaling decisions. If a requests value isn't specified,
the limits value is copied to the requests value.

The following are constraints for specifying memory resources:

• At least one memory requests or limits value must be specified.

• Memory values must be in mebibytes (MiBs).

• If both are specified, the requests value must be equal to the limits value.

• AWS Batch uses the requests value for scaling decisions. If a requests value is not specified,
the limits value is copied to the requests value.

The following are constraints for specifying GPU resources:

• If both are specified, the requests value must be equal to the limits value.

• AWS Batch uses the requests value for scaling decisions. If a requests value isn't specified,
the limits value is copied to the requests value.

Memory and vCPU considerations for AWS Batch on Amazon EKS 93

AWS Batch User Guide

Example: job definitions

The following AWS Batch on Amazon EKS job definition configures soft vCPU shares. This lets AWS
Batch on Amazon EKS use all of the vCPU capacity for the instance type. However, if there are
other jobs running, the job is allocated a maximum of 2 vCPUs. Memory is limited to 2 GB.

{
 "jobDefinitionName": "MyJobOnEks_Sleep",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": ["sleep", "60"],
 "resources": {
 "requests": {
 "cpu": "2",
 "memory": "2048Mi"
 }
 }
 }
]
 }
 }
}

The following AWS Batch on Amazon EKS job definition has a request value of 1 and allocates a
maximum of 4 vCPUs to the job.

{
 "jobDefinitionName": "MyJobOnEks_Sleep",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": ["sleep", "60"],
 "resources": {
 "requests": {
 "cpu": "1"

Memory and vCPU considerations for AWS Batch on Amazon EKS 94

AWS Batch User Guide

 },
 "limits": {
 "cpu": "4",
 "memory": "2048Mi"
 }
 }
 }
]
 }
 }
}

The following AWS Batch on Amazon EKS job definition sets a vCPU limits value of 1 and a
memory limits value of 1 GB.

{
 "jobDefinitionName": "MyJobOnEks_Sleep",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": ["sleep", "60"],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 }
 }
]
 }
 }
}

When AWS Batch translates an AWS Batch on Amazon EKS job into an Amazon EKS pod, AWS
Batch copies thelimits value to the requests value. This is if a requests value isn't specified.
When you submit the preceding example job definition, the pod spec is as follows.

apiVersion: v1
kind: Pod

Memory and vCPU considerations for AWS Batch on Amazon EKS 95

AWS Batch User Guide

...
spec:
 ...
 containers:
 - command:
 - sleep
 - 60
 image: public.ecr.aws/amazonlinux/amazonlinux:2
 resources:
 limits:
 cpu: 1
 memory: 1024Mi
 requests:
 cpu: 1
 memory: 1024Mi
 ...

Node CPU and memory reservations

AWS Batch relies on the default logic of the bootstrap.sh file for vCPU and memory
reservations. For more information about the bootstrap.sh file, see bootstrap.sh. When you size
your vCPU and memory resources, consider the examples that follow.

Note

If no instances are running, vCPU and memory reservations can initially affect AWS Batch
scaling logic and decision making. After the instances are running, AWS Batch adjusts the
initial allocations.

Example: Node CPU reservation

The CPU reservation value is calculated in millicores using the total number of vCPUs that are
available to the instance.

vCPU number Percentage reserved

1 6%

2 1%

Memory and vCPU considerations for AWS Batch on Amazon EKS 96

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh

AWS Batch User Guide

vCPU number Percentage reserved

3-4 0.5%

4 and above 0.25%

Using the preceding values, the following is true:

• The CPU reservation value for a c5.large instance with 2 vCPUs is 70 m. This is calculated in
the following way: (1*60) + (1*10) = 70 m.

• The CPU reservation value for a c5.24xlarge instance with 96 vCPUs is 310 m. This is
calculated in the following way: (1*60) + (1*10) + (2*5) + (92*2.5) = 310 m.

In this example, there are 1930 (calculated 2000-70) millicore vCPU units available to run jobs on
a c5.large instance. Suppose your job requires 2 (2*1000 m) vCPU units, the job doesn't fit on a
single c5.large instance. However, a job that requires 1.75 vCPU units fits.

Example: Node memory reservation

The memory reservation value is calculated in mebibytes using the following:

• The instance capacity in mebibytes. For example, an 8 GB instance is 7,748 MiB.

• The kubeReserved value. The kubeReserved value is the amount of memory to reserve for
system daemons. The kubeReserved value is calculated in the following way: ((11 * maximum
number of pods that is supported by the instance type) + 255). For information about the
maximum number of pods that's supported by an instance type, see eni-max-pods.txt

• The HardEvictionLimit value. When available memory falls below the HardEvictionLimit
value, the instance attempts to evict pods.

The formula to calculate the allocatable memory is as follows: (instance_capacity_in_MiB) -
(11 * (maximum_number_of_pods)) - 255 - (HardEvictionLimit value.)).

A c5.large instance supports up to 29 pods. For an 8 GB c5.large instance with a
HardEvictionLimit value of 100 MiB, the allocatable memory is 7074 MiB. This is calculated
in the following way: (7748 - (11 * 29) -255 -100) = 7074 MiB. In this example, an 8,192 MiB job
doesn't fit on this instance even though it's an 8 gibibyte (GiB) instance.

Memory and vCPU considerations for AWS Batch on Amazon EKS 97

https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt

AWS Batch User Guide

DaemonSets

When you use DaemonSets, consider the following:

• If no AWS Batch on Amazon EKS instances are running, DaemonSets can initially affect AWS
Batch scaling logic and decision making. AWS Batch initially allocates 0.5 vCPU units and 500
MiB for expected DaemonSets. After the instances are running, AWS Batch adjusts the initial
allocations.

• If a DaemonSet defines vCPU or memory limits, AWS Batch on Amazon EKS jobs have fewer
resources. We recommend that you keep the number of DaemonSets that are assigned to AWS
Batch jobs as low as possible.

Updating compute environments

After you create a compute environment that uses EC2 resources, you can update many of the
settings of the compute environment directly. However, changing some of the settings requires
that AWS Batch replace the instances in the compute environment.

Updating AWS Fargate compute environments

For compute environments that use Fargate resources, you can update the following.

• securityGroupIds

• subnets

• desiredvCpus

• maxvCpus

• minvCpus

AWS Batch has two update mechanisms. The first is a scaling update where instances are added
or removed from the compute environment. The second is an infrastructure update where the
instances in the compute environment are replaced. An infrastructure update takes much longer
than a scaling update.

If you update compute environments with AWS Batch, changing only these settings causes a
scaling update: desired vCPUs (desiredvCpus), maximum vCPUs (maxvCpus), minimum vCPUs
(minvCpus), service role (serviceRole), and state (state).

Updating compute environments 98

AWS Batch User Guide

Note

When you update the desiredvCpus setting, the value must be between the minvCpus
and maxvCpus values.
Additionally, the updated desiredvCpus value must be greater than or equal to the
current desiredvCpus value. For more information, see the section called “Error message
when you update the desiredvCpus setting”.

If any of the following settings are changed in an UpdateComputeEnvironment API
action, AWS Batch initiates an infrastructure update. An infrastructure update requires
that the service role is set to AWSServiceRoleForBatch (the default) and that the
allocation strategy is BEST_FIT_PROGRESSIVE, SPOT_CAPACITY_OPTIMIZED, or
SPOT_PRICE_CAPACITY_OPTIMIZED. BEST_FIT isn't supported. Except for service role, all of the
settings that can be changed for a scaling update can also be changed for an infrastructure update.

Note

We recommend that you use SPOT_PRICE_CAPACITY_OPTIMIZED rather than
SPOT_CAPACITY_OPTIMIZEDn in most instances.

During an infrastructure update, the status of the compute environment changes to UPDATING.
New instances are launched using the updated settings. New jobs are scheduled on the new
instances. Jobs that are currently running are dispatched according to the infrastructure update
policy. For more information, see UpdateComputeEnvironment and UpdatePolicy in the AWS Batch
API Reference.

In the UpdatePolicy data type, consider the following scenarios:

Note

In these scenarios, the following is true. When an instance is terminated, running jobs are
stopped. By default, these jobs aren't retried. To retry one of these jobs after an instance
is terminated, configure a job retry strategy. For more information, see the section called
“Automated job retries” in the AWS Batch User Guide.

Updating AWS Fargate compute environments 99

https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdatePolicy.html

AWS Batch User Guide

• If the terminateJobsOnUpdate setting is set to true, running jobs are terminated during an
infrastructure update. The jobExecutionTimeoutMinutes setting is ignored.

• If the terminateJobsOnUpdate setting is set to false, jobs can run for additional
time after the infrastructure update occurs. This additional time is configured in the
jobExecutionTimeoutMinutes setting. By default, the jobExecutionTimeoutMinutes
setting is 30 minutes.

As capacity becomes available in the compute environment, new instances are launched with
the updated settings and jobs are started on the new instances. As all of the jobs complete on
instances with the old settings, the old instances are terminated. What capacity becoming available
means is that desired number of vCPUs is below the maximum number of vCPUs by at least as
many vCPUs as required by the smallest instance type.

Infrastructure updates

An infrastructure update is required to change some settings for a compute environment. If any of
the following settings are changed, an infrastructure update is started:

Important

The compute environment must use the AWSServiceRoleForBatch service-linked role to
make changes that require an infrastructure update.
If the compute environment uses a service-linked role, it can't be changed to use a regular
IAM role. Likewise, if the compute environment has a regular IAM role, it can't be changed
to use a service-linked role. Therefore, you can only perform infrastructure updates on
compute environments that were created by using a service-linked role.

• Allocation strategy (allocationStrategy, must be either BEST_FIT_PROGRESSIVE,
SPOT_CAPACITY_OPTIMIZED, or SPOT_PRICE_CAPACITY_OPTIMIZED. If the original
allocation strategy is BEST_FIT, infrastructure updates aren't supported.)

Note

We recommend that you use SPOT_PRICE_CAPACITY_OPTIMIZED rather than
SPOT_CAPACITY_OPTIMIZEDn in most instances.

• Bid percentage (bidPercentage)

Updating AWS Fargate compute environments 100

AWS Batch User Guide

• EC2 configuration (ec2Configuration)

• Key pair (ec2KeyPair)

• Image ID (imageId)

• Instance role (instanceRole)

• Instance types (instanceTypes)

• Launch template (launchTemplate)

• Placement group (placementGroup)

• Security groups (securityGroupIds)

• VPC subnets (subnets)

• EC2 tags (tags)

• Compute environment type (type, can be one of EC2 or SPOT)

• Whether to update to the latest AMI that's supported by AWS Batch during an infrastructure
update updateToLatestImageVersion

Updating the AMI ID

During an infrastructure update, the compute environment's AMI ID might change, depending
on whether AMIs are specified in any of these three settings. AMIs are specified in the imageId
(in computeResources), imageIdOverride (in ec2Configuration), or the launch template
specified in launchTemplate. Suppose that no AMI IDs are specified in any of those settings and
the updateToLatestImageVersion setting is true. Then, the latest Amazon ECS optimized AMI
supported by AWS Batch is used for any infrastructure update.

If an AMI ID is specified in at least one of these settings, the update depends on which setting
provided the AMI ID used before the update. When you create a compute environment, the priority
for selecting an AMI ID is first the launch template, then the imageId setting, and finally the
imageIdOverride setting. However, if the AMI ID that's used came from the launch template,
updating either the imageId or imageIdOverride settings doesn't update the AMI ID. The only
way to update an AMI ID selected from the launch template is to update the launch template. If the
version parameter of the launch template is $Default or $Latest, the default or latest version
of the specified launch template is evaluated. If a different AMI ID is selected by the default or the
latest version of the launch template is selected, that AMI ID is used in the update.

Updating the AMI ID 101

AWS Batch User Guide

If the launch template was not used to select the AMI ID, the AMI ID that's specified in the imageId
or imageIdOverride parameters is used. If both are specified, the AMI ID specified in the
imageIdOverride parameter is used.

Suppose that the compute environment uses an AMI ID specified by the imageId,
imageIdOverride, or launchTemplate parameters, and you want to use the latest Amazon
ECS optimized AMI supported by AWS Batch. Then, the update must remove the settings that
provided AMI IDs. For imageId, this requires specifying an empty string for that parameter.
For imageIdOverride, this requires specifying an empty string for the ec2Configuration
parameter.

If the AMI ID came from the launch template, you can change to the latest Amazon ECS optimized
AMI that's supported by AWS Batch by either one of the following ways:

• Remove the launch template by specifying an empty string for the launchTemplateId or
launchTemplateName parameter. This removes the entire launch template, rather than the AMI
ID alone.

• If the updated version of the launch template doesn't specify an AMI ID, the
updateToLatestImageVersion parameter must be set to true.

Fargate compute environments

Fargate is a technology that you can use with AWS Batch to run containers without having
to manage servers or clusters of Amazon EC2 instances. With Fargate, you no longer have to
provision, configure, or scale clusters of virtual machines to run containers. This removes the need
to choose server types, decide when to scale your clusters, or optimize cluster packing.

When you run your jobs with Fargate resources, you package your application in containers,
specify the CPU and memory requirements, define networking and IAM policies, and launch the
application. Each Fargate job has its own isolation boundary and does not share the underlying
kernel, CPU resources, memory resources, or elastic network interface with another job.

Topics

• When to use Fargate

• Job definitions on Fargate

• Job queues on Fargate

• Compute environments on Fargate

Fargate compute environments 102

https://aws.amazon.com/what-are-containers

AWS Batch User Guide

When to use Fargate

We recommend using Fargate in most scenarios. Fargate launches and scales the compute to
closely match the resource requirements that you specify for the container. With Fargate, you
don't need to over-provision or pay for additional servers. You also don't need to worry about
the specifics of infrastructure-related parameters such as instance type. When the compute
environment needs to be scaled up, jobs that run on Fargate resources can get started more
quickly. Typically, it takes a few minutes to spin up a new Amazon EC2 instance. However, jobs that
run on Fargate can be provisioned in about 30 seconds. The exact time required depends on several
factors, including container image size and number of jobs.

However, we recommend that you use Amazon EC2 if your jobs require any of the following:

• More than 16 vCPUs

• More than 120 gibibytes (GiB) of memory

• A GPU

• A custom Amazon Machine Image (AMI)

• Any of the linuxParameters parameters

If you have a large number of jobs, we recommend that you use Amazon EC2 infrastructure. For
example, if the number of concurrently running jobs exceeds the Fargate throttling limits. This
is because, with EC2, jobs can be dispatched at a higher rate to EC2 resources than to Fargate
resources. Moreover, more jobs can run concurrently when you use EC2. For more information, see
Fargate service quotas in the Amazon Elastic Container Service Developer Guide.

Job definitions on Fargate

AWS Batch jobs on AWS Fargate don't support all of the job definition parameters that are
available. Some parameters are not supported at all, and others behave differently for Fargate jobs.

The following list describes job definition parameters that are not valid or otherwise restricted in
Fargate jobs.

platformCapabilities

Must be specified as FARGATE.

"platformCapabilities": ["FARGATE"]

When to use Fargate 103

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-quotas.html#service-quotas-fargate

AWS Batch User Guide

type

Must be specified as container.

"type": "container"

Parameters in containerProperties

executionRoleArn

Must be specified for jobs running on Fargate resources. For more information, see IAM Roles
for Tasks in the Amazon Elastic Container Service Developer Guide.

"executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole"

fargatePlatformConfiguration

(Optional, only for Fargate job definitions). Specifies the Fargate platform version, or
LATEST for a recent platform version. Possible values for platformVersion are 1.3.0,
1.4.0, and LATEST (default).

"fargatePlatformConfiguration": { "platformVersion": "1.4.0" }

instanceType, ulimits

Not applicable for jobs running on Fargate resources.

memory, vcpus

These settings must be specified in resourceRequirements

privileged

Either don't specify this parameter, or specify false.

"privileged": false

resourceRequirements

Both memory and vCPU requirements must be specified using supported values. GPU resources
aren't supported for jobs that run on Fargate resources.

If you use GuardDuty Runtime Monitoring, there is a slight memory overhead for the GuardDuty
security agent. Therefore the memory limit must include the size of the GuardDuty security

Job definitions on Fargate 104

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Batch User Guide

agent. For information about the GuardDuty security agent memory limits, see CPU and
memory limits in the GuardDuty User Guide. For information about the best practices, see How
do I remediate out of memory errors on my Fargate tasks after enabling Runtime Monitoring in
the Amazon ECS Developer Guide.

"resourceRequirements": [
 {"type": "MEMORY", "value": "512"},
 {"type": "VCPU", "value": "0.25"}
]

Parameters in linuxParameters

devices, maxSwap, sharedMemorySize, swappiness, tmpfs

Not applicable for jobs that run on Fargate resources.

Parameters in logConfiguration

logDriver

Only awslogs and splunk are supported. For more information, see Use the awslogs log
driver.

Members in networkConfiguration

assignPublicIp

If the private subnet doesn't have a NAT gateway attached to send traffic to the Internet,
assignPublicIp must be "ENABLED". For more information, see AWS Batch IAM execution
role.

Job queues on Fargate

AWS Batch job queues on AWS Fargate are essentially unchanged. The only restriction is that
the compute environments that are listed in computeEnvironmentOrder must all be Fargate
compute environments (FARGATE or FARGATE_SPOT). EC2 and Fargate compute environments
can't be mixed.

Compute environments on Fargate

AWS Batch compute environments on AWS Fargate don't support all of the compute environment
parameters that are available. Some parameters are not supported at all. Others have specific
requirements for Fargate.

Job queues on Fargate 105

https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ecs-support.html#ecs-runtime-agent-cpu-memory-limits
https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ecs-support.html#ecs-runtime-agent-cpu-memory-limits
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-troubleshooting.html#memory-error
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-troubleshooting.html#memory-error
https://docs.aws.amazon.com/batch/latest/APIReference/API_NetworkConfiguration.html#Batch-Type-NetworkConfiguration-assignPublicIp

AWS Batch User Guide

The following list describes compute environment parameters that aren't valid or otherwise
restricted in Fargate jobs.

type

This parameter must be MANAGED.

"type": "MANAGED"

Parameters in the computeResources object

allocationStrategy, bidPercentage, desiredvCpus, imageId, instanceTypes,
ec2Configuration, ec2KeyPair, instanceRole, launchTemplate, minvCpus,
placementGroup, spotIamFleetRole

These aren't applicable for Fargate compute environments and can't be provided.

subnets

If the subnets listed in this parameter don't have NAT gateways attached, the
assignPublicIp parameter in the job definition must be set to ENABLED.

tags

This isn't applicable for Fargate compute environments and can't be provided. To specify
tags for Fargate compute environments, use the tags parameter that's not in the
computeResources object.

type

This must be either FARGATE or FARGATE_SPOT.

"type": "FARGATE_SPOT"

Amazon EKS compute environments

Tutorial: Getting started with AWS Batch on Amazon EKS provides a short guide to creating EKS
compute environments. This section provides more details on Amazon EKS compute environments.

Amazon EKS compute environments 106

AWS Batch User Guide

AWS Batch simplifies your batch workloads on Amazon EKS clusters by providing managed batch
capabilities. This includes queuing, dependency tracking, managed job retries and priorities, pod
management, and node scaling. AWS Batch can handle multiple Availability Zones and multiple
Amazon EC2 instance types and sizes. AWS Batch integrates several of the Amazon EC2 Spot best
practices to run your workloads in a fault-tolerant manner, allowing for fewer interruptions. You
can use AWS Batch to run a handful of overnight jobs or millions of mission-critical jobs with
confidence.

Amazon EKS compute environments 107

AWS Batch User Guide

AWS Batch is a managed service that orchestrates batch workloads in your Kubernetes clusters
that are managed by Amazon Elastic Kubernetes Service (Amazon EKS). AWS Batch conducts this
orchestration external to your clusters using an “overlay” model. Since AWS Batch is a managed
service, there are no Kubernetes components (for example, Operators or Custom Resources) to
install or manage in your cluster. AWS Batch only needs your cluster to be configured with Role-
Based Access Controls (RBAC) that allow AWS Batch to communicate with the Kubernetes API
server. AWS Batch calls Kubernetes APIs to create, monitor, and delete Kubernetes pods and nodes.

AWS Batch has built-in scaling logic to scale Kubernetes nodes based on job queue load with
optimizations in terms of job capacity allocations. When the job queue is empty, AWS Batch
scales down the nodes to the minimum capacity that you set, which by default is zero. AWS Batch
manages the full lifecycle of these nodes, and decorates the nodes with labels and taints. This way,

Amazon EKS compute environments 108

AWS Batch User Guide

other Kubernetes workloads aren't placed on the nodes managed by AWS Batch. The exception
to this are DaemonSets, which can target AWS Batch nodes to provide monitoring and other
functionality required for proper execution of the jobs. Additionally, AWS Batch doesn't run jobs,
specifically pods, on nodes in your cluster that it doesn't manage. This way, you can use separate
scaling logic and services for other applications on the cluster.

To submit jobs to AWS Batch, you interact directly with the AWS Batch API. AWS Batch translates
jobs into podspecs and then creates the requests to place pods on nodes managed by AWS Batch
in your Amazon EKS cluster. You can use tools such as kubectl to view running pods and nodes.
When a pod has completed its execution, AWS Batch deletes the pod it created to maintain a lower
load on the Kubernetes system.

You can get started by connecting a valid Amazon EKS cluster with AWS Batch. Then attach an
AWS Batch job queue to it, and register an Amazon EKS job definition using podspec equivalent
attributes. Last, submit jobs using the SubmitJob API operation referencing to the job definition.
For more information, see Tutorial: Getting started with AWS Batch on Amazon EKS.

Amazon EKS

Topics

• AWS Batch default AMI

• Supported Kubernetes versions

• Update the Kubernetes version of the compute environment

• Shared responsibility of the Kubernetes nodes

• Run a DaemonSet on AWS Batch managed nodes

• Customize Amazon EKS launch templates

AWS Batch default AMI

When you create an Amazon EKS compute environment, you don't need to specify an Amazon
Machine Image (AMI). AWS Batch selects an Amazon EKS optimized AMI based on the Kubernetes
version and instance types that are specified in your CreateComputeEnvironment request. In
general, we recommend that you use the default AMI selection. For more information about
Amazon EKS optimized AMIs, seeAmazon EKS optimized Amazon Linux AMIs in the Amazon EKS
User Guide.

Amazon EKS 109

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html

AWS Batch User Guide

Run the following command to see which AMI type AWS Batch is selected for your Amazon EKS
compute environment. This following example is a non-GPU instance type.

compute CE example: indicates Batch has chosen the AL2 x86 or ARM EKS 1.29 AMI,
 depending on instance types
 $ aws batch describe-compute-environments --compute-environments My-Eks-CE1 \
 | jq '.computeEnvironments[].computeResources.ec2Configuration'
 [
 {
 "imageType": "EKS_AL2",
 "imageKubernetesVersion": "1.29"
 }
]

This following example is a GPU instance type.

GPU CE example: indicates Batch has choosen the AL2 x86 EKS Accelerated 1.29 AMI
 $ aws batch describe-compute-environments --compute-environments My-Eks-GPU-CE \
 | jq '.computeEnvironments[].computeResources.ec2Configuration'
 [
 {
 "imageType": "EKS_AL2_NVIDIA",
 "imageKubernetesVersion": "1.29"
 }
]

Supported Kubernetes versions

AWS Batch on Amazon EKS currently supports the following Kubernetes versions:

• 1.30

• 1.29

• 1.28

• 1.27

• 1.26

• 1.25

• 1.24

• 1.23

Supported Kubernetes versions 110

AWS Batch User Guide

You might see an error message that resembles the following when you use the
CreateComputeEnvironment API operation or UpdateComputeEnvironmentAPI operation
to create or update a compute environment. This issue occurs if you specify an unsupported
Kubernetes version in EC2Configuration.

At least one imageKubernetesVersion in EC2Configuration is not supported.

To resolve this issue, delete the compute environment and then re-create it with a supported
Kubernetes version.

You can perform a minor version upgrade on your Amazon EKS cluster. For example, you can
upgrade the cluster from 1.xx to 1.yy even if the minor version isn't supported.

However, the compute environment status might change to INVALID after a major version update.
For example, if you perform a major version upgrade from 1.xx to 2.yy. If the major version isn't
supported by AWS Batch, you see an error message that resembles the following.

reason=CLIENT_ERROR - ... EKS Cluster version [2.yy] is unsupported

Update the Kubernetes version of the compute environment

With AWS Batch, you can update the Kubernetes version of a compute environment to support
Amazon EKS cluster upgrades. The Kubernetes version of a compute environment is the Amazon
EKS AMI version for the Kubernetes nodes that AWS Batch launches to run jobs. You can perform
a Kubernetes version upgrade on their Amazon EKS nodes before or after you update the version
of Amazon EKS cluster’s control-plane. We recommend that you update the nodes after upgrading
the control plane. For more information, see Updating an Amazon EKS cluster Kubernetes version
in the Amazon EKS User Guide.

To upgrade the Kubernetes version of a compute environment, use the
UpdateComputeEnvironment API operation.

$ aws batch update-compute-environment \
 --compute-environment <compute-environment-name> \
 --compute-resources \
 'ec2Configuration=[{imageType=EKS_AL2,imageKubernetesVersion=1.23}]'

Update the Kubernetes version of the compute environment 111

https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html

AWS Batch User Guide

Shared responsibility of the Kubernetes nodes

Maintenance of the compute environments is a shared responsibility.

• Don't change or remove AWS Batch nodes, labels, taints, namespaces, launch templates, or auto
scaling groups. Don't add taints to AWS Batch managed nodes. If you make any of these changes,
your compute environment cannot be supported and failures including idle instances occur.

• Don't target your pods to AWS Batch managed nodes. If you target your pods to the managed
nodes, broken scaling and stuck job queues occur. Run workloads that don't use AWS Batch on
self-managed nodes or managed node groups. For more information, see Managed node groups
in the Amazon EKS User Guide.

• You can target a DaemonSet to run on AWS Batch managed nodes. For more information, see
Run a DaemonSet on AWS Batch managed nodes.

AWS Batch doesn't automatically update compute environment AMIs. It's your responsibility to
update them. Run the following command to update your AMIs to the latest AMI version.

$ aws batch update-compute-environment \
 --compute-environment <compute-environment-name> \
 --compute-resources 'updateToLatestImageVersion=true'

AWS Batch doesn't automatically upgrade the Kubernetes version. Run the following command to
update the Kubernetes version of your computer environment to 1.23.

$ aws batch update-compute-environment \
 --compute-environment <compute-environment-name> \
 --compute-resources \
 'ec2Configuration=[{imageType=EKS_AL2,imageKubernetesVersion=1.23}]'

When updating to a more recent AMI or the Kubernetes version, you can specify whether to
terminate jobs when they're updated (terminateJobsOnUpdate) and how long to wait for
before an instance is replaced if running jobs don't finish (jobExecutionTimeoutMinutes.)
For more information, see Updating compute environments and the infrastructure update policy
(UpdatePolicy) set in the UpdateComputeEnvironment API operation.

Shared responsibility of the Kubernetes nodes 112

https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdatePolicy.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html

AWS Batch User Guide

Run a DaemonSet on AWS Batch managed nodes

AWS Batch sets taints on AWS Batch managed Kubernetes nodes. You can target a DaemonSet to
run on AWS Batch managed nodes with the following tolerations.

tolerations:
 - key: "batch.amazonaws.com/batch-node"
 operator: "Exists"

Another way to do this is with the following tolerations.

tolerations:
 - key: "batch.amazonaws.com/batch-node"
 operator: "Exists"
 effect: "NoSchedule"
 - key: "batch.amazonaws.com/batch-node"
 operator: "Exists"
 effect: "NoExecute"

Customize Amazon EKS launch templates

AWS Batch on Amazon EKS supports launch templates. There are constraints on what your launch
template can do.

Important

AWS Batch runs /etc/eks/bootstrap.sh. Don't run /etc/eks/bootstrap.sh in
your launch template or cloud-init user-data scripts. You can add additional parameters
besides the --kubelet-extra-args parameter to bootstrap.sh. To do this, set the
AWS_BATCH_KUBELET_EXTRA_ARGS variable in the /etc/aws-batch/batch.config
file. See the following example for details.

Note

If the launch template is changed after CreateComputeEnvironment is called,
UpdateComputeEnvironment must be called to evaluate the version of the launch template
for replacement.

Run a DaemonSet on AWS Batch managed nodes 113

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html

AWS Batch User Guide

Topics

• Add kubelet extra arguments

• Configure the container runtime

• Mount an Amazon EFS volume

• IPv6 support

Add kubelet extra arguments

AWS Batch supports adding extra arguments to the kubelet command. For the list of supported
parameters, see kubelet in the Kubernetes documentation. In the following example, --node-
labels mylabel=helloworld is added to the kubelet command line.

MIME-Version: 1.0
 Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

 --==MYBOUNDARY==
 Content-Type: text/x-shellscript; charset="us-ascii"

 #!/bin/bash
 mkdir -p /etc/aws-batch

 echo AWS_BATCH_KUBELET_EXTRA_ARGS=\"--node-labels mylabel=helloworld\" >> /etc/
aws-batch/batch.config

 --==MYBOUNDARY==--

Configure the container runtime

You can use the AWS Batch CONTAINER_RUNTIME environment variable to configure the
container runtime on a managed node. The following example sets the container runtime to
containerd when bootstrap.sh runs. For more information, see containerd in the Kubernetes
documentation.

Note

The CONTAINER_RUNTIME environment variable is equivalent to the --container-
runtime option of bootstrap.sh. For more information, see Options in the Kubernetes
documentation.

Customize Amazon EKS launch templates 114

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#containerd
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#options

AWS Batch User Guide

MIME-Version: 1.0
 Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

 --==MYBOUNDARY==
 Content-Type: text/x-shellscript; charset="us-ascii"

 #!/bin/bash
 mkdir -p /etc/aws-batch

 echo CONTAINER_RUNTIME=containerd >> /etc/aws-batch/batch.config

 --==MYBOUNDARY==--

Mount an Amazon EFS volume

You can use launch templates to mount volumes to the node. In the following example, the
cloud-config packages and runcmd settings are used. For more information, see Cloud config
examples in the cloud-init documentation.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/cloud-config; charset="us-ascii"

packages:
- amazon-efs-utils

runcmd:
- file_system_id_01=fs-abcdef123
- efs_directory=/mnt/efs

- mkdir -p ${efs_directory}
- echo "${file_system_id_01}:/ ${efs_directory} efs _netdev,noresvport,tls,iam 0 0"
 >> /etc/fstab
- mount -t efs -o tls ${file_system_id_01}:/ ${efs_directory}

--==MYBOUNDARY==--

To use this volume in the job, it must be added in the eksProperties parameter to
RegisterJobDefinition. The following example is a large portion of the job definition.

Customize Amazon EKS launch templates 115

https://cloudinit.readthedocs.io/en/latest/topics/examples.html
https://cloudinit.readthedocs.io/en/latest/topics/examples.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

{
 "jobDefinitionName": "MyJobOnEks_EFS",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": ["ls", "-la", "/efs"],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 },
 "volumeMounts": [
 {
 "name": "efs-volume",
 "mountPath": "/efs"
 }
]
 }
],
 "volumes": [
 {
 "name": "efs-volume",
 "hostPath": {
 "path": "/mnt/efs"
 }
 }
]
 }
 }
}

In the node, the Amazon EFS volume is mounted in the /mnt/efs directory. In the container for
the Amazon EKS job, the volume is mounted in the /efs directory.

IPv6 support

AWS Batch supports Amazon EKS clusters that have IPv6 addresses. No customizations are
required for AWS Batch support. However, before you begin, we recommend that you review the

Customize Amazon EKS launch templates 116

AWS Batch User Guide

considerations and conditions that are outlined in Assigning IPv6 addresses to pods and services in
the Amazon EKS User Guide.

Customize Amazon EKS launch templates 117

https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6.html

AWS Batch User Guide

Job queues

Jobs are submitted to a job queue where they reside until they can be scheduled to run in a
compute environment. An AWS account can have multiple job queues. For example, you can create
a queue that uses Amazon EC2 On-Demand instances for high priority jobs and another queue that
uses Amazon EC2 Spot Instances for low-priority jobs. Job queues have a priority that's used by the
scheduler to determine which jobs in which queue should be evaluated for execution first.

Topics

• Create a job queue

• View job queue status

• Fair share scheduling policies

Create a job queue

Before you can submit jobs in AWS Batch, you must create a job queue. When you create a job
queue, you associate one or more compute environments to the queue and assign an order of
preference.

You also set priority to the job queue that determines the order that the AWS Batch scheduler
places jobs. This means that, if a compute environment is associated with more than one job
queue, the job queue with a higher priority is given preference.

Topics

• Tutorial: Create an Amazon EC2 job queue

• Tutorial: Create a Fargate job queue

• Tutorial: Create an Amazon EKS job queue

• Reference: Job queue template

Tutorial: Create an Amazon EC2 job queue

Complete the following steps to create a job queue for Amazon Elastic Compute Cloud (Amazon
EC2).

Create a job queue 118

AWS Batch User Guide

To create an Amazon EC2 job queue

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Job queues.

4. Choose Create.

5. For Orchestration type, choose Amazon Elastic Compute Cloud (Amazon EC2).

6. For Name, enter a unique name for your job queue. The name can be up to 128 characters
long, and can contain uppercase and lowercase letters, numbers, and underscores (_).

7. For Priority, enter an whole number value for the job queue's priority. Job queues with a
higher priority are run before lower priority job queues that are associated with the same
compute environment. Priority is determined in descending order. For example, a job queue
with a priority value of 10 is given scheduling preference over a job queue with a priority value
of 1.

8. (Optional) For Scheduling policy Amazon Resource Name (ARN), choose an existing
scheduling policy.

9. For Connected compute environments, select one or more compute environments from the
list to associate with the job queue. Select compute environments in the order that you want
the queue to attempt job queue placement. The job scheduler uses the order that you select
compute environments in to determine which compute environment starts a given job. Before
you can associate them with a job queue, compute environments must be in the VALID state.
You can associate up to three compute environments with a job queue. If you don't have an
existing compute environment, choose Create compute environment

Note

All compute environments that are associated with a job queue must share the same
provisioning model. AWS Batch doesn't support mixing provisioning models in a single
job queue.

10. For Compute environment order, choose the up and down arrows to configure order that you
want.

11. Choose Create job queue to finish and create your job queue.

Tutorial: Create an Amazon EC2 job queue 119

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Tutorial: Create a Fargate job queue

Complete the following steps to create a job queue for AWS Fargate.

To create a Fargate job queue

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Job queues.

4. Choose Create.

5. For Orchestration type, choose Fargate.

6. For Name, enter a unique name for your job queue. The name can be up to 128 characters
long, and can contain uppercase and lowercase letters, numbers, and underscores (_).

7. For Priority, enter an whole number value for the job queue's priority. Job queues with a
higher priority are run before lower priority job queues that are associated with the same
compute environment. Priority is determined in descending order. For example, a job queue
with a priority value of 10 is given scheduling preference over a job queue with a priority value
of 1.

8. (Optional) For Scheduling policy Amazon Resource Name (ARN), choose an existing
scheduling policy.

9. For Connected compute environments, select one or more compute environments from the
list to associate with the job queue. Select compute environments in the order that you want
the queue to attempt job queue placement. The job scheduler uses the order that you select
compute environments in to determine which compute environment starts a given job. Before
you can associate them with a job queue, compute environments must be in the VALID state.
You can associate up to three compute environments with a job queue.

Note

All compute environments that are associated with a job queue must share the same
provisioning model. AWS Batch doesn't support mixing provisioning models in a single
job queue.

10. For Compute environment order, choose the up and down arrows to configure order that you
want.

11. Choose Create job queue to finish and create your job queue.

Tutorial: Create a Fargate job queue 120

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Tutorial: Create an Amazon EKS job queue

Complete the following steps to create a job queue for Amazon Elastic Kubernetes Service
(Amazon EKS).

To create an Amazon EKS job queue

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Job queues.

4. Choose Create.

5. For Orchestration type, choose Amazon Elastic Kubernetes Service (Amazon EKS).

6. For Name, enter a unique name for your job queue. The name can be up to 128 characters
long, and can contain uppercase and lowercase letters, numbers, and underscores (_).

7. For Priority, enter an integer value for the job queue's priority. Job queues with a higher
priority are run before lower priority job queues that are associated with the same compute
environment. Priority is determined in descending order. For example, a job queue with a
priority value of 10 is given scheduling preference over a job queue with a priority value of 1.

8. (Optional) For Scheduling policy Amazon Resource Name (ARN), choose an existing
scheduling policy.

9. For Connected compute environments, select one or more compute environments from the
list to associate with the job queue. Select compute environments in the order that you want
the queue to attempt job queue placement. The job scheduler uses the order that you select
compute environments in to determine which compute environment starts a given job. Before
you can associate them with a job queue, compute environments must be in the VALID state.
You can associate up to three compute environments with a job queue.

Note

All compute environments that are associated with a job queue must share the same
provisioning model. AWS Batch doesn't support mixing provisioning models in a single
job queue.

Tutorial: Create an Amazon EKS job queue 121

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Note

All compute environments that are associated with a job queue must share the same
architecture. AWS Batch doesn't support mixing compute environment architecture
types in a single job queue.

10. For Compute environment order, choose the up and down arrows to configure order that you
want.

11. Choose Create job queue to finish and create your job queue.

Reference: Job queue template

The following is an empty job queue template. You can use this template to create your job
queue. You can then save this job queue to a file and use it with the AWS CLI --cli-input-json
option. For more information about these parameters, see CreateJobQueue in the AWS Batch API
Reference.

Note

You can generate a job queue template with the following AWS CLI command.

$ aws batch create-job-queue --generate-cli-skeleton

{
 "computeEnvironmentOrder": [
 {
 "computeEnvironment": "",
 "order": 0
 }
],
 "jobQueueName": "",
 "jobStateTimeLimitActions": [
 {
 "state": "RUNNABLE",
 "action": "CANCEL",
 "maxTimeSeconds": 0,

Reference: Job queue template 122

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateJobQueue.html

AWS Batch User Guide

 "reason": ""

 }
],
 "priority": 0,
 "schedulingPolicyArn": "",
 "state": "ENABLED",
 "tags": {
 "KeyName": ""
 }
}

View job queue status

After you create a job queue and submit the jobs, it is important to be able to monitor its progress.
You can use the Job details page to review, manage, and monitor your job queue.

View job queue information

From the AWS Batch console, select Job queues in navigation pane and choose your desired
job queue to view its details. On this page, you can review and manage your job queue and see
additional information about the queue’s operations, such as the job queue snapshot, job state
limits, environment order, tags, and the job queue’s JSON code.

Job queue details

This section provides an overview and maintenance options for the job queue. It is important to
note that you can find the Amazon Resource Name (ARN) in this section.

To find this information through the AWS Command Line Interface, use the DescribeJobQueues
operation along with the job queue name, or the corresponding ARN.

Job queue snapshot

This section provides a static list of the first 100 RUNNABLEjobs that are in queue. You can use the
search field to narrow the list by searching for information from any column in the results section.
The jobs in the snapshot results area are sorted according to the job queue’s run strategy. For first-
in-first-out (FIFO) job queues, the ordering of the jobs is based on the submission time. For Use
fair share scheduling to help schedule jobs job queues, the ordering of the jobs is based on the job
priority and share usage.

View job queue status 123

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobQueues.html

AWS Batch User Guide

Because the results are a snapshot of the job queue, the results list doesn’t automatically update.
To update the list, choose the refresh at the top of the section. Choose the job’s name hyperlink to
navigate to Job details and view the job’s status and other related information.

To find this information through the AWS CLI, use the GetJobQueueSnapshot operation along
with the job queue name or the corresponding ARN.

Job state limits

Use this tab to review configuration information about the amount of time that a job can remain in
a RUNNABLE state before it’s canceled.

To find this information through the AWS CLI, use the DescribeJobQueues operation along with
the job queue name or the corresponding ARN.

Environment order

If your job queue runs in multiple environments, this tab provides their order and an overview.

To find this information through the AWS CLI, use the DescribeJobQueues operation along with
the job queue name or the corresponding ARN.

Tags

Use this tab to review and manage tags that are associated to this job queue.

JSON

Use this tab to copy the JSON code that’s associated with this job queue. You can then reuse the
JSON for AWS CloudFormation templates and AWS CLI scripts.

Fair share scheduling policies

The AWS Batch scheduler evaluates when, where, and how to run jobs that are submitted to a job
queue. If you don’t specify a scheduling policy when you create a job queue, the AWS Batch job
scheduler defaults to a first-in, first-out (FIFO) strategy. A FIFO strategy might cause important jobs
to get “stuck” behind jobs that were submitted earlier. By specifying a different scheduling policy,
you can allocate compute resources according to your specific needs.

Fair share scheduling policies 124

https://docs.aws.amazon.com/batch/latest/APIReference/API_GetJobQueueSnapshot.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobQueues.html.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobQueues.html.html

AWS Batch User Guide

Note

If you want to schedule the specific order that jobs are run in, use the dependsOn
parameter in SubmitJob to specify the dependencies for each job.

If you create a scheduling policy and attach it to a job queue, fair share scheduling is turned on. If
the job queue has a scheduling policy, the scheduling policy determines the order that jobs are run
in. For more information, see Use scheduling policies to assign fair share identifiers.

Topics

• Use share identifiers to identify workloads

• Use scheduling policies to assign fair share identifiers

• Use fair share scheduling to help schedule jobs

• Tutorial: Create a scheduling policy

• Reference: Scheduling policy template

Use share identifiers to identify workloads

You can use share identifiers to tag jobs and differentiate between users and workloads. The AWS
Batch scheduler tracks usage for each fair share identifier by using the (T * weightFactor)
formula, where T is the vCPU usage over time. The scheduler picks jobs with the lowest usage from
the share identifier. You can use a fair share identifier without overriding it.

Note

Share identifiers are unique within a job queue and are not aggregated across job queues.

You can set scheduling priority to configure the order that jobs are run in on a share identifier. Jobs
with a higher scheduling priority are scheduled first. If you don’t specify a scheduling policy, all
jobs that are submitted to the job queue are scheduled in FIFO order. When you submit a job, you
can’t specify a share identifier or scheduling priority.

Use share identifiers 125

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-dependsOn
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

Note

Attached compute resources are allocated equally among all share identifiers unless
explicitly overridden.

Use scheduling policies to assign fair share identifiers

You can use scheduling policies to configure how compute resources in a job queue are allocated
between users or workloads. Using scheduling policies, you can assign different fair share
identifiers to workloads or users. AWS Batch assigns each fair share identifier a percentage of the
total resources that are available during a period of time.

The fair share percentage is calculated using the shareDecaySeconds and shareDistribution
values. You can add time to the fair share analysis by assigning a share decay time to the policy.
Adding time gives more weight to time and less to the defined weight. You can hold compute
resources in reserve for fair share identifiers that aren't active by specifying a compute reservation.
For more information, see SchedulingPolicyDetail.

Use fair share scheduling to help schedule jobs

Fair share scheduling provides a set of controls to help schedule jobs.

Note

For more information about scheduling policy parameters, see SchedulingPolicyDetail.

• Share decay seconds – The period of time (in seconds) that the AWS Batch scheduler uses to
calculate a fair share percentage for each fair share identifier. A value of zero indicates that only
current usage is measured. A longer decay time gives more weight to time.

Note

The period of time for decay is calculated as: shareDecaySeconds + OrderMinutes
where OrderMinutes is the time in the order in minutes.

• Compute reservation – Prevents jobs in a single share identifier from using
up all the resources that are attached to the job queue. The reserved ratio is

Use scheduling policies 126

https://docs.aws.amazon.com/batch/latest/APIReference/API_SchedulingPolicyDetail.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SchedulingPolicyDetail.html

AWS Batch User Guide

(computeReservation/100)^ActiveFairShares where ActiveFairShares is the
number of active fair share identifiers.

Note

If a share identifier has jobs in a SUBMITTED, PENDING, RUNNABLE, STARTING, or
RUNNING state, it's considered an active share identifier. After the period of time for
decay expires, a share identifier is considered inactive.

• Weight factor – The weight factor for the share identifier. The default value is 1. A lower value
lets jobs from the share identifier run or gives additional runtime to the share identifier. For
example, jobs that use a share identifier with a weight factor of 0.125 (1/8) are assigned eight
times the compute resources of jobs that use a share identifier with a weight factor of 1.

Note

You only need to define this attribute when you need to update the default weight factor
of 1.

When the job queue is active and processing jobs, you can review a list of the first 100 RUNNABLE
jobs through the Job queue snapshot. For more information, see View job queue status.

Tutorial: Create a scheduling policy

Before you can create a job queue with a scheduling policy, you must create a scheduling policy.
When you create a scheduling policy, you associate one or more fair share identifiers or fair share
identifier prefixes with weights for the queue and optionally assign a decay period and compute
reservation to the policy.

To create a scheduling policy

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Scheduling policies, Create.

4. For Name, enter a unique name for your scheduling policy. Up to 128 letters (uppercase and
lowercase), numbers, hyphens, and underscores are allowed.

Tutorial: Create a scheduling policy 127

https://console.aws.amazon.com/batch/

AWS Batch User Guide

5. (Optional) For Share decay seconds, enter an integer value for the scheduling policy's share
decay time. A longer share decay time will use consider compute resource usage over a longer
time when scheduling jobs. This can allow jobs using a fair share identifier to temporarily use
more compute resources than the weight for that fair share identifier would allow if that fair
share identifier had not recently been using compute resources.

6. (Optional) For Compute reservation, enter an integer value for the scheduling policy's
compute reservation. The compute reservation will hold some vCPUs in reserve to be used for
fair share identifiers that are not currently active.

The reserved ratio is (computeReservation/100)^ActiveFairShares where
ActiveFairShares is the number of active fair share identifiers.

For example, a computeReservation value of 50 indicates that AWS Batch should
reserve 50% of the maximum available VCPU if there is only one fair share identifier, 25%
if there are two fair share identifiers, and 12.5% if there are three fair share identifiers. A
computeReservation value of 25 indicates that AWS Batch should reserve 25% of the
maximum available VCPU if there is only one fair share identifier, 6.25% if there are two fair
share identifiers, and 1.56% if there are three fair share identifiers.

7. In the Share attributes section, you can specify the fair share identifier and weight for each
fair share identifier to associate with the scheduling policy.

a. Choose Add share identifier.

b. For Share identifier, specify the fair share identifier. If the string ends with '*', this
becomes a fair share identifier prefix used to match fair share identifiers for jobs. All of the
fair share identifiers and fair share identifier prefixes in a scheduling policy must be unique
and cannot overlap. For example, you can't have fair share identifiers prefix 'UserA*' and
fair share identifier 'UserA1' in the same scheduling policy.

c. For Weight factor, specify the relative weight for the fair share identifier. The default
value is 1.0. A lower value has a higher priority for compute resources. If a fair share
identifier prefix is used, jobs with fair share identifiers that start with the prefix will share
the weight factor. This effectively increases the weight factor for those jobs, lowering their
individual priority but maintaining the same weight factor for the fair share identifier
prefix.

8. (Optional) In the Tags section, you can specify the key and value for each tag to associate with
the scheduling policy. For more information, see Tag your AWS Batch resources.

9. Choose Submit to finish and create your scheduling policy.

Tutorial: Create a scheduling policy 128

AWS Batch User Guide

Reference: Scheduling policy template

An empty scheduling policy template is shown below. You can use this template to create your
scheduling policy which can then be saved to a file and used with the AWS CLI --cli-input-
json option. For more information about these parameters, see CreateSchedulingPolicy in the
AWS Batch API Reference.

Note

You can generate a job queue template with the following AWS CLI command.

$ aws batch create-scheduling-policy --generate-cli-skeleton

{
 "name": "",
 "fairsharePolicy": {
 "shareDecaySeconds": 0,
 "computeReservation": 0,
 "shareDistribution": [
 {
 "shareIdentifier": "",
 "weightFactor": 0.0
 }
]
 },
 "tags": {
 "KeyName": ""
 }
}

Reference: Scheduling policy template 129

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateSchedulingPolicy.html

AWS Batch User Guide

Job definitions

AWS Batch job definitions specify how jobs are to be run. While each job must reference a job
definition, many of the parameters that are specified in the job definition can be overridden at
runtime.

Some of the attributes specified in a job definition include:

• Which Docker image to use with the container in your job.

• How many vCPUs and how much memory to use with the container.

• The command the container should run when it is started.

• What (if any) environment variables should be passed to the container when it starts.

• Any data volumes that should be used with the container.

• What (if any) IAM role your job should use for AWS permissions.

Contents

• Create a single-node job definition

• Create a multi-node parallel job definition

• Reference: Job definition template that uses ContainerProperties

• Create job definitions using EcsProperties

• Use the awslogs log driver

• Specify sensitive data

• Private registry authentication for jobs

• Amazon EFS volumes

• Reference: Job definition examples

Create a single-node job definition

Before you can run jobs in AWS Batch, you must create a job definition. This process varies slightly
between single-node and multi-node parallel jobs. This topic covers specifically how to create
a job definition for an AWS Batch job that's not a multi-node parallel job (also known as gang
scheduling).

Create a single-node job definition 130

AWS Batch User Guide

You can create a multi-node parallel job definition on Amazon Elastic Container Service resources.
For more information, see the section called “Create a multi-node parallel job definition”.

Topics

• Tutorial: Create a single-node job definition on Amazon EC2 resources

• Tutorial: Create a single-node job definition on Fargate resources

• Tutorial: Create a single-node job definition on Amazon EKS resources

Tutorial: Create a single-node job definition on Amazon EC2 resources

Complete the following steps to create a single-node job definition on on Amazon Elastic Compute
Cloud (Amazon EC2) resources.

To create a new job definition on Amazon EC2 resources:

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, choose the AWS Region to use.

3. In the left navigation pane, choose Job definitions.

4. Choose Create.

5. For Orchestration type, choose Amazon Elastic Compute Cloud (Amazon EC2).

6. For EC2 platform configuration, turn off Enable multi-node parallel processing.

7. For Name, enter a unique name for your job definition. The name can be up to 128 characters
in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

8. (Optional) For Execution timeout, enter the timeout value (in seconds). The execution timeout
is the length of time before an unfinished job is terminated. If an attempt exceeds the timeout
duration, the attempt is stopped and moves to a FAILED status. For more information, see Job
timeouts. The minimum value is 60 seconds.

9. (Optional) Turn on Scheduling priority. Enter a scheduling priority value between 0 and 100.
Higher values are given higher priority.

10. (Optional) For Job attempts, enter the number of times that AWS Batch attempts to move the
job to RUNNABLE status. Enter a number between 1 and 10.

11. (Optional) For Retry strategy conditions, choose Add evaluate on exit. Enter at least one
parameter value and then choose an Action. For each set of conditions, Action must be set to
either Retry or Exit. These actions mean the following:

Tutorial: Create a single-node job definition on Amazon EC2 resources 131

https://console.aws.amazon.com/batch/

AWS Batch User Guide

• Retry – AWS Batch retries until the number of job attempts that you specified is reached.

• Exit – AWS Batch stops retrying the job.

Important

If you choose Add evaluate on exit, you must configure at least one parameter and
either choose an Action or choose Remove evaluate on exit.

12. (Optional) Expand Tags and then choose Add tag to add tags to the resource. Enter a key and
optional value, then choose Add tag.

13. (Optional) Turn on Propagate tags to propagate tags from the job and job definition to the
Amazon ECS task.

14. Choose Next page.

15. In the Container configuration section:

a. For Image, choose the Docker image to use for your job. By default, images in the Docker
Hub registry are available. You can also specify other repositories with repository-
url/image:tag. The name can be up to 225 characters in length. It can contain
uppercase and lowercase letters, numbers, hyphens (-), underscores (_), colons (:), forward
slashes (/), and number signs (#). This parameter maps to Image in the Create a container
section of the Docker Remote API and the IMAGE parameter of docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can
only run on Arm based compute resources.

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/
repository[:tag] naming convention (for example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest).

Tutorial: Create a single-node job definition on Amazon EC2 resources 132

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

b. For Command syntax, choose Bash or JSON.

c. For Command, specify the command to pass to the container. For simpler commands,
enter the command as you do for a command prompt. Then, verify that the JSON result is
correct and passed to the Docker daemon. For more complicated commands (for example,
with special characters), use JSON syntax.

Tip

Choose Info to view Bash and JSON code samples.

This parameter maps to Cmd in the Create a container section of the Docker Remote API
and the COMMAND parameter to docker run. For more information about the Docker CMD
parameter, see https://docs.docker.com/engine/reference/builder/#cmd.

Note

You can use default values for parameter substitution and placeholders in your
command. For more information, see Parameters.

d. (Optional) For Execution role, specify an IAM role that grants the Amazon ECS container
agents permission to make AWS API calls on your behalf. This feature uses Amazon ECS
IAM roles for tasks. For more information, see Amazon ECS task execution IAM roles in the
Amazon Elastic Container Service Developer Guide.

e. For Job Role configuration, choose an IAM role that has permissions to the AWS APIs.
This feature uses Amazon ECS IAM roles for tasks. For more information, see IAM Roles for
Tasks in the Amazon Elastic Container Service Developer Guide.

Tutorial: Create a single-node job definition on Amazon EC2 resources 133

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Batch User Guide

Note

Only roles that have the Amazon Elastic Container Service Task Role trust
relationship are shown here. For more information about creating an IAM role for
your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in the
Amazon Elastic Container Service Developer Guide.

16. For Parameters, choose Add parameters to add parameter substitution placeholders as Key
and optional Value pairs.

17. In the Environment configuration section:

a. For vCPUs, enter the number of vCPUs to reserve for the container. This parameter maps
to CpuShares in the Create a container section of the Docker Remote API and the --
cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. You
must specify at least one vCPU.

b. For Memory, enter the memory limit available to the container. If your container attempts
to exceed the amount of memory that you specify here, the container is stopped. This
parameter maps to Memory in the Create a container section of the Docker Remote API
and the --memory option to docker run. You must specify at least 4 MiB of memory for a
job.

Note

To maximize your resource utilization, prioritize memory for jobs of a specific
instance type. For more information, see Compute resource memory management.

c. For Number of GPUs, choose the number of GPUs to reserve for the container.

d. (Optional) For Environment variables, choose Add environment variable to add
environment variables as name-value pairs. These variables are passed to the container.

e. (Optional) For Secrets, choose Add secret to add secrets as a name-value
pairs. These secrets are exposed in the container. For more information, see
LogConfiguration:secretOptions.

18. Choose Next page.

19. In the Linux configuration section:

Tutorial: Create a single-node job definition on Amazon EC2 resources 134

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions

AWS Batch User Guide

a. For User, enter the user name to use inside the container. This parameter maps to User in
the Create a container section of the Docker Remote API and the --user option to docker
run.

b. (Optional) To give the job container elevated permissions on the host instance (similar
to the root user), drag the Privileged slider to the right. This parameter maps to
Privileged in the Create a container section of the Docker Remote API and the --
privileged option to docker run.

c. (Optional) Turn on Enable init process to run an init process inside the container. This
process forwards signals and reaps processes.

20. (Optional) In the Filesystem configuration section:

a. Turn on Enable read only filesystem to remove write access to the volume.

b. For Shared memory size, enter the size (in MiB) of the /dev/shm volume.

c. For Max swap size, enter the total amount of swap memory (in MiB) that the container
can use.

d. For Swappiness enter a value between 0 and 100 to indicate the swappiness behavior of
the container. If you don't specify a value and swapping is enabled, the value defaults to
60. For more information, see LinuxParameters:swappiness.

e. (Optional) Expand Additional configuration.

f. (Optional) For Tmpfs, choose Add tmpfs to add a tmpfs mount.

g. (Optional) For Devices, choose Add device to add a device:

i. For Container path, specify the path of in the container instance to expose the device
mapped to the host instance. If you keep this blank, the host path is used in the
container.

ii. For Host path, specify the path of a device in the host instance.

iii. For Permissions, choose one or more permissions to apply to the device. The
available permissions are READ, WRITE, and MKNOD.

h. (Optional) For Volumes configuration, choose Add volume to create a list of volumes to
pass to the container. Enter Name and Source path for the volume and then choose Add
volume. You can also choose to turn on Enable EFS.

i. (Optional) For Mount points, choose Add mount points configuration to add mount
points for data volumes. You must specify the source volume and container path. These

Tutorial: Create a single-node job definition on Amazon EC2 resources 135

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/batch/latest/APIReference/API_LinuxParameters.html#Batch-Type-LinuxParameters-swappiness

AWS Batch User Guide

mount points are passed to the Docker daemon on a container instance. You can also
choose to make the volume Read only.

j. (Optional) For Ulimits configuration, choose Add ulimit to add a ulimits value for the
container. Enter Name, Soft limit, and Hard limit values, and then choose Add ulimit.

21. (Optional) In the Logging configuration section:

a. For Log driver, choose the log driver to use. For more information about the available log
drivers, see LogConfiguration:logDriver.

Note

By default, the awslogs log driver is used.

b. For Options, choose Add option to add an option. Enter a name-value pair, and then
choose Add option.

c. For Secrets, choose Add secret. Enter a name-value pair and then choose Add secret to
add a secret.

Tip

For more information, see LogConfiguration:secretOptions.

22. Choose Next page.

23. For Job definition review, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create job definition.

Tutorial: Create a single-node job definition on Fargate resources

Complete the following steps to create a single-node job definition on AWS Fargate resources.

To create a new job definition on Fargate resources:

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the top navigation bar, choose the AWS Region to use.

3. In the left navigation pane, choose Job definitions.

4. Choose Create.

Tutorial: Create a single-node job definition on Fargate resources 136

https://docs.aws.amazon.com/zbatch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-logDriver
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions
https://console.aws.amazon.com/batch/

AWS Batch User Guide

5. For Orchestration type, choose Fargate. For more information, see Fargate compute
environments.

6. For Name, enter a unique name for your job definition. The name can be up to 128 characters
in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

7. (Optional) For Execution timeout, enter the timeout value (in seconds). The execution timeout
is the length of time before an unfinished job is terminated. If an attempt exceeds the timeout
duration, the attempt is stopped and moves to a FAILED status. For more information, see Job
timeouts. The minimum value is 60 seconds.

8. (Optional) Turn on Scheduling priority. Enter a scheduling priority value between 0 and 100.
Higher values are given higher priority over lower values.

9. (Optional) Expand Tags, and then choose Add tag to add tags to the resource. Turn on
Propagate tags to propagate tags from the job and job definition.

10. In the Fargate platform configuration section:

a. For Runtime platform, choose the compute environment architecture.

b. For Operating System Family, choose the operating system for the compute
environment.

c. For CPU Architecture, choose the vCPU architecture.

d. For Fargate platform version, enter LATEST or a specific runtime environment version.

e. (Optional) Turn on Assign public IP to assign a public IP address to a Fargate job network
interface. For a job that's running in a private subnet to send outbound traffic to the
internet, the private subnet requires a NAT gateway be attached to route requests to
the internet. You might want to do this so that you can pull container images. For more
information, see Amazon ECS task networking in the Amazon Elastic Container Service
Developer Guide.

f. (Optional) For Ephemeral storage, enter the amount of ephemeral storage to allocate
to the task. The amount of ephemeral storage must be between 21 GiB and 200 GiB. By
default, 20 GiB of ephemeral storage is allocated if you don't enter a value.

Note

Ephemeral storage requires Fargate platform version 1.4 or later.

Tutorial: Create a single-node job definition on Fargate resources 137

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

AWS Batch User Guide

g. For Execution role, specify an IAM role that grants the Amazon ECS container and Fargate
agents permission to make AWS API calls on your behalf. This feature uses Amazon
ECS IAM roles for task functionality. For more information including configuration
prerequisites, see Amazon ECS task execution IAM roles in the Amazon Elastic Container
Service Developer Guide.

h. For Job attempts, enter the number of times that AWS Batch attempts to move the job to
a RUNNABLE status. Enter a number between 1 and 10.

i. Optional) For Retry strategy conditions, choose Add evaluate on exit. Enter at least one
parameter value and then choose an Action. For each set of conditions, Action must be
set to either Retry or Exit. These actions mean the following:

• Retry – AWS Batch retries until the number of job attempts that you specified is
reached.

• Exit – AWS Batch stops retrying the job.

Important

If you choose Add evaluate on exit, you must configure at least one parameter
and choose an Action or choose Remove evaluate on exit.

11. Choose Next page.

12. In the Container configuration section:

a. For Image, choose the Docker image to use for your job. By default, images in the Docker
Hub registry are available. You can also specify other repositories with repository-
url/image:tag. The name can be up to 225 characters in length. It can contain
uppercase and lowercase letters, numbers, hyphens (-), underscores (_), colons (:), periods
(.), forward slashes (/), and number signs (#). This parameter maps to Image in the Create
a container section of the Docker Remote API and the IMAGE parameter of docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can
only run on Arm based compute resources.

Tutorial: Create a single-node job definition on Fargate resources 138

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/
repository[:tag] naming convention (for example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest).

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

b. For Command syntax, choose Bash or JSON.

c. For Command, specify the command to pass to the container. For simple commands,
enter the command as you do for a command prompt and then verify that the JSON
result is correct. It's passed to the Docker daemon. For more complicated commands (for
example, with special characters), use JSON syntax.

Tip

Choose Info to view Bash and JSON code samples.

This parameter maps to Cmd in the Create a container section of the Docker Remote API
and the COMMAND parameter to docker run. For more information about the Docker CMD
parameter, see https://docs.docker.com/engine/reference/builder/#cmd.

Note

You can use default values for parameter substitution and placeholders in your
command. For more information, see Parameters.

d. (Optional) Add parameters to the job definition as name-value mappings to override the
job definition defaults. To add a parameter:

Tutorial: Create a single-node job definition on Fargate resources 139

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd

AWS Batch User Guide

• For Parameters, choose Add parameters, enter a name-value pair, then choose Add
parameter.

Important

If you choose Add parameter, you must either configure at least one
parameter or choose Remove parameter

e. In the Environment configuration section:

i. For Job role configuration, choose an IAM role that has permissions to the AWS APIs.
This feature uses Amazon ECS IAM roles for task functionality. For more information,
see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

Note

Only roles that have the Amazon Elastic Container Service Task Role trust
relationship are shown here. For more information about how to create an
IAM role for your AWS Batch jobs, see Creating an IAM Role and Policy for
your Tasks in the Amazon Elastic Container Service Developer Guide.

ii. For vCPUs, enter the number of vCPUs to reserve for the container. This parameter
maps to CpuShares in the Create a container section of the Docker Remote API and
the --cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU
shares. You must specify at least one vCPU.

iii. For Memory, enter the memory limit that's available to the container. If your
container attempts to exceed the memory specified here, the container is stopped.
This parameter maps to Memory in the Create a container section of the Docker
Remote API and the --memory option to docker run. You must specify at least 4 MiB
of memory for a job.

If you use GuardDuty Runtime Monitoring, there is a slight memory overhead for
the GuardDuty security agent. Therefore the memory limit must include the size
of the GuardDuty security agent. For information about the GuardDuty security
agent memory limits, see CPU and memory limits in the GuardDuty User Guide. For
information about the best practices, see How do I remediate out of memory errors

Tutorial: Create a single-node job definition on Fargate resources 140

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/guardduty/latest/ug/prereq-runtime-monitoring-ecs-support.html#ecs-runtime-agent-cpu-memory-limits
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-troubleshooting.html#memory-error

AWS Batch User Guide

on my Fargate tasks after enabling Runtime Monitoring in the Amazon ECS Developer
Guide.

Note

To maximize your resource utilization, prioritze memory for jobs of a
specific instance type. For more information, see Compute resource memory
management.

f. (Optional) For Environment variables, choose Add environment variable to add
environment variables as name-value pairs. These variables are passed to the container.

g. (Optional) For Secrets, choose Add secret to add secrets as a name-value
pairs. These secrets are exposed in the container. For more information, see
LogConfiguration:secretOptions.

h. Choose Next page.

13. (Optional) In the Linux configuration section:

a. For User, enter a user name to use inside the container.

b. Turn on Enable init process to run an init process inside the container. This process
forwards signals and reaps processes.

c. Turn on Enable read only filesystem to remove write access to the volume.

d. (Optional) Expand Additional configuration.

e. For Mount points configuration, choose Add mount points configuration to add mount
points for data volumes. You must specify the source volume and container path. These
mount points are passed to the Docker daemon on a container instance.

f. For Volumes configuration, choose Add volume to create a list of volumes to pass to the
container. Enter a Name and Source path for the volume, and then choose Add volume.

g. In the Logging configuration section:

i. (Optional) For Log driver, choose the log driver to use. For more information about
the available log drivers, see LogConfiguration:logDriver.

Note

By default, the awslogs log driver is used.

Tutorial: Create a single-node job definition on Fargate resources 141

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-guard-duty-troubleshooting.html#memory-error
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions
https://docs.aws.amazon.com/zbatch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-logDriver

AWS Batch User Guide

ii. (Optional) For Options, choose Add option to add an option. Enter a name-value pair,
and then choose Add option.

iii. (Optional) For Secrets, choose Add secret to add a secret. Then, enter a name-value
pair, and choose Add secret.

Tip

For more information, see LogConfiguration:secretOptions.

14. Choose Next page.

15. For Job definition review, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create job definition.

Tutorial: Create a single-node job definition on Amazon EKS resources

Complete the following steps to create a single-node job definition on Amazon Elastic Kubernetes
Service (Amazon EKS).

To create a new job definition on Amazon EKS resources:

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the top navigation bar, choose the AWS Region to use.

3. In the left navigation pane, choose Job definitions.

4. Choose Create.

5. For Orchestration type, choose Elastic Kubernetes Service (EKS).

6. For Name, enter a unique name for your job definition. The name can be up to 128 characters
in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

7. (Optional) For Execution timeout, enter the timeout value (in seconds). The execution timeout
is the length of time before an unfinished job is terminated. If an attempt exceeds the timeout
duration, the attempt is stopped and moves to a FAILED status. For more information, see Job
timeouts. The minimum value is 60 seconds.

8. (Optional) Turn on Scheduling priority. Enter a scheduling priority value between 0 and 100.
Higher values are given higher priority over lower values.

9. (Optional) Expand Tags, and then choose Add tag to add tags to the resource.

Tutorial: Create a single-node job definition on Amazon EKS resources 142

https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions
https://console.aws.amazon.com/batch/

AWS Batch User Guide

10. Choose Next page.

11. In the EKS pod properties section:

a. For Service account name, enter an account that provides an identity for processes that
run in a pod.

b. Turn Host network on to use the Kubernetes pod network model and open a listening
port for incoming connections. Turn this setting off for outgoing communications only.

c. For DNS policy, choose one of the following:

• No value (null) – The pod ignores the DNS settings from the Kubernetes environment.

• Default – The pod inherits the name resolution configuration from the node that it runs
on.

Note

If a DNS policy isn't specified, Default isn't the default DNS policy. Instead,
ClusterFirst is used.

• ClusterFirst – Any DNS query that doesn't match the configured cluster domain suffix is
forwarded to the upstream nameserver that's inherited from the node.

• ClusterFirstWithHostNet – Use if Host network is turned on.

d. (Optional) For Pod labels, choose Add pod labels, then enter a name-value pair.

Important

The prefix for a pod label can't contain kubernetes.io/, k8s.io/, or
batch.amazonaws.com/.

e. Choose Next page.

f. In the Container configuration section:

i. For Name, enter a unique name for the container. The name must start with a
letter or number, and can be up to 63 characters long. It can contain uppercase and
lowercase letters, numbers, and hyphens (-).

ii. For Image, choose the Docker image to use for your job. By default, images in
the Docker Hub registry are available. You can also specify other repositories with
repository-url/image:tag. The name can be up to 255 characters long. It can

Tutorial: Create a single-node job definition on Amazon EKS resources 143

AWS Batch User Guide

contain uppercase and lowercase letters, numbers, hyphens (-), underscores (_), colons
(:), periods (.), forward slashes (/), and number signs (#). This parameter maps to
Image in the Create a container section of the Docker Remote API and the IMAGE
parameter of docker run

Note

Docker image architecture must match the processor architecture of the
compute resources that they're scheduled on. For example, Arm based Docker
images can only run on Arm based compute resources.

• Images in Amazon ECR Public repositories use the full registry/
repository[:tag] or registry/repository[@digest] naming conventions
(for example, public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/
repository[:tag] naming convention (for example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest).

• Images in official repositories on Docker Hub use a single name (for example,
ubuntu or mongo).

• Images in other repositories on Docker Hub are qualified with an organization name
(for example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for
example, quay.io/assemblyline/ubuntu).

iii. (Optional) For Image pull policy, choose when images are pulled.

iv. (Optional) For Command, enter a Bash or JSON command to pass to the container.

v. (Optional) For Arguments, enter arguments to pass to the container. If an argument
isn't provided, the container image command is used.

g. (Optional) You can add parameters to the job definition as name-value mappings to
override the job definition defaults. To add a parameter:

• For Parameters, enter a name-value pair, then choose Add parameter.

Tutorial: Create a single-node job definition on Amazon EKS resources 144

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Important

If you choose Add parameter, you must configure at least one parameter or
choose Remove parameter

h. In the Environment configuration section:

i. For vCPUs, enter the number of vCPUs to reserve for the container. This parameter
maps to CpuShares in the Create a container section of the Docker Remote API and
the --cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU
shares. You must specify at least one vCPU.

ii. For Memory, enter the memory limit available to the container. If your container
attempts to exceed the memory specified here, the container is stopped. This
parameter maps to Memory in the Create a container section of the Docker Remote
API and the --memory option to docker run. You must specify at least 4 MiB of
memory for a job.

Note

To maximize your resource utilization, prioritize memory for jobs of a
specific instance type. For more information, see Compute resource memory
management.

i. (Optional) For Environment variables, choose Add environment variable to add
environment variables as name-value pairs. These variables are passed to the container.

j. (Optional) For Volume mount:

i. Choose Add volume mount.

ii. Enter a Name, and then enter a Mount path in the container where the volume is
mounted.

iii. Choose Read only to remove write permissions to the volume.

iv. Choose Add volume mount.

k. (Optional) For Run as user, enter a user ID to run the container process.

Tutorial: Create a single-node job definition on Amazon EKS resources 145

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Note

The user ID must exist in the image for the container to run.

l. (Optional) For Run as group, enter a group ID to run the container process runtime.

Note

The group ID must exist in the image for the container to run.

m. (Optional) To give your job's container elevated permissions on the host instance (similar
to the root user), drag the Privileged slider to the right. This parameter maps to
Privileged in the Create a container section of the Docker Remote API and the --
privileged option to docker run.

n. (Optional) Turn on Read-only root filesystem to remove write access to the root
filesystem.

o. (Optional) Turn on Run as non-roott to run the containers in the pod as a non-root user.

Note

If Run as non-root is turned on, the kubelet validates the image at runtime to
verify that image doesn't run as UID 0.

p. Choose Next page.

12. For Job definition review, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create job definition.

Create a multi-node parallel job definition

Before you can run jobs in AWS Batch, you must create a job definition. This process varies slightly
between single-node and multi-node parallel jobs. This topic covers specifically how to create a
job definition for an AWS Batch multi-node parallel job (also known as gang scheduling). For more
information, see Multi-node parallel jobs.

Create a multi-node parallel job definition 146

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Note

AWS Fargate doesn't support multi-node parallel jobs.

Contents

• Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources

Tutorial: Create a multi-node parallel job definition on Amazon EC2
resources

To create a multi-node parallel job definition on Amazon Elastic Compute Cloud (Amazon EC2)
resources.

Note

To create a single-node job definition, see Tutorial: Create a single-node job definition on
Amazon EC2 resources.

To create a multi-node parallel job definition on Amazon EC2 resources:

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Job definitions.

4. Choose Create.

5. For Orchestration type, choose Amazon Elastic Compute Cloud (Amazon EC2).

6. For Enable multi-node parallel, turn on multi-node parallel.

7. For Name, enter a unique name for your job definition. The name can be up to 128 characters
long, and can contain uppercase and lowercase letters, numbers, hyphens (-), and underscores
(_).

8. (Optional) For Execution timeout, specify the maximum number of seconds that you want
job attempts to run. If an attempt exceeds the timeout duration, the attempt is stopped and
moves to a FAILED status. For more information, see Job timeouts.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 147

https://console.aws.amazon.com/batch/

AWS Batch User Guide

9. (Optional) Turn on Scheduling priority. Enter a scheduling priority value between 0 and 100.
Higher values are given higher priority over lower values.

10. (Optional) For Job attempts, enter the number of times that AWS Batch attempts to move the
job to RUNNABLE status. Enter a number between 1 and 10.

11. (Optional) For Retry strategy conditions, choose Add evaluate on exit. Enter at least one
parameter value and then choose an Action. For each set of conditions, Action must be set to
either Retry or Exit. These actions mean the following:

• Retry – AWS Batch retries until the number of job attempts that you specified is reached.

• Exit – AWS Batch stops retrying the job.

Important

If you choose Add evaluate on exit, you must configure at least one parameter and
either choose an Action or choose Remove evaluate on exit.

12. (Optional) Expand Tags and then choose Add tag to add tags to the resource. Enter a key and
optional value, and then choose Add tag. You can also turn on Propagate tags to propagate
tags from the job and job definition to the Amazon ECS task.

13. Choose Next page.

14. For Number of nodes, enter the total number of nodes to use for your job.

15. For Main node, enter the node index to use for the main node. The default main node index is
0.

16. For Instance type, choose an instance type.

Note

The instance type that you choose applies to all nodes.

17. For Parameters, choose Add parameters to add parameter substitution placeholders as Key
and optional Value pairs.

18. In the Node ranges section:

a. Select Add node range. This creates a Node range section.

b. For Target nodes, specify the range for your node group, using
range_start:range_end notation.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 148

AWS Batch User Guide

You can create up to five node ranges for the nodes that you specified for your job. Node
ranges use the index value for a node, and the node index begins at 0. Make sure that
range end index value of your final node group is one less than the number of nodes that
you specified. For example, suppose that you specified 10 nodes, and you want to use a
single node group. Then, your end range is 9.

c. For Image, choose the Docker image to use for your job. By default, images in the Docker
Hub registry are available. You can also specify other repositories with repository-
url/image:tag. The name can be up to 225 characters long. It can contain uppercase
and lowercase letters, numbers, hyphens (-), underscores (_), colons (:), forward slashes (/),
and number signs (#). This parameter maps to Image in the Create a container section of
the Docker Remote API and the IMAGE parameter of docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can
only run on Arm based compute resources.

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/
repository[:tag] naming convention. For example,
aws_account_id.dkr.ecr.region.amazonaws.com/my-web-app:latest

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

d. For Command syntax, choose Bash or JSON.

e. For Command, specify the command to pass to the container. For simple commands,
you can enter the command as you do at a command prompt in the Space delimited
tab. Then, verify that the JSON result is correct. The JSON result is passed to the Docker

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 149

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

daemon. For more complicated commands (for example, with special characters), you can
switch to the JSON tab and enter the string array equivalent there.

This parameter maps to Cmd in the Create a container section of the Docker Remote API
and the COMMAND parameter to docker run. For more information about the Docker CMD
parameter, see https://docs.docker.com/engine/reference/builder/#cmd.

Note

You can use default values for parameter substitution and placeholders in your
command. For more information, see Parameters.

f. For vCPUs, specify the number of vCPUs to reserve for the container. This parameter maps
to CpuShares in the Create a container section of the Docker Remote API and the --
cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. You
must specify at least one vCPU.

g. For Memory, specify the hard limit (in MiB) of memory to present to the job's container.
If your container attempts to exceed the memory specified here, the container is stopped.
This parameter maps to Memory in the Create a container section of the Docker Remote
API and the --memory option to docker run. You must specify at least 4 MiB of memory
for a job.

Note

To maximize your resource utilization, you can provide your jobs as much memory
as possible for a particular instance type. For more information, see Compute
resource memory management.

h. (Optional) For Number of GPUs, specify the number of GPUs your job uses. The job runs
on a container with the specified number of GPUs that are pinned to that container.

i. (Optional) For Job role, you can specify an IAM role that provides the container in your job
with permissions to use the AWS APIs. This feature uses Amazon ECS IAM roles for task
functionality. For more information including configuration prerequisites, see IAM Roles
for Tasks in the Amazon Elastic Container Service Developer Guide.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 150

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Batch User Guide

Note

For jobs that are running on Fargate resources, a job role is required.

Note

Only roles that have the Amazon Elastic Container Service Task Role trust
relationship are shown here. For more information about creating an IAM role for
your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in the
Amazon Elastic Container Service Developer Guide.

j. (Optional) For Execution role, specify an IAM role that grants the Amazon ECS container
agents permission to make AWS API calls on your behalf. This feature uses Amazon ECS
IAM roles for task functionality. For more information, see Amazon ECS task execution IAM
roles in the Amazon Elastic Container Service Developer Guide.

19. (Optional) Expand Additional configuration:

a. For Environment variables, choose Add environment variable to add environment
variables as name-value pairs. These variables are passed to the container.

b. For Job role configuration, you can specify an IAM role that provides the container in your
job with permissions to use the AWS APIs. This feature uses Amazon ECS IAM roles for task
functionality. For more information including configuration prerequisites, see IAM Roles
for Tasks in the Amazon Elastic Container Service Developer Guide.

Note

For jobs that are running on Fargate resources, a job role is required.

Note

Only roles that have the Amazon Elastic Container Service Task Role trust
relationship are shown here. For more information about how to create an IAM
role for your AWS Batch jobs, see Creating an IAM Role and Policy for your Tasks in
the Amazon Elastic Container Service Developer Guide.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 151

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#create_task_iam_policy_and_role

AWS Batch User Guide

c. For Execution role, specify an IAM role that grants the Amazon ECS container agents
permission to make AWS API calls on your behalf. This feature uses Amazon ECS IAM roles
for task functionality. For more information, see Amazon ECS task execution IAM roles in
the Amazon Elastic Container Service Developer Guide.

20. In the Security Configuration section:

a. (Optional) To give your job's container elevated privileges on the host instance (similar to
the root user), turn on Privileged. This parameter maps to Privileged in the Create a
container section of the Docker Remote API and the --privileged option to docker run.

b. (Optional) For User, enter the user name to use inside the container. This parameter maps
to User in the Create a container section of the Docker Remote API and the --user
option to docker run.

c. (Optional) For Secrets, choose Add secret to add secrets as a name-value
pairs. These secrets are exposed in the container. For more information, see
LogConfiguration:secretOptions.

21. In the Linux configuration section:

a. Turn on Enable read only filesystem to remove write access to the volume.

b. (Optional) Turn on Enable init process to run an init process inside the container. This
process forwards signals and reaps processes.

c. For Shared memory size, enter the size (in MiB) of the /dev/shm volume.

d. For Max swap size, enter the total amount of swap memory (in MiB) that the container
can use.

e. For Swappiness enter a value between 0 and 100 to indicate the swappiness behavior of
the container. If you don't specify a value and swapping is enabled, value defaults to 60.
For more information, see LinuxParameters:swappiness.

f. (Optional) For Devices, choose Add device to add a device:

i. For Container path, specify the path of in the container instance to expose the device
mapped to the host instance. If you keep this blank, the host path is used in the
container.

ii. For Host path, specify the path of a device in the host instance.

iii. For Permissions, choose one or more permissions to apply to the device. The
available permissions are READ, WRITE, and MKNOD.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 152

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions
https://docs.aws.amazon.com/batch/latest/APIReference/API_LinuxParameters.html#Batch-Type-LinuxParameters-swappiness

AWS Batch User Guide

22. (Optional) For Mount points, choose Add mount points configuration to add mount points
for data volumes. You must specify the source volume and container path. These mount points
are passed to the Docker daemon on a container instance. You can also choose to make the
volume Read only.

23. (Optional) For Ulimits configuration, choose Add ulimit to add a ulimits value for the
container. Enter Name, Soft limit, and Hard limit values, and then choose Add ulimit.

24. (Optional) For Volumes configuration, choose Add volume to create a list of volumes to pass
to the container. Enter Name and Source path for the volume and then choose Add volume.
You can also choose to turn on Enable EFS.

25. (Optional) For Tmpfs, choose Add tmpfs to add a tmpfs mount.

26. (Optional) In the Logging configuration section:

a. For Log driver, choose the log driver to use. For more information about the available log
drivers, see LogConfiguration:logDriver.

Note

By default, the awslogs log driver is used.

b. For Options, choose Add option to add an option. Enter a name-value pair, and then
choose Add option.

c. For Secrets, choose Add secret. Enter a name-value pair and then choose Add secret to
add a secret.

Tip

For more information, see LogConfiguration:secretOptions.

27. Choose Next page.

28. For Job definition review, review the configuration steps. If you need to make changes,
choose Edit. When you're finished, choose Create job definition.

Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources 153

https://docs.aws.amazon.com/zbatch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-logDriver
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html#Batch-Type-LogConfiguration-secretOptions

AWS Batch User Guide

Reference: Job definition template that uses
ContainerProperties

The following is an empty job definition template that includes a single container. You can use this
template to create your job definition, which can then be saved to a file and used with the AWS CLI
--cli-input-json option. For more information about these parameters, see JobDefinition.

Note

You can generate a singtle-container job definition template with the following AWS CLI
command:

$ aws batch register-job-definition --generate-cli-skeleton

{
 "jobDefinitionName": "",
 "type": "container",
 "parameters": {
 "KeyName": ""
 },
 "schedulingPriority": 0,
 "containerProperties": {
 "image": "",
 "vcpus": 0,
 "memory": 0,
 "command": [
 ""
],
 "jobRoleArn": "",
 "executionRoleArn": "",
 "volumes": [
 {
 "host": {
 "sourcePath": ""
 },
 "name": "",
 "efsVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",

Reference: Job definition template using ContainerProperties 154

https://docs.aws.amazon.com/batch/latest/APIReference/API_JobDefinition.html

AWS Batch User Guide

 "transitEncryption": "ENABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "DISABLED"
 }
 }
 }
],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "mountPoints": [
 {
 "containerPath": "",
 "readOnly": true,
 "sourceVolume": ""
 }
],
 "readonlyRootFilesystem": true,
 "privileged": true,
 "ulimits": [
 {
 "hardLimit": 0,
 "name": "",
 "softLimit": 0
 }
],
 "user": "",
 "instanceType": "",
 "resourceRequirements": [
 {
 "value": "",
 "type": "MEMORY"
 }
],
 "linuxParameters": {
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",

Reference: Job definition template using ContainerProperties 155

AWS Batch User Guide

 "permissions": [
 "WRITE"
]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "",
 "size": 0,
 "mountOptions": [
 ""
]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "logConfiguration": {
 "logDriver": "syslog",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 },
 "secrets": [
 {
 "name": "",
 "valueFrom": ""
 }
],
 "networkConfiguration": {
 "assignPublicIp": "DISABLED"
 },
 "fargatePlatformConfiguration": {
 "platformVersion": ""
 }
 },

Reference: Job definition template using ContainerProperties 156

AWS Batch User Guide

 "nodeProperties": {
 "numNodes": 0,
 "mainNode": 0,
 "nodeRangeProperties": [
 {
 "targetNodes": "",
 "container": {
 "image": "",
 "vcpus": 0,
 "memory": 0,
 "command": [
 ""
],
 "jobRoleArn": "",
 "executionRoleArn": "",
 "volumes": [
 {
 "host": {
 "sourcePath": ""
 },
 "name": "",
 "efsVolumeConfiguration": {
 "fileSystemId": "",
 "rootDirectory": "",
 "transitEncryption": "DISABLED",
 "transitEncryptionPort": 0,
 "authorizationConfig": {
 "accessPointId": "",
 "iam": "ENABLED"
 }
 }
 }
],
 "environment": [
 {
 "name": "",
 "value": ""
 }
],
 "mountPoints": [
 {
 "containerPath": "",
 "readOnly": true,
 "sourceVolume": ""

Reference: Job definition template using ContainerProperties 157

AWS Batch User Guide

 }
],
 "readonlyRootFilesystem": true,
 "privileged": true,
 "ulimits": [
 {
 "hardLimit": 0,
 "name": "",
 "softLimit": 0
 }
],
 "user": "",
 "instanceType": "",
 "resourceRequirements": [
 {
 "value": "",
 "type": "MEMORY"
 }
],
 "linuxParameters": {
 "devices": [
 {
 "hostPath": "",
 "containerPath": "",
 "permissions": [
 "WRITE"
]
 }
],
 "initProcessEnabled": true,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "",
 "size": 0,
 "mountOptions": [
 ""
]
 }
],
 "maxSwap": 0,
 "swappiness": 0
 },
 "logConfiguration": {

Reference: Job definition template using ContainerProperties 158

AWS Batch User Guide

 "logDriver": "awslogs",
 "options": {
 "KeyName": ""
 },
 "secretOptions": [
 {
 "name": "",
 "valueFrom": ""
 }
]
 },
 "secrets": [
 {
 "name": "",
 "valueFrom": ""
 }
],
 "networkConfiguration": {
 "assignPublicIp": "DISABLED"
 },
 "fargatePlatformConfiguration": {
 "platformVersion": ""
 }
 }
 }
]
 },
 "retryStrategy": {
 "attempts": 0,
 "evaluateOnExit": [
 {
 "onStatusReason": "",
 "onReason": "",
 "onExitCode": "",
 "action": "RETRY"
 }
]
 },
 "propagateTags": true,
 "timeout": {
 "attemptDurationSeconds": 0
 },
 "tags": {
 "KeyName": ""

Reference: Job definition template using ContainerProperties 159

AWS Batch User Guide

 },
 "platformCapabilities": [
 "EC2"
],
 "eksProperties": {
 "podProperties": {
 "serviceAccountName": "",
 "hostNetwork": true,
 "dnsPolicy": "",
 "containers": [
 {
 "name": "",
 "image": "",
 "imagePullPolicy": "",
 "command": [
 ""
],
 "args": [
 ""
],
 "env": [
 {
 "name": "",
 "value": ""
 }
],
 "resources": {
 "limits": {
 "KeyName": ""
 },
 "requests": {
 "KeyName": ""
 }
 },
 "volumeMounts": [
 {
 "name": "",
 "mountPath": "",
 "readOnly": true
 }
],
 "securityContext": {
 "runAsUser": 0,
 "runAsGroup": 0,

Reference: Job definition template using ContainerProperties 160

AWS Batch User Guide

 "privileged": true,
 "readOnlyRootFilesystem": true,
 "runAsNonRoot": true
 }
 }
],
 "volumes": [
 {
 "name": "",
 "hostPath": {
 "path": ""
 },
 "emptyDir": {
 "medium": "",
 "sizeLimit": ""
 },
 "secret": {
 "secretName": "",
 "optional": true
 }
 }
]
 }
 }
}

Reference: Job definition parameters for ContainerProperties

Job definitions that use ContainerProperties are split into several parts:

• the job definition name

• the type of the job definition

• the parameter substitution placeholder defaults

• the container properties for the job

• the Amazon EKS properties for the job definition that are necessary for jobs run on Amazon EKS
resources

• the node properties that are necessary for a multi-node parallel job

• the platform capabilities that are necessary for jobs run on Fargate resources

• the default tag propagation details of the job definition

Reference: Job definition parameters for ContainerProperties 161

https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html

AWS Batch User Guide

• the default retry strategy for the job definition

• the default scheduling priority for the job definition

• the default tags for the job definition

• the default timeout for the job definition

Contents

• Job definition name

• Type

• Parameters

• Container properties

• Amazon EKS properties

• Platform capabilities

• Propagate tags

• Node properties

• Retry strategy

• Scheduling priority

• Tags

• Timeout

Job definition name

jobDefinitionName

When you register a job definition, you specify a name. The name can be up to 128 characters
in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and underscores
(_). The first job definition that's registered with that name is given a revision of 1. Any
subsequent job definitions that are registered with that name are given an incremental revision
number.

Type: String

Required: Yes

Reference: Job definition parameters for ContainerProperties 162

AWS Batch User Guide

Type

type

When you register a job definition, you specify the type of job. If the job runs on Fargate
resources, then multinode isn't supported. For more information about multi-node parallel
jobs, see Create a multi-node parallel job definition.

Type: String

Valid values: container | multinode

Required: Yes

Parameters

parameters

When you submit a job, you can specify parameters that replace the placeholders or override
the default job definition parameters. Parameters in job submission requests take precedence
over the defaults in a job definition. This means that you can use the same job definition for
multiple jobs that use the same format. You can also programmatically change values in the
command at submission time.

Type: String to string map

Required: No

When you register a job definition, you can use parameter substitution placeholders in the
command field of a job's container properties. The syntax is as follows.

"command": [
 "ffmpeg",
 "-i",
 "Ref::inputfile",
 "-c",
 "Ref::codec",
 "-o",
 "Ref::outputfile"
]

Reference: Job definition parameters for ContainerProperties 163

AWS Batch User Guide

In the above example, there are Ref::inputfile, Ref::codec, and Ref::outputfile
parameter substitution placeholders in the command. You can use the parameters object in
the job definition to set default values for these placeholders. For example, to set a default for
the Ref::codec placeholder, you specify the following in the job definition:

"parameters" : {"codec" : "mp4"}

When this job definition is submitted to run, the Ref::codec argument in the command for
the container is replaced with the default value, mp4.

Container properties

When you register a job definition, specify a list of container properties that are passed to the
Docker daemon on a container instance when the job is placed. The following container properties
are allowed in a job definition. For single-node jobs, these container properties are set at the job
definition level. For multi-node parallel jobs, container properties are set in the Node properties
level, for each node group.

command

The command that's passed to the container. This parameter maps to Cmd in the Create a
container section of the Docker Remote API and the COMMAND parameter to docker run. For
more information about the Docker CMD parameter, see https://docs.docker.com/engine/
reference/builder/#cmd.

"command": ["string", ...]

Type: String array

Required: No

environment

The environment variables to pass to a container. This parameter maps to Env in the Create a
container section of the Docker Remote API and the --env option to docker run.

Reference: Job definition parameters for ContainerProperties 164

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Important

We don't recommend that you use plaintext environment variables for sensitive
information, such as credential data.

Note

Environment variables must not start with AWS_BATCH. This naming convention is
reserved for variables that are set by the AWS Batch service.

Type: Array of key-value pairs

Required: No

name

The name of the environment variable.

Type: String

Required: Yes, when environment is used.

value

The value of the environment variable.

Type: String

Required: Yes, when environment is used.

"environment" : [
 { "name" : "envName1", "value" : "envValue1" },
 { "name" : "envName2", "value" : "envValue2" }
]

executionRoleArn

When you register a job definition, you can specify an IAM role. The role provides the Amazon
ECS container agent with permissions to call the API actions that are specified in its associated

Reference: Job definition parameters for ContainerProperties 165

AWS Batch User Guide

policies on your behalf. Jobs that run on Fargate resources must provide an execution role. For
more information, see AWS Batch IAM execution role.

Type: String

Required: No

fargatePlatformConfiguration

The platform configuration for jobs that run on Fargate resources. Jobs that run on EC2
resources must not specify this parameter.

Type: FargatePlatformConfiguration object

Required: No

platformVersion

The AWS Fargate platform version use for the jobs, or LATEST to use a recent, approved
version of the AWS Fargate platform.

Type: String

Default: LATEST

Required: No

image

The image used to start a job. This string is passed directly to the Docker daemon. Images
in the Docker Hub registry are available by default. You can also specify other repositories
with repository-url/image:tag. Up to 255 letters (uppercase and lowercase), numbers,
hyphens, underscores, colons, periods, forward slashes, and number signs are allowed. This
parameter maps to Image in the Create a container section of the Docker Remote API and the
IMAGE parameter of docker run.

Note

Docker image architecture must match the processor architecture of the compute
resources that they're scheduled on. For example, Arm based Docker images can only
run on Arm based compute resources.

Reference: Job definition parameters for ContainerProperties 166

https://docs.aws.amazon.com/batch/latest/APIReference/API_FargatePlatformConfiguration.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

• Images in Amazon ECR Public repositories use the full registry/repository[:tag]
or registry/repository[@digest] naming conventions (for example,
public.ecr.aws/registry_alias/my-web-app:latest).

• Images in Amazon ECR repositories use the full registry/repository:[tag] naming
convention. For example, aws_account_id.dkr.ecr.region.amazonaws.com/my-web-
app:latest.

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

Type: String

Required: Yes

instanceType

The instance type to use for a multi-node parallel job. All node groups in a multi-node parallel
job must use the same instance type. This parameter isn't valid for single-node container jobs or
for jobs that run on Fargate resources.

Type: String

Required: No

jobRoleArn

When you register a job definition, you can specify an IAM role. The role provides the job
container with permissions to call the API actions that are specified in its associated policies
on your behalf. For more information, see IAM Roles for Tasks in the Amazon Elastic Container
Service Developer Guide.

Type: String

Required: No

linuxParameters

Linux-specific modifications that are applied to the container, such as details for device
mappings.

Reference: Job definition parameters for ContainerProperties 167

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Batch User Guide

"linuxParameters": {
 "devices": [
 {
 "hostPath": "string",
 "containerPath": "string",
 "permissions": [
 "READ", "WRITE", "MKNOD"
]
 }
],
 "initProcessEnabled": true|false,
 "sharedMemorySize": 0,
 "tmpfs": [
 {
 "containerPath": "string",
 "size": integer,
 "mountOptions": [
 "string"
]
 }
],
 "maxSwap": integer,
 "swappiness": integer
}

Type: LinuxParameters object

Required: No

devices

List of devices mapped into the container. This parameter maps to Devices in the Create a
container section of the Docker Remote API and the --device option to docker run.

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Type: Array of Device objects

Required: No

Reference: Job definition parameters for ContainerProperties 168

https://docs.aws.amazon.com/batch/latest/APIReference/API_LinuxParameters.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.aws.amazon.com/batch/latest/APIReference/API_Device.html

AWS Batch User Guide

hostPath

Path where the device available in the host container instance is.

Type: String

Required: Yes

containerPath

Path where the device is exposed in the container is. If this isn't specified, the device is
exposed at the same path as the host path.

Type: String

Required: No

permissions

Permissions for the device in the container. If this isn't specified the permissions are set
to READ, WRITE, and MKNOD.

Type: Array of strings

Required: No

Valid values: READ | WRITE | MKNOD

initProcessEnabled

If true, run an init process inside the container that forwards signals and reaps processes.
This parameter maps to the --init option to docker run. This parameter requires version
1.25 of the Docker Remote API or greater on your container instance. To check the Docker
Remote API version on your container instance, log into your container instance and run the
following command: sudo docker version | grep "Server API version"

Type: Boolean

Required: No

maxSwap

The total amount of swap memory (in MiB) a job can use. This parameter is translated to the
--memory-swap option to docker run where the value is the sum of the container memory
plus the maxSwap value. For more information, see --memory-swap details in the Docker
documentation.

Reference: Job definition parameters for ContainerProperties 169

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/config/containers/resource_constraints/#--memory-swap-details

AWS Batch User Guide

If a maxSwap value of 0 is specified, the container doesn't use swap. Accepted values are 0
or any positive integer. If the maxSwap parameter is omitted, the container uses the swap
configuration for the container instance that it runs on. A maxSwap value must be set for the
swappiness parameter to be used.

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Type: Integer

Required: No

sharedMemorySize

The value for the size (in MiB) of the /dev/shm volume. This parameter maps to the --shm-
size option to docker run.

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Type: Integer

Required: No

swappiness

You can use this to tune a container's memory swappiness behavior. A swappiness value
of 0 causes swapping to not happen unless absolutely necessary. A swappiness value of
100 causes pages to be swapped aggressively. Accepted values are whole numbers between
0 and 100. If the swappiness parameter isn't specified, a default value of 60 is used. If a
value isn't specified for maxSwap, then this parameter is ignored. If maxSwap is set to 0, the
container doesn't use swap. This parameter maps to the --memory-swappiness option to
docker run.

Consider the following when you use a per-container swap configuration.

• Swap space must be enabled and allocated on the container instance for the containers to
use.

Reference: Job definition parameters for ContainerProperties 170

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

AWS Batch User Guide

Note

The Amazon ECS optimized AMIs don't have swap enabled by default. You must
enable swap on the instance to use this feature. For more information, see
Instance Store Swap Volumes in the Amazon EC2 User Guide or How do I allocate
memory to work as swap space in an Amazon EC2 instance by using a swap file?.

• The swap space parameters are only supported for job definitions using EC2 resources.

• If the maxSwap and swappiness parameters are omitted from a job definition, each
container has a default swappiness value of 60. The total swap usage is limited to two
times the memory reservation of the container.

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Type: Integer

Required: No

tmpfs

The container path, mount options, and size of the tmpfs mount.

Type: Array of Tmpfs objects

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Required: No

containerPath

The absolute file path in the container where the tmpfs volume is mounted.

Type: String

Reference: Job definition parameters for ContainerProperties 171

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-store-swap-volumes.html
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-memory-swap-file/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-memory-swap-file/
https://docs.aws.amazon.com/batch/latest/APIReference/API_Tmpfs.html

AWS Batch User Guide

Required: Yes

mountOptions

The list of tmpfs volume mount options.

Valid values: "defaults" | "ro" | "rw" | "suid" | "nosuid" | "dev" | "nodev" | "exec" |
"noexec" | "sync" | "async" | "dirsync" | "remount" | "mand" | "nomand" | "atime"
| "noatime" | "diratime" | "nodiratime" | "bind" | "rbind" | "unbindable" |
"runbindable" | "private" | "rprivate" | "shared" | "rshared" | "slave" | "rslave"
| "relatime" | "norelatime" | "strictatime" | "nostrictatime" | "mode" | "uid" |
"gid" | "nr_inodes" | "nr_blocks" | "mpol"

Type: Array of strings

Required: No

size

The size (in MiB) of the tmpfs volume.

Type: Integer

Required: Yes

logConfiguration

The log configuration specification for the job.

This parameter maps to LogConfig in the Create a container section of the Docker Remote
API and the --log-driver option to docker run. By default, containers use the same logging
driver that the Docker daemon uses. However, the container can use a different logging
driver than the Docker daemon by specifying a log driver with this parameter in the container
definition. To use a different logging driver for a container, the log system must be either
configured on the container instance or on another log server to provide remote logging
options. For more information about the options for different supported log drivers, see
Configure logging drivers in the Docker documentation.

Note

AWS Batch currently supports a subset of the logging drivers available to the Docker
daemon (shown in the LogConfiguration data type).

Reference: Job definition parameters for ContainerProperties 172

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/admin/logging/overview/
https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html

AWS Batch User Guide

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance. To check the Docker Remote API version on your container instance, log into your
container instance and run the following command: sudo docker version | grep
"Server API version"

"logConfiguration": {
 "devices": [
 {
 "logDriver": "string",
 "options": {
 "optionName1" : "optionValue1",
 "optionName2" : "optionValue2"
 }
 "secretOptions": [
 {
 "name" : "secretOptionName1",
 "valueFrom" : "secretOptionArn1"
 },
 {
 "name" : "secretOptionName2",
 "valueFrom" : "secretOptionArn2"
 }
]
 }
]
}

Type: LogConfiguration object

Required: No

logDriver

The log driver to use for the job. By default, AWS Batch enables the awslogs log driver. The
valid values that are listed for this parameter are log drivers that the Amazon ECS container
agent can communicate with by default.

This parameter maps to LogConfig in the Create a container section of the Docker Remote
API and the --log-driver option to docker run. By default, jobs use the same logging
driver that the Docker daemon uses. However, the job can use a different logging driver than
the Docker daemon by specifying a log driver with this parameter in the job definition. If you
want to specify another logging driver for a job, the log system must be configured on the

Reference: Job definition parameters for ContainerProperties 173

https://docs.aws.amazon.com/batch/latest/APIReference/API_LogConfiguration.html
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/

AWS Batch User Guide

container instance in the compute environment. Or, alternatively, configure it on another
log server to provide remote logging options. For more information about the options for
different supported log drivers, see Configure logging drivers in the Docker documentation.

Note

AWS Batch currently supports a subset of the logging drivers that are available to
the Docker daemon. Additional log drivers might be available in future releases of
the Amazon ECS container agent.

The supported log drivers are awslogs, fluentd, gelf, json-file, journald,
logentries, syslog, and splunk.

Note

Jobs that run on Fargate resources are restricted to the awslogs and splunk log
drivers.

This parameter requires version 1.18 of the Docker Remote API or greater on your container
instance. To check the Docker Remote API version on your container instance, log into your
container instance and run the following command: sudo docker version | grep
"Server API version"

Note

The Amazon ECS container agent that runs on a container instance must
register the logging drivers that are available on that instance with the
ECS_AVAILABLE_LOGGING_DRIVERS environment variable. Otherwise, the
containers placed on that instance can't use these log configuration options. For
more information, see Amazon ECS Container Agent Configuration in the Amazon
Elastic Container Service Developer Guide.

Reference: Job definition parameters for ContainerProperties 174

https://docs.docker.com/engine/admin/logging/overview/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html

AWS Batch User Guide

awslogs

Specifies the Amazon CloudWatch Logs logging driver. For more information, see Use
the awslogs log driver and Amazon CloudWatch Logs logging driver in the Docker
documentation.

fluentd

Specifies the Fluentd logging driver. For more information including usage and options,
see Fluentd logging driver in the Docker documentation.

gelf

Specifies the Graylog Extended Format (GELF) logging driver. For more information
including usage and options, see Graylog Extended Format logging driver in the Docker
documentation.

journald

Specifies the journald logging driver. For more information including usage and options,
see Journald logging driver in the Docker documentation.

json-file

Specifies the JSON file logging driver. For more information including usage and options,
see JSON File logging driver in the Docker documentation.

splunk

Specifies the Splunk logging driver. For more information including usage and options,
see Splunk logging driver in the Docker documentation.

syslog

Specifies the syslog logging driver. For more information including usage and options,
see Syslog logging driver in the Docker documentation.

Type: String

Required: Yes

Valid values: awslogs | fluentd | gelf | journald | json-file | splunk | syslog

Reference: Job definition parameters for ContainerProperties 175

https://docs.docker.com/config/containers/logging/awslogs/
https://docs.docker.com/config/containers/logging/fluentd/
https://docs.docker.com/config/containers/logging/gelf/
https://docs.docker.com/config/containers/logging/journald/
https://docs.docker.com/config/containers/logging/json-file/
https://docs.docker.com/config/containers/logging/splunk/
https://docs.docker.com/config/containers/logging/syslog/

AWS Batch User Guide

Note

If you have a custom driver that's not listed earlier that you would like to work with
the Amazon ECS container agent, you can fork the Amazon ECS container agent
project that's available on GitHub and customize it to work with that driver. We
encourage you to submit pull requests for changes that you want to have included.
However, Amazon Web Services doesn't currently support requests that run modified
copies of this software.

options

Log configuration options to send to a log driver for the job.

This parameter requires version 1.19 of the Docker Remote API or greater on your container
instance.

Type: String to string map

Required: No

secretOptions

An object that represents the secret to pass to the log configuration. For more information,
see Specify sensitive data.

Type: object array

Required: No

name

The name of the log driver option to set in the job.

Type: String

Required: Yes

valueFrom

The Amazon Resource Name (ARN) of the secret to expose to the log configuration of the
container. The supported values are either the full ARN of the Secrets Manager secret or
the full ARN of the parameter in the SSM Parameter Store.

Reference: Job definition parameters for ContainerProperties 176

https://github.com/aws/amazon-ecs-agent

AWS Batch User Guide

Note

If the SSM Parameter Store parameter exists in the same AWS Region as the
task that you're launching, then you can use either the full ARN or name of the
parameter. If the parameter exists in a different Region, then the full ARN must
be specified.

Type: String

Required: Yes

memory

This parameter is deprecated, use resourceRequirements instead.

The number of MiB of memory reserved for the job.

As an example for how to use resourceRequirements, if your job definition contains syntax
that's similar to the following.

"containerProperties": {
 "memory": 512
}

The equivalent syntax using resourceRequirements is as follows.

"containerProperties": {
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "512"
 }
]
}

Type: Integer

Required: Yes

Reference: Job definition parameters for ContainerProperties 177

AWS Batch User Guide

mountPoints

The mount points for data volumes in your container. This parameter maps to Volumes in the
Create a container section of the Docker Remote API and the --volume option to docker run.

"mountPoints": [
 {
 "sourceVolume": "string",
 "containerPath": "string",
 "readOnly": true|false
 }
]

Type: Object array

Required: No

sourceVolume

The name of the volume to mount.

Type: String

Required: Yes, when mountPoints is used.

containerPath

The path on the container where to mount the host volume.

Type: String

Required: Yes, when mountPoints is used.

readOnly

If this value is true, the container has read-only access to the volume. If this value is false,
then the container can write to the volume.

Type: Boolean

Required: No

Default: False

Reference: Job definition parameters for ContainerProperties 178

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

networkConfiguration

The network configuration for jobs that run on Fargate resources. Jobs that run on EC2
resources must not specify this parameter.

"networkConfiguration": {
 "assignPublicIp": "string"
}

Type: Object array

Required: No

assignPublicIp

Indicates whether the job has a public IP address. This is required if the job needs outbound
network access.

Type: String

Valid values: ENABLED | DISABLED

Required: No

Default: DISABLED

privileged

When this parameter is true, the container is given elevated permissions on the host container
instance (similar to the root user). This parameter maps to Privileged in the Create a
container section of the Docker Remote API and the --privileged option to docker run. This
parameter isn't applicable to jobs that run on Fargate resources. Don't provide it or specify it as
false.

"privileged": true|false

Type: Boolean

Required: No

Reference: Job definition parameters for ContainerProperties 179

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

readonlyRootFilesystem

When this parameter is true, the container is given read-only access to its root file system. This
parameter maps to ReadonlyRootfs in the Create a container section of the Docker Remote
API and the --read-only option to docker run.

"readonlyRootFilesystem": true|false

Type: Boolean

Required: No

resourceRequirements

The type and amount of a resource to assign to a container. The supported resources include
GPU, MEMORY, and VCPU.

"resourceRequirements" : [
 {
 "type": "GPU",
 "value": "number"
 }
]

Type: Object array

Required: No

type

The type of resource to assign to a container. The supported resources include GPU, MEMORY,
and VCPU.

Type: String

Required: Yes, when resourceRequirements is used.

value

The quantity of the specified resource to reserve for the container. The values vary based on
the type specified.

Reference: Job definition parameters for ContainerProperties 180

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

type="GPU"

The number of physical GPUs to reserve for the container. The number of GPUs reserved
for all containers in a job cannot exceed the number of available GPUs on the compute
resource that the job is launched on.

type="MEMORY"

The hard limit (in MiB) of memory to present to the container. If your container attempts
to exceed the memory specified here, the container is killed. This parameter maps to
Memory in the Create a container section of the Docker Remote API and the --memory
option to docker run. You must specify at least 4 MiB of memory for a job. This is
required but can be specified in several places for multi-node parallel (MNP) jobs. It must
be specified for each node at least once. This parameter maps to Memory in the Create a
container section of the Docker Remote API and the --memory option to docker run.

Note

If you're trying to maximize your resource utilization by providing your jobs as
much memory as possible for a particular instance type, see Compute resource
memory management.

For jobs that run on Fargate resources, then value must match one of the supported
values. Moreover, the VCPU values must be one of the values that's supported for that
memory value.

VCPU MEMORY

0.25 vCPU 512, 1024, and 2048 MiB

0.5 vCPU 1024-4096 MiB in 1024 MiB increments

1 vCPU 2048-8192 MiB in 1024 MiB increments

2 vCPU 4096-16384 MiB in 1024 MiB increments

4 vCPU 8192-30720 MiB in 1024 MiB increments

8 vCPU 16384-61440 MiB in 4096 MiB increments

Reference: Job definition parameters for ContainerProperties 181

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/

AWS Batch User Guide

VCPU MEMORY

16 vCPU 32768-122880 MiB in 8192 MiB increments

type="VCPU"

The number of vCPUs reserved for the job. This parameter maps to CpuShares in the
Create a container section of the Docker Remote API and the --cpu-shares option
to docker run. Each vCPU is equivalent to 1,024 CPU shares. For jobs that run on EC2
resources, you must specify at least one vCPU. This is required but can be specified in
several places. It must be specified for each node at least once.

For jobs that run on Fargate resources, value must match one of the supported values
and the MEMORY values must be one of the values that's supported for that VCPU value.
The supported values are 0.25, 0.5, 1, 2, 4, 8, and 16.

The default for the Fargate On-Demand vCPU resource count quota is 6 vCPUs. For more
information about Fargate quotas, see AWS Fargate quotas in the Amazon Web Services
General Reference.

Type: String

Required: Yes, when resourceRequirements is used.

secrets

The secrets for the job that are exposed as environment variables. For more information, see
Specify sensitive data.

"secrets": [
 {
 "name": "secretName1",
 "valueFrom": "secretArn1"
 },
 {
 "name": "secretName2",
 "valueFrom": "secretArn2"
 }
 ...
]

Reference: Job definition parameters for ContainerProperties 182

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/run/
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html#service-quotas-fargate

AWS Batch User Guide

Type: Object array

Required: No

name

The name of the environment variable that contains the secret.

Type: String

Required: Yes, when secrets is used.

valueFrom

The secret to expose to the container. The supported values are either the full Amazon
Resource Name (ARN) of the Secrets Manager secret or the full ARN of the parameter in the
SSM Parameter Store.

Note

If the SSM Parameter Store parameter exists in the same AWS Region as the job
you're launching, then you can use either the full ARN or name of the parameter. If
the parameter exists in a different Region, then the full ARN must be specified.

Type: String

Required: Yes, when secrets is used.

ulimits

A list of ulimits values to set in the container. This parameter maps to Ulimits in the Create
a container section of the Docker Remote API and the --ulimit option to docker run.

"ulimits": [
 {
 "name": string,
 "softLimit": integer,
 "hardLimit": integer
 }
 ...
]

Reference: Job definition parameters for ContainerProperties 183

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Type: Object array

Required: No

name

The type of the ulimit.

Type: String

Required: Yes, when ulimits is used.

hardLimit

The hard limit for the ulimit type.

Type: Integer

Required: Yes, when ulimits is used.

softLimit

The soft limit for the ulimit type.

Type: Integer

Required: Yes, when ulimits is used.

user

The user name to use inside the container. This parameter maps to User in the Create a
container section of the Docker Remote API and the --user option to docker run.

"user": "string"

Type: String

Required: No

vcpus

This parameter is deprecated, use resourceRequirements instead.

The number of vCPUs reserved for the container.

Reference: Job definition parameters for ContainerProperties 184

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

As an example for how to use resourceRequirements, if your job definition contains lines
similar to this:

"containerProperties": {
 "vcpus": 2
}

The equivalent lines using resourceRequirements is as follows.

"containerProperties": {
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "2"
 }
]
}

Type: Integer

Required: Yes

volumes

When you register a job definition, you can specify a list of volumes that are passed to the
Docker daemon on a container instance. The following parameters are allowed in the container
properties:

"volumes": [
 {
 "name": "string",
 "host": {
 "sourcePath": "string"
 },
 "efsVolumeConfiguration": {
 "authorizationConfig": {
 "accessPointId": "string",
 "iam": "string"
 },
 "fileSystemId": "string",
 "rootDirectory": "string",
 "transitEncryption": "string",

Reference: Job definition parameters for ContainerProperties 185

AWS Batch User Guide

 "transitEncryptionPort": number
 }
 }
]

name

The name of the volume. Up to 255 letters (uppercase and lowercase), numbers, hyphens,
and underscores are allowed. This name is referenced in the sourceVolume parameter of
container definition mountPoints.

Type: String

Required: No

host

The contents of the host parameter determine whether your data volume persists on
the host container instance and where it's stored. If the host parameter is empty, then
the Docker daemon assigns a host path for your data volume. However, the data isn't
guaranteed to persist after the container associated with it stops running.

Note

This parameter isn't applicable to jobs that run on Fargate resources.

Type: Object

Required: No

sourcePath

The path on the host container instance that's presented to the container. If this
parameter is empty, then the Docker daemon assigns a host path for you.

If the host parameter contains a sourcePath file location, then the data volume
persists at the specified location on the host container instance until you delete it
manually. If the sourcePath value doesn't exist on the host container instance, the
Docker daemon creates it. If the location does exist, the contents of the source path
folder are exported.

Type: String

Reference: Job definition parameters for ContainerProperties 186

AWS Batch User Guide

Required: No

efsVolumeConfiguration

This parameter is specified when you're using an Amazon Elastic File System file system for
task storage. For more information, see Amazon EFS volumes.

Type: Object

Required: No

authorizationConfig

The authorization configuration details for the Amazon EFS file system.

Type: String

Required: No

accessPointId

The Amazon EFS access point ID to use. If an access point is specified, the root
directory value that's specified in the EFSVolumeConfiguration must either
be omitted or set to /. This enforces the path that's set on the EFS access
point. If an access point is used, transit encryption must be enabled in the
EFSVolumeConfiguration. For more information, see Working with Amazon EFS
Access Points in the Amazon Elastic File System User Guide.

Type: String

Required: No

iam

Determines whether to use the AWS Batch job IAM role defined in a job definition
when mounting the Amazon EFS file system. If enabled, transit encryption must be
enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default
value of DISABLED is used. For more information, see Use Amazon EFS access points.

Type: String

Valid values: ENABLED | DISABLED

Required: No

Reference: Job definition parameters for ContainerProperties 187

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

AWS Batch User Guide

fileSystemId

The Amazon EFS file system ID to use.

Type: String

Required: No

rootDirectory

The directory within the Amazon EFS file system to mount as the root directory inside
the host. If this parameter is omitted, the root of the Amazon EFS volume is used. If
you specify /, it has the same effect as omitting this parameter. The maximum length is
4,096 characters.

Important

If an EFS access point is specified in the authorizationConfig, the root
directory parameter must either be omitted or set to /. This enforces the path
that's set on the Amazon EFS access point.

Type: String

Required: No

transitEncryption

Determines whether to enable encryption for Amazon EFS data in transit between the
Amazon ECS host and the Amazon EFS server. Transit encryption must be enabled if
Amazon EFS IAM authorization is used. If this parameter is omitted, the default value of
DISABLED is used. For more information, see Encrypting data in transit in the Amazon
Elastic File System User Guide.

Type: String

Valid values: ENABLED | DISABLED

Required: No

transitEncryptionPort

The port to use when sending encrypted data between the Amazon ECS host and
the Amazon EFS server. If you don't specify a transit encryption port, it uses the port

Reference: Job definition parameters for ContainerProperties 188

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html

AWS Batch User Guide

selection strategy that the Amazon EFS mount helper uses. The value must be between
0 and 65,535. For more information, see EFS Mount Helper in the Amazon Elastic File
System User Guide.

Type: Integer

Required: No

Amazon EKS properties

An object with various properties that are specific to Amazon EKS based jobs. This must not be
specified for Amazon ECS based job definitions.

podProperties

The properties for the Kubernetes pod resources of a job.

Type: EksPodProperties object

Required: No

containers

The properties of the container that's used on the Amazon EKS pod.

Type: EksContainer object

Required: No

args

An array of arguments to the entrypoint. If this isn't specified, the CMD of the container
image is used. This corresponds to the args member in the Entrypoint portion of the
Pod in Kubernetes. Environment variable references are expanded using the container's
environment.

If the referenced environment variable doesn't exist, the reference in the command isn't
changed. For example, if the reference is to "$(NAME1)" and the NAME1 environment
variable doesn't exist, the command string will remain "$(NAME1)." $$ is replaced with
$, and the resulting string isn't expanded. For example, $$(VAR_NAME) is passed as
$(VAR_NAME) whether or not the VAR_NAME environment variable exists. For more

Reference: Job definition parameters for ContainerProperties 189

https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPodProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainer.html
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#entrypoint
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/

AWS Batch User Guide

information, see CMD in the Dockerfile reference and Define a command and arguments
for a pod in the Kubernetes documentation.

Type: Array of strings

Required: No

command

The entrypoint for the container. This isn't run within a shell. If this isn't specified,
the ENTRYPOINT of the container image is used. Environment variable references are
expanded using the container's environment.

If the referenced environment variable doesn't exist, the reference in the command isn't
changed. For example, if the reference is to "$(NAME1)" and the NAME1 environment
variable doesn't exist, the command string will remain "$(NAME1)." $$ is replaced with
$ and the resulting string isn't expanded. For example, $$(VAR_NAME) will be passed as
$(VAR_NAME) whether or not the VAR_NAME environment variable exists. The entrypoint
can't be updated. For more information, see ENTRYPOINT in the Dockerfile reference
and Define a command and arguments for a container and Entrypoint in the Kubernetes
documentation.

Type: Array of strings

Required: No

env

The environment variables to pass to a container.

Note

Environment variables cannot start with "AWS_BATCH". This naming convention is
reserved for variables that AWS Batch sets.

Type: Array of EksContainerEnvironmentVariable objects

Required: No

name

The name of the environment variable.

Reference: Job definition parameters for ContainerProperties 190

https://docs.docker.com/engine/reference/builder/#cmd
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://docs.docker.com/engine/reference/builder/#entrypoint
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#entrypoint
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainerEnvironmentVariable.html

AWS Batch User Guide

Type: String

Required: Yes

value

The value of the environment variable.

Type: String

Required: No

image

The Docker image used to start the container.

Type: String

Required: Yes

imagePullPolicy

The image pull policy for the container. Supported values are Always, IfNotPresent,
and Never. This parameter defaults to IfNotPresent. However, if the :latest tag
is specified, it defaults to Always. For more information, see Updating images in the
Kubernetes documentation.

Type: String

Required: No

name

The name of the container. If the name isn't specified, the default name "Default" is
used. Each container in a pod must have a unique name.

Type: String

Required: No

resources

The type and amount of resources to assign to a container. The supported resources
include memory, cpu, and nvidia.com/gpu. For more information, see Resource
management for pods and containers in the Kubernetes documentation.

Reference: Job definition parameters for ContainerProperties 191

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

AWS Batch User Guide

Type: EksContainerResourceRequirements object

Required: No

limits

The type and quantity of the resources to reserve for the container. The values vary
based on the name that's specified. Resources can be requested using either the
limits or the requests objects.

memory

The memory hard limit (in MiB) for the container, using whole integers, with a "Mi"
suffix. If your container attempts to exceed the memory specified, the container
is terminated. You must specify at least 4 MiB of memory for a job. memory
can be specified in limits, requests, or both. If memory is specified in both
places, then the value that's specified in limits must be equal to the value that's
specified in requests.

Note

To maximize your resource utilization, provide your jobs with as much
memory as possible for the specific instance type that you are using. To
learn how, see Compute resource memory management.

cpu

The number of CPUs that's reserved for the container. Values must be an even
multiple of 0.25. cpu can be specified in limits, requests, or both. If cpu is
specified in both places, then the value that's specified in limits must be at least
as large as the value that's specified in requests.

nvidia.com/gpu

The number of GPUs that's reserved for the container. Values must be a whole
integer. memory can be specified in limits, requests, or both. If memory is
specified in both places, then the value that's specified in limits must be equal
to the value that's specified in requests.

Type: String to string map

Reference: Job definition parameters for ContainerProperties 192

https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainerResourceRequirements.html

AWS Batch User Guide

Value Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

requests

The type and quantity of the resources to request for the container. The values vary
based on the name that's specified. Resources can be requested by using either the
limits or the requests objects.

memory

The memory hard limit (in MiB) for the container, using whole integers, with a "Mi"
suffix. If your container attempts to exceed the memory specified, the container
is terminated. You must specify at least 4 MiB of memory for a job. memory can
be specified in limits, requests, or both. If memory is specified in both, then
the value that's specified in limits must be equal to the value that's specified in
requests.

Note

If you're trying to maximize your resource utilization by providing your jobs
as much memory as possible for a particular instance type, see Compute
resource memory management.

cpu

The number of CPUs that are reserved for the container. Values must be an even
multiple of 0.25. cpu can be specified in limits, requests, or both. If cpu is
specified in both, then the value that's specified in limits must be at least as
large as the value that's specified in requests.

nvidia.com/gpu

The number of GPUs that are reserved for the container. Values must be a whole
integer. nvidia.com/gpu can be specified in limits, requests, or both. If
nvidia.com/gpu is specified in both, then the value that's specified in limits
must be equal to the value that's specified in requests.

Type: String to string map

Reference: Job definition parameters for ContainerProperties 193

AWS Batch User Guide

Value Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

securityContext

The security context for a job. For more information, see Configure a security context for
a pod or container in the Kubernetes documentation.

Type: EksContainerSecurityContext object

Required: No

privileged

When this parameter is true, the container is given elevated permissions on the host
container instance. The level of permissions is similar to the root user permissions.
The default value is false. This parameter maps to privileged policy in the
Privileged pod security policies in the Kubernetes documentation.

Type: Boolean

Required: No

readOnlyRootFilesystem

When this parameter is true, the container is given read-only access to
its root file system. The default value is false. This parameter maps to
ReadOnlyRootFilesystem policy in the Volumes and file systems pod security
policies in the Kubernetes documentation.

Type: Boolean

Required: No

runAsGroup

When this parameter is specified, the container is run as the specified group ID (gid).
If this parameter isn't specified, the default is the group that's specified in the image
metadata. This parameter maps to RunAsGroup and MustRunAs policy in the Users
and groups pod security policies in the Kubernetes documentation.

Type: Long

Required: No

Reference: Job definition parameters for ContainerProperties 194

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainerSecurityContext.html
https://kubernetes.io/docs/concepts/security/pod-security-policy/#privileged
https://kubernetes.io/docs/concepts/security/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/security/pod-security-policy/#volumes-and-file-systems
https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups

AWS Batch User Guide

runAsNonRoot

When this parameter is specified, the container is run as a user with a uid other than
0. If this parameter isn't specified, so such rule is enforced. This parameter maps to
RunAsUser and MustRunAsNonRoot policy in the Users and groups pod security
policies in the Kubernetes documentation.

Type: Long

Required: No

runAsUser

When this parameter is specified, the container is run as the specified user ID (uid).
If this parameter isn't specified, the default is the user that's specified in the image
metadata. This parameter maps to RunAsUser and MustRanAs policy in the Users
and groups pod security policies in the Kubernetes documentation.

Type: Long

Required: No

volumeMounts

The volume mounts for a container for an Amazon EKS job. For more information
about volumes and volume mounts in Kubernetes, see Volumes in the Kubernetes
documentation.

Type: Array of EksContainerVolumeMount objects

Required: No

mountPath

The path on the container where the volume is mounted.

Type: String

Required: No

name

The name the volume mount. This must match the name of one of the volumes in the
pod.

Type: String

Reference: Job definition parameters for ContainerProperties 195

https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/security/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/storage/volumes/
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainerVolumeMount.html

AWS Batch User Guide

Required: No

readOnly

If this value is true, the container has read-only access to the volume. Otherwise, the
container can write to the volume. The default value is false.

Type: Boolean

Required: No

dnsPolicy

The DNS policy for the pod. The default value is ClusterFirst. If the hostNetwork
parameter is not specified, the default is ClusterFirstWithHostNet. ClusterFirst
indicates that any DNS query that does not match the configured cluster domain suffix is
forwarded to the upstream nameserver inherited from the node. If no value was specified
for dnsPolicy in the RegisterJobDefinition API operation, then no value is returned for
dnsPolicy by either of DescribeJobDefinitions or DescribeJobs API operations. The pod
spec setting will contain either ClusterFirst or ClusterFirstWithHostNet, depending
on the value of the hostNetwork parameter. For more information, see Pod's DNS policy in
the Kubernetes documentation.

Valid values: Default | ClusterFirst | ClusterFirstWithHostNet

Type: String

Required: No

hostNetwork

Indicates if the pod uses the hosts' network IP address. The default value is true. Setting
this to false enables the Kubernetes pod networking model. Most AWS Batch workloads
are egress-only and don't require the overhead of IP allocation for each pod for incoming
connections. For more information, see Host namespaces and Pod networking in the
Kubernetes documentation.

Type: Boolean

Required: No

serviceAccountName

The name of the service account that's used to run the pod. For more information, see
Kubernetes service accounts and Configure a Kubernetes service account to assume an IAM

Reference: Job definition parameters for ContainerProperties 196

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobDefinitions.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy
https://kubernetes.io/docs/concepts/security/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/workloads/pods/#pod-networking
https://docs.aws.amazon.com/eks/latest/userguide/service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

AWS Batch User Guide

role in the Amazon EKS User Guide and Configure service accounts for pods in the Kubernetes
documentation.

Type: String

Required: No

volumes

Specifies the volumes for a job definition that uses Amazon EKS resources.

Type: Array of EksVolume objects

Required: No

emptyDir

Specifies the configuration of a Kubernetes emptyDir volume. An emptyDir volume
is first created when a pod is assigned to a node. It exists as long as that pod runs on
that node. The emptyDir volume is initially empty. All containers in the pod can read
and write the files in the emptyDir volume. However, the emptyDir volume can be
mounted at the same or different paths in each container. When a pod is removed from
a node for any reason, the data in the emptyDir is deleted permanently. For more
information, see emptyDir in the Kubernetes documentation.

Type: EksEmptyDir object

Required: No

medium

The medium to store the volume. The default value is an empty string, which uses the
storage of the node.

""

(Default) Use the disk storage of the node.

"Memory"

Use the tmpfs volume that's backed by the RAM of the node. Contents of the
volume are lost when the node reboots, and any storage on the volume counts
against the container's memory limit.

Type: String

Reference: Job definition parameters for ContainerProperties 197

https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksVolume.html
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksEmptyDir.html

AWS Batch User Guide

Required: No

sizeLimit

The maximum size of the volume. By default, there's no maximum size defined.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 256.

Required: No

hostPath

Specifies the configuration of a Kubernetes hostPath volume. A hostPath volume
mounts an existing file or directory from the host node's filesystem into your pod. For
more information, see hostPath in the Kubernetes documentation.

Type: EksHostPath object

Required: No

path

The path of the file or directory on the host to mount into containers on the pod.

Type: String

Required: No

name

The name of the volume. The name must be allowed as a DNS subdomain name. For
more information, see DNS subdomain names in the Kubernetes documentation.

Type: String

Required: Yes

secret

Specifies the configuration of a Kubernetes secret volume. For more information, see
secret in the Kubernetes documentation.

Type: EksSecret object

Required: No

Reference: Job definition parameters for ContainerProperties 198

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksHostPath.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksSecret.html

AWS Batch User Guide

optional

Specifies whether the secret or the secret's keys must be defined.

Type: Boolean

Required: No

secretName

The name of the secret. The name must be allowed as a DNS subdomain name. For
more information, see DNS subdomain names in the Kubernetes documentation.

Type: String

Required: Yes

Platform capabilities

platformCapabilities

The platform capabilities that's required by the job definition. If no value is specified, it defaults
to EC2. For jobs that run on Fargate resources, FARGATE is specified.

Note

If the job runs on Amazon EKS resources, then you must not specify
platformCapabilities.

Type: String

Valid values: EC2 | FARGATE

Required: No

Propagate tags

propagateTags

Specifies whether to propagate the tags from the job or job definition to the corresponding
Amazon ECS task. If no value is specified, the tags aren't propagated. Tags can only be

Reference: Job definition parameters for ContainerProperties 199

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names

AWS Batch User Guide

propagated to the tasks when the task is created. For tags with the same name, job tags are
given priority over job definitions tags. If the total number of combined tags from the job and
job definition is over 50, the job's moved to the FAILED state.

Note

If the job runs on Amazon EKS resources, then you must not specify propagateTags.

Type: Boolean

Required: No

Node properties

nodeProperties

When you register a multi-node parallel job definition, you must specify a list of node
properties. These node properties define the number of nodes to use in your job, the main
node index, and the different node ranges to use. If the job runs on Fargate resources, then you
can't specify nodeProperties. Instead, use containerProperties. The following node
properties are allowed in a job definition. For more information, see Multi-node parallel jobs.

Note

If the job runs on Amazon EKS resources, then you must not specify nodeProperties.

Type: NodeProperties object

Required: No

mainNode

Specifies the node index for the main node of a multi-node parallel job. This node index
value must be smaller than the number of nodes.

Type: Integer

Required: Yes

Reference: Job definition parameters for ContainerProperties 200

https://docs.aws.amazon.com/batch/latest/APIReference/API_NodeProperties.html

AWS Batch User Guide

numNodes

The number of nodes that are associated with a multi-node parallel job.

Type: Integer

Required: Yes

nodeRangeProperties

A list of node ranges and their properties that are associated with a multi-node parallel job.

Note

A node group is an identical group of job nodes that all share the same container
properties. You can use AWS Batch to specify up to five distinct node groups for each
job.

Type: Array of NodeRangeProperty objects

Required: Yes

targetNodes

The range of nodes, using node index values. A range of 0:3 indicates nodes with index
values of 0 through 3. If the starting range value is omitted (:n), then 0 is used to start
the range. If the ending range value is omitted (n:), then the highest possible node index
is used to end the range. Your accumulative node ranges must account for all nodes
(0:n). You can nest node ranges, for example 0:10 and 4:5. For this case, the 4:5 range
properties override the 0:10 properties.

Type: String

Required: No

container

The container details for the node range. For more information, see Container properties.

Type: ContainerProperties object

Required: No

Reference: Job definition parameters for ContainerProperties 201

https://docs.aws.amazon.com/batch/latest/APIReference/API_NodeRangeProperty.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html

AWS Batch User Guide

Retry strategy

retryStrategy

When you register a job definition, you can optionally specify a retry strategy to use for
failed jobs that are submitted with this job definition. Any retry strategy that's specified
during a SubmitJob operation overrides the retry strategy defined here. By default, each
job is attempted one time. If you specify more than one attempt, the job is retried if it fails.
Examples of a fail attempt include the job returns a non-zero exit code or the container instance
is terminated. For more information, see Automated job retries.

Type: RetryStrategy object

Required: No

attempts

The number of times to move a job to the RUNNABLE status. You can specify between 1 and
10 attempts. If attempts is greater than one, the job is retried that many times if it fails,
until it has moved to RUNNABLE.

"attempts": integer

Type: Integer

Required: No

evaluateOnExit

Array of up to 5 objects that specify conditions under which the job is retried or failed.
If this parameter is specified, then the attempts parameter must also be specified. If
evaluateOnExit is specified but none of the entries match, then the job is retried.

"evaluateOnExit": [
 {
 "action": "string",
 "onExitCode": "string",
 "onReason": "string",
 "onStatusReason": "string"
 }
]

Reference: Job definition parameters for ContainerProperties 202

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_RetryStrategy.html

AWS Batch User Guide

Type: Array of EvaluateOnExit objects

Required: No

action

Specifies the action to take if all of the specified conditions (onStatusReason,
onReason, and onExitCode) are met. The values aren't case sensitive.

Type: String

Required: Yes

Valid values: RETRY | EXIT

onExitCode

Contains a glob pattern to match against the decimal representation of the ExitCode
that's returned for a job. The pattern can be up to 512 characters in length. It can contain
only numbers. It cannot contain letters or special characters. It can optionally end with
an asterisk (*) so that only the start of the string needs to be an exact match.

Type: String

Required: No

onReason

Contains a glob pattern to match against the Reason that's returned for a job. The
pattern can be up to 512 characters in length. It can contain letters, numbers, periods (.),
colons (:), and white space (spaces, tabs). It can optionally end with an asterisk (*) so that
only the start of the string needs to be an exact match.

Type: String

Required: No

onStatusReason

Contains a glob pattern to match against the StatusReason that's returned for a
job. The pattern can be up to 512 characters in length. It can contain letters, numbers,
periods (.), colons (:), and white space (spaces, tabs). It can optionally end with an asterisk
(*) so that only the start of the string needs to be an exact match.

Type: String

Reference: Job definition parameters for ContainerProperties 203

https://docs.aws.amazon.com/batch/latest/APIReference/API_EvaluateOnExit.html

AWS Batch User Guide

Required: No

Scheduling priority

schedulingPriority

The scheduling priority for jobs that are submitted with this job definition. This only affects
jobs in job queues with a fair share policy. Jobs with a higher scheduling priority are scheduled
before jobs with a lower scheduling priority.

The minimum supported value is 0 and the maximum supported value is 9999.

Type: Integer

Required: No

Tags

tags

Key-value pair tags to associate with the job definition. For more information, see Tag your AWS
Batch resources.

Type: String to string map

Required: No

Timeout

timeout

You can configure a timeout duration for your jobs so that if a job runs longer than that, AWS
Batch terminates the job. For more information, see Job timeouts. If a job is terminated because
of a timeout, it isn't retried. Any timeout configuration that's specified during a SubmitJob
operation overrides the timeout configuration defined here. For more information, see Job
timeouts.

Type: JobTimeout object

Required: No

Reference: Job definition parameters for ContainerProperties 204

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_JobTimeout.html

AWS Batch User Guide

attemptDurationSeconds

The time duration in seconds (measured from the job attempt's startedAt timestamp)
after AWS Batch terminates unfinished jobs. The minimum value for the timeout is 60
seconds.

For array jobs, the timeout applies to the child jobs, not to the parent array job.

For multi-node parallel (MNP) jobs, the timeout applies to the whole job, not to the
individual nodes.

Type: Integer

Required: No

Create job definitions using EcsProperties

With AWS Batch job definitions using EcsProperties, you can model hardware, sensors, 3D
environments and other simulations in separate containers. You can use this feature to logically
organize your workload components, and separate them from the main application. This feature
can be used with AWS Batch on Amazon Elastic Container Service (Amazon ECS), Amazon Elastic
Kubernetes Service (Amazon EKS), and AWS Fargate.

ContainerProperties versus EcsProperties job definitions

You can choose to use ContainerProperties or EcsProperties job definitions as your use
case dictates. At a high-level, running AWS Batch jobs with EcsProperties is similar to running
jobs with a ContainerProperties.

The legacy job definition structure, using ContainerProperties, remains supported. If you
currently have workflows using this structure, you can continue to run them.

The main difference is that there is a new object added to the job definition to accommodate
EcsProperties-based definitions.

For example, a job definition that uses ContainerProperties on Amazon ECS and Fargate has
the following structure:

{

Create job definitions using EcsProperties 205

https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html

AWS Batch User Guide

 "containerProperties": {
 ...
 "image": "my_ecr_image1",
 ...
 },
...
}

A job definition that uses EcsProperties on Amazon ECS and Fargate has the following
structure:

{
 "ecsProperties": {
 "taskProperties": [{
 "containers": [
 {
 ...
 "image": "my_ecr_image1",
 ...
 },
 {
 ...
 "image": "my_ecr_image2",
 ...
 },

General changes to the AWS Batch APIs

The following further outlines some of the key differences when using the EcsProperties and
the EcsProperties API data types:

• Many of the parameters that are used within ContainerProperties appear within
TaskContainerProperties. Some examples include, command, image, privileged,
secrets, and users. They can all be found within TaskContainerProperties.

• Some of the TaskContainerProperties parameters don’t have functional equivalents in
the legacy structure. Some examples include, dependsOn, essential, name, ipcMode, and
pidMode. For more information, see EcsTaskDetails and TaskContainerProperties.

As well, some ContainerProperties parameters don’t have equivalents, or application,
in the EcsProperties structure. In taskProperties, container has been replaced with

General changes to the AWS Batch APIs 206

https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskDetails.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html#Batch-Type-EcsProperties-taskProperties

AWS Batch User Guide

containers so that the new object can accept up to ten elements. For more information see
RegisterJobDefinition:containerProperties and EcsTaskProperties:containers.

• taskRoleArn is functionally equivalent to jobRoleArn. For more information see
EcsTaskProperties:taskRoleArn and ContainerProperties:jobRoleArn.

• You can include from one (1) to ten (10) containers in the EcsProperties structure. For more
information see EcsTaskProperties:containers.

• The taskProperties and instanceTypes objects are arrays, but currently accept only one
element. For example, EcsProperties:taskProperties and NodeRangeProperty:instanceTypes.

Multi-container job definitions for Amazon ECS

To accommodate the multi-container structure for Amazon ECS, some of the API data types are
different. For example,

• ecsProperties is the same level as containerProperties in the single-container definition.
For more information, see EcsProperties in the AWS Batch API Reference Guide.

• taskProperties contains the properties defined for the Amazon ECS task. For more
information, see EcsProperties in the AWS Batch API Reference Guide.

• containers includes similar information to containerProperties in the single-container
definition. The main difference is that containers allows you to define up to ten containers.
For more information, see ECSTaskProperties:containers in the AWS Batch API Reference Guide.

• essential parameter indicates how the container affects the job. All essentail cotainers must
complete successfully (exit as 0) in order for the job to progress. If a container that is marked as
essentail fails (exits as non-0), then the job fails.

The default value is true and at least one container must be marked as essential. For more
information, see essential in the AWS Batch API Reference Guide.

• With the dependsOn parameter, you can define a list of container dependencies. For more
information, see dependsOn in the AWS Batch API Reference Guide.

Note

The complexity of the dependsOn list and the associated container runtime can affect
the start time for your job. If the dependencies take a long time to run, the job will
remain in a STARTING state until they complete.

Multi-container job definitions for Amazon ECS 207

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#Batch-RegisterJobDefinition-request-containerProperties
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_NodeRangeProperty.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#Batch-RegisterJobDefinition-request-ecsProperties
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html#Batch-Type-EcsProperties-taskProperties
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskProperties.html#Batch-Type-EcsTaskProperties-containers
https://docs.aws.amazon.com/batch/latest/APIReference/API_EcsTaskProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html#Batch-Type-TaskContainerProperties-essential
https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html#Batch-Type-TaskContainerProperties-essential
https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html#Batch-Type-TaskContainerProperties-dependsOn
https://docs.aws.amazon.com/batch/latest/APIReference/API_TaskContainerProperties.html#Batch-Type-TaskContainerProperties-dependsOn

AWS Batch User Guide

For more information about the ecsProperties and structure, see RegisterJobDefinition request
syntax for ecsProperties.

Multi-container job definitions for Amazon EKS

To accommodate the multi-container structure for Amazon EKS, some of the API data types are
different. For example,

• name is a unique identifier for the container. This object isn't required for a single container,
but is required when defining multiple containers in a pod. When name isn't defined for single
containers, the default name, default, is applied.

• initContainers are defined within the eksPodProperties data type. Thery run before
application containers, always runs to completion, and must complete successfully before the
next container starts.

These containers are registered with the Amazon EKS Connector agent and persists the
registration information in the Amazon Elastic Kubernetes Service backend data store. The
initContainers object can accept up to ten (10) elements. For more information, see Init
Containers in the Kubernetes documentation.

Note

The initContainers object can affect the start time for your job. If the
initContainers take a long time to run, the job will remain in a STARTING state until
they complete.

• shareProcessNamespace indicates if the containers in the pod can share the same process
namespace. The default values is false. Setting this to true to enable containers see and signal
processes in other containers that located in the same pod.

• Every container has importance. All containers must complete successfully (exit as 0) for the job
to succeed. If one container fails (exits as other than 0), then the job fails.

For more information about the eksProperties and structure, see RegisterJobDefinition request
syntax for eksProperties.

Multi-container job definitions for Amazon EKS 208

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#API_RegisterJobDefinition_RequestBody
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#Batch-RegisterJobDefinition-request-ecsProperties
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksContainer.html#Batch-Type-EksContainer-name
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPodProperties.html#Batch-Type-EksPodProperties-initContainers
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPodProperties.html
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPodProperties.html#Batch-Type-EksPodProperties-shareProcessNamespace
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#API_RegisterJobDefinition_RequestBody
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html#Batch-RegisterJobDefinition-request-eksProperties

AWS Batch User Guide

Reference: AWS Batch job scenarios using EcsProperties

To illustrate how AWS Batch job definitions that use EcsProperties can be structured based on
your needs, this topic presents the following RegisterJobDefinition payloads. You can copy
these examples into a file, customize them to your needs, and then use the AWS Command Line
Interface (AWS CLI) to call RegisterJobDefinition.

AWS Batch job for Amazon ECS on Amazon EC2

The following is an example of a AWS Batch job for Amazon Elastic Container Service on Amazon
Elastic Compute Cloud:

{
 "jobDefinitionName": "multicontainer-ecs-ec2",
 "type": "container",
 "ecsProperties": {
 "taskProperties": [
 {
 "containers": [
 {
 "name": "c1",
 "essential": false,
 "command": [
 "echo",
 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "2"
 },
 {
 "type": "MEMORY",
 "value": "4096"
 }
]
 },
 {
 "name": "c2",
 "essential": true,
 "command": [
 "echo",

Reference: AWS Batch job scenarios using EcsProperties 209

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "6"
 },
 {
 "type": "MEMORY",
 "value": "12288"
 }
]
 }
]
 }
]
 }
}

AWS Batch job for Amazon ECS on Fargate

The following is an example of a AWS Batch job for Amazon Elastic Container Service on AWS
Fargate:

{
 "jobDefinitionName": "multicontainer-ecs-fargate",
 "type": "container",
 "platformCapabilities": [
 "FARGATE"
],
 "ecsProperties": {
 "taskProperties": [
 {
 "containers": [
 {
 "name": "c1",
 "command": [
 "echo",
 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [

Reference: AWS Batch job scenarios using EcsProperties 210

AWS Batch User Guide

 {
 "type": "VCPU",
 "value": "2"
 },
 {
 "type": "MEMORY",
 "value": "4096"
 }
]
 },
 {
 "name": "c2",
 "essential": true,
 "command": [
 "echo",
 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "6"
 },
 {
 "type": "MEMORY",
 "value": "12288"
 }
]
 }
],
 "executionRoleArn": "arn:aws:iam::1112223333:role/ecsTaskExecutionRole"
 }
]
 }
}

AWS Batch job for Amazon EKS

The following is an example of a AWS Batch job for Amazon Elastic Kubernetes Service:

{
 "jobDefinitionName": "multicontainer-eks",
 "type": "container",

Reference: AWS Batch job scenarios using EcsProperties 211

AWS Batch User Guide

 "eksProperties": {
 "podProperties": {
 "shareProcessNamespace": true,
 "initContainers": [
 {
 "name": "init-container",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "echo"
],
 "args": [
 "hello world"
],
 "resources": {
 "requests": {
 "cpu": "1",
 "memory": "512Mi"
 }
 }
 },
 {
 "name": "init-container-2",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "echo",
 "my second init container"
],
 "resources": {
 "requests": {
 "cpu": "1",
 "memory": "512Mi"
 }
 }
 }
],
 "containers": [
 {
 "name": "c1",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "echo world"
],
 "resources": {
 "requests": {

Reference: AWS Batch job scenarios using EcsProperties 212

AWS Batch User Guide

 "cpu": "1",
 "memory": "512Mi"
 }
 }
 },
 {
 "name": "sleep-container",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "sleep",
 "20"
],
 "resources": {
 "requests": {
 "cpu": "1",
 "memory": "512Mi"
 }
 }
 }
]
 }
 }
}

MNP AWS Batch job with multiple containers per node

The following is an example of a multi-node parallel (MNP) AWS Batch job with multiple containers
per node:

{
 "jobDefinitionName": "multicontainer-mnp",
 "type": "multinode",
 "nodeProperties": {
 "numNodes": 6,
 "mainNode": 0,
 "nodeRangeProperties": [
 {
 "targetNodes": "0:5",
 "ecsProperties": {
 "taskProperties": [
 {
 "containers": [
 {

Reference: AWS Batch job scenarios using EcsProperties 213

AWS Batch User Guide

 "name": "range05-c1",
 "command": [
 "echo",
 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "2"
 },
 {
 "type": "MEMORY",
 "value": "4096"
 }
]
 },
 {
 "name": "range05-c2",
 "command": [
 "echo",
 "hello world"
],
 "image": "public.ecr.aws/amazonlinux/amazonlinux:latest",
 "resourceRequirements": [
 {
 "type": "VCPU",
 "value": "2"
 },
 {
 "type": "MEMORY",
 "value": "4096"
 }
]
 }
]
 }
]
 }
 }
]
 }
}

Reference: AWS Batch job scenarios using EcsProperties 214

AWS Batch User Guide

Use the awslogs log driver

By default, AWS Batch enables the awslogs log driver to send log information to CloudWatch
Logs. You can use this feature to view different logs from your containers in one convenient
location and prevent your container logs from taking up disk space on your container instances.
This topic helps you configure the awslogs log driver in your job definitions.

Note

In the AWS Batch console, you can configure the awslogs log driver in the Logging
configuration section when you create a job definition.

Note

The type of information that's logged by the containers in your job depends mostly on
their ENTRYPOINT command. By default, the logs that are captured show the command
output that you normally see in an interactive terminal if you ran the container locally,
which are the STDOUT and STDERR I/O streams. The awslogs log driver simply passes
these logs from Docker to CloudWatch Logs. For more information about how Docker logs
are processed, including alternative ways to capture different file data or streams, see View
logs for a container or service in the Docker documentation.

To send system logs from your container instances to CloudWatch Logs, see Using CloudWatch
Logs with AWS Batch. For more information about CloudWatch Logs, see Monitoring Log Files and
CloudWatch Logs quotas in the Amazon CloudWatch Logs User Guide.

awslogs log driver options in the AWS Batch JobDefiniton data type

The awslogs log driver supports the following options in AWS Batch job definitions. For more
information, see CloudWatch Logs logging driver in the Docker documentation.

awslogs-region

Required: No

Specify the Region where the awslogs log driver should send your Docker logs. By default, the
Region that's used is the same one as the one for the job. You can choose to send all of your

Use the awslogs log driver 215

https://docs.docker.com/config/containers/logging/
https://docs.docker.com/config/containers/logging/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.docker.com/config/containers/logging/awslogs/

AWS Batch User Guide

logs from jobs in different Regions to a single Region in CloudWatch Logs. Doing this allows
them to be visible all from one location. Alternatively, you can separate them by Region for
more granular approach. However, when you choose this option, make sure that the specified
log groups exists in the Region that you specified.

awslogs-group

Required: Optional

With the awslogs-group option, you can specify the log group that the awslogs log driver
sends its log streams to. If this isn't specified, aws/batch/job is used.

awslogs-stream-prefix

Required: Optional

With the awslogs-stream-prefix option, you can associate a log stream with the specified
prefix, and the Amazon ECS task ID of the AWS Batch job that the container belongs to. If you
specify a prefix with this option, then the log stream takes the following format:

prefix-name/default/ecs-task-id

awslogs-datetime-format

Required: No

This option defines a multiline start pattern in Python strftime format. A log message
consists of a line that matches the pattern and any following lines that don't match the pattern.
Thus the matched line is the delimiter between log messages.

One example of a use case for using this format is for parsing output such as a stack dump,
which might otherwise be logged in multiple entries. The correct pattern allows it to be
captured in a single entry.

For more information, see awslogs-datetime-format.

This option always takes precedence if both awslogs-datetime-format and awslogs-
multiline-pattern are configured.

awslogs log driver options in the AWS Batch JobDefiniton data type 216

https://docs.docker.com/config/containers/logging/awslogs/#awslogs-datetime-format

AWS Batch User Guide

Note

Multiline logging performs regular expression parsing and matching of all log messages.
This may have a negative impact on logging performance.

awslogs-multiline-pattern

Required: No

This option defines a multiline start pattern using a regular expression. A log message consists
of a line that matches the pattern and any following lines that don't match the pattern. Thus,
the matched line is the delimiter between log messages.

For more information, see awslogs-multiline-pattern in the Docker documentation.

This option is ignored if awslogs-datetime-format is also configured.

Note

Multiline logging performs regular expression parsing and matching of all log messages.
This might have a negative impact on logging performance.

awslogs-create-group

Required: No

Specify whether you want the log group automatically created. If this option isn't specified, it
defaults to false.

Warning

This option isn't recommended. We recommend that you create the log group in
advance using the CloudWatch Logs CreateLogGroup API action as each job tries to
create the log group, increasing the chance that the job fails.

awslogs log driver options in the AWS Batch JobDefiniton data type 217

https://docs.docker.com/config/containers/logging/awslogs/#awslogs-multiline-pattern
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html

AWS Batch User Guide

Note

The IAM policy for your execution role must include the logs:CreateLogGroup
permission before you attempt to use awslogs-create-group.

Specify a log configuration in your job definition

By default, AWS Batch enables the awslogs log driver. This section describes how to customize the
awslogs log configuration for a job. For more information, see Create a single-node job definition
.

The following log configuration JSON snippets have a logConfiguration object specified for
each job. One is for a WordPress job that sends logs to a log group called awslogs-wordpress,
and another is for a MySQL container that sends logs to a log group called awslogs-mysql. Both
containers use the awslogs-example log stream prefix.

"logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "awslogs-wordpress",
 "awslogs-stream-prefix": "awslogs-example"
 }
}

"logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "awslogs-mysql",
 "awslogs-stream-prefix": "awslogs-example"
 }
}

In the AWS Batch console, the log configuration for the wordpress job definition is specified as
shown in the following image.

Specify a log configuration in your job definition 218

AWS Batch User Guide

After you have registered a task definition with the awslogs log driver in a job definition log
configuration, you can submit a job with that job definition to start sending logs to CloudWatch
Logs. For more information, see Tutorial: submit a job.

Specify sensitive data

With AWS Batch, you can inject sensitive data into your jobs by storing your sensitive data in either
AWS Secrets Manager secrets or AWS Systems Manager Parameter Store parameters, and then
reference them in your job definition.

Secrets can be exposed to a job in the following ways:

• To inject sensitive data into your containers as environment variables, use the secrets job
definition parameter.

• To reference sensitive information in the log configuration of a job, use the secretOptions job
definition parameter.

Topics

• Specify sensitive data with Secrets Manager

Specify sensitive data 219

AWS Batch User Guide

• Specify sensitive data with Systems Manager Parameter Store

Specify sensitive data with Secrets Manager

With AWS Batch, you can inject sensitive data into your jobs by storing your sensitive data in AWS
Secrets Manager secrets and then referencing them in your job definition. Sensitive data stored
in Secrets Manager secrets can be exposed to a job as environment variables or as part of the log
configuration.

When you inject a secret as an environment variable, you can specify a JSON key or version of a
secret to inject. This process helps you control the sensitive data exposed to your job. For more
information about secret versioning, see Key Terms and Concepts for AWS Secrets Manager in the
AWS Secrets Manager User Guide.

Considerations when you specify sensitive data using Secrets Manager

The following should be considered when using Secrets Manager to specify sensitive data for jobs.

• To inject a secret using a specific JSON key or version of a secret, the container instance in your
compute environment must have version 1.37.0 or later of the Amazon ECS container agent
installed. However, we recommend using the latest container agent version. For information
about checking your agent version and updating to the latest version, see Updating the Amazon
ECS container agent in the Amazon Elastic Container Service Developer Guide.

To inject the full contents of a secret as an environment variable or to inject a secret in a log
configuration, your container instance must have version 1.23.0 or later of the container agent.

• Only secrets that store text data, which are secrets created with the SecretString parameter
of the CreateSecret API, are supported. Secrets that store binary data, which are secrets created
with the SecretBinary parameter of the CreateSecret API aren't supported.

• When using a job definition that references Secrets Manager secrets to retrieve sensitive data
for your jobs, if you're also using interface VPC endpoints, you must create the interface VPC
endpoints for Secrets Manager. For more information, see Using Secrets Manager with VPC
Endpoints in the AWS Secrets Manager User Guide.

• Sensitive data is injected into your job when the job is initially started. If the secret is
subsequently updated or rotated, the job doesn't receive the updated value automatically. You
must launch a new job to force the service to launch a fresh job with the updated secret value.

Use Secrets Manager 220

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html

AWS Batch User Guide

Required IAM permissions for AWS Batch secrets

To use this feature, you must have the execution role and reference it in your job definition. This
allows the container agent to pull the necessary Secrets Manager resources. For more information,
see AWS Batch IAM execution role.

To provide access to the Secrets Manager secrets that you create, manually add the following
permissions as an inline policy to the execution role. For more information, see Adding and
Removing IAM Policies in the IAM User Guide.

• secretsmanager:GetSecretValue–Required if you're referencing a Secrets Manager secret.

• kms:Decrypt–Required only if your secret uses a custom KMS key and not the default key. The
ARN for your custom key should be added as a resource.

The following example inline policy adds the required permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:<secret_name>",
 "arn:aws:kms:<region>:<aws_account_id>:key/<key_id>"
]
 }
]
}

Injecting sensitive data as an environment variable

You can specify the following Within your job definition:

• The secrets object containing the name of the environment variable to set in the job

• The Amazon Resource Name (ARN) of the Secrets Manager secret

• Additional parameters that contain the sensitive data to present to the job

Use Secrets Manager 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS Batch User Guide

The following example shows the full syntax that must be specified for the Secrets Manager secret.

arn:aws:secretsmanager:region:aws_account_id:secret:secret-name:json-key:version-
stage:version-id

The following section describes the additional parameters. These parameters are optional.
However, if you don't use them, you must include the colons : to use the default values. Examples
are provided below for more context.

json-key

Specifies the name of the key in a key-value pair with the value that you want to set as the
environment variable value. Only values in JSON format are supported. If you don't specify a
JSON key, then the full contents of the secret is used.

version-stage

Specifies the staging label of the version of a secret that you want to use. If a version staging
label is specified, you can't specify a version ID. If no version stage is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Staging labels are used to keep track of different versions of a secret when they are either
updated or rotated. Each version of a secret has one or more staging labels and an ID. For more
information, see Key Terms and Concepts for AWS Secrets Manager in the AWS Secrets Manager
User Guide.

version-id

Specifies the unique identifier of the version of a secret that you want to use. If a version ID
is specified, you can't specify a version staging label. If no version ID is specified, the default
behavior is to retrieve the secret with the AWSCURRENT staging label.

Version IDs are used to keep track of different versions of a secret when they are either updated
or rotated. Each version of a secret has an ID. For more information, see Key Terms and
Concepts for AWS Secrets Manager in the AWS Secrets Manager User Guide.

Example container definitions

The following examples show ways that you can reference Secrets Manager secrets in your
container definitions.

Use Secrets Manager 222

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret

AWS Batch User Guide

Example referencing a full secret

The following is a snippet of a task definition showing the format when referencing the full text of
a Secrets Manager secret.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]
}

Example referencing a specific key within a secret

The following shows an example output from a get-secret-value command that displays the
contents of a secret along with the version staging label and version ID associated with it.

{
 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "VersionId": "871d9eca-18aa-46a9-8785-981dd39ab30c",
 "SecretString": "{\"username1\":\"password1\",\"username2\":\"password2\",
\"username3\":\"password3\"}",
 "VersionStages": [
 "AWSCURRENT"
],
 "CreatedDate": 1581968848.921
}

Reference a specific key from the previous output in a container definition by specifying the key
name at the end of the ARN.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::"
 }]

Use Secrets Manager 223

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

AWS Batch User Guide

 }]
}

Example referencing a specific secret version

The following shows an example output from a describe-secret command that displays the
unencrypted contents of a secret along with the metadata for all versions of the secret.

{
 "ARN": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-AbCdEf",
 "Name": "appauthexample",
 "Description": "Example of a secret containing application authorization data.",
 "RotationEnabled": false,
 "LastChangedDate": 1581968848.926,
 "LastAccessedDate": 1581897600.0,
 "Tags": [],
 "VersionIdsToStages": {
 "871d9eca-18aa-46a9-8785-981dd39ab30c": [
 "AWSCURRENT"
],
 "9d4cb84b-ad69-40c0-a0ab-cead36b967e8": [
 "AWSPREVIOUS"
]
 }
}

Reference a specific version staging label from the previous output in a container definition by
specifying the key name at the end of the ARN.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf::AWSPREVIOUS:"
 }]
 }]
}

Reference a specific version ID from the previous output in a container definition by specifying the
key name at the end of the ARN.

Use Secrets Manager 224

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html

AWS Batch User Guide

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf::9d4cb84b-ad69-40c0-a0ab-cead36b967e8"
 }]
 }]
}

Example referencing a specific key and version staging label of a secret

The following shows how to reference both a specific key within a secret and a specific version
staging label.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1:AWSPREVIOUS:"
 }]
 }]
}

To specify a specific key and version ID, use the following syntax.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:appauthexample-
AbCdEf:username1::9d4cb84b-ad69-40c0-a0ab-cead36b967e8"
 }]
 }]
}

Use Secrets Manager 225

AWS Batch User Guide

Inject sensitive data in a log configuration

When you specify a logConfiguration within your job definition, you can specify
secretOptions with the name of the log driver option to set in the container and the full ARN of
the Secrets Manager secret containing the sensitive data to present to the container.

The following is a snippet of a job definition showing the format when referencing an Secrets
Manager secret.

{
 "containerProperties": [{
 "logConfiguration": [{
 "logDriver": "splunk",
 "options": {
 "splunk-url": "https://cloud.splunk.com:8080"
 },
 "secretOptions": [{
 "name": "splunk-token",
 "valueFrom": "arn:aws:secretsmanager:region:aws_account_id:secret:secret_name-
AbCdEf"
 }]
 }]
 }]
}

Create an AWS Secrets Manager secret

You can use the Secrets Manager console to create a secret for your sensitive data. For more
information, see Creating a Basic Secret in the AWS Secrets Manager User Guide.

To create a basic secret

Use Secrets Manager to create a secret for your sensitive data.

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. For Select secret type, choose Other type of secrets.

4. Specify the details of your custom secret as Key and Value pairs. For example, you can specify
a key of UserName, and then supply the appropriate user name as its value. Add a second key
with the name of Password and the password text as its value. You could also add entries for

Use Secrets Manager 226

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://console.aws.amazon.com/secretsmanager/

AWS Batch User Guide

a database name, server address, or TCP port. You can add as many pairs as you need to store
the information you require.

Alternatively, you can choose the Plaintext tab and enter the secret value in any way you like.

5. Choose the AWS KMS encryption key that you want to use to encrypt the protected text in the
secret. If you don't choose one, Secrets Manager checks to see if there's a default key for the
account, and uses it if it exists. If a default key doesn't exist, Secrets Manager creates one for
you automatically. You can also choose Add new key to create a custom KMS key specifically
for this secret. To create your own KMS key, you must have permissions to create KMS keys in
your account.

6. Choose Next.

7. For Secret name, type an optional path and name, such as production/
MyAwesomeAppSecret or development/TestSecret, and choose Next. You can optionally
add a description to help you remember the purpose of this secret later.

The secret name must be ASCII letters, digits, or any of the following characters: /_+=.@-

8. (Optional) At this point, you can configure rotation for your secret. For this procedure, leave it
at Disable automatic rotation and choose Next.

For information about how to configure rotation on new or existing secrets, see Rotating Your
AWS Secrets Manager Secrets.

9. Review your settings, and then choose Store secret to save everything you entered as a new
secret in Secrets Manager.

Specify sensitive data with Systems Manager Parameter Store

With AWS Batch, you can inject sensitive data into your containers by storing your sensitive data in
AWS Systems Manager Parameter Store parameters and then referencing them in your container
definition.

Topics

• Considerations when you specify sensitive data using Systems Manager Parameter Store

• Required IAM permissions for AWS Batch secrets

• Inject sensitive data as an environment variable

• Inject sensitive data in a log configuration

• Create an AWS Systems Manager Parameter Store parameter

Use Systems Manager Parameter Store 227

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

AWS Batch User Guide

Considerations when you specify sensitive data using Systems Manager
Parameter Store

The following should be considered when specifying sensitive data for containers using Systems
Manager Parameter Store parameters.

• This feature requires that your container instance have version 1.23.0 or later of the container
agent. However, we recommend using the latest container agent version. For information about
checking your agent version and updating to the latest version, see Updating the Amazon ECS
container agent in the Amazon Elastic Container Service Developer Guide.

• Sensitive data is injected into the container for your job when the container is initially started.
If the secret or Parameter Store parameter is subsequently updated or rotated, the container
doesn't receive the updated value automatically. You must launch a new job to force the launch
of a fresh job with updated secrets.

Required IAM permissions for AWS Batch secrets

To use this feature, you must have the execution role and reference it in your job definition. This
allows the Amazon ECS container agent to pull the necessary AWS Systems Manager resources. For
more information, see AWS Batch IAM execution role.

To provide access to the AWS Systems Manager Parameter Store parameters that you create,
manually add the following permissions as an inline policy to the execution role. For more
information, see Adding and Removing IAM Policies in the IAM User Guide.

• ssm:GetParameters—Required if you're referencing a Systems Manager Parameter Store
parameter in a task definition.

• secretsmanager:GetSecretValue—Required if you're referencing a Secrets Manager secret
either directly or if your Systems Manager Parameter Store parameter is referencing a Secrets
Manager secret in a task definition.

• kms:Decrypt—Required only if your secret uses a custom KMS key and not the default key. The
ARN for your custom key should be added as a resource.

The following example inline policy adds the required permissions:

{
 "Version": "2012-10-17",

Use Systems Manager Parameter Store 228

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS Batch User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameters",
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:<region>:<aws_account_id>:parameter/<parameter_name>",
 "arn:aws:secretsmanager:<region>:<aws_account_id>:secret:<secret_name>",
 "arn:aws:kms:<region>:<aws_account_id>:key/<key_id>"
]
 }
]
}

Inject sensitive data as an environment variable

Within your container definition, specify secrets with the name of the environment variable
to set in the container and the full ARN of the Systems Manager Parameter Store parameter
containing the sensitive data to present to the container.

The following is a snippet of a task definition showing the format when referencing an Systems
Manager Parameter Store parameter. If the Systems Manager Parameter Store parameter exists in
the same Region as the task that you're launching, then you can use either the full ARN or name of
the parameter. If the parameter exists in a different Region, then the full ARN must be specified.

{
 "containerProperties": [{
 "secrets": [{
 "name": "environment_variable_name",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }]
 }]
}

Inject sensitive data in a log configuration

Within your container definition, when specifying a logConfiguration you can specify
secretOptions with the name of the log driver option to set in the container and the full ARN of

Use Systems Manager Parameter Store 229

AWS Batch User Guide

the Systems Manager Parameter Store parameter containing the sensitive data to present to the
container.

Important

If the Systems Manager Parameter Store parameter exists in the same Region as the task
you're launching, then you can use either the full ARN or name of the parameter. If the
parameter exists in a different Region, then the full ARN must be specified.

The following is a snippet of a task definition showing the format when referencing an Systems
Manager Parameter Store parameter.

{
 "containerProperties": [{
 "logConfiguration": [{
 "logDriver": "fluentd",
 "options": {
 "tag": "fluentd demo"
 },
 "secretOptions": [{
 "name": "fluentd-address",
 "valueFrom": "arn:aws:ssm:region:aws_account_id:parameter/parameter_name"
 }]
 }]
 }]
}

Create an AWS Systems Manager Parameter Store parameter

You can use the AWS Systems Manager console to create a Systems Manager Parameter Store
parameter for your sensitive data. For more information, see Walkthrough: Create and Use a
Parameter in a Command (Console) in the AWS Systems Manager User Guide.

To create a Parameter Store parameter

1. Open the AWS Systems Manager console at https://console.aws.amazon.com/systems-
manager/.

2. In the navigation pane, choose Parameter Store, Create parameter.

Use Systems Manager Parameter Store 230

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-console.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-console.html
https://console.aws.amazon.com/systems-manager/
https://console.aws.amazon.com/systems-manager/

AWS Batch User Guide

3. For Name, type a hierarchy and a parameter name. For example, type test/
database_password.

4. For Description, type an optional description.

5. For Type, choose String, StringList, or SecureString.

Note

• If you choose SecureString, the KMS Key ID field appears. If you don't provide
a KMS key ID, a KMS key ARN, an alias name, or an alias ARN, then the system
uses alias/aws/ssm. This is the default KMS key for Systems Manager. To avoid
using this key, choose a custom key. For more information, see Use Secure String
Parameters in the AWS Systems Manager User Guide.

• When you create a secure string parameter in the console by using the key-id
parameter with either a custom KMS key alias name or an alias ARN, you must
specify the prefix alias/ before the alias. The following is an ARN example:

arn:aws:kms:us-east-2:123456789012:alias/MyAliasName

The following is an alias name example:

alias/MyAliasName

6. For Value, type a value. For example, MyFirstParameter. If you chose SecureString, the
value is masked exactly as you entered it.

7. Choose Create parameter.

Private registry authentication for jobs

Private registry authentication for jobs using AWS Secrets Manager enables you to store
your credentials securely and then reference them in your job definition. This provides a way
to reference container images that exist in private registries outside of AWS that require
authentication in your job definitions. This feature is supported by jobs hosted on Amazon EC2
instances and Fargate.

Private registry authentication for jobs 231

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-about.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-about.html

AWS Batch User Guide

Important

If your job definition references an image that's stored in Amazon ECR, this topic doesn't
apply. For more information, see Using Amazon ECR Images with Amazon ECS in the
Amazon Elastic Container Registry User Guide.

For jobs hosted on Amazon EC2 instances, this feature requires version 1.19.0 or later of the
container agent. However, we recommend using the latest container agent version. For information
about how to check your agent version and update to the latest version, see Updating the Amazon
ECS container agent in the Amazon Elastic Container Service Developer Guide.

For jobs hosted on Fargate, this feature requires platform version 1.2.0 or later. For information,
see AWS Fargate Linux platform versions in the Amazon Elastic Container Service Developer Guide.

Within your container definition, specify the repositoryCredentials object with the details
of the secret that you created. The secret you reference can be from a different AWS Region or a
different account than the job using it.

Note

When using the AWS Batch API, AWS CLI, or AWS SDK, if the secret exists in the same AWS
Region as the job that you're launching then you can use either the full ARN or name of
the secret. If the secret exists in a different account, the full ARN of the secret must be
specified. When using the AWS Management Console, the full ARN of the secret must be
specified always.

The following is a snippet of a job definition that shows the required parameters:

"containerProperties": [
 {
 "image": "private-repo/private-image",
 "repositoryCredentials": {
 "credentialsParameter":
 "arn:aws:secretsmanager:region:123456789012:secret:secret_name"
 }
 }
]

Private registry authentication for jobs 232

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_ECS.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-update.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform-linux-fargate.html

AWS Batch User Guide

Required IAM permissions for private registry authentication

The execution role is required to use this feature. This allows the container agent to pull the
container image. For more information, see AWS Batch IAM execution role.

To provide access to the secrets that you create, add the following permissions as an inline policy
to the execution role. For more information, see Adding and Removing IAM Policies.

• secretsmanager:GetSecretValue

• kms:Decrypt—Required only if your key uses a custom KMS key and not the default key. The
Amazon Resource Name (ARN) for your custom key must be added as a resource.

The following is an example inline policy that adds the permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:region:123456789012:secret:secret_name",
 "arn:aws:kms:region:123456789012:key/key_id"
]
 }
]
}

Tutorial: Create a secret for private registry authentication

Complete the following steps to create a secret for your private registry credentials with AWS
Secrets Manager.

Create a basic secret

1. Open the AWS Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

Required IAM permissions for private registry authentication 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/secretsmanager/

AWS Batch User Guide

3. For Select secret type, choose Other type of secrets.

4. Select Plaintext and enter your private registry credentials using the following format:

{
 "username" : "privateRegistryUsername",
 "password" : "privateRegistryPassword"
}

5. Choose Next.

6. For Secret name, enter an optional path and name, such as production/
MyAwesomeAppSecret or development/TestSecret, and choose Next. You can optionally
add a description to help you remember the purpose of this secret later.

The secret name must be ASCII letters, digits, or any of the following characters: /_+=.@-.

7. (Optional) At this point, you can configure rotation for your secret. For this procedure, leave it
at Disable automatic rotation and choose Next.

For instructions on how to configure rotation on new or existing secrets, see Rotating Your
AWS Secrets Manager Secrets.

8. Review your settings, and then choose Store secret to save everything that you entered as a
new secret in Secrets Manager.

Register a job definition and under Private registry, turn on Private registry authentication. Then,
in Secrets Manager ARN or name, enter the Amazon Resource Name (ARN) of the secret. For more
information, see Required IAM permissions for private registry authentication.

Amazon EFS volumes

Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with your
AWS Batch jobs. With Amazon EFS, storage capacity is elastic. It scales automatically as you add
and remove files. Your applications can have the storage they need, when they need it.

You can use Amazon EFS file systems with AWS Batch to export file system data across your fleet
of container instances. That way, your jobs have access to the same persistent storage. However,
you must configure your container instance AMI to mount the Amazon EFS file system before the
Docker daemon starts. Also, your job definitions must reference volume mounts on the container
instance to use the file system. The following sections help you get started using Amazon EFS with
AWS Batch.

Amazon EFS volumes 234

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html

AWS Batch User Guide

Amazon EFS volume considerations

The following should be considered when using Amazon EFS volumes:

• For jobs using EC2 resources, Amazon EFS file system support was added as a public preview
with Amazon ECS optimized AMI version 20191212 with container agent version 1.35.0.
However, Amazon EFS file system support entered general availability with Amazon ECS
optimized AMI version 20200319 with container agent version 1.38.0, which contained the
Amazon EFS access point and IAM authorization features. We recommend that you use Amazon
ECS optimized AMI version 20200319 or later to take advantage of these features. For more
information, see Amazon ECS optimized AMI versions in the Amazon Elastic Container Service
Developer Guide.

Note

If you create your own AMI, you must use container agent 1.38.0 or later, ecs-init
version 1.38.0-1 or later, and run the following commands on your Amazon EC2 instance.
This is all to enable the Amazon ECS volume plugin. The commands are dependent on
whether you're using Amazon Linux 2 or Amazon Linux as your base image.

Amazon Linux 2

$ yum install amazon-efs-utils
systemctl enable --now amazon-ecs-volume-plugin

Amazon Linux

$ yum install amazon-efs-utils
sudo shutdown -r now

• For jobs using Fargate resources, Amazon EFS file system support was added when using
platform version 1.4.0 or later. For more information, see AWS Fargate platform versions in the
Amazon Elastic Container Service Developer Guide.

• When specifying Amazon EFS volumes in jobs using Fargate resources, Fargate creates a
supervisor container that is responsible for managing the Amazon EFS volume. The supervisor
container uses a small amount of the job's memory. The supervisor container is visible when
querying the task metadata version 4 endpoint. For more information, see Task metadata
endpoint version 4 in the Amazon Elastic Container Service User Guide for AWS Fargate.

Amazon EFS volume considerations 235

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-versions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/platform_versions.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v4-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-metadata-endpoint-v4-fargate.html

AWS Batch User Guide

Use Amazon EFS access points

Amazon EFS access points are application-specific entry points into an EFS file system that help
you to manage application access to shared datasets. For more information about Amazon EFS
access points and how to control access to them, see Working with Amazon EFS Access Points in
the Amazon Elastic File System User Guide.

Access points can enforce a user identity, including the user's POSIX groups, for all file system
requests that are made through the access point. Access points can also enforce a different root
directory for the file system so that clients can only access data in the specified directory or its
subdirectories.

Note

When creating an EFS access point, you specify a path on the file system to serve as the
root directory. When you reference the EFS file system with an access point ID in your AWS
Batch job definition, the root directory must either be omitted or set to / This enforces the
path that's set on the EFS access point.

You can use an AWS Batch job IAM role to enforce that specific applications use a specific access
point. By combining IAM policies with access points, you can easily provide secure access to specific
datasets for your applications. This feature uses Amazon ECS IAM roles for task functionality. For
more information, see IAM Roles for Tasks in the Amazon Elastic Container Service Developer Guide.

Specify an Amazon EFS file system in your job definition

To use Amazon EFS file system volumes for your containers, you must specify the volume and
mount point configurations in your job definition. The following job definition JSON snippet shows
the syntax for the volumes and mountPoints objects for a container:

{
 "containerProperties": [
 {
 "image": "amazonlinux:2",
 "command": [
 "ls",
 "-la",
 "/mount/efs"
],

Use Amazon EFS access points 236

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS Batch User Guide

 "mountPoints": [
 {
 "sourceVolume": "myEfsVolume",
 "containerPath": "/mount/efs",
 "readOnly": true
 }
],
 "volumes": [
 {
 "name": "myEfsVolume",
 "efsVolumeConfiguration": {
 "fileSystemId": "fs-12345678",
 "rootDirectory": "/path/to/my/data",
 "transitEncryption": "ENABLED",
 "transitEncryptionPort": integer,
 "authorizationConfig": {
 "accessPointId": "fsap-1234567890abcdef1",
 "iam": "ENABLED"
 }
 }
 }
]
 }
]
}

efsVolumeConfiguration

Type: Object

Required: No

This parameter is specified when using Amazon EFS volumes.

fileSystemId

Type: String

Required: Yes

The Amazon EFS file system ID to use.

rootDirectory

Type: String

Specify an Amazon EFS file system in your job definition 237

AWS Batch User Guide

Required: No

The directory within the Amazon EFS file system to mount as the root directory inside the
host. If this parameter is omitted, the root of the Amazon EFS volume is used. Specifying /
has the same effect as omitting this parameter. It can be up to 4,096 characters in length.

Important

If an EFS access point is specified in the authorizationConfig, the root directory
parameter must either be omitted or set to /. This enforces the path that's set on the
EFS access point.

transitEncryption

Type: String

Valid values: ENABLED | DISABLED

Required: No

Determines whether to enable encryption for Amazon EFS data that's in transit between the
AWS Batch host and the Amazon EFS server. Transit encryption must be enabled if Amazon
EFS IAM authorization is used. If this parameter is omitted, the default value of DISABLED is
used. For more information, see Encrypting data in transit in the Amazon Elastic File System
User Guide.

transitEncryptionPort

Type: Integer

Required: No

The port to use when sending encrypted data between the AWS Batch host and the Amazon
EFS server. If you don't specify a transit encryption port, it uses the port selection strategy
that the Amazon EFS mount helper uses. The value must be between 0 and 65,535. For
more information, see EFS Mount Helper in the Amazon Elastic File System User Guide.

authorizationConfig

Type: Object

Specify an Amazon EFS file system in your job definition 238

https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html
https://docs.aws.amazon.com/efs/latest/ug/efs-mount-helper.html

AWS Batch User Guide

Required: No

The authorization configuration details for the Amazon EFS file system.

accessPointId

Type: String

Required: No

The access point ID to use. If an access point is specified, the root directory value in the
efsVolumeConfiguration must either be omitted or set to /. This enforces the path
that's set on the EFS access point. If an access point is used, transit encryption must be
enabled in the EFSVolumeConfiguration. For more information, see Working with
Amazon EFS Access Points in the Amazon Elastic File System User Guide.

iam

Type: String

Valid values: ENABLED | DISABLED

Required: No

Determines whether to use the AWS Batch job IAM role that's defined in a job definition
when mounting the Amazon EFS file system. If enabled, transit encryption must be
enabled in the EFSVolumeConfiguration. If this parameter is omitted, the default
value of DISABLED is used. For more information about IAM execution role, see AWS
Batch IAM execution role.

Reference: Job definition examples

The job definition examples in this topic illustrate how to use common patterns such as
environment variables, parameter substitution, and volume mounts.

Contents

• Reference: Environment variables

• Reference: Parameter substitution

• Reference: Test GPU functionality

Reference: Job definition examples 239

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html

AWS Batch User Guide

• Reference: Multi-node parallel job

Reference: Environment variables

The following example job definition uses environment variables to specify a file type and Amazon
S3 URL. This particular example is from the Creating a Simple "Fetch & Run" AWS Batch Job
compute blog post. The fetch_and_run.sh script that's described in the blog post uses these
environment variables to download the myjob.sh script from S3 and declare its file type.

Even though the command and environment variables are hardcoded into the job definition in this
example, you can specify command and environment variable overrides to make the job definition
more versatile.

{
 "jobDefinitionName": "fetch_and_run",
 "type": "container",
 "containerProperties": {
 "image": "123456789012.dkr.ecr.us-east-1.amazonaws.com/fetch_and_run",
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "2000"
 },
 {
 "type": "VCPU",
 "value": "2"
 }
],
 "command": [
 "myjob.sh",
 "60"
],
 "jobRoleArn": "arn:aws:iam::123456789012:role/AWSBatchS3ReadOnly",
 "environment": [
 {
 "name": "BATCH_FILE_S3_URL",
 "value": "s3://amzn-s3-demo-source-bucket/myjob.sh"
 },
 {
 "name": "BATCH_FILE_TYPE",
 "value": "script"
 }

Reference: Environment variables 240

https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://github.com/awslabs/aws-batch-helpers/blob/master/fetch-and-run/fetch_and_run.sh

AWS Batch User Guide

],
 "user": "nobody"
 }
}

Reference: Parameter substitution

The following example job definition illustrates how to allow for parameter substitution and to set
default values.

The Ref:: declarations in the command section are used to set placeholders for parameter
substitution. When you submit a job with this job definition, you specify the parameter overrides
to fill in those values, such as the inputfile and outputfile. The parameters section that
follows sets a default for codec, but you can override that parameter as needed.

For more information, see Parameters.

{
 "jobDefinitionName": "ffmpeg_parameters",
 "type": "container",
 "parameters": {"codec": "mp4"},
 "containerProperties": {
 "image": "my_repo/ffmpeg",
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "2000"
 },
 {
 "type": "VCPU",
 "value": "2"
 }
],
 "command": [
 "ffmpeg",
 "-i",
 "Ref::inputfile",
 "-c",
 "Ref::codec",
 "-o",
 "Ref::outputfile"
],

Reference: Parameter substitution 241

AWS Batch User Guide

 "jobRoleArn": "arn:aws:iam::123456789012:role/ECSTask-S3FullAccess",
 "user": "nobody"
 }
}

Reference: Test GPU functionality

The following example job definition tests if the GPU workload AMI described in Use a GPU
workload AMI is configured properly. This example job definition runs the TensorFlow deep MNIST
classifier example from GitHub.

{
 "containerProperties": {
 "image": "tensorflow/tensorflow:1.8.0-devel-gpu",
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "32000"
 },
 {
 "type": "VCPU",
 "value": "8"
 }
],
 "command": [
 "sh",
 "-c",
 "cd /tensorflow/tensorflow/examples/tutorials/mnist; python mnist_deep.py"
]
 },
 "type": "container",
 "jobDefinitionName": "tensorflow_mnist_deep"
}

You can create a file with the preceding JSON text called tensorflow_mnist_deep.json and
then register an AWS Batch job definition with the following command:

aws batch register-job-definition --cli-input-json file://tensorflow_mnist_deep.json

Reference: Test GPU functionality 242

https://github.com/tensorflow/tensorflow/blob/r1.8/tensorflow/examples/tutorials/mnist/mnist_deep.py

AWS Batch User Guide

Reference: Multi-node parallel job

The following example job definition illustrates a multi-node parallel job. For more information,
see Building a tightly coupled molecular dynamics workflow with multi-node parallel jobs in AWS
Batch in the AWS Compute blog.

{
 "jobDefinitionName": "gromacs-jobdef",
 "jobDefinitionArn": "arn:aws:batch:us-east-2:123456789012:job-definition/gromacs-
jobdef:1",
 "revision": 6,
 "status": "ACTIVE",
 "type": "multinode",
 "parameters": {},
 "nodeProperties": {
 "numNodes": 2,
 "mainNode": 0,
 "nodeRangeProperties": [
 {
 "targetNodes": "0:1",
 "container": {
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/gromacs_mpi:latest",
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "24000"
 },
 {
 "type": "VCPU",
 "value": "8"
 }
],
 "command": [],
 "jobRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
 "ulimits": [],
 "instanceType": "p3.2xlarge"
 }
 }
]
 }
}

Reference: Multi-node parallel job 243

https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/
https://aws.amazon.com/blogs/compute/building-a-tightly-coupled-molecular-dynamics-workflow-with-multi-node-parallel-jobs-in-aws-batch/

AWS Batch User Guide

Jobs

Jobs are the unit of work that's started by AWS Batch. Jobs can be invoked as containerized
applications that run on Amazon ECS container instances in an ECS cluster.

Containerized jobs can reference a container image, command, and parameters. For more
information, see JobDefinition.

You can submit a large number of independent, simple jobs.

Topics

• Tutorial: submit a job

• Job states

• AWS Batch job environment variables

• Automated job retries

• Job dependencies

• Job timeouts

• Amazon EKS jobs

• Multi-node parallel jobs

• Multi-node parallel jobs on Amazon EKS

• Array jobs

• Run GPU jobs

• Search AWS Batch jobs in a job queue

• Tutorial: Send AWS Batch job logs to CloudWatch Logs

• Tutorial: Review AWS Batch job information

Tutorial: submit a job

After you register a job definition, you can submit it as a job to an AWS Batch job queue. You can
override many of the parameters that are specified in the job definition at runtime.

To submit a job

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

Tutorial: submit a job 244

https://docs.aws.amazon.com/batch/latest/APIReference/API_JobDefinition.html
https://console.aws.amazon.com/batch/

AWS Batch User Guide

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Jobs.

4. Choose Submit new job.

5. For Name, enter a unique name for your job definition. The name can be up to 128 characters
in length. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

6. For Job definition, choose an existing job definition for your job. For more information, see
Create a single-node job definition .

7. For Job queue, choose an existing job queue. For more information, see Create a job queue.

8. For Job dependencies, choose Add Job dependencies.

• For Job id, enter the job ID for any dependencies. Then choose Add job dependencies. A
job can have up to 20 dependencies. For more information, see Job dependencies.

9. (Array jobs only) For Array size, specify an array size between 2 and 10,000.

10. (Optional) Expand Tags and then choose Add tag to add tags to the resource. Enter a key and
optional value, then choose Add tag.

11. Choose Next page.

12. In the Job overrides section:

a.
(Optional) For Scheduling priority, enter a scheduling priority value between 0 and 100.
Higher values are given higher priority.

b. (Optional) For Job attempts, enter the maximum number of times that AWS Batch
attempts to move the job to a RUNNABLE status. You can enter a number between 1 and
10. For more information, see Automated job retries.

c. (Optional) For Execution timeout, enter the timeout value (in seconds). The execution
timeout is the length of time before an unfinished job is terminated. If an attempt exceeds
the timeout duration, it's stopped and moves to a FAILED status. For more information,
see Job timeouts. The minimum value is 60 seconds.

Important

Don't rely on jobs that run on Fargate resources to run for more than 14 days.
After 14 days, the Fargate resources might no longer be available with the job
being likely terminated.

Tutorial: submit a job 245

AWS Batch User Guide

d. (Optional) Turn on Propagate tags to propagate tags from the job and job definition to
the Amazon ECS task.

13. Expand Additional configuration.

14. (Optional) For Retry strategy conditions, choose Add evaluate on exit. Enter at least one
parameter value and then choose an Action. For each set of conditions, Action must be set to
either Retry or Exit. These actions mean the following:

• Retry – AWS Batch retries until the number of job attempts that you specified is reached.

• Exit – AWS Batch stops retrying the job.

Important

If you choose Add evaluate on exit, configure at least one parameter and choose
either an Action or choose Remove evaluate on exit.

15. For Parameters, choose Add parameters to add parameter substitution placeholders. Then,
enter a Key and an optional Value.

16. In the Container overrides section:

a. For Command, specify the command to pass to the container. For simple commands,
enter the command as you do for a command prompt. For more complicated commands,
for example with special characters), use JSON syntax.

Note

This parameter can't contain an empty string.

b. For vCPUs, enter the number of vCPUs to reserve for the container. This parameter maps
to CpuShares in the Create a container section of the Docker Remote API and the --
cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. You
must specify at least one vCPU.

c. For Memory, enter the memory limit that's available to the container. If your container
attempts to exceed the memory specified here, the container is stopped. This parameter
maps to Memory in the Create a container section of the Docker Remote API and the --
memory option to docker run. You must specify at least 4 MiB of memory for a job.

Tutorial: submit a job 246

https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/api/v1.38/#operation/ContainerCreate
https://docs.docker.com/engine/api/v1.38/
https://docs.docker.com/engine/reference/commandline/run/

AWS Batch User Guide

Note

To maximize your resource utilization, prioritize memory for jobs of a specific
instance type. For more information, see Compute resource memory management.

d. (Optional) For Number of GPUs, choose the number of GPUs to reserve for the container.

e. (Optional) For Environment variables, choose Add environment variable to add
environment variables as name-value pairs. These variables are passed to the container.

f. Choose Next page.

g. For Job review, review the configuration steps. If you need to make changes, choose Edit.
When you're finished, choose Create job definition.

Job states

When you submit a job to an AWS Batch job queue, the job enters the SUBMITTED state. It then
passes through the following states until it succeeds (exits with code 0) or fails (exits with a non-
zero code). AWS Batch jobs can have the following states:

SUBMITTED

A job that's submitted to the queue, and has not yet been evaluated by the scheduler. The
scheduler evaluates the job to determine if it has any outstanding dependencies on the
successful completion of any other jobs. If there are dependencies, the job is moved to
PENDING. If there are no dependencies, the job is moved to RUNNABLE.

PENDING

A job that resides in the queue and isn't yet able to run due to a dependency on another job or
resource. After the dependencies are satisfied, the job is moved to RUNNABLE.

RUNNABLE

A job that resides in the queue, has no outstanding dependencies, and is therefore ready to be
scheduled to a host. Jobs in this state are started as soon as sufficient resources are available
in one of the compute environments that are mapped to the job's queue. However, jobs can
remain in this state indefinitely when sufficient resources are unavailable.

Job states 247

AWS Batch User Guide

Note

If your jobs don't progress to STARTING, see Jobs stuck in a RUNNABLE status in the
troubleshooting section.

STARTING

These jobs have been scheduled to a host and the relevant container initiation operations are
underway. After the container image is pulled and the container is up and running, the job
transitions to RUNNING.

Image pull duration, Amazon EKS initContainer completion duration, and Amazon ECS
containerDependency resolution duration occur in the STARTING state. The amount of time it
takes to pull an image for your job is equivalant to the amout of time your job will be in the
STARTING state.

For example, if it takes three minutes to pull the image for your job, your job will be in the
STARTING state for three minutes. If initContainers takes a total of ten minutes to complete,
then your Amazon EKS job will be in STARTING for ten minutes. If you have Amazon ECS
containerDependencies sets in your Amazon ECS job, the job will be in STARTING until all
container dependencies (their runtime) are resolved. STARTING is not included in timeouts;
duration starts at RUNNING. For more information, see Job states.

RUNNING

The job is running as a container job on an Amazon ECS container instance within a compute
environment. When the job's container exits, the process exit code determines whether
the job succeeded or failed. An exit code of 0 indicates success, and any non-zero exit code
indicates failure. If the job associated with a failed attempt has any remaining attempts left
in its optional retry strategy configuration, the job is moved to RUNNABLE again. For more
information, see Automated job retries.

Note

Logs for RUNNING jobs are available in CloudWatch Logs. The log group
is /aws/batch/job, and the log stream name format is as follows:
first200CharsOfJobDefinitionName/default/ecs_task_id. This format might
change in the future.

Job states 248

https://docs.aws.amazon.com/batch/latest/userguide/job_states.html

AWS Batch User Guide

After a job reaches the RUNNING status, you can programmatically retrieve its log
stream name with the DescribeJobs API operation. For more information, see View
Log Data Sent to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By
default, these logs never expire. However, you can modify the retention period. For
more information, see Change Log Data Retention in CloudWatch Logs in the Amazon
CloudWatch Logs User Guide.

SUCCEEDED

The job has successfully completed with an exit code of 0. The job state for SUCCEEDED jobs is
persisted in AWS Batch for at least 7 days.

Note

Logs for SUCCEEDED jobs are available in CloudWatch Logs. The log
group is /aws/batch/job, and the log stream name format is as follows:
first200CharsOfJobDefinitionName/default/ecs_task_id. This format may
change in the future.
After a job reaches the RUNNING status, you can programmatically retrieve its log
stream name with the DescribeJobs API operation. For more information, see View
Log Data Sent to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By
default, these logs never expires. However, you can modify the retention period. For
more information, see Change Log Data Retention in CloudWatch Logs in the Amazon
CloudWatch Logs User Guide.

FAILED

The job has failed all available attempts. The job state for FAILED jobs is persisted in AWS
Batch for at least 7 days.

Note

Logs for FAILED jobs are available in CloudWatch Logs. The log group
is /aws/batch/job, and the log stream name format is as follows:
first200CharsOfJobDefinitionName/default/ecs_task_id. This format may
change in the future.

Job states 249

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html

AWS Batch User Guide

After a job reaches the RUNNING status, you can programmatically retrieve its log
stream with the DescribeJobs API operation. For more information, see View Log Data
Sent to CloudWatch Logs in the Amazon CloudWatch Logs User Guide. By default, these
logs never expire. However, you can modify the retention period. For more information,
see Change Log Data Retention in CloudWatch Logs in the Amazon CloudWatch Logs
User Guide.

AWS Batch job environment variables

AWS Batch sets specific environment variables in container jobs. These environment variables
provide introspection for the containers inside jobs. You can use the values of these variables in the
logic of your applications. All variables that AWS Batch set start with the AWS_BATCH_ prefix. This
is a protected environment variable prefix. You can't use this prefix for your own variables in job
definitions or overrides.

The following environment variables are available in job containers:

AWS_BATCH_CE_NAME

This variable is set to the name of the compute environment where your job is placed.

AWS_BATCH_JOB_ARRAY_INDEX

This variable is only set in child array jobs. The array job index begins at 0, and each child job
receives a unique index number. For example, an array job with 10 children has index values of
0-9. You can use this index value to control how your array job children are differentiated. For
more information, see Tutorial: Use the array job index to control job differentiation.

AWS_BATCH_JOB_ARRAY_SIZE

This variable is set to the size of the parent array job. The size of the parent array job is passed
to the child array job in this variable.

AWS_BATCH_JOB_ATTEMPT

This variable is set to the job attempt number. The first attempt is numbered 1. For more
information, see Automated job retries.

AWS_BATCH_JOB_ID

This variable is set to the AWS Batch job ID.

Job environment variables 250

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html

AWS Batch User Guide

AWS_BATCH_JOB_KUBERNETES_NODE_UID

This variable is set as the Kubernetes UID of the node object that's in the Kubernetes cluster
that the pod runs on. This variable is only set for jobs that run on Amazon EKS resources. For
more information, see UIDs in the Kubernetes documentation.

AWS_BATCH_JOB_MAIN_NODE_INDEX

This variable is only set in multi-node parallel jobs. This variable is set to the
index number of the job's main node. Your application code can compare the
AWS_BATCH_JOB_MAIN_NODE_INDEX to the AWS_BATCH_JOB_NODE_INDEX on an individual
node to determine if it's the main node.

AWS_BATCH_JOB_MAIN_NODE_PRIVATE_IPV4_ADDRESS

This variable is only set in multi-node parallel job child nodes. This variable isn't present on
the main node, but is set to the private IPv4 address of the job's main node. Your child node's
application code can use this address to communicate with the main node.

AWS_BATCH_JOB_NODE_INDEX

This variable is only set in multi-node parallel jobs. This variable is set to the node index
number of the node. The node index begins at 0, and each node receives a unique index
number. For example, a multi-node parallel job with 10 children has index values of 0-9.

AWS_BATCH_JOB_NUM_NODES

This variable is only set in multi-node parallel jobs. This variable is set to the number of nodes
that you requested for your multi-node parallel job.

AWS_BATCH_JQ_NAME

This variable is set to the name of the job queue that your job was submitted to.

Automated job retries

You can apply a retry strategy to your jobs and job definitions that allows failed jobs to be
automatically retried. Possible failure scenarios include the following:

• Any non-zero exit code from a container job

• Amazon EC2 instance failure or termination

• Internal AWS service error or outage

Automated job retries 251

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#uids

AWS Batch User Guide

When a job is submitted to a job queue and placed into the RUNNING state that's considered an
attempt. By default, each job is given one attempt to move to either the SUCCEEDED or FAILED
job state. However, both the job definition and the job submission workflows can be used to
specify a retry strategy with between 1 and 10 attempts. If evaluateOnExit is specified, it can
contain up to 5 retry strategies. If evaluateOnExit is specified, but none of the retry strategies
match, then the job is retried. For jobs that don't match to exit, add a final entry that exits for any
reason. For example, this evaluateOnExit object has two entries that with actions of RETRY and
a final entry with an action of EXIT.

"evaluateOnExit": [
 {
 "action": "RETRY",
 "onReason": "AGENT"
 },
 {
 "action": "RETRY",
 "onStatusReason": "Task failed to start"
 },
 {
 "action": "EXIT",
 "onReason": "*"
 }
]

At runtime, the AWS_BATCH_JOB_ATTEMPT environment variable is set to the container's
corresponding job attempt number. The first attempt is numbered 1, and subsequent attempts are
in ascending order (for example, 2, 3, 4).

For example, suppose that a job attempt fails for any reason and the number of attempts specified
in the retry configuration is greater than the AWS_BATCH_JOB_ATTEMPT number. Then, the job is
placed back in the RUNNABLE state. For more information, see Job states.

Note

Jobs that are cancelled or terminated aren't retried. Also, jobs that fail because of an invalid
job definition aren't retried.

For more information, see Retry strategy, Create a single-node job definition , Tutorial: submit a job
and Stopped tasks error codes.

Automated job retries 252

https://docs.aws.amazon.com/batch/latest/APIReference/API_EvaluateOnExit.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/stopped-task-error-codes.html

AWS Batch User Guide

Job dependencies

When you submit an AWS Batch job, you can specify the job IDs that the job depends on. When you
do so, the AWS Batch scheduler ensures that your job is run only after the specified dependencies
have successfully completed. After they succeed, the dependent job transitions from PENDING to
RUNNABLE and then to STARTING and RUNNING. If any of the job dependencies fail, the dependent
job automatically transitions from PENDING to FAILED.

For example, Job A can express a dependency on up to 20 other jobs that must succeed before it
can run. You can then submit additional jobs that have a dependency on Job A and up to 19 other
jobs.

For array jobs, you can specify a SEQUENTIAL type dependency without specifying a job ID so
that each child array job completes sequentially, starting at index 0. You can also specify an
N_TO_N type dependency with a job ID. That way, each index child of this job must wait for
the corresponding index child of each dependency to complete before it can begin. For more
information, see Array jobs.

To submit an AWS Batch job with dependencies, see Tutorial: submit a job.

Job timeouts

You can configure a timeout duration for your jobs so that if a job runs longer than that, AWS
Batch terminates the job. For example, you might have a job that you know should only take 15
minutes to complete. Sometimes your application gets stuck in a loop and runs forever, so you can
set a timeout of 30 minutes to terminate the stuck job.

Important

By default, AWS Batch doesn't have a job timeout. If you don't define a job timeout, the job
runs until the container exits.

You specify an attemptDurationSeconds parameter, which must be at least 60 seconds,
either in your job definition, or when you submit the job. When this number of seconds has
passed following the job attempt's startedAt timestamp, AWS Batch terminates the job. On the
compute resource, your job's container receives a SIGTERM signal to give your application a chance

Job dependencies 253

AWS Batch User Guide

to shut down gracefully. If the container is still running after 30 seconds, a SIGKILL signal is sent
to forcefully shut down the container.

Timeout terminations are handled on a best-effort basis. You shouldn't expect your timeout
termination to happen exactly when the job attempt times out (it may take a few seconds longer).
If your application requires precise timeout execution, you should implement this logic within the
application. If you have a large number of jobs timing out concurrently, the timeout terminations
behave as a first in, first out queue, where jobs are terminated in batches.

Note

There's no maximum timeout value for an AWS Batch job.

If a job is terminated for exceeding the timeout duration, it isn't retried. If a job attempt fails on its
own, then it can retry if retries are enabled, and the timeout countdown is started over for the new
attempt.

Important

Jobs that run on Fargate resources can't expect to run for more than 14 days. If the timeout
duration exceeds 14 days, the Fargate resources may no longer be available and the job will
be terminated.

For array jobs, child jobs have the same timeout configuration as the parent job.

For information about submitting an AWS Batch job with a timeout configuration, see Tutorial:
submit a job.

Amazon EKS jobs

A job is the smallest unit of work in AWS Batch. An AWS Batch job on Amazon EKS has a one-to-
one mapping to a Kubernetes pod. An AWS Batch job definition is a template for an AWS Batch job.
When you submit an AWS Batch job, you reference a job definition, target a job queue, and provide
a name for a job. In the job definition of an AWS Batch job on Amazon EKS, the eksProperties
parameter defines the set of parameters that an AWS Batch on Amazon EKS job supports. In a
SubmitJob request, the eksPropertiesOverride parameter allows for overrides to some common
parameters. This way, you can use templates of job definitions for multiple jobs. When a job is

Amazon EKS jobs 254

https://docs.aws.amazon.com/batch/latest/APIReference/API_EksProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPropertiesOverride.html

AWS Batch User Guide

dispatched to your Amazon EKS cluster, AWS Batch transforms the job into a podspec (Kind:
Pod). The podspec uses some additional AWS Batch parameters to ensure that jobs are scaled and
scheduled correctly. AWS Batch combines labels and taints to ensure jobs run only on AWS Batch
managed nodes and that other pods don't run on those nodes.

Important

• If the hostNetwork parameter isn't explicitly set in an Amazon EKS job
definition, the pod networking mode in AWS Batch defaults to host mode.
More specifically, the following settings are applied: hostNetwork=true and
dnsPolicy=ClusterFirstWithHostNet.

• AWS Batch cleans up job pods soon after a pod completes its job. To see pod application
logs, configure a logging service for your cluster. For more information, see Use
CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs.

Topics

• Tutorial: Map a running job to a pod and a node

• Tutorial: Map a running pod back to its job

Tutorial: Map a running job to a pod and a node

The podProperties of a running job have podName and nodeName parameters set for the
current job attempt. Use the DescribeJobs API operation to view these parameters.

The following is example output.

$ aws batch describe-jobs --job 2d044787-c663-4ce6-a6fe-f2baf7e51b04
{
 "jobs": [
 {
 "status": "RUNNING",
 "jobArn": "arn:aws:batch:us-east-1:123456789012:job/2d044787-c663-4ce6-a6fe-
f2baf7e51b04",
 "jobDefinition": "arn:aws:batch:us-east-1:123456789012:job-definition/
MyJobOnEks_SleepWithRequestsOnly:1",
 "jobQueue": "arn:aws:batch:us-east-1:123456789012:job-queue/My-Eks-JQ1",
 "jobId": "2d044787-c663-4ce6-a6fe-f2baf7e51b04",

Tutorial: Map a running job to a pod and a node 255

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html

AWS Batch User Guide

 "eksProperties": {
 "podProperties": {
 "nodeName": "ip-192-168-55-175.ec2.internal",
 "containers": [
 {
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "resources": {
 "requests": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 }
 }
],
 "podName": "aws-batch.b0aca953-ba8f-3791-83e2-ed13af39428c"
 }
 }
 }
]
}

For a job with retries enabled, the podName and nodeName of every completed attempt is in the
eksAttempts list parameter of the DescribeJobs API operation. The podName and nodeName of
the current running attempt are in the podProperties object.

Tutorial: Map a running pod back to its job

A pod has labels that indicate the jobId and uuid of the compute environment that it belongs
to. AWS Batch injects environment variables so the job’s runtime can reference job information.
For more information, see AWS Batch job environment variables. You can view this information by
running the following command. The output is as follows.

$ kubectl describe pod aws-batch.14638eb9-d218-372d-ba5c-1c9ab9c7f2a1 -n my-aws-batch-
namespace
Name: aws-batch.14638eb9-d218-372d-ba5c-1c9ab9c7f2a1
Namespace: my-aws-batch-namespace
Priority: 0
Node: ip-192-168-45-88.ec2.internal/192.168.45.88
Start Time: Wed, 26 Oct 2022 00:30:48 +0000
Labels: batch.amazonaws.com/compute-environment-uuid=5c19160b-
d450-31c9-8454-86cf5b30548f
 batch.amazonaws.com/job-id=f980f2cf-6309-4c77-a2b2-d83fbba0e9f0

Tutorial: Map a running pod back to its job 256

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html

AWS Batch User Guide

 batch.amazonaws.com/node-uid=a4be5c1d-9881-4524-b967-587789094647
...
Status: Running
IP: 192.168.45.88
IPs:
 IP: 192.168.45.88
Containers:
 default:
 Image: public.ecr.aws/amazonlinux/amazonlinux:2
 ...
 Environment:
 AWS_BATCH_JOB_KUBERNETES_NODE_UID: a4be5c1d-9881-4524-b967-587789094647
 AWS_BATCH_JOB_ID: f980f2cf-6309-4c77-a2b2-d83fbba0e9f0
 AWS_BATCH_JQ_NAME: My-Eks-JQ1
 AWS_BATCH_JOB_ATTEMPT: 1
 AWS_BATCH_CE_NAME: My-Eks-CE1

...

Features that AWS Batch Amazon EKS jobs support

These are the AWS Batch specific features that are also common to Kubernetes jobs that run on
Amazon EKS:

• Job dependencies

• Array jobs

• Job timeouts

• Automated job retries

• Use fair share scheduling to help schedule jobs

KubernetesSecrets and ServiceAccounts

AWS Batch supports referencing Kubernetes Secrets and ServiceAccounts. You can configure
pods to use Amazon EKS IAM roles for service accounts. For more information, see Configuring
pods to use a Kubernetes service account in the Amazon EKS User Guide.

Related documents

• Memory and vCPU considerations for AWS Batch on Amazon EKS

• Run GPU jobs

Tutorial: Map a running pod back to its job 257

https://docs.aws.amazon.com/eks/latest/userguide/pod-configuration.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-configuration.html
https://docs.aws.amazon.com/eks/latest/userguide/

AWS Batch User Guide

• Jobs stuck in a RUNNABLE status

Multi-node parallel jobs

You can use multi-node parallel jobs to run single jobs that span multiple Amazon EC2 instances.
With AWS Batch multi-node parallel jobs (also known as gang scheduling), you can run large-scale,
high-performance computing applications and distributed GPU model training without the need to
launch, configure, and manage Amazon EC2 resources directly. An AWS Batch multi-node parallel
job is compatible with any framework that supports IP-based, internode communication. Examples
include Apache MXNet, TensorFlow, Caffe2, or Message Passing Interface (MPI).

Multi-node parallel jobs are submitted as a single job. However, your job definition (or job
submission node overrides) specifies the number of nodes to create for the job and what node
groups to create. Each multi-node parallel job contains a main node, which is launched first. After
the main node is up, the child nodes are launched and started. The job is finished only if the main
node exits. All child nodes are then stopped. For more information, see Node groups.

Multi-node parallel job nodes are single-tenant. This means that only a single job container is run
on each Amazon EC2 instance.

The final job status (SUCCEEDED or FAILED) is determined by the final job status of the main
node. To get the status of a multi-node parallel job, describe the job by using the job ID that was
returned when you submitted the job. If you need the details for child nodes, describe each child
node individually. You can address nodes using the #N notation (starting with 0). For example,
to access the details of the second node of a job, describe aws_batch_job_id#1 using the
AWS Batch DescribeJobs API operation. The started, stoppedAt, statusReason, and exit
information for a multi-node parallel job is populated from the main node.

If you specify job retries, a main node failure causes another attempt to occur. Child node failures
don't cause more attempts to occur. Each new attempt of a multi-node parallel job updates the
corresponding attempt of its associated child nodes.

To run multi-node parallel jobs on AWS Batch, your application code must contain the frameworks
and libraries that are necessary for distributed communication.

Topics

• Environment variables

• Node groups

Multi-node parallel jobs 258

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html

AWS Batch User Guide

• Job lifecycle for MNP jobs

• Compute environment considerations for MNP with AWS Batch

Environment variables

At runtime, each node is configured the standard environment variables that all AWS Batch jobs
receive. In addition, the nodes are configured with the following environment variables that are
specific to multi-node parallel jobs:

AWS_BATCH_JOB_MAIN_NODE_INDEX

This variable is set to the index number of the job's main node. Your application code can
compare the AWS_BATCH_JOB_MAIN_NODE_INDEX to the AWS_BATCH_JOB_NODE_INDEX on
an individual node to determine if it's the main node.

AWS_BATCH_JOB_MAIN_NODE_PRIVATE_IPV4_ADDRESS

This variable is only set in multi-node parallel job child nodes. This variable isn't present on the
main node. This variable is set to the private IPv4 address of the job's main node. Your child
node's application code can use this address to communicate with the main node.

AWS_BATCH_JOB_NODE_INDEX

This variable is set to the node index number of the node. The node index begins at 0, and each
node receives a unique index number. For example, a multi-node parallel job with 10 children
has index values of 0-9.

AWS_BATCH_JOB_NUM_NODES

This variable is set to the number of nodes that you have requested for your multi-node parallel
job.

Node groups

A node group is an identical group of job nodes that all share the same container properties. You
can use AWS Batch to specify up to five distinct node groups for each job.

Each group can have its own container images, commands, environment variables, and so on. For
example, you can submit a job that requires a single c5.xlarge instance for the main node and
five c5.xlarge instance child nodes. Each of these distinct node groups may specify different
container images or commands to run for each job.

Environment variables 259

AWS Batch User Guide

Alternatively, all of the nodes in your job can use a single node group. Moreover, your application
code can differentiate node roles such as the main node and child node. It does this by comparing
the AWS_BATCH_JOB_MAIN_NODE_INDEX environment variable against its own value for
AWS_BATCH_JOB_NODE_INDEX. You can have up to 1,000 nodes in a single job. This is the default
limit for instances in an Amazon ECS cluster. You can request to increase this limit.

Note

Currently all node groups in a multi-node parallel job must use the same instance type.

Job lifecycle for MNP jobs

When you submit a multi-node parallel job, the job enters the SUBMITTED status. Then, the job
waits for any job dependencies to finish. The job also moves to the RUNNABLE status. Last, AWS
Batch provisions the instance capacity that's required to run your job and launches these instances.

Each multi-node parallel job contains a main node. The main node is a single subtask that
AWS Batch monitors to determine the outcome of the submitted multi node job. The main
node is launched first and it moves to the STARTING status. The timeout value specified in the
attemptDurationSeconds parameter applies to the whole job and not to the nodes.

When the main node reaches the RUNNING status after the node's container is running, the
child nodes are launched and they also move to the STARTING status. The child nodes come
up in random order. There are no guarantees on the timing or ordering of child node launch. To
ensure that the all the nodes of the jobs are in the RUNNING status after the node's container
is running, your application code can query the AWS Batch API to get the main node and child
node information. Alternatively, the application code can wait until all nodes are online before
starting any distributed processing task. The private IP address of the main node is available
as the AWS_BATCH_JOB_MAIN_NODE_PRIVATE_IPV4_ADDRESS environment variable in each
child node. Your application code may use this information to coordinate and communicate data
between each task.

As individual nodes exit, they move to SUCCEEDED or FAILED, depending on their exit code. If the
main node exits, the job is considered finished, and all of the child nodes are stopped. If a child
node dies, AWS Batch doesn't take any action on the other nodes in the job. If you don't want your
job to continue with a reduced number of nodes, you must factor this into your application code.
Doing this terminates or cancels the job.

Job lifecycle 260

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

AWS Batch User Guide

Compute environment considerations for MNP with AWS Batch

There are several things to consider when configuring compute environments to run multi-node
parallel jobs with AWS Batch.

• Multi-node parallel jobs aren't supported on UNMANAGED compute environments.

• If you want to submit multi-node parallel jobs to a compute environment, create a cluster
placement group in a single Availability Zone and associate it with your compute resources. This
keeps your multi-node parallel jobs on a logical grouping of instances close with high network
flow potential. For more information, see Placement Groups in the Amazon EC2 User Guide.

• Multi-node parallel jobs aren't supported on compute environments that use Spot Instances.

• AWS Batch multi-node parallel jobs use the Amazon ECS awsvpc network mode, which gives
your multi-node parallel job containers the same networking properties as Amazon EC2
instances. Each multi-node parallel job container gets its own elastic network interface, a
primary private IP address, and an internal DNS hostname. The network interface is created in
the same VPC subnet as its host compute resource. Any security groups that are applied to your
compute resources are also applied to it. For more information, see Task Networking with the
awsvpc Network Mode in the Amazon Elastic Container Service Developer Guide.

• Your compute environment might have no more than five security groups associated with it.

• The awsvpc network mode doesn't provide the elastic network interfaces for multi-node parallel
jobs with public IP addresses. To access the internet, your compute resources must be launched
in a private subnet that is configured to use a NAT gateway. For more information, see NAT
Gateways in the Amazon VPC User Guide. Internode communication must use the private IP
address or DNS hostname for the node. Multi-node parallel jobs that run on compute resources
within public subnets don't have outbound network access. To create a VPC with private subnets
and a NAT gateway, see Create a virtual private cloud .

• The elastic network interfaces that are created and attached to your compute resources can't
be detached manually or modified by your account. This is to prevent the accidental deletion of
an elastic network interface that's associated with a running job. To release the elastic network
interfaces for a task, terminate the job.

• Your compute environment must have enough maximum vCPUs to support your multi-node
parallel job.

• Your Amazon EC2 instance quota include the number of instances that's required to run your
job. For example, suppose that your job requires 30 instances, but your account can only run 20
instances in a Region. Then, your job will get stuck in RUNNABLE status.

Compute environment considerations 261

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html

AWS Batch User Guide

• If you specify an instance type for a node group in a multi-node parallel job, your compute
environment must launch that instance type.

Multi-node parallel jobs on Amazon EKS

You can use AWS Batch on Amazon Elastic Kubernetes Service to run multi-node parallel (MNP)
jobs (also known as gang scheduling) on your managed Kubernetes clusters. This option is
commonly used for large, tightly-coupled, high-performance jobs that can’t be run on a single
Amazon Elastic Compute Cloud instance. For more information, see Multi-node parallel jobs.

You can use this feature to run Amazon EKS managed Kubernetes-specific high-performance
computing applications, large language model training, and other Artificial Intelligence (AI)/
Machine Learning (ML) jobs.

Topics

• Running MNP jobs

• Create an Amazon EKS MNP job definition

• Submit an Amazon EKS MNP job

• Override an Amazon EKS MNP job definition

Running MNP jobs

AWS Batch supports MNP jobs on Amazon Elastic Container Service and Amazon EKS using
Amazon EC2. The following provides more specifics about the instance and container parameters
for the feature.

Instance quotas for MNP on Amazon EKS

• Up to 1000 instances can be used for a single MNP job.

• Up to 5000 instances can join a single Amazon EKS cluster.

• Up to 5 compute environments can be clustered and attached to a job-queue.

For example, you can scale up to 5 clustered compute environments in a job queue and 1000
instances in each compute environment.

Multi-node parallel jobs on Amazon EKS 262

AWS Batch User Guide

In addition to the instance parameters, it’s important to note that you can’t use Fargate for MNP
jobs through either service.

You can use only one instance type in each MNP job. You can change the instance type by updating
the compute environment, or when you define a new compute environment. You can also specify
the instance type, and provide vCPU and memory requirements when creating the job-definition.

Container quotas for MNP on Amazon EKS

• A multi-node parallel job supports one pod per node.

• Up to 10 containers (or 10 init containers. For more information see Init Containers in the
Kubernetes documentation.) in each pod.

• Up to 5 node ranges in each MNP job.

• Up 10 distinct container images in each node range.

For example, you can run up to a maximum of 10,000 containers in a single MNP job that contains
5 node ranges and a total of 50 unique images.

Running MNP jobs in a private Amazon VPC and an Amazon EKS cluster

MNP jobs can run on any Amazon EKS cluster whether it has public Internet or not. When using
an Amazon EKS cluster with only private network access be sure that AWS Batch can access the
Amazon EKS control plane and the managed Kubernetes API server. You can grant the necessary
access through Amazon Virtual Private Cloud endpoints. For more information, see Configure an
endpoint service.

Amazon EKS cluster Pods can’t download an image from a public source since the private VPC
doesn’t have Internet access. Your Amazon EKS cluster must pull images from a container registry
that's within your Amazon VPC. You can create an (Amazon ECR) in your Amazon VPC and copy
container images to it for your nodes access.

You can also create a pull through cache rule with Amazon ECR. Once a pull through cache rule
is created for an external public registry, you can simply pull an image from that external public
registry using your Amazon ECR private registry URI. Then Amazon ECR creates a repository and
caches the image. When a cached image is pulled using the Amazon ECR private registry URI,
Amazon ECR checks the remote registry to see if there is a new version of the image and will
update your private registry up to one time every 24 hours. For more information, see Creating a
pull through cache rule in Amazon ECR.

Running MNP jobs 263

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://docs.aws.amazon.com/vpc/latest/privatelink/configure-endpoint-service.html
https://docs.aws.amazon.com/vpc/latest/privatelink/configure-endpoint-service.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/pull-through-cache-creating-rule.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/pull-through-cache-creating-rule.html

AWS Batch User Guide

For more information about this topic, see Tutorial: Getting started with AWS Batch on Amazon
EKS Private Clusters.

Error notification

If your MNP jobs are blocked, you can receive notifications through the AWS Management Console
and Amazon EventBridge. For example, if an MNP job is stuck at the head of the queue, you can be
notified about the issue along with information about what caused it so that you can take prompt
action to unblock your job queue. Optionally, you can auto-terminate the MNP job if no action is
taken within a distinct amount of time, which can be defined in the job-queue template. For more
information, see Resource: Job queue blocked events

Create an Amazon EKS MNP job definition

To define and run MNP jobs on Amazon EKS, there are new parameters within the
RegisterJobDefinition and SubmitJob API operations.

• Use eksProperties under the nodeProperties section to define your MNP job definition.

• Use eksPropertiesOverride under the nodePropertyOverrides section to override the
parameters defined in the job definition when submitting an MNP job.

These actions can be defined through API operations and the AWS Management Console.

Reference: Register the Amazon EKS MNP job definition request payload

The following example illustrates how you can register an Amazon EKS MNP job definition with
two nodes.

{
 "jobDefinitionName": "MyEksMnpJobDefinition",
 "type": "multinode",
 "nodeProperties": {
 "numNodes": 2,
 "mainNode": 0,
 "nodeRangeProperties": [
 {
 "targetNodes" : "0:",
 "eksProperties": {
 "podProperties": {
 "containers": [
 {

Create an Amazon EKS MNP job definition 264

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_NodeProperties.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_EksPropertiesOverride.html
https://docs.aws.amazon.com/build/server-root/batch/latest/APIReference/API_NodePropertyOverride.html

AWS Batch User Guide

 "name": "test-eks-container-1",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "sleep",
 "60"
],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 },
 "securityContext":{
 "runAsUser":1000,
 "runAsGroup":3000,
 "privileged":true,
 "readOnlyRootFilesystem":true,
 "runAsNonRoot":true
 }
 }
],
 "initContainers": [
 {
 "name":"init-ekscontainer",
 "image": "public.ecr.aws/amazonlinux/amazonlinux:2",
 "command": [
 "echo",
 "helloWorld"
],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi"
 }
 }
 }
],
 "metadata": {
 "labels": {
 "environment" : "test"
 }
 }
 }
 }

Create an Amazon EKS MNP job definition 265

AWS Batch User Guide

 }
]
 }
}

To register the job definition using the AWS CLI, copy the definition to a local file named
MyEksMnpJobDefinition.json and run the following command.

aws batch register-job-definition --cli-input-json file://MyEksMnpJobDefinition.json

You will receive the following JSON response.

{
 "jobDefinitionName": "MyEksMnpJobDefinition",
 "jobDefinitionArn": "arn:aws:batch:us-east-1:0123456789:job-definition/
MyEksMnpJobDefinition:1",
 "revision": 1
}

Submit an Amazon EKS MNP job

To submit a job using the registered job definition, enter the following command. Replace the
value of <EKS_JOB_QUEUE_NAME> with the name or ARN of a pre-existing job queue associated
with an Amazon EKS compute environment.

aws batch submit-job --job-queue <EKS_JOB_QUEUE_NAME> \
 --job-definition MyEksMnpJobDefinition \
 --job-name myFirstEksMnpJob

You will receive the following JSON response.

{
 "jobArn": "arn:aws:batch:region:account:job/9b979cce-9da0-446d-90e2-ffa16d52af68",
 "jobName": "myFirstEksMnpJob",
 "jobId": "<JOB_ID>"
}

You can check the status of the job using the returned jobId with the following command.

aws batch describe-jobs --jobs <JOB_ID>

Submit an Amazon EKS MNP job 266

AWS Batch User Guide

Override an Amazon EKS MNP job definition

Optionally, you can override the job definition details (such as changing the MNP job size or child
job details). The following provides an example JSON request payload to submit a five node MNP
job, and changes to the test-eks-container-1 container’s command.

{
 "numNodes": 5,
 "nodePropertyOverrides": [
 {
 "targetNodes": "0:",
 "eksPropertiesOverride": {
 "podProperties": {
 "containers": [
 {
 "name": "test-eks-container-1",
 "command": [
 "sleep",
 "150"
]
 }
]
 }
 }
 }
]
}

To submit a job with these overrides, save the example to a local file, eks-mnp-job-
nodeoverride.json, and use the AWS CLI to submit the job with the overrides.

Array jobs

An array job is a job that shares common parameters, such as the job definition, vCPUs, and
memory. It runs as a collection of related yet separate basic jobs that might be distributed across
multiple hosts and might run concurrently. Array jobs are the most efficient way to run extremely
parallel jobs such as Monte Carlo simulations, parametric sweeps, or large rendering jobs.

AWS Batch array jobs are submitted just like regular jobs. However, you specify an array size
(between 2 and 10,000) to define how many child jobs should run in the array. If you submit a job

Override an Amazon EKS MNP job definition 267

AWS Batch User Guide

with an array size of 1000, a single job runs and spawns 1000 child jobs. The array job is a reference
or pointer to manage all the child jobs. This way, you can submit large workloads with a single
query. The timeout specified in the attemptDurationSeconds parameter applies to each child
job. The parent array job does not have a timeout.

When you submit an array job, the parent array job gets a normal AWS Batch job ID. Each child
job has the same base ID. However, the array index for the child job is appended to the end of the
parent ID, such as example_job_ID:0 for the first child job of the array.

The parent array job can enter a SUBMITTED, PENDING, FAILED, or SUCCEEDED status. An
array parent job is updated to PENDING when any child job is updated to RUNNABLE. For more
information about job dependencies, see Job dependencies.

At runtime, the AWS_BATCH_JOB_ARRAY_INDEX environment variable is set to the container's
corresponding job array index number. The first array job index is numbered 0, and subsequent
attempts are in ascending order (for example, 1, 2, and 3). You can use this index value to control
how your array job children are differentiated. For more information, see Tutorial: Use the array job
index to control job differentiation.

For array job dependencies, you can specify a type for a dependency, such as SEQUENTIAL or
N_TO_N. You can specify a SEQUENTIAL type dependency (without specifying a job ID) so that each
child array job completes sequentially, starting at index 0. For example, if you submit an array job
with an array size of 100, and specify a dependency with type SEQUENTIAL, 100 child jobs are
spawned sequentially, where the first child job must succeed before the next child job starts. The
figure below shows Job A, an array job with an array size of 10. Each job in Job A's child index is
dependent on the previous child job. Job A:1 can't start until job A:0 finishes.

Array jobs 268

AWS Batch User Guide

You can also specify an N_TO_N type dependency with a job ID for array jobs. That way, each index
child of this job must wait for the corresponding index child of each dependency to complete
before it can begin. The following figure shows Job A and Job B, two array jobs with an array size
of 10,000 each. Each job in Job B's child index is dependent on the corresponding index in Job A.
Job B:1 can't start until job A:1 finishes.

Array jobs 269

AWS Batch User Guide

If you cancel or terminate a parent array job, all the child jobs are cancelled or terminated with
it. You can cancel or terminate individual child jobs (which moves them to a FAILED status)
without affecting the other child jobs. However, if a child array job fails (on its own, or by manually
cancelling or terminating the job), the parent job also fails. In this scenario, the parent job
transitions to FAILED when all child jobs complete.

Topics

• Reference: Example of an array job workflow

• Tutorial: Use the array job index to control job differentiation

Reference: Example of an array job workflow

A common workflow for AWS Batch customers is to run a prerequisite setup job, run a series of
commands against a large number of input tasks, and then conclude with a job that aggregates
results and writes summary data to Amazon S3, DynamoDB, Amazon Redshift, or Aurora.

For example:

Reference: Example of an array job workflow 270

AWS Batch User Guide

• JobA: A standard, non-array job that performs a quick listing and metadata validation of objects
in an Amazon S3 bucket, BucketA. The SubmitJob JSON syntax is as follows.

{
 "jobName": "JobA",
 "jobQueue": "ProdQueue",
 "jobDefinition": "JobA-list-and-validate:1"
}

• JobB: An array job with 10,000 copies that is dependent upon JobA that runs CPU-intensive
commands against each object in BucketA and uploads results to BucketB. The SubmitJob
JSON syntax is as follows.

{
 "jobName": "JobB",
 "jobQueue": "ProdQueue",
 "jobDefinition": "JobB-CPU-Intensive-Processing:1",
 "containerOverrides": {
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "4096"
 },
 {
 "type": "VCPU",
 "value": "32"
 }
]
 }
 "arrayProperties": {
 "size": 10000
 },
 "dependsOn": [
 {
 "jobId": "JobA_job_ID"
 }
]
}

• JobC: Another 10,000 copy array job that's dependent upon JobB with an N_TO_N dependency
model, that runs memory-intensive commands against each item in BucketB, writes metadata

Reference: Example of an array job workflow 271

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

to DynamoDB, and uploads the resulting output to BucketC. The SubmitJob JSON syntax is as
follows.

{
 "jobName": "JobC",
 "jobQueue": "ProdQueue",
 "jobDefinition": "JobC-Memory-Intensive-Processing:1",
 "containerOverrides": {
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "32768"
 },
 {
 "type": "VCPU",
 "value": "1"
 }
]
 }
 "arrayProperties": {
 "size": 10000
 },
 "dependsOn": [
 {
 "jobId": "JobB_job_ID",
 "type": "N_TO_N"
 }
]
}

• JobD: An array job that performs 10 validation steps that each need to query DynamoDB
and might interact with any of the above Amazon S3 buckets. Each of the steps in JobD
run the same command. However, the behavior is different based on the value of the
AWS_BATCH_JOB_ARRAY_INDEX environment variable within the job's container. These
validation steps run sequentially (for example, JobD:0 and then JobD:1). The SubmitJob JSON
syntax is as follows.

{
 "jobName": "JobD",
 "jobQueue": "ProdQueue",
 "jobDefinition": "JobD-Sequential-Validation:1",
 "containerOverrides": {

Reference: Example of an array job workflow 272

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "32768"
 },
 {
 "type": "VCPU",
 "value": "1"
 }
]
 }
 "arrayProperties": {
 "size": 10
 },
 "dependsOn": [
 {
 "jobId": "JobC_job_ID"
 },
 {
 "type": "SEQUENTIAL"
 },

]
}

• JobE: A final, non-array job that performs some simple cleanup operations and sends an
Amazon SNS notification with a message that the pipeline has completed and a link to the
output URL. The SubmitJob JSON syntax is as follows.

{
 "jobName": "JobE",
 "jobQueue": "ProdQueue",
 "jobDefinition": "JobE-Cleanup-and-Notification:1",
 "parameters": {
 "SourceBucket": "s3://amzn-s3-demo-source-bucket",
 "Recipient": "pipeline-notifications@mycompany.com"
 },
 "dependsOn": [
 {
 "jobId": "JobD_job_ID"
 }
]
}

Reference: Example of an array job workflow 273

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

Tutorial: Use the array job index to control job differentiation

This tutorial describes how to use the AWS_BATCH_JOB_ARRAY_INDEX environment variable to
differentiate the child jobs. Each child job is assigned to this variable. The example uses the child
job's index number to read a specific line in a file. Then, it substitutes the parameter associated
with that line number with a command inside the job's container. The result is that you can have
multiple AWS Batch jobs that run the same Docker image and command arguments. However, the
results are different because the array job index is used as a modifier.

In this tutorial, you create a text file that has all of the colors of the rainbow, each on its own line.
Then, you create an entrypoint script for a Docker container that converts the index into a value
that can be used for a line number in the color file. The index starts at zero, but line numbers start
at one. Create a Dockerfile that copies the color and index files to the container image and sets
ENTRYPOINT for the image to the entrypoint script. The Dockerfile and resources are built to a
Docker image that's pushed to Amazon ECR. You then register a job definition that uses your new
container image, submit an AWS Batch array job with that job definition, and view the results.

Topics

• Prerequisites

• Tutorial: Build a container image

• Tutorial: Push your image to Amazon ECR

• Tutorial: Create and register a job definition

• Tutorial: Submit an AWS Batch array job

• Tutorial: View your array job logs

Prerequisites

This tutorial workflow has the following prerequisites:

• An AWS Batch compute environment. For more information, see Create a compute environment.

• An AWS Batch job queue and associated compute environment. For more information, see Create
a job queue.

• The AWS CLI installed on your local system. For more information, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

• Docker installed on your local system. For more information, see About Docker CE in the Docker
documentation.

Tutorial: Using array job index 274

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.docker.com/install/

AWS Batch User Guide

Tutorial: Build a container image

You can use the AWS_BATCH_JOB_ARRAY_INDEX in a job definition in the command parameter.
However, we recommend that you create a container image that uses the variable in an entrypoint
script instead. This section describes how to create such a container image.

To build your Docker container image

1. Create a new directory to use as your Docker image workspace and navigate to it.

2. Create a file named colors.txt in your workspace directory and paste the following into it.

red
orange
yellow
green
blue
indigo
violet

3. Create a file named print-color.sh in your workspace directory and paste the following
into it.

Note

The LINE variable is set to the AWS_BATCH_JOB_ARRAY_INDEX + 1 because the array
index starts at 0, but line numbers start at 1. The COLOR variable is set to the color in
colors.txt that's associated with its line number.

#!/bin/sh
LINE=$((AWS_BATCH_JOB_ARRAY_INDEX + 1))
COLOR=$(sed -n ${LINE}p /tmp/colors.txt)
echo My favorite color of the rainbow is $COLOR.

4. Create a file named Dockerfile in your workspace directory and paste the following content
into it. This Dockerfile copies the previous files to your container and sets the entrypoint script
to run when the container starts.

FROM busybox
COPY print-color.sh /tmp/print-color.sh

Tutorial: Using array job index 275

AWS Batch User Guide

COPY colors.txt /tmp/colors.txt
RUN chmod +x /tmp/print-color.sh
ENTRYPOINT /tmp/print-color.sh

5. Build your Docker image.

$ docker build -t print-color .

6. Test your container with the following script. This script sets the
AWS_BATCH_JOB_ARRAY_INDEX variable to 0 locally and then increments it to simulate what
an array job with seven children does.

$ AWS_BATCH_JOB_ARRAY_INDEX=0
while [$AWS_BATCH_JOB_ARRAY_INDEX -le 6]
do
 docker run -e AWS_BATCH_JOB_ARRAY_INDEX=$AWS_BATCH_JOB_ARRAY_INDEX print-color
 AWS_BATCH_JOB_ARRAY_INDEX=$((AWS_BATCH_JOB_ARRAY_INDEX + 1))
done

The following is the output.

My favorite color of the rainbow is red.
My favorite color of the rainbow is orange.
My favorite color of the rainbow is yellow.
My favorite color of the rainbow is green.
My favorite color of the rainbow is blue.
My favorite color of the rainbow is indigo.
My favorite color of the rainbow is violet.

Tutorial: Push your image to Amazon ECR

Now that you built and tested your Docker container, push it to an image repository. This example
uses Amazon ECR, but you can use another registry, such as DockerHub.

1. Create an Amazon ECR image repository to store your container image. This example only uses
the AWS CLI, but you can also use the AWS Management Console. For more information, see
Creating a Repository in the Amazon Elastic Container Registry User Guide.

$ aws ecr create-repository --repository-name print-color

Tutorial: Using array job index 276

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html

AWS Batch User Guide

2. Tag your print-color image with your Amazon ECR repository URI that was returned from
the previous step.

$ docker tag print-color aws_account_id.dkr.ecr.region.amazonaws.com/print-color

3. Log in to your Amazon ECR registry. For more information, see Registry Authentication in the
Amazon Elastic Container Registry User Guide.

$ aws ecr get-login-password \
 --region region | docker login \
 --username AWS \
 --password-stdin aws_account_id.dkr.ecr.region.amazonaws.com

4. Push your image to Amazon ECR.

$ docker push aws_account_id.dkr.ecr.region.amazonaws.com/print-color

Tutorial: Create and register a job definition

Now that your Docker image is in an image registry, you can specify it in an AWS Batch job
definition. Then, you can use it later to run an array job. This example only uses the AWS CLI.
However, you can also use the AWS Management Console. For more information, see Create a
single-node job definition .

To create a job definition

1. Create a file named print-color-job-def.json in your workspace directory and paste the
following into it. Replace the image repository URI with your own image's URI.

{
 "jobDefinitionName": "print-color",
 "type": "container",
 "containerProperties": {
 "image": "aws_account_id.dkr.ecr.region.amazonaws.com/print-color",
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "250"
 },
 {

Tutorial: Using array job index 277

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth

AWS Batch User Guide

 "type": "VCPU",
 "value": "1"
 }
]
 }
}

2. Register the job definition with AWS Batch.

$ aws batch register-job-definition --cli-input-json file://print-color-job-
def.json

Tutorial: Submit an AWS Batch array job

After you registered your job definition, you can submit an AWS Batch array job that uses your new
container image.

To submit an AWS Batch array job

1. Create a file named print-color-job.json in your workspace directory and paste the
following into it.

Note

This example uses the job queue mentioned in the the section called “Prerequisites”
section.

{
 "jobName": "print-color",
 "jobQueue": "existing-job-queue",
 "arrayProperties": {
 "size": 7
 },
 "jobDefinition": "print-color"
}

2. Submit the job to your AWS Batch job queue. Note the job ID that's returned in the output.

$ aws batch submit-job --cli-input-json file://print-color-job.json

Tutorial: Using array job index 278

AWS Batch User Guide

3. Describe the job's status and wait for the job to move to SUCCEEDED.

Tutorial: View your array job logs

After your job reaches the SUCCEEDED status, you can view the CloudWatch Logs from the job's
container.

To view your job's logs in CloudWatch Logs

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. In the left navigation pane, choose Jobs.

3. For Job queue, select a queue.

4. In the Status section, choose succeeded.

5. To display all of the child jobs for your array job, select the job ID that was returned in the
previous section.

6. To see the logs from the job's container, select one of the child jobs and choose View logs.

7. View the other child job's logs. Each job returns a different color of the rainbow.

Run GPU jobs

GPU jobs help you to run jobs that use an instance's GPUs.

The following Amazon EC2 GPU-based instance types are supported. For more information, see
Amazon EC2 G3 Instances, Amazon EC2 G4 Instances, Amazon EC2 G5 Instances, Amazon EC2 P2
Instances, Amazon EC2 P3 Instances, Amazon EC2 P4d Instances, and Amazon EC2 P5 Instances.

Run GPU jobs 279

https://console.aws.amazon.com/batch/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g5/
https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/p4/

AWS Batch User Guide

Instance type GPUs GPU
memory

vCPUs Memory Network bandwidth

g3s.xlarge 1 8 GiB 4 30.5 GiB 10 Gbps

g3.4xlarge 1 8 GiB 16 122 GiB Up to 10 Gbps

g3.8xlarge 2 16 GiB 32 244 GiB 10 Gbps

g3.16xlarge 4 32 GiB 64 488 GiB 25 Gbps

g4dn.xlarge 1 16 GiB 4 16 GiB Up to 25 Gbps

g4dn.2xlarge 1 16 GiB 8 32 GiB Up to 25 Gbps

g4dn.4xlarge 1 16 GiB 16 64 GiB Up to 25 Gbps

g4dn.8xlarge 1 16 GiB 32 128 GiB 50 Gbps

g4dn.12xlarge 4 64 GiB 48 192 GiB 50 Gbps

g4dn.16xlarge 1 16 GiB 64 256 GiB 50 Gbps

g5.xlarge 1 24 GiB 4 16 GiB Up to 10 Gbps

g5.2xlarge 1 24 GiB 8 32 GiB Up to 10 Gbps

g5.4xlarge 1 24 GiB 16 64 GiB Up to 25 Gbps

g5.8xlarge 1 24 GiB 32 128 GiB 25 Gbps

g5.16xlarge 1 24 GiB 64 256 GiB 25 Gbps

g5.12xlarge 4 96 GiB 48 192 GiB 40 Gbps

g5.24xlarge 4 96 GiB 96 384 GiB 50 Gbps

g5.48xlarge 8 192 GiB 192 768 GiB 100 Gbps

p2.xlarge 1 12 GiB 4 61 GiB High

p2.8xlarge 8 96 GiB 32 488 GiB 10 Gbps

Run GPU jobs 280

AWS Batch User Guide

Instance type GPUs GPU
memory

vCPUs Memory Network bandwidth

p2.16xlarge 16 192 GiB 64 732 GiB 20 Gbps

p3.2xlarge 1 16 GiB 8 61 GiB Up to 10 Gbps

p3.8xlarge 4 64 GiB 32 244 GiB 10 Gbps

p3.16xlarge 8 128 GiB 64 488 GiB 25 Gbps

p3dn.24xlarge 8 256 GiB 96 768 GiB 100 Gbps

p4d.24xlarge 8 320 GiB 96 1152 GiB 4x100 Gbps

p5.48xlarge 8 640 GiB 192 2 TiB 32x100 Gbps

Note

Only instance types that support a NVIDIA GPU and use an x86_64 architecture are
supported for GPU jobs in AWS Batch. For example, the G4ad and G5g instance families
aren't supported.

The resourceRequirements parameter for the job definition specifies the number of GPUs to be
pinned to the container. This number of GPUs isn't available to any other job that runs on that
instance for the duration of that job. All instance types in a compute environment that run GPU
jobs must be from the p2, p3, p4, p5, g3, g3s, g4, or g5 instance families. If this isn't done a GPU
job might get stuck in the RUNNABLE status.

Jobs that don't use the GPUs can be run on GPU instances. However, they might cost more to run
on the GPU instances than on similar non-GPU instances. Depending on the specific vCPU, memory,
and time needed, these non-GPU jobs might block GPU jobs from running.

Topics

• Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS

• Tutorial: Create an Amazon EKS GPU job definition

• Tutorial: Run a GPU job in your Amazon EKS cluster

Run GPU jobs 281

https://aws.amazon.com/ec2/instance-types/g4/#Amazon_EC2_G4ad_instances
https://aws.amazon.com/ec2/instance-types/g5g/

AWS Batch User Guide

Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS

Before you create a GPU-based Kubernetes cluster on Amazon EKS, you must have completed the
steps in Tutorial: Getting started with AWS Batch on Amazon EKS. In addition, also consider the
following:

• AWS Batch supports instance types with NVIDIA GPUs.

• By default, AWS Batch selects the Amazon EKS accelerated AMI with the Kubernetes version that
matches your Amazon EKS cluster control plane version.

$ cat <<EOF > ./batch-eks-gpu-ce.json
{
 "computeEnvironmentName": "My-Eks-GPU-CE1",
 "type": "MANAGED",
 "state": "ENABLED",
 "eksConfiguration": {
 "eksClusterArn": "arn:aws:eks:<region>:<account>:cluster/<cluster-name>",
 "kubernetesNamespace": "my-aws-batch-namespace"
 },
 "computeResources": {
 "type": "EC2",
 "allocationStrategy": "BEST_FIT_PROGRESSIVE",
 "minvCpus": 0,
 "maxvCpus": 1024,
 "instanceTypes": [
 "p3dn.24xlarge",
 "p4d.24xlarge"
],
 "subnets": [
 "<eks-cluster-subnets-with-access-to-internet-for-image-pull>"
],
 "securityGroupIds": [
 "<eks-cluster-sg>"
],
 "instanceRole": "<eks-instance-profile>"
 }
}
EOF

$ aws batch create-compute-environment --cli-input-json file://./batch-eks-gpu-ce.json

Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS 282

AWS Batch User Guide

AWS Batch doesn’t manage the NVIDIA GPU device plugin on your behalf. You must install this
plugin into your Amazon EKS cluster and allow it to target the AWS Batch nodes. For more
information, see Enabling GPU Support in Kubernetes on GitHub.

To configure the NVIDIA device plugin (DaemonSet) to target the AWS Batch nodes, run the
following commands.

pull nvidia daemonset spec
$ curl -O https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.12.2/nvidia-
device-plugin.yml
using your favorite editor, add Batch node toleration
this will allow the DaemonSet to run on Batch nodes
- key: "batch.amazonaws.com/batch-node"
 operator: "Exists"

$ kubectl apply -f nvidia-device-plugin.yml

We do not recommend that you mix compute-based (CPU and memory) workloads with GPU-based
workloads in the same pairings of compute environment and job queue. This is because compute
jobs can use up GPU capacity.

To attach job queues, run the following commands.

$ cat <<EOF > ./batch-eks-gpu-jq.json
 {
 "jobQueueName": "My-Eks-GPU-JQ1",
 "priority": 10,
 "computeEnvironmentOrder": [
 {
 "order": 1,
 "computeEnvironment": "My-Eks-GPU-CE1"
 }
]
 }
EOF

$ aws batch create-job-queue --cli-input-json file://./batch-eks-gpu-jq.json

Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS 283

https://github.com/NVIDIA/k8s-device-plugin#enabling-gpu-support-in-kubernetes

AWS Batch User Guide

Tutorial: Create an Amazon EKS GPU job definition

Only nvidia.com/gpu is supported at this time and resource value that you set must be a
whole number. You can’t use fractions of GPU. For more information, see Schedule GPUs in the
Kubernetes documentation.

To register a GPU job definition for Amazon EKS, run the following commands.

$ cat <<EOF > ./batch-eks-gpu-jd.json
{
 "jobDefinitionName": "MyGPUJobOnEks_Smi",
 "type": "container",
 "eksProperties": {
 "podProperties": {
 "hostNetwork": true,
 "containers": [
 {
 "image": "nvcr.io/nvidia/cuda:10.2-runtime-centos7",
 "command": ["nvidia-smi"],
 "resources": {
 "limits": {
 "cpu": "1",
 "memory": "1024Mi",
 "nvidia.com/gpu": "1"
 }
 }
 }
]
 }
 }
}
EOF

$ aws batch register-job-definition --cli-input-json file://./batch-eks-gpu-jd.json

Tutorial: Run a GPU job in your Amazon EKS cluster

The GPU resource is non-compressible. AWS Batch creates a pod spec for GPU jobs where the value
of request equals the value of limits. This is a Kubernetes requirement.

To submit a GPU job, run the following commands.

Tutorial: Create an Amazon EKS GPU job definition 284

https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/

AWS Batch User Guide

$ aws batch submit-job --job-queue My-Eks-GPU-JQ1 --job-definition MyGPUJobOnEks_Smi --
job-name My-Eks-GPU-Job

locate information that can help debug or find logs (if using Amazon CloudWatch Logs
 with Fluent Bit)
$ aws batch describe-jobs --job <job-id> | jq '.jobs[].eksProperties.podProperties |
 {podName, nodeName}'
{
 "podName": "aws-batch.f3d697c4-3bb5-3955-aa6c-977fcf1cb0ca",
 "nodeName": "ip-192-168-59-101.ec2.internal"
}

Search AWS Batch jobs in a job queue

You can search and filter your jobs in AWS Batch using Job search. This feature provides an option
to search within a pre-existing job queue and filter its jobs by one of five options (Created after,
Created before, Job name, Job definition, and Status). For the process to use this feature, complete
the Tutorial: Search and filter AWS Batch jobs procedure.

To search using multiple criteria simultaneously, use the Beta Job search feature. For example, you
can include any or all of the following filters: Job status, Date range, and Additional criteria (such
as, a job name, job definition, or job ID). For the process to use this feature, see the Tutorial: (Beta)
Search and filter AWS Batch jobs procedure.

Topics

• Tutorial: Search and filter AWS Batch jobs

• Tutorial: (Beta) Search and filter AWS Batch jobs

Tutorial: Search and filter AWS Batch jobs

Use this procedure to list all the jobs in a job queue in the AWS Batch console. Optionally, use the
Filter type dropdown list to narrow the results based on the criteria you specify.

1. Navigate to the AWS Batch console.

2. In the Navigation pane, choose Jobs.

3. Expand the Job queue dropdown list and choose the job queue that you want to search within.

Search AWS Batch jobs in a job queue 285

https://console.aws.amazon.com/batch/home

AWS Batch User Guide

Note

You can search for jobs within only one job queue at a time.

4. (Optional) Choose the filter type you want to apply.

• Created after: Returns jobs created after a specific date and time (in UTC). If you select this
option, two filter value fields appear where you can specify the earliest date and time that
the search will return.

• Created before: Returns jobs created before a specific date and time (in UTC). If you select
this option, two filter value fields appear where you can specify the latest date and time that
the search will return.

• Job definition: Returns jobs created with a specific job definition name. If you select this
option, a field appears where you can specify a job’s complete or partial definition (if you
add an asterisk (*) at the end, the filter matches any job definition that begins with the
string before the asterisk).

• Job name: Returns jobs that have a specific job name. If you select this option, a field
appears where you can specify a job’s complete or partial name (if you add an asterisk (*) at
the end, the filter matches any job name that begins with the string before the asterisk).

• Status: Returns jobs that have the selected job status. If you select this option, a dropdown
list appears for you to expand and select a specific status. For more information, see Job
states.

5. (Optional) Choose Load all jobs to return all jobs within a job queue in the last seven days and
without the previous filters. If you choose this option, the following message appears:

Note

AWS Batch now stores seven (7) days of job history. Choosing to load all jobs will
increase the time it takes to access your jobs and start searching and filtering. Using a
filter type instead will provide more immediate results. Are you sure you want to load
all jobs.

A Choose Confirm to close the message.

Tutorial: Search and filter AWS Batch jobs 286

AWS Batch User Guide

• If you choose this option, a dropdown list appears where you can choose similar filter
options: Status, Job name, and Job ID. If you choose one of these options, you can further
filter your search criteria where the specified filter is equal to, is not equal to, contains, or
does not contain the criteria you enter.

6. When the options are complete, choose Search.

Tutorial: (Beta) Search and filter AWS Batch jobs

Use this procedure to list all the jobs in a job queue in the AWS Batch console and using the beta
search features. Optionally, use the Search options section to narrow the results based on the
criteria you specify. This beta search feature allows you to combine search criteria to narrow the
results. However, you can define only one criteria per filter.

1. Navigate to the AWS Batch console.

2. In the Navigation pane, choose Jobs.

3. Ensure that the Search jobs - beta option is active.

4. Expand the Job queue dropdown list and choose the job queue that you want to search within.

Note

You can search for jobs within only one job queue at a time.

5. (Optional) Expand the Job status dropdown list and select one or more job states. For more
information, see Job states.

6. (Optional) Choose Date range to filter the results based on a date and time range.

• Choose Relative mode to search for jobs that ran within a time range counting backwards
from the current date and time.

• Choose Absolute mode to search for jobs that ran within a date and time range that you
specify.

7. (Optional) In the Additional criteria field, enter keywords to include in the search results. For
example, you can use this field to search by job name, job definition, or job ID. Depending on
the property, there may be additional operators, such as equals (=) or starts with (^) that you
must define.

8. When the options are complete, choose Search.

Tutorial: (Beta) Search and filter AWS Batch jobs 287

https://console.aws.amazon.com/batch/home

AWS Batch User Guide

Tip

You can choose the settings icon to customize column that appear and their order in
the Search results table.

Tutorial: Send AWS Batch job logs to CloudWatch Logs

You can configure your AWS Batch jobs to send log information to Amazon CloudWatch Logs. This
way, you can view different logs from your jobs in one convenient location. For more information,
see Using CloudWatch Logs with AWS Batch.

You can also use Job logs in the AWS Batch console to monitor or troubleshoot an AWS Batch job.

1. Open the AWS Batch console.

2. Choose Jobs.

3. For Job queue, choose the job queue that you want.

Tip

If there are several jobs in the job queue, you can turn on Searching and filtering to
find a job faster. For more information, see Search AWS Batch jobs in a job queue.

4. For Status, choose the job status that you want.

5. Choose the job that you want.

6. On the Details page, scroll down to Job Logs.

7. Choose Retrieve logs.

8. For Authorization required, enter OK, and then choose Authorize to accept Amazon
CloudWatch charges.

Note

To revoke your authorization for CloudWatch charges:

1. In the left navigation pane, choose Permissions.

2. For Job logs, choose Edit.

Tutorial: Send AWS Batch job logs to CloudWatch Logs 288

https://console.aws.amazon.com/batch/home

AWS Batch User Guide

3. Clear the Authorize Batch to use CloudWatch check box.

4. Choose Save changes.

9. Review the log data for the AWS Batch job.

Tip

You can filter the log based on Keywords, Max results, and Sorting. You can also
choose one of the default time intervals or create a custom interval to customize the
results.

Tutorial: Review AWS Batch job information

You can review AWS Batch job information such as status, job definition and container information.

1. Open the AWS Batch console.

2. Choose Jobs.

3. For Job queue, choose the job queue that you want.

Tip

If there are several jobs in the job queue, you can turn on Search and filter to find a
job faster. For more information, see Search AWS Batch jobs in a job queue.

4. Choose the job that you want.

Note

You can also use the AWS Command Line Interface (AWS CLI) to view details about an AWS
Batch job. For more information, see describe-jobs in the AWS CLI Command Reference.

Tutorial: Review AWS Batch job information 289

https://console.aws.amazon.com/batch/home
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/batch/describe-jobs.html
https://docs.aws.amazon.com/cli/latest/reference/

AWS Batch User Guide

Security in AWS Batch

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud.

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Batch, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Batch. The following topics show you how to configure AWS Batch to meet your security
and compliance objectives. You also learn how to use other AWS services that help you to monitor
and secure your AWS Batch resources.

Topics

• Identity and Access Management for AWS Batch

• AWS Batch IAM policies, roles, and permissions

• AWS Batch IAM execution role

• Create a virtual private cloud

• Use an interface endpoint to Access AWS Batch

• Compliance validation for AWS Batch

• Infrastructure security in AWS Batch

• Cross-service confused deputy prevention

• Logging AWS Batch API calls with AWS CloudTrail

• Troubleshoot AWS Batch IAM

290

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Batch User Guide

Identity and Access Management for AWS Batch

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Batch resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Batch works with IAM

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS Batch.

Service user – If you use the AWS Batch service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more AWS Batch features to do
your work, you might need additional permissions. Understanding how access is managed can help
you request the right permissions from your administrator. If you cannot access a feature in AWS
Batch, see Troubleshoot AWS Batch IAM.

Service administrator – If you're in charge of AWS Batch resources at your company, you probably
have full access to AWS Batch. It's your job to determine which AWS Batch features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with AWS Batch,
see How AWS Batch works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS Batch. To view example AWS Batch identity-based
policies that you can use in IAM, see Identity-based policy examples for AWS Batch.

Identity and Access Management 291

AWS Batch User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 292

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS Batch User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or

Authenticating with identities 293

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

AWS Batch User Guide

AWS API operation or by using a custom URL. For more information about methods for using roles,
see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

Authenticating with identities 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Batch User Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 295

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS Batch User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 296

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS Batch User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Batch works with IAM

How AWS Batch works with IAM

Before you use IAM to manage access to AWS Batch, learn what IAM features are available to use
with AWS Batch.

How AWS Batch works with IAM 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Batch User Guide

IAM features you can use with AWS Batch

IAM feature AWS Batch support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how AWS Batch and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS Batch

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all

How AWS Batch works with IAM 298

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Batch User Guide

of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS Batch

To view examples of AWS Batch identity-based policies, see Identity-based policy examples for
AWS Batch.

Policy actions for AWS Batch

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS Batch actions, see Actions Defined by AWS Batch in the Service Authorization
Reference.

Policy actions in AWS Batch use the following prefix before the action:

batch

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "batch:action1",
 "batch:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

How AWS Batch works with IAM 299

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-actions-as-permissions

AWS Batch User Guide

"Action": "batch:Describe*"

To view examples of AWS Batch identity-based policies, see Identity-based policy examples for
AWS Batch.

Policy resources for AWS Batch

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AWS Batch resource types and their ARNs, see Resources Defined by AWS Batch in
the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions Defined by AWS Batch.

Policy condition keys for AWS Batch

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple

How AWS Batch works with IAM 300

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS Batch User Guide

values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of AWS Batch condition keys, see Condition Keys for AWS Batch in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions Defined by AWS Batch.

Attribute-based access control (ABAC) with AWS Batch

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Use temporary credentials with AWS Batch

Supports temporary credentials: Yes

How AWS Batch works with IAM 301

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS Batch User Guide

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS Batch

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS Batch

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AWS Batch functionality. Edit
service roles only when AWS Batch provides guidance to do so.

How AWS Batch works with IAM 302

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Batch User Guide

Service-linked roles for AWS Batch

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS Batch

By default, users and roles don't have permission to create or modify AWS Batch resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS Batch, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for AWS Batch in
the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS Batch console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Batch
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

How AWS Batch works with IAM 303

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html

AWS Batch User Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS Batch console

To access the AWS Batch console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the AWS Batch resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

How AWS Batch works with IAM 304

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Batch User Guide

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AWS Batch console, also attach the AWS Batch
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"

How AWS Batch works with IAM 305

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Batch User Guide

 }
]
}

AWS managed policies for AWS Batch

You can use AWS managed policies for simpler identity access management for your team and
provisioned AWS resources. AWS managed policies cover a variety of common use cases, are
available by default in your AWS account, and are maintained and updated on your behalf. You
can't change the permissions in AWS managed policies. If you require greater flexibility, you can
alternatively choose to create IAM customer managed policies. This way, you can provide your team
provisioned resources with only the exact permissions they need.

For more information about AWS managed policies, see AWS managed policies in the IAM User
Guide.

AWS services maintain and update AWS managed policies on your behalf. Periodically, AWS
services add additional permissions to an AWS managed policy. AWS managed policies are
most likely updated when a new feature launch or operation becomes available. These updates
automatically affect all identities (users, groups, and roles) where the policy is attached. However,
they don't remove permissions or break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: BatchServiceRolePolicy

The BatchServiceRolePolicy managed IAM policy is used by the AWSServiceRoleForBatch
service-linked role. This allows AWS Batch to perform actions on your behalf. You can't attach this
policy to your IAM entities. For more information, see Use service-linked roles for AWS Batch.

This policy allows AWS Batch to complete the following actions on specific resources:

How AWS Batch works with IAM 306

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS Batch User Guide

• autoscaling – Allows AWS Batch to create and manage Amazon EC2 Auto Scaling resources.
AWS Batch creates and manages Amazon EC2 Auto Scaling groups for most compute
environments.

• ec2 – Allows AWS Batch to control the lifecycle of Amazon EC2 instances as well as create and
manage launch templates and tags. AWS Batch creates and manages EC2 Spot Fleet requests for
some EC2 Spot compute environments.

• ecs - Allows AWS Batch to create and managed Amazon ECS clusters, task-definitions and tasks
for job execution.

• eks - Allows AWS Batch to describe the Amazon EKS cluster resource for validations.

• iam - Allows AWS Batch to validate and pass roles provided by owner to Amazon EC2, Amazon
EC2 Auto Scaling and Amazon ECS.

• logs – Allows AWS Batch to create and manage log groups and log streams for AWS Batch jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSBatchPolicyStatement1",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeImages",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotFleetInstances",
 "ec2:DescribeSpotFleetRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSpotFleetRequestHistory",
 "ec2:DescribeVpcClassicLink",
 "ec2:DescribeLaunchTemplateVersions",
 "ec2:RequestSpotFleet",
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",

How AWS Batch works with IAM 307

AWS Batch User Guide

 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeScalingActivities",
 "eks:DescribeCluster",
 "ecs:DescribeClusters",
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTaskDefinition",
 "ecs:DescribeTasks",
 "ecs:ListClusters",
 "ecs:ListContainerInstances",
 "ecs:ListTaskDefinitionFamilies",
 "ecs:ListTaskDefinitions",
 "ecs:ListTasks",
 "ecs:DeregisterTaskDefinition",
 "ecs:TagResource",
 "ecs:ListAccountSettings",
 "logs:DescribeLogGroups",
 "iam:GetInstanceProfile",
 "iam:GetRole"
],
 "Resource": "*"
 },
 {
 "Sid": "AWSBatchPolicyStatement2",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/batch/job*"
 },
 {
 "Sid": "AWSBatchPolicyStatement3",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/batch/job*:log-stream:*"
 },
 {
 "Sid": "AWSBatchPolicyStatement4",
 "Effect": "Allow",
 "Action": [
 "autoscaling:CreateOrUpdateTags"

How AWS Batch works with IAM 308

AWS Batch User Guide

],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/AWSBatchServiceTag": "false"
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement5",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "ec2.amazonaws.com",
 "ec2.amazonaws.com.cn",
 "ecs-tasks.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement6",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": [
 "spot.amazonaws.com",
 "spotfleet.amazonaws.com",
 "autoscaling.amazonaws.com",
 "ecs.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement7",
 "Effect": "Allow",

How AWS Batch works with IAM 309

AWS Batch User Guide

 "Action": [
 "ec2:CreateLaunchTemplate"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/AWSBatchServiceTag": "false"
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement8",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances",
 "ec2:CancelSpotFleetRequests",
 "ec2:ModifySpotFleetRequest",
 "ec2:DeleteLaunchTemplate"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/AWSBatchServiceTag": "false"
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement9",
 "Effect": "Allow",
 "Action": [
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:DeleteLaunchConfiguration"
],
 "Resource":
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/AWSBatch*"
 },
 {
 "Sid": "AWSBatchPolicyStatement10",
 "Effect": "Allow",
 "Action": [
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:DeleteAutoScalingGroup",

How AWS Batch works with IAM 310

AWS Batch User Guide

 "autoscaling:SuspendProcesses",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:TerminateInstanceInAutoScalingGroup"
],
 "Resource":
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/AWSBatch*"
 },
 {
 "Sid": "AWSBatchPolicyStatement11",
 "Effect": "Allow",
 "Action": [
 "ecs:DeleteCluster",
 "ecs:DeregisterContainerInstance",
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:StopTask"
],
 "Resource": "arn:aws:ecs:*:*:cluster/AWSBatch*"
 },
 {
 "Sid": "AWSBatchPolicyStatement12",
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:StopTask"
],
 "Resource": "arn:aws:ecs:*:*:task-definition/*"
 },
 {
 "Sid": "AWSBatchPolicyStatement13",
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask"
],
 "Resource": "arn:aws:ecs:*:*:task/*/*"
 },
 {
 "Sid": "AWSBatchPolicyStatement14",
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:RegisterTaskDefinition"
],

How AWS Batch works with IAM 311

AWS Batch User Guide

 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/AWSBatchServiceTag": "false"
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement15",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:*::image/*",
 "arn:aws:ec2:*::snapshot/*",
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:security-group/*",
 "arn:aws:ec2:*:*:volume/*",
 "arn:aws:ec2:*:*:key-pair/*",
 "arn:aws:ec2:*:*:launch-template/*",
 "arn:aws:ec2:*:*:placement-group/*",
 "arn:aws:ec2:*:*:capacity-reservation/*",
 "arn:aws:ec2:*:*:elastic-gpu/*",
 "arn:aws:elastic-inference:*:*:elastic-inference-accelerator/*",
 "arn:aws:resource-groups:*:*:group/*"
]
 },
 {
 "Sid": "AWSBatchPolicyStatement16",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "Null": {
 "aws:RequestTag/AWSBatchServiceTag": "false"
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement17",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],

How AWS Batch works with IAM 312

AWS Batch User Guide

 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": [
 "RunInstances",
 "CreateLaunchTemplate",
 "RequestSpotFleet"
]
 }
 }
 }
]
}

AWS managed policy: AWSBatchServiceRole policy

The role permissions policy named AWSBatchServiceRole allows AWS Batch to complete the
following actions on specific resources:

The AWSBatchServiceRole managed IAM policy is often used by a role named
AWSBatchServiceRole and includes the following permissions. Following the standard security
advice of granting least privilege, the AWSBatchServiceRole managed policy can be used as a
guide. If any of the permissions that are granted in the managed policy aren't needed for your
use case, create a custom policy and add only the permissions that you require. This AWS Batch
managed policy and role can be used with most compute environment types, but service-linked
role usage is preferred for a less-error-prone, better scoped and improved managed experience.

• autoscaling – Allows AWS Batch to create and manage Amazon EC2 Auto Scaling resources.
AWS Batch creates and manages Amazon EC2 Auto Scaling groups for most compute
environments.

• ec2 – Allows AWS Batch to manage the lifecycle of Amazon EC2 instances as well as create and
manage launch templates and tags. AWS Batch creates and manages EC2 Spot Fleet requests for
some EC2 Spot compute environments.

• ecs - Allows AWS Batch to create and managed Amazon ECS clusters, task-definitions and tasks
for job execution.

• iam - Allows AWS Batch to validate and pass roles provided by owner to Amazon EC2, Amazon
EC2 Auto Scaling and Amazon ECS.

How AWS Batch works with IAM 313

AWS Batch User Guide

• logs – Allows AWS Batch to create and manage log groups and log streams for AWS Batch jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AWSBatchPolicyStatement1",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeImages",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSpotFleetInstances",
 "ec2:DescribeSpotFleetRequests",
 "ec2:DescribeSpotPriceHistory",
 "ec2:DescribeSpotFleetRequestHistory",
 "ec2:DescribeVpcClassicLink",
 "ec2:DescribeLaunchTemplateVersions",
 "ec2:CreateLaunchTemplate",
 "ec2:DeleteLaunchTemplate",
 "ec2:RequestSpotFleet",
 "ec2:CancelSpotFleetRequests",
 "ec2:ModifySpotFleetRequest",
 "ec2:TerminateInstances",
 "ec2:RunInstances",
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:DeleteLaunchConfiguration",

How AWS Batch works with IAM 314

AWS Batch User Guide

 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:CreateOrUpdateTags",
 "autoscaling:SuspendProcesses",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "ecs:DescribeClusters",
 "ecs:DescribeContainerInstances",
 "ecs:DescribeTaskDefinition",
 "ecs:DescribeTasks",
 "ecs:ListAccountSettings",
 "ecs:ListClusters",
 "ecs:ListContainerInstances",
 "ecs:ListTaskDefinitionFamilies",
 "ecs:ListTaskDefinitions",
 "ecs:ListTasks",
 "ecs:CreateCluster",
 "ecs:DeleteCluster",
 "ecs:RegisterTaskDefinition",
 "ecs:DeregisterTaskDefinition",
 "ecs:RunTask",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:UpdateContainerAgent",
 "ecs:DeregisterContainerInstance",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "iam:GetInstanceProfile",
 "iam:GetRole"
],
 "Resource": "*"
 },
 {
 "Sid": "AWSBatchPolicyStatement2",
 "Effect": "Allow",
 "Action": "ecs:TagResource",
 "Resource": [
 "arn:aws:ecs:*:*:task/*_Batch_*"
]
 },
 {
 "Sid": "AWSBatchPolicyStatement3",
 "Effect": "Allow",

How AWS Batch works with IAM 315

AWS Batch User Guide

 "Action": "iam:PassRole",
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "ec2.amazonaws.com",
 "ec2.amazonaws.com.cn",
 "ecs-tasks.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement4",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": [
 "spot.amazonaws.com",
 "spotfleet.amazonaws.com",
 "autoscaling.amazonaws.com",
 "ecs.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "AWSBatchPolicyStatement5",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "RunInstances"
 }
 }

How AWS Batch works with IAM 316

AWS Batch User Guide

 }
]
}

AWS managed policy: AWSBatchFullAccess

The AWSBatchFullAccess policy grants AWS Batch actions full access to AWS Batch resources. It
also grants describe and list action access for Amazon EC2, Amazon ECS, Amazon EKS, CloudWatch,
and IAM services. This is so that IAM identities, either users or roles, can view AWS Batch managed
resources that were created on their behalf. Last, this policy also allows for selected IAM roles to be
passed to those services.

You can attach AWSBatchFullAccess to your IAM entities. AWS Batch also attaches this policy to a
service role that allows AWS Batch to perform actions on your behalf.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "batch:*",
 "cloudwatch:GetMetricStatistics",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeVpcs",
 "ec2:DescribeImages",
 "ec2:DescribeLaunchTemplates",
 "ec2:DescribeLaunchTemplateVersions",
 "ecs:DescribeClusters",
 "ecs:Describe*",
 "ecs:List*",
 "eks:DescribeCluster",
 "eks:ListClusters",
 "logs:Describe*",
 "logs:Get*",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents",
 "iam:ListInstanceProfiles",
 "iam:ListRoles"
],

How AWS Batch works with IAM 317

AWS Batch User Guide

 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
],
 "Resource":[
 "arn:aws:iam::*:role/AWSBatchServiceRole",
 "arn:aws:iam::*:role/service-role/AWSBatchServiceRole",
 "arn:aws:iam::*:role/ecsInstanceRole",
 "arn:aws:iam::*:instance-profile/ecsInstanceRole",
 "arn:aws:iam::*:role/iaws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/aws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/AWSBatchJobRole*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:CreateServiceLinkedRole"
],
 "Resource":"arn:aws:iam::*:role/*Batch*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "batch.amazonaws.com"
 }
 }
 }
]
}

AWS Batch updates to AWS managed policies

View details about updates to AWS managed policies for AWS Batch since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the AWS Batch Document history page.

How AWS Batch works with IAM 318

AWS Batch User Guide

Change Description Date

BatchServiceRolePolicy policy updated Updated to add support for describing
Spot Fleet request history and Amazon
EC2 Auto Scaling activities.

December
5, 2023

AWSBatchServiceRole policy added Updated to add statement IDs, grant
AWS Batch permissions to ec2:Descr
ibeSpotFleetRequestHistory
and autoscaling:Descri
beScalingActivities .

December
5, 2023

BatchServiceRolePolicy policy updated Updated to add support for describing
Amazon EKS clusters.

October
20,
2022

AWSBatchFullAccess policy updated Updated to add support for listing and
describing Amazon EKS clusters.

October
20,
2022

BatchServiceRolePolicy policy updated Updated to add support for Amazon
EC2 Capacity Reservation groups that
are managed by AWS Resource Groups.
For more information, see Work with
Capacity Reservation groups in Amazon
EC2 User Guide.

May 18,
2022

BatchServiceRolePolicy and AWSBatchS
erviceRole policies updated

Updated to add support for describin
g the status of AWS Batch managed
instances in Amazon EC2 so that
unhealthy instances are replaced.

December
6, 2021

BatchServiceRolePolicy policy updated Updated to add support for placement
group, capacity reservation, elastic
GPU, and Elastic Inference resources in
Amazon EC2.

March
26,
2021

How AWS Batch works with IAM 319

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-cr-group.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-cr-group.html

AWS Batch User Guide

Change Description Date

BatchServiceRolePolicy policy added With the BatchServiceRolePolicy
managed policy for the AWSServic
eRoleForBatch service-linked role, you
can use a service-linked role managed by
AWS Batch. With this policy, you don't
need to maintain your own role for use
in your compute environments.

March
10,
2021

AWSBatchFullAccess - add permission to
add service-linked role

Add IAM permissions to allow the
AWSServiceRoleForBatch service-linked
role to be added to the account.

March
10,
2021

AWS Batch started tracking changes AWS Batch started tracking changes for
its AWS managed policies.

March
10,
2021

AWS Batch IAM policies, roles, and permissions

By default, users don't have permission to create or modify AWS Batch resources or to perform
tasks using the AWS Batch API, AWS Batch console, or the AWS CLI. To allow users to perform
these actions, create IAM policies that grant users permission for the specific resources and API
operations. Then, attach the policies to the users or groups that require those permissions.

When you attach a policy to a user or group of users, the policy either allows or denies the
permissions to perform specific tasks on specific resources. For more information, see Permissions
and Policies in the IAM User Guide. For more information about managing and creating custom IAM
policies, see Managing IAM Policies.

AWS Batch makes calls to other AWS services on your behalf. As a result, AWS Batch must
authenticate using your credentials. More specifically, AWS Batch authenticates by creating an IAM
role and policy that provides these permissions. Then, it associates the role with your compute
environments when you create them. For more information, see Amazon ECS instance role, IAM
Roles, Using Service-Linked Roles, and Creating a Role to Delegate Permissions to an AWS Service
in the IAM User Guide.

Topics

IAM policies, roles, and permissions 320

https://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Batch User Guide

• IAM policy structure

• Resource: Example policies for AWS Batch

• Resource: AWS Batch managed policy

IAM policy structure

The following topics explain the structure of an IAM policy.

Topics

• Policy syntax

• API actions for AWS Batch

• Amazon Resource Names for AWS Batch

• Confirm that users have the required permissions

Policy syntax

An IAM policy is a JSON document that consists of one or more statements. Each statement is
structured as follows.

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }
 }
]
}

There are four primary elements that make up a statement:

• Effect: The effect can be Allow or Deny. By default, users don't have permission to use resources
and API actions. So, all requests are denied. An explicit allow overrides the default. An explicit
deny overrides any allows.

IAM policy structure 321

AWS Batch User Guide

• Action: The action is the specific API action that you're granting or denying permission for. For
instructions on how to specify the action, see API actions for AWS Batch.

• Resource: The resource that's affected by the action. With some AWS Batch API actions, you
can include specific resources in your policy that can be created or modified by the action. To
specify a resource in the statement, use its Amazon Resource Name (ARN). For more information,
see Supported resource-level permissions for AWS Batch API actions and Amazon Resource
Names for AWS Batch. If the AWS Batch API operation currently doesn't support resource-level
permissions, include a wildcard (*) to specify that all resources can be affected by the action.

• Condition: Conditions are optional. They can be used to control when your policy is in effect.

For more information about example IAM policy statements for AWS Batch, see Resource: Example
policies for AWS Batch.

API actions for AWS Batch

In an IAM policy statement, you can specify any API action from any service that supports IAM.
For AWS Batch, use the following prefix with the name of the API action: batch: (for example,
batch:SubmitJob and batch:CreateComputeEnvironment).

To specify multiple actions in a single statement, separate each action with a comma.

"Action": ["batch:action1", "batch:action2"]

You can also specify multiple actions by including a wildcard (*). For example, you can specify all
actions with a name that begins with the word "Describe."

"Action": "batch:Describe*"

To specify all AWS Batch API actions, include a wildcard (*).

"Action": "batch:*"

For a list of AWS Batch actions, see Actions in the AWS Batch API Reference.

Amazon Resource Names for AWS Batch

Each IAM policy statement applies to the resources that you specify using their Amazon Resource
Names (ARNs).

IAM policy structure 322

https://docs.aws.amazon.com/batch/latest/APIReference/API_Operations.html

AWS Batch User Guide

An Amazon Resource Name (ARN) has the following general syntax:

arn:aws:[service]:[region]:[account]:resourceType/resourcePath

service

The service (for example, batch).

region

The AWS Region for the resource (for example, us-east-2).

account

The AWS account ID, with no hyphens (for example, 123456789012).

resourceType

The type of resource (for example, compute-environment).

resourcePath

A path that identifies the resource. You can use a wildcard (*) in your paths.

AWS Batch API operations currently support resource-level permissions on several API operations.
For more information, see Supported resource-level permissions for AWS Batch API actions. To
specify all resources, or if a specific API action doesn't support ARNs, include a wildcard (*) in the
Resource element.

"Resource": "*"

Confirm that users have the required permissions

Before you put an IAM policy into production, make sure that it grants users the permissions to use
the specific API actions and resources that they need.

To do this, first create a user for testing purposes and attach the IAM policy to the test user. Then,
make a request as the test user. You can make test requests in the console or with the AWS CLI.

IAM policy structure 323

AWS Batch User Guide

Note

You can also test your policies by using the IAM Policy Simulator. For more information
about the policy simulator, see Working with the IAM Policy Simulator in the IAM User
Guide.

If the policy doesn't grant the user the permissions that you expected, or is overly permissive, you
can adjust the policy as needed. Retest until you get the desired results.

Important

It can take several minutes for policy changes to propagate before they take effect.
Therefore, we recommend that you allow at least five minutes to pass before you test your
policy updates.

If an authorization check fails, the request returns an encoded message with diagnostic
information. You can decode the message using the DecodeAuthorizationMessage action.
For more information, see DecodeAuthorizationMessage in the AWS Security Token Service API
Reference, and decode-authorization-message in the AWS CLI Command Reference.

Resource: Example policies for AWS Batch

You can create specific IAM policies to restrict the calls and resources that users in your account
have access to. Then, you can attach those policies to users.

When you attach a policy to a user or group of users, the policy allows or denies the users
permission for specific tasks on specific resources. For more information, see Permissions and
Policies in the IAM User Guide. For instructions on how to manage and create custom IAM policies,
see Managing IAM Policies.

The following examples show policy statements that you can use to control the permissions that
users have for AWS Batch.

Examples

• Resource: Read-only access for AWS Batch

• Resource: Restrict to POSIX user, Docker image, privilege level, and role on job submission

Resource: Example policies 324

https://policysim.aws.amazon.com/home/index.jsp?#
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_testing-policies.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_DecodeAuthorizationMessage.html
https://docs.aws.amazon.com/cli/latest/reference/sts/decode-authorization-message.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PermissionsAndPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

AWS Batch User Guide

• Resource: Restrict to job definition prefix on job submission

• Resource: Restrict to a job queue

• Deny action when all conditions match strings

• Resource: Deny action when any condition keys match strings

• Resource: Use the batch:ShareIdentifier condition key

Resource: Read-only access for AWS Batch

The following policy grants users permissions to use all AWS Batch API actions with a name that
starts with Describe and List.

Unless another statement grants them permission to do so, users don't have permission to perform
any actions on the resources. By default, they're denied permission to use API actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:Describe*",
 "batch:List*"
],
 "Resource": "*"
 }
]
}

Resource: Restrict to POSIX user, Docker image, privilege level, and role on job
submission

The following policy allows a POSIX user to manage their own set of restricted job definitions.

Use the first and second statements toregister and deregister any job definition name whose name
is prefixed with JobDefA_.

The first statement also uses conditional context keys to restrict the POSIX user, privileged status,
and container image values within the containerProperties of a job definition. For more
information, see RegisterJobDefinition in the AWS Batch API Reference. In this example, job

Resource: Example policies 325

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

definitions can only be registered when the POSIX user is set to nobody. The privileged flag is set
to false. Last, the image is set to myImage in an Amazon ECR repository.

Important

Docker resolves the user parameter to that user uid from within the container image. In
most cases, this is found in the /etc/passwd file within the container image. This name
resolution can be avoided by using direct uid values in both the job definition and any
associated IAM policies. Both the AWS Batch API operations and the batch:User IAM
conditional keys support numeric values.

Use the third statement to restrict to only a specific role to a job definition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:RegisterJobDefinition"
],
 "Resource": [
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-definition/JobDefA_*"
],
 "Condition": {
 "StringEquals": {
 "batch:User": [
 "nobody"
],
 "batch:Image": [
 "<aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/myImage"
]
 },
 "Bool": {
 "batch:Privileged": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [

Resource: Example policies 326

AWS Batch User Guide

 "batch:DeregisterJobDefinition"
],
 "Resource": [
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-definition/JobDefA_*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::<aws_account_id>:role/MyBatchJobRole"
]
 }
]
}

Resource: Restrict to job definition prefix on job submission

Use the following policy to submit jobs to any job queue with any job definition name that starts
with JobDefA.

Important

When scoping resource-level access for job submission, you must provide both job queue
and job definition resource types.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob"
],
 "Resource": [
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-definition/JobDefA_*",
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-queue/*"
]
 }

Resource: Example policies 327

AWS Batch User Guide

]
}

Resource: Restrict to a job queue

Use the following policy to submit jobs to a specific job queue that's named queue1 with any job
definition name.

Important

When scoping resource-level access for job submission, you must provide both job queue
and job definition resource types.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob"
],
 "Resource": [
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-definition/*",
 "arn:aws:batch:<aws_region>:<aws_account_id>:job-queue/queue1"
]
 }
]
}

Deny action when all conditions match strings

The following policy denies access to the RegisterJobDefinition API operation when both the
batch:Image (container image ID) condition key is "string1" and the batch:LogDriver
(container log driver) condition key is "string2." AWS Batch evaluates condition keys on each
container. When a job spans multiple containers such as a multi-node parallel job, it's possible for
the containers to have different configurations. If multiple condition keys are evaluated in one
statement, they're combined using AND logic. So, if any of the multiple condition keys doesn't
match for a container, the Deny effect isn't applied for that container. Rather, a different container
in the same job might be denied.

Resource: Example policies 328

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

For the list of condition keys for AWS Batch, see Condition keys for AWS Batch in the Service
Authorization Reference. Except for batch:ShareIdentifier, all batch condition keys can
be used in this way. The batch:ShareIdentifier condition key is defined for a job, not a job
definition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:RegisterJobDefinition"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Deny",
 "Action": "batch:RegisterJobDefinition",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "batch:Image": "string1",
 "batch:LogDriver": "string2"
 }
 }
 }
]
}

Resource: Deny action when any condition keys match strings

The following policy denies access to the RegisterJobDefinition API operation when either the
batch:Image (container image ID) condition key is "string1" or the batch:LogDriver
(container log driver) condition key is "string2." When a job spans multiple containers such as a
multi-node parallel job, it's possible for the containers to have different configurations. If multiple
condition keys are evaluated in one statement, they're combined using AND logic. So, if any of
the multiple condition keys doesn't match for a container, the Deny effect isn't applied for that
container. Rather, a different container in the same job might be denied.

Resource: Example policies 329

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-policy-keys
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

For the list of condition keys for AWS Batch, see Condition keys for AWS Batch in the Service
Authorization Reference. Except for batch:ShareIdentifier, all batch condition keys can can
be used in this way. (The batch:ShareIdentifier condition key is defined for a job, not a job
definition.)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:RegisterJobDefinition"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "batch:RegisterJobDefinition"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "batch:Image": [
 "string1"
]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "batch:RegisterJobDefinition"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {

Resource: Example policies 330

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsbatch.html#awsbatch-policy-keys

AWS Batch User Guide

 "batch:LogDriver": [
 "string2"
]
 }
 }
 }
]
}

Resource: Use the batch:ShareIdentifier condition key

Use the following policy to submit jobs that use the jobDefA job definition to the jobqueue1 job
queue with the lowCpu share identifier.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob"
],
 "Resource": [
 "arn:aws::batch:<aws_region>:<aws_account_id>:job-definition/JobDefA",
 "arn:aws::batch:<aws_region>:<aws_account_id>:job-queue/jobqueue1"
],
 "Condition": {
 "StringEquals": {
 "batch:ShareIdentifier": [
 "lowCpu"
]
 }
 }
 }
]
}

Resource: AWS Batch managed policy

AWS Batch provides a managed policy that you can attach to users. This policy provides permission
to use AWS Batch resources and API operations. You can apply this policy directly, or you can use it

Resource: AWS Batch managed policy 331

AWS Batch User Guide

as a starting point for creating your own policies. For more information about each API operation
mentioned in these policies, see Actions in the AWS Batch API Reference.

AWSBatchFullAccess

This policy allows full administrator access to AWS Batch.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "batch:*",
 "cloudwatch:GetMetricStatistics",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeVpcs",
 "ec2:DescribeImages",
 "ec2:DescribeLaunchTemplates",
 "ec2:DescribeLaunchTemplateVersions",
 "ecs:DescribeClusters",
 "ecs:Describe*",
 "ecs:List*",
 "eks:DescribeCluster",
 "eks:ListClusters",
 "logs:Describe*",
 "logs:Get*",
 "logs:TestMetricFilter",
 "logs:FilterLogEvents",
 "iam:ListInstanceProfiles",
 "iam:ListRoles"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
],
 "Resource":[
 "arn:aws:iam::*:role/AWSBatchServiceRole",

Resource: AWS Batch managed policy 332

https://docs.aws.amazon.com/batch/latest/APIReference/API_Operations.html

AWS Batch User Guide

 "arn:aws:iam::*:role/service-role/AWSBatchServiceRole",
 "arn:aws:iam::*:role/ecsInstanceRole",
 "arn:aws:iam::*:instance-profile/ecsInstanceRole",
 "arn:aws:iam::*:role/iaws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/aws-ec2-spot-fleet-role",
 "arn:aws:iam::*:role/AWSBatchJobRole*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "iam:CreateServiceLinkedRole"
],
 "Resource":"arn:aws:iam::*:role/*Batch*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "batch.amazonaws.com"
 }
 }
 }
]
}

AWS Batch IAM execution role

The execution role grants the Amazon ECS container and AWS Fargate agents permission to make
AWS API calls on your behalf.

Note

The execution role is supported by Amazon ECS container agent version 1.16.0 and later.

The IAM execution role is required depending on the requirements of your task. You can have
multiple execution roles for different purposes and services associated with your account.

Note

For information about the Amazon ECS instance role, see Amazon ECS instance role. For
information about service roles, see How AWS Batch works with IAM.

AWS Batch IAM execution role 333

AWS Batch User Guide

Amazon ECS provides the AmazonECSTaskExecutionRolePolicy managed policy. This
policy contains the required permissions for the common use cases described above. It might be
necessary to add inline policies to your execution role for the special use cases outlined below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Supported resource-level permissions for AWS Batch API actions

The term resource-level permissions refers to the ability to specify the resources that users are
allowed to perform actions on. AWS Batch has partial support for resource-level permissions. For
some AWS Batch actions, you can control when users are allowed to use those actions based on
conditions that must be met. You can also control based on the specific resources that users are
allowed to use. For example, you can grant users permissions to submit jobs, but only to a specific
job queue and only with a specific job definition.

The following list describes the AWS Batch API actions that currently support resource-level
permissions. The list also describes the supported resources, resource ARNs, and condition keys for
each action.

Important

If an AWS Batch API action isn't listed in this list, then it doesn't support resource-level
permissions. If an AWS Batch API action doesn't support resource-level permissions, you

Supported resource-level permissions 334

AWS Batch User Guide

can grant users permission to use the action. However, you must include a wildcard (*) for
the resource element of your policy statement.

Actions

CancelJob, CreateComputeEnvironment, CreateJobQueue, CreateSchedulingPolicy,
DeleteComputeEnvironment, DeleteJobQueue, DeleteSchedulingPolicy,
DeregisterJobDefinition, GetJobQueueSnapshot, ListTagsForResource, RegisterJobDefinition,
SubmitJob, TagResource, TerminateJob, UntagResource, UpdateComputeEnvironment,
UpdateSchedulingPolicy, UpdateJobQueue

CancelJob

Cancels a job in an AWS Batch queue.

Resource

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

CreateComputeEnvironment

Creates an AWS Batch compute environment.

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Condition keys

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

Supported resource-level permissions 335

https://docs.aws.amazon.com/batch/latest/APIReference/API_CancelJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

CreateJobQueue

Creates an AWS Batch job queue.

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Condition keys

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

DeleteComputeEnvironment

Deletes an AWS Batch compute environment.

Supported resource-level permissions 336

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateJobQueue.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DeleteComputeEnvironment.html

AWS Batch User Guide

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

CreateSchedulingPolicy

Creates an AWS Batch scheduling policy.

Resource

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Condition keys

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

DeleteJobQueue

Deletes the specified job queue. Deleting the job queue eventually deletes all of the jobs in the
queue. Jobs are deleted at a rate of about 16 jobs each second.

Resource

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Supported resource-level permissions 337

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateSchedulingPolicy.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DeleteJobQueue.html

AWS Batch User Guide

DeleteSchedulingPolicy

Deletes the specified scheduling policy.

Resource

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

DeregisterJobDefinition

Deregisters an AWS Batch job definition.

Resource

Job Definition

arn:aws:batch:region:account:job-definition/definition-name:revision

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

GetJobQueueSnapshot

Provides a list of the first 100 RUNNABLE jobs associated to a single job queue.

Resource

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

ListTagsForResource

Lists the tags for the specified resource.

Supported resource-level permissions 338

https://docs.aws.amazon.com/batch/latest/APIReference/API_DeleteSchedulingPolicy.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DeregisterJobDefinition.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_GetJobQueueSnapshot.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_TagResource.html

AWS Batch User Guide

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Definition

arn:aws:batch:region:account:job-definition/definition-name:revision

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Supported resource-level permissions 339

AWS Batch User Guide

RegisterJobDefinition

Registers an AWS Batch definition.

Resource

Job Definition

arn:aws:batch:region:account:job-definition/definition-name

Condition keys

batch:AWSLogsCreateGroup (Boolean)

When this parameter is true, the awslogs-group is created for the logs.

batch:AWSLogsGroup (String)

The awslogs group where the logs are located.

batch:AWSLogsRegion (String)

The Region where the logs are sent to.

batch:AWSLogsStreamPrefix (String)

The awslogs log stream prefix.

batch:Image (String)

The Docker image used to start a job.

batch:LogDriver (String)

The log driver used for the job.

batch:Privileged (Boolean)

When this parameter is true, the container for the job is given elevated permissions on
the host container instance.

batch:User (String)

The user name or numeric uid to use inside the container for the job.

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

Supported resource-level permissions 340

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html

AWS Batch User Guide

SubmitJob

Submits an AWS Batch job from a job definition.

Resource

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Definition

arn:aws:batch:region:account:job-definition/definition-name[:revision]

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Note

This key can only be used when the job definition
Amazon Resource Name (ARN) is in the format
arn:aws:batch:region:account_number:job-
definition/definition-name:revision.

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

TagResource

Tags the specified resource.

Supported resource-level permissions 341

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_TagResource.html

AWS Batch User Guide

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Definition

arn:aws:batch:region:account:job-definition/definition-name:revision

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Supported resource-level permissions 342

AWS Batch User Guide

Condition keys

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

TerminateJob

Terminates a job in an AWS Batch job queue.

Resource

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

UntagResource

Untags the resource that's specified.

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job

arn:aws:batch:region:account:job/jobId

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Supported resource-level permissions 343

https://docs.aws.amazon.com/batch/latest/APIReference/API_TerminateJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UntagResource.html

AWS Batch User Guide

Job Definition

arn:aws:batch:region:account:job-definition/definition-name:revision

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Condition keys

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

UpdateComputeEnvironment

Updates an AWS Batch compute environment.

Resource

Compute Environment

arn:aws:batch:region:account:compute-environment/compute-environment-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Supported resource-level permissions 344

https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateComputeEnvironment.html

AWS Batch User Guide

UpdateJobQueue

Updates a job queue.

Resource

Job Queue

arn:aws:batch:region:account:job-queue/queue-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

UpdateSchedulingPolicy

Updates a scheduling policy.

Resource

Scheduling Policy

arn:aws:batch:region:account:scheduling-policy/scheduling-policy-name

Condition keys

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

Condition keys for AWS Batch API actions

AWS Batch defines the following condition keys that are used in the Condition element of an IAM
policy. You can use these keys to refine the conditions that the policy statement applies to. To view
the global condition keys that are available to all services, see available global condition keys in the
IAM User Guide.

Supported resource-level permissions 345

https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateJobQueue.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateSchedulingPolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

AWS Batch User Guide

batch:AWSLogsCreateGroup (Boolean)

When this parameter is true, the awslogs-group is created for the logs.

batch:AWSLogsGroup (String)

The awslogs group where the logs are located.

batch:AWSLogsRegion (String)

The AWS Region where the logs are sent to.

batch:AWSLogsStreamPrefix (String)

The awslogs log stream prefix.

batch:Image (String)

The Docker image used to start a job.

batch:LogDriver (String)

The log driver used for the job.

batch:Privileged (Boolean)

When this parameter is true, the container for the job is given elevated permissions on the host
container instance (similar to the root user).

aws:ResourceTag/${TagKey} (String)

Filters actions based on the tags that are associated with the resource.

aws:RequestTag/${TagKey} (String)

Filters actions based on the tags that are passed in the request.

batch:ShareIdentifier (String)

Filters actions based on the shareIdentifier parameter sent to SubmitJob.

aws:TagKeys (String)

Filters actions based on the tag keys that are passed in the request.

batch:User (String)

The user name or numeric user ID (uid) to use inside the container for the job.

Supported resource-level permissions 346

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html

AWS Batch User Guide

Tutorial: Create the IAM execution role

If your account doesn't already have an IAM execution role, use the following steps to create the
role.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. For Trusted entity type, choose AWS service.

5. For Service or use case, choose EC2. Then choose EC2 again.

6. Choose Next.

7. For Permissions policies, search for AmazonECSTaskExecutionRolePolicy.

8. Choose the check box to the left of the AmazonECSTaskExecutionRolePolicy policy, and then
choose Next.

9. For Role Name, enter ecsTaskExecutionRole and then choose Create role.

Tutorial: Check the IAM execution role

Use the following procedure to check that your account already has the IAM execution role and
attach the managed IAM policy, if needed.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsTaskExecutionRole. If you can't find the role, see Tutorial:
Create the IAM execution role. If you found the role, choose the role to view the attached
policies.

4. On the Permissions tab, verify that the AmazonECSTaskExecutionRolePolicy managed policy
is attached to the role. If the policy is attached, your execution role is properly configured. If
not, follow the substeps below to attach the policy.

a. Choose Add permissions, then choose Attach policies.

b. Search for AmazonECSTaskExecutionRolePolicy.

c. Check the box to the left of the AmazonECSTaskExecutionRolePolicy policy and choose
Attach policies.

5. Choose Trust relationships.

Tutorial: Create the IAM execution role 347

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Batch User Guide

6. Verify that the trust relationship contains the following policy. If the trust relationship matches
the policy below, the role is configured correctly. If the trust relationship does not match,
choose Edit trust policy, enter the following, and choose Update policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Use service-linked roles for AWS Batch

AWS Batch uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked
role is a unique type of IAM role that is linked directly to AWS Batch. Service-linked roles are
predefined by AWS Batch and include all the permissions that the service requires to call other
AWS services on your behalf.

A service-linked role makes setting up AWS Batch easier because you don’t have to manually add
the necessary permissions. AWS Batch defines the permissions of its service-linked roles, and unless
defined otherwise, only AWS Batch can assume its roles. The defined permissions include the trust
policy and the permissions policy, and that permissions policy cannot be attached to any other IAM
entity.

Note

Do one of the following to specify a service role for an AWS Batch compute environment.

• Use an empty string for the service role. This lets AWS Batch create the service role.

• Specify the service role in the following format:
arn:aws:iam::account_number:role/aws-service-role/
batch.amazonaws.com/AWSServiceRoleForBatch.

Use service-linked roles 348

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Batch User Guide

For more information, see Incorrect role name or ARN in the AWS Batch User Guide.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS Batch resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS Batch

AWS Batch uses the service-linked role named AWSServiceRoleForBatch. The
AWSServiceRoleForBatch role allows AWS Batch to create and manage AWS resources on your
behalf.

The AWSServiceRoleForBatch service-linked role trusts the batch.amazonaws.com service
principal to assume the role.

The IAM policy named BatchServiceRolePolicy allows AWS Batch to complete the following actions
on specific resources:

• autoscaling – Allows AWS Batch to create and manage Amazon EC2 Auto Scaling resources.
AWS Batch creates and manages Amazon EC2 Auto Scaling groups for most compute
environments.

• ec2 – Allows AWS Batch to control the lifecycle of Amazon EC2 instances as well as create and
manage launch templates and tags. AWS Batch creates and manages EC2 Spot Fleet requests for
some EC2 Spot compute environments.

• ecs - Allows AWS Batch to create and managed Amazon ECS clusters, task-definitions and tasks
for job execution.

• eks - Allows AWS Batch to describe the Amazon EKS cluster resource for validations.

• iam - Allows AWS Batch to validate and pass roles provided by owner to Amazon EC2, Amazon
EC2 Auto Scaling and Amazon ECS.

• logs – Allows AWS Batch to create and manage log groups and log streams for AWS Batch jobs.

Use service-linked roles 349

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Batch User Guide

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for AWS Batch

You don't need to manually create a service-linked role. When you CreateComputeEnvironment
in the AWS Management Console, the AWS CLI, or the AWS API, and don't specify a value for the
serviceRole parameter, AWS Batch creates the service-linked role for you.

Important

This service-linked role can appear in your account if you completed an action in another
service that uses the features supported by this role. Also, if you were using the AWS Batch
service before March 10, 2021, when it began supporting service-linked roles, then AWS
Batch created the AWSServiceRoleForBatch role in your account. To learn more, see A New
Role Appeared in My IAM Account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you CreateComputeEnvironment, AWS Batch creates the
service-linked role for you again.

Editing a service-linked role for AWS Batch

With AWS Batch, you can't edit the AWSServiceRoleForBatch service-linked role. After you create a
service-linked role, you can't change the name of the role because various entities might reference
the role. However, you can edit the description of the role using IAM. For more information, see
Editing a Service-Linked Role in the IAM User Guide.

To allow an IAM entity to edit the description of the AWSServiceRoleForBatch service-linked
role

Add the following statement to the permissions policy. This allows the IAM entity to edit the
description of a service-linked role.

{
 "Effect": "Allow",
 "Action": [

Use service-linked roles 350

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Batch User Guide

 "iam:UpdateRoleDescription"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/batch.amazonaws.com/
AWSServiceRoleForBatch",
 "Condition": {"StringLike": {"iam:AWSServiceName": "batch.amazonaws.com"}}
}

Deleting a service-linked role for AWS Batch

We recommend, if you no longer need to use a feature or service that requires a service-linked role,
you delete that role. That way, you don’t have an unused entity that's not actively monitored or
maintained. However, you must clean up the resources for your service-linked role before you can
manually delete it.

To allow an IAM entity to delete the AWSServiceRoleForBatch service-linked role

Add the following statement to the permissions policy. This allows the IAM entity to delete a
service-linked role.

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/batch.amazonaws.com/
AWSServiceRoleForBatch",
 "Condition": {"StringLike": {"iam:AWSServiceName": "batch.amazonaws.com"}}
}

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and delete all of the AWS Batch compute environments that use the role in all AWS
Regions in a single partition.

To check whether the service-linked role has an active session

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then the AWSServiceRoleForBatch name (not the
check box).

Use service-linked roles 351

https://console.aws.amazon.com/iam/

AWS Batch User Guide

3. On the Summary page, choose Access Advisor and review recent activity for the service-linked
role.

Note

If you don't know whether AWS Batch is using the AWSServiceRoleForBatch role, you
can try to delete the role. If the service is using the role, then the role will fail to delete.
You can view the Regions where the role is being used. If the role is being used, then
you must wait for the session to end before you can delete the role. You can't revoke
the session for a service-linked role.

To remove AWS Batch resources used by the AWSServiceRoleForBatch service-linked role

You must delete all AWS Batch compute environments that use the AWSServiceRoleForBatch role
in all AWS Regions before you can delete the AWSServiceRoleForBatch role.

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the Region to use.

3. In the navigation pane, choose Compute environments.

4. Select the compute environment.

5. Choose Disable. Wait for the State to change to DISABLED.

6. Select the compute environment.

7. Choose Delete. Confirm that you want to delete the compute environment by choosing Delete
compute environment.

8. Repeat steps 1–7 for all compute environments that use the service-linked role in all Regions.

Deleting a service-linked role in IAM (Console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then select the check box next to
AWSServiceRoleForBatch, not the name or row itself.

Use service-linked roles 352

https://console.aws.amazon.com/batch/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Batch User Guide

3. Choose Delete role.

4. In the confirmation dialog box, review the service last accessed data, which shows when each
of the selected roles last accessed an AWS service. This helps you to confirm whether the role
is currently active. If you want to proceed, choose Yes, Delete to submit the service-linked role
for deletion.

5. Watch the IAM console notifications to monitor the progress of the service-linked role
deletion. Because the IAM service-linked role deletion is asynchronous, after you submit the
role for deletion, the deletion task can succeed or fail.

• If the task succeeds, then the role is removed from the list and a notification of success
appears at the top of the page.

• If the task fails, you can choose View details or View Resources from the notifications to
learn why the deletion failed. If the deletion fails because the role is using the service's
resources, then the notification includes a list of resources, if the service returns that
information. You can then clean up the resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up
the five resources and submit the role for deletion again, the deletion fails and
the service reports the one remaining resource. A service might return all of the
resources, a few of them, or it might not report any resources.

• If the task fails and the notification does not include a list of resources, then the service
might not return that information. To learn how to clean up the resources for that service,
see AWS services that work with IAM. Find your service in the table, and choose the Yes link
to view the service-linked role documentation for that service.

Deleting a service-linked role in IAM (AWS CLI)

You can use IAM commands from the AWS Command Line Interface to delete a service-linked role.

Use service-linked roles 353

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-review-before-delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Batch User Guide

To delete a service-linked role (CLI)

1. Because a service-linked role can't be deleted if it's being used or has associated resources, you
must submit a deletion request. That request can be denied if these conditions aren't met. You
must capture the deletion-task-id from the response to check the status of the deletion
task. Enter the following command to submit a service-linked role deletion request:

$ aws iam delete-service-linked-role --role-name AWSServiceRoleForBatch

2. Use the following command to check the status of the deletion task:

$ aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-
id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.
If the deletion fails because the role is using the service's resources, then the notification
includes a list of resources, if the service returns that information. You can then clean up the
resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up the five
resources and submit the role for deletion again, the deletion fails and the service
reports the one remaining resource. A service might return all of the resources, a few
of them. Or, it might not report any resources. To learn how to clean up the resources
for a service that doesn't report any resources, see AWS services that work with IAM.
Find your service in the table, and choose the Yes link to view the service-linked role
documentation for that service.

Deleting a service-linked role in IAM (AWSAPI)

You can use the IAM API to delete a service-linked role.

Use service-linked roles 354

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-review-before-delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-review-before-delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Batch User Guide

To delete a service-linked role (API)

1. To submit a deletion request for a service-linked roll, call DeleteServiceLinkedRole. In the
request, specify the AWSServiceRoleForBatch role name.

Because a service-linked role cannot be deleted if it is being used or has associated resources,
you must submit a deletion request. That request can be denied if these conditions are not
met. You must capture the DeletionTaskId from the response to check the status of the
deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request,
specify the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot.
If the deletion fails because the role is using the service's resources, then the notification
includes a list of resources, if the service returns that information. You can then clean up the
resources and submit the deletion again.

Note

You might have to repeat this process several times, depending on the information
that the service returns. For example, your service-linked role might use six resources
and your service might return information about five of them. If you clean up the five
resources and submit the role for deletion again, the deletion fails and the service
reports the one remaining resource. A service might return all of the resources, a few
of them, or it might not report any resources. To learn how to clean up the resources
for a service that does not report any resources, see AWS services that work with IAM.
Find your service in the table, and choose the Yes link to view the service-linked role
documentation for that service.

Supported Regions for AWS Batch service-linked roles

AWS Batch supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Batch endpoints.

Use service-linked roles 355

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-review-before-delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-review-before-delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/general/latest/gr/batch.html#batch_region

AWS Batch User Guide

Amazon ECS instance role

AWS Batch compute environments are populated with Amazon ECS container instances. They run
the Amazon ECS container agent locally. The Amazon ECS container agent makes calls to various
AWS API operations on your behalf. Therefore, container instances that run the agent require
an IAM policy and role for these services to recognize that the agent belongs to you. You must
create an IAM role and an instance profile for the container instances to use when they're launched.
Otherwise, you can't create a compute environment and launch container instances into it. This
requirement applies to container instances launched with or without the Amazon ECS optimized
AMI provided by Amazon. For more information, see Amazon ECS instance role in the Amazon
Elastic Container Service Developer Guide.

Topics

• Tutorial: Check your account's Amazon ECS instance role

Tutorial: Check your account's Amazon ECS instance role

The Amazon ECS instance role and instance profile are automatically created for you in the console
first-run experience. However, you can follow these steps to check if your account already has the
Amazon ECS instance role and instance profile. The following steps also cover how to attach the
managed IAM policy.

Tutorial: Check for the ecsInstanceRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Search the list of roles for ecsInstanceRole. If the role doesn't exist, use the following steps
to create the role.

a. Choose Create Role.

b. For Trusted entity type, choose AWS service.

c. For Common use cases, choose EC2.

d. Choose Next.

e. For Permissions policies, search for AmazonEC2ContainerServiceforEC2Role.

f. Choose the check box next to AmazonEC2ContainerServiceforEC2Role, then choose
Next.

Amazon ECS instance role 356

https://console.aws.amazon.com/iam/

AWS Batch User Guide

g. For Role Name, type ecsInstanceRole and choose Create Role.

Note

If you use the AWS Management Console to create a role for Amazon EC2, the
console creates an instance profile with the same name as the role.

Alternatively, you can use the AWS CLI to create the ecsInstanceRole IAM role. The following
example creates an IAM role with a trust policy and an AWS managed policy.

Tutorial: Create an IAM role and instance profile (AWS CLI)

1. Create the following trust policy and save it in a text file that's named ecsInstanceRole-
role-trust-policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}

2. Use the create-role command to create the ecsInstanceRole role. Specify the trust policy
file location in the assume-role-policy-document parameter.

$ aws iam create-role \
 --role-name ecsInstanceRole \
 --assume-role-policy-document file://ecsInstanceRole-role-trust-policy.json

The following is an example response.

{
 "Role": {
 "Path": "/",
 "RoleName: "ecsInstanceRole",

Amazon ECS instance role 357

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS Batch User Guide

 "RoleId": "AROAT46P5RDIY4EXAMPLE",
 "Arn": "arn:aws:iam::123456789012:role/ecsInstanceRole".
 "CreateDate": "2022-12-12T23:46:37.247Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service: "ec2.amazonaws.com"
 }
 "Action": "sts:AssumeRole",
 }
]
 }
 }

3. Use the create-instance-profile command to create an instance profile that's named
ecsInstanceRole.

Note

You need to create roles and instance profiles as separate actions in the AWS CLI and
AWS API.

$ aws iam create-instance-profile --instance-profile-name ecsInstanceRole

The following is an example response.

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "ecsInstanceRole",
 "InstanceProfileId": "AIPAT46P5RDITREXAMPLE",
 "Arn": "arn:aws:iam::123456789012:instance-profile/ecsInstanceRole",
 "CreateDate": "2022-06-30T23:53:34.093Z",
 "Roles": [], }
}

Amazon ECS instance role 358

https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html

AWS Batch User Guide

4. Use the add-role-to-instance-profile command to add the ecsInstanceRole role to the
ecsInstanceRole instance profile.

aws iam add-role-to-instance-profile \
 --role-name ecsInstanceRole --instance-profile-name ecsInstanceRole

5. Use the attach-role-policy command to attach the
AmazonEC2ContainerServiceforEC2Role AWS managed policy to the
ecsInstanceRole role.

$ aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEC2ContainerServiceforEC2Role \
 --role-name ecsInstanceRole

Amazon EC2 spot fleet role

If you create a managed compute environment that uses Amazon EC2 Spot Fleet Instances,
you must create the AmazonEC2SpotFleetTaggingRole policy. This policy grants
Spot Fleet permission to launch, tag, and terminate instances on your behalf. Specify the
role in your Spot Fleet request. You must also have the AWSServiceRoleForEC2Spot and
AWSServiceRoleForEC2SpotFleet service-linked roles for Amazon EC2 Spot and Spot Fleet. Use
the following instruction to create all of these roles. For more information, see Using Service-
Linked Roles and Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Topics

• Tutorial: Create Amazon EC2 spot fleet roles in the AWS Management Console

• Tutorial: Create Amazon EC2 spot fleet roles with the AWS CLI

Tutorial: Create Amazon EC2 spot fleet roles in the AWS Management Console

To create the AmazonEC2SpotFleetTaggingRole IAM service-linked role for Amazon EC2
Spot Fleet

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. For Access Management, choose Roles,

3. For Roles, choose Create role.

Amazon EC2 spot fleet role 359

https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://console.aws.amazon.com/iam/

AWS Batch User Guide

4. From Select trusted entity for Trusted entity type, choose AWS service.

5. For Use cases for other AWS services, choose EC2 and then choose EC2 - Spot Fleet Tagging.

6. Choose Next.

7. From Permissions policies for Policy name, verify AmazonEC2SpotFleetTaggingRole.

8. Choose Next.

9. For Name, review, and create:

a. For Role name, enter a name to identify the role.

b. For Description, enter a short explanation for the policy.

c. (Optional) For Step 1: Select trusted entities, choose Edit to modify the code.

d. (Optional) For Step 2: Add permissions, choose Edit to modify the code.

e. (Optional) For Add tags, choose Add tag to add tags to the resource.

f. Choose Create role.

Note

In the past, there were two managed policies for the Amazon EC2 Spot Fleet role.

• AmazonEC2SpotFleetRole: This is the original managed policy for the Spot Fleet role.
However, we no longer recommend that you use it with AWS Batch. This policy doesn't
support Spot Instance tagging in compute environments, which is required to use
the AWSServiceRoleForBatch service-linked role. If you previously created a Spot
Fleet role with this policy, apply the new recommended policy to that role. For more
information, see Spot Instances not tagged on creation.

• AmazonEC2SpotFleetTaggingRole: This role provides all of the necessary permissions
to tag Amazon EC2 Spot Instances. Use this role to allow Spot Instance tagging on your
AWS Batch compute environments.

Tutorial: Create Amazon EC2 spot fleet roles with the AWS CLI

To create the AmazonEC2SpotFleetTaggingRole IAM role for your Spot Fleet compute
environments

1. Run the following command with the AWS CLI.

Amazon EC2 spot fleet role 360

AWS Batch User Guide

$ aws iam create-role --role-name AmazonEC2SpotFleetTaggingRole \
 --assume-role-policy-document '{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"",
 "Effect":"Allow",
 "Principal": {
 "Service":"spotfleet.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
 }'

2. To attach the AmazonEC2SpotFleetTaggingRole managed IAM policy to your
AmazonEC2SpotFleetTaggingRole role, run the following command with the AWS CLI.

$ aws iam attach-role-policy \
 --policy-arn \
 arn:aws:iam::aws:policy/service-role/AmazonEC2SpotFleetTaggingRole \
 --role-name \
 AmazonEC2SpotFleetTaggingRole

To create the AWSServiceRoleForEC2Spot IAM service-linked role for Amazon EC2 Spot

Note

If the AWSServiceRoleForEC2Spot IAM service-linked role already exists, you see an
error message that resembles the following.

An error occurred (InvalidInput) when calling the CreateServiceLinkedRole
 operation:
Service role name AWSServiceRoleForEC2Spot has been taken in this account,
 please try a different suffix.

• Run the following command with the AWS CLI.

Amazon EC2 spot fleet role 361

AWS Batch User Guide

$ aws iam create-service-linked-role --aws-service-name spot.amazonaws.com

To create the AWSServiceRoleForEC2SpotFleet IAM service-linked role for Amazon EC2
Spot Fleet

Note

If the AWSServiceRoleForEC2SpotFleet IAM service-linked role already exists, you see
an error message that resembles the following.

An error occurred (InvalidInput) when calling the CreateServiceLinkedRole
 operation:
Service role name AWSServiceRoleForEC2SpotFleet has been taken in this account,
 please try a different suffix.

• Run the following command with the AWS CLI.

$ aws iam create-service-linked-role --aws-service-name spotfleet.amazonaws.com

EventBridge IAM role

Amazon EventBridge delivers a near-real time stream of system events that describe changes
in AWS resources. AWS Batch jobs are available as EventBridge targets. Using simple rules that
you can quickly set up, you can match events and submit AWS Batch jobs in response to them.
Before you can submit AWS Batch jobs with EventBridge rules and targets, EventBridge must have
permissions to run AWS Batch jobs on your behalf.

Note

When you create a rule in the EventBridge console that specifies an AWS Batch queue
as a target, you can create this role. For an example walkthrough, see AWS Batch jobs as
EventBridge targets. You can create the EventBridge role manually using the IAM console.
For instructions, see Creating a role using custom trust policies (console) in the IAM User
Guide.

EventBridge IAM role 362

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

AWS Batch User Guide

The trust relationship for your EventBridge IAM role must provide the events.amazonaws.com
service principal the ability to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Make sure that the policy that's attached to your EventBridge IAM role allows batch:SubmitJob
permissions on your resources. In the following example, AWS Batch provides the
AWSBatchServiceEventTargetRole managed policy to provide these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob"
],
 "Resource": "*"
 }
]
}

Create a virtual private cloud

Compute resources in your compute environments need external network access to communicate
with AWS Batch and Amazon ECS service endpoints. However, you might have jobs that you want
to run in private subnets. To have the flexibility to run jobs in either a public or private subnet,
create a VPC that has both public and private subnets.

Create a virtual private cloud 363

AWS Batch User Guide

You can use Amazon Virtual Private Cloud (Amazon VPC) to launch AWS resources into a virtual
network that you define. This topic provides a link to the Amazon VPC wizard and a list of the
options to select.

Create a VPC

For information about how to create an Amazon VPC, see Create a VPC only in the Amazon VPC
User Guide and use the following table to determine what options to select.

Option Value

Resources to create VPC only

Name Optionally provide a name for
your VPC.

IPv4 CIDR block IPv4 CIDR manual input

The CIDR block size must
have a size between /16
and /28.

IPv6 CIDR block No IPv6 CIDR block

Tenancy Default

For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC User Guide.

Next steps

After you have created your VPC, consider the following next steps:

• Create security groups for your public and private resources if they require inbound network
access. For more information, see Work with security groups in the Amazon VPC User Guide.

• Create an AWS Batch managed compute environment that launches compute resources into
your new VPC. For more information, see Create a compute environment. If you use the compute
environment creation wizard in the AWS Batch console, you can specify the VPC that you just
created and the public or private subnets that you want to launch your instances into.

Create a VPC 364

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#create-vpc-vpc-only
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#working-with-security-groups

AWS Batch User Guide

• Create an AWS Batch job queue that's mapped to your new compute environment. For more
information, see Create a job queue.

• Create a job definition to run your jobs with. For more information, see Create a single-node job
definition .

• Submit a job with your job definition to your new job queue. This job lands in the compute
environment that you created with your new VPC and subnets. For more information, see
Tutorial: submit a job.

Use an interface endpoint to Access AWS Batch

You can use AWS PrivateLink to create a private connection between your VPC and AWS Batch. You
can access AWS Batch as if it were in your VPC, without the use of an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to access AWS Batch.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for AWS Batch.

For more information, see Interface VPC endpoints in the AWS PrivateLink Guide.

Considerations for AWS Batch

Before you set up an interface endpoint for AWS Batch, review Interface endpoint properties and
limitations in the AWS PrivateLink Guide.

AWS Batch supports making calls to all of its API actions through the interface endpoint.

Before you set up interface VPC endpoints for AWS Batch, be aware of the following
considerations:

• Jobs using Fargate resources launch type don't require the interface VPC endpoints for Amazon
ECS, but you might need interface VPC endpoints for AWS Batch, Amazon ECR, Secrets Manager,
or Amazon CloudWatch Logs described in the following points.

• To run jobs, you must create the interface VPC endpoints for Amazon ECS. For more
information, see Interface VPC Endpoints (AWS PrivateLink) in the Amazon Elastic Container
Service Developer Guide.

VPC endpoints 365

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html

AWS Batch User Guide

• To allow your jobs to pull private images from Amazon ECR, you must create the interface
VPC endpoints for Amazon ECR. For more information, see Interface VPC Endpoints (AWS
PrivateLink) in the Amazon Elastic Container Registry User Guide.

• To allow your jobs to pull sensitive data from Secrets Manager, you must create the interface
VPC endpoints for Secrets Manager. For more information, see Using Secrets Manager with
VPC Endpoints in the AWS Secrets Manager User Guide.

• If your VPC doesn't have an internet gateway and your jobs use the awslogs log driver to
send log information to CloudWatch Logs, you must create an interface VPC endpoint for
CloudWatch Logs. For more information, see Using CloudWatch Logs with Interface VPC
Endpoints in the Amazon CloudWatch Logs User Guide.

• Jobs using the EC2 resources require that the container instances that they're launched on to run
version 1.25.1 or later of the Amazon ECS container agent. For more information, see Amazon
ECS Linux container agent versions in the Amazon Elastic Container Service Developer Guide.

• VPC endpoints currently don't support cross-Region requests. Ensure that you create your
endpoint in the same Region where you plan to issue your API calls to AWS Batch.

• VPC endpoints only support Amazon-provided DNS through Amazon Route 53. If you want to
use your own DNS, you can use conditional DNS forwarding. For more information, see DHCP
Options Sets in the Amazon VPC User Guide.

• The security group attached to the VPC endpoint must allow incoming connections on port 443
from the private subnet of the VPC.

• AWS Batch does not support VPC interface endpoints in the following AWS Regions:

• Asia Pacific (Osaka) (ap-northeast-3)

• Asia Pacific (Jakarta) (ap-southeast-3)

Create an interface endpoint for AWS Batch

You can create an interface endpoint for AWS Batch using either the Amazon VPC console or the
AWS Command Line Interface (AWS CLI). For more information, see Create an interface endpoint in
the AWS PrivateLink Guide.

Create an interface endpoint for AWS Batch using the following service name:

com.amazonaws.region.batch

For example:

Create an interface endpoint 366

https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/vpc-endpoint-overview.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-versions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-versions.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint

AWS Batch User Guide

com.amazonaws.us-east-2.batch

In the aws-cn partition, the format is different:

cn.com.amazonaws.region.batch

For example:

cn.com.amazonaws.cn-northwest-1.batch

If you enable private DNS for the interface endpoint, you can make API requests to AWS Batch
using its default Regional DNS name. For example, batch.us-east-1.amazonaws.com.

For more information, see Access a service through an interface endpoint in the AWS PrivateLink
Guide.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to AWS Batch through the interface endpoint. To control the
access allowed to AWS Batch from your VPC, attach a custom endpoint policy to the interface
endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for AWS Batch actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed AWS Batch actions for all principals on all
resources.

Create an endpoint policy 367

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Batch User Guide

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob",
 "batch:ListJobs",
 "batch:DescribeJobs"
],
 "Resource":"*"
 }
]
}

Compliance validation for AWS Batch

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

Compliance validation 368

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/

AWS Batch User Guide

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Infrastructure security in AWS Batch

As a managed service, AWS Batch is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS Batch through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Infrastructure security 369

https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Batch User Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call these API operations from any network location, but AWS Batch does support
resource-based access policies, which can include restrictions based on the source IP address.
You can also use AWS Batch policies to control access from specific Amazon Virtual Private Cloud
(Amazon VPC) endpoints or specific VPCs. Effectively, this isolates network access to a given AWS
Batch resource from only the specific VPC within the AWS network.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS Batch gives another service to the
resource. If the aws:SourceArn value does not contain the account ID, such as an Amazon S3
bucket ARN, you must use both global condition context keys to limit permissions. If you use
both global condition context keys and the aws:SourceArn value contains the account ID, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same
account ID when used in the same policy statement. Use aws:SourceArn if you want only one
resource to be associated with the cross-service access. Use aws:SourceAccount if you want to
allow any resource in that account to be associated with the cross-service use.

The value of aws:SourceArn must be the resource that AWS Batch stores.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

Cross-service confused deputy prevention 370

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS Batch User Guide

The following examples shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS Batch to prevent the confused deputy problem.

Example: Role for accessing only one compute environment

The following role can only be used to access one compute environment. The job name must be
specified as * because the job queue can be associated with multiple compute environments.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "batch.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:batch:us-east-1:123456789012:compute-environment/testCE",
 "arn:aws:batch:us-east-1:123456789012:job/*"
]
 }
 }
 }
]
}

Example: Role for accessing multiple compute environments

The following role can be used to access multiple compute environments. The job name must be
specified as * because the job queue can be associated with multiple compute environments.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Example: Role for accessing only one compute environment 371

AWS Batch User Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "batch.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": [
 "arn:aws:batch:us-east-1:123456789012:compute-environment/*",
 "arn:aws:batch:us-east-1:123456789012:job/*"
]
 }
 }
 }
]
}

Logging AWS Batch API calls with AWS CloudTrail

AWS Batch is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in AWS Batch. CloudTrail captures all API calls for AWS Batch as
events. The calls captured include calls from the AWS Batch console and code calls to the AWS
Batch API operations. If you create a trail, you can enable continuous delivery of CloudTrail events
to an Amazon S3 bucket, including events for AWS Batch. If you don't configure a trail, you can
still view the most recent events in the CloudTrail console in Event history. Using the information
collected by CloudTrail, you can determine the request that was made to AWS Batch, the IP address
from which the request was made, who made the request, when it was made, and additional
details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Topics

• AWS Batch information in CloudTrail

• Reference: Understanding AWS Batch log file entries

CloudTrail 372

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Batch User Guide

AWS Batch information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS Batch, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS Batch, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All AWS Batch actions are logged by CloudTrail and are documented in the https://
docs.aws.amazon.com/batch/latest/APIReference/. For example, calls to the SubmitJob,
ListJobs and DescribeJobs sections generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Reference: Understanding AWS Batch log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single

AWS Batch information in CloudTrail 373

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ListJobs.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Batch User Guide

request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
CreateComputeEnvironment action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:admin",
 "arn": "arn:aws:sts::012345678910:assumed-role/Admin/admin",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2017-12-20T00:48:46Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/Admin",
 "accountId": "012345678910",
 "userName": "Admin"
 }
 }
 },
 "eventTime": "2017-12-20T00:48:46Z",
 "eventSource": "batch.amazonaws.com",
 "eventName": "CreateComputeEnvironment",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.1",
 "userAgent": "aws-cli/1.11.167 Python/2.7.10 Darwin/16.7.0 botocore/1.7.25",
 "requestParameters": {
 "computeResources": {
 "subnets": [
 "subnet-5eda8e04"
],
 "tags": {
 "testBatchTags": "CLI testing CE"
 },

Reference: Understanding AWS Batch log file entries 374

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

 "desiredvCpus": 0,
 "minvCpus": 0,
 "instanceTypes": [
 "optimal"
],
 "securityGroupIds": [
 "sg-aba9e8db"
],
 "instanceRole": "ecsInstanceRole",
 "maxvCpus": 128,
 "type": "EC2"
 },
 "state": "ENABLED",
 "type": "MANAGED",
 "computeEnvironmentName": "Test"
 },
 "responseElements": {
 "computeEnvironmentName": "Test",
 "computeEnvironmentArn": "arn:aws:batch:us-east-1:012345678910:compute-environment/
Test"
 },
 "requestID": "890b8639-e51f-11e7-b038-EXAMPLE",
 "eventID": "874f89fa-70fc-4798-bc00-EXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "012345678910"
}

Troubleshoot AWS Batch IAM

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS Batch and IAM.

Topics

• I am not authorized to perform an action in AWS Batch

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS Batch resources

Troubleshoot AWS Batch IAM 375

AWS Batch User Guide

I am not authorized to perform an action in AWS Batch

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
batch:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 batch:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the batch:GetWidget action. For more information about
granting permissions to pass a role, see Granting a user permissions to pass a role to an AWS
service.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS Batch.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS Batch. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform an action in AWS Batch 376

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS Batch User Guide

I want to allow people outside of my AWS account to access my AWS
Batch resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS Batch supports these features, see How AWS Batch works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

I want to allow people outside of my AWS account to access my AWS Batch resources 377

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Batch User Guide

AWS Step Functions

You can use the AWS Batch console to view details about your Step Functions state machines and
the functions that they use.

Sections

• Tutorial: View state machine details

• Tutorial: Edit a state machine

• Tutorial: Run a state machine

Tutorial: View state machine details

The AWS Batch console displays a list of your state machines in the current AWS Region that
contain at least one workflow step that submits a AWS Batch job.

Choose a state machine to view a graphical representation of the workflow. Steps highlighted in
blue represent AWS Batch jobs. Use the graph controls to zoom in, zoom out, and center the graph.

Note

When a AWS Batch job is dynamically referenced with JsonPath in the state machine
definition, the function details cannot be shown in the AWS Batch console. Instead, the job
name is listed as a Dynamic reference, and the corresponding steps in the graph are grayed
out.

To view state machine details

1. Open the AWS Batch console Workflow orchestration powered by Step Functions page.

2. Choose a state machine.
<result>

The AWS Batch console opens the Details page.
</result>

For more information, see Step Functions in the AWS Step Functions Developer Guide.

Tutorial: View state machine details 378

https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-paths.html
https://console.aws.amazon.com/batch/home#stepfunctions
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

AWS Batch User Guide

Tutorial: Edit a state machine

When you want to edit a state machine, AWS Batch opens the Edit definition page of the Step
Functions console.

To edit a state machine

1. Open the AWS Batch console Workflow orchestration powered by Step Functions page.

2. Choose a state machine.

3. Choose Edit.

The Step Functions console opens the Edit definition page.

4. Edit the state machine and choose Save.

For more information about editing state machines, see Step Functions state machine language in
the AWS Step Functions Developer Guide.

Tutorial: Run a state machine

When you want to run a state machine, AWS Batch opens the New execution page of the Step
Functions console.

To run a state machine

1. Open the AWS Batch console Workflow orchestration powered by Step Functions page.

2. Choose a state machine.

3. Choose Execute.

The Step Functions console opens the New execution page.

4. (Optional) Edit the state machine and choose Start execution.

For more information about running state machines, see Step Functions state machine execution
concepts in the AWS Step Functions Developer Guide.

Tutorial: Edit a state machine 379

https://console.aws.amazon.com/batch/home#stepfunctions
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://console.aws.amazon.com/batch/home#stepfunctions
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-state-machine-executions.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-state-machine-executions.html

AWS Batch User Guide

AWS Batch event stream for Amazon EventBridge

You can use the AWS Batch event stream for Amazon EventBridge to receive near real-time
notifications regarding the current state of jobs in your job queues.

You can use EventBridge to gain further insights about your AWS Batch service. More specifically,
you can use it to check the progress of jobs, build AWS Batch custom workflows, generate usage
reports or metrics, or build your own dashboards. With AWS Batch and EventBridge, you don't
need scheduling and monitoring code that continuously polls AWS Batch for job status changes.
Instead, you can handle AWS Batch job state changes asynchronously using a variety of Amazon
EventBridge targets. These include AWS Lambda, Amazon Simple Queue Service, Amazon Simple
Notification Service, or Amazon Kinesis Data Streams.

Events from the AWS Batch event stream are ensured to be delivered at least one time. In the event
that duplicate events are sent, the event provides enough information to identify duplicates. That
way, you can compare the time stamp of the event and the job status.

AWS Batch jobs are available as EventBridge targets. Using simple rules, you can match events and
submit AWS Batch jobs in response to them. For more information, see What is EventBridge? in the
Amazon EventBridge User Guide. You can also use EventBridge to schedule automated actions that
self-trigger at certain times using cron or rate expressions. For more information, see Creating an
Amazon EventBridge rule that runs on a schedule in the Amazon EventBridge User Guide. For an
example walkthrough, see AWS Batch jobs as EventBridge targets. For information about using the
EventBridge Scheduler, see Setting up Amazon EventBridge Scheduler in the Amazon EventBridge
User Guide.

Topics

• AWS Batch events

• Tutorial: Use AWS user notifications with AWS Batch

• AWS Batch jobs as EventBridge targets

• Tutorial: Listen for AWS Batch job events using EventBridge

• Tutorial: Sending Amazon Simple Notification Service alerts for failed job events

380

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html

AWS Batch User Guide

AWS Batch events

AWS Batch sends job status change events to EventBridge. AWS Batch tracks the state of your
jobs. If a previously submitted job's status changes, an event is invoked. For example, if a job in
the RUNNING status moves to the FAILED status. These events are classified as job state change
events.

Note

AWS Batch might add other event types, sources, and details in the future. If you're
programmatically deserializing event JSON data, make sure that your application is
prepared to handle unknown properties. This is to avoid issues if and when these additional
properties are added.

Topics

• Resource: Job state change events

• Resource: Job queue blocked events

Resource: Job state change events

Anytime that an existing (previously submitted) job changes states, an event is created. For more
information about AWS Batch job states, see Job states.

Note

Events aren't created for the initial job submission.

Example Job State Change Event

Job state change events are delivered in the following format. The detail section resembles the
JobDetail object that's returned from a DescribeJobs API operation in the AWS Batch API Reference.
For more information about EventBridge parameters, see Events and Event Patterns in the Amazon
EventBridge User Guide.

{
 "version": "0",

AWS Batch events 381

https://docs.aws.amazon.com/batch/latest/APIReference/API_JobDetail.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

AWS Batch User Guide

 "id": "c8f9c4b5-76e5-d76a-f980-7011e206042b",
 "detail-type": "Batch Job State Change",
 "source": "aws.batch",
 "account": "123456789012",
 "time": "2022-01-11T23:36:40Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:batch:us-east-1:123456789012:job/4c7599ae-0a82-49aa-ba5a-4727fcce14a8"
],
 "detail": {
 "jobArn": "arn:aws:batch:us-east-1:123456789012:job/4c7599ae-0a82-49aa-
ba5a-4727fcce14a8",
 "jobName": "event-test",
 "jobId": "4c7599ae-0a82-49aa-ba5a-4727fcce14a8",
 "jobQueue": "arn:aws:batch:us-east-1:123456789012:job-queue/
PexjEHappyPathCanary2JobQueue",
 "status": "RUNNABLE",
 "attempts": [],
 "createdAt": 1641944200058,
 "retryStrategy": {
 "attempts": 2,
 "evaluateOnExit": []
 },
 "dependsOn": [],
 "jobDefinition": "arn:aws:batch:us-east-1:123456789012:job-definition/first-
run-job-definition:1",
 "parameters": {},
 "container": {
 "image": "137112412989.dkr.ecr.us-east-1.amazonaws.com/amazonlinux:latest",
 "command": [
 "sleep",
 "600"
],
 "volumes": [],
 "environment": [],
 "mountPoints": [],
 "ulimits": [],
 "networkInterfaces": [],
 "resourceRequirements": [
 {
 "value": "2",
 "type": "VCPU"
 }, {
 "value": "256",

Resource: Job state change events 382

AWS Batch User Guide

 "type": "MEMORY"
 }
],
 "secrets": []
 },
 "tags": {
 "resourceArn": "arn:aws:batch:us-
east-1:123456789012:job/4c7599ae-0a82-49aa-ba5a-4727fcce14a8"
 },
 "propagateTags": false,
 "platformCapabilities": []
 }
}

Resource: Job queue blocked events

Anytime that AWS Batch detects a job in the RUNNABLE state and thus blocking a queue, an
event is created in Amazon CloudWatch Events. For more information about supported blocked
queue causes, see Jobs stuck in a RUNNABLE status. The same reason is also available in the
statusReason field in the DescribeJobs API action.

Example Job State Change Event

Job state change events are delivered in the following format. The detail section resembles the
JobDetail object that's returned from a DescribeJobs API operation in the AWS Batch API Reference.
For more information about EventBridge parameters, see Events and Event Patterns in the Amazon
EventBridge User Guide.

{
 "version": "0",
 "id": "c8f9c4b5-76e5-d76a-f980-7011e206042b",
 "detail-type": "Batch Job Queue Blocked",
 "source": "aws.batch",
 "account": "123456789012",
 "time": "2022-01-11T23:36:40Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:batch:us-east-1:123456789012:job/4c7599ae-0a82-49aa-
ba5a-4727fcce14a8",
 "arn:aws:batch:us-east-1:123456789012:job-queue/PexjEHappyPathCanary2JobQueue"
],
 "detail": {

Resource: Job queue blocked events 383

https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_JobDetail.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

AWS Batch User Guide

 "jobArn": "arn:aws:batch:us-east-1:123456789012:job/4c7599ae-0a82-49aa-
ba5a-4727fcce14a8",
 "jobName": "event-test",
 "jobId": "4c7599ae-0a82-49aa-ba5a-4727fcce14a8",
 "jobQueue": "arn:aws:batch:us-east-1:123456789012:job-queue/
PexjEHappyPathCanary2JobQueue",
 "status": "RUNNABLE",
 "statusReason": "blocked-reason"
 "attempts": [],
 "createdAt": 1641944200058,
 "retryStrategy": {
 "attempts": 2,
 "evaluateOnExit": []
 },
 "dependsOn": [],
 "jobDefinition": "arn:aws:batch:us-east-1:123456789012:job-definition/first-
run-job-definition:1",
 "parameters": {},
 "container": {
 "image": "137112412989.dkr.ecr.us-east-1.amazonaws.com/amazonlinux:latest",
 "command": [
 "sleep",
 "600"
],
 "volumes": [],
 "environment": [],
 "mountPoints": [],
 "ulimits": [],
 "networkInterfaces": [],
 "resourceRequirements": [
 {
 "value": "2",
 "type": "VCPU"
 }, {
 "value": "256",
 "type": "MEMORY"
 }
],
 "secrets": []
 },
 "tags": {
 "resourceArn": "arn:aws:batch:us-
east-1:123456789012:job/4c7599ae-0a82-49aa-ba5a-4727fcce14a8"
 },

Resource: Job queue blocked events 384

AWS Batch User Guide

 "propagateTags": false,
 "platformCapabilities": []
 }
}

Tutorial: Use AWS user notifications with AWS Batch

You can use AWS User Notifications to set up delivery channels to get notified about AWS
Batch events. You receive a notification when an event matches a rule that you specify. You can
receive notifications for events through multiple channels, including email, AWS Chatbot chat
notifications, or AWS Console Mobile Application push notifications. You can also see notifications
in the Console Notifications Center. User Notifications supports aggregation, which can reduce the
number of notifications you receive during specific events.

To configure User Notifications in AWS Batch:

1. Open the AWS Batch console.

2. Choose Dashboard.

3. Choose Configure Notifications.

4. In AWS User Notifications, choose Create notification configuration.

For more information about how to configure and view user notifications, see Getting started with
AWS User Notifications.

AWS Batch jobs as EventBridge targets

Amazon EventBridge delivers a near real-time stream of system events that describe changes
in Amazon Web Services resources. Typically, AWS Batch on Amazon Elastic Container Service,
Amazon Elastic Kubernetes Service, and AWS Fargate jobs are available as EventBridge targets.
Using simple rules, you can match events and submit AWS Batch jobs in response to them. For
more information, see What is EventBridge? in the Amazon EventBridge User Guide.

You can also use EventBridge to schedule automated actions that are invoked at certain times
using cron or rate expressions. For more information, see Creating an Amazon EventBridge rule
that runs on a schedule in the Amazon EventBridge User Guide.

For information about how to create a rule that runs when an event matches an event pattern, see
Creating Amazon EventBridge rules that react to events in the Amazon EventBridge User Guide.

Tutorial: Use AWS user notifications with AWS Batch 385

https://docs.aws.amazon.com/notifications/latest/userguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/consolemobileapp/latest/userguide/what-is-consolemobileapp.html
https://console.aws.amazon.com/notifications/
https://console.aws.amazon.com/batch/home
https://docs.aws.amazon.com/notifications/latest/userguide/getting-started.html
https://docs.aws.amazon.com/notifications/latest/userguide/getting-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html

AWS Batch User Guide

Common use cases for AWS Batch jobs as an EventBridge target include the following use cases:

• A scheduled job occurs at regular time intervals. For example, a cron job occurs only during low-
usage hours when Amazon EC2 Spot Instances are less expensive.

• An AWS Batch job runs in response to an API operation that's logged in CloudTrail. For example,
a job is submitted whenever an object is uploaded to a specified Amazon S3 bucket. Each time
this happens, the EventBridge input transformer passes the bucket and key name of the object to
AWS Batch parameters.

Note

In this scenario, all of related AWS resources must be in the same Region. This includes
resources such as the Amazon S3 bucket, EventBridge rule, and CloudTrail logs.

Before you can submit AWS Batch jobs with EventBridge rules and targets, the EventBridge service
requires several permissions to run AWS Batch jobs. When you create a rule in the EventBridge
console that specifies an AWS Batch job as a target, you can also create this role. For more
information about the required service principal and IAM permissions for this role, see EventBridge
IAM role.

Topics

• Tutorial: Create a scheduled AWS Batch job

• Tutorial: Create a rule with an event pattern

• Tutorial: Pass event information to an AWS Batch target on a schedule using the EventBridge
input transformer

Tutorial: Create a scheduled AWS Batch job

The following procedure covers how to create a scheduled AWS Batch job and the required
EventBridge IAM role.

Tutorial: Create a scheduled job 386

AWS Batch User Guide

To create a scheduled AWS Batch job with EventBridge

Note

This procedure works for all AWS Batch on Amazon ECS, Amazon EKS, and AWS Fargate
jobs.

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Rules.

4. Choose Create rule.

5. For Name, specify a unique name for your compute environment. The name can contain up
to 64 characters. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

Note

A rule can't have the same name as another rule in the same Region and on the same
event bus.

6. (Optional) For Description, enter a description for the rule.

7. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account's default event bus.

8. (Optional) Turn off the rule on the selected bus if you don't want to run the rule immediately.

9. For Rule type, choose Schedule.

10. Choose Continue to create rule or Next.

11. For Schedule pattern, do one of the following:

• Choose A fine-grained schedule that runs at a specific time, such as 8:00 a.m. PST on the
first Monday of every month and then enter a cron expression. For more information, see
Cron Expressions in the Amazon EventBridge User Guide.

• Choose A schedule that runs at a regular rate, such as every 10 minutes. and then enter a
rate expression.

Tutorial: Create a scheduled job 387

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-cron-expressions

AWS Batch User Guide

12. Choose Next.

13. For Target types, choose AWS service.

14. For Select a target, choose Batch job queue. Then, configure the following:

• Job queue: Enter the Amazon Resource Name (ARN) of the job queue to schedule your job
in.

• Job definition: Enter the name and revision or full ARN of the job definition to use for your
job.

• Job name: Enter a name for your job.

• Array size: (Optional) Enter an array size for your job to run more than one copy. For more
information, see Array jobs.

• Job attempts: (Optional) Enter the number of times to retry your job if it fails. For more
information, see Automated job retries.

15. For Batch job queue target types, EventBridge needs permission to send events to the target.
EventBridge can create the IAM role needed for your rule to run. Do one of the following:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you've already created, choose Use existing role.

16. (Optional) Expand Additional settings.

a. For Configure target input, choose how the text from an event is processed before it's
passed to the target.

b. For Maximum age of event, specify the time interval for how long unprocessed events are
kept.

c. For Retry attempts, enter the number of times that an event is retried.

d. For Dead-letter queue, choose an option for how unprocessed events are handled. If
necessary, specify the Amazon SQS queue to use as the dead-letter queue.

17. (Optional) Choose Add another target to add another target for this rule.

18. Choose Next.

19. (Optional) For Tags, choose Add new tag to add a resource label for the rule. For more
information, see Amazon EventBridge tags.

20. Choose Next.

21. For Review and create, review the configuration steps. If you need to make changes, choose
Edit. When you're finished, choose Create rule.

Tutorial: Create a scheduled job 388

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html

AWS Batch User Guide

For more information about creating rules, see Creating an Amazon EventBridge rule that runs on a
schedule in the Amazon EventBridge User Guide.

Tutorial: Create a rule with an event pattern

The following procedure covers how to create a rule with an event pattern.

To create a rule that sends the event to a target when the event matches a defined pattern

Note

This procedure works for all AWS Batch on Amazon ECS, Amazon EKS, and AWS Fargate
jobs.

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Rules.

4. Choose Create rule.

5. For Name, specify a unique name for your compute environment. The name can contain up
to 64 characters. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

Note

A rule can't have the same name as another rule in the same Region and on the same
event bus.

6. (Optional) For Description, enter a description for the rule.

7. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account's default event bus.

8. (Optional) Turn off the rule on the selected bus if you don't want to run the rule immediately.

9. For Rule type, choose Rule with an event pattern.

10. Choose Next.

11. For Event Source, choose AWS event or EventBridge partner events.

Tutorial: Create a rule with an event pattern 389

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://console.aws.amazon.com/events/

AWS Batch User Guide

12. (Optional) For Sample event:

a. For Sample event type, choose AWS events.

b. For Sample events, choose Batch Job State Change.

13. For Creation method, choose Use pattern form.

14. For Event pattern:

a. For Event source, choose AWS services.

b. For AWS service, choose Batch.

c. For Event type, choose Batch Job State Change.

15. Choose Next.

16. For Target types, choose AWS service.

17. For Select a target, choose a target type. For example, choose Batch job queue. Then specify
the following:

• Job queue: Enter the Amazon Resource Name (ARN) of the job queue to schedule your job
in.

• Job definition: Enter the name and revision or full ARN of the job definition to use for your
job.

• Job name: Enter a name for your job.

• Array size: (Optional) Enter an array size for your job to run more than one copy. For more
information, see Array jobs.

• Job attempts: (Optional) Enter the number of times to retry your job if it fails. For more
information, see Automated job retries.

18. For Batch job queue target types, EventBridge needs permission to send events to the target.
EventBridge can create the IAM role needed for your rule to run. Do one of the following:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you created before, choose Use existing role.

19. (Optional) Expand Additional settings.

a. For Configure target input, choose how text from an event is processed.

b. For Maximum age of event, specify the time interval for how long unprocessed events are
kept.

c. For Retry attempts, enter the number of times that an event is retried.

Tutorial: Create a rule with an event pattern 390

AWS Batch User Guide

d. For Dead-letter queue, choose an option for how unprocessed events are handled. If
necessary, specify the Amazon SQS queue to use as the dead-letter queue.

20. (Optional) Choose Add another target to add an additional target.

21. Choose Next.

22. (Optional) For Tags, choose Add new tag to add a resource label. For more information, see
Amazon EventBridge tags in the Amazon EventBridge User Guide.

23. Choose Next.

24. For Review and create, review the configuration steps. If you need to make changes, choose
Edit. After you're finished, choose Create rule.

For more information about creating rules, see Creating Amazon EventBridge rules that react
to events in the Amazon EventBridge User Guide.

Tutorial: Pass event information to an AWS Batch target on a schedule
using the EventBridge input transformer

You can use the EventBridge input transformer to pass event information to AWS Batch in a
job submission. This can be especially valuable if you invoke jobs as a result of other AWS event
information. One example is an object upload to an Amazon S3 bucket. You can also use a job
definition with parameter substitution values in the container's command. The EventBridge input
transformer can provide the parameter values based on the event data.

Then, afterwards, you create an AWS Batch event target that parses information from the event
that starts it and transforms it into a parameters object. When the job runs, the parameters from
the trigger event are passed to the command of the job container.

Note

In this scenario, all of the AWS resources (such as Amazon S3 buckets, EventBridge rules,
and CloudTrail logs) must be in the same Region.

To create an AWS Batch target that uses the input transformer

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. From the navigation bar, select the AWS Region to use.

Tutorial: Pass input transformer 391

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html
https://console.aws.amazon.com/events/

AWS Batch User Guide

3. In the navigation pane, choose Rules.

4. Choose Create rule.

5. For Name, specify a unique name for your compute environment. The name can contain up
to 64 characters. It can contain uppercase and lowercase letters, numbers, hyphens (-), and
underscores (_).

Note

A rule can't have the same name as another rule in the same AWS Region and on the
same event bus.

6. (Optional) For Description, enter a description for the rule.

7. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select default. When an AWS service in
your account emits an event, it always goes to your account's default event bus.

8. (Optional) Turn off the rule on the selected bus if you don't want to run the rule immediately.

9. For Rule type, choose Schedule.

10. Choose Continue to create rule or Next.

11. For Schedule pattern, do one of the following:

• Choose A fine-grained schedule that runs at a specific time, such as 8:00 a.m. PST on the
first Monday of every month and then enter a cron expression. For more information, see
Cron Expressions in the Amazon EventBridge User Guide.

• Choose A schedule that runs at a regular rate, such as every 10 minutes. and then enter a
rate expression.

12. Choose Next.

13. For Target types, choose AWS service.

14. For Select a target, choose Batch job queue. Then, configure the following:

• Job queue: Enter the Amazon Resource Name (ARN) of the job queue to schedule your job
in.

• Job definition: Enter the name and revision or full ARN of the job definition to use for your
job.

• Job name: Enter a name for your job.

Tutorial: Pass input transformer 392

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html#eb-cron-expressions

AWS Batch User Guide

• Array size: (Optional) Enter an array size for your job to run more than one copy. For more
information, see Array jobs.

• Job attempts: (Optional) Enter the number of times to retry your job if it fails. For more
information, see Automated job retries.

15. For Batch job queue target types, EventBridge needs permission to send events to the target.
EventBridge can create the IAM role needed for your rule to run. Do one of the following:

• To create an IAM role automatically, choose Create a new role for this specific resource.

• To use an IAM role that you've already created, choose Use existing role.

16. (Optional) Expand Additional settings.

17. In the Additional settings section, for Configure target input, choose Input Transformer.

18. Choose Configure input transformer.

19. (Optional) For Sample event:

a. For Sample event type, choose AWS events.

b. For Sample events, choose Batch Job State Change.

20. In the Target input transformer section, for Input path, specify the values to parse from the
triggering event. For example, to parse Batch Job State Change event, use the following JSON
format.

{
 "instance": "$.detail.jobId",
 "state": "$.detail.status"
}

21. For Template, enter the following.

{
 "instance": <jobId> ,
 "status": <status>
}

22. Choose Confirm.

23. For Maximum age of event, specify the time interval for how long unprocessed events are
kept.

24. For Retry attempts, enter the number of times that an event is retried.

Tutorial: Pass input transformer 393

AWS Batch User Guide

25. For Dead-letter queue, choose an option for how unprocessed events are handled. If
necessary, specify the Amazon SQS queue to use as the dead-letter queue.

26. (Optional) Choose Add another target to add an additional target.

27. Choose Next.

28. (Optional) For Tags, choose Add new tag to add a resource label. For more information, see
Amazon EventBridge tags in the Amazon EventBridge User Guide.

29. Choose Next.

30. For Review and create, review the configuration steps. If you need to make changes, choose
Edit. After you're finished, choose Create rule.

Tutorial: Listen for AWS Batch job events using EventBridge

In this tutorial, you set up a simple AWS Lambda function that listens for AWS Batch job events and
writes them out to a CloudWatch Logs log stream.

Prerequisites

This tutorial assumes that you have a working compute environment and job queue that are ready
to accept jobs. If you don't have a running compute environment and job queue to capture events
from, follow the steps in Getting started with AWS Batch tutorials to create one. At the end of this
tutorial, you can optionally submit a job to this job queue to test that you have configured your
Lambda function correctly.

Topics

• Tutorial: Create the Lambda function

• Tutorial: Register the event rule

• Tutorial: Test your configuration

Tutorial: Create the Lambda function

In this procedure, you create a simple Lambda function to serve as a target for AWS Batch event
stream messages.

To create a target Lambda function

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

Tutorial: Listen for AWS Batch job events 394

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://console.aws.amazon.com/lambda/

AWS Batch User Guide

2. Choose Create function, Author from scratch.

3. For Function name, enter batch-event-stream-handler.

4. For Runtime, choose Python 3.8.

5. Choose Create function.

6. In the Code source section, edit the sample code to match the following example:

import json

def lambda_handler(event, _context):
 # _context is not used
 del _context
 if event["source"] != "aws.batch":
 raise ValueError("Function only supports input from events with a source
 type of: aws.batch")

 print(json.dumps(event))

This is a simple Python 3.8 function that prints the events sent by AWS Batch. If everything
is configured correctly, at the end of this tutorial, the event details appear in the CloudWatch
Logs log stream that's associated with this Lambda function.

7. Choose Deploy.

Tutorial: Register the event rule

In this section, you create an EventBridge event rule that captures job events that are coming from
your AWS Batch resources. This rule captures all events coming from AWS Batch within the account
where it's defined. The job messages themselves contain information about the event source,
including the job queue where it was submitted. You can use this information to filter and sort
events programmatically.

Note

If you use the AWS Management Console to create an event rule, the console automatically
adds the IAM permissions for EventBridge to call your Lambda function. However, if you're
creating an event rule using the AWS CLI, you must grant permissions explicitly. For more
information, see Events and Event Patterns in the Amazon EventBridge User Guide.

Tutorial: Register the event rule 395

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html

AWS Batch User Guide

To create your EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account's default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, select Custom patterns (JSON editor).

10. Paste the following event pattern into the text area.

{
 "source": [
 "aws.batch"
]
}

This rule applies across all of your AWS Batch groups and to every AWS Batch event.
Alternatively, you can create a more specific rule to filter out some results.

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose Lambda function, and select your Lambda function.

14. (Optional) For Additional settings, do the following:

a. For Maximum age of event, enter a value between one minute (00:01) and 24 hours
(24:00).

b. For Retry attempts, enter a number between 0 and 185.

Tutorial: Register the event rule 396

https://console.aws.amazon.com/events/

AWS Batch User Guide

c. For Dead-letter queue, choose whether to use a standard Amazon SQS queue as a dead-
letter queue. EventBridge sends events that match this rule to the dead-letter queue if
they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the dropdown.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it. For
more information, see Granting permissions to the dead-letter queue in the Amazon
EventBridge User Guide.

15. Choose Next.

16. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags in the Amazon EventBridge User Guide.

17. Choose Next.

18. Review the details of the rule and choose Create rule.

Tutorial: Test your configuration

You can now test your EventBridge configuration by submitting a job to your job queue. If
everything is configured properly, your Lambda function is triggered and it writes the event data to
a CloudWatch Logs log stream for the function.

To test your configuration

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. Submit a new AWS Batch job. For more information, see Tutorial: submit a job.

3. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

4. On the navigation pane, choose Logs and select the log group for your Lambda function (for
example, /aws/lambda/my-function).

5. Select a log stream to view the event data.

Tutorial: Test your configuration 397

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rule-dlq.html#eb-dlq-perms
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://console.aws.amazon.com/batch/
https://console.aws.amazon.com/cloudwatch/

AWS Batch User Guide

Tutorial: Sending Amazon Simple Notification Service alerts for
failed job events

In this tutorial, you configure an Amazon EventBridge event rule that only captures job events
where the job has moved to a FAILED status. At the end of this tutorial, you can optionally also
submit a job to this job queue. This is to test that you have configured your Amazon SNS alerts
correctly.

Prerequisites

This tutorial assumes that you have a working compute environment and job queue that are ready
to accept jobs. If you don't have a running compute environment and job queue to capture events
from, follow the steps in Getting started with AWS Batch tutorials to create one.

Topics

• Tutorial: Create and subscribe to an Amazon SNS topic

• Tutorial: Register an event rule

• Tutorial: Test your rule

• Alternate rule: Batch job queue blocked

Tutorial: Create and subscribe to an Amazon SNS topic

For this tutorial, you configure an Amazon SNS topic to serve as an event target for your new event
rule.

To create an Amazon SNS topic

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. Choose Topics, Create topic.

3. For Type, choose Standard.

4. For Name, enter JobFailedAlert and choose Create topic.

5. On the JobFailedAlert screen, choose Create subscription.

6. For Protocol, choose Email.

7. For Endpoint, enter an email address that you currently have access to and choose Create
subscription.

Tutorial: Sending Amazon Simple Notification Service alerts for failed job events 398

https://console.aws.amazon.com/sns/v3/home

AWS Batch User Guide

8. Check your email account, and wait to receive a subscription confirmation email message.
When you receive it, choose Confirm subscription.

Tutorial: Register an event rule

Next, register an event rule that captures only job-failed events.

To register your EventBridge rule

1. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account's default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose Other.

9. For Event pattern, select Custom patterns (JSON editor).

10. Paste the following event pattern into the text area.

{
 "detail-type": [
 "Batch Job State Change"
],
 "source": [
 "aws.batch"
],
 "detail": {
 "status": [
 "FAILED"
]
 }

Tutorial: Register an event rule 399

https://console.aws.amazon.com/events/

AWS Batch User Guide

}

This code defines an EventBridge rule that matches any event where the job status is FAILED.
For more information about event patterns, see Events and Event Patterns in the Amazon
EventBridge User Guide.

11. Choose Next.

12. For Target types, choose AWS service.

13. For Select a target, choose SNS topic, and for Topic, choose JobFailedAlert.

14. (Optional) For Additional settings, do the following:

a. For Maximum age of event, enter a value between one minute (00:01) and 24 hours
(24:00).

b. For Retry attempts, enter a number between 0 and 185.

c. For Dead-letter queue, choose whether to use a standard Amazon SQS queue as a dead-
letter queue. EventBridge sends events that match this rule to the dead-letter queue if
they are not successfully delivered to the target. Do one of the following:

• Choose None to not use a dead-letter queue.

• Choose Select an Amazon SQS queue in the current AWS account to use as the
dead-letter queue and then select the queue to use from the dropdown.

• Choose Select an Amazon SQS queue in an other AWS account as a dead-letter
queue and then enter the ARN of the queue to use. You must attach a resource-based
policy to the queue that grants EventBridge permission to send messages to it. For
more information, see Granting permissions to the dead-letter queue in the Amazon
EventBridge User Guide.

15. Choose Next.

16. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags in the Amazon EventBridge User Guide.

17. Choose Next.

18. Review the details of the rule and choose Create rule.

Tutorial: Register an event rule 400

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rule-dlq.html#eb-dlq-perms
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html

AWS Batch User Guide

Tutorial: Test your rule

To test your rule, submit a job that exits shortly after it starts with a non-zero exit code. If your
event rule is configured correctly, you should receive an email message within a few minutes with
the event text.

To test a rule

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. Submit a new AWS Batch job. For more information, see Tutorial: submit a job. For the job's
command, substitute this command to exit the container with an exit code of 1.

/bin/sh, -c, 'exit 1'

3. Check your email to confirm that you received an email alert for the failed job notification.

Alternate rule: Batch job queue blocked

To create an event rule that monitors for batch job queue blocked, repeat these tutorials with the
following alterations:

1. In Tutorial: Create and subscribe to an Amazon SNS topic , use BlockedJobQueue as the
topic name.

2. In Tutorial: Register an event rule , use the following pattern in the JSON editor:

{
 "detail-type": [
 "Batch Job Queue Blocked"
],
 "source": [
 "aws.batch"
]
}

Tutorial: Test your rule 401

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Elastic Fabric Adapter

An Elastic Fabric Adapter (EFA) is a network device to accelerate High Performance Computing
(HPC) applications. AWS Batch supports applications that use EFA if the following conditions are
met.

• For a list of instance types that support EFAs, see Supported instance types in the Amazon EC2
User Guide.

Tip

To see a list of instance types that support EFAs in an AWS Region, run the following
command. Then, cross reference the list that's returned with the list of available instance
types in the AWS Batch console.

$ aws ec2 describe-instance-types --region us-east-1 --filters Name=network-
info.efa-supported,Values=true --query "InstanceTypes[*].[InstanceType]" --
output text | sort

• For a list of operating systems that support EFA, see Supported operating systems.

• The AMI has the EFA driver loaded.

• The security group for the EFA must allows all inbound and outbound traffic to and from the
security group itself.

• All instances that use an EFA must be in the same cluster placement group.

• The job definition must include a devices member with hostPath set to /dev/infiniband/
uverbs0 to allow the EFA device to be passed through to the container. If containerPath is
specified, it must also be set to /dev/infiniband/uverbs0. If permissions is set it must be
set to READ | WRITE | MKNOD.

The location of the LinuxParameters members are different for multi-node parallel jobs and
single-node container jobs. The following examples show the differences, but are missing
required values.

Example Example for multi-node parallel job

{
 "jobDefinitionName": "EFA-MNP-JobDef",

402

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html#efa-instance-types
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html#efa-os
https://docs.aws.amazon.com/batch/latest/APIReference/API_LinuxParameters.html

AWS Batch User Guide

 "type": "multinode",
 "nodeProperties": {
 ...
 "nodeRangeProperties": [
 {
 ...
 "container": {
 ...
 "linuxParameters": {
 "devices": [
 {
 "hostPath": "/dev/infiniband/uverbs0",
 "containerPath": "/dev/infiniband/uverbs0",
 "permissions": [
 "READ", "WRITE", "MKNOD"
]
 },
],
 },
 },
 },
],
 },
}

Example Example for single-node container job

{
 "jobDefinitionName": "EFA-Container-JobDef",
 "type": "container",
 ...
 "containerProperties": {
 ...
 "linuxParameters": {
 "devices": [
 {
 "hostPath": "/dev/infiniband/uverbs0",
 },
],
 },
 },
}

403

AWS Batch User Guide

For more information about EFA, see Elastic Fabric Adapter in Amazon EC2 User Guide.

404

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html

AWS Batch User Guide

Monitor AWS Batch

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Batch and your AWS solution.

We strongly encourage you to collect monitoring data from all parts of your AWS solution to make
it easier to debug a multi-point failure, if one occurs. Start by creating a monitoring plan that
answers the following questions. If you're not sure how to answer these, you can still use Amazon
CloudWatch Logs to establish your performance baselines.

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Your next step is to establish a baseline of normal AWS Batch performance in your environment by
measuring performance at various times and under different load conditions. As you monitor AWS
Batch, keep historical monitoring data so that you can compare it with current performance data.
This will help you identify normal performance patterns and performance anomalies, and devise
methods to address issues.

The topics in this section can help you start logging and monitoring AWS Batch.

Topics

• Using CloudWatch Logs with AWS Batch

• AWS Batch CloudWatch Container Insights

• Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs

Using CloudWatch Logs with AWS Batch

You can configure your AWS Batch jobs on EC2 resources to send detailed log information
and metrics to CloudWatch Logs. Doing this, you can view different logs from your jobs in

CloudWatch Logs 405

AWS Batch User Guide

one convenient location. For more information about CloudWatch Logs, see What is Amazon
CloudWatch Logs? in the Amazon CloudWatch User Guide.

Note

By default, CloudWatch Logs is turned on for AWS Fargate containers.

To turn on and customize CloudWatch Logs logging, review the following one-time configuration
tasks:

• For AWS Batch compute environments that are based on EC2 resources, add an IAM policy
to the ecsInstanceRole role. For more information, see the section called “Tutorial: Add a
CloudWatch Logs IAM policy”.

• Create an Amazon EC2 launch template that includes detailed CloudWatch monitoring, then
specify the template when you create your AWS Batch compute environment. You can also install
the CloudWatch agent on an existing image and then specify the image in the AWS Batch first-
run wizard.

• (Optional) Configure the awslogs driver. You can add parameters that change the default
behavior on both EC2 and Fargate resources. For more information, see the section called “Use
the awslogs log driver”.

Topics

• Tutorial: Add a CloudWatch Logs IAM policy

• Install and configure the CloudWatch agent

• Tutorial: View CloudWatch Logs

Tutorial: Add a CloudWatch Logs IAM policy

Before your jobs can send log data and detailed metrics to CloudWatch Logs, you must create an
IAM policy that uses the CloudWatch Logs APIs. After you create the IAM policy, attach it to the
ecsInstanceRole role.

Tutorial: Add a CloudWatch Logs IAM policy 406

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS Batch User Guide

Note

If the ECS-CloudWatchLogs policy isn't attached to the ecsInstanceRole role, basic
metrics can still be sent to CloudWatch Logs. However, the basic metrics don't include log
data or detailed metrics such as free disk space.

AWS Batch compute environments use Amazon EC2 resources. When you create a compute
environment using the AWS Batch first-run wizard, AWS Batch creates the ecsInstanceRole role
and configures the environment with it.

If you aren't using the first-run wizard, you can specify the ecsInstanceRole role when you
create a compute environment in the AWS Command Line Interface or AWS Batch API. For more
information, see the AWS CLI Command Reference or AWS Batch API Reference.

To create the ECS-CloudWatchLogs IAM policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy.

4. Choose JSON, then enter the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

Tutorial: Add a CloudWatch Logs IAM policy 407

https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://console.aws.amazon.com/iam/

AWS Batch User Guide

5. Choose Next: Tags.

6. (Optional) For Add tags, choose Add tag to add a tag to the policy.

7. Choose Next: Review.

8. On the Review policy page, for Name, enter ECS-CloudWatchLogs, and then enter an
optional Description.

9. Choose Create policy.

To attach the ECS-CloudWatchLogs policy to ecsInstanceRole

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose ecsInstanceRole. If the role doesn't exist, follow the procedures in Amazon ECS
instance role to create the role.

4. Choose Add Permissions, then choose Attach policies.

5. Choose the ECS-CloudWatchLogs policy and then choose Attach policy.

Install and configure the CloudWatch agent

You can create an Amazon EC2 launch template that includes CloudWatch monitoring. For more
information, see Launch an instance from a launch template and Advanced details in the Amazon
EC2 User Guide.

You can also install the CloudWatch agent on an existing Amazon EC2 AMI and then specify the
image in the AWS Batch first-run wizard. For more information, see Installing the CloudWatch
agent and Getting started with AWS Batch tutorials.

Note

Launch templates are not supported on AWS Fargate resources.

Tutorial: View CloudWatch Logs

You can view and search CloudWatch Logs logs in the AWS Management Console.

Install and configure the CloudWatch agent 408

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html#lt-initiate-launch-template
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html#lt-advanced-details
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html

AWS Batch User Guide

Note

It might take a few minutes for data to display in CloudWatch Logs.

To view your CloudWatch Logs data

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose Logs, then choose Log groups.

3. Choose a log group to view.

4. Choose a log stream to view. By default, the streams are identified by the first 200 characters
of the job name and the Amazon ECS task ID.

Tutorial: View CloudWatch Logs 409

https://console.aws.amazon.com/cloudwatch/

AWS Batch User Guide

Tip

To download log stream data, choose Actions.

AWS Batch CloudWatch Container Insights

CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your
AWS Batch compute environments and jobs. The metrics include CPU, memory, disk, and network
utilization. You can add these metrics to CloudWatch dashboards.

Operational data is collected as performance log events. These are entries that use a structured
JSON schema that enables high-cardinality data to be ingested and stored at scale. From this data,
CloudWatch creates higher-level aggregated metrics at the compute environment and job level as
CloudWatch metrics. For more information, see Container Insights Structured Logs for Amazon ECS
in the Amazon CloudWatch User Guide.

Important

CloudWatch Container Insights are charged as custom metrics by CloudWatch. For more
information, see Amazon CloudWatch Events pricing

Topics

• Tutorial: Turn on Container Insights

CloudWatch Container Insights 410

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-reference-structured-logs-ECS.html
https://aws.amazon.com/cloudwatch/pricing/

AWS Batch User Guide

Tutorial: Turn on Container Insights

Complete the following steps to turn on Container Insights for AWS Batch compute environments.

1. Open the AWS Batch console.

2. Choose Compute Environments.

3. Choose the compute environment that you want.

4. For Container Insights, turn on Container Insights for the compute environment.

Tip

You can select a default interval to aggregate the metrics or create a custom interval.

By default, the following metrics are displayed. For a full list of Amazon ECS Container Insights
metrics, see Amazon ECS Container Insights Metrics in the Amazon CloudWatch User Guide.

• JobCount – The number of jobs that run in the compute environment.

• ContainerInstanceCount – The number of Amazon Elastic Compute Cloud instances that run
the Amazon ECS agent and are registered in the compute environment.

• MemoryReserved – The memory that's reserved by compute environment jobs. This metric is
collected only for the jobs that have a defined memory reservation in their job definition.

• MemoryUtilized – The memory that's being used by compute environment jobs. This metric is
collected only for jobs that have a defined memory reservation in their job definition.

• CpuReserved – The CPU units that are reserved by compute environment jobs. This metric is
collected only for jobs that have a defined CPU reservation in their job definition.

• CpuUtilized – The CPU units used by jobs in the compute environment. This metric is collected
only for jobs that have a defined CPU reservation in their job definition.

• NetworkRxBytes - The number of bytes that are received. This metric is available only for
containers in jobs that use the awsvpc or bridge network modes.

• NetworkTxBytes – The number of bytes that are transmitted. This metric is available only for
containers in jobs that use the awsvpc or bridge network modes.

• StorageReadBytes – The number of bytes that are read from storage.

• StorageWriteBytes – The number of bytes that are written to storage.

Tutorial: Turn on Container Insights 411

https://console.aws.amazon.com/batch/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-metrics-ECS.html

AWS Batch User Guide

Use CloudWatch Logs to monitor AWS Batch on Amazon EKS
jobs

You can use Amazon CloudWatch Logs to monitor, store, and view all your log files in one location.
Using CloudWatch Logs, you can search, filter, and analyze log data from multiple sources.

You can download an AWS for Fluent Bit image that includes a plugin to monitor AWS Batch on
Amazon EKS jobs in CloudWatch Logs. Fluent Bit is an open-source log processor and forwarder
that's both Docker and Kubernetes compatible. We recommend that you use Fluent Bit as your log
router because it's less resource intensive than Fluentd. For more information, see Using the AWS
for Fluent Bit image.

Prerequisites

Attach the CloudWatchAgentServerPolicy policy to the AWS Identity and Access Management
policy of your worker nodes. For more information, see Verify prerequisites.

Install AWS for Fluent Bit

For instructions on how to install AWS for Fluent Bit and create the CloudWatch groups, see Setting
up Fluent Bit or Quick Start with the CloudWatch agent and Fluent Bit.

Tip

Remember that Fluent Bit uses .5 CPU and 100 MB of memory on AWS Batch nodes. This
reduces the total available capacity for AWS Batch jobs. Consider this when you size your
jobs.

Turn on Fluent Bit for AWS Batch nodes

To ensure the Fluent Bit logging DaemonSet runs on AWS Batch managed nodes, modify the
Fluent Bit DaemonSet tolerations:

tolerations:
- key: "batch.amazonaws.com/batch-node"
 operator: "Exists"

Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs 412

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-using-fluentbit.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/firelens-using-fluentbit.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-prerequisites.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html#Container-Insights-FluentBit-setup
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html#Container-Insights-FluentBit-setup
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html

AWS Batch User Guide

Tag your AWS Batch resources

To help you manage your AWS Batch resources, you can assign your own metadata to each
resource in the form of tags. This topic describes tags and shows you how to create them.

Topics

• Tag basics

• Tag your resources

• Tag restrictions

• Tutorial: Manage tags using the console

• Manage tags using the CLI or API

Tag basics

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value,
both of which you define.

Tags enable you to categorize your AWS resources by, for example, purpose, owner, or
environment. When you have many resources of the same type, you can quickly identify a specific
resource based on the tags you've assigned to it. For example, you can define a set of tags for your
AWS Batch services to help you track each service's owner and stack level. We recommend that you
devise a consistent set of tag keys for each resource type.

Tags are not automatically assigned to your resources. After you add a tag, you can edit tag keys
and values or remove tags from a resource at any time. If you delete a resource, any tags for the
resource are also deleted.

Tags don't have any semantic meaning to AWS Batch and are interpreted strictly as a string of
characters. You can set the value of a tag to an empty string, but you can't set the value of a tag
to null. If you add a tag that has the same key as an existing tag on that resource, the new value
overwrites the old value.

You can work with tags using the AWS Management Console, the AWS CLI, and the AWS Batch API.

If you're using AWS Identity and Access Management (IAM), you can control which users in your
AWS account have permission to create, edit, or delete tags.

Tag basics 413

AWS Batch User Guide

Tag your resources

You can tag new or existing AWS Batch compute environments, jobs, job definitions, job queues,
and scheduling policies.

If you're using the AWS Batch console, you can apply tags to new resources when they are created
or to existing resources at any time using the Tags tab on the relevant resource page.

If you're using the AWS Batch API, the AWS CLI, or an AWS SDK, you can apply tags to new
resources using the tags parameter on the relevant API action or to existing resources using the
TagResource API action. For more information, see TagResource.

Some resource-creating actions enable you to specify tags for a resource when the resource is
created. If tags cannot be applied during resource creation, the resource creation process fails. This
ensures that resources you intended to tag on creation are either created with specified tags or not
created at all. If you tag resources at the time of creation, you don't need to run custom tagging
scripts after resource creation.

The following table describes the AWS Batch resources that can be tagged, and the resources that
can be tagged on creation.

Tag support for AWS Batch resources

Resource Supports tags Supports tag
propagation

Supports tagging on
creation (AWS Batch
API, AWS CLI, AWS
SDK)

AWS Batch compute
environments

Yes No. Compute
environment tags
do not propagate to
any other resources.
Tags for the resources
are specified in
the tags member
of the computeRe
sources object passed
in the CreateCom

Yes

Tag your resources 414

https://docs.aws.amazon.com/batch/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

Resource Supports tags Supports tag
propagation

Supports tagging on
creation (AWS Batch
API, AWS CLI, AWS
SDK)

puteEnvironment API
operation.

AWS Batch jobs Yes Yes Yes

AWS Batch job
definitions

Yes No Yes

AWS Batch job
queues

Yes No Yes

AWS Batch schedulin
g policies

Yes No Yes

Tag restrictions

The following basic restrictions apply to tags:

• Maximum number of tags per resource – 50

• For each resource, each tag key must be unique, and each tag key can have only one value.

• Maximum key length – 128 Unicode characters in UTF-8

• Maximum value length – 256 Unicode characters in UTF-8

• If your tagging schema is used across multiple AWS services and resources, remember that other
services may have restrictions on allowed characters. Generally allowed characters are letters,
numbers, spaces representable in UTF-8, and the following characters: + - = . _ : / @.

• Tag keys and values are case sensitive.

• Don't use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys
or values, as it is reserved for AWS use. You can't edit or delete tag keys or values with this prefix.
Tags with this prefix do not count against your tags-per-resource limit.

Tag restrictions 415

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

Tutorial: Manage tags using the console

Using the AWS Batch console, you can manage the tags associated with new or existing compute
environments, jobs, job definitions, and job queues.

Add tags on an individual resource on creation

You can add tags to AWS Batch compute environments, jobs, job definitions, job queues, and
scheduling policies when you create them.

Add and delete tags on an individual resource

AWS Batch allows you to add or delete tags associated with your clusters directly from the
resource's page.

To add or delete a tag on an individual resource

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, choose the Region to use.

3. In the navigation pane, choose a resource type (for example, Job Queues).

4. Choose a specific resource, then choose Edit tags.

5. Add or delete your tags as necessary.

• To add a tag — specify the key and value in the empty text boxes at the end of the list.

• To delete a tag — choose the

Delete icon
button next to the tag.

6. Repeat this process for each tag you want to add or delete, and then choose Edit tags to finish.

Manage tags using the CLI or API

Use the following AWS CLI commands or AWS Batch API operations to add, update, list, and delete
the tags for your resources.

Tutorial: Manage tags using the console 416

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Tag support for AWS Batch resources

Task API action AWS CLI AWS Tools for Windows
PowerShell

Add or overwrite
one or more tags.

TagResource tag-resource Add-BATResourceTag

Delete one or
more tags.

UntagResource untag-resource Remove-BATResourceTag

List tags for a
resource

ListTagsForResourc
e

list-tags-for-reso
urce

Get-BATResourceTag

The following examples show how to tag or untag resources using the AWS CLI.

Example 1: Tag an existing resource

The following command tags an existing resource.

aws batch tag-resource --resource-arn resource_ARN --tags team=devs

Example 2: Untag an existing resource

The following command deletes a tag from an existing resource.

aws batch untag-resource --resource-arn resource_ARN --tag-keys tag_key

Example 3: List tags for a resource

The following command lists the tags associated with an existing resource.

aws batch list-tags-for-resource --resource-arn resource_ARN

Some resource-creating actions enable you to specify tags when you create the resource. The
following actions support tagging on creation.

Manage tags using the CLI or API 417

https://docs.aws.amazon.com/batch/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/batch/tag-resource.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Add-BATResourceTag.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/cli/latest/reference/batch/untag-resource.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-BATResourceTag.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/cli/latest/reference/batch/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/batch/list-tags-for-resource.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-BATResourceTag.html

AWS Batch User Guide

Task API action AWS CLI AWS Tools for
Windows PowerShell

Create a compute
environment

CreateComputeEnvir
onment

create-compute-env
ironment

New-BATComputeEnvi
ronment

Create a job queue CreateJobQueue create-job-queue New-BATJobQueue

Create a scheduling
policy

CreateSchedulingPo
licy

create-scheduling-
policy

New-BATSchedulingP
olicy

Register a job
definition

RegisterJobDefinition register-job-defin
ition

Register-BATJobDef
inition

Submit a job SubmitJob submit-job Submit-BATJob

Manage tags using the CLI or API 418

https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html
https://docs.aws.amazon.com/cli/latest/reference/batch/create-compute-environment.html
https://docs.aws.amazon.com/cli/latest/reference/batch/create-compute-environment.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-BATComputeEnvironment.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-BATComputeEnvironment.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateJobQueue.html
https://docs.aws.amazon.com/cli/latest/reference/batch/create-job-queue.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-BATJobQueue.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateSchedulingPolicy.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateSchedulingPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/batch/create-scheduling-policy.html
https://docs.aws.amazon.com/cli/latest/reference/batch/create-scheduling-policy.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-BATSchedulingPolicy.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-BATSchedulingPolicy.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Register-BATJobDefinition.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Register-BATJobDefinition.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Submit-BATJob.html

AWS Batch User Guide

Best practices for AWS Batch

You can use AWS Batch to run a variety of demanding computational workloads at scale without
managing a complex architecture. AWS Batch jobs can be used in a wide range of use cases in areas
such as epidemiology, gaming, and machine learning.

This topic covers the best practices to consider while using AWS Batch and guidance on how to run
and optimize your workloads when using AWS Batch.

Topics

• When to use AWS Batch

• Checklist to run at scale

• Optimize containers and AMIs

• Choose the right compute environment resource

• Amazon EC2 On-Demand or Amazon EC2 Spot

• Use Amazon EC2 Spot best practices for AWS Batch

• Common errors and troubleshooting

When to use AWS Batch

AWS Batch runs jobs at scale and at low cost, and provides queuing services and cost-optimized
scaling. However, not every workload is suitable to be run using AWS Batch.

• Short jobs – If a job runs for only a few seconds, the overhead to schedule the batch job might
take longer than the runtime of the job itself. As a workaround, binpack your tasks together
before you submit them in AWS Batch. Then, configure your AWS Batch jobs to iterate over the
tasks. For example, stage the individual task arguments into an Amazon DynamoDB table or as a
file in an Amazon S3 bucket. Consider grouping tasks so the jobs run 3-5 minutes each. After you
binpack the jobs, loop through your task groups within your AWS Batch job.

• Jobs that must be run immediately – AWS Batch can process jobs quickly. However, AWS Batch
is a scheduler and optimizes for cost performance, job priority, and throughput. AWS Batch
might require time to process your requests. If you need a response in under a few seconds, then
a service-based approach using Amazon ECS or Amazon EKS is more suitable.

When to use AWS Batch 419

AWS Batch User Guide

Checklist to run at scale

Before you run a large workload on 50 thousand or more vCPUs, consider the following checklist.

Note

If you plan to run a large workload on a million or more vCPUs or need guidance running at
large scale, contact your AWS team.

• Check your Amazon EC2 quotas – Check your Amazon EC2 quotas (also known as limits) in the
Service Quotas panel of the AWS Management Console. If necessary, request a quota increase for
your peak number of Amazon EC2 instances. Remember that Amazon EC2 Spot and Amazon On-
Demand instances have separate quotas. For more information, see Getting started with Service
Quotas.

• Verify your Amazon Elastic Block Store quota for each Region – Each instance uses a GP2 or
GP3 volume for the operating system. By default, the quota for each AWS Region is 300 TiB.
However, each instance uses counts as part of this quota. So, make sure to factor this in when
you verify your Amazon Elastic Block Store quota for each Region. If your quota is reached, you
can’t create more instances. For more information, see Amazon Elastic Block Store endpoints and
quotas

• Use Amazon S3 for storage – Amazon S3 provides high throughput and helps to eliminate the
guesswork on how much storage to provision based on the number of jobs and instances in each
Availability Zone. For more information, see Best practices design patterns: optimizing Amazon
S3 performance.

• Scale gradually to identify bottlenecks early – For a job that runs on a million or more vCPUs,
start lower and gradually increase so that you can identify bottlenecks early. For example, start
by running on 50 thousand vCPUs. Then, increase the count to 200 thousand vCPUs, and then
500 thousand vCPUs, and so on. In other words, continue to gradually increase the vCPU count
until you reach the desired number of vCPUs.

• Monitor to identify potential issues early – To avoid potential breaks and issues when running
at scale, make sure to monitor both your application and architecture. Breaks might occur
even when scaling from 1 thousand to 5 thousand vCPUs. You can use Amazon CloudWatch
Logs to review log data or use CloudWatch Embedded Metrics using a client library. For more
information, see CloudWatch Logs agent reference and aws-embedded-metrics

Checklist to run at scale 420

https://docs.aws.amazon.com/servicequotas/latest/userguide/getting-started.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/getting-started.html
https://docs.aws.amazon.com/general/latest/gr/ebs-service.html
https://docs.aws.amazon.com/general/latest/gr/ebs-service.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AgentReference.html
https://github.com/awslabs/aws-embedded-metrics-python

AWS Batch User Guide

Optimize containers and AMIs

Container size and structure are important for the first set of jobs that you run. This is especially
true if the container is larger than 4 GB. Container images are built in layers. The layers are
retrieved in parallel by Docker using three concurrent threads. You can increase the number of
concurrent threads using the max-concurrent-downloads parameter. For more information, see
the Dockerd documentation.

Although you can use larger containers, we recommend that you optimize container structure and
size for faster startup times.

• Smaller containers are fetched faster – Smaller containers can lead to faster application start
times. To decrease container size, offload libraries or files that are updated infrequently to the
Amazon Machine Image (AMI). You can also use bind mounts to give access to your containers.
For more information, see Bind mounts.

• Create layers that are even in size and break up large layers – Each layer is retrieved by one
thread. So, a large layer might significantly impact your job startup time. We recommend a
maximum layer size of 2 GB as a good tradeoff between larger container size and faster startup
times. You can run the docker history your_image_id command to check your container
image structure and layer size. For more information, see the Docker documentation.

• Use Amazon Elastic Container Registry as your container repository – When you run thousands
of jobs in parallel, a self-managed repository can fail or throttle throughput. Amazon ECR works
at scale and can handle workloads with up to over a million vCPUs.

Optimize containers and AMIs 421

https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/bind-mounts.html
https://docs.docker.com/engine/reference/commandline/history/

AWS Batch User Guide

Choose the right compute environment resource

AWS Fargate requires less initial setup and configuration than Amazon EC2 and is likely easier
to use, particularly if it's your first-time. With Fargate, you don't need to manage servers, handle
capacity planning, or isolate container workloads for security.

If you have the following requirements, we recommend you use Fargate instances:

• Your jobs must start quickly, specifically less than 30 seconds.

• The requirements of your jobs are 16 vCPUs or less, no GPUs, and 120 GiB of memory or less.

For more information, see When to use Fargate.

If you have the following requirements, we recommend that you use Amazon EC2 instances:

• You require increased control over the instance selection or require using specific instance types.

• Your jobs require resources that AWS Fargate can’t provide, such as GPUs, more memory, a
custom AMI, or the Amazon Elastic Fabric Adapter.

• You require a high level of throughput or concurrency.

• You need to customize your AMI, Amazon EC2 Launch Template, or access to special Linux
parameters.

With Amazon EC2, you can more finely tune your workload to your specific requirements and run at
scale if needed.

Amazon EC2 On-Demand or Amazon EC2 Spot

Most AWS Batch customers use Amazon EC2 Spot instances because of the savings over On-
Demand instances. However, if your workload runs for multiple hours and can't be interrupted,
On-Demand instances might be more suitable for you. You can always try Spot instances first and
switch to On-Demand if necessary.

If you have the following requirements and expectations, use Amazon EC2 On-Demand instances:

• The runtime of your jobs is more than an hour, and you can't tolerate interruptions to your
workload.

Choose the right compute environment resource 422

AWS Batch User Guide

• You have a strict SLO (service-level objective) for your overall workload and can’t increase
computational time.

• The instances that you require are more likely to see interruptions.

If you have the following requirements and expectations, use Amazon EC2 Spot instances:

• The runtime for your jobs is typically 30 minutes or less.

• You can tolerate potential interruptions and job rescheduling as a part of your workload. For
more information, see Spot Instance advisor.

• Long running jobs can be restarted from a checkpoint if interrupted.

You can mix both purchasing models by submitting on Spot instance first and then use
On-Demand instance as a fallback option. For example, submit your jobs on a queue that's
connected to compute environments that are running on Amazon EC2 Spot instances. If a job
gets interrupted, catch the event from Amazon EventBridge and correlate it to a Spot instance
reclamation. Then, resubmit the job to an On-Demand queue using an AWS Lambda function or
AWS Step Functions. For more information, see Tutorial: Sending Amazon Simple Notification
Service alerts for failed job events, Best practices for handling Amazon EC2 Spot Instance
interruptions and Manage AWS Batch with Step Functions.

Important

Use different instance types, sizes, and Availability Zones for your On-Demand compute
environment to maintain Amazon EC2 Spot instance pool availability and decrease the
interruption rate.

Use Amazon EC2 Spot best practices for AWS Batch

When you choose Amazon Elastic Compute Cloud (EC2) Spot instances, you likely can optimize
your workflow to save costs, sometimes significantly. For more information, see Best practices for
Amazon EC2 Spot.

To optimize your workflow to save costs, consider the following Amazon EC2 Spot best practices
for AWS Batch:

Use Amazon EC2 Spot best practices for AWS Batch 423

https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/blogs/compute/best-practices-for-handling-ec2-spot-instance-interruptions/
https://aws.amazon.com/blogs/compute/best-practices-for-handling-ec2-spot-instance-interruptions/
https://docs.aws.amazon.com/step-functions/latest/dg/connect-batch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-best-practices.html#be-instance-type-flexible
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-best-practices.html#be-instance-type-flexible

AWS Batch User Guide

• Choose the SPOT_CAPACITY_OPTIMIZED allocation strategy – AWS Batch chooses Amazon
EC2 instances from the deepest Amazon EC2 Spot capacity pools. If you’re concerned about
interruptions, this is a suitable choice. For more information, see Instance type allocation
strategies for AWS Batch.

• Diversify instance types – To diversify your instance types, consider compatible sizes and
families, then let AWS Batch choose based on price or availability. For example, consider
c5.24xlarge as an alternative to c5.12xlarge or c5a, c5n, c5d, m5, and m5d families. For
more information, see Be flexible about instance types and Availability Zones.

• Reduce job runtime or checkpoint – We advise against running jobs that take an hour or more
when using Amazon EC2 Spot instances to avoid interruptions. If you divide or checkpoint
your jobs into smaller parts that consist of 30 minutes or less, you can significantly reduce the
possibility of interruptions.

• Use automated retries – To avoid disruptions to AWS Batch jobs, set automated retries for jobs.
Batch jobs can be disrupted for any of the following reasons: a non-zero exit code is returned, a
service error occurs, or an instance reclamation occurs. You can set up to 10 automated retries.
For a start, we recommend that you set at least 1-3 automated retries. For information about
tracking Amazon EC2 Spot interruptions, see Spot Interruption Dashboard.

For AWS Batch, if you set the retry parameter, the job is placed at the front of the job queue.
That is, the job is given priority. When you create the job definition or you submit the job in the
AWS CLI, you can configure a retry strategy. For more information, see submit-job.

$ aws batch submit-job --job-name MyJob \
 --job-queue MyJQ \
 --job-definition MyJD \
 --retry-strategy attempts=2

• Use custom retries – You can configure a job retry strategy to a specific application exit code
or instance reclamation. In the following example, if the host causes the failure, the job can
be retried up to five times. However, if the job fails for a different reason, the job exits and the
status is set to FAILED.

"retryStrategy": {
 "attempts": 5,
 "evaluateOnExit":
 [{
 "onStatusReason" :"Host EC2*",
 "action": "RETRY"

Use Amazon EC2 Spot best practices for AWS Batch 424

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/spot-best-practices.html#be-instance-type-flexible
https://github.com/aws-samples/ec2-spot-interruption-dashboard
https://docs.aws.amazon.com/goto/aws-cli/batch-2016-08-10/SubmitJob

AWS Batch User Guide

 },{
 "onReason" : "*"
 "action": "EXIT"
 }]
}

• Use the Spot Interruption Dashboard – You can use the Spot Interruption Dashboard to track
Spot interruptions. The application provides metrics on Amazon EC2 Spot instances that are
reclaimed and which Availability Zones that Spot instances are in. For more information, see Spot
Interruption Dashboard

Common errors and troubleshooting

Errors in AWS Batch often occur at the application level or are caused by instance configurations
that don’t meet your specific job requirements. Other issues include jobs getting stuck in
the RUNNABLE status or compute environments getting stuck in an INVALID state. For more
information about troubleshooting jobs getting stuck in RUNNABLE status, see Jobs stuck in a
RUNNABLE status. For information about troubleshooting compute environments in an INVALID
state, see INVALID compute environment.

• Check Amazon EC2 Spot vCPU quotas – Verify that your current service quotas meet the job
requirements. For example, suppose that your current service quota is 256 vCPUs and the job
requires 10,000 vCPUs. Then, the service quota doesn't meet the job requirement. For more
information and troubleshooting instructions, see Amazon EC2 service quotas and How do I
increase the service quota of my Amazon EC2resources?.

• Jobs fail before the application runs – Some jobs might fail because of a
DockerTimeoutError error or a CannotPullContainerError error. For troubleshooting
information, see How do I resolve the "DockerTimeoutError" error in AWS Batch?.

• Insufficient IP addresses – The number of IP addresses in your VPC and subnets can limit the
number of instances that you can create. Use Classless Inter-Domain Routings (CIDRs) to provide
more IP addresses than are required to run your workloads. If necessary, you can also build a
dedicated VPC with a large address space. For example, you can create a VPC with multiple
CIDRs in 10.x.0.0/16 and a subnet in every Availability Zone with a CIDR of 10.x.y.0/17.
In this example, x is between 1-4 and y is either 0 or 128. This configuration provides 36,000 IP
addresses in every subnet.

Common errors and troubleshooting 425

https://github.com/aws-samples/ec2-spot-interruption-dashboard
https://github.com/aws-samples/ec2-spot-interruption-dashboard
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-limit/
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-instance-limit/
https://aws.amazon.com/premiumsupport/knowledge-center/batch-docker-timeout-error/

AWS Batch User Guide

• Verify that instances are registered with Amazon EC2 – If you see your instances in the Amazon
EC2 console, but no Amazon Elastic Container Service container instances in your Amazon ECS
cluster, the Amazon ECS agent might not be installed on an Amazon Machine Image (AMI). The
Amazon ECS Agent, the Amazon EC2 Data in your AMI, or the launch template might also not
be configured correctly. To isolate the root cause, create a separate Amazon EC2 instance or
connect to an existing instance using SSH. For more information, see Amazon ECS container
agent configuration, Amazon ECS Log File Locations, and Compute resource AMIs.

• Review the AWS Dashboard – Review the AWS Dashboard to verify that the expected job states
and that the compute environment scales as expected. You can also review the job logs in
CloudWatch.

Common errors and troubleshooting 426

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html

AWS Batch User Guide

• Verify that your instance is created – If an instance is created, it means that your compute
environment scaled as expected. If your instances aren’t created, find the associated subnets in
your compute environment to change. For more information, see Verify a scaling activity for an
Auto Scaling group.

We also recommend that you verify that your instances can fulfill your related job requirements.
For example, a job might require 1 TiB of memory, but the compute environment uses a C5
instance type that's limited to 192 GB of memory.

• Verify that your instances are being requested by AWS Batch – Check Auto Scaling group
history to verify that your instances are being requested by AWS Batch. This is an indication of
how Amazon EC2 tries to acquire instances. If you receive an error stating the Amazon EC2 Spot
can’t acquire an instance in a specific Availability Zone, this might be because the Availability
Zone doesn't offer a specific instance family.

• Verify that instances register with Amazon ECS – If you see instances in the Amazon EC2
console, but no Amazon ECS container instances in your Amazon ECS cluster, the Amazon ECS
agent might not be installed on the Amazon Machine Image (AMI). Moreover, the Amazon ECS
Agent, the Amazon EC2 Data in your AMI, or the launch template might not be configured
correctly. To isolate the root cause, create a separate Amazon EC2 instance or connect to an
existing instance using SSH. For more information, see CloudWatch agent configuration file: Logs
section, Amazon ECS Log File Locations, and Compute resource AMIs.

• Open a support ticket – If you're still experiencing issues after some troubleshooting and have
a support plan, open a support ticket. In the support ticket, make sure to include information
about the issue, workload specifics, the configuration, and test results. For more information, see
Compare AWS Support Plans.

• Review the AWS Batch and HPC forums – For more information, see the AWS Batch and HPC
forums.

• Review the AWS Batch Runtime Monitoring Dashboard – This dashboard uses a serverless
architecture to capture events from Amazon ECS, AWS Batch, and Amazon EC2 to provide
insights into jobs and instances. For more information, see AWS Batch Runtime Monitoring
Dashboards Solution.

Common errors and troubleshooting 427

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-verify-scaling-activity.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-verify-scaling-activity.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html#CloudWatch-Agent-Configuration-File-Logssection
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html#CloudWatch-Agent-Configuration-File-Logssection
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/logs.html
https://aws.amazon.com/premiumsupport/plans/
https://repost.aws/tags/TAAQ5TlH16Tc686CgyYUNX0g/aws-batch
https://repost.aws/tags/TAjBvP4otfT3eX8PswbXo9AQ/high-performance-compute
https://github.com/aws-samples/aws-batch-runtime-monitoring
https://github.com/aws-samples/aws-batch-runtime-monitoring

AWS Batch User Guide

Troubleshooting AWS Batch

You might need to troubleshoot issues that are related to your compute environments, job queues,
job definitions, or jobs. This chapter describes how to troubleshoot and resolve such issues in your
AWS Batch environment.

AWS Batch uses IAM policies, roles, and permissions, and runs on Amazon EC2, Amazon ECS, AWS
Fargate, and Amazon Elastic Kubernetes Service infrastructure. To troubleshoot issues that are
related to these services, see the following:

• Troubleshooting IAM in the IAM User Guide

• Amazon ECS troubleshooting in the Amazon Elastic Container Service Developer Guide

• Amazon EKS troubleshooting in the Amazon EKS User Guide

• Troubleshoot EC2 instances in the Amazon EC2 User Guide

Contents

• AWS Batch

• INVALID compute environment

• Incorrect role name or ARN

• Repair an INVALID compute environment

• Jobs stuck in a RUNNABLE status

• Spot Instances not tagged on creation

• Spot Instances not scaling down

• Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role in the
AWS Management Console

• Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role with the
AWS CLI

• Can't retrieve Secrets Manager secrets

• Can't override job definition resource requirements

• Error message when you update the desiredvCpus setting

• AWS Batch on Amazon EKS

• INVALID compute environment

• Unsupported Kubernetes version

428

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/troubleshooting.html
https://docs.aws.amazon.com/eks/latest/userguide/troubleshooting.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-troubleshoot.html

AWS Batch User Guide

• Instance profile doesn't exist

• Invalid Kubernetes namespace

• Deleted compute environment

• Nodes don't join the Amazon EKS cluster

• AWS Batch on Amazon EKS job is stuck in RUNNABLE status

• Verify that the aws-auth ConfigMap is configured correctly

• RBAC permissions or bindings aren't configured properly

AWS Batch

Review the following topics to find review processes and potential solutions to common issues that
you may encounter when using AWS Batch.

Topics

• INVALID compute environment

• Jobs stuck in a RUNNABLE status

• Spot Instances not tagged on creation

• Spot Instances not scaling down

• Can't retrieve Secrets Manager secrets

• Can't override job definition resource requirements

• Error message when you update the desiredvCpus setting

INVALID compute environment

It's possible that you might have incorrectly configured a managed compute environment. If you
did, the compute environment enters an INVALID state and can't accept jobs for placement. The
following sections describe the possible causes and how to troubleshoot based on the cause.

Incorrect role name or ARN

The most common cause for a compute environment to enter an INVALID state is that the AWS
Batch service role or the Amazon EC2 Spot Fleet role has an incorrect name or Amazon Resource
Name (ARN). This is more common with compute environments that are created using the AWS CLI
or the AWS SDKs. When you create a compute environment in the AWS Management Console, AWS

AWS Batch 429

AWS Batch User Guide

Batch helps you choose the correct service or Spot Fleet roles. However, suppose that you manually
enter the name or the ARN and enter them incorrectly. Then, the resulting compute environment is
also INVALID.

However, suppose that you manually enter the name or ARN for an IAM resource in an AWS CLI
command or your SDK code. In this case, AWS Batch can't validate the string. Instead, AWS Batch
must accept the bad value and attempt to create the environment. If AWS Batch fails to create the
environment, the environment moves to an INVALID state, and you see the following errors.

For an invalid service role:

CLIENT_ERROR - Not authorized to perform sts:AssumeRole (Service:
AWSSecurityTokenService; Status Code: 403; Error Code: AccessDenied;
Request ID: dc0e2d28-2e99-11e7-b372-7fcc6fb65fe7)

For an invalid Spot Fleet role:

CLIENT_ERROR - Parameter: SpotFleetRequestConfig.IamFleetRole
is invalid. (Service: AmazonEC2; Status Code: 400; Error Code:
InvalidSpotFleetRequestConfig; Request ID: 331205f0-5ae3-4cea-
bac4-897769639f8d) Parameter: SpotFleetRequestConfig.IamFleetRole is
invalid

One common cause for this issue is the following scenario. You only specify the name of an IAM
role when using the AWS CLI or the AWS SDKs, instead of the full Amazon Resource Name (ARN).
Depending on how you created the role, the ARN might contain a aws-service-role path prefix.
For example, if you manually create the AWS Batch service role using the procedures in Use service-
linked roles for AWS Batch, your service role ARN might look like the following.

arn:aws:iam::123456789012:role/AWSBatchServiceRole

However, if you created the service role as part of the console first run wizard today, your service
role ARN might look like the following.

arn:aws:iam::123456789012:role/aws-service-role/AWSBatchServiceRole

This issue can also occur if you attach the the AWS Batch service-level policy
(AWSBatchServiceRole) to a non-service role. For example, you may receive an error message
that resembles the following in this scenario:

INVALID compute environment 430

AWS Batch User Guide

CLIENT_ERROR - User: arn:aws:sts::account_number:assumed-role/batch-replacement-role/
aws-batch is not
 authorized to perform: action on resource ...

To resolve this issue, do one of the following.

• Use an empty string for the service role when you create the AWS Batch compute environment.

• Specify the service role in the following format: arn:aws:iam::account_number:role/aws-
service-role/batch.amazonaws.com/AWSServiceRoleForBatch.

When you only specify the name of an IAM role when using the AWS CLI or the AWS SDKs, AWS
Batch assumes that your ARN doesn't use the aws-service-role path prefix. Because of
this, we recommend that you specify the full ARN for your IAM roles when you create compute
environments.

To repair a compute environment that's misconfigured this way, see Repair an INVALID compute
environment.

Repair an INVALID compute environment

When you have a compute environment in an INVALID state, update it to repair the invalid
parameter. For an Incorrect role name or ARN, update the compute environment using the correct
service role.

To repair a misconfigured compute environment

1. Open the AWS Batch console at https://console.aws.amazon.com/batch/.

2. From the navigation bar, select the AWS Region to use.

3. In the navigation pane, choose Compute environments.

4. On the Compute environments page, select the radio button next to the compute
environment to edit, and then choose Edit.

5. On the Update compute environment page, for Service role, choose the IAM role to use with
your compute environment. The AWS Batch console only displays roles that have the correct
trust relationship for compute environments.

6. Choose Save to update your compute environment.

INVALID compute environment 431

https://console.aws.amazon.com/batch/

AWS Batch User Guide

Jobs stuck in a RUNNABLE status

Suppose that your compute environment contains compute resources, but your jobs don't progress
beyond the RUNNABLE status. Then, it's likely that something is preventing the jobs from being
placed on a compute resource and causing your job queues to be blocked. Here's how to know if
your job is waiting for its turn or stuck and blocking the queue.

If AWS Batch detects that you have a RUNNABLE job at the head and blocking the queue, you'll
receive a Resource: Job queue blocked events event from Amazon CloudWatch Events with the
reason. The same reason is also updated into the statusReason field as a part of ListJobs and
DescribeJobs API calls.

Optionally, you can configure the jobStateTimeLimitActions parameter through
CreateJobQueue and UpdateJobQueue API actions.

Note

Currently, the only action you can use with jobStateLimitActions.action is to cancel
a job.

The jobStateTimeLimitActions parameter is used to specify a set of actions that AWS
Batch performs on jobs in a specific state. You can set a time threshold in seconds through the
maxTimeSeconds field.

When a job has been in a RUNNABLE state with the defined statusReason, AWS Batch performs
the action specified after maxTimeSeconds have elapsed.

For example, you can set the jobStateTimeLimitActions parameter to wait up to 4 hours
for any job in the RUNNABLE state that is waiting for sufficient capacity to become available. You
can do this by setting statusReason to CAPACITY:INSUFFICIENT_INSTANCE_CAPACITY and
maxTimeSeconds to 144000 before cancelling the job and allowing the next job to advance to the
head of the job queue.

The following are the reasons that AWS Batch provides when it detects that a job queue is blocked.
This list provides the messages returned from the ListJobs and DescribeJobs API actions.
These are also the same values you can define for the jobStateLimitActions.statusReason
parameter.

Jobs stuck in a RUNNABLE status 432

https://docs.aws.amazon.com/batch/latest/APIReference/API_ListJobs.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_DescribeJobs.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateJobQueue.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_UpdateJobQueue.html

AWS Batch User Guide

1. Reason: All connected compute environments have insufficient capacity errors. When requested,
AWS Batch detects Amazon EC2 instances that experience insufficient capacity errors. Canceling
the job, either manually or by setting the jobStateTimeLimitActions parameter on
statusReason, allows the subsequent job to move to the head of the queue.

• statusReason message while the job is stuck:
CAPACITY:INSUFFICIENT_INSTANCE_CAPACITY - Service cannot fulfill the
capacity requested for instance type [instanceTypeName]

• reason used for jobStateTimeLimitActions:
CAPACITY:INSUFFICIENT_INSTANCE_CAPACITY

• statusReason message after the job is canceled: Canceled by JobStateTimeLimit
action due to reason: CAPACITY:INSUFFICIENT_INSTANCE_CAPACITY

Note:

a. The AWS Batch service role requires autoscaling:DescribeScalingActivities
permission for this detection to work. If you use the Service-linked role permissions for AWS
Batch service-linked role (SLR) or the AWS managed policy: AWSBatchServiceRole policy
managed policy, then you don’t need to take any action because their permission policies are
updated.

b. If you use the SLR or the managed policy, you must add the
autoscaling:DescribeScalingActivities and
ec2:DescribeSpotFleetRequestHistory permissions so that you can receive
blocked job queue events and updated job status when in RUNNABLE. In addition,
AWS Batch needs these permissions to perform cancellation actions through the
jobStateTimeLimitActions parameter even if they are configured on the job queue.

c. In the case of a multi-node parallel (MNP) job, if the attached high-priority, Amazon EC2
compute environment experiences insufficient capacity errors, it blocks the queue
even if a lower priority compute environment does experience this error.

2. Reason: All compute environments have a maxvCpus parameter that is smaller
than the job requirements. Canceling the job, either manually or by setting the
jobStateTimeLimitActions parameter on statusReason, allows the subsequent job to
move to the head of the queue. Optionally, you can increase the maxvCpus parameter of the
primary compute environment to meet the needs of the blocked job.

• statusReason message while the job is stuck:
MISCONFIGURATION:COMPUTE_ENVIRONMENT_MAX_RESOURCE - CE(s) associated
with the job queue cannot meet the CPU requirement of the job.

Jobs stuck in a RUNNABLE status 433

https://docs.aws.amazon.com/batch/latest/APIReference/API_ComputeResource.html#Batch-Type-ComputeResource-maxvCpus

AWS Batch User Guide

• reason used for jobStateTimeLimitActions:
MISCONFIGURATION:COMPUTE_ENVIRONMENT_MAX_RESOURCE

• statusReason message after the job is canceled: Canceled by JobStateTimeLimit
action due to reason: MISCONFIGURATION:COMPUTE_ENVIRONMENT_MAX_RESOURCE

3. Reason: None of the compute environments have instances that meet the job requirements.
When a job requests resources, AWS Batch detects that no attached compute environment is
able to accommodate the incoming job. Canceling the job, either manually or by setting the
jobStateTimeLimitActions parameter on statusReason, allows the subsequent job to
move to the head of the queue. Optionally, you can redefine the compute environment's allowed
instance types to add the necessary job resources.

• statusReason message while the job is stuck:
MISCONFIGURATION:JOB_RESOURCE_REQUIREMENT - The job resource
requirement (vCPU/memory/GPU) is higher than that can be met by the
CE(s) attached to the job queue.

• reason used for jobStateTimeLimitActions:
MISCONFIGURATION:JOB_RESOURCE_REQUIREMENT

• statusReason message after the job is canceled: Canceled by JobStateTimeLimit
action due to reason: MISCONFIGURATION:JOB_RESOURCE_REQUIREMENT

4. Reason: All compute environments have service role issues. To resolve this, compare your service
role permissions to the AWS managed policies for AWS Batch and address any gaps.

It's a best practice to use the Service-linked role permissions for AWS Batch to avoid similar
errors.

Canceling the job, either manually or by setting the jobStateTimeLimitActions parameter
on statusReason, allows the subsequent job to move to the head of the queue. Without
resolving the service role issue(s), it is likely that the next job will also be blocked as well. It's
best to manually investigate and resolve this issue.

• statusReason message while the job is stuck:
MISCONFIGURATION:SERVICE_ROLE_PERMISSIONS – Batch service role has a
permission issue.

• reason used for jobStateTimeLimitActions:
MISCONFIGURATION:SERVICE_ROLE_PERMISSIONS

• statusReason message after the job is canceled: Canceled by JobStateTimeLimit
action due to reason: MISCONFIGURATION:SERVICE_ROLE_PERMISSIONS

Jobs stuck in a RUNNABLE status 434

AWS Batch User Guide

5. Reason: All compute environments are invalid. For more information, see INVALID
compute environment. Note: You can't configure a programmable action through the
jobStateTimeLimitActions parameter to resolve this error.

• statusReason message while the job is stuck: ACTION_REQUIRED - CE(s) associated
with the job queue are invalid.

6. Reason: AWS Batch has detected a blocked queue, but is unable to determine the reason.
Note: You can't configure a programmable action through the jobStateTimeLimitActions
parameter to resolve this error. For more information about troubleshooting, see Why is my AWS
Batch job stuck in RUNNABLE on AWS in re:Post.

• statusReason message while the job is stuck: UNDETERMINED - Batch job is
blocked, root cause is undetermined.

In case you did not receive an event from CloudWatch Events or you received the unknown reason
event, here are some common causes for this issue.

The awslogs log driver isn't configured on your compute resources

AWS Batch jobs send their log information to CloudWatch Logs. To enable this, you must
configure your compute resources to use the awslogs log driver. Suppose that you base
your compute resource AMI off of the Amazon ECS optimized AMI (or Amazon Linux). Then,
this driver is registered by default with the ecs-init package. Now suppose that you use
a different base AMI. Then, you must verify that the awslogs log driver is specified as an
available log driver with the ECS_AVAILABLE_LOGGING_DRIVERS environment variable when
the Amazon ECS container agent is started. For more information, see Compute resource AMI
specification and Tutorial: Create a compute resource AMI.

Insufficient resources

If your job definitions specify more CPU or memory resources than your compute resources can
allocate, then your jobs aren't ever placed. For example, suppose that your job specifies 4 GiB
of memory, and your compute resources have less than that available. Then it's the case that
the job can't be placed on those compute resources. In this case, you must reduce the specified
memory in your job definition or add larger compute resources to your environment. Some
memory is reserved for the Amazon ECS container agent and other critical system processes.
For more information, see Compute resource memory management.

Jobs stuck in a RUNNABLE status 435

https://repost.aws/knowledge-center/batch-job-stuck-runnable-status
https://repost.aws/knowledge-center/batch-job-stuck-runnable-status

AWS Batch User Guide

No internet access for compute resources

Compute resources need access to communicate with the Amazon ECS service endpoint. This
can be through an interface VPC endpoint or through your compute resources having public IP
addresses.

For more information about interface VPC endpoints, see Amazon ECS Interface VPC Endpoints
(AWS PrivateLink) in the Amazon Elastic Container Service Developer Guide.

If you do not have an interface VPC endpoint configured and your compute resources do not
have public IP addresses, then they must use network address translation (NAT) to provide
this access. For more information, see NAT gateways in the Amazon VPC User Guide. For more
information, see the section called “Tutorial: Create a VPC”.

Amazon EC2 instance limit reached

The number of Amazon EC2 instances that your account can launch in an AWS Region is
determined by your EC2 instance quota. Certain instance types also have a per-instance-type
quota. For more information about your account's Amazon EC2 instance quota including how to
request a limit increase, see Amazon EC2 Service Limits in the Amazon EC2 User Guide.

Amazon ECS container agent isn't installed

The Amazon ECS container agent must be installed on the Amazon Machine Image (AMI) to let
AWS Batch run jobs. The Amazon ECS container agent is installed by default on Amazon ECS
optimized AMIs. For more information about the Amazon ECS container agent, see Amazon ECS
container agent in the Amazon Elastic Container Service Developer Guide.

For more information, see Why is my AWS Batch job stuck in RUNNABLE status? in re:Post.

Spot Instances not tagged on creation

Spot Instance tagging for AWS Batch compute resources is supported as of October 25, 2017.
Before, the recommended IAM managed policy (AmazonEC2SpotFleetRole) for the Amazon EC2
Spot Fleet role didn't contain permissions to tag Spot Instances at launch. The new recommended
IAM managed policy is called AmazonEC2SpotFleetTaggingRole. It supports tagging Spot
Instances at launch.

To fix Spot Instance tagging on creation, follow the following procedure to apply the current
recommended IAM managed policy to your Amazon EC2 Spot Fleet role. That way, any future Spot

Spot Instances not tagged on creation 436

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_agent.html
https://aws.amazon.com/premiumsupport/knowledge-center/batch-job-stuck-runnable-status/

AWS Batch User Guide

Instances that are created with that role have permissions to apply instance tags when they're
created.

To apply the current IAM managed policy to your Amazon EC2 Spot Fleet role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles, and choose your Amazon EC2 Spot Fleet role.

3. Choose Attach policy.

4. Select the AmazonEC2SpotFleetTaggingRole and choose Attach policy.

5. Choose your Amazon EC2 Spot Fleet role again to remove the previous policy.

6. Select the x to the right of the AmazonEC2SpotFleetRole policy, and choose Detach.

Spot Instances not scaling down

AWS Batch introduced the AWSServiceRoleForBatch service-linked role on March 10, 2021.
If no role is specified in the serviceRole parameter of the compute environment, this
service-linked role is used as the service role. However, suppose that the service-linked role
is used in an EC2 Spot compute environment, but the Spot role used doesn't include the
AmazonEC2SpotFleetTaggingRole managed policy. Then, the Spot Instance doesn't scale down.
As a result, you will receive an error with the following message: "You are not authorized to
perform this operation." Use the following steps to update the spot fleet role that you use in the
spotIamFleetRole parameter. For more information, see Using service-linked roles and Creating
a role to delegate permissions to an AWS Service in the IAM User Guide.

Topics

• Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role in the AWS
Management Console

• Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role with the AWS
CLI

Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role
in the AWS Management Console

To apply the current IAM managed policy to your Amazon EC2 Spot Fleet role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

Spot Instances not scaling down 437

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://console.aws.amazon.com/iam/

AWS Batch User Guide

2. Choose Roles, and choose your Amazon EC2 Spot Fleet role.

3. Choose Attach policy.

4. Select the AmazonEC2SpotFleetTaggingRole and choose Attach policy.

5. Choose your Amazon EC2 Spot Fleet role again to remove the previous policy.

6. Select the x to the right of the AmazonEC2SpotFleetRole policy, and choose Detach.

Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role
with the AWS CLI

The example commands assume that your Amazon EC2 Spot Fleet role is named
AmazonEC2SpotFleetRole. If your role uses a different name, adjust the commands to match.

To attach the AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role

1. To attach the AmazonEC2SpotFleetTaggingRole managed IAM policy to your
AmazonEC2SpotFleetRole role, run the following command using the AWS CLI.

$ aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2SpotFleetTaggingRole
 \
 --role-name AmazonEC2SpotFleetRole

2. To detach the AmazonEC2SpotFleetRole managed IAM policy from your
AmazonEC2SpotFleetRole role, run the following command using the AWS CLI.

$ aws iam detach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2SpotFleetRole \
 --role-name AmazonEC2SpotFleetRole

Can't retrieve Secrets Manager secrets

If you use an AMI with an Amazon ECS agent that's earlier than version
1.16.0-1, then you must use the Amazon ECS agent configuration variable
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE=true to use this feature. You can add it to
the ./etc/ecs/ecs.config file to a new container instance when you create that instance. Or,
you can add it to an existing instance. If you add it to an existing instance, you must restart the ECS

Can't retrieve Secrets Manager secrets 438

AWS Batch User Guide

agent after you add it. For more information, see Amazon ECS Container Agent Configuration in
the Amazon Elastic Container Service Developer Guide.

Can't override job definition resource requirements

The memory and vCPU overrides that are specified in the memory and vcpus members of the
containerOverrides structure, which passed to SubmitJob, can't override the memory and vCPU
requirements that are specified in the resourceRequirements structure in the job definition.

If you try to override these resource requirements, you might see the following error message:

"This value was submitted in a deprecated key and may conflict with the value provided by the job
definition's resource requirements."

To correct this, specify the memory and vCPU requirements in the resourceRequirements member
of the containerOverrides. For example, if your memory and vCPU overrides are specified in the
following lines.

"containerOverrides": {
 "memory": 8192,
 "vcpus": 4
}

Change them to the following:

"containerOverrides": {
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "8192"
 },
 {
 "type": "VCPU",
 "value": "4"
 }
],
}

Do the same change to the memory and vCPU requirements that are specified in the
containerProperties object in the job definition. For example, if your memory and vCPU
requirements are specified in the following lines.

Can't override job definition resource requirements 439

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-agent-config.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerOverrides.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html#Batch-Type-ContainerProperties-resourceRequirements
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerOverrides.html#Batch-Type-ContainerOverrides-resourceRequirements
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerOverrides.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_ContainerProperties.html

AWS Batch User Guide

{
 "containerProperties": {
 "memory": 4096,
 "vcpus": 2,
}

Change them to the following:

"containerProperties": {
 "resourceRequirements": [
 {
 "type": "MEMORY",
 "value": "4096"
 },
 {
 "type": "VCPU",
 "value": "2"
 }
],
}

Error message when you update the desiredvCpus setting

You see the following error message when you use the AWS Batch API to update the desired vCPUs
(desiredvCpus) setting.

Manually scaling down compute environment is not supported. Disconnecting
job queues from compute environment will cause it to scale-down to
minvCpus.

This issue occurs if the updated desiredvCpus value is less than the current desiredvCpus
value. When you update the desiredvCpus value, both of the following must be true:

• The desiredvCpus value must be between the minvCpus and maxvCpus values.

• The updated desiredvCpus value must be greater than or equal to the current desiredvCpus
value.

AWS Batch on Amazon EKS

Topics

Error message when you update the desiredvCpus setting 440

AWS Batch User Guide

• INVALID compute environment

• AWS Batch on Amazon EKS job is stuck in RUNNABLE status

• Verify that the aws-auth ConfigMap is configured correctly

• RBAC permissions or bindings aren't configured properly

Review the following topics to find review processes and potential solutions to common issues that
you may encounter when using AWS Batch on Amazon Elastic Kubernetes Service.

INVALID compute environment

It's possible that you might have incorrectly configured a managed compute environment. If you
did, the compute environment enters an INVALID state and can't accept jobs for placement. The
following sections describe the possible causes and how to troubleshoot based on the cause.

Unsupported Kubernetes version

You might see an error message that resembles the following when you use the
CreateComputeEnvironment API operation or UpdateComputeEnvironmentAPI operation
to create or update a compute environment. This issue occurs if you specify an unsupported
Kubernetes version in EC2Configuration.

At least one imageKubernetesVersion in EC2Configuration is not supported.

To resolve this issue, delete the compute environment and then re-create it with a supported
Kubernetes version.

You can perform a minor version upgrade on your Amazon EKS cluster. For example, you can
upgrade the cluster from 1.xx to 1.yy even if the minor version isn't supported.

However, the compute environment status might change to INVALID after a major version update.
For example, if you perform a major version upgrade from 1.xx to 2.yy. If the major version isn't
supported by AWS Batch, you see an error message that resembles the following.

reason=CLIENT_ERROR - ... EKS Cluster version [2.yy] is unsupported

To resolve this issue, specify a supported Kubernetes version when you use an API operation to
create or update a compute environment.

AWS Batch on Amazon EKS currently supports the following Kubernetes versions:

INVALID compute environment 441

AWS Batch User Guide

• 1.30

• 1.29

• 1.28

• 1.27

• 1.26

• 1.25

• 1.24

• 1.23

Instance profile doesn't exist

If the specified instance profile does not exist, the AWS Batch on Amazon EKS compute
environment status is changed to INVALID. You see an error set in the statusReason parameter
that resembles the following.

CLIENT_ERROR - Instance profile arn:aws:iam::...:instance-profile/<name> does not exist

To resolve this issue, specify or create a working instance profile. For more information, see
Amazon EKS node IAM role in the Amazon EKS User Guide.

Invalid Kubernetes namespace

If AWS Batch on Amazon EKS can't validate the namespace for the compute environment, the
compute environment status is changed to INVALID. For example, this issue can occur if the
namespace doesn't exist.

You see an error message set in the statusReason parameter that resembles the following.

CLIENT_ERROR - Unable to validate Kubernetes Namespace

This issue can occur if any of the following are true:

• The Kubernetes namespace string in the CreateComputeEnvironment call doesn't exist. For
more information, see CreateComputeEnvironment.

• The required Role-Based Access Control (RBAC) permissions to manage the namespace are not
configured correctly.

• AWS Batch doesn't have access to the Amazon EKS Kubernetes API server endpoint.

INVALID compute environment 442

https://docs.aws.amazon.com/eks/latest/userguide/create-node-role.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_CreateComputeEnvironment.html

AWS Batch User Guide

To resolve this issue, see Verify that the aws-auth ConfigMap is configured correctly. For more
information, see Tutorial: Getting started with AWS Batch on Amazon EKS.

Deleted compute environment

Suppose that you delete an Amazon EKS cluster before you delete the attached AWS Batch
on Amazon EKS compute environment. Then, the compute environment status is changed to
INVALID. In this scenario, the compute environment doesn't work properly if you re-create the
Amazon EKS cluster with the same name.

To resolve this issue, delete and then re-create the AWS Batch on Amazon EKS compute
environment.

Nodes don't join the Amazon EKS cluster

AWS Batch on Amazon EKS scales down a compute environment if it determines that not all
nodes joined the Amazon EKS cluster. When AWS Batch on Amazon EKS scales down the compute
environment, the compute environment status is changed to INVALID.

Note

AWS Batch doesn't change the compute environment status immediately so that you can
debug the issue.

You see an error message set in the statusReason parameter that resembles ones of the
following:

Your compute environment has been INVALIDATED and scaled down because
none of the instances joined the underlying ECS Cluster. Common issues
preventing instances joining are the following: VPC/Subnet configuration
preventing communication to ECS, incorrect Instance Profile policy
preventing authorization to ECS, or customized AMI or LaunchTemplate
configurations affecting ECS agent.

Your compute environment has been INVALIDATED and scaled down because
none of the nodes joined the underlying Amazon EKS Cluster. Common issues
preventing nodes joining are the following: networking configuration
preventing communication to Amazon EKS Cluster, incorrect Amazon EKS
Instance Profile or Kubernetes RBAC policy preventing authorization

INVALID compute environment 443

AWS Batch User Guide

to Amazon EKS Cluster, customized AMI or LaunchTemplate configurations
affecting Amazon EKS/Kubernetes node bootstrap.

When using a default Amazon EKS AMI, the most common causes of this issue are the following:

• The instance role isn't configured correctly. For more information, see Amazon EKS node IAM role
in the Amazon EKS User Guide.

• The subnets aren't configured correctly. For more information, see Amazon EKS VPC and subnet
requirements and considerations in the Amazon EKS User Guide.

• The security group isn't configured correctly. For more information, see Amazon EKS security
group requirements and considerations in the Amazon EKS User Guide.

Note

You may also see an error notification in the Personal Health Dashboard (PHD).

AWS Batch on Amazon EKS job is stuck in RUNNABLE status

An aws-auth ConfigMap is automatically created and applied to your cluster when you create a
managed node group or a node group using eksctl. An aws-auth ConfigMap is initially created
to allow nodes to join your cluster. However, you also use the aws-authConfigMap to add role-
based access control (RBAC) access to users and roles.

To verify that the aws-auth ConfigMap is configured correctly:

1. Retrieve the mapped roles in the aws-auth ConfigMap:

$ kubectl get configmap -n kube-system aws-auth -o yaml

2. Verify that the roleARN is configured as follows.

rolearn: arn:aws:iam::aws_account_number:role/AWSServiceRoleForBatch

Note

You can also review the Amazon EKS control plane logs. For more information, see
Amazon EKS control plane logging in the Amazon EKS User Guide.

AWS Batch on Amazon EKS job is stuck in RUNNABLE status 444

https://docs.aws.amazon.com/eks/latest/userguide/create-node-role.html
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html

AWS Batch User Guide

To resolve an issue where a job is stuck in a RUNNABLE status, we recommend that you use
kubectl to re-apply the manifest. For more information, see Prepare your Amazon EKS cluster
for AWS Batch. Or, you can use kubectl to manually edit the aws-auth ConfigMap. For more
information, see Enabling IAM user and role access to your cluster in the Amazon EKS User Guide.

Verify that the aws-auth ConfigMap is configured correctly

To verify that the aws-auth ConfigMap is configured correctly:

1. Retrieve the mapped roles in the aws-auth ConfigMap.

$ kubectl get configmap -n kube-system aws-auth -o yaml

2. Verify that the roleARN is configured as follows.

rolearn: arn:aws:iam::aws_account_number:role/AWSServiceRoleForBatch

Note

The path aws-service-role/batch.amazonaws.com/ has been removed from
the ARN of the service-linked role. This is because of an issue with the aws-auth
configuration map. For more information, see Roles with paths do not work when the
path is included in their ARN in the aws-authconfigmap.

Note

You can also review the Amazon EKS control plane logs. For more information, see
Amazon EKS control plane logging in the Amazon EKS User Guide.

To resolve an issue where a job is stuck in a RUNNABLE status, we recommend that you use
kubectl to re-apply the manifest. For more information, see Prepare your Amazon EKS cluster
for AWS Batch. Or, you can use kubectl to manually edit the aws-auth ConfigMap. For more
information, see Enabling IAM user and role access to your cluster in the Amazon EKS User Guide.

Verify that the aws-auth ConfigMap is configured correctly 445

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268
https://github.com/kubernetes-sigs/aws-iam-authenticator/issues/268
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

AWS Batch User Guide

RBAC permissions or bindings aren't configured properly

If you experience any RBAC permissions or binding issues, verify that the aws-batch Kubernetes
role can access the Kubernetes namespace:

$ kubectl get namespace namespace --as=aws-batch

$ kubectl auth can-i get ns --as=aws-batch

You can also use the kubectl describe command to view the authorizations for a cluster role or
Kubernetes namespace.

$ kubectl describe clusterrole aws-batch-cluster-role

The following is example output.

Name: aws-batch-cluster-role
Labels: <none>
Annotations: <none>
PolicyRule:
 Resources Non-Resource URLs Resource Names
 Verbs
 --------- ----------------- --------------

 configmaps [] []
 [get list watch]
 nodes [] []
 [get list watch]
 pods [] []
 [get list watch]
 daemonsets.apps [] []
 [get list watch]
 deployments.apps [] []
 [get list watch]
 replicasets.apps [] []
 [get list watch]
 statefulsets.apps [] []
 [get list watch]
 clusterrolebindings.rbac.authorization.k8s.io [] []
 [get list]

RBAC permissions or bindings aren't configured properly 446

AWS Batch User Guide

 clusterroles.rbac.authorization.k8s.io [] []
 [get list]
 namespaces [] []
 [get]

$ kubectl describe role aws-batch-compute-environment-role -n my-aws-batch-namespace

The following is example output.

Name: aws-batch-compute-environment-role
Labels: <none>
Annotations: <none>
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 pods [] [] [create
 get list watch delete patch]
 serviceaccounts [] [] [get list]
 rolebindings.rbac.authorization.k8s.io [] [] [get list]
 roles.rbac.authorization.k8s.io [] [] [get list]

To resolve this issue, re-apply the RBAC permissions and rolebinding commands. For more
information, see Prepare your Amazon EKS cluster for AWS Batch.

RBAC permissions or bindings aren't configured properly 447

AWS Batch User Guide

Resource: AWS Batch service quotas

The following table provides the service quotas for AWS Batch that can't be changed. Each quota is
Region specific.

Resource Quota

Maximum number of job queues. For more information, see Job queues. 50

Maximum number of compute environments across Amazon ECS and Amazon EKS.
For more information, see Compute environments for AWS Batch.

50

Maximum number of compute environments per Amazon EKS cluster. 5

Maximum number of compute environments for each job queue 3

Maximum number of job dependencies for a job 20

Maximum job definition size (for RegisterJobDefinition API operations) 24 KiB

Maximum job payload size (for SubmitJob API operations) 30 KiB

Maximum array size for array jobs 10000

Maximum number of jobs in SUBMITTED state 1000000

Maximum number of transactions per second (TPS) for each account for
SubmitJob operations

50

Depending on how you use AWS Batch, additional quotas might apply. To learn about Amazon
EC2 quotas, see Amazon EC2 Service Quotas in the AWS General Reference. For more information
about Amazon ECS quotas, see Amazon ECS Service Quotas in the AWS General Reference. For
more information about Amazon EKS quotas, see Amazon EKS Service Quotas in the AWS General
Reference.

448

https://docs.aws.amazon.com/batch/latest/APIReference/API_RegisterJobDefinition.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/general/latest/gr/ec2-service.html#limits_ec2
https://docs.aws.amazon.com/general/latest/gr/ecs-service.html#limits_ecs
https://docs.aws.amazon.com/general/latest/gr/eks.html#limits_eks

AWS Batch User Guide

Document history

The following table describes the important changes to the documentation since the initial release
of AWS Batch. We also update the documentation frequently to address the feedback that you
send us.

Change Description Date

Updated AWS Batch
supported Amazon EKS
versions

Updated the Amazon EKS
versions that AWS Batch
supports to remove version
1.22.

March 11, 2024

Updated AWS Batch
supported Amazon EKS
versions

Updated the Amazon EKS
versions that AWS Batch
supports to include version
1.29.

February 29, 2024

Automated job retries Corrected the code sample. February 29, 2024

Adds support for multi-con
tainer jobs for AWS Batch

Adds support for multi-con
tainer jobs for AWS Batch
for Amazon Elastic Container
Service, Amazon Elastic
Kubernetes Service, and AWS
Fargate.

February 28, 2024

Updated AWS Batch
supported Amazon EKS
versions

Updated the Amazon EKS
versions that AWS Batch
supports to include version
1.28

January 27, 2024

Updated BatchServiceRolePo
licy and AWSBatchServiceRole BatchServiceRolePolicy

Updated to add support
for describing Spot Fleet
request history and

December 5, 2023

449

https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/job_retries.html
https://docs.aws.amazon.com/batch/latest/userguide/job_retries.html
https://docs.aws.amazon.com/batch/latest/userguide/job_retries.html
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version
https://docs.aws.amazon.com/batch/latest/userguide/eks.html#supported_kubernetes_version

AWS Batch User Guide

Amazon EC2 Auto Scaling
activities.

AWSBatchServiceRole

Updated to add statement
IDs, grant AWS Batch
permissions to ec2:Descr
ibeSpotFleetReques
tHistory and
autoscaling:Descri
beScalingActivitie
s .

AWS Batch on Amazon EKS AWS Batch adds support for
running jobs on Amazon EKS
clusters.

October 25, 2022

Cross-service confused deputy
prevention for AWS Batch

AWS Batch now provides a
workaround for the confused
deputy security issue, which
arises when an entity (a
service or an account) is
coerced by a different entity
to perform an action.

June 6, 2022

Interface VPC Endpoints (AWS
PrivateLink)

Added support for configuri
ng interface VPC endpoints
powered by AWS PrivateLink.
This means you can create a
private connection between
your VPC and AWS Batch
without requiring access
through a NAT instance, a
VPN connection, or AWS
Direct Connect.

April 15, 2022

450

https://docs.aws.amazon.com/batch/latest/userguide/eks.html
https://docs.aws.amazon.com/batch/latest/userguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/batch/latest/userguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/batch/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/batch/latest/userguide/vpc-interface-endpoints.html

AWS Batch User Guide

Enhanced compute
environment updates

AWS Batch enhanced
support updates to compute
environments.

April 14, 2022

AWS managed policy updates
- Update to existing policies

AWS Batch updated existing
managed policies.

December 6, 2021

Fair share scheduling AWS Batch adds support for
adding scheduling policies to
job queues.

November 9, 2021

Amazon EFS AWS Batch adds support
for adding Amazon EFS file
systems to your job definitio
ns.

April 1, 2021

Added service-linked role AWS Batch adds the
AWSServiceRoleForBatch
service-linked role.

March 10, 2021

AWS Fargate support AWS Batch adds support
for running jobs on Fargate
resources.

December 3, 2020

Resource tagging AWS Batch adds support for
adding metadata tags to your
compute environments, job
definitions, job queues, and
jobs.

October 7, 2020

Secrets AWS Batch adds support for
passing secrets to jobs.

October 1, 2020

Logging AWS Batch adds support for
specifying additional log
drivers for jobs.

October 1, 2020

451

https://docs.aws.amazon.com/batch/latest/userguide/updating-compute-environments.html
https://docs.aws.amazon.com/batch/latest/userguide/updating-compute-environments.html
https://docs.aws.amazon.com/batch/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/batch/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/batch/latest/userguide/scheduling-policies.html
https://docs.aws.amazon.com/batch/latest/userguide/efs-volumes.html
https://docs.aws.amazon.com/batch/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/batch/latest/userguide/fargate.html
https://docs.aws.amazon.com/batch/latest/userguide/using-tags.html
https://docs.aws.amazon.com/batch/latest/userguide/specifying-sensitive-data.html
https://docs.aws.amazon.com/batch/latest/userguide/using_awslogs.html

AWS Batch User Guide

Allocation strategies AWS Batch adds support for
multiple strategies to choose
instance types.

October 16, 2019

EFA support AWS Batch adds support for
Elastic Fabric Adapter (EFA)
devices.

August 2, 2019

GPU scheduling AWS Batch adds GPU
scheduling. With this feature,
you can specify the number of
GPUs each job requires, and
AWS Batch scales up instances
accordingly.

April 4, 2019

Multi-node parallel jobs AWS Batch adds support for
multi-node parallel jobs. You
can use this feature run single
jobs that span over multiple
Amazon EC2 instances.

November 19, 2018

Resource-level permissions AWS Batch supports resource-
level permissions on several
API operations.

November 12, 2018

Amazon EC2 Launch template
support

AWS Batch adds support for
using launch templates with
compute environments.

November 12, 2018

AWS Batch job timeouts AWS Batch adds support
for job timeout. With this
support, you can configure a
specific timeout duration for
your jobs so that if a job runs
longer than they should, AWS
Batch terminates the job.

April 5, 2018

452

https://docs.aws.amazon.com/batch/latest/userguide/allocation-strategies.html
https://docs.aws.amazon.com/batch/latest/userguide/efa.html
https://docs.aws.amazon.com/batch/latest/userguide/gpu-jobs.html
https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html
https://docs.aws.amazon.com/batch/latest/userguide/batch-supported-iam-actions-resources.html
https://docs.aws.amazon.com/batch/latest/userguide/launch-templates.html
https://docs.aws.amazon.com/batch/latest/userguide/launch-templates.html
https://docs.aws.amazon.com/batch/latest/userguide/job_timeouts.html

AWS Batch User Guide

AWS Batch jobs as EventBrid
ge targets

AWS Batch jobs are made
available as EventBridge
targets. By creating simple
rules, you can match events
and submit AWS Batch jobs in
response to them.

March 1, 2018

CloudTrail auditing for AWS
Batch

CloudTrail can audit calls
made to AWS Batch API
actions.

January 10, 2018

Array jobs AWS Batch adds support for
array jobs. You can use array
jobs for parameter sweep and
Monte Carlo workloads.

November 28, 2017

Expanded AWS Batch tagging AWS Batch expands support
for the tagging function.
You can use this function
to specify tags for Amazon
EC2 Spot Instances launched
within managed compute
environments.

October 26, 2017

AWS Batch event stream for
EventBridge

AWS Batch adds the event
stream for EventBridge. You
can use AWS Batch event
stream to receive near real-
time notifications regarding
the state of jobs that are
submitted to your job queues.

October 24, 2017

453

https://docs.aws.amazon.com/batch/latest/userguide/batch-cwe-target.html
https://docs.aws.amazon.com/batch/latest/userguide/batch-cwe-target.html
https://docs.aws.amazon.com/batch/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/batch/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/batch/latest/userguide/array_jobs.html
https://docs.aws.amazon.com/batch/latest/userguide/create-compute-environment.html
https://docs.aws.amazon.com/batch/latest/userguide/cloudwatch_event_stream.html
https://docs.aws.amazon.com/batch/latest/userguide/cloudwatch_event_stream.html

AWS Batch User Guide

Automated job retries AWS Batch adds support for
job retries. With this update,
you can apply a retry strategy
to your jobs and job definitio
ns that allows your jobs to be
automatically retried if they
fail.

March 28, 2017

AWS Batch general availabil
ity

AWS Batch is introduced,
designed as a means for
you to run batch computing
workloads on the AWS Cloud.

January 5, 2017

454

https://docs.aws.amazon.com/batch/latest/userguide/job_retries.html

	AWS Batch
	Table of Contents
	What is AWS Batch?
	Components of AWS Batch
	Jobs
	Job definitions
	Job queues
	Compute environment

	The AWS Batch dashboard
	Tutorial: Add the Single job queue widget to the AWS Batch dashboard
	Tutorial: Add the CloudWatch Container Insights widget to the AWS Batch dashboard
	Tutorial: Add the Job logs widget to the AWS Batch dashboard

	Getting started with AWS Batch tutorials
	Complete the AWS Batch prerequisites
	Create IAM account and administrative user
	Sign up for an AWS account
	Create a user with administrative access

	Tutorial: Create IAM roles for your compute environments and container instances
	Tutorial: Create a key pair for your instances
	Tutorial: Create a VPC
	Tutorial: Create a security group
	Tutorial: Install the AWS CLI

	Tutorial: Getting started with Amazon EC2 orchestration
	Create a compute environment
	Create a job queue
	Create a job definition
	Create a job
	Review and create

	Tutorial: Getting started with AWS Batch and Fargate orchestration
	Create a compute environment
	Create a job queue
	Create a job definition
	Create a job
	Review and create

	Tutorial: Getting started with AWS Batch on Amazon EKS
	Prerequisites
	Prepare your Amazon EKS cluster for AWS Batch
	Create an Amazon EKS compute environment
	Create a job queue and attach the compute environment
	Create a job definition
	Submit a job
	(Optional) Submit a job with overrides

	Tutorial: Getting started with AWS Batch on Amazon EKS Private Clusters
	Prerequisites
	Prepare your EKS cluster for AWS Batch
	Create an Amazon EKS compute environment
	Create a job queue and attach the compute environment
	Create a job definition
	Submit a job
	(Optional) Submit a job with overrides
	Troubleshooting

	Compute environments for AWS Batch
	Managed compute environments
	Consideration when creating multi-node parallel jobs

	Unmanaged compute environments
	Create a compute environment
	Tutorial: Create a managed compute environment using Fargate resources
	Tutorial: Create a managed compute environment using Amazon EC2 resources
	Tutorial: Create an unmanaged compute environment using Amazon EC2 resources
	Tutorial: Create a managed compute environment using Amazon EKS resources
	Resource: Compute environment template

	Compute resource AMIs
	Compute resource AMI specification
	Tutorial: Create a compute resource AMI
	Use a GPU workload AMI
	Amazon Linux deprecation

	Use Amazon EC2 launch template with AWS Batch
	Amazon EC2 user data in launch templates
	Reference: Amazon EC2 launch template examples
	Example: Mount an existing Amazon EFS file system
	Example: Override default Amazon ECS container agent configuration
	Example: Mount an existing Amazon FSx for Lustre file system

	EC2 configurations
	Instance type allocation strategies for AWS Batch
	Compute resource memory management
	Reserve system memory
	Tutorial: View compute resource memory
	Memory and vCPU considerations for AWS Batch on Amazon EKS
	Example: job definitions
	Node CPU and memory reservations
	Example: Node CPU reservation
	Example: Node memory reservation
	DaemonSets

	Updating compute environments
	Updating AWS Fargate compute environments
	Updating the AMI ID

	Fargate compute environments
	When to use Fargate
	Job definitions on Fargate
	Job queues on Fargate
	Compute environments on Fargate

	Amazon EKS compute environments
	Amazon EKS
	AWS Batch default AMI
	Supported Kubernetes versions
	Update the Kubernetes version of the compute environment
	Shared responsibility of the Kubernetes nodes
	Run a DaemonSet on AWS Batch managed nodes
	Customize Amazon EKS launch templates
	Add kubelet extra arguments
	Configure the container runtime
	Mount an Amazon EFS volume
	IPv6 support

	Job queues
	Create a job queue
	Tutorial: Create an Amazon EC2 job queue
	Tutorial: Create a Fargate job queue
	Tutorial: Create an Amazon EKS job queue
	Reference: Job queue template

	View job queue status
	View job queue information
	Job queue details
	Job queue snapshot
	Job state limits
	Environment order
	Tags
	JSON

	Fair share scheduling policies
	Use share identifiers to identify workloads
	Use scheduling policies to assign fair share identifiers
	Use fair share scheduling to help schedule jobs
	Tutorial: Create a scheduling policy
	Reference: Scheduling policy template

	Job definitions
	Create a single-node job definition
	Tutorial: Create a single-node job definition on Amazon EC2 resources
	Tutorial: Create a single-node job definition on Fargate resources
	Tutorial: Create a single-node job definition on Amazon EKS resources

	Create a multi-node parallel job definition
	Tutorial: Create a multi-node parallel job definition on Amazon EC2 resources

	Reference: Job definition template that uses ContainerProperties
	Reference: Job definition parameters for ContainerProperties
	Job definition name
	Type
	Parameters
	Container properties
	Amazon EKS properties
	Platform capabilities
	Propagate tags
	Node properties
	Retry strategy
	Scheduling priority
	Tags
	Timeout

	Create job definitions using EcsProperties
	ContainerProperties versus EcsProperties job definitions
	General changes to the AWS Batch APIs
	Multi-container job definitions for Amazon ECS
	Multi-container job definitions for Amazon EKS
	Reference: AWS Batch job scenarios using EcsProperties
	AWS Batch job for Amazon ECS on Amazon EC2
	AWS Batch job for Amazon ECS on Fargate
	AWS Batch job for Amazon EKS
	MNP AWS Batch job with multiple containers per node

	Use the awslogs log driver
	awslogs log driver options in the AWS Batch JobDefiniton data type
	Specify a log configuration in your job definition

	Specify sensitive data
	Specify sensitive data with Secrets Manager
	Considerations when you specify sensitive data using Secrets Manager
	Required IAM permissions for AWS Batch secrets
	Injecting sensitive data as an environment variable
	Example container definitions

	Inject sensitive data in a log configuration
	Create an AWS Secrets Manager secret

	Specify sensitive data with Systems Manager Parameter Store
	Considerations when you specify sensitive data using Systems Manager Parameter Store
	Required IAM permissions for AWS Batch secrets
	Inject sensitive data as an environment variable
	Inject sensitive data in a log configuration
	Create an AWS Systems Manager Parameter Store parameter

	Private registry authentication for jobs
	Required IAM permissions for private registry authentication
	Tutorial: Create a secret for private registry authentication

	Amazon EFS volumes
	Amazon EFS volume considerations
	Use Amazon EFS access points
	Specify an Amazon EFS file system in your job definition

	Reference: Job definition examples
	Reference: Environment variables
	Reference: Parameter substitution
	Reference: Test GPU functionality
	Reference: Multi-node parallel job

	Jobs
	Tutorial: submit a job
	Job states
	AWS Batch job environment variables
	Automated job retries
	Job dependencies
	Job timeouts
	Amazon EKS jobs
	Tutorial: Map a running job to a pod and a node
	Tutorial: Map a running pod back to its job

	Multi-node parallel jobs
	Environment variables
	Node groups
	Job lifecycle for MNP jobs
	Compute environment considerations for MNP with AWS Batch

	Multi-node parallel jobs on Amazon EKS
	Running MNP jobs
	Instance quotas for MNP on Amazon EKS
	Container quotas for MNP on Amazon EKS
	Running MNP jobs in a private Amazon VPC and an Amazon EKS cluster
	Error notification

	Create an Amazon EKS MNP job definition
	Reference: Register the Amazon EKS MNP job definition request payload

	Submit an Amazon EKS MNP job
	Override an Amazon EKS MNP job definition

	Array jobs
	Reference: Example of an array job workflow
	Tutorial: Use the array job index to control job differentiation
	Prerequisites
	Tutorial: Build a container image
	Tutorial: Push your image to Amazon ECR
	Tutorial: Create and register a job definition
	Tutorial: Submit an AWS Batch array job
	Tutorial: View your array job logs

	Run GPU jobs
	Tutorial: Create a GPU-based Kubernetes cluster on Amazon EKS
	Tutorial: Create an Amazon EKS GPU job definition
	Tutorial: Run a GPU job in your Amazon EKS cluster

	Search AWS Batch jobs in a job queue
	Tutorial: Search and filter AWS Batch jobs
	Tutorial: (Beta) Search and filter AWS Batch jobs

	Tutorial: Send AWS Batch job logs to CloudWatch Logs
	Tutorial: Review AWS Batch job information

	Security in AWS Batch
	Identity and Access Management for AWS Batch
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Batch works with IAM
	How AWS Batch works with IAM
	Identity-based policies for AWS Batch
	Identity-based policy examples for AWS Batch

	Policy actions for AWS Batch
	Policy resources for AWS Batch
	Policy condition keys for AWS Batch
	Attribute-based access control (ABAC) with AWS Batch
	Use temporary credentials with AWS Batch
	Cross-service principal permissions for AWS Batch
	Service roles for AWS Batch
	Service-linked roles for AWS Batch

	Identity-based policy examples for AWS Batch
	Policy best practices
	Using the AWS Batch console
	Allow users to view their own permissions

	AWS managed policies for AWS Batch
	AWS managed policy: BatchServiceRolePolicy
	AWS managed policy: AWSBatchServiceRole policy
	AWS managed policy: AWSBatchFullAccess
	AWS Batch updates to AWS managed policies

	AWS Batch IAM policies, roles, and permissions
	IAM policy structure
	Policy syntax
	API actions for AWS Batch
	Amazon Resource Names for AWS Batch
	Confirm that users have the required permissions

	Resource: Example policies for AWS Batch
	Resource: Read-only access for AWS Batch
	Resource: Restrict to POSIX user, Docker image, privilege level, and role on job submission
	Resource: Restrict to job definition prefix on job submission
	Resource: Restrict to a job queue
	Deny action when all conditions match strings
	Resource: Deny action when any condition keys match strings
	Resource: Use the batch:ShareIdentifier condition key

	Resource: AWS Batch managed policy
	AWSBatchFullAccess

	AWS Batch IAM execution role
	Supported resource-level permissions for AWS Batch API actions
	Condition keys for AWS Batch API actions

	Tutorial: Create the IAM execution role
	Tutorial: Check the IAM execution role
	Use service-linked roles for AWS Batch
	Service-linked role permissions for AWS Batch
	Creating a service-linked role for AWS Batch
	Editing a service-linked role for AWS Batch
	Deleting a service-linked role for AWS Batch
	Cleaning up a service-linked role
	Deleting a service-linked role in IAM (Console)
	Deleting a service-linked role in IAM (AWS CLI)
	Deleting a service-linked role in IAM (AWSAPI)

	Supported Regions for AWS Batch service-linked roles

	Amazon ECS instance role
	Tutorial: Check your account's Amazon ECS instance role

	Amazon EC2 spot fleet role
	Tutorial: Create Amazon EC2 spot fleet roles in the AWS Management Console
	Tutorial: Create Amazon EC2 spot fleet roles with the AWS CLI

	EventBridge IAM role

	Create a virtual private cloud
	Create a VPC
	Next steps

	Use an interface endpoint to Access AWS Batch
	Considerations for AWS Batch
	Create an interface endpoint for AWS Batch
	Create an endpoint policy for your interface endpoint

	Compliance validation for AWS Batch
	Infrastructure security in AWS Batch
	Cross-service confused deputy prevention
	Example: Role for accessing only one compute environment
	Example: Role for accessing multiple compute environments

	Logging AWS Batch API calls with AWS CloudTrail
	AWS Batch information in CloudTrail
	Reference: Understanding AWS Batch log file entries

	Troubleshoot AWS Batch IAM
	I am not authorized to perform an action in AWS Batch
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Batch resources

	AWS Step Functions
	Tutorial: View state machine details
	Tutorial: Edit a state machine
	Tutorial: Run a state machine

	AWS Batch event stream for Amazon EventBridge
	AWS Batch events
	Resource: Job state change events
	Resource: Job queue blocked events

	Tutorial: Use AWS user notifications with AWS Batch
	AWS Batch jobs as EventBridge targets
	Tutorial: Create a scheduled AWS Batch job
	Tutorial: Create a rule with an event pattern
	Tutorial: Pass event information to an AWS Batch target on a schedule using the EventBridge input transformer

	Tutorial: Listen for AWS Batch job events using EventBridge
	Prerequisites
	Tutorial: Create the Lambda function
	Tutorial: Register the event rule
	Tutorial: Test your configuration

	Tutorial: Sending Amazon Simple Notification Service alerts for failed job events
	Prerequisites
	Tutorial: Create and subscribe to an Amazon SNS topic
	Tutorial: Register an event rule
	Tutorial: Test your rule
	Alternate rule: Batch job queue blocked

	Elastic Fabric Adapter
	Monitor AWS Batch
	Using CloudWatch Logs with AWS Batch
	Tutorial: Add a CloudWatch Logs IAM policy
	Install and configure the CloudWatch agent
	Tutorial: View CloudWatch Logs

	AWS Batch CloudWatch Container Insights
	Tutorial: Turn on Container Insights

	Use CloudWatch Logs to monitor AWS Batch on Amazon EKS jobs
	Prerequisites
	Install AWS for Fluent Bit
	Turn on Fluent Bit for AWS Batch nodes

	Tag your AWS Batch resources
	Tag basics
	Tag your resources
	Tag restrictions
	Tutorial: Manage tags using the console
	Add tags on an individual resource on creation
	Add and delete tags on an individual resource

	Manage tags using the CLI or API

	Best practices for AWS Batch
	When to use AWS Batch
	Checklist to run at scale
	Optimize containers and AMIs
	Choose the right compute environment resource
	Amazon EC2 On-Demand or Amazon EC2 Spot
	Use Amazon EC2 Spot best practices for AWS Batch
	Common errors and troubleshooting

	Troubleshooting AWS Batch
	AWS Batch
	INVALID compute environment
	Incorrect role name or ARN
	Repair an INVALID compute environment

	Jobs stuck in a RUNNABLE status
	Spot Instances not tagged on creation
	Spot Instances not scaling down
	Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role in the AWS Management Console
	Attach AmazonEC2SpotFleetTaggingRole managed policy to your Spot Fleet role with the AWS CLI

	Can't retrieve Secrets Manager secrets
	Can't override job definition resource requirements
	Error message when you update the desiredvCpus setting

	AWS Batch on Amazon EKS
	INVALID compute environment
	Unsupported Kubernetes version
	Instance profile doesn't exist
	Invalid Kubernetes namespace
	Deleted compute environment
	Nodes don't join the Amazon EKS cluster

	AWS Batch on Amazon EKS job is stuck in RUNNABLE status
	Verify that the aws-auth ConfigMap is configured correctly
	RBAC permissions or bindings aren't configured properly

	Resource: AWS Batch service quotas
	Document history

