Note
Click here to download the full example code
Transfer Learning for Computer Vision Tutorial¶
Created On: Mar 24, 2017 | Last Updated: Jan 27, 2025 | Last Verified: Nov 05, 2024
Author: Sasank Chilamkurthy
In this tutorial, you will learn how to train a convolutional neural network for image classification using transfer learning. You can read more about the transfer learning at cs231n notes
Quoting these notes,
In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.
These two major transfer learning scenarios look as follows:
Finetuning the ConvNet: Instead of random initialization, we initialize the network with a pretrained network, like the one that is trained on imagenet 1000 dataset. Rest of the training looks as usual.
ConvNet as fixed feature extractor: Here, we will freeze the weights for all of the network except that of the final fully connected layer. This last fully connected layer is replaced with a new one with random weights and only this layer is trained.
# License: BSD
# Author: Sasank Chilamkurthy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
cudnn.benchmark = True
plt.ion() # interactive mode
<contextlib.ExitStack object at 0x7fdd06794a60>
Load Data¶
We will use torchvision and torch.utils.data packages for loading the data.
The problem we’re going to solve today is to train a model to classify ants and bees. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.
This dataset is a very small subset of imagenet.
Note
Download the data from here and extract it to the current directory.
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
Using cuda device
Visualize a few images¶
Let’s visualize a few training images so as to understand the data augmentations.
def imshow(inp, title=None):
"""Display image for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
![['bees', 'ants', 'ants', 'bees']](../_images/sphx_glr_transfer_learning_tutorial_001.png)
Training the model¶
Now, let’s write a general function to train a model. Here, we will illustrate:
Scheduling the learning rate
Saving the best model
In the following, parameter scheduler
is an LR scheduler object from
torch.optim.lr_scheduler
.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
# Create a temporary directory to save training checkpoints
with TemporaryDirectory() as tempdir:
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_params_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# load best model weights
model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
return model
Visualizing the model predictions¶
Generic function to display predictions for a few images
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
Finetuning the ConvNet¶
Load a pretrained model and reset final fully connected layer.
model_ft = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to ``nn.Linear(num_ftrs, len(class_names))``.
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
0%| | 0.00/44.7M [00:00<?, ?B/s]
79%|#######9 | 35.4M/44.7M [00:00<00:00, 371MB/s]
100%|##########| 44.7M/44.7M [00:00<00:00, 365MB/s]
Train and evaluate¶
It should take around 15-25 min on CPU. On GPU though, it takes less than a minute.
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
Epoch 0/24
----------
train Loss: 0.5258 Acc: 0.6844
val Loss: 0.2126 Acc: 0.9412
Epoch 1/24
----------
train Loss: 0.5213 Acc: 0.7951
val Loss: 0.2353 Acc: 0.9085
Epoch 2/24
----------
train Loss: 0.5678 Acc: 0.7664
val Loss: 0.2952 Acc: 0.8824
Epoch 3/24
----------
train Loss: 0.7332 Acc: 0.7377
val Loss: 0.5259 Acc: 0.8235
Epoch 4/24
----------
train Loss: 0.6601 Acc: 0.7664
val Loss: 0.2725 Acc: 0.9085
Epoch 5/24
----------
train Loss: 0.6248 Acc: 0.7705
val Loss: 0.3625 Acc: 0.8562
Epoch 6/24
----------
train Loss: 0.5097 Acc: 0.7828
val Loss: 0.2591 Acc: 0.8824
Epoch 7/24
----------
train Loss: 0.3782 Acc: 0.8484
val Loss: 0.2304 Acc: 0.9216
Epoch 8/24
----------
train Loss: 0.2927 Acc: 0.8689
val Loss: 0.2114 Acc: 0.9216
Epoch 9/24
----------
train Loss: 0.2640 Acc: 0.8975
val Loss: 0.2387 Acc: 0.9281
Epoch 10/24
----------
train Loss: 0.2609 Acc: 0.8770
val Loss: 0.2199 Acc: 0.9281
Epoch 11/24
----------
train Loss: 0.3431 Acc: 0.8361
val Loss: 0.2352 Acc: 0.9346
Epoch 12/24
----------
train Loss: 0.2362 Acc: 0.8975
val Loss: 0.2180 Acc: 0.9150
Epoch 13/24
----------
train Loss: 0.2783 Acc: 0.8852
val Loss: 0.2114 Acc: 0.9150
Epoch 14/24
----------
train Loss: 0.3161 Acc: 0.8525
val Loss: 0.2322 Acc: 0.9281
Epoch 15/24
----------
train Loss: 0.2464 Acc: 0.8893
val Loss: 0.2484 Acc: 0.9150
Epoch 16/24
----------
train Loss: 0.3293 Acc: 0.8197
val Loss: 0.2301 Acc: 0.9281
Epoch 17/24
----------
train Loss: 0.3128 Acc: 0.8525
val Loss: 0.2274 Acc: 0.9281
Epoch 18/24
----------
train Loss: 0.2847 Acc: 0.8893
val Loss: 0.2087 Acc: 0.9216
Epoch 19/24
----------
train Loss: 0.3354 Acc: 0.8566
val Loss: 0.2056 Acc: 0.9216
Epoch 20/24
----------
train Loss: 0.2304 Acc: 0.8811
val Loss: 0.2206 Acc: 0.8954
Epoch 21/24
----------
train Loss: 0.2365 Acc: 0.9057
val Loss: 0.2090 Acc: 0.9216
Epoch 22/24
----------
train Loss: 0.3119 Acc: 0.8607
val Loss: 0.2091 Acc: 0.9150
Epoch 23/24
----------
train Loss: 0.2522 Acc: 0.8975
val Loss: 0.2135 Acc: 0.9216
Epoch 24/24
----------
train Loss: 0.2618 Acc: 0.8811
val Loss: 0.2064 Acc: 0.9150
Training complete in 0m 35s
Best val Acc: 0.941176
visualize_model(model_ft)

ConvNet as fixed feature extractor¶
Here, we need to freeze all the network except the final layer. We need
to set requires_grad = False
to freeze the parameters so that the
gradients are not computed in backward()
.
You can read more about this in the documentation here.
model_conv = torchvision.models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
Train and evaluate¶
On CPU this will take about half the time compared to previous scenario. This is expected as gradients don’t need to be computed for most of the network. However, forward does need to be computed.
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.5863 Acc: 0.6885
val Loss: 0.2419 Acc: 0.9281
Epoch 1/24
----------
train Loss: 0.5459 Acc: 0.7541
val Loss: 0.1531 Acc: 0.9673
Epoch 2/24
----------
train Loss: 0.5481 Acc: 0.7664
val Loss: 0.3643 Acc: 0.8301
Epoch 3/24
----------
train Loss: 0.4392 Acc: 0.8156
val Loss: 0.2023 Acc: 0.9150
Epoch 4/24
----------
train Loss: 0.4231 Acc: 0.7664
val Loss: 0.2373 Acc: 0.9216
Epoch 5/24
----------
train Loss: 0.5503 Acc: 0.7664
val Loss: 0.5207 Acc: 0.8235
Epoch 6/24
----------
train Loss: 0.6116 Acc: 0.7746
val Loss: 0.2869 Acc: 0.9150
Epoch 7/24
----------
train Loss: 0.4510 Acc: 0.8320
val Loss: 0.2009 Acc: 0.9542
Epoch 8/24
----------
train Loss: 0.4136 Acc: 0.8279
val Loss: 0.1948 Acc: 0.9477
Epoch 9/24
----------
train Loss: 0.3508 Acc: 0.8484
val Loss: 0.2148 Acc: 0.9477
Epoch 10/24
----------
train Loss: 0.3134 Acc: 0.8648
val Loss: 0.1969 Acc: 0.9608
Epoch 11/24
----------
train Loss: 0.3983 Acc: 0.8443
val Loss: 0.1882 Acc: 0.9608
Epoch 12/24
----------
train Loss: 0.3406 Acc: 0.8566
val Loss: 0.2092 Acc: 0.9477
Epoch 13/24
----------
train Loss: 0.3366 Acc: 0.8320
val Loss: 0.2264 Acc: 0.9216
Epoch 14/24
----------
train Loss: 0.3443 Acc: 0.8115
val Loss: 0.1897 Acc: 0.9608
Epoch 15/24
----------
train Loss: 0.3234 Acc: 0.8648
val Loss: 0.2172 Acc: 0.9412
Epoch 16/24
----------
train Loss: 0.3214 Acc: 0.8566
val Loss: 0.2113 Acc: 0.9542
Epoch 17/24
----------
train Loss: 0.3561 Acc: 0.8566
val Loss: 0.1696 Acc: 0.9542
Epoch 18/24
----------
train Loss: 0.3825 Acc: 0.8443
val Loss: 0.1902 Acc: 0.9608
Epoch 19/24
----------
train Loss: 0.3675 Acc: 0.8115
val Loss: 0.2156 Acc: 0.9477
Epoch 20/24
----------
train Loss: 0.3628 Acc: 0.8361
val Loss: 0.1960 Acc: 0.9542
Epoch 21/24
----------
train Loss: 0.3001 Acc: 0.8525
val Loss: 0.2121 Acc: 0.9412
Epoch 22/24
----------
train Loss: 0.3164 Acc: 0.8893
val Loss: 0.1897 Acc: 0.9542
Epoch 23/24
----------
train Loss: 0.2429 Acc: 0.8934
val Loss: 0.1794 Acc: 0.9477
Epoch 24/24
----------
train Loss: 0.3523 Acc: 0.8525
val Loss: 0.1852 Acc: 0.9542
Training complete in 0m 27s
Best val Acc: 0.967320
visualize_model(model_conv)
plt.ioff()
plt.show()

Inference on custom images¶
Use the trained model to make predictions on custom images and visualize the predicted class labels along with the images.
def visualize_model_predictions(model,img_path):
was_training = model.training
model.eval()
img = Image.open(img_path)
img = data_transforms['val'](img)
img = img.unsqueeze(0)
img = img.to(device)
with torch.no_grad():
outputs = model(img)
_, preds = torch.max(outputs, 1)
ax = plt.subplot(2,2,1)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[preds[0]]}')
imshow(img.cpu().data[0])
model.train(mode=was_training)
visualize_model_predictions(
model_conv,
img_path='data/hymenoptera_data/val/bees/72100438_73de9f17af.jpg'
)
plt.ioff()
plt.show()

Further Learning¶
If you would like to learn more about the applications of transfer learning, checkout our Quantized Transfer Learning for Computer Vision Tutorial.
Total running time of the script: ( 1 minutes 4.173 seconds)