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Abstract
We present 3DReg-i-Net, an improved deep learning solution for pairwise registration of 3D scans, which evolves the recently
proposed 3DRegNet technique by Pais et al. This is one of the very first learning based algorithm aiming at producing the
co-registration of two 3D views starting solely from a set of point correspondences, which is able to perform outlier rejection
and to recover the registration matrix. We evolve the original method to face the challenging scenario of quick 3D modelling
at small scales through the alignment of dense 3D views acquired at video frame-rate with a handheld scanner. We improve
the system tracking robustness and alignment performance with a generalized input data augmentation. Moreover, working on
suboptimal aspects of the original solution, we propose different improvements that lead to a redefinition of the training loss
function. When tested on the considered scenario, the proposed 3DReg-i-Net significantly outperforms the prior solution in
terms of accuracy of the estimated aligning transforms.

CCS Concepts
• Computing methodologies → Artificial intelligence; Point-based models; • Hardware → Emerging technologies;

1. Introduction

Pairwise as well as multiview 3D registration of point-based data
(point clouds or range images) from RGBD sensors and 3D opti-
cal scanners define a large family of techniques widely studied in
Computer Vision and Graphics [CM91, BM92, AMCO08, BSL11,
PDS16]. However, progresses in the data acquisition technologies
and the availability of new tools for data analysis result into the
constant need to evolve and explore new solutions for new chal-
lenging needs. In particular, up to date handheld devices allow per-
forming 3D scanning in a real-time fashion [INK∗11], with higher
flexibility and an improved user-experience with respect to a clas-
sic setup. Ideally, 3D real-time scanning should be robust to track-
ing loss and to the resulting misalignment, maintaining responsive-
ness at a high frame rate and ensuring metric accuracy and high
density of the model. Although for pairwise view alignment only
3 points in common are enough, many solutions have been pro-
posed for 3D keypoint detection and estimation of a redundant set
of correspondences to counter the various non-idealities and chal-
lenges characterizing 3D point data acquisition and processing. To
this aim, feature-based pipelines can provide generality of use, flex-
ibility, robustness and speed. However, in a real working scenario,
the presence of corrupted data typically affects the creation of the
set of correspondences (i.e. the input of the network) and so there
is a high percentage of outliers that must be detected in order to
properly estimate the roto-translation transform T between 2 non-
aligned point clouds or range images. To respond to the most ad-

vanced needs, approaches based on deep learning (DL) are becom-
ing viable solutions. In the field of feature detection and matching
some interesting solutions have been proposed both for images and
3D data [ZSN∗17], while even more recently, a DL approach called
3DRegNet [PMR∗19] has been proposed for direct estimation of T
given a set of estimated input matches.

In the present work, starting from the potentialities of the
3DRegNet solution, we introduce and test improved solutions for
real-time dense scan alignment scenarios, where the data flow
comes from a handheld scanner and where fast estimation of the
camera movement and robust tracking are main needs. More specif-
ically, we highlight some problems and sub-optimalities of the
original method and we propose alternative data handling and
training solutions that lead to significant improvements of the co-
registration accuracy.

1.1. Related Work

Unless some prior assumptions can be usually made on the range
of pose variations between consecutive views, the computational
complexity of unconstrained 3D view alignment, especially when
dense sets of points are involved, can be prohibitive without ex-
ploiting a method for data reduction. To this aim, techniques that
allow to extract a set of features which properly describe the dataset
are particularly crucial. Compared to the 2D image domain, the ex-
traction of feature points and the definition of informative and ro-
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bust 3D descriptors is more challenging because of the occlusions,
clutters, missing structures, and noise affecting both structured
and unstructured acquisitions of point sets. Many handcrafted fea-
ture based solutions have been proposed aiming at 3D view align-
ment, such as Spin Images [JH99] or Persistent Feature Histograms
PFH [RBMB08] and its variants [RMBB08, RBB09]). Some of
them additionally addressed the problem of the rotation invariance
of the features such as RIFT [LSP05] and methods based on Point
Pair Features (PPF) [DUNI10]. In [BSL11] a pairwise registration
based on SIFT-like 3D features has been proposed for robust align-
ment of dense range scans, while in [PDS16] alignments driven by
pose invariant Local Reference Frames, along with other different
solutions, have been tested on different kinds of scan data. These
are only few among many other works in the field of feature-based
3D scan alignment and the reader can take the literature review
parts in [BSL12,PDS16] as a starting point for a broader overview.
More recently, learned feature descriptors based on deep repre-
sentation learning solutions have emerged as an intriguing alter-
native, and some of them already outperformed the state-of-the-
art of the handcrafted approaches. The main proposed solutions so
far are 3DMatch [ZSN∗17] and the PPF-based DL versions, i.e.
PPFNet [DBI18b] and PPF-FoldNet [DBI18a].
Eventually, regardless the data type and the selected feature extrac-
tion approach, the result of a feature matching stage is a collection
of correspondences to exploit for the alignment. A good method
to deal with these sets of 3D points is the well known Iterative
Closest Point algorithm [BM92], which tries to align two views by
minimizing the point-to-point distance by iterative steps. A signif-
icant contribution was given by Chen and Medioni [CM91] with
the introduction of a meta-view registration between a frame and a
model and the alternative point-to-plane cost function. ICP, and its
variants [RL01], is used as a direct alignment technique if the views
are known to be sufficiently close, while they can have a refine-
ment role after a so called "coarse" alignment is obtained after the
filtering of the initial pool of correspondences that, in many prac-
tical applications, can be affected by the presence of many (some-
times a majority portion of) outliers. This is due to the noisy nature
of the acquisitions, to the non sufficient geometric specificity and
uniqueness of the geometric keypoints or a poor performance of
the feature descriptors. A typical algorithm used to prune the out-
liers is RANSAC [FB81], despite other ranking based approaches
proved to be good alternatives [BSL12]. These very effective meth-
ods are also quite time consuming (despite the existence of some
faster variants [CMK03], [CM08]) because they are iterative and
typically needs many iterations to work properly.
Deep learning solutions are currently emerging also to work on this
final stage. Elbaz et al. [EAF17] were among the firsts to propose
to feed a neural network auto-encoder with point clouds to register.
More recently, an auto-encoder has been proposed also by Deng
et al. [DBI19], relying on PPF features [DBI18b], [DBI18a] and
PointNet [CSKG17] to be robust to the order of points in the in-
put set. Finally, [PMR∗19] suggested to use Multi Layer Percep-
trons and ResNet [HZRS16] to classify a set of correspondences
from two views and to directly co-register them. These methods,
despite promising in terms of execution speed, still have to prove
that they can be competitive to classical methods in terms of regis-
tration accuracy in real and challenging application scenarios, such

as the one of interest here concerning small-scale object modeling
by means of handheld real-time 3D scanners.

1.2. Contribution

We focus on the classification of a set of correspondences and the
automatic pairwise registration using a deep learning based ap-
proach which promises to be fast and robust with respect to the
amount of data to analyze.
Starting from the 3DRegNet approach [PMR∗19] we characterize
its behaviour and develop improved solutions in the context of data
generated by a handheld scanning. At first we describe the device in
use and the characteristics of our dataset. We also reflect on a crit-
ical aspect affecting a supervised learning approach in this context
and present a data augmentation strategy to solve it. Then, we ana-
lyze the characteristics and evaluate the performance of the original
3DRegNet and we discuss the suboptimalities encountered during
such assessment, especially related to the accuracy of the registra-
tion. Our main improvements concern a different output of the reg-
istration sub-block of the network for which we use a cost function
involving quaternion-based representations for the inference of the
rigid alignment transformation. Furthermore, we introduce an addi-
tional cost factor, working on the coherence among estimated sur-
face normals, to help the network to rapidly learn how to regress the
registration matrix. Finally we test and compare the new solutions
with the original one and we evaluate how the different components
concur to the final result.

2. Device and dataset

The launch of the first Microsoft Kinect [Zha12], followed in thx-
amples years by other affordable devices capable to acquire 3D
depth maps at video frame rate, not only changed radically enter-
tainment and video game experiences, but also opened new oppor-
tunities in many application fields and raised high interests in the
Computer Vision research community at large [HSXS13]. In par-
ticular, real-time 3D object/scene reconstruction and modeling, pi-
oneered by Izadi et al. [INK∗11], developed toward solutions aim-
ing to handle the whole set of problems and requirements charac-
terizing real-time 3D scanning [DNZ∗17]. Nowadays, depending
on the accuracy, the dimensional scale, the performance, the engi-
neering of the hardware, the software and many other application
related aspects, the market can offer several solutions for real-time
3D scanning at different price ranges, from few hundreds to tens
of thousands of euros. In our research activity we had the oppor-
tunity to work with the data flow produced by the Insight 3 scan-
ner, a handheld scanner by Open Technologies – FARO†, conceived
for real-time object scanning. This is an unstructured-light optical
scanner that, working in the infrared region, performs a stereo re-
construction of 3D points in space by means of two 1280× 1024
pixel cameras (see Fig.1). The field of view of the scanner is be-
tween 150 and 500 mm, which is relatively narrow with respect to
both the original structured-light Kinect and other ToF-based de-
vices. It is conceived for close-range object scanning, producing

† https://www.opentechnologies.it/en/products/scanner-3d-eng/industrial-
line/insight/
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Figure 1: The Insight scanner.

a quite accurate dense data, with a point spacing in the range of
0.12−0.4 mm and a depth resolution under 1 mm. Each frame is a
Range Image (RI) and the 3D model is obtained by real-time fusion
of the incoming RIs into a sparse volume by means of the Trun-
cated Signed Distance Function (TSDF) [CL96]. This makes this
scanner well targeted to many different applications, as reverse en-
gineering, cultural heritage, entertainment (movies, videogames),
medical CAD (orthotics and dentistry) and CAM.
Trying to improve the computational and robustness performance

of these kind of devices is challenging and since our aim is to ex-
plore RI alignment solutions based on deep-learning approaches we
need enough amount of data well representative of the device and
of the task. Dataset creation is critical in this context, especially
in the case of a supervised method, which usually requires appli-
cation expertise and skilled personnel time to build the ground-
truth. Moreover, working in a 3D domain increases the overall com-
plexity of the building process. For this reasons, wherever possi-
ble, people usually prefer to work with available and already pre-
processed data, which are then commonly used as reference by the
research community. Two of them, the ICL-NUIM [HWMD14] and
the SUN3D [XOT13] datasets, are in fact considered for the devel-
opment of the 3DRegNet solution in [PMR∗19]. The former is a big
set of 8500 different pairs of connected point-clouds, synthetically
created. The latter is a relatively smaller set, containing 3700 differ-
ent pairs of real-scene connected point-clouds acquired with a com-
mercial RGB-D infrared-based camera (Asus Xtion). Such a device
is characterized by a wide detection range, a dense point-cloud pro-
duction and, like others affordable RGB-D sensors, it is commonly
used for performance capture or for environments of the scale of
people and rooms. Since the main target of our scanner is different,
more oriented to a smaller-scale object acquisition, we needed to
create a new dataset made by data coming from the Insight scan-
ner and representing typical acquisition targets, still referring to
a scene every time we talk about one of the 3D model we pro-
duced. Our dataset presents different subjects (some examples are
shown in Figure 2), from simple objects (e.g. a couple of helmets,
a dummy, a piece of marble carved to have some geometric shapes
on top, plastic models of mechanical components, etc.) to human
body parts (head, hands, arms, bust). Each scene is composed by
multiple RIs, also called fragments, typically acquired in a next
to each other sequence, but possibly including pose discontinuities
due to tracking failures or to the user need to acquire more than
one sequence of fragments to complete the 3D model. The ground
truth is created by pairwise alignment of subsequent fragments us-

ing a reference feature based alignment technique [BSL11,BSL12],
which has been recognized to be particularly suited for the align-
ment of dense point sets as the ones generated by the Insight scan-
ner. As well as helping in creating the alignment ground truth, this
method directly generates the set of features and correspondences
which are required by our approach, similarly to what happens for
3DRegNet. Feature-points are extracted according to a robust mul-
tiscale Difference-of-Gaussians (DoG) processing of the RIs that
takes into account various data non-idealities, and feature descrip-
tors consists of 192-dimensional signatures related to both local
geometric saliency and normal field measures. Then feature match-
ing and correspondence selection mechanisms operates on pairs of
fragments allowing to filter out the wrong matches in an iterative
fashion guided by distance-based scores, until a set of (decidable) N
best ranked correspondences (X,Y) ∈ RN×3×3 is extracted, where
X ∈ RN×3 is a set of 3D coordinates taken from the first frag-
ment and Y ∈ RN×3 is taken from the second one. We consider
the latter as the floating fragment that we want to align to the for-
mer, the fixed one. Relying on these correspondences, a rigid trans-
formation Tgt ∈ R4×4, defined as the combination of a rotation
Rgt ∈ R3×3 and a translation vector tgt ∈ R3, can be computed.
In [BSL11, BSL12] this is done by a fast skimming approach able
to effectively skim outliers and that, in this context, proved faster
and better performance compared to the widely adopted RANSAC
approach. We adopt Tgt as the ground-truth rigid transformation
while, aiming at estimating it through a Deep Learning approach,
by starting from a set of N correspondences, we take as input the
N best correspondences generated by the first ranking operated
in [BSL11, BSL12]. Even proceeding this way, we have to stress
the fact that, despite in [PMR∗19] the inlier ratio at the input is
considered to be 50%, which is a good assumption to not bias the
training, this is however quite far from what happens in real work-
ing scenario, where instead the outliers percentage can be much
higher.
By construction the stream of pairwise fragments, which is directly
taken from the scanner, is mainly composed by nearby fragments
(taken few tens of milliseconds apart) characterized by small view-
point rotations and translations. Since our goal is to learn the sys-
tem to quickly recover even from tracking failure (which may in-
volve relatively larger camera viewpoint changes), we then apply
a data augmentation to our dataset. To do this, we randomly rotate
and translate respectively with a span of ±30◦ and of ±30 mm the
set of points Y, i.e. Y′ = TrndY and we recompute the ground truth
rigid transformation Tgt as the composition of the original transfor-
mation with this new random one:

T′gt = Tgt ·T−1
rnd (1)

In such a way, we are now able to feed the network with a set of
fragments that are misaligned from few millimeters up to some cen-
timeters and eventually highly rotated on the three axes, so that to
learn to handle both incremental alignments and tracking loss re-
covery instances.

3. Methods

Our main goal is to design and test DL-based solutions for faster
estimation of pairwise alignment transforms. The only and very re-
cent contribution by Pais (et al.) that works on this idea is called
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Examples of scenes in our dataset. The targets are many, both objects, for instance a dummy (a), a piece of marble with 3D solids
on top (e), a helmet (d) and a seashell (h) and human body parts like heads (b), (c) and hands (f), (g).

3DRegNet [PMR∗19] and has been tested on benchmark datasets
which are only partially representative of our working scenario.
Thus, while adopting 3DRegNet as a starting point for our work,
we also critically analyze possible weakness of the method and
propose new and improving solutions. In its turn, 3DRegNet is in-
spired and extends a previous work by Yi et al. [YTO∗18], where
a neural network is fed with sets of 2D pixel correspondences ex-
tracted from many couples of images with the aim to classify each
correspondence as a valid or invalid one. This is done grounding
on the ResNet architecture [HZRS16], a state-of-the-art deep learn-
ing solution allowing to grow the number of inner layers without
increasing the training complexity. Notably, other than introducing
mere 2D to 3D extension rearrangements, 3DRegNet [PMR∗19]
expands the network with a new registration block, with the pur-
pose of inferring the 3D alignment transformation in a straight-
forward way. Here we confine ourselves in giving an essential
overview of 3DRegNet, which is functional to the understanding
of our contribution, while referring the readers to the original pa-
per for more details. A schematic representation of the network is
depicted in Figure 3. The input consists of K pairs of scans, each
one coming with N pairs of possibly corresponding 3D points, i.e.
{(x,y)i}k, where i ∈ {1, . . . ,N} and k ∈ {1, . . . ,K}. The first inner
block is demanded to the classification task: each correspondence is
passed through a fully connected layer with ReLU activation func-
tions (where ReLU(x) = max(0,x)) that returns a N× 128 output.
Then a 12 ResNet block sequence with weight-shared fully con-
nected layers processes the data returning again a N × 128 out-
put. Finally, a fully connected layer activated with ReLU and a
tanh(x) = ex−e−x

ex+e−x unit produces the classification output, such that
for each correspondence at the input we end up with an output value
interpretable as the probability for that correspondence to be a valid

one (that is an inlier).
Additionally, while traversing the chain of ResNets that we men-

tioned above, every block returns a temporary N× 128 output that
acts as input both for the next block and for the skip connection
inside ResNet workflow. 3DRegNet takes such outputs, performs
a max pooling and concatenates the features. As explained both
in [YTO∗18] and [PMR∗19], such Context Normalization helps to
normalize and to fix the necessary number of features. This new
set of data is then passed through a convolutional layer and to two
fully connected layers, before returning the final output of the reg-
istration block. The output represents the parametrization of the
learned rigid transformation that aligns the two views, T̂, consist-
ing in the combination of a rotation matrix R̂ and a translation vec-
tor t̂. Its size depends upon the desired representation of R̂: in Lie
algebra only three parameters are required, four in case of quater-
nion representation and nine for the linear matrix. In [PMR∗19]
the author works with Lie algebra, because of more compact repre-
sentation and better experimental alignment performance. After the
design of the network, the second critical aspect regards the choice
of the loss function. Since 3DRegNet is a combination of classifica-
tion and registration sub-blocks, the loss reflects this structure. The
classification loss is defined via the commonly used cross-entropy
function H(y, ŷ):

Lk
c =

1
N

N

∑
i=1

γ
k
i H
(
lk
i ,σ(o

k
i )
)

(2)

which, for the k-th fragments pair, computes the mean of the cross-
entropy over the N correspondences, evaluated for the ground truth
label lk

i and the output of the classification block (ok
i ) activated with

a sigmoid function σ. The registration loss instead is a simple for-
mulation of the `1 distance metric function in 3D space. An `1 dis-
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Figure 3: The original 3DRegNet [PMR∗19] architecture, where in our implementation the input set of N correspondences extracted from a
pair of range images (on the left) are obtained by the method described in [BSL11]. The output is split in two sub-blocks: the first block is
devoted to classification and produces N weights that represent the likelihood of the relative correspondence to be valid or not. The second
block is devoted to the inference of the rigid transformation that is necessary to align the two scans. The size of such output depends on the
parametrization of the alignment transform. In [PMR∗19] it is a 6-tuple (3 components for the rotation matrix represented with Lie algebra
and 3 for the translation vector).

tance was experimentally chosen among other metrics because it
produced best results. The loss is then defined as the point-wise
distance between x and the transformed version of the correspond-
ing one y after applying the learned transformation T̂:

Lk
r =

1
N

N

∑
i=1
‖xk

i − (R̂yk
i + t̂)‖1 (3)

However, the choice of such registration loss seems to be sub-
optimal to us, since by considering the distance between all corre-
sponding point pairs, we also include all the outliers, which could
likely mislead the learning process, given that the network keeps
trying to minimize the distance between not corresponding points.
In the end, the resulting alignment could easily suffer from drift
issues. A first alternative could be using a weighted least square so-
lution (although according to the author of 3DRegNet it performs
worse than the `1 distance) or a filtered version of the point-to-point
distance with removal of the outliers by means of the ground-truth
labels. However, while testing alternatives, we observed for all so-
lutions some issues related to the learning goodness of the transla-
tion vectors of the rigid transformation. In particular, they rapidly
fall into a local minimum during the gradient descent and do not
recover from it. Since the reasons for this could be many, compris-
ing an ill posed definition of the loss, to break it down, we modified

the way we compute Lr. We leverage the fact that we also have the
ground truth transformation Tgt available, and in particular the ro-
tation. Thus, as in [DBI19], we can define a cost function to directly
learn to regress the rotation. Similarly to [DBI19] and [KC17] we
use a quaternion-based parametrization of the rotation, because of
its continuous and differentiable formulation, which fits well for
deep learning training algorithms, and because of the reduced num-
ber of parameters to regress. So the rotation loss for k-th pair of
fragments is now formulated as:

Lk
q =

∥∥∥∥qgt −
q̂
‖q̂‖

∥∥∥∥ (4)

where ‖·‖ is an `2 norm. Here the normalization of the inferred q̂ is
required for guaranteeing valid quaternion rotations. The output of
the registration sub-block is then reduced to four parameters only,
as depicted in Figure 4.
Furthermore, since quaternions are non-injective (−q is identi-

cal to q), we prefer to constrain q̂ to one hemisphere by adding
a penalty every time the control statement qgt · q̂ > 0 returns false:

Lk
p =

{
0, if qk

gt · q̂k > 0.
1, otherwise.

(5)
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Figure 4: Our output at the registration sub-block which now is
focused only on the inference of the rotation matrix, parametrized
with a 4-tuple quaternion.

We focus our attention on reducing the distance to the ground-truth
rotation, since learning the translation vector can be avoided and
t can be easily retrieved by looking at the definition of the rigid
transformation itself (as also pointed out in [DBI19]). Indeed, once
we have a point xi, the corresponding point yi and the estimated
rotation R that aligns yi to xi, we can retrieve the translation for
this point as ti = xi −Ryi. Therefore, by restricting ourselves to
solely the correspondences that are estimated to be inliers (with
sufficiently high confidence level) by the network, the translation
can be computed as the average translation over the set of NI inliers
xI

j:

t̂ = 1
NI

NI

∑
j=1

(xI
j − R̂yI

j) (6)

This allows reducing the network complexity and we can focus to
learn the rotation as best as possible. In this perspective, we add a
last component to the registration loss by also considering a con-
straint on the normals, since we have them ready from the acquisi-
tion session. In particular, we define the normals rotation loss for
the generic k-th pair as:

Lk
n =

1
NI

NI

∑
j=1

(−< qgtny j · q̂ny j >) (7)

In such a way, the total cost increases whenever the angle between
the normals that have been rotated respectively with the ground-
truth and the learned rotations, is getting further from zero.
Eventually, the final registration loss is defined as:

Lk
r = Lk

q +Lk
p +Lk

n (8)

Together with (2), by computing the mean over the K different
pairs, they form the total loss:

L = αLc +βLr (9)

where α and β are two hyper-parameters of the network, in
the same fashion as 3DRegNet, that are used to properly tune
the impact of each sub-loss on the overall cost. Moreover, as
described in [PMR∗19], we also use the Curriculum Learning
data augmentation strategy: in each training epoch we rotate every
incoming batch of data by increasing angles from 0◦ to 50◦ until
we get to the half running epoch and then we keep rotating but
backward, with decreasing angle from 50◦ to 0◦. This strategy is
useful to further add new rotations to the network and to not repeat

the data one epoch after the other, so that it allows to run more
iterations over the dataset avoiding the rapid overfitting.

4. Experiments

Our aim is the performance comparison of the new version of the
network with the original 3DRegNet in the perspective of its possi-
ble integration within the scanner modeling pipeline.

Evaluating metrics

In order to perform the assessment, we need to define some scores.
Since the network contains two sub-blocks, we use different met-
rics for both the two components. For the classification test we rely
on two well known parameters, i.e. its accuracy and precision, typ-
ically defined as:

accuracy =
TP+TN

TP+TN+FP+FN
, precision =

TP
TP+FP

where TP,TN,FP,FN stands for true positives, true negatives, false
positives and false negatives respectively.
Similarly to 3DRegNet, we also use two metrics for the registra-
tion test. Such metrics describe the distances of the learned rotation
and the learned translation from their ground-truth counterpart. In
particular, the rotation accuracy is defined in [MSKS03] as:

δR = cos−1

(
trace(R−1Rgt)−1

2

)
(10)

which basically represents, via Lie algebra, the angle (in degrees)
required to align the two rotations under comparison. For transla-
tions we use the euclidean distance between the two vectors:

δt = ‖tgt − t̂‖ (11)

Finally, since we are also interested into the evaluation of the align-
ment process, we additionally compute the point-to-point euclidean
distance for the set of true correspondences (inliers), having cardi-
nality NI ≤N. In particular, differently from (3) we do not use both
the points xI and yI of each inlier correspondence. In fact, since we
have an intrinsic error in the re-projection, which is due to the scan-
ner depth resolution (around 1mm), we prefer to consider only the
floating points (i.e. those belonging to the second scan of the pair),
and rotate them with both the ground-truth and the learned rigid
transformations and eventually compute their euclidean distance.
In such a way, the registration distance

δreg =
1

NI

NI

∑
j=1
‖(RgtyI

j + tgt)− (R̂yI
j + t̂)‖ (12)

is more accurate and informative to us.

Training details

We used Tensorflow [AAB∗16] (version 1.13 with GPU support)
to implement the network, together with Tensorboard to check the
evolution of the learning process. In total we acquired 29 scenes,
containing 4682 range images. We selected 25 of them (4150 frag-
ments) for training, while we kept the other 4 (532 fragments) for
testing. We augmented the training dataset up to 20000 pairs of
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fragments, taking from each of them the best N = 1000 correspon-
dences generated with the method of [BSL12]. We trained the net-
work with a batch size of 16 for 1200 epochs (so a total of 1.5M
iterations). We used Adam Optimizer [KB14] with a learning rate
equal to 10−4. For the first 20000 iterations the registration loss
was set to 0 in order to let the network focus on the classification
task. We used the same batch normalization strategy of 3DRegNet
and we selected the hyper-parameters α and β such that the losses
had the same order of magnitude in both the two setups. Then for
the original 3DRegNet we changed β from 10−3 to 10−5, while
we set to 1 both the parameters in our setup. Each training was
performed with an INTEL i7-8700K and a NVIDIA GeForce 1080
with 8Gb of memory and it took around 2 days of computation (8
iterations per second).

4.1. Comparison with 3DRegNet

The first test that we run is finalized to compare the behaviour
of our 3DReg-i-Net implementation against the original 3DReg-
Net solution [PMR∗19]. We use the dataset presented in Section 2
and the training setup mentioned above. Table 1 shows the results.
Given the equivalence (architecture and loss) of the correspondence

Method Classification Rotation [deg] Translation [mm] Time [ms]Accuracy Precision Mean Median Mean Median
[PMR∗19] 0.98 0.75 7.35 5.73 11.75 10.33 5.8

3DReg-i-Net 0.98 0.75 3.75 2.97 5.95 3.44 5.4

Table 1: Comparison between 3DRegNet original implementa-
tion [PMR∗19] and our improved version.

classification part between the two solutions, we can see, as ex-
pected, that the inlier/outlier classification results are almost the
same for the two implementations. In particular, the accuracy is
high and very similar to the values reported in the original study.
We do not have a correspondent reference score for the precision
to compare with, but we evaluate it because we want to know how
good the network is at detecting the inliers only. The score is re-
markable to us if we consider the very low percentage of inliers
within the test set (see Figure 5 for the inliers distribution), well be-
low the 50% and much closer to a real case, combined with the high
processing speed (around 5ms) to obtain both this classification and
the alignment estimation. The difference between the two solutions
emerges by looking at the registration result. The values this time
are dissimilar to the ones reported in [PMR∗19] but we assume that
this is due to the different resolutions of the scanners adopted for
the creation of the dataset (we also recall the fact that they use a
synthetic dataset for the training which by definition has a perfect
ground-truth to rely on). Nevertheless, by comparing the two ver-
sions with our data it is evident how the change of the cost function
had a benefit in the inference of the transformation matrix: both the
registration and translation errors are halved. As expected, the two
methods have a similar processing speed, which is remarkably fast
and could be also compliant with the real-time constraint of the In-
sight 3 scanner. In Figure 6 two test cases are depicted. We have
two pairs of initially misaligned fragments representing a dummy
portion (Subfigs.(6a) - (6c)) and a piece of marble carved with ge-
ometric figures (Subfigs.(6d) - (6f)). It is clear how in both cases
3DReg-i-Net outperforms the original 3DRegNet at registering the

Figure 5: Inliers distribution in the Test dataset. On the vertical
axis we see how many pair of scans have an inliers percentage
(among 1000 correspondences) in the range which is expressed on
the horizontal axis. The minimum value is 2.1% while the maximum
is 12.6%.

two views. In particular, the latter seems to not recover properly
the translation vector. Furthermore, in Table 2 we report the aver-
age values of eq.(12) over the entire test set. Again, our method is
clearly the most accurate.

Method Registration Distance [mm]
Mean Median

[PMR∗19] 12.940 11.911
3DReg-i-Net 5.859 3.614

Table 2: Comparison between the original 3DRegNet and our so-
lution by evaluating the registration distance as defined in (12).

4.2. 3DReg-i-Net ablation study

Now we want to evaluate how the new different components affects
the overall performance of the network. First we look at the loss
function in the registration sub-block, then we check the influence
of the augmentation introduced in the dataset to feed the network
with more transformations and finally we run a stress test on the
network by varying the number of correspondences to work with.

Registration loss

We train again our network two times, turning off one by one the
two main components of the registration loss, i.e. the costs defined
respectively on the quaternions distance minimization (Lq and Lp)
and the normals rotation coherence (Ln). In Table 3 we report the
results after testing these setups. As we can see, the accuracy of the
classifier did not change and this, again, can be explained by the
fact that we did not modified anything in that specific sub-block.
Instead the registration presents some variations: in particular, it is
highlighted how the rotation loss component is more effective than
the one using the normals . This is quite predictable, since the for-
mer loss is specifically oriented to directly minimize the rotation,
while the latter is working as an additional constraint and so it re-
duces the searching space for the optimizer to find the minimum of
the cost. In fact, during the training sessions we observed, via Ten-
sorboard, a more rapid convergence to the optimal result for the full
implementation, with respect to the version without the constraint
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(a) Input

(b) 3DRegNet registration

(c) Our registration

(d) Input

(e) 3DRegNet registration

(f) Our registration

Figure 6: Alignment results on two pairs of fragments (6a), (6d) us-
ing both the two solutions, i.e. 3DRegnet (6b), (6e) and our version
with a new loss (6c),(6f). The new version is clearly more accurate
with respect to 3DRegNet, which in particular is lacking a good
estimation of the translation vector for the alignment.

on the rotation of the normals. The full implementation get a better
result overall while decreasing at a faster rate, as reported in Table
4.

Dataset augmentation

In Section 2 we explained the need of augmenting the original
dataset, which was lacking of relatively large rotations and transla-
tions, by applying random rigid transformations to the set of float-
ing points. In Table 5 we report the result after we trained the net-
work using the same setup as above but with a smaller dataset that
does not have any synthetic augmentation. The test set is the same
from the previous section and so it has instead large camera move-

Losses Classification Rotation [deg] Translation [mm] Time [ms]Accuracy Precision Mean Median Mean Median
No (Lq,Lp) 0.98 0.73 8.17 7.10 8.509 6.445 5.4

No Ln 0.98 0.73 4.23 3.43 6.22 3.66 5.5
All losses 0.98 0.75 3.75 2.97 5.95 3.44 5.4

Table 3: Comparison between training sessions with different
losses. The full implementation i.e. the one with all the cost func-
tions considered, produces the best result overall.

Iterations Rotation Mean [deg]
No Ln Full Lr

100K 6.57 5.59
200K 5.97 4.59
400K 4.96 4.19
600K 4.64 4.1
800K 4.49 3.96

1000K 4.39 3.91

Table 4: Mean of the rotation error evaluated through the learning
process at different iterations. Comparison between the implemen-
tation without the constraint on the rotation of the normals and the
loss containing all the components.

ments to infer. The results show how the trained network miss-
ing the augmented data failed to recover challenging rotations and
translations, endorsing the idea that a supervised method needs an
input as generic as possible to properly tackle every scenario.

Dataset Rotation [deg] Translation [mm]
Mean Median Mean Median

Augmented 3.75 2.97 5.95 3.44
Not Augmented 23.63 27.43 21.29 15.13

Table 5: Results for the registration after training the network ei-
ther with or without the augmented dataset.

Number of correspondences

Eventually, we are interested to know how the network is sensitive
to a varying number of correspondences. We first run a stress test
by removing a fixed number of correspondences from the original
test set but keeping fixed the inlier and we report the results in Ta-
ble 6. It can be noticed how the behaviour is very similar to the one
presented in [PMR∗19]. Indeed we have a degradation of the reg-
istration accuracy when the number of correspondences decreases.
On the contrary the accuracy of the classifier is not affected. In few
cases with the smaller set, it happened that there were too few in-
liers at the input (around 5 over 250 total correspondences) such
that the classifier failed to find any inlier. So this appears to be a
lower bound limit for our network at the moment. Then, we tried to
remove only the outliers and consequently to evaluate how the net-
work responds to an increasing inliers ratio. As reported in Table 7,
we see that the precision scores increase coherently with such ratio,
as expected from a dataset with less outliers in it.

5. Conclusions

We investigated the problem of the co-registration of 3D views in
a real-time 3D scanning scenario. Our 3DReg-i-Net grounds on
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Correspondences Rotation [deg] Translation [mm] Classification Time [s]Mean Median Mean Median Accuracy
25% 5.63 4.27 7.857 5.555 0.97 5.22
50% 4.39 3.44 6.755 4.473 0.98 5.24
75% 3.96 3.16 6.202 3.719 0.98 5.27
100% 3.75 2.97 5.955 3.438 0.98 5.4

Table 6: Results after testing our network with an increasing num-
ber of correspondences (ratio over the total number available,
which is N = 1000).

Inliers
percentage

Classification
Precision

4% 0.74
8% 0.81

12% 0.85
16% 0.88

Table 7: Variation of inliers percentage (on average) in the test set
and corresponding evaluation of the precision by the classifier.

a recently proposed deep neural network solution called 3DReg-
Net [PMR∗19]. Given a set of 3D point correspondences, the
method aims to solve both the outlier rejection and the inference
of the rigid transformation matrix that aligns the views. We high-
lighted the critical aspect regarding the accuracy of the process on a
new dataset created using a handheld 3D optical scanner. This new
dataset was also augmented by applying a random set of rotations
and translations, in order to be as generic as possible with respect
to the possible movements of the scanner. This way 3DReg-i-Net
demonstrated to better recover the pose even facing large misalign-
ment. Moreover, we deduced some weakness of 3DRegNet for the
target application which were tackled by reformulating the regis-
tration cost function of the network, enhancing the focus on the ro-
tation matrix inference and adding a constraint based on the space
of rotations of the correspondence point normals. The results high-
lighted how the new loss is more informative to the network which
is now more accurate when performing the registration.
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