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Figure 1: Production scene from Disney’s feature film Moana, rendered with Yocto/GL on a laptop. Our library focuses on code simplicity,

feature composability and scalability to large environments, demonstrated in this rendering. Model courtesy of Disney Animation Studios

[Stu18].

Abstract

In this paper we present Yocto/GL, a software library for computer graphics research and education. The library is written in

C++ and targets execution on the CPU, with support for basic math, geometry and imaging utilities, path tracing and file IO.

What distinguishes Yocto/GL from other similar projects is its minimalistic design and data-oriented programming style, which

makes the library readable, extendible, and efficient. We developed Yocto/GL to meet our need, as a research group, of a simple

and reliable codebase that lets us experiment with ease on research projects of various kind. After many iterations carried out

over a few years, we settled on a design that we find effective for our purposes. In the hope of making our efforts valuable for

the community, we share our experience in the development and make the library publicly available.

CCS Concepts

• Computing methodologies → Ray tracing; Mesh geometry models; Physical simulation; Graphics file formats;

1. Introduction

Most research and education efforts in Computer Graphics use ad-
hoc software, often developed by the same researchers that are in-
vestigating new topics. In this, our research field differs from the
others, that have standardized and often industry supported soft-

ware packages. For example, in Computer Vision it is common to
use Matlab in conjunction with neural network software such as Py-
Torch. The reasons why graphics mostly uses hand-grown software
are many, including historical and economical motivations, but also
the sheer variety of research topics that we consider graphics.
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This paper describes Yocto/GL, a library for research and edu-
cation in physically-based graphics. Briefly, Yocto/GL contains a
low-level math library, utilities for computational geometry, utili-
ties for tonal adjustments, a path tracer, and fast model IO. A previ-
ous version of the library also included an impulse-based rigid body
solver and a PBD-style particle simulator, which are being rewrit-
ten. In terms of graphics features, each of these aspects is just a
subset of known libraries, such as PBRT [PJH16], CGAL [The19]
and Libigl [JP17], although Yocto/GL scales considerably better
with model size. Figure 1 shows a movie-like scene rendered in
Yocto/GL on a laptop.

We believe that what distinguishes Yocto/GL is the coding style
and the overall software design we use in developing the library.
This paper focuses on these two aspects, that we believe are appli-
cable to other libraries and made a significant impact on our every-
day use. Rather than adhering to abstract design decisions, we ar-
rived at this design in a pragmatic manner, by re-implementing the
same features multiple times using different programming styles
until we reached good tradeoffs when using the library in our re-
search and teaching efforts. In this paper, we cover the current de-
sign and motivate it with our experience, in the hope that this can
be helpful to others invested in similar efforts.

We developed Yocto/GL since current libraries, including our
previous efforts, did not support well our research. We focus on
problems in content creation, where recent projects use features
from computational geometry, physically-based rendering and ani-
mation. In general, most computer graphics libraries are complex,
in terms of data structures and coding style. This complexity comes
at the price of reduced flexibility since it is hard to compose fea-
tures from different libraries without duplicating data and adopt-
ing different, often conflicting, programming styles. Also, we are
interested in working with large data sets and found that many re-
search libraries do not scale to scene size typical of real-world ap-
plications, both in terms of algorithms but also in how they are im-
plemented. For practical reasons, we also wanted to use Yocto/GL
when teaching graphics courses, to show students example imple-
mentations of algorithms and as base for homeworks and thesis. In
summary, we needed a library that was simple to read and teach,
composable to be adapted to different projects, and efficient to sup-
port low-latency applications and large environments.

Yocto/GL is written in C++ for efficiency and since most other
libraries adopt that language. To make the library composable, we
adopt a data-oriented, procedural, programming style rather than
an object-oriented design. Data in Yocto/GL is explicit and directly
accessible. Most APIs are just free functions that take explicit data
as input. In fact, we use only a small handful of basic, generic,
types that can be passed to many functions, rather than modeling
problems by introducing many types and methods. To combat C++
complexity, we only use a subset of the language and do not use
pointers, neither raw nor smart, relying instead on value semantics.
All resources are stored in data-owning arrays and references are
modeled as indices which refer to positions in the proper resource
array. To our surprise, the resulting code is shorter, easier to read,
scales very well with scene size, is more efficient to compute with,
and has no memory corruption bugs while developing. Some of this
design is vaguely similar to Libigl [JP17], from which we differ

since we model whole scenes, heterogenous computations and use
no template metaprogramming.

The main limitations of Yocto/GL come from our insistence on
simplicity. We focus only on CPU computation and do not support
GPU computation or even complex GPU viewers. GPU program-
ming feels too cumbersome in modern APIs, like Vulkan, DX12 or
Metal, and, more importantly, in our recent works we found that a
progressive CPU raytracer scales better than a GPU rasterizer. We
also insist on including external libraries rarely, and only if their
APIs are simple, data-oriented in style, use little template metapro-
gramming, and they have no negative impact on build time or code
readability. External libraries are always included with wrappers to
ensure interoperability. These choices reduce the features we ex-
pose, but make the library much easier to use.

To this day, Yocto/GL has been quite successful in helping us
reach our goals. We use the library in all recent research projects
where it gave us a significant boost in productivity, especially in
helping us tackle projects that are quite different in nature, but
still rely on the same low-level functionality. We have also used
Yocto/GL in teaching an undergraduate and a graduate course in
graphics as well as several theses. Students informally reported that
the difficulty of homeworks and theses were the graphics aspects,
rather than the programming ones, which is surprising since our
degree does not offer any course in C++ or high-efficiency pro-
gramming.

2. Related Work

Reviewing all popular libraries for computer graphics research is
out of the scope of this work. Instead, we recap here some such li-
braries mostly as comparison in terms of software design. We stress
here that library design varies widely, and that all designs are valid
because different tradeoffs come into play.

Physically-Based Rendering Pbrt [PJH16] and Mitsuba [Jak10]
are the most used physically-based rendering frameworks in re-
search. The aim of Pbrt is to give a reference implementation of
a physically-based renderer from the ground up, comparing differ-
ent materials models, geometry representations and various state-
of-the-art rendering algorithms. The related Pbrt book provides a
comprehensive discussion of modern rendering. Mistsuba was in-
sipired by Pbrt, putting a stronger emphasis on experimental de-
velopment of rendering techniques. Both libraries are written in an
object-oriented style, thus reusing their code consists in the exten-
sion of base classes and the implementation of methods and inter-
faces. As discussed before, we drastically differ in programming
style adopting a data-oriented design and favoring a fixed small set
of shapes, materials and rendering methods.

Computational Geometry Libigl [JP17], CGAL [The19] and
MeshLab [CCC∗08] are the most used computational geometry li-
braries. Libigl focuses on usability with a programming style simi-
lar to Matlab and targets processing of triangle meshes. Rather than
providing a full framework, Libigl defines many functions that act
as building blocks for mesh processing. CGAL on the other hand,
is a comprehensive collection of libraries for 2D and 3D mesh pro-
cessing, with a focus on formal correctness. CGAL is also written
as a toolset for writing computational geometry applications, but its
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programming style makes it more suitable for final implementation
than quick experimentation and teaching. Cinolib [Liv19] was de-
veloped with a similar purpose, but is specifically designed to sup-
port a wide variety of surface representations. A different approach
is taken by MeshLab [CCC∗08] which focuses on building a full-
stack application with a usable interface, with a particular focus on
support for 3D scanning workflows. Compared to these libraries,
we support very few computational geometry operations which are
mostly helpful in procedural modeling. Beside features, what we
mostly differ on is that we adopt a significantly simpler program-
ming style, avoiding almost entirely template metaprogramming
and object orientation, both of which are the cornerstones of these
libraries.

Physically-Based Animation Bullet [Cou10], Vega [SSB13],
PositionBasedDynamics [Ben18a] and SPlisHSPlasH [Ben18b] are
well-known animation libraries that differ in the type of simulation
they support. Bullet is mostly an impulse-based rigid body solver
used for special effects and simulation. Vega focuses on finite ele-
ment simulation. PositionBasedDynamics is a set of tools to build
a PBD solver. SPlisHSPlasH provides various solvers for fluid dy-
namics. Our work is mostly orthogonal to these at the moment.

3. Library Design

Library Organization Yocto/GL is comprised of a few small li-
braries. While we provide example applications, we consider the
core libraries to be the part of Yocto/GL that are maintained. All
libraries share common math types for short vector and matrices,
and communicate mostly by passing arrays of basic types. Beside
this common dependencies, most libraries are self-contained and
do not depend on each other. In particular, we support the follow-
ing libraries

1. Yocto/Math: fixed-size vectors, matrices, rigid frames, rays,
bounding boxes and transforms

2. Yocto/Random: random number generation, Perlin noise, sam-
pling and Monte Carlo integration utilities

3. Yocto/Shape: various utilities for manipulating triangle meshes,
quads meshes and line sets, computation of normals and tan-
gents, linear and Catmull-Clark subdivision, mesh loading and
saving, procedural shapes generation, geometry utilities

4. Yocto/Bvh: two-level bounding volume hierarchy for fast ray in-
tersection and closest point queries of triangle meshes, quads
meshes, line sets and scene instances.

5. Yocto/Image: simple image data type, image resizing, filmic
tonemapping, color correction, color grading, image loading
and saving, procedural images, procedural environmental maps,
color-space conversion

6. Yocto/Trace: path tracing of surfaces and hairs supporting area
and environment illumination using a general multiple impor-
tance sampling scheme, microfacet materials, volume integra-
tion.

7. Yocto/Scene: scene data types (camera, textures, shapes, materi-
als, instances) and evaluation of scene properties.

8. Yocto/ModelIO: low-level parsing and writing for Ply, Obj, Pbrt,
and Yaml formats

9. Yocto/SceneIO: scene loading and saving of Obj, Pbrt, glTF, and
a custom Yaml format

Code is organized by using two files per library, a header file
for API definition and an implementation file. Only the math and
random library use a single file since all functions are inlined for
speed. We have investigated the use of a header-only deployment,
but compilation times grew too much for it to be usable. Also, using
header/implementation pairs helps hiding functionality that we do
not want to make public to reduce dependencies.

Language Choice Yocto/GL is written in C++ for efficiency rea-
sons and since most other libraries in graphics adopt that language.
We also considered other modern languages, namely Go [Pik09],
Rust [MKI14], C# and Swift . To test their viability, we ported the
full path tracer, together with all needed supporting libraries. Go
does not meet our needs mostly since it lacks operator overload-
ing and good debugging support, and its garbage collector may be
troublesome in large scenes. Rust code was harder to read since
memory management is remarkably complex to understand. C# and
Swift worked well in our port. C# code is easy to read, albeit more
verbose, and common in graphics due to Unity. What concerned
us was portability between operating systems and memory usage
for large scenes. Swift simplifies the implementation since it aug-
ments C++ with transparent reference counting, simpler generics,
error handling and faster compilation. Swift would have been our
chosen language if it was not for portability. In the end, this port
confirmed that for our needs C++ is still the best option. The main
drawback of C++ with respect to these other languages is the lack
of automated memory management. We mitigate this problem by
using only value types which require no explicit memory manage-
ment at all.

Procedural Style To quote John Carmack, id Software co-
founder, “Sometimes, the elegant implementation is just a func-
tion. Not a method. Not a class. Not a framework. Just a func-
tion.” Whenever possible, Yocto/GL follows this guideline, using
free functions and no objects. In Yocto/GL, most code handles only
basic types, arrays of basic types or collections of them. Figure 2
shows examples of the procedural styles used in Yocto/GL. We use
free functions since they are more composable than object’s meth-
ods as their APIs have explicit data passed to and return from them.
Specialized types are used only when strictly necessary, for exam-
ple to cache partial computation. An example of this API style is
shown in Figure 2.

Data-Oriented Design When defining data structures, used
rarely but necessary for example to describe whole scenes, we
adopt a data-oriented design, rather than an object oriented one,
which provides better readability, composability and performance.
Figure 3 shows example of types defined in Yocto/Scene. In our
design, data is explicit and directly accessible without encapsula-
tion, and acted upon using free functions, instead of objects’ meth-
ods. In this manner, code is easy to understand and libraries can
be extended by simply adding more functions without changing
type definitions. We follow this guideline for all basic types, while
for containers we match the STL design for consistency. Our data
structures have a simple design, being defined as aggregates of ar-
rays of value types. This makes data layout contiguous and memory
access cache-friendly, improving efficiency. The main disadvantage
of this design is the lack of encapsulation, which implies that APIs
change if data representation does. For us, this is not a concern
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// example of procedural API
vector<vec3f> compute_normals(const vector<vec3i>& triangles, const vector<vec3f>& positions); 
 
pair<vector<vec4i>, vector<vec3f>> subdivide_catmullclark( 
  const vector<vec4i>& quads, const vector<vec3f>& vert, int level, bool lock_boundary = false); 
 
// example of using specialized types to cache computation
hash_grid make_hash_grid(const vector<vec3f>& positions, float cell_size);
void find_neighbors(const hash_grid& grid,  vector<int>& neighbors, const vec3f& position, float radius); 

Figure 2: Example of procedural coding style, for normal computation, subdivision surfaces and nearest-point queries. In Yocto/GL, we use

specialized types, only when strictly necessary, preferring to model problems using functions rather than objects. This makes the API more

composable.

// textures store arrays of basic types
struct yocto_texture { 
  string       uri = ""; 
  image<vec4f> hdr = {}; 
  image<vec4b> ldr = {};
};
// materials store basic types and references
struct yocto_material { 
  string uri          = ""; 
  vec3f  emission     = {0, 0, 0}; 
  vec3f  diffuse      = {0, 0, 0}; 
  int    emission_tex = -1; // reference       
  int    diffuse_tex  = -1; // reference 
  // other material properties...
};
// instances store frames and references
struct yocto_instance { 
  string  uri      = ""; 
  frame3f frame    = identity3x4f; 
  int     shape    = -1; // reference 
  int     material = -1; // reference
}; 
 

// shapes store arrays of basic types
struct yocto_shape { 
  string        uri       = ""; 
  vector<int>   points    = {}; 
  vector<vec2i> lines     = {}; 
  vector<vec3i> triangles = {}; 
  vector<vec4i> quads     = {}; 
  vector<vec3f> positions = {}; 
  vector<vec3f> normals   = {}; 
  // other face-varying elements and vertex data... 
};  
// scenes store arrays of objects represented as values
// references between objects are specified as array indices
// we provide no constructors, destructors, assignments, etc.,
// since the default ones are well-defined for value types
struct yocto_scene { 
  string                 uri          = ""; 
  vector<yocto_shape>    shapes       = {}; 
  vector<yocto_instance> instances    = {}; 
  vector<yocto_material> materials    = {}; 
  vector<yocto_texture>  textures     = {}; 
  // other object types...
};  

Figure 3: Example of scene data structure written in a data-oriented style. All data is explicit, freely accessing and defined as simple

collection of basic types. All types have value semantic, meaning that assignment provides deep copies. We use integer references and avoid

pointers altogether, to ensure maintain semantic and avoid memory bugs.

since the basic underlying types are few and well accepted, e.g. it
is unlikely that we will ever change how triangle meshes are stored.

Value Sematic Nearly all types in Yocto/GL have value seman-
tic, meaning that assignments copy values rather than references.
Most data is passed by value, or equivalently constant reference,
to functions rather than modifiable reference. Value semantic helps
reducing bugs since all state changes are explicit, instead of being
hidden. Parallelization is also simpler for the same reasons. Using
values is also quite helpful in writing code quickly, e.g. history-
based undo systems can be implemented by just copying values in
an array.

Value types are easy to write in C++ since value semantic is com-
posable, meaning that if members of an aggregate type are value
types, then the aggregate is a value type. Creating a new value type
amounts to defining its member variables, without the need for con-
structors or destructors. This simplicity comes from the fact that
C++ is a value-oriented language and has a value-oriented standard
library.

We make exception to value semantic for types that wrap exter-
nal resources, such as file handles or mutexes. In these cases, the
wrapper resource needs to be acquired and released explicitly. Here

we use C++ move semantic and disable copies. For the programmer
perspective, this ensures proper semantic and resource acquisition
and release, via C++ RAII, while the code reads like value semantic
and requires no pointers.

References When object references are required, for example
to store texture references in materials, we use integer indices that
refer to positions in data arrays, rather than using C++ pointers di-
rectly. This is akin to use vertex indices for faces in indexed meshes.
This is shown in Figure 3. There are several advantages for doing
this. First, we avoid pointers altogether, thus reducing the chance
of memory corruption bugs. Smart pointer would help here but at
the price of speed and significant verbosity. Second, indices ensure
value semantic when copying whole data structures, since copies
are always deep rather than shallow. Finally, we observe speed im-
provements when switching from raw pointers to indices likely due
to better cache utilization and memory fragmentation, since we al-
locate arrays of contiguous small values, rather than many small
objects on the heap.

Extensibility Extending a library beyond what was initially in-
tended for is a main concern for research projects. The main method
to extend an object-oriented system is to add new types that con-
form to given interfaces, but this only extends functionality that
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// light defined non-intrusively as external arrays
// of indices to geometric and environment lights
// together with sampling data associated with
// shapes and textures accessed by indices
struct trace_lights { 
  vector<int>           instances        = {}; 
  vector<int>           environments     = {}; 
  vector<vector<float>> shape_cdfs       = {}; 
  vector<vector<float>> environment_cdfs = {};
};
// data is shared between data structures by using
// const views (span<const T>) that have equivalent 
// read semantic to owning arrays (vector<T>)
struct bvh_shape { 
  span<const int>   points    = {}; 
  span<const vec2i> lines     = {}; 
  span<const vec3i> triangles = {}; 
  span<const vec4i> quads     = {}; 
  span<const vec3f> positions = {}; 
  span<const float> radius    = {}; 
  vector<bvh_node>  nodes     = {};
};
struct bvh_scene { 
  span<const bvh_instance> instances = {}; 
  vector<bvh_shape>        shapes    = {}; 
  vector<bvh_node>         nodes     = {};
}; 

Figure 4: The data needed by the path tracer to sample lights is de-

fined externally, without modifying the scene data structure. When

index references cannot be used, safe access to raw data is provided

by C++ view types, such as span

was already planned for. Adding new functionality requires chang-
ing the types themselves, essentially forking the whole library. This
is what our research group did for many years and, in our experi-
ence, this manner of extensibility does not work well when research
projects are varied.

A procedural data-oriented design supports extensibility in a dif-
ferent manner. Adding new behaviors is quite easy since free func-
tions can be added at will without changing existing code. Adding
data to existing data structures can also be done easily using indices
as references.

Let us consider the case of adding application specific data to
the scene data structure, shown in Figure 3. The typical way to
do this is to intrusively modify the scene types to include the ad-
ditional data. This does not scale well as more applications are
written since a type will contain data from all applications that
might need it. Also, storing cached data on an object, as often done
in object-oriented design, requires updating that data every time
something changes, which makes writing interactive editors hard.
In Yocto/GL, we store application specific data non-intrusively in
external arrays indexed by reference indices. In this manner, data
structures remain lightweight, while access to application data re-
mains fast since it only requires array lookups. We make heavy
use of this extensibility both within Yocto/GL libraries, where the
scene is augmented with external data in this manner as shown in
Figure 4, as well as in all our research projects that in this way
do not require forking but at the same time do not bloat the whole
codebase.

Views The only exception to the reference rules above is when
raw data needs to be accessed by different libraries. An example,

shown in Figure 4, is the implementation of a BVH that requires
direct access to vertex positions. In this case, we use C++ mem-
ory view types, such as span and string_view, that are type
safe and have APIs similar to owning types, such as vector and
string. Similarly, when accessing external libraries we avoid
memory copies altogether, preferring raw pointers instead, for ex-
ample when interfacing with Embree [WWB∗14]. Note though that
all this code is hidden from the user and only present in the imple-
mentation, making Yocto/GL APIs memory safe.

Generic Programming The programming feature that required
most refactoring was the use of generic programming through C++
templates. In general, there is little agreement in the community
on how to handle this, with libraries that vary from a heavy use
of templates, like Eigen [GJ∗10], to no template code in the API,
like Embree [WWB∗14]. Yocto/GL favors the latter style for three
reasons: readability, correctness, and compile times.

Let us consider the simple case of a low-level math library of
short vectors and matrices, shown in Figure 5. One alternative is
to make separate types for vectors of different dimension and el-
ement types, like vec3f or vec2i. Another alternative is to de-
fine a templated type that covers all cases, like vec<T,N>. The
latter case feel simpler at first, but then forces all functions to be
templated, making them less readable. Also, template type deduc-
tion does not work as well as specific types when used with C++
type inference, which means that types have to be specified more
pedantically. Also, direct variable access requires full template spe-
cialization, which is a relatively advanced language feature.

In terms of correctness, we found that it is not easy to write tem-
plated code that works well when substituting all types. In a library
like Yocto/GL which is used by students not trained in C++, this
ended up being confusing. This confusion is not helped by the no-
toriously bad template error messages. In the end, we found that
generic code was hard to write in a manner that was correct in all
cases or at least gave clear indication as to when it would fail at
compile time. Finally, even in a small library like Yocto/GL, com-
pile times grew significantly as we move code from implementation
files to header files, as required in the case of heavy template use.
Most of our users did report that the increased compilation time
was one of their main concerns. In the end, we settle for using little
templates even if it feels wrong in C++ which is a language that
prefers templates in its standard library.

4. Selected Library Features

In terms of graphics features, Yocto/GL has many similarity with
other research libraries. Rather than simply listing all these fea-
tures, we prefer to focus this section on describing design decisions
that differ from others to highlight tradeoffs.

Simplicity Scales Yocto/GL focuses on code that is simple, com-

posable and scalable. These three goals are strong constraints when
it comes to choosing algorithms and data representations that may
reduce the generality of the library or the efficiency of the ap-
proaches. In the end, throughout the design of Yocto/GL and in
its current use, we always find that simplicity scales better to large
environments, at least for our target applications. This is true for al-
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// implementation without templates duplicates
// code but is readable for non experts
struct vec3f { 
  float x = 0, y = 0, z = 0; 
  vec3f(float x, float y, float z) { ... }
};
struct vec2f { 
  float x = 0, y = 0; 
  vec2f(float x, float y) { ... }
};
// operators are duplicate but straightforward
vec3f operator+(const vec3f& a, const vec3f& b) { 
  return {a.x + b.x, a.y + b.y, a.z + b.z}; }
vec2f operator+(const vec2f& a, const vec2f& b) { 
  return {a.x + b.x, a.y + b.y}; } 
 

// implementation with templates is generic but complex
template<type T, int N>
struct vec { 
  T _data[N]; 
  // simple constructors are slow compared to above 
  vec(initializer_list<T> v) { /* more code here */ } 
  // variadic constructors are hard to implement and use 
  template<typename ... Args> 
  vec(Args ... args) { /* more code here */ } 
  // named members are unsafe or require specialization 
  T& x() { /* more code here */ }
};
template<typename T, int N>
vec3f operator+(const vec<T,N>& a, const vec<T,N>& b) { 
  /* use loops, but may go slow */ 
  /* use specialization/overloading, like non-templates */ }

Figure 5: Comparison between using templates or nor in the simple case of short vectors. Right: Using no templates requires code duplica-

tion, but the code is straightforward for all users. Left: Templates support well generic code but are harder to read for non experts and more

cumbersome to ensure efficiency in all cases.

gorithms, but even more for data structures whose complexity often
makes them significantly harder to optimize well.

Specialization As for many software projects, the main concern
is that increasing functionality scales poorly with simplicity, ro-
bustness, and maintainability. In our domain, we found that the
best tradeoff is to use a small set of data primitives and graphics
algorithms, which are general and fast, albeit not necessarily opti-
mally efficient. In a way, we follow the Unix philosophy, that in the
words of Doug McIlroy is “Write programs that do one thing and
do it well”.

Physical Units and Transforms Throughout Yocto/GL we as-
sume that values are specified in physical units. This obviously
matters in rendering and simulation since these algorithms com-
pute physical quantities. In modeling, this was not a concern until
recently, when the advent of photogrammetry and 3d printing made
a direct connection with real-world objects.

A corollary of this is that transforms in Yocto/GL are repre-
sented as rigid frames, represented as a 3-by-3 rotation matrix plus
an origin position, rather than generic 4-by-4 matrices. Using rigid
frames means that physical quantities like energy or mass are not
altered in instances. Furthermore, photogrammetry textures are also
not scaled.

Memory Scalability In terms of scalability, the largest concern
we focused on was reducing memory consumption, since most
Yocto/GL users have laptops. What surprised us is that a value-
based design using indices as references scales better than pointer-
based object-oriented ones. To illustrate our point, let us consider
the simple case of representing instances and compare Yocto/GL
to a typical graphics library. In Yocto/GL, instances store a frame
and two indices to a shape and a material, taking 56 bytes per in-
stance. Instances are allocated as values, so arrays of instances are
laid out in contiguous memory. In a typical object-oriented setup,
with heap-allocated objects referenced with raw pointers and ma-
trices used as transforms, the same instance takes roughly twice
the memory with many small objects allocated on the heap. Us-
ing smart pointers further increases memory usage in a platform
dependent way.

Scene Format Parsing Yocto/GL supports loading and saving

Figure 6: Example of computational geometry feature. A geodesic

distance field, whose isolines are visualized as red stripes, is com-

puted with the graph solver provided by Yocto/GL. The mesh in

the example has 7.2 million triangles and the geodesic distance

field was computed in 0.458 seconds on a laptop. Model courtesy

of Stanford Graphics Lab [Sta94].

for many scene formats, namely Obj, Pbrt, Ply, glTF and a custom
Yaml format. We provide both low-level parsers as well as loading
and saving of internal scene data structure. For all these parsers,
there are well-established open-source solutions that we tested. In
the end though, we found that parsing large scene files was cumber-
some with current libraries and developed our own methods. The
main limitation of current low-level parsers is that they keep a copy
of the whole scene in memory. For large scenes this did not scale
for our datasets. For this reasons, we designed SAX-like low-level
parsers and writers for Obj, Pbrt, Ply and Yaml and use those in our
work. For each formats, our parsers and writer processes one com-
mand at a time and are designed to give the application full control
on data access, memory allocation and control flow. Surprisingly,
this led to simpler higher level scene loading and saving since there
was no need to explicitly convert between data structures, but was
instead sufficient to just execute the command stored in each for-
mat.
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Figure 7: Example of geometry and material types. Geometries

include quad and triangle meshes, displaced subdivision surfaces

and hair. Materials include matte, plastic, metal, volumetric glass.

Models courtesy of Stanford Graphics Lab [Sta94] and Blender.

Geometry We support only four kinds of geometric primitives:
points, lines, triangles and quads, shown in Figure 7. Curves and
subdivision surfaces are supported in part but require explicit tes-
selation for most functionality. While this approach is common in
computational geometry library, it is less so in rendering ones. For
example, Intel’s Embree [WWB∗14] has a design similar to ours,
albeit it natively supports curves and subdivision surfaces, while
Pbrt [PJH16] uses an object-oriented design to support natively
many different shape types.

Just like Libigl [JP17], we do not use mesh data structures, but
rely only on an indexed mesh representation. Adjacencies are com-
puted when required. This naturally supports triangle and quad
meshes, line and point sets. Where we differ more from other li-
braries is that we support face-varying data, represented by option-
ally storing a different topology for each vertex property. The use
of face-varying data is particularly helpful in animation and mesh
processing where vertex duplication causes concerns.

When it comes to geometry algorithms, we target approaches
that run on large meshes and do not require complex data struc-
tures. As an example, our implementation of subdivision surface is
based on [WS04], which is an averaging scheme that only requires
a standard dictionary to store edges. Another example, shown in
Figure 6, is our graph-based geodesic solver that use a graph that is
only accurate for high tesselation, but can be made quite efficient
in that case.

Materials Just as shapes, we represent materials using one
“shader” that can represent a variety of materials including plastic-
like substrates, reflective metals, transmissive dielectrics and ho-
mogeneous volumes, for volumetric effects and subsurface scat-
tering. Example materials are shown in Figure 7. This follow a
trend in industry of using similarly general shaders, such as Dis-
ney’s unified model [Bur15], Pixar’s layered model [HL17] and
Autodesk’s standard surface [GPA∗16]. Again, here we differ from
today’s research renderer Pbrt [PJH16] and Mitsuba [Jak10] that
use an object-oriented design with many special cases.

Rendering In Yocto/GL all rendering is performed with a pro-
gressive path tracer suitable for both offline and interactive render-
ing. We use a unidirectional path tracer that supports our material
model using multiple importance sampling throughout the renderer
to reduce noise. Homogeneous volumes and subsurface scattering
are implemented as random walks with MIS. Our implementation

though takes a sharp departure from prior work and avoid shadow
rays and area integration, preferring to formulate the entire ren-
derer in the angular domain. Note that this does not prevent MIS
but strengthens it, since hard cases such as “shadows” through glass
and direct illumination inside volumes are handled without special
cases. Figure 1 and Figure 8 show images generated with our path
tracer, while Figure 9 show a few frames of an editing session using
our interactive path tracer.

A unidirectional renderer is certainly not state-of-the-art, since
many other methods are known, such as bi-directional and
metropolis methods. Research renderer, such as Pbrt and Mitsuba,
implement many of these algorithms. Our findings though is that
these algorithms may help in some specific cases, but they are
not particularly helpful for common scenes. This is the same con-
clusion reached by the production rendering industry [FHP∗18]
where all current systems are unidirectional path tracers, includ-
ing Weta’s Manuka [FHL∗18], Pixar’s Renderman [CFS∗18], Au-
todesk’s Arnold [GIF∗18] and Disney’s Hyperion [BAC∗18].

One unexpected outcome of our focus on interactive path trac-
ing is that we now mostly use a simple CPU raytracer instead of
a GPU rasterizer for interactive rendering. Beside code complex-
ity, the main limitation of GPU viewers is that they do not scale as
well to large scenes due to VRAM constraints, especially on mo-
bile GPUs found on laptops. This is the reason why we removed
all GPU code from the main library and focused on CPU-only so-
lutions, even for interactive applications.

Example Project As example project built on top of Yocto/GL
we present SceneGit [CP19], a version control system for 3D
scenes comprised of shapes, materials, textures and animations
which is able to detect changes between edited versions of scenes.
When two users edit concurrently the same scene, the system can
identify the differences and merge the two versions automatically,
also detecting editing conflicts if any. Objects are versioned at their
finest granularity, in order to make repositories smaller and min-
imize the chance of merge conflicts. The system is robust, effi-
cient both in terms of space and time, and scales to large scenes,
as showed in the Figure 10.

5. Conclusions

This work presents the design rationale of the Yocto/GL library. In
conclusions, Yocto/GL differs from other libraries since it takes a
less common tradeoff in software design, focusing on code that is
short, simple, composable and scales with scene complexity. The
price we pay is that we support only a limited feature set, com-
pared to other libraries, and avoid the use of GPUs. In the future,
we plan to extend the library while maintaining its design strengths.
In particular, we plan to increase the computational geometry as-
pects by integrating code directly from Libigl, providing wrapper
support for sparse linear solvers, augment the renderer with non-
homogenous volumes and learned importance functions, and in-
tegrate a particle-based physical solver. In doing so, we will still
follow the main design tradeoffs listed before, which are and will
remain possible limitations.
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Figure 8: Example of realistic renderings made with Yocto/GL path tracer. Left: Rendering of human skin, simulated as a participating

medium with volume integration. Model courtesy of I-R Entertainment Ltd. [McG17]. Right: Rendering of a complex scene that makes heavy

use of instancing. Model courtesy of Jan-Walter Schliep, Burak Kahraman, and Timm Dapper [JH04].

Figure 9: Example of interactive rendering and editing of large scene. (Left:) Our progressive path tracer gives immediately a low-sampled

preview to allow real-time interaction. The image progressively converges as more samples are computed. (Middle): The user can move the

camera to interactively explore the environment. (Right) The scene can be edited in real-time, by changing materials and moving shapes.

Model courtesy of Amazon Lumberyard [Lum17, McG17].
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