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Abstract

Characteristic curves play a fundamental role in the way a shape is perceived and illustrated. To address the curve recognition
problem on surfaces, we adopt a generalisation of the Hough Transform (HT) which is able to deal with mathematical curves.
In particular, we extend the set of curves so far adopted for curve recognition with the HT and propose a new dictionary of
curves to be selected as templates. In addition, we introduce rules of composition and aggregation of curves into patterns, not
limiting the recognition to a single curve at a time. Our method recognises various curves and patterns, possibly compound on
a 3D surface. It selects the most suitable profile in a family of curves and, deriving from the HT, it is robust to noise and able to
deal with data incompleteness. The system we have implemented is open and allows new additions of curves in the dictionary

of functions already available.
CCS Concepts

e Computing methodologies — Shape modeling; Representation of mathematical objects;

1. Introduction

The characterisation and recognition of curve patterns on surfaces
is a well known problem in Computer Graphics. Characteristic
curves, that is curves characterising a shape feature, are useful for
visual shape illustration [KSTO8] and perception studies support
these curves as an effective choice for representing the salient parts
of a 3D model [CGL*08,HT11].

Given a set of (characteristic or feature) points, there is a large
literature for the curve fitting problem with spline-based curves,
[Far93, Shi95, PT97, HPWO05, DIOHS08, APM15]. Being based on
a local curve interpolation, such a class of methods is not able to
recognise entire curves, to complete missing parts, and to assess
if a pattern is repeated at different scales. Similarly, also methods
based on co-occurrence analysis approaches [STW* 11, LWWS15]
fit characteristics curves in terms of poly-lines (i.e. connected se-
quences of segments) that do not have any global equation.

Alternately, to recognise a global approximation and infer spe-
cific curve parameters it is possible to approximate characteristic
curves with some specific family of curves. For instance, the nat-
ural 3D spiral [HT11] and the 3D Euler spiral [HT12] have been
proposed as a natural way to describe line drawings and silhouettes
showing their suitability for shape completion and repair. More re-
cently, the extension of the HT formulation to curves with an ex-
plicit algebraic form [BR12, BMP13] has permitted the develop-
ment of methods for image curve recognition to surfaces [TBF18].
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In this paper we focus on recognising shape feature curves on 3D
shapes, represented by sets of points and approximated with math-
ematical curves via the Hough transform. This paper extends the
dictionary of curves for the HT on surfaces introduced in [TBF18]
and first used in [MGM™19] to recognise and characterise feature
curves within a benchmark of surfaces. The focus here is the de-
scription of a rich family of primitive curves, how these curves can
be adopted to characterise a pattern and the flexibility of the method
to meet different shapes. These curves can be combined to obtain
more complex curve configurations and further extended, for in-
stance taking advantage of a curve dictionary [Shi95]. In particular,
our method recognises various curves and patterns, possibly com-
pound, and selects the most suitable profile in a family of curves.
Deriving from the HT, the method inherits the robustness to noise
and the capability of dealing with data incompleteness as for the
degraded and broken 3D artefacts.

The reminder of the paper is organised as follows. Sections 2
and 3 briefly survey the HT literature and the mathematical formu-
lation adopted in our method. The dictionary used in our system is
detailed in the Section 4, where the main curve properties are de-
scribed and a detailed explanation on how to pass from a mathemat-
ical curve formulation to an HT compliant formulation is provided.
An algorithmic description of our procedure and some experimen-
tal results are provided in Section 5. Conclusions and final remarks
end the paper.
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2. Previous work

The Hough Transform answers to both the need of robustness to
noise and data incompleteness and the flexibility of the template
curve. Since its original definition, [Hou62] for straight line detec-
tion, the HT has been extensively used for the recognition of circles
and ellipses in [DH72] and then generalised to the identification of
non-analytic profiles in images [Bal81]. This generalisation of the
HT in [Bal81] is able to detect an arbitrary (but fixed) shape us-
ing a look-up table to drive the template matching, still retaining
the HT robustness. Nevertheless, this HT generalisation adopts a
brute force approach that considers all the possible orientations and
scales of the input shape, thus the number of parameters in its pro-
cess is considerably high and prevent its use in the 3D space. Fur-
ther, being based on a single-shape template it cannot adequately
handle similar shapes, as in the case of different instances of the
same shape, which are comparable but not identical, e.g. petals
and leaves. For more details on the HT and its extensions we re-
fer to [MC15,KTT99].

More recently, theoretical foundations have been laid to ex-
tend the HT technique to the detection of algebraic objects of co-
dimension greater than one (for instance algebraic space curves)
taking advantage of various families of algebraic planar curves
(see [BR12] and [BMP13]). Thanks to these theoretical founda-
tions, the HT techniques have been able to include special classes
of curves whose algebraic forms are known, but significantly more
complex than straight lines or conics. Specifically, irreducible al-
gebraic plane curves like elliptic curves, curves with 3 convexities,
Wassenaar curves, conchoids of Sliise and piriform curves have
been considered and the standard line and conic detection algorithm
has been extended to detect these curves [MPCB15a]. In addition,
also collections of different algebraic pieces from the same family
or low-degree piece-wise polynomial curves have been introduced
in [RBM15,CRS18].

In 3D, other variants of HT have been introduced and used, but
as far as we know none of them exploits the huge variety of pos-
sible curves. For instance, in [OLA14] the HT has been employed
to identify recurring straight line elements on the walls of build-
ings. In that application, the HT is applied only to planar point
sets and line elements are clustered according to their angle with
respect to a main wall direction; in this sense, the Hough aggre-
gator is used to select the directions of the feature lines (horizon-
tal, vertical, slanting) one at a time. More recently, [TBF18] have
proposed an implementation of the theory described in [BR12] for
curves in the space. In this work, also non-algebraic curves have
been included in the HT paradigm. Taking advantage of the as-
sumption that characteristic curves can be locally projected onto
a fitting plane, the HT is evaluated for a planar-approximation of
the curve and then re-projected on the object surface. The method
showed its effectiveness for the recognition of features, in partic-
ular anatomical features like eyes and mouths. In this paper, start-
ing from [TBF18], we provide and discuss a larger dictionary of
curves and, besides the curve composition as a product of families
of curves, we also present how repetition rules (like rotation, trans-
lation, etc.) can be applied to effectively characterise and recognise
complex curve patterns.

3. Preliminary concepts on the Hough transform

In this Section, we briefly summarise the theoretical background
at the basis of our approach. Let K be a field (K can be either
R or C). Then, we denote A}(K) and A, (K), respectively, the
n-dimensional and the t-dimensional affine space over K, with
x = (x1,...,xz) and the indeterminate A = (Ay,...,As). Since a
curve C is defined as the zero locus of a function f, a parameter
dependent family of curves can be described by functions f; as:

F={C: filx) =0 AelU},

where U is an open set of the parameter space A’y (K). Then, given
a point P € AY(K), the HT of the point P with respect to the family
F is Tp(F) = {fa(P) = 0} in A} (K). The classical HT in the
affine plane A%X‘y) (K) is based on the point-line duality as follows:
each point P = (xp,yp) of a straight line [, ;, : y =ax+b (a,b € K)
corresponds to a line I'p : yp = Axp +B lying in the parameter
plane A%A’ B) (K). Furthermore, the straight line / corresponds to a
single point in the parameter plane, which is the intersection of all
lines I'p, varying P € [.

The extension in [BR12] expressed the HT in an implicit formu-
lation:

PeC, < filxp,yp) =0 < LETp(F).

Such a definition provides the criterion for the automatic selection
of the parameters because A € Npee, [p(F). In particular, it high-
lights that this formulation is able to deal with classes of curves
larger than the traditional ones (i.e., lines, circles, ellipses) such as
the polynomial curves.

4. From a mathematical curve expression to an HT-compliant
one

In this Section, we describe the library of families of mathemati-
cal curves we have developed in our system for HT-driven curve
recognition. According to [BMP13], polynomial curves are suit-
able for the implicit HT formulation described in Section 3, but
the method is not limited to them. Indeed, in [TBF18] a first set
of families of mathematical curves suitable for recognising fea-
tures on surfaces was already proposed, namely the citrus curve,
the Archimedean spiral, the Lamet curve, the m-convexities curve,
the geometric petal curve of type (A), see examples in Figure 1.

In this paper we extend the dictionary to six additional families
of curves: the geometric petal curve of type (B), the elliptic curve,
the lemniscate of Bernoulli, the egg of Keplero and the mouth curve,
see examples in Figure 2. Anyway, our library also includes basic
families of curves like straight lines, circles and ellipses. Finally,
we highlight that additional families and combinations of curves
are possible [Shi95], following a curve analysis method similar to
that described in the reminder of this Section.

The curves shown in Figures 1 and 2 have been identified in or-
der to recognise feature curves corresponding to petal, or flowers
in floral band decorations (citrus, geometric petal of type A and B,
m-convexities curves), to anatomical characteristics like eyes and
mouths (citrus, geometric petal of type A and B, mouth curves),
symbols, logos or geometric decorations present in human arte-
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facts like plasters or friezes (egg of Keplero, Archimedean spiral,
m-convexities, Lamet, lemniscate of Bernoulli ).

In each family of curves F, we look for the curve C; that better
fits a set of points P. The set of points P is supposed to repre-
sent a curve or some of its parts. For each curve in our library, we
highlight the parameters that drive the HT and we show how the
knowledge of the main geometric characteristics of each family al-
lows us to a-priori estimate these parameters in which A varies for
the set P. Indeed, we use the bounding box of the set P to evalu-
ate which curve parameters would generate a curve tangent to the
bounding box. Then, we consider these parameters as a kind of cen-
tre of the parameter space: we automatically select a window of the
parameter space and opportunely grid it to detect the value of A
corresponding to the best fitting curve. Note that, according to the
notation in Section 3, A is a vector of parameters: in the examples
listed in this Section it assumes dimension one or two (i.e., one or
two scalar parameters). When convenient, we use a polar represen-
tation instead of a traditional Cartesian one.

In the following, we list the curves included in our system. For
each curve we show its equation, its parameters and a representa-
tion with specific parameters.

o The citrus curve has the Cartesian equation

a'b*y 4+ (x— g)3()c—i- g)3 =0,
2 2
with a and b real parameters (with respect to the previous no-
tation A = (a,b), we will omit the double notation in the fol-
lowing). It is a symmetric and limited curve, contained in the
rectangle [—5, 5] X [— g5, g5)- An example is provided in Figure
1(a)-(b). The parameters a and b can be estimated through the
size of bounding box of the set of points P. Denoting, respec-
tively, D1 and D2 the length of the horizontal and vertical edges
of the bounding box of P, the parameters a and b are limited by
the relation @ = D1 and b = zf55. The parameter b determines
how the curve squeezes along the y axis.
e The Archimedean spiral is expressed in polar coordinates in the
form

p=a+bb,

with a and b real parameters (see Figure 1(c)-(d)). This curve is
connected and not limited, with a singularity at the point (a,0).
Two consecutive turnings of the spiral have a constant separation
distance which is equal to 27tb and, therefore, the k-th turning of
the spiral is contained in a region bounded by two concentric cir-
cles of radius @+ 2(k — 1)7tb and a + 2kmnb. Therefore the param-
eters a and b depend on the length of the edges of the bounding
box of the set P and the number of turnings of the spiral k.
e The Lamet curve has the Cartesian equation

bx" +d"y" = d"b,
with a,b € R.g and m € N. It is a curve of degree m and rep-
resents a rectangle with rounded corners, which increases when
m grows. This curve is connected, closed and equipped with two
symmetry axes (the x axis and the y axis). Furthermore, it is con-
tained in a rectangle of edges [—a, a] X [—b% 7b%]. An example is
provided in Figure 1(e)-(f). In the applications, the length of the
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edges of the bounding box of the set P allows the computation
of the parameters a and b as a = %1 and b = (%2)’".

The m-convexities curve is defined in polar coordinates by the
equation

a

=1 + bcos(mB)

with a,b € Rog, b <1 and m € Ny, m > 2 (see Figure 1(g)-
(h)). The parameter a plays the role of the scale factor, while b
regulates the fineness of the convexities. This curve is connected
and bounded. It has m symmetry axes and it is contained in the
region between two concentric circumferences of radius li—b and
ﬁ. To estimate the parameters, we use the maximum and the
minimum radius (respectively, R2 and R1) of the set P written
in polar coordinates.

The geometric petal curve of type (A) has a polar equation in the
form

p=a+bcos>" O

with n € Ny e a,b € R, which for our purposes is reduced to
the case b = —a. It is a bounded and symmetrical curve, with
a singularity in the origin, and it is completely contained in a
circle of radius v/2a. An example is provided in Figure 1(i)-(1)).
Replacing a with . we get the curve in Cartesian coordinates

with the usual substitution p = 1/x2 4+ y2 and cos(8) = \/%
x4y

of equation
(xz +y2)2l’l+l —04[(X2+y2)n _x2n]2 —=0.

This curve is bounded by the rectangle

[—%02 1/ ﬁ, 23%8 kY ﬁ] % [0,c¢?]. In this case, it
is convenient to use the equation in polar form. Remembering
the substitution of @ with ¢, a limit for the parameter a is given
by the length of the vertical edge of the bounding box of the set
P, therefore a = D2.

The geometric petal of type (B) has polar equation

p=a+bcos2n

with a > 0, b > 0 and n € N. This curve is contained in a circle
with radius a + b and the origin is the center of symmetry, that
becomes a singular point if a < |b| (see Figure 2(a)), while if
a > |b| there are no singularities (see Figure 2(b)). As for the m-
convexities curve, we have used the maximum and the minimum
radius (respectively, R2 and R1) of the points written in polar co-
ordinates to estimate a and b. Note that this family of curves is
able to deal with an even number of petals, differently from the
m-convexities one. Anyway, we include this function in our li-
brary because we experimentally verified that the computational
time for this curve is the half of the m-convexities curve.

The lemniscate of Bernoulli is an algebraic curve in the form of
a lying eight (see Figure 2(c)-(d)). Its Cartesian equation is

2 212 2,2 2
(" +y7)" =247 (" =)
with a positive real parameter. It is a symmetric and bounded

curve, contained in the rectangular region [—v/2a,v/2a] x

[, 5. So the parameter a can be estimated as a = §D1. For
convenience, in this case we adopt the equation of the curve in
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Figure 1: Examples of mathematical curves represented with dif-
ferent parameters values: a citrus curve with a =3 and (a) b = 1,
(b) b=1/2; an Archimedean spiral witha=1and (c)b=1, k=1
(d)b=2, k="2;aLamet curve witha =3, b =2 and (e) m =4, (f)
m = 50, a m-convexities curve witha= 0.2, m =5 and (g) b= 0.3,
(h) b =0.1; a geometric petal of type (A) with a =4, b = —4 and
(i)n=1, () n=150.
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Figure 2: Examples of mathematical curves represented with dif-
ferent parameters values: a geometric petal of type (B) with a =
0.2, n=3and (a) b=0.2, (b) b=0.1; a lemniscate of Bernoulli
with (¢) a =2 and (d) a = 50; an egg of Keplero with (e) a = 0.5
and (f) a = 1.5; a mouth curve with (g) a = 0.5 and (h) a=1; an
elliptic curve withb =4 and (i) a= -2, () a=1/2.
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polar form
p? = 24a° c0s26.

o The egg of Keplero has the Cartesian equation
4y =ax’

with @ € R, a > 0. It is symmetric respect to the x—axis and

bounded, in particular it is contained in the rectangle [0,a] x

[—%m %a]. Therefore, the value of the parameter a coin-
cides with the length of the horizontal edge of the bounding box
of the set P. An example is provided in Figure 2(e)-(f).
e The mouth curve has the Cartesian equation
a4y2 _ (az —x2)3

)

whit a real positive parameter which is half the length of the

mouth. It is a symmetric and bounded curve, contained in the

square [—a,a] X [—a,a]. Even in this case, the parameter a is

estimated through the length of the edges of the bounding box

of the set P. This curve has a shape similar to that of the citrus

curve, but it extends more along the y—axis (see Figure 2(g)-(h)).
e The elliptic curve has the Cartesian equation

y2 =X +ax+b

with @ and b real parameters. It is symmetric with respect to the
x-axis and unbounded. We consider only the case the curve is
not singular, i.e., when the determinant 4a® + 2767 is positive.
An example is provided in Figure 2(i)-(1). The parameters a and
b have well specific geometric interpretations: the parameter b is
the square of the ordinate of the intersection points of the curve
with the y-axis (points (0,£D)), while the parameter a appears
in the abscissas of the points of maximum of the semi-curve y =

V3 +ax +b (point (Xmax, Ymax))-

Table 1 lists the curves so far described, showing their equation,
its parameters, together with their estimation and space.

Combining the simple curves listed in this Section, it is possible
to recognise complex patterns made of several elements. In these
patterns more families of curves or more occurrences of the same
family might be present, possibly with different parameters. We
deal with multiple occurrences of curves in two different ways. The
first approach builds a new family of curves in terms of the product
of the equations of the corresponding curve families. Some exam-
ples are provided in Section 5. The use of the curve product is very
simple and yields a strategy to enrich the dictionary of curves. The
idea is that the simultaneous detection of two or more curves limits
the ambiguities; for instance, combining the circle at the centre of
a rosette with the petals in a pattern with flowers and circles. The
second method looks for the rules and parameters that characterise
a pattern and replicates them, for instance repeating a pattern by
translation, reflection or rotation rules. In this case, we learn the
parameters that characterise a single pattern and the rules for their
aggregation and repetition. In Section 5 an example of recognition
of a pattern by translation is shown.

5. HT recognition on surface models
The curve recognition method is independent of the technique

adopted to select the characteristic points and the data represen-
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tation (we can accept both meshes or point clouds). As a working
assumption, we assume that the model can be locally represented
by an explicit function and therefore locally flattened. We refer
to [CGL*08, LZH*07] for an overview on methods for extracting
characteristic points and to the SHREC19 benchmark for an evalu-
ation of methods for feature curves estimation [MGM™*19]. In this
Section, we briefly summarise the main steps of the algorithm for
the HT-based curve recognition and show some examples on sur-
face models.

5.1. Curve recognition algorithm

The method works in four main steps, namely the extraction of the
characteristic points; the projection of the potential characteristic
points on a plane; the HT curve recognition; and a recognition cri-
terion based on the quality of the approximation.

The method requires as input a family of curves and some thresh-
olds to assess which points are significant or not, to establish if a
set of characteristic points can be grouped or not and to assess the
quality of the recognition result.

1. Extraction of the characteristic points. The first step of the algo-
rithm consists in the extraction of characteristic points through
the study of geometric properties of the model. To identify these
points we adopt the mean curvature. The mean curvature is
evaluated with the curvature estimation based on normal cycles
[CSMO3] in case of meshes; it is approximated with the poly-
nomial fitting of osculating jets [CP03] in case of point clouds.
Depending on the type of feature (if a ridge or a groove) we se-
lect the high or low curvature values through the analysis of a
histogram of the curvature distribution and keeping the points
corresponding to the histogram queues (the size of the queue is
an input parameter). The points are then grouped into connected
components through a clustering operation. Many clustering al-
gorithms are available in the literature [ELLO09], in our imple-
mentation we use the method Density-Based Spatial Clustering
of Application with Noise DBSCAN, [EKSX96], which aggre-
gates nearby points with a certain density and eliminates the iso-
lated ones considering them noise. This clustering choice per-
mits the aggregation into group of points of even irregular shape
but also aggregate curves that intersect; in the latter case, an-
other clustering strategy could be adopted or a composite curve
should be considered.

2. Projection on the regression plane. This step consists in reduc-
ing the three-dimensional problem to a two-dimensional one,
projecting each single cluster on a plane. Even if every point
on a surface admits a neighbourhood that is homeomorphic to a
disk, this method holds only for curves that can be flattened. In
our implementation, we automatically project each cluster in its
regression plane using the Matlab function regress; in case the
estimation of the normal of a cluster is numerically unstable, an
alternative method for the plane approximation is the RANSAC
algorithm [FB81]. Then, the minimal bounding box is used to
determine its main axes and estimate its size. Subsequently, the
points of each cluster are translated and/or rotated in order to
place them in the default position of the curve family selected
for the recognition.

3. Recognition of the characteristic curve. The generalised HT
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Table 1:
curve equation parameters parameters estimation parameters space
citrus curve a4b2y2+(x—%)3(x+%)3:0 a,beR A=D1 andB:% [A—8,A+3] x [B—8,B+9]
Archimedean spiral p=a+b0 a,beR A = (249D 1)D2]
andB:% [A—8,A+8] x [B—8,B+3]
Lamet curve bx" +d™y" =a"b a,b € Ry A= % and B%Zm [A—8,A+3] x [B—8,B+9]
m-convexities curve p= m a,b e Ry A= ,%ﬂ’;é
with b < 1 and B = &3=KI [A—8,A+8] x [B—8,B+79]
geometric petal (type (A)) p=a—acos"O acR A=D2 [A—8,A+ 9]
geometric petal (type (B)) p =a+bcos2n@ a,beRyp A= %
and B = 822R1 [A—8,A+8] x [B—§,B+3§]
lemniscate of Bernoulli (P2 +y*)? =282 (* —»?) a€Ryg A= @Dl [A—5,A+9)
egg of Keplero (X 4+y°)? =ax’ a€Ry A =Dl [A—8,A+ 9
mouth curve a*y? = (d® = ¥%)° ac€Ry A= % [A—5,A+9)
elliptic curve v =x+ax+b a,beR A = 3xp4 and B =D’ [A—3,A+3] X [B—8,B+79]

technique ( [TB14], [BMP13]) is applied to each cluster. The
parameters of the curve that best approximates the given profile
is found through the following voting procedure:

e Fix aregion T of the parameter space by studying particular
characteristics of the family F (see Section 4). The region T
is discretized into cells, which are uniquely identified by the
coordinates of their centre.

e Define a multi-matrix A, in which at each entry corresponds
a cell of the discretization. The value of each entry increases
by 1 each time the HT of a cluster point intersects the corre-
sponding cell.

e Search for the cell corresponding to the maximum value of
the matrix A and the coordinates of the cell centre correspond
to the parameters of the recognised curve.

Finally, the points in the cluster that are close to the curve recog-
nised for less than a user defined threshold (€) are selected. In
this step, to evaluate the intersection of Hough transforms with
cells, we adopt the method described in [TB14] and we use the
library CoCoA [ABL]. The strategy of the voting procedure al-
lows the method to find the curve even if the data are partial or
incomplete.

4. Termination criterion. To determine if the curve identified at the
previous step satisfactorily approximates a set of characteristic
points P, we use the notion of Goodness of Fit (GoF) introduced
in [MPCB15b]. Formally, for each point P € P let us consider
the Euclidean distance d from the curve defined as follows: Cy,
recognised in the step 3:

d(P.Cy) =infp.ec, || Pe —P |2
Then the GoF is defined as:

P dj +d2+...+d‘7p|
' P ’

Go

where |P| is the cardinality of the set 7. The curve recognised is
a good approximation of the profile outline if the value of GoF is
smaller than a given threshold (for example, an automatic way

to fix such a threshold is to select the 10% textcolorredof the
lower curve parameter).

Finally, the translation and rotation operations are done back-
wards to identify back on the original model the initial coordinates
of the feature points recognised.

The algorithm returns the parameters of the recognized curve
and the vertices of the model that are closest to the curve identified
by our method.

Similarly to the classical HT, the cost of the HT recognition al-
gorithm is dominated by the size of the discretization of the region
of the parameters. Such a discretization consists of M = ch:l Ji
elements, where ¢ is the number of parameters (in the curves pro-
posed in this paper, t = 1,2, 3) and J;, is the number of subdivisions
for the kth parameter. Moreover, as described in [TB14], we need
to evaluate, once for each curve, the symbolic expression of the
Jacobian, the Moore-Penrose pseudo-inverse and Hessian matrices
which have the same order of complexity of M and, therefore, the
cost of the HT-based recognition is O(M) for each curve.

5.2. Experimental results

Our method has been tested on a set of models collected from the
web and various repositories, in particular the benchmark proposed
in the SHape REtrieval Contest SHREC’19 (SHREC’19) track on
feature curve extraction [MGM™19], the VISIONAIR shape repos-
itory [VIS15], the STARC repositoryT, and the ornaments in the
Regency collection. The original models of the ornaments from the
Regency collection are courtesy of the prof. K. Rodriguez Echavar-
ria. All models are represented as triangle meshes or point clouds.

Figure 3 shows some examples of recognition of different pat-
terns using the single mathematical curves listed in Section 4. In
these examples, the characteristic points are extracted using differ-
ent thresholds of the mean curvature. In the right column we show

1 http://public.cyi.ac.cy/starcRepo/
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the projected points and the curve that best approximates the pro-
file P they outline. The red points are the closest to the curve with
respect to the threshold €, as detailed in Section 5.1. Backward op-
erations are performed on these points to obtain the initial coordi-
nates of the corresponding vertices. The outcome of the recogni-
tion algorithm is shown in the next column: the recognised vertices
are highlighted on the model. The models in Fig. 3(a-b,f-i) have a
known unit of measure (millimetres): depending on the curve, the
parameters a and b give a precise estimation of the size of the curve;
details on the curves recognised and their parameters are provided
in the caption of Figure 3.

Figure 4 shows some examples of recognition of multiple ele-
ments with a product curve. In these examples, we use families
of curves whose equation is defined by the product of other curve
families. For instance, to recognise the fret in Figure 4(a), we used
a family defined as the product of eight straight lines. Considering
the minimal bounding box of the characteristic points and fixing
M as the length of the horizontal edge of the bounding box, the
product curve becomes:

X (= M)(3 — a)(r— )y —at M =) (x— b)(y— M +b) =0

and we found the parameters a = 24.9180 and b = 24.8250. Since
the coordinates of these models are in millimetres, we can also de-
duce that the width of the square-like spiral is approximately 2.5
centimetres. Figure 4(b) shows the outcome of the recognition of
the flower of a rosette in all its parts in terms of the product of a
circle and a geometric petal of type (B) with a > |b|. In this case,
the family we used is defined by the equation

(p—a—bcos2ne)(p—r)=0

and we found the parameter a = 21.7050, b = 4.4950 and r =
4.6560. Note that, differently from the other examples shown in this
work, in this case the curve product has three parameters (namely
a, b and r). Similarly to the square-like pattern, from the parame-
ters a and b we deduce that the radius of the entire floral decora-
tion is approximately 26 centimetres and the radius of the central
circle is approximately 4.6 centimetres. Finally, Figure 4(c) repre-
sents a reproduction of a symbol known as the 'Third Paradise’ by
Michelangelo Pistoletto i artificially inserted on the 3D model of
a vase. We recognised this symbol with a product of two eggs of
Keplero and one mouth curve, so with the family of equation:

(@ +a) +y%) +blr+a)) (@'Y’ = (@ =a*))
2 2\2 3
(r=a)”+y7)" = blx—a)”) = 0.
The curve parameters that best approximate this set of points are

a = 0.4240 and b = 0.4690.

We have tested our method on an Intel Core i7 processor (at 4.2
GHz) with 32Mb of RAM. The timing of the recognition of the
simple curves is in the order of 10 seconds, except for the elliptic
and the Archimedean spiral, which take about 30 seconds and 90
seconds, respectively. For the compound curves in Figure 4, the
timing of the recognition is in the order of 1 minute.

The HT can recognise more occurrences of a curve on the model.

1 http://www.pistoletto.it/eng/crono26.htm
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Two examples are provided in Figure 5: the two eyes of the statue
in Figure 5(a) are recognised with two citrus curves having param-
eter a = 28.2360 and a = 28.151, respectively. Similarly the key-
board buttons in Figure 5(b) are recognised with circles of radius
r = 1.0750 or Lamet curves whose parameters are a = 1.303 and
b = 0.003 on average. For each button, two curves are recognised
with identical parameters; in this case, the characteristic points are
selected using both high and low values of the mean curvature.

Figure 5(c) illustrates the recognition of a repeated pattern. The
pattern is made of two elements: the oval-like curve shown in Fig-
ure 3(f) and the half of a mouth-like curve in Figure 3(g). The pat-
tern is then horizontally repeated to form a frieze of four elements.
The parameter a of the mouth-like curve corresponds to half of the
curve width, therefore the amplitude of the curve is 2a, that physi-
cally corresponds to approximately 11 centimetres (in this example
a = 55.67 and the coordinates are millimetres). Then, we use the
parameter 2a obtained for the recognition of a single element to in-
fer the entity of the horizontal translation and to recognise the entire
moulding. In practice, we recognise the entire frieze by translating
the pattern curves of 2a. In Figure 5(c), we represent in yellow the
points corresponding to the mouth-like curve and in blue the points
coming from the oval ones.

In Figure 5(d), we show the outcome of both curve recognition
and comparison. The model comes from the SHREC’19 contest
[MGM*19]. In that benchmark, four models with spiral-like pat-
terns were proposed and, besides curve recognition, the challenge
was to propose a similarity distance between the curves recog-
nised. A possible way to address this challenge with a HT-based
curve recognition method is to compare the curve parameters of
the curves that belong to the same family but are (possibly) recog-
nised on different models or parts. As a very simple measure for
parameter comparison we consider the ¢; norm as the curve dis-
tance. Even adopting such a simple measure, it is possible to obtain
a number of results. For instance, the model in Figure 5(d) is the
union of two SHREC’19 models; such a union is decided on the
basis of all the distances among the spiral-like curves and keeping
the smallest one. Numerically, in this specific case, the parame-
ters of the two curves are respectively a = 2.7300, b = 1.9660 and
a =3.5550, b = 2.6970 and the distance is 0.0638. Looking at the
union of the two models, it is possible to argue that they belong to
the same moulding.

6. Conclusions

This paper describes a method for the recognition of character-
istic curves on 3D shapes. It makes use of a dictionary of tem-
plate curves, which can be composed or aggregated. We approxi-
mate these characteristic curves with mathematical functions using
a generalisation of the HT.

Our approach is quite innovative and different from the numer-
ous existing techniques that fit feature curves with splines and can-
not give their global equation. The only methods which exhibit a
certain similarity with ours are the natural 3D spiral [HT11] and
the 3D Euler spiral [HT12]. However, these methods can be used
only to identify these specific curves and do not have the complete-
ness of our system.
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Figure 3: Recognition of various characteristic curves. The recognised curves and the characteristic points are shown, highlighting in red
the points that are the closest to the curve. The vertices corresponding to these points are then represented back on the model. The curves
and their parameters are: (a) a citrus curve with a = 28.2360 and b = 0.6147, (b) an Archimedean spiral with a = 10.6670 and b = 5.5060,
(c) a Lamet curve with a = 1.3030, b = 0.0030 and m = 8, (d) a geometric petal curve of type (A) with a = 7.8490, ¢ = 0.5593 and
n =50, (e) a m-convexities curve with a = 8.5090, b = 0.3000 and m = 5, (f) an egg of Keplero with a = 8.8660, (g) a mouth curve with
a =55.6700, (h) an elliptic curve with a = 28.3790 and b = 76.0490, (i) a geometric petal curve of type (B) with a = 19.9590 and n = 3, (I)
a lemniscate of Bernoulli with a = 1.3890. The models in the first column ((a), (b), (c), (d), (e)) have been proposed in the SHREC’ 19 contest,
in particular the original models in (a) and (e) come from the VISIONAIR shape repository [VIS15]. The models (f), (g) and (h) come from
the Regency collection of 3D ornaments, the model in (i) comes from the STARC repository and the model in (1) has been artificially created
with Blender [Blel8].
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Figure 4: Examples of recognition of complex patterns through the
product of curves composing it.
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Figure 5: Examples of recognition of complex patterns through the
use of repetition rules.
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Indeed the system we have implemented is open and allows new
additions of curves in the dictionary of functions already available.
For planar curves large dictionaries of curves exist [Shi95], while
such a richness of curve templates does not exist for spatial curves.
Moreover, our method supports the definition of product curves and
new rules of composition or aggregation of characteristic curves to
recognise compound patterns.

Note that our method targets the curve recognition problem
rather than an exact curve approximation, where curve approxi-
mation methods rooted on curve splines [CRS18] are expected to
achieve a very precise fitting but lose the global view of the curve
element.

Indeed, the most appealing property of the HT is its ability of
recognising a pattern of curves in its entirety, even in presence of
noise and partial data: this implies that the HT is naturally suitable
for shape completion, annotation and multiple curve and pattern
comparison.

Through the analysis of the curve parameters it is possible to find
similarities among the curve elements even in objects that are dif-
ferent in terms of their overall shape, structure and function as pre-
liminarily shown for some of the models proposed in [MGM*19].

Moreover, the method provides an efficient localisation of a
curve on the surface and an explicit estimation of the size of a shape
feature because the parameters are strictly related to the physical
measure of the curve. This information is therefore suitable to sup-
port the automatic annotation of the elements and the patterns on
3D digital models. In the case of complex patterns like the model
shown in Figure 5(c) it is possible to localise and label with their
dimension the points corresponding to a single curve, the points
corresponding to the combination of the two pattern curves and,
also, the complete frieze, distinguishing it from the rest of the 3D
model.
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