Note
Click here to download the full example code
Transfer Learning for Computer Vision Tutorial¶
Created On: Mar 24, 2017 | Last Updated: Jan 27, 2025 | Last Verified: Nov 05, 2024
Author: Sasank Chilamkurthy
In this tutorial, you will learn how to train a convolutional neural network for image classification using transfer learning. You can read more about the transfer learning at cs231n notes
Quoting these notes,
In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.
These two major transfer learning scenarios look as follows:
Finetuning the ConvNet: Instead of random initialization, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual.
ConvNet as fixed feature extractor: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained.
# License: BSD
# Author: Sasank Chilamkurthy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
cudnn.benchmark = True
plt.ion() # interactive mode
<contextlib.ExitStack object at 0x7f94a3234bb0>
Load Data¶
We will use torchvision and torch.utils.data packages for loading the data.
The problem we’re going to solve today is to train a model to classify ants and bees. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.
This dataset is a very small subset of imagenet.
Note
Download the data from here and extract it to the current directory.
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
Using cuda device
Visualize a few images¶
Let’s visualize a few training images so as to understand the data augmentations.
def imshow(inp, title=None):
"""Display image for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
![['bees', 'ants', 'bees', 'ants']](../_images/sphx_glr_transfer_learning_tutorial_001.png)
Training the model¶
Now, let’s write a general function to train a model. Here, we will illustrate:
Scheduling the learning rate
Saving the best model
In the following, parameter scheduler
is an LR scheduler object from
torch.optim.lr_scheduler
.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# Create a temporary directory to save training checkpoints
with TemporaryDirectory() as tempdir:
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_params_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
return model
Visualizing the model predictions¶
Generic function to display predictions for a few images
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
Finetuning the ConvNet¶
Load a pretrained model and reset final fully connected layer.
model_ft = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to ``nn.Linear(num_ftrs, len(class_names))``.
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
0%| | 0.00/44.7M [00:00<?, ?B/s]
81%|######## | 36.0M/44.7M [00:00<00:00, 376MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 383MB/s]
Train and evaluate¶
It should take around 15-25 min on CPU. On GPU though, it takes less than a minute.
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6661 Acc: 0.6926
val Loss: 0.2670 Acc: 0.9085
Epoch 1/24
----------
train Loss: 0.4811 Acc: 0.7992
val Loss: 0.2006 Acc: 0.9281
Epoch 2/24
----------
train Loss: 0.5171 Acc: 0.7664
val Loss: 0.3335 Acc: 0.8693
Epoch 3/24
----------
train Loss: 0.5182 Acc: 0.7459
val Loss: 0.3361 Acc: 0.8889
Epoch 4/24
----------
train Loss: 0.4826 Acc: 0.8115
val Loss: 0.4395 Acc: 0.8170
Epoch 5/24
----------
train Loss: 0.3460 Acc: 0.8607
val Loss: 0.2264 Acc: 0.9281
Epoch 6/24
----------
train Loss: 0.3779 Acc: 0.8525
val Loss: 0.2984 Acc: 0.8954
Epoch 7/24
----------
train Loss: 0.3792 Acc: 0.8361
val Loss: 0.2395 Acc: 0.9216
Epoch 8/24
----------
train Loss: 0.3578 Acc: 0.8525
val Loss: 0.2127 Acc: 0.9216
Epoch 9/24
----------
train Loss: 0.2452 Acc: 0.8811
val Loss: 0.2258 Acc: 0.9085
Epoch 10/24
----------
train Loss: 0.3843 Acc: 0.8402
val Loss: 0.2053 Acc: 0.9281
Epoch 11/24
----------
train Loss: 0.3594 Acc: 0.8525
val Loss: 0.2049 Acc: 0.9346
Epoch 12/24
----------
train Loss: 0.2574 Acc: 0.8934
val Loss: 0.1991 Acc: 0.9216
Epoch 13/24
----------
train Loss: 0.2844 Acc: 0.8648
val Loss: 0.2218 Acc: 0.9346
Epoch 14/24
----------
train Loss: 0.3261 Acc: 0.8730
val Loss: 0.1973 Acc: 0.9281
Epoch 15/24
----------
train Loss: 0.2203 Acc: 0.9098
val Loss: 0.2108 Acc: 0.9281
Epoch 16/24
----------
train Loss: 0.2952 Acc: 0.8730
val Loss: 0.2277 Acc: 0.8954
Epoch 17/24
----------
train Loss: 0.2609 Acc: 0.9098
val Loss: 0.2099 Acc: 0.9020
Epoch 18/24
----------
train Loss: 0.3285 Acc: 0.8525
val Loss: 0.2418 Acc: 0.8889
Epoch 19/24
----------
train Loss: 0.2846 Acc: 0.8852
val Loss: 0.2028 Acc: 0.9346
Epoch 20/24
----------
train Loss: 0.2061 Acc: 0.8893
val Loss: 0.2001 Acc: 0.9346
Epoch 21/24
----------
train Loss: 0.3256 Acc: 0.8525
val Loss: 0.2328 Acc: 0.9020
Epoch 22/24
----------
train Loss: 0.3051 Acc: 0.8689
val Loss: 0.2088 Acc: 0.9020
Epoch 23/24
----------
train Loss: 0.2973 Acc: 0.8811
val Loss: 0.1996 Acc: 0.9216
Epoch 24/24
----------
train Loss: 0.2526 Acc: 0.8852
val Loss: 0.1919 Acc: 0.9281
Training complete in 0m 35s
Best val Acc: 0.934641
visualize_model(model_ft)

ConvNet as fixed feature extractor¶
Here, we need to freeze all the network except the final layer. We need
to set requires_grad = False
to freeze the parameters so that the
gradients are not computed in backward()
.
You can read more about this in the documentation here.
model_conv = torchvision.models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
Train and evaluate¶
On CPU this will take about half the time compared to previous scenario. This is expected as gradients don’t need to be computed for most of the network. However, forward does need to be computed.
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6799 Acc: 0.6189
val Loss: 0.6541 Acc: 0.7255
Epoch 1/24
----------
train Loss: 0.4532 Acc: 0.7705
val Loss: 0.2069 Acc: 0.9346
Epoch 2/24
----------
train Loss: 0.5362 Acc: 0.7541
val Loss: 0.1709 Acc: 0.9412
Epoch 3/24
----------
train Loss: 0.6783 Acc: 0.7131
val Loss: 0.3411 Acc: 0.8627
Epoch 4/24
----------
train Loss: 0.4486 Acc: 0.8033
val Loss: 0.2169 Acc: 0.9346
Epoch 5/24
----------
train Loss: 0.3330 Acc: 0.8484
val Loss: 0.2074 Acc: 0.9477
Epoch 6/24
----------
train Loss: 0.3896 Acc: 0.8443
val Loss: 0.2060 Acc: 0.9281
Epoch 7/24
----------
train Loss: 0.3333 Acc: 0.8566
val Loss: 0.2341 Acc: 0.9346
Epoch 8/24
----------
train Loss: 0.3304 Acc: 0.8811
val Loss: 0.1980 Acc: 0.9412
Epoch 9/24
----------
train Loss: 0.3043 Acc: 0.8811
val Loss: 0.2133 Acc: 0.9346
Epoch 10/24
----------
train Loss: 0.3349 Acc: 0.8566
val Loss: 0.2229 Acc: 0.9346
Epoch 11/24
----------
train Loss: 0.3538 Acc: 0.8566
val Loss: 0.2400 Acc: 0.9346
Epoch 12/24
----------
train Loss: 0.3040 Acc: 0.8525
val Loss: 0.1977 Acc: 0.9346
Epoch 13/24
----------
train Loss: 0.3172 Acc: 0.8402
val Loss: 0.2120 Acc: 0.9346
Epoch 14/24
----------
train Loss: 0.4178 Acc: 0.8279
val Loss: 0.2033 Acc: 0.9346
Epoch 15/24
----------
train Loss: 0.2817 Acc: 0.8689
val Loss: 0.1956 Acc: 0.9412
Epoch 16/24
----------
train Loss: 0.2974 Acc: 0.8484
val Loss: 0.2159 Acc: 0.9216
Epoch 17/24
----------
train Loss: 0.3350 Acc: 0.8566
val Loss: 0.2102 Acc: 0.9477
Epoch 18/24
----------
train Loss: 0.2745 Acc: 0.8975
val Loss: 0.2054 Acc: 0.9477
Epoch 19/24
----------
train Loss: 0.3022 Acc: 0.8811
val Loss: 0.2194 Acc: 0.9216
Epoch 20/24
----------
train Loss: 0.3221 Acc: 0.8402
val Loss: 0.2097 Acc: 0.9412
Epoch 21/24
----------
train Loss: 0.3578 Acc: 0.8443
val Loss: 0.1994 Acc: 0.9477
Epoch 22/24
----------
train Loss: 0.2608 Acc: 0.8893
val Loss: 0.1999 Acc: 0.9477
Epoch 23/24
----------
train Loss: 0.3085 Acc: 0.8730
val Loss: 0.2015 Acc: 0.9346
Epoch 24/24
----------
train Loss: 0.4056 Acc: 0.8238
val Loss: 0.2066 Acc: 0.9412
Training complete in 0m 27s
Best val Acc: 0.947712
visualize_model(model_conv)
plt.ioff()
plt.show()

Inference on custom images¶
Use the trained model to make predictions on custom images and visualize the predicted class labels along with the images.
def visualize_model_predictions(model,img_path):
was_training = model.training
model.eval()
img = Image.open(img_path)
img = data_transforms['val'](img)
img = img.unsqueeze(0)
img = img.to(device)
with torch.no_grad():
outputs = model(img)
_, preds = torch.max(outputs, 1)
ax = plt.subplot(2,2,1)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[preds[0]]}')
imshow(img.cpu().data[0])
model.train(mode=was_training)
visualize_model_predictions(
model_conv,
img_path='data/hymenoptera_data/val/bees/72100438_73de9f17af.jpg'
)
plt.ioff()
plt.show()

Further Learning¶
If you would like to learn more about the applications of transfer learning, checkout our Quantized Transfer Learning for Computer Vision Tutorial.
Total running time of the script: ( 1 minutes 4.054 seconds)