„Albedo“ – Versionsunterschied
[gesichtete Version] | [gesichtete Version] |
K Quelle besser widergegeben |
K form |
||
Zeile 99: | Zeile 99: | ||
[[Datei:Iapetus as seen by the Cassini probe - 20071008.jpg|mini|Der Saturnmond [[Iapetus (Mond)|Iapetus]] hat mit einer sichtbaren geometrischen Albedo von 0,05 bis 0,5 den größten Helligkeitskontrast von allen bekannten Himmelskörpern im Sonnensystem.<ref>NASA: [https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturniansatfact.html Saturnian Satellite Fact Sheet.] 13. Oktober 2015, abgerufen am 16. Juli 2015</ref>]] |
[[Datei:Iapetus as seen by the Cassini probe - 20071008.jpg|mini|Der Saturnmond [[Iapetus (Mond)|Iapetus]] hat mit einer sichtbaren geometrischen Albedo von 0,05 bis 0,5 den größten Helligkeitskontrast von allen bekannten Himmelskörpern im Sonnensystem.<ref>NASA: [https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturniansatfact.html Saturnian Satellite Fact Sheet.] 13. Oktober 2015, abgerufen am 16. Juli 2015</ref>]] |
||
Die '''Albedo''' ( |
Die '''Albedo''' ({{laS|albedo|de=Weiße}}; von {{laS|albus|de=weiß}}) ist ein Maß für das Rückstrahlvermögen ('''Reflexionsstrahlung''') von [[Remission (Physik)|diffus reflektierenden]], also nicht selbst leuchtenden Oberflächen. Sie wird als dimensionslose Zahl angegeben und entspricht dem Verhältnis von rückgestrahltem zu einfallendem Licht (eine Albedo von 0,9 entspricht 90 % Rückstrahlung). Die Albedo hängt bei einer gegebenen Oberfläche von der Wellenlänge des einstrahlenden Lichtes ab und kann für Wellenlängenbereiche – z. B. das Sonnenspektrum oder das sichtbare Licht – angegeben werden. Vor allem in der [[Meteorologie]] ist sie von Bedeutung, da sie Aussagen darüber ermöglicht, wie stark sich eine Oberfläche erwärmt – und damit auch die Luft in Kontakt mit der Oberfläche. |
||
In der [[Klimatologie]] ist die so genannte [[Eis-Albedo-Rückkopplung]] ein wesentlicher, den [[Strahlungsantrieb]] und damit die [[Strahlungsbilanz der Erde]] beeinflussender Faktor, der relevant für den Erhalt des Weltklimas ist. |
In der [[Klimatologie]] ist die so genannte [[Eis-Albedo-Rückkopplung]] ein wesentlicher, den [[Strahlungsantrieb]] und damit die [[Strahlungsbilanz der Erde]] beeinflussender Faktor, der relevant für den Erhalt des Weltklimas ist. |
||
Zeile 109: | Zeile 109: | ||
== Albedoarten == |
== Albedoarten == |
||
⚫ | |||
⚫ | |||
* Die '''sphärische Albedo''' (auch ''planetarische Albedo'' und ''Bondsche Albedo'' genannt) ist das Verhältnis des von einer Kugeloberfläche in alle Richtungen reflektierten Lichts zu der auf den Kugelquerschnitt einfallenden Strahlung. Bei der planetarischen Albedo gilt als Oberfläche der obere Rand der Atmosphäre. Die sphärische Albedo liegt stets zwischen 0 und 1. Der Wert 0 entspricht einer vollständigen Absorption und 1 einer vollständigen [[Reflexion (Physik)|Reflexion]] des einfallenden Lichts. |
* Die '''sphärische Albedo''' (auch ''planetarische Albedo'' und ''Bondsche Albedo'' genannt) ist das Verhältnis des von einer Kugeloberfläche in alle Richtungen reflektierten Lichts zu der auf den Kugelquerschnitt einfallenden Strahlung. Bei der planetarischen Albedo gilt als Oberfläche der obere Rand der Atmosphäre. Die sphärische Albedo liegt stets zwischen 0 und 1. Der Wert 0 entspricht einer vollständigen Absorption und 1 einer vollständigen [[Reflexion (Physik)|Reflexion]] des einfallenden Lichts. |
||
* Die '''geometrische Albedo''' ist das Verhältnis des von einer vollen bestrahlten Fläche zum Beobachter gelangenden Strahlungsstroms zu dem, der von einer diffus reflektierenden, absolut weißen Scheibe (ein sogenannter [[Lambertstrahler]]) gleicher Größe bei senkrechtem Lichteinfall zum Beobachter gelangen würde. Die geometrische Albedo kann in seltenen Fällen auch Werte größer 1 annehmen,<ref name="Enceladus" /> weil reale Oberflächen nicht ideal diffus reflektieren.<!-- |
* Die '''geometrische Albedo''' ist das Verhältnis des von einer vollen bestrahlten Fläche zum Beobachter gelangenden Strahlungsstroms zu dem, der von einer diffus reflektierenden, absolut weißen Scheibe (ein sogenannter [[Lambertstrahler]]) gleicher Größe bei senkrechtem Lichteinfall zum Beobachter gelangen würde. Die geometrische Albedo kann in seltenen Fällen auch Werte größer 1 annehmen,<ref name="Enceladus" /> weil reale Oberflächen nicht ideal diffus reflektieren.<!-- |
||
:* Die '''hemisphärische Albedo''' ist der Anteil des einfallenden Lichts, der von der Oberfläche in Abhängigkeit vom Einfallswinkel gestreut wird |
:* Die '''hemisphärische Albedo''' ist der Anteil des einfallenden Lichts, der von der Oberfläche in Abhängigkeit vom Einfallswinkel gestreut wird |
||
Zeile 122: | Zeile 121: | ||
Die Messung der Albedo erfolgt über [[Albedometer]] und wird in Prozent angegeben. In der Astronomie können aufgrund der großen Entfernungen keine Albedometer eingesetzt werden. Die geometrische Albedo kann hier aber aus der [[Scheinbare Helligkeit|scheinbaren Helligkeit]] und dem Radius des Himmelskörpers und den Entfernungen zwischen Erde, Objekt und Sonne berechnet werden. Um die sphärische Albedo zu bestimmen, muss auch das Phasenintegral (und somit die Phasenfunktion) bekannt sein. Diese ist allerdings nur für diejenigen Himmelskörper vollständig bekannt, die sich innerhalb der [[Erdbahn]] bewegen ([[Merkur (Planet)|Merkur]], [[Venus (Planet)|Venus]]). Für die [[Unterer und oberer Planet|oberen Planeten]] kann die Phasenfunktion nur teilweise bestimmt werden, wodurch auch die Werte für ihre sphärische Albedo nicht exakt bekannt sind. |
Die Messung der Albedo erfolgt über [[Albedometer]] und wird in Prozent angegeben. In der Astronomie können aufgrund der großen Entfernungen keine Albedometer eingesetzt werden. Die geometrische Albedo kann hier aber aus der [[Scheinbare Helligkeit|scheinbaren Helligkeit]] und dem Radius des Himmelskörpers und den Entfernungen zwischen Erde, Objekt und Sonne berechnet werden. Um die sphärische Albedo zu bestimmen, muss auch das Phasenintegral (und somit die Phasenfunktion) bekannt sein. Diese ist allerdings nur für diejenigen Himmelskörper vollständig bekannt, die sich innerhalb der [[Erdbahn]] bewegen ([[Merkur (Planet)|Merkur]], [[Venus (Planet)|Venus]]). Für die [[Unterer und oberer Planet|oberen Planeten]] kann die Phasenfunktion nur teilweise bestimmt werden, wodurch auch die Werte für ihre sphärische Albedo nicht exakt bekannt sind. |
||
Satelliten der US-Raumfahrtbehörde [[NASA]] messen seit ca. 2004 die Albedo der Erde.<ref name="DLF U&F 18-2-014">[[Monika Seynsche]]: [http://www.deutschlandfunk.de/klimaforschung-die-arktis-nimmt-immer-mehr-waerme-auf.676.de.html?dram:article_id=277849 ''Die Arktis nimmt immer mehr Wärme auf''], [[Deutschlandfunk]], ''Forschung Aktuell'', 18. Februar 2014, abgerufen am 20. Februar 2014</ref> Diese ist insgesamt, abgesehen von kurzfristigen Schwankungen, in den letzten zwei Jahrzehnten konstant geblieben; regional dagegen gab es Veränderungen von mehr als 8 %. In der Arktis z. B. ist die Rückstrahlung geringer, in Australien höher geworden.<ref>[http://earthobservatory.nasa.gov/IOTD/view.php?id=84499 ''Measuring Earth’s Albedo. Image of the day.'' vom 21. Oktober 2014]@earthobservatory.nasa.gov; [[FAZ]] 5. November 2014, S. N1</ref> |
Satelliten der US-Raumfahrtbehörde [[NASA]] messen seit ca. 2004 die Albedo der Erde.<ref name="DLF U&F 18-2-014">[[Monika Seynsche]]: [http://www.deutschlandfunk.de/klimaforschung-die-arktis-nimmt-immer-mehr-waerme-auf.676.de.html?dram:article_id=277849 ''Die Arktis nimmt immer mehr Wärme auf''], [[Deutschlandfunk]], ''Forschung Aktuell'', 18. Februar 2014, abgerufen am 20. Februar 2014.</ref> Diese ist insgesamt, abgesehen von kurzfristigen Schwankungen, in den letzten zwei Jahrzehnten konstant geblieben; regional dagegen gab es Veränderungen von mehr als 8 %. In der Arktis z. B. ist die Rückstrahlung geringer, in Australien höher geworden.<ref>[http://earthobservatory.nasa.gov/IOTD/view.php?id=84499 ''Measuring Earth’s Albedo. Image of the day.'' vom 21. Oktober 2014]@earthobservatory.nasa.gov; [[FAZ]] 5. November 2014, S. N1.</ref> |
||
Das [[Deep Space Climate Observatory]] misst seit 2015 die Erd-Albedo in einem Abstand von 1,5 Millionen Kilometern zur Erde vom [[Lagrange-Punkt#L1|Lagrange-Punkt L1]] aus. An diesem Punkt hat die Sonde einen dauerhaften Blick auf die sonnenbeschienene Seite der Erde. |
Das [[Deep Space Climate Observatory]] misst seit 2015 die Erd-Albedo in einem Abstand von 1,5 Millionen Kilometern zur Erde vom [[Lagrange-Punkt#L1|Lagrange-Punkt L1]] aus. An diesem Punkt hat die Sonde einen dauerhaften Blick auf die sonnenbeschienene Seite der Erde. |
||
Zeile 141: | Zeile 140: | ||
== Weblinks == |
== Weblinks == |
||
{{Wiktionary |
{{Wiktionary}} |
||
* [http://klimat.czn.uj.edu.pl/enid/3__Sonne_und_Wolken/-_Albedo_3ao.html Mehrsprachige Umweltenzyklopädie ESPERE] |
* [http://klimat.czn.uj.edu.pl/enid/3__Sonne_und_Wolken/-_Albedo_3ao.html Mehrsprachige Umweltenzyklopädie ESPERE] |
||
Version vom 4. September 2019, 10:19 Uhr
Mittlere Albedowerte im Sonnensystem[1] | ||
---|---|---|
Himmelskörper | Geometrische Albedo |
Sphärische Albedo |
Merkur | 0,106 | 0,119 |
Venus | 0,689 | 0,77 |
Erde | 0,367 | 0,306 |
Mars | 0,15 | 0,25 |
Jupiter | 0,52 | 0,343 |
Saturn | 0,47 | 0,342 |
Uranus | 0,51 | 0,3 |
Neptun | 0,41 | 0,29 |
Pluto | 0,52 | 0,72 |
Erdmond | 0,12 | 0,11 |
Enceladus | 1,38[2] | 0,99 |
Albedowerte verschiedener Oberflächen | ||
Material | Albedo | |
Frischer Schnee | 0,80–0,90 | |
Alter Schnee | 0,45–0,90 | |
Wolken | 0,60–0,90 | |
Wüste | 0,30 | |
Savanne | 0,20–0,25 | |
Felder (unbestellt) | 0,26 | |
Rasen | 0,18–0,23 | |
Wald | 0,05–0,18 | |
Asphalt | 0,15 | |
Wasserfläche (Neigungswinkel > 45°) |
0,05 | |
Wasserfläche (Neigungswinkel > 30°) |
0,08 | |
Wasserfläche (Neigungswinkel > 20°) |
0,12 | |
Wasserfläche (Neigungswinkel > 10°) |
0,22 |
Die Albedo (lateinisch albedo ‚Weiße‘; von lateinisch albus ‚weiß‘) ist ein Maß für das Rückstrahlvermögen (Reflexionsstrahlung) von diffus reflektierenden, also nicht selbst leuchtenden Oberflächen. Sie wird als dimensionslose Zahl angegeben und entspricht dem Verhältnis von rückgestrahltem zu einfallendem Licht (eine Albedo von 0,9 entspricht 90 % Rückstrahlung). Die Albedo hängt bei einer gegebenen Oberfläche von der Wellenlänge des einstrahlenden Lichtes ab und kann für Wellenlängenbereiche – z. B. das Sonnenspektrum oder das sichtbare Licht – angegeben werden. Vor allem in der Meteorologie ist sie von Bedeutung, da sie Aussagen darüber ermöglicht, wie stark sich eine Oberfläche erwärmt – und damit auch die Luft in Kontakt mit der Oberfläche.
In der Klimatologie ist die so genannte Eis-Albedo-Rückkopplung ein wesentlicher, den Strahlungsantrieb und damit die Strahlungsbilanz der Erde beeinflussender Faktor, der relevant für den Erhalt des Weltklimas ist.
In der 3D-Computergrafik findet die Albedo ebenfalls Verwendung; dort dient sie als Maß für die diffuse Streukraft verschiedener Materialien für Simulationen der Volumenstreuung.
In der Astronomie spielt die Albedo eine wichtige Rolle, da sie mit grundlegenden Parametern von Himmelskörpern (z. B. Durchmesser, scheinbare/absolute Helligkeit) zusammenhängt.
Albedoarten
Es werden verschiedene Arten der Albedo unterschieden:
- Die sphärische Albedo (auch planetarische Albedo und Bondsche Albedo genannt) ist das Verhältnis des von einer Kugeloberfläche in alle Richtungen reflektierten Lichts zu der auf den Kugelquerschnitt einfallenden Strahlung. Bei der planetarischen Albedo gilt als Oberfläche der obere Rand der Atmosphäre. Die sphärische Albedo liegt stets zwischen 0 und 1. Der Wert 0 entspricht einer vollständigen Absorption und 1 einer vollständigen Reflexion des einfallenden Lichts.
- Die geometrische Albedo ist das Verhältnis des von einer vollen bestrahlten Fläche zum Beobachter gelangenden Strahlungsstroms zu dem, der von einer diffus reflektierenden, absolut weißen Scheibe (ein sogenannter Lambertstrahler) gleicher Größe bei senkrechtem Lichteinfall zum Beobachter gelangen würde. Die geometrische Albedo kann in seltenen Fällen auch Werte größer 1 annehmen,[2] weil reale Oberflächen nicht ideal diffus reflektieren.
Das Verhältnis zwischen sphärischer Albedo und geometrischer Albedo ist das sogenannte Phasenintegral (siehe Phase), das die winkelabhängige Reflektivität jedes Flächenelements berücksichtigt.[4]
Messung
Die Messung der Albedo erfolgt über Albedometer und wird in Prozent angegeben. In der Astronomie können aufgrund der großen Entfernungen keine Albedometer eingesetzt werden. Die geometrische Albedo kann hier aber aus der scheinbaren Helligkeit und dem Radius des Himmelskörpers und den Entfernungen zwischen Erde, Objekt und Sonne berechnet werden. Um die sphärische Albedo zu bestimmen, muss auch das Phasenintegral (und somit die Phasenfunktion) bekannt sein. Diese ist allerdings nur für diejenigen Himmelskörper vollständig bekannt, die sich innerhalb der Erdbahn bewegen (Merkur, Venus). Für die oberen Planeten kann die Phasenfunktion nur teilweise bestimmt werden, wodurch auch die Werte für ihre sphärische Albedo nicht exakt bekannt sind.
Satelliten der US-Raumfahrtbehörde NASA messen seit ca. 2004 die Albedo der Erde.[5] Diese ist insgesamt, abgesehen von kurzfristigen Schwankungen, in den letzten zwei Jahrzehnten konstant geblieben; regional dagegen gab es Veränderungen von mehr als 8 %. In der Arktis z. B. ist die Rückstrahlung geringer, in Australien höher geworden.[6]
Das Deep Space Climate Observatory misst seit 2015 die Erd-Albedo in einem Abstand von 1,5 Millionen Kilometern zur Erde vom Lagrange-Punkt L1 aus. An diesem Punkt hat die Sonde einen dauerhaften Blick auf die sonnenbeschienene Seite der Erde.
Einflüsse
Die Oberflächenbeschaffenheit eines Himmelskörpers bestimmt seine Albedo. Der Vergleich mit den Albedowerten irdischer Substanzen ermöglicht es also, Rückschlüsse auf die Beschaffenheit anderer planetarer Oberflächen zu ziehen. Gemäß der Definition der sphärischen Albedo ist die Voraussetzung von parallel einfallendem Licht wegen der großen Entfernungen der reflektierenden Himmelskörper von der Sonne als Lichtquelle sehr gut gegeben. Die stets geschlossene Wolkendecke der Venus strahlt viel mehr Licht zurück als die basaltartigen Oberflächenteile des Mondes. Die Venus besitzt daher mit einer mittleren sphärischen Albedo von 0,76 ein sehr hohes, der Mond mit durchschnittlich 0,12 ein sehr geringes Rückstrahlvermögen. Die Erde hat eine mittlere sphärische Albedo von 0,3.[7] Durch die globale Erwärmung verschieben sich auf der Erde die regionalen Albedo-Werte. Durch Verschiebung der Wolkenbänder sank die Albedo z. B. in der nördlichen gemäßigten Zone, stieg dafür aber weiter im Norden.[8] Die höchsten bisher gemessenen Werte fallen auf die Saturnmonde Telesto (0,994) und Enceladus (0,99). Der niedrigste Mittelwert wurde mit nur 0,03 am Kometen Borrelly festgestellt.
Glatte Oberflächen wie Wasser, Sand oder Schnee haben einen relativ hohen Anteil spiegelnder Reflexion, ihre Albedo ist deshalb stark abhängig vom Einfallswinkel der Sonnenstrahlung (siehe Tabelle).
Die Albedo ist außerdem abhängig von der Wellenlänge des Lichts, das untersucht wird, weswegen bei der Angabe der Albedowerte immer der entsprechende Wellenlängenbereich angegeben werden sollte.
Literatur
- Joachim Gürtler, Johann Dorschner: Das Sonnensystem. Barth, 1993, ISBN 3-335-00281-4.
- J. Bennett, M. Donahue, N. Schneider, M. Voith: Astronomie. Hrsg. Harald Lesch, 5. Auflage (1170 S.). Pearson-Studienverlag, München 2010.
- H. Zimmermann, A. Weigert: Lexikon der Astronomie. Spektrum Akadem. Verlag, Heidelberg/Berlin.
Weblinks
Einzelnachweise
- ↑ NASA: Lunar and Planetary Science; siehe Fact Sheets
- ↑ a b Anne Verbiscer, Richard French, Mark Showalter, Paul Helfenstein: Enceladus: Cosmic Graffiti Artist Caught in the Act. In: Science. Band 315, Nr. 5813, 9. Februar 2007, doi:10.1126/science.1134681, PMID 17289992 (englisch, [1] [abgerufen am 2. August 2013]).
- ↑ NASA: Saturnian Satellite Fact Sheet. 13. Oktober 2015, abgerufen am 16. Juli 2015
- ↑ Phase Integral – from Eric Weisstein’s World of Physics. In: scienceworld.wolfram.com. Abgerufen am 28. Februar 2015.
- ↑ Monika Seynsche: Die Arktis nimmt immer mehr Wärme auf, Deutschlandfunk, Forschung Aktuell, 18. Februar 2014, abgerufen am 20. Februar 2014.
- ↑ Measuring Earth’s Albedo. Image of the day. vom 21. Oktober 2014@earthobservatory.nasa.gov; FAZ 5. November 2014, S. N1.
- ↑ P. R. Goode et al.: Earthshine Observations of the Earth’s Reflectance. In: Geophysical Research Letters. Band 28, Nr. 9, 2001, S. 1671–1674
- ↑ Wolkenveränderungen heizen die Erwärmung durch positive Rückkopplung weiter an. In: scinexx.de. 12. Juli 2016, abgerufen am 1. März 2019.