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Abstract
We propose a novel visual representation of transitions between homogeneous regions in multi-dimensional parameter space.
While our approach is generally applicable for the analysis of arbitrary continuous parameter spaces, we particularly focus on
scientific applications, like physical variables in simulation ensembles. To generate our representation, we use unsupervised
learning to cluster the ensemble members according to their mutual similarity. In doing this, clusters are sorted such that similar
clusters are located next to each other. We then further partition the clusters into connected regions with respect to their location
in parameter space. In the visualization, the resulting regions are represented as glyphs in a matrix, indicating parameter changes
which induce a transition to another region. To unambiguously associate a change of data characteristics to a single parameter,
we specifically isolate changes by dimension. With this, our representation provides an intuitive visualization of the parameter
transitions that influence the outcome of the underlying simulation or measurement. We demonstrate the generality and utility of
our approach on diverse types of data, namely simulations from the field of computational fluid dynamics and thermodynamics,
as well as an ensemble of raycasting performance data.

CCS Concepts
• Human-centered computing → Visualization techniques; • Computing methodologies → Simulation tools; • Applied
computing → Physical sciences and engineering;

1. Introduction

The ever-growing computational power allows to use ensembles to
examine application behavior and how it changes in relation to input
(parameter) values. Essentially, an ensemble is a set of samples
produced by the application with varying input parameters from a
certain parameter space. Depending on the application, the prop-
erties of this parameter space can range from a handful of discrete
choices to a continuous multi-dimensional space. Typically, for the
scientific applications targeted by our visualization, the parameter
space is continuous and has multiple dimensions of interest, with
a classical example being numerical simulations; one target case
could be a computational fluid dynamics (CFD) simulation with the
Reynolds number as a parameter. We denote the result of a simula-
tion, or any process operating on the inputs, as outputs. For the CFD
example these would be time steps containing state variables of the
simulation, such as velocity and pressure.

Gaining an understanding of a simulation’s behavior when vary-
ing input parameters is not an easy task. Manually examining the
results becomes tedious, if not impossible, as the ensemble’s sample
number grows. While aggregation of similar samples simplifies get-
ting an overview of the data, the location of members in parameter
space is lost. In addition, how changing a parameter would affect
the result is difficult to derive from a simple aggregation. In many

cases, the domain scientist is also interested in the inverse analysis,
i.e. having clusters of similar results, determine which change of
parameters was responsible for the change in simulation behavior.

In this work, we introduce a visual representation depicting which
parameter changes lead to transitions between different sample clus-
ters with similar output, and also show the varying impact of pa-
rameters in different regions of the parameter space. To this end,
we partition the parameter space into regions of similar behavior.
We enable the examination of parameter changes by encoding the
transitions between these regions into a glyph, allowing for identi-
fication of the effects of parameter changes as well as elucidation
of the correlation of parameters. Our approach can also assist with
finding the cause for outliers within the ensemble, as well as yield
information on the impact of parameters at a glance. In addition, the
customized glyph allows for locating a region in multi-dimensional
parameter space, and give an impression of its size.

The paper is structured as follows. First, we give an overview of
related work (section 2). In section 3, we motivate design choices,
and give an overview of the individual steps of our approach. On
this basis, we discuss our visual representation for analyzing region
transitions (section 4). In section 5, we provide technical details for
clustering similar ensemble members using Self-Organizing Maps.
We present case studies for different applications in section 6, and
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discuss limitations and directions for future work in section 7. We
conclude our paper in section 8.

2. Related Work

As predicted by Obermaier and Joy in their 2014 article [OJ14], the
increasing computational resources advance ensemble generation
in general, and consequently require the development of adequate
visualization approaches. A comprehensive survey dealing with pa-
rameter space exploration in general was conducted by Sedlmair et
al. [SHBP]. Recent challenges of ensemble/parameter space visu-
alization were evaluated at the example of material fracturing data
by Crossno [Cro18]. Especially the analysis of ensembles on the
basis of graphs are a popular approach in this context, as discussed
in respective recent surveys [WT, WHLS18].

Similar to our approach, Bruckner and Möller [BM10] initially
cluster ensemble members. However, their focus differs in that they
aim to identify an input parameter set based solely on the analysis of
the output (in their case, renderings of smoke simulations). Instead,
our approach aims to not only achieve a categorization of the outputs,
but especially to identify structures in the input parameters, with a
focus on isolating and relating certain simulation behavior to specific
parameter changes, and to present them in a global context of the
parameter space’s structure. Parameter optimization, but with a focus
on image analysis, was done by Pretorius et al. [PBCR11], and for
procedural geometry creation by Beham et al. [BHGK14]. The
Paraglide system by Bergner et al. [BSM∗13] implements several
analysis methods to examine generic parameter spaces. Gerber et
al. [GBPW10] combine topological and geometric techniques for
the interactive visualization of high-dimensional scalar fields.

Streamlines based on CFD ensembles were examined by Fer-
stl et al. [FBW16] using principal component analysis to reduce
the dimensionality. Employing the use of “limiting” lines and sur-
faces, the general behavior of an ensemble set can be extracted.
The same group went on to develop a complementary comparative
visualization using a time-hierarchical clustering to further reduce
the representation [FKRW17]. Another dimensionality-reducing
strategy was employed by Bergner et al. [BPFG11]. Their work
consists of an interactive approach to enable a continuous analysis
of a sampled parameter space with respect to multiple target val-
ues, employing statistical methods and uncertainty visualizations
to guide users to interesting phenomena. A more general approach
to dimensionality reduction is presented by Ingram et al. [IMI∗10],
which abstracts the interactive analysis into defining operators and
expressions on the data. A visualization for vector field ensembles
based on comparing pathlines was proposed by Liu et al. [LGZY16]
offering some robustness to missing data or varying sampling rates.
Hao et al. [HHB16] focus on ensembles where members have a time
correlation, offering a wide selection of methods for partitioning the
ensemble set. Ensemble members may also be related but not di-
rectly comparable. Wang et al. [WLSL17] address this in the context
of data differing in resolution with a customized parallel coordinate
method to correlate ensemble members. Whitaker et al. [WMK13]
extract statistical data for contours in climate-related data, and ex-
tend a box plot-based visualization to enable the exploration of
weather phenomena and other CFD data.

Interactive approaches include abstractions of ensemble data via

different representations, which can then be examined using a visual
analytics tool. Shu et al. [SGL∗16] use a combination of representing
the 2D parameter space as a map, bar charts and star glyphs to visual-
ize characteristics of subsets in the ensemble. For a multi-stage sim-
ulation process, Splechtna et al. [SMG∗15] developed an approach
enabling analysts to easily employ various automatic methods to
explore and classify the heterogenous parameter spaces. Another
visualization using comparisons of classifications was developed
by Unger and Schumann [US09]. Here, the state of a simulation is
classified and processes connecting these states are visualized as a
graph. Our method is related to this line of work as it is based on a
clustering of ensemble members. However, we do not focus on the
clustering scheme itself, but focus on the relations between clusters.
More specifically, many methods produce a visualization that may
by integrated into our approach as representations of a specific clus-
ter or unit (cf. section 4). In reverse, our visual representation could
be integrated in visual analytics approaches for ensemble analysis
to give an overview on parameter space characteristics, and provide
a starting point to explore the impact of parameter changes.

We use unsupervised learning, more concretely Self-Organizing
Maps (SOMs) first presented by Kohonen et al. [Koh98], as a part
of our approach. In general, learning-based methods have great
potential in data analysis in general and visualization in particular
(e.g. [Ma07]) For instance, for explaining features inside multivari-
ate, volumetric data, Fuchs et al. [FWG09] adapted an evolutionary
search algorithm to assist a user in the formalization of respec-
tive hypotheses. Most prominently, machine learning has widely
been adopted in the area of visual analytics, and we would mainly
refer the reader to the recent state-of-the-art report by Endert et
al. [ERT∗17] for a comprehensive overview. Depending on the use
case, SOM visualizations typically present the information of mean
cell vectors, or use concrete data items for cell representations
(e.g., [BWK∗13, Ves99]). For instance, Andrienko et al [AAB∗10]
investigate how SOMs are integrated into the visual analysis process
of spatio-temporal data. They integrate a SOM matrix where the user
can interactively modify the parameters and observe the changes
in the results in different visual representations, e.g. where space is
represented in time, and the time is represented in space. Recently,
Sacha et al. [SKB∗18] presented a multi-stage visual analytics ap-
proach for iterative cluster refinement that uses SOMs to analyze
time series data, offering the analyst a visual platform to analyze
intermediate results.

3. Motivation, Design Choices, and Overview

Our technique works for ensembles with arbitrary continuous pa-
rameter spaces. It is independent from the type of the investigated
application, and designed to give an expressive, static overview of
parameter space characteristics. The primary goal of our visualiza-
tion is to relate changes of parameters to respective changes of the
outputs in the examined simulations, and vice versa. The basis for
this is a partitioning of the parameter space into regions of simi-
lar behavior, as has been done in various related parameter space
exploration techniques (cf. section 2). In particular, we investigate
parameter changes across adjacent regions to help the user under-
stand the impact of parameters and identify thresholds for significant
changes in the simulation output. Additionally, our visualization
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enables to easily judge the overall impact of a certain parameter, in
comparison to other parameters. Conceptually, our approach can
serve as an initial step giving an expressive overview on the relation
between parameter space and simulation results, and may also be
integrated with a variety of solutions from previous work for further
exploration.

In fig. 1, we give a schematic overview on the different steps
of our approach. Here, we also exemplify it by means of a two-
dimensional parameter space p1 × p2 with a sample count of 9,
starting with a regular sampling in the ranges r1 and r2 (fig. 1(a)).
All steps work accordingly for higher-dimensional parameter spaces.

3.1. Sorting into Bins by Similarity

On the basis of our sampled parameter space (fig. 1(a)), we evaluate
the outputs of each simulation by clustering samples into bins of
similar behavior, whereas the bins are implicitly sorted such that
similar bins are close. Note that we use the term units and bins
synonymously in the following. As a basis for this clustering, we
use pairwise comparisons to determine the similarity of individual
members. The actual comparison function is determined by the
analysis task at hand, and varies depending on the outputs of the
investigated systems (e.g, a field in the case of a CFD simulation).
Due to computational constraints, a full pairwise comparison (with
O(n2) complexity) is not always possible, e.g. 2000 samples with
a comparison method taking 0.5 seconds per execution would take
over 3 weeks to complete on a single workstation. To address this,
we generate a feature vector fs for each sample s, using only a
subset of samples to compare to. As this is inherently tied to the
data set and the analysis task, we defer the detailed explanation of
the comparisons and the feature vector generation to the discussion
of the respective case study in section 6. Based on the feature vector
fs, we use an unsupervised learning algorithm (1D Self Organizing
Map, SOM) to sort and partition the samples into sets of similar
behavior (with respect to the application output). The usage of SOMs
in this context explained in detail in the implementation section (cf.
section 5).

For simplicity, our example feature vector only has a single com-
ponent in fig. 1(a). The sorting determined by the SOM is denoted
by the coloring of the samples into purple, pink and yellow shown
in fig. 1(b). Same color means the sorting determined the samples
to be in the same unit. So far, this ignores any information about
the underlying parameter space, but merely evaluates the respective
application results.

3.2. Parameter Space Connectivity

Using the results from the previous step, we now consider the parti-
tioning of the parameter space. Samples that are considered similar
do not necessarily have to have any relationship in the parameter
space. To enable the examination of this relationship, we divide
similar samples into connected components in the parameter space.
In fig. 1(c), regions are marked with a border in the color of the unit
of the samples they contain, and denoted by arabic numerals in the
lower left corner for further reference.

Extracting the Interface Data Before generating the final visual-
ization, we extract what we call interfaces from the data structure,
shown in fig. 1(d) via dashed silhouettes. We define a transition to
connect two samples with an axis-aligned edge in the parameter
space, which means that exactly one parameter changes between
those samples. We only evaluate axis-aligned immediate neighbors
for the visualization, as larger parameter changes, or changes across
multiple parameters are handled implicitly by the Similarity Bin-
ning section 3.1: the binning exposes the transitions with the ’largest
dissimilarity’ (i.e. comparisons within regions are regarded as unin-
teresting with respect to the comparison function). These transitions
can be thought of as a generalization of the location and direction of
the highest gradient in terms of similarity, moving from one region
to a neighboring one.

The transitions between neighboring regions form so-called inter-
faces. These interfaces are depicted in fig. 1(d) with dashed frames
and enumerated with roman numerals, and are represented in the
final visualization in a stacked fashion. The specifics of this repre-
sentation are discussed in detail in section 4.

Visualization via Region Glyphs We then proceed to generate the
glyphs for each region established in section 3.2 (e.g. fig. 1(f)). The
glyphs are arranged in a layout of columns, where each column
represents a unit from the Similarity Binning, as can be seen for the
demonstration data set in fig. 1(e). Each column has a so-called unit
representation on the bottom, giving an impression of the regions
contained in that unit. Each region glyph in turn is made up from
a set of so-called interface glyphs, containing details of the actual
parameter transitions. Our visual representation is explained in detail
below.

4. Visual Representation

As introduced above, a region is a set of similar samples which is
connected in parameter space. A transition denotes two adjacent
samples in parameter space which are not in the same region. In
this paper, we restrict ourselves to parameter changes in a single
dimension only, while all others remain constant. This allows us to
clearly attribute differences between the connected samples to the
change of this very parameter (cf. section 7 for a closer discussion of
merits and limitations of this design decision). An interface between
two regions A,B is a collection of transitions for which one sample
lies in A while the other sample belongs to B. In our visualization,
we associate each region with a glyph akin to a stacked bar chart.

4.1. Unit Column

The upper part of each unit column shows a region glyph for each
region associated with the respective unit (discussed in more detail
below in section 4.2). The lower part of each unit column provides a
suitable depiction characteristic of the contained ensemble members.
Different mappings and metaphors can be chosen here depending on
the underlying application and aspects of interest. Note that develop-
ing suitable mappings for this is not the primary focus of this paper.
For the case studies in this paper having a simple scalar value for
each member, we simply present the range of this scalar included
in the unit (e.g., cf. the introductory example in fig. 1(e)). For more
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(d) Interface extraction (section 3.2)
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Figure 1: Overview of the individual steps of our approach. (a) Starting from the sampled parameter space, (b) similar samples are clustered
first. (c) These clusters are then further decomposed into regions of connected components in parameter space. (d) Next, transitions between
individual regions are determined. (e) Finally, regions and interfaces are directly mapped to our visual representation. For illustration purposes,
arabic numbers indicate the mapping of regions from (c) to glyphs and roman numerals indicate particular transitions. (f) The Region Glyph is
composed from individual interface glyphs, shown in (g).

complex cases, we use a direct visualization of a representative sam-
ple. Many approaches mentioned in the related work section offer
more advanced alternatives, e.g. the star glyph used in Bruckner’s
cluster representation [BM10]. In all cases, the unit representation is
marked by a colored frame. The color represents the 1D coordinate
as resulting from the Similarity Binning (cf. section 3.1) using a
linear transfer function mapping. All regions in one column are
contained in the same, respective unit, and accordingly associated
with the same color.

4.2. Region Glyph

Each region is represented by a region glyph. The region glyph
consists itself of two columns, each consisting of stacks of interface
glyphs. The left stack contains all interfaces which connect to a
region in a unit column to the left of the current unit, and the right
stack contains all interfaces connecting to regions to the right. For
the left stack, the left border is marked with several arrows, one for
each interface, the so-called unit indicators (and vice versa for the
right stack). This unit indicator is filled with the color of the unit
that the neighboring region is associated with. For each interface
glyph, as well as for the entire region glyph, the height encodes how

many individual transitions incur a change of simulation behavior
to neighboring regions. In addition, the size of the region can be
determined by a small dark gray horizontal indicator below each
glyph, in proportion to the samples contained in this region.

4.3. Interface Glyph

The information encoded into the interface glyphs helps investigate
which parameter changes are actually responsible for differences in
ensemble members. An annotated example is shown in fig. 1(g). For
this, the transitions, as extracted in section 3.2, are directly depicted,
and within each interface glyph, for each parameter a colored block
is drawn, from bottom to top. Note that each interface appears twice
in the visualization, once for each of the two regions it connects.
The color encodes the dimension in which the change occurred,
while discarding the information of other dimensions (which remain
constant for any specific transition). While this information might
be interesting for further analysis, displaying it for all transitions
easily overloads the visualization. The height of the block is directly
proportional to the number of transitions associated with this in-
terface and this parameter, and enables a relative comparison of
the transition count. In other words, it depicts how large the multi-
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dimensional “surface” is that separates the regions in parameter
space. The horizontal dimension of a block is used to map the range
of the transitioning parameter, normalized to their respective range.
Each block covers the parameter range from the left end (minimum)
to the right end (maximum) as annotated in fig. 1(g).

While the visualization shows at which values of a parameter
transitions occurred and how many there are, the direction of change
is shown encoded as gray areas to the left and right of each block.
While a gray area to the right indicates an increase of the parameter
to effect the transition, a gray area to the left indicates a decrease.
Conversely, a white area to the right means that, for this particular
interface, increasing the parameter will never lead to results that
lie in the neighboring region (same for the left and decreasing).
This means that a parameter change corresponding to a white area
can only generate a transition through a different interface. The
height of the gray areas on the right is proportional to the number of
transitions for which the parameter value is increased to achieve a
change of behavior (same for the left area and transitions where the
parameter is decreased). We observed that in most cases, a parameter
only changes in one direction for a given interface.

The two interface glyphs representing a connection are essentially
mirrored. However, as only the start of the transition (i.e. the param-
eter value for the sample within the region) is taken into account
when rendering the colored block, a discrepancy of one sampling in-
terval in size is visible. While mostly irrelevant for denser samplings,
this becomes apparent for coarse sampling rates.

If the parameter space decomposes into regions with small inter-
faces, examination of these might become difficult, as region and
interface glyph heights go below pixel size. To address this issue,
the respective glyph may be simply scaled vertically.

Visualizing transitions as blocks assists in quickly judging how
impactful a parameter is when moving through parameter space to
a region exhibiting different behavior: while the vertical extension
denotes the impact of the parameter (i.e the number of transitions
associated with this dimension), the horizontal axis shows at which
values the transitions occur. The saturation encodes the distribution
of transitions associated with this parameter along the horizontal
axis. For example, if most transitions occur at the maximum value,
the right end of the block will be more saturated; if transitions occur
across all values uniformly, the block will be evenly colored.

5. Similarity Binning via Self-Organizing Maps

For our implementation of the Similarity Binning (i.e, sorting en-
sembles with respect to the similarity of ensemble members), we
use a Self-Organizing Map (SOM). SOMs are based on feature vec-
tors fs, defined for all samples s of an ensemble, which provide a
simple abstraction of a sample’s output. Determining these features
is strongly tied to both the data set and and the analysis task, and
details on the computation of the feature vector in this work are
given alongside the respective case study in section 6.

SOMs are an unsupervised learning approach to produce a low-
dimensional, discretized representation of a set of high-dimensional
features. The learning process performed by the SOM algorithm
associates each ensemble sample s with one of the vectors ui ∈

U , called unit. Here, samples associated to a certain unit ui are
considered similar. This association is determined on the basis of
the Euclidean distance of the feature vector fs to the vector ui. The
number n = |U | of units created is fixed a priori, and decided by the
user.

In addition, SOMs not only yield an evaluation for each of the
ensemble samples into a disjoint partitioning, but also establish an
overall similarity relation between the ui. This relation is expressed
as an ordering of the individual units, with samples associated with
one unit being similar to samples in its predecessor and successor
(as opposed to units further away). In other words, the ordering of
the ui derived from a SOM training reflects a gradual change of the
sets of samples s associated with each ui. We utilize this ordering in
the layout of the nodes in the final visualization.

Our learning approach establishes the final values for the units’
vectors ui. For each element ui ∈U we randomly pick one of our
feature vectors fs, and assign the value of the feature vector to
the element ui (i.e., ui ← fs). We then start the training, utilizing
competitive learning in multiple passes.

In each pass, we loop over all input feature vectors fs of all
samples s in random order. For each feature vector fs, we pick
the unit ui with the smallest Euclidean distance. We perform an
update of this ui by “pulling” the vector associated with ui toward
fs using a weight w, i.e. ui← (1−w)ui +wfs. However, not only ui
is updated, but also the units within a vicinity v, thus changing the
values for u j, j ∈ [i− v, i+ v]. The weight of the update w linearly
decreases with the distance |i− j| to the unit ui, with the radius
of considered units initially being half the number of total units in
our implementation. This process is repeated each pass, while the
considered neighborhood v decreases with an increasing number of
passes (it is multiplied with a factor of 0.98 after each pass). The
learning process is considered to be converged when the changes to
ui are negligible.

Table 1: Sampling grids for the parameter spaces in the case studies.
The number in parentheses indicates the total number of samples.
For Water Model, values are percentages. Absolute values can be
extracted from the official IAPWS Formulation [IAP18]. The units
for Kármán Vortex Street are in units of the solver characteristical
length. More details are given with the specific case study.

Voronoi Performance
(16384) (36864)
x y d φ s v

Min 0 0 0.6 0° 0.25 600
Max 128 128 2.0 360° 2.00 2000
Step 1 1 0.2 5° 0.25 200

Kármán Water Model
(1287) (275)

R o r Q σ ε

Min 40 0.0 0.3 50 90 80
Max 100 0.4 0.8 150 110 120
Step 5 0.05 0.05 10 5 10
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6. Case Studies

We now apply our visual representation to analyze various ensem-
bles. First, we showcase how information is prepared using a simple,
synthetic data set (section 6.1). We continue with data from different
domains: an ensemble of fluid dynamics simulations (section 6.2) as
well as an ensemble generated from a thermodynamics simulation
(section 6.3). To demonstrate the generality of the approach, we
finally analyze an ensemble of measured performance data from
volume raycasting with varying rendering parameters (section 6.4).

6.1. Case Study 1: Voronoi Image

The first data set is a synthetic data set of a square image decom-
posed into distinct areas. Specifically, some random points were
chosen and associated Voronoi cells were generated. Each cell is
then colored black, gray or white (cf. fig. 2(a)). For this data set,
the feature vector is kept as simple as possible to allow for easy
tracking of data flow and analysis of algorithmic settings. This data
set can be interpreted as a “simulation” taking 2 input parameters
(x,y - coordinates) and producing a color as result:

Image X Axis x (Green). Vary the value of the x coordinate.
Image Y Axis y (Orange). Vary the value of the y coordinate.

Using the x,y coordinates as parameter space, we just use the
(grayscale) color of the pixel at x,y as a (single-component) feature
vector.

Using a SOM with n = 6 units, the data gets sorted into three
categories, as expected, while the other units remain empty (units
renamed as follows: u0=black, u1=gray, u2=white, while keeping the
SOM-determined ordering). Applying the final partitioning using
the neighborhood in parameter space, we obtain a set of 7 region
components, and our visualization approach can be seen in fig. 2(c).
On the horizontal axis, the identified clusters are listed in the order
determined by the SOM. The unit representation below each column
consists of the original pixel color.

First, the category of each region can be easily compared to
surrounding regions. For example, the center glyph, representing
the gray region, has connections to both lighter (white) and darker
(black) regions, as there are stacks on both the right and the left side
of the center. Also the distance in terms of the category of individual
interfaces can be directly extracted from the unit indicators. For
example, consistent with the actual image, the black region repre-
sented in the top left glyph (associated with the marked region in
fig. 2(a), and shown enlarged in fig. 2(b)) shows two connections
to the yellow category (white regions), and one to the orange one
(gray region).

To find out how to get from regions yielding black to a region
yielding white (yellow category), the colored blocks within the in-
dividual stacks need to be examined (fig. 2(b)). A colored block is
drawn for each parameter dimension with at least one transition, and
the height of this block encodes the number of transitions associated
with this dimension. One can see from the middle transition in the
glyph, connecting to a region in u1, that this interface is dominated
by the green parameter (x): there is only a green block and, since the
region border is perpendicular to the parameter, only one value gen-
erates a transition, resulting in a vertical green line. The gray block
to the right of the green line implies that x needs to be increased.

(a) The Voronoi image used as syn-
thetic parameter space set.

(b) Closeup of the black region
marked in (a).

(c) Analysis of the Voronoi Image dataset.

Figure 2: Synthetic data set Voronoi Image, with source data set
and our approach.

Also, given that all blocks in all glyphs are evenly colored, the
transitions are evenly distributed among the respective parameter
range. While these deductions can be made easily directly from the
simple data set fig. 2(a), this is increasingly difficult with higher
number of dimensions of the parameter space.

6.2. Case Study 2: Kármán Vortex street

For this ensemble data set, a Kármán vortex street fluid dynamics
simulation was executed for varying parameters. The simulation
code used is the OpenLB Lattice-Boltzmann solver [KTHRT∗16].
Three different parameters were modulated for the ensemble, the
details of the sampling are shown in table 1:

Reynolds Number R (Green). The Reynolds number is a dimen-
sionless measure in CFD simulations which combines lengths
and viscosity to easily compare differently scaled setups.

Offset o (Orange). The Offset parameter defines the vertical posi-
tion of the circular obstacle in cross flow section.
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Radius r (Blue). The Radius parameter defines the radius of the
circular obstacle.

The analysis task for this ensemble is to explore the overall be-
havior of the simulation with a focus on turbulent phenomena, i.e.
to partition the parameter space into turbulent and laminar behavior,
and to determine which parameters cause a transition between these
behaviors in different regions of parameter space. This example
demonstrates that our approach is also applicable for non-ordinal
data, for which we need to rely on pairwise comparison.
Feature vector for Similarity Binning. We first define a compar-
ison function d(·, ·) for two individual samples si and s j, which
represents the difference in velocity magnitude per voxel (root mean
square error) in a given time step of the simulation. This reduces the
comparison between two samples to a scalar, the so-called similarity
distance d, with a small value meaning more similar. To avoid the
huge impact the geometry of the obstacle itself would have on such
a comparison, we only use the right half of the simulation’s spatial
domain. This does not contain the obstacle, and the flow’s velocity
magnitude itself dominates the comparison. We want our compar-
ison to consider two simulations similar if the distances between
vortices are similar, as this is an indicator for how turbulent the
vortex street is. However, since a similar vortex pattern may still be
time-shifted between two simulations, a direct comparison between
the same time steps in both simulations is not sufficient. Hence, we
perform a pairwise comparison for each of the last 16 time steps of
si with each of the last 16 of s j , instead of just a fixed time step. 16
time steps are sufficient to cover at least one whole period of the
vortex shedding pattern for any of the input parameters, after which
the pattern repeats itself. The closest match of these comparisons is
then used as the comparison value for simulations si and s j.

Now that we have a pairwise comparison, we can define a feature
vector. First, we want to select a set of reference samples W from
the ensemble. These samples should ideally cover all features that
we want to detect for our analysis task. Conversely, this means
the samples in the set should be as diverse (as in “not similar”) as
possible. We choose these samples using the following method.

We start with a reference set W containing one random sample
w0, W = {w0}. Now, further references wi are added iteratively:
For each sample s of the ensemble the minimum distance dmin to
W is calculated. To determine dmin for a sample s, a comparison is
performed against all reference samples w already contained in W .
The shortest distance of a sample s to any w, i.e. the distance of s
to the most similar w, is now defined as dmin. In this fashion, a dmin
is now calculated for each sample s. The s with the largest dmin is
selected as the next wi, added to W , and the next iteration is started.
The iteration stops at a user-defined size of W , but can be also be
run until the largest dmin is below a certain threshold.

In addition, this method does not have to start with an empty set
for W . A domain scientist could manually pick a set of samples to
initialize W with. Note that this method only needs comparisons of
the order O(n), and can be progressively enhanced.

For the Kármán ensemble, we initialized the reference set W with
the samples simulated for the corners of the parameter space, and
added an additional 12 samples w using the above method. For each
sample s of the ensemble, we now associate a feature vector with
m = |W | components. By setting the i-th component of the vector

to the similarity distance d between s the i-th element of W , we
generate a vector describing an ensemble sample’s relation to the
reference set. On this feature vector, the usual Similarity Binning
via SOMs (cf. section 3.1, section 5) is performed, and finally our
visual representation is computed.

Visual Representation and Analysis. For the unit representation,
we show an image of the (normalized) velocity magnitude for the
sample with the shortest Euclidean distance to the feature vector of
the respective SOM unit ui (fig. 3).

It can be immediately inferred from the amount of regions in each
SOM unit ui that the detected features and the parameters generating
them correlate quite well, as most ui do not decompose into multiple
regions (the small regions in u1 are artifacts of the clustering and
the discretization). With the comparison function operating on the
right half of the simulation’s spatial domain, one can assume that
simulations contained in a region exhibit similar behavior regarding
the flow, but do not necessarily have the same obstacle configuration.

The right half (u3 to u5) shows that the flow behavior, a per
the comparison function, is dominated by the change in obstacle
geometry, despite the area containing the geometry itself being
excluded from the comparison. This can be seen in the mostly blue
and orange colors within the interfaces, encoding Offset and Radius
of the obstacle. In other words, one “extremum” discerned by the
machine learning algorithm is mostly due to the obstacle being offset
from the center axis of the simulation.

By only examining the unit representation below the columns,
one could assume that while samples in u1 and u5 are separated,
they share some relationship in parameter space, as both exhibit
turbulence. In our visualization, the interfaces for these regions
confirm that the samples in u5 have connectivity in parameter space,
as they connect to purple regions in u0 and u1, as can be seen by
the border coloring. A closer examination reveals that parameter
changes between these stem mostly from blue and green (Radius
and Reynolds) transitions (e.g. u4, the topmost interface on the left
side). Examining the transitions in the left half (u0, u1), the more
prominent green transition color reveals that these regions connect
to others in the right half and also to each other due to changes in
the Reynolds number for most values, implying that this parameter
dominates the simulation in this region of parameter space.

6.3. Case Study 3: Water Model

The ensemble generated with this simulation consists of testing the
macroscopic behavior of water molecules when their microscopic
physical quantities are changed. The simulations were generated
with the ms2 Molecular Simulator [RKGC∗17]. More details can be
extracted from the associated paper [HMH∗12].

The parameter space for the simulation are physical constants
used in the potential for each water molecule. The simulation approx-
imates interactions between water molecules using a Lennard-Jones
potential. For details of the parameter space sampling generated
refer to table 1. For all parameters, a base value for each physical
constant was assumed, and then varied to generate multiple samples.

Charge Q (Green). The electrical charge of the Oxygen atom. This
is the key parameter for electrical interactions.
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Figure 3: Kármán Vortex Street ensemble overview. From left to right, one can see adjacent parameter space regions turning from turbulent
to laminar (u0 to u2), until they get turbulent again (towards u5). The transition colors shown in the interfaces give a quick assessment for the
reason: first lowering the Reynolds number is responsible (mainly green transitions), while the right half of transitions imply that the Offset of
the obstacle from the symmetry axis causes the turbulence (orange).

Epsilon ε (Blue). The “depth” of the well in the Lennard-Jones po-
tential. This mostly affects close-range interaction of molecules.

Sigma σ (Orange). The overall scaling of the Lennard-Jones po-
tential. This can be thought of as the “size” of the molecule.

For each input parameter set (Q,ε,σ ), 12 simulations are per-
formed to cover a range of densities and temperatures. The result
obtained for each ensemble member are thus 12 value pairs for the
macroscopic quantities inner energy and pressure. These values
are compared to experimentally measured values for real water at
the 12 given densities and temperatures, to determine how well the
simulation approximates the experiment. This comparison is again
expressed as the root mean square error. By weighting the error for
energy and pressure with a factor provided by the domain expert, the
evaluation can be reduced to a single scalar representing the “error”
of a simulation associated with a parameter set.

The analysis employing our visualization method is shown in
fig. 4. The actual “error” values of the samples contained in the
unit are displayed as the unit representation below each column.
The unit representation frame color encodes how close the samples
contained in the region are to the experiment, from best (purple)
to worst (yellow). From the overview, the visualization gives a
strong indication that the σ parameter dominates the behavior of
the simulation, since many of the transitions are of orange color,
especially when you consider that this is the dimension with the
coarsest sampling. This means that changing the overall scaling of
the molecule has the largest impact on macroscopic properties of
the thermodynamical simulation.

Examining the glyph for the “best” region (leftmost, purple), one
can make a few observations regarding the ensemble. First, note
that transitions tend to be start mostly in the (horizontal) center of
each interface glyph, leaving toward both a lower value (gray box
to the left) or a higher one (gray box to the right). This implies
that simulations closer to base values for Q,σ and ε , which are at
the exact center of the column, are more likely to produce better
approximations of the experiment. Similarly, examining the worst
quality region (rightmost, yellow), the glyph shows that simulations
with a high σ value (transitions for two fairly large interfaces are
all orange, and located on far right of the interface glyph) can be
improved by decreasing σ (gray boxes to left).

Figure 4: Water model ensemble overview. Even though having
a coarse sampling, σ (orange color) can be easily identified as
the most impactful parameter. Also high values for σ generate the
largest errors, as can be seen in the highest error region (yellow)

6.4. Case Study 4: Performance Data

Next, we aim to explore the performance characteristics of GPU
volume raycasting, one of the fundamental approaches in scientific
visualization. Volume visualization is a computationally demand-
ing application, especially for high resolution datasets, which are
common nowadays due to advancements in sensor technology and
simulation capacities. Therefore, evaluating performance in volume
visualization applications and understanding respective performance
characteristics is an essential part in this field of research [BMFE19].

For this, a visualization researcher obtained performance data
with the following four different parameters:

Ray Step Size (Purple). The sampling distance along a ray con-
sisting of eight values ranging from 0.25 to 2 in terms the smallest
side length of a voxel length.

Viewport (Pink). Resolution/number of rays traced through the
volume. Here, eight different resolutions were measured, ranging
between 600×600 and 2000×2000.
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(a) Complete view (b) Close to a bone with large per-
formance impact

Figure 5: Individual frames of the camera path of the Chameleon
data set (10242×512).

Camera Distance (Green). The camera distance varied in eight
steps, ranging from a closeup to an overview.

Camera Rotation (Orange). The camera rotated in an orbit
around in the volume in 72 steps (i.e., steps of five degrees).

The measurements were taken from a volume raycaster employing
early ray termination and empty space skipping implemented in
OpenCL and executed on an NVIDIA GTX970 GPU. A CT scan of
a chameleon was used as volume data set in the measurements (cf.
fig. 5(a) for an exemplary image). We now aim to study the impact
that different parameter changes can have on the performance.

The overall structure of our representation, shown in fig. 6(a),
provides insights regarding the general characteristics of the perfor-
mance data. The units are sorted by decreasing rendering time from
left to right. The fastest rendering times are all in one region (yellow
unit), meaning that they are all connected in parameter space. Inter-
estingly, essentially all possible transitions in a single dimension in
parameter space are present. This means that nearly all individual
parameter changes cause a transition to the next slower region. This
is due to the fact that for any given parameter in one dimension,
there exists another parameter configuration that results in a slower
render time. In particular, a low distance to the volume data makes
rendering expensive (screen coverage), and for large distances, a
high sampling density in image and object space as well as a viewing
angle that minimizes the gain from early ray termination can still
lead to high render cost. Apart from the smaller size of the other
units, this is also a reason why for slower render times, the parame-
ter space is much more segmented: not only has every parameter a
significant performance impact by itself, their non-linear interplay
also leads to complex performance patterns in parameter space.

Overall, it can be seen that the parameter space typically behaves
very smoothly, as indicated by most parameter changes essentially
leading to a neighboring unit. In addition, parameter changes behave
consistently in terms of their qualitative impact, i.e., the direction of
the parameter change that leads to higher or lower render times is
consistent in the interfaces of all glyphs. A noteable exception to this
is the camera parameter (orange) as can be seen from several glyphs,
e.g. in fig. 6(b). The gray blocks for this parameter dimension are
found on the left as well as the right side of the orange block. This
makes sense, while the others directly steer the sampling density or

the image footprint of the volume, the rotation angle has no clear
ordering, and advancing on the orbit might lead to an increase or
decrease of performance, in particular due the employed acceleration
techniques (empty space skipping and early ray termination).

The visualization also shows interesting cases of small param-
eter changes that have a large performance impact. Visually, this
can generally be seen from transition indicators on the glyphs that
point to units which are further away. Depending on the users tasks
and preferences, such cases can both be identified through user ex-
ploration or automatically detected and highlighted algorithmically
(e.g., whenever transitions connect fundamentally different regions).

In this example, a closer investigation of the low performance
columns on the left (u0,u1, purple colors) reveals such a case
(fig. 6(b)). The yellow unit transition indicators depict that a single
parameter change boosted rendering performance considerably. This
phenomenon can be mostly observed when changing the camera
rotation, which intuitively should not have such a significant impact
on performance. By looking at the output (volume renderings) for
the samples at the ends of the respective transitions, we can infer
what change in rendering this relates to (fig. 5(b)). The camera is
close to a bone, which is essentially dived into with the next step
along the camera orbit (orange transitions at the segment with the
yellow connection). When this happens, the rendering is cheap, be-
cause the bone has high opacity and essentially the computation of
all rays almost instantly aborts, due to early ray termination.

7. Timings and Limitations

Timings. While the simulations for the Kármán Vortex Street and
Water Model ensemble were performed with in-house hardware,
exact timings are not included, since they are unrelated to our ap-
proach. Computation times for the simulation step range from a
few days to several weeks, using 2 to 6 workstations with varying
consumer-grade components (i5-6500 with 4 cores to i7-2600 with
4+4(HT) cores, 8 to 16GB memory), severely limiting the number
of samples which can be computed in a reasonable time. The pro-
cessing steps that are part of our technique were performed on a
i7-2600 4+4(HT) core machine with 16GB of memory. The current
prototypical implementation of the approach is based on Python
unless mentioned otherwise.

The Similarity Binning via SOMs is dependent on the feature
vector size and the number of ensemble members. However, the un-
derlying C++ implementation requires a maximum runtime shorter
than tSC < 0.5s, and is negligible even for larger feature vectors
(tested with up 20 components on the Kármán data set (~1300
samples), and with 1 component on the Performance data (~37000
samples)). For the Connectivity Partitioning module, we used a
straightforward implementation. Based on adjacency lists, it is ap-
plicable for arbitrarily dimensioned, irregular grids, and does not
explicitly exploit the regularity present in the grids of our case stud-
ies. Hence, this could be easily optimized with an implementation
exploiting regularity in the data, and specializing in a given dimen-
sionality of the data grid. All runtimes for this were in the order of a
few seconds and depend approximately linearly on the number of
ensemble samples. The Interface Extraction times depend linearly
on the number of edges in E. The times are negligible across all of
our case studies (< 0.01s).
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(a) Performance ensemble overview. (b) red box from (a)

Figure 6: Performance ensemble analysis overview. All four parameters have an impact on the high performance unit (yellow, u6), as all
colors can be seen as transitions. This is also due to the fact that the value range covered by unit u6 is fairly small by comparison. The complex
interplay between parameters tends to break the parameter space into smaller partitions for longer rendering time samples.

The only time-consuming step necessary for our visualization is
the computation of the pairwise comparison for the data sets, which
is needed for generating a feature vector. The most computationally
expensive comparison, done for the Kármán ensemble, required 0.5s
per sample pair on average. Using 20 reference vectors, the entire
computation takes about 4 hours. Note that once a comparison is
calculated, it can be reused in subsequent partitioning runs, provided
the analysis task stays the same.

Limitations and Future Work. While our technique enables a
good overview on which parameter changes affect the respective
output in what way, there are still a number of limitations which can
be addressed in future work.

Breaking down interfaces into individual transitions tied to a
specific dimension provides insights into how a specific parameter
influences the simulation. The correlation between parameters, while
still retained, is very difficult to interpret. A simple linear correlation
for example can be extracted by having evenly distributed transitions
for all dimensions participating in an interface, visualized by all
blocks being evenly colored. A more complicated interplay between
parameters on the other hand may show fairly complex patterns,
which are difficult to deduce from our visual representation. An
automatic interpretation of common interplay patterns could be
substituted and used instead of the currently employed coloring
based on transition density.

Another issue is that the exact location in parameter space of
the transitions is lost, as the dimensions remaining constant for
a transition are discarded. This could be solved by adding the in-
formation to each transition stack, which would add an additional
vertical line into each transition block, but would make the result
considerably more complex to interpret, as well as further limiting
the possible number of dimensions. However, most of these issues
can be resolved via interaction, for example using focus and con-
text techniques for the detailed examination of each region and its
neighborhood, both in the outputs (i.e. similarity between regions
as a whole) as well as in parameter space.

8. Conclusion

Is this paper, we described a novel approach for the visualization
of transitions between regions in a multi-dimensional parameter
space associated with an ensemble of computations. We focus on
continuous parameters typically defined by scientific applications,
such as physical constants describing a computational model.

For the analysis of ensembles, we employ similarity metrics cal-
culated between neighboring ensemble members in parameter space,
whereas the specific comparison function is tailored to ensemble
sample type and analysis task. We employ Self-Organizing Maps
to partition the parameter space into segments of similar behavior.
Gathering samples within these segments, we further partition into
connected components we call regions, which are connected by
parameter transitions.

To visualize these resulting regions, we represent them as glyphs
resembling stacked bar charts. The associated interface indicators
in the glyph then reflect which similarity categories are connected.
We then depict the parameter changes leading to a change in sim-
ulation behavior, and therefore a change in region, with our novel
customized glyph. In general, the glyph gives a visualization of the
transitions, their respective location in parameter space, and enables
a quick assessment of the impact of a given parameter.

After introducing the technique properties on a synthetic data
set, we continued to demonstrate the utility of the approach on
several case studies typical for the scientific applications targeted
by our approach. This included a CFD simulation ensemble and an
ensemble generated for a computational model of water, in which
varying physical constants were used. We also added a case study for
performance data of a fundamental scientific visualization technique
to show the generality of our approach.
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