„Phasenschiebertransformator“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K Linkfix
Markierungen: Mobile Bearbeitung Mobile Web-Bearbeitung Erweiterte mobile Bearbeitung
 
(26 dazwischenliegende Versionen von 18 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Bild:ELIA PST Monceau 400MVA.jpg|thumb|Phasenschiebertransformator mit 400 MVA für den Betrieb an einer 220/115-kV-Leitung]]
[[Datei:ELIA PST Monceau 400MVA.jpg|mini|Phasenschiebertransformator mit 400 MVA für den Betrieb an einer 220/115-kV-Leitung]]
Ein '''Phasenschiebertransformator''', auch '''Querregeltransformator''', ist ein spezieller [[Leistungstransformator]], welcher im Bereich elektrischer [[Stromnetz|Wechselstromnetze]] dazu dient, den elektrischen [[elektrische Leistung|Lastfluss]] bei parallel verlaufenden Leitungen gezielt zu steuern. Anwendungen finden diese Transformatoren in [[Hochspannungsnetz]]en wie der 220-kV- oder 380-kV-Spannungsebene. Die [[Scheinleistung]] beträgt bis zu 1.500 [[Megavoltampere|MVA]].
Ein '''Phasenschiebertransformator''', auch '''Querregeltransformator''', ist ein spezieller [[Leistungstransformator]], welcher im Bereich elektrischer [[Stromnetz|Wechselstromnetze]] dazu dient, den elektrischen [[elektrische Leistung|Lastfluss]] bei parallel verlaufenden Leitungen gezielt zu steuern. Anwendungen finden diese Transformatoren in [[Höchstspannungsnetz|Hochspannungsnetzen]] wie der 220-kV- oder 380-kV-Spannungsebene. Die [[Scheinleistung]] beträgt bis zu 1500 [[Megavoltampere|MVA]].

Durch die technischen Verbesserungen im Bereich der [[Leistungselektronik]] werden Phasenschiebertransformatoren in Stromversorgungsnetzen zunehmend durch [[Unified-Power-Flow-Controller]] (UPFC) ersetzt, welche ein besseres Steuerungsvermögen der Leistungsflüsse erlauben.


== Allgemeines ==
== Allgemeines ==
Zeile 8: Zeile 6:


== Aufbau ==
== Aufbau ==
[[Datei:Qb-3ph de.svg|thumb|upright=1.5|Vereinfachte Schaltung eines Phasenschiebertransformators]]
[[Datei:Qb-3ph de.svg|mini|hochkant=1.5|Vereinfachte Schaltung eines Phasenschiebertransformators]]
Ein Phasenschiebertransformator besteht, wie in nebenstehender Abbildung schematisch dargestellt, aus einem Serientransformator, ähnlich einem [[Stromwandler]], und einem Erregertransformator („Shunt-Transformator“), über welchen mittels eines [[Stufenschalter für Leistungstransformatoren|Stufenschalters]] eine bestimmte Phasenverschiebung eingestellt werden kann.
Ein Phasenschiebertransformator besteht, wie in nebenstehender Abbildung schematisch dargestellt, aus einem Serientransformator, ähnlich einem [[Stromwandler]], und einem Erregertransformator („Shunt-Transformator“), über welchen mittels eines [[Stufenschalter für Leistungstransformatoren|Stufenschalters]] eine bestimmte Phasenverschiebung eingestellt werden kann.


Zeile 18: Zeile 16:


== Anwendung ==
== Anwendung ==
[[Datei:Quad booster.svg|thumb|upright=1.5|Leistungsaufteilung zwischen zwei Leitungen bei unterschiedlichen Phasenwerten]]
[[Datei:Quad booster.svg|mini|hochkant=1.5|Leistungsaufteilung zwischen zwei Leitungen bei unterschiedlichen Phasenwerten]]
Im rechts abgebildeten [[Einliniendiagramm]] ist die Aufteilung der Lastflüsse zwischen zwei Leitungen bei unterschiedlichen Einstellungen am Phasenschiebertransformator dargestellt. Die am Generator eingespeiste Leistung und die entnommene Leistung ist in beiden Fällen gleich groß, ohne Beachtung der Verluste beispielsweise jeweils 100 [[Megavoltampere|MVA]]. Es handelt sich um beispielhafte Zahlenwerte, die verschobene Wirkleistung, gemessen in [[Megawatt|MW]], hängt bei gegebenem Phasenwinkel von den elektrischen Eigenschaften des Phasenschiebers und des Übertragungssystems ab.
Im abgebildeten [[Einliniendiagramm]] ist die Aufteilung der Lastflüsse zwischen zwei Leitungen bei unterschiedlichen Einstellungen am Phasenschiebertransformator dargestellt. Die am Generator eingespeiste Leistung und die entnommene Leistung ist in beiden Fällen gleich groß, ohne Beachtung der Verluste beispielsweise jeweils 100 [[Megavoltampere|MVA]]. Es handelt sich um beispielhafte Zahlenwerte, die verschobene Wirkleistung, gemessen in [[Megawatt|MW]], hängt bei gegebenem Phasenwinkel von den elektrischen Eigenschaften des Phasenschiebers und des Übertragungssystems ab.


Durch den Phasenschiebertransformator können nun die Leistungsflüsse und damit die Ströme in den beiden Leitungen eingestellt werden. Im linken Teilbild ist der Phasenwinkel so gewählt, dass über beide Leitungen die gleiche Leistung von 50 MW übertragen wird. Im rechten Teilbild ist der Phasenwinkel am Transformator geändert, wodurch auf der einen Leitung 73 MW und auf der anderen Leitung 27 MW transportiert werden. Die Summe entspricht jedes mal der Gesamtleistung von 100 MW.
Durch den Phasenschiebertransformator können nun die Leistungsflüsse und damit die Ströme in den beiden Leitungen eingestellt werden. Im linken Teilbild ist der Phasenwinkel so gewählt, dass über beide Leitungen die gleiche Leistung von 50 MW übertragen wird. Im rechten Teilbild ist der Phasenwinkel am Transformator geändert, wodurch auf der einen Leitung 73 MW und auf der anderen Leitung 27 MW transportiert werden. Die Summe entspricht jedes Mal der Gesamtleistung von 100 MW.


In realen Anlagen treten hier nicht dargestellte, zusätzliche Verluste auf, bedingt durch die thermischen Verluste des Phasenschiebertransformators und zusätzliche Leitungsverluste auf der Leitung mit dem größeren Leistungsfluss, um die sich in diesem Fall die entnehmbare Leistung gegenüber der eingespeisten Leistung verringert. Außerdem sind in realen Energieversorgungsnetzen im Regelfall nicht nur zwei parallele Leitungen zwischen zwei Umspannwerken vorhanden, wie in diesem vereinfachten Beispiel, sondern durch die [[Maschennetz (Stromversorgung)|Vermaschung]] in einem Verbundnetz ergeben sich weitere wechselseitige Beeinflussungen der Lastflüsse.
In realen Anlagen treten hier nicht dargestellte, zusätzliche Verluste auf, bedingt durch die thermischen Verluste des Phasenschiebertransformators und zusätzliche Leitungsverluste auf der Leitung mit dem größeren Leistungsfluss, um die sich in diesem Fall die entnehmbare Leistung gegenüber der eingespeisten Leistung verringert. Außerdem sind in realen Energieversorgungsnetzen im Regelfall nicht nur zwei parallele Leitungen zwischen zwei Umspannwerken vorhanden, wie in diesem vereinfachten Beispiel, sondern durch die [[Maschennetz (Stromversorgung)|Vermaschung]] in einem Verbundnetz ergeben sich weitere wechselseitige Beeinflussungen der Lastflüsse.


== Installierte Anlagen ==
== Installierte Anlagen ==

Installierte Anlagen befinden sich im 400-kV-Netz zwischen den [[Niederlande]]n und [[Belgien]], an der Grenze zwischen [[Deutschland]] und den [[Niederlande]]n, im deutschen Netz im Umspannwerk [[Diele (Weener)|Diele]] und im österreichischen 220-kV-Netz der [[Austrian Power Grid]] (APG) in den Umspannwerken [[Ternitz]], [[Umspannwerk Ernsthofen]] und [[Umspannwerk Tauern]]<ref>[https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=67498&pCurrPk=35438 Phasenschiebertransformatoren im APG], ''ew'' – Magazin für die Energiewirtschaft, Jahrgang 106, 2007, Heft 11</ref> sowie im 110-kV-Netz im Umspannwerk [[Hagermarsch]], wo die See-/Erdkabelverbindung des [[Offshore-Windpark]]s [[Alpha ventus|alpha-ventus]] in das Freileitungsnetz eingespeist wird.
Installierte Phasenschieberanlagen befinden sich im 400-kV-Netz zwischen den [[Niederlande]]n und [[Belgien]], an der Grenze zwischen [[Deutschland]] und den Niederlanden, im deutschen Netz im Umspannwerk [[Diele (Weener)|Diele]] und im 110-kV-Netz im Umspannwerk [[Hagermarsch]], wo die See-/Erdkabelverbindung des [[Offshore-Windpark]]s [[Alpha ventus|alpha-ventus]] in das Freileitungsnetz eingespeist wird

Im Jahr 2021 wurden im Umspannwerk [[Würgau]] von [[Tennet TSO]] vier jeweils 940 t schwere Phasenschiebertransformatoren mit einer Leistung von jeweils 1,2 GVA aufgestellt, die zukünftig der Lastflussregelung der 380-kV-Systeme der Verbindung Raitersaich-Würgau-Redwitz dienen.<ref name="ten"/>

Im österreichischen 220-kV-Netz der [[Austrian Power Grid]] (APG) gab es 2007 bereits in den 4 Umspannwerken (UW) [[Ternitz]], [[Umspannwerk Ernsthofen|Ernsthofen]], [[Umspannwerk Lienz|Lienz]] und [[Umspannwerk Tauern|Tauern]] Phasenschiebertransformatoren.<ref>[https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=67498&pCurrPk=35438 Phasenschiebertransformatoren im APG], ''ew'' – Magazin für die Energiewirtschaft, Jahrgang 106, 2007, Heft 11.</ref> Später wurden zwei weitere im UW [[Nauders]] errichtet.

Im November 2024 ging der 100. Trafo im APG-Netz im [[Umspannwerk Ybbsfeld]] in St. Martin-Karlsbach (Bezirk Melk) in Betrieb. (Trafo 900 Tonnen Masse, 600 MVA Leistung, 30 Mio. Euro Kosten). Damit stehen in Österreich ab nun insgesamt 7 Phasenschiebertransformatoren im APG-Netz.<ref>https://noe.orf.at/stories/3282467/
Ybbsfeld : Neuer Spezial-Trafo kann Strom umleiten
orf.at
2024-11-24
</ref>

Am 17. Januar 2017 nahm der tschechische [[Übertragungsnetzbetreiber]] [[ČEPS]] im [[Umspannwerk Hradec]] eine Sperranlage mit zwei Phasenschiebertransformatoren in Betrieb.<ref name="fi"/><ref name="en"/> Jeder der beiden Transformatoren wiegt 300&nbsp;t. Die Gesamtkosten für die Anlage liegen bei insgesamt rund 75 Mio. €. Die Installation der Phasenschiebertransformatoren wurde nötig, um den Zufluss von Ökostrom aus Deutschland besser regulieren und steuern zu können.<ref name="fi"/> Der deutsche Übertragungsnetzbetreiber [[50Hertz Transmission|50 Hertz]] hat im Januar 2018 zwei Phasenschiebertransformatoren im Umspannwerk Röhrsdorf in Betrieb genommen<ref name="zfk"/>. Die Umspannwerke Röhrsdorf und Hradec sind über zwei 400-kV-Leitungen verbunden. Bei einer hohen Leistungseinspeisung in Deutschland kommt es immer wieder zu ungeplanten Leistungsflüssen, die zu starken Belastungen des tschechischen Netzes und einer Gefährdung des [[(n – 1)-Regel|sicheren Netzbetriebs]] führten.<ref name="en"/>


== Literatur ==
== Literatur ==
*{{Literatur
* {{Literatur
|Autor = Rene Flosdorff, Günther Hilgarth
|Autor = Rene Flosdorff, Günther Hilgarth
|Titel = Elektrische Energieverteilung
|Titel = Elektrische Energieverteilung
|Verlag = Teubner | Jahr = 2003 | ISBN = 3-519-26424-2 }}
|Verlag = Teubner | Jahr = 2003 | ISBN = 3-519-26424-2 }}

== Einzelnachweise ==
<references />


== Weblinks ==
== Weblinks ==
* {{Webarchiv | url=http://www.vatechetg.at/references/ref_detail_long.asp?id=38&lng=DE | wayback=20050121070516 | text=Technische Daten eines Phasenschiebertransformators}}
* {{Webarchiv | url=http://www.vatechetg.at/references/ref_detail_long.asp?id=38&lng=DE | wayback=20050121070516 | text=Technische Daten eines Phasenschiebertransformators}}

== Einzelnachweise ==
<references>
<ref name="en">{{Internetquelle
| hrsg = www.energate-messenger.de
| url = http://www.energate-messenger.de/news/171013/tschechien-nimmt-erste-phasenschieber-in-betrieb
| titel = Tschechien nimmt erste Phasenschieber in Betrieb
| datum = 2017-01-17
| zugriff = 2017-01-20
}}</ref>

<ref name="fi">{{Internetquelle
| hrsg = www.finanzen.net
| url = http://www.finanzen.net/nachricht/aktien/Tschechien-nimmt-Sperranlage-gegen-deutschen-Oekostrom-in-Betrieb-5277531
| titel = Tschechien nimmt Sperranlage gegen deutschen Ökostrom in Betrieb
| datum = 2017-01-17
| zugriff = 2017-01-20
}}</ref>

<ref name="zfk">{{Internetquelle
|hrsg = www.zfk.de
|url = https://www.zfk.de/energie/strom/artikel/stromfluesse-nach-tschechien-haben-sich-verbessert-2018-01-19/
|titel = Stromflüsse nach Tschechien haben sich verbessert
|datum = 2018-01-19
|zugriff = 2018-01-22
|archiv-url = https://web.archive.org/web/20180123102138/https://www.zfk.de/energie/strom/artikel/stromfluesse-nach-tschechien-haben-sich-verbessert-2018-01-19/
|archiv-datum = 2018-01-23
|offline =
|archiv-bot = 2022-12-27 18:21:05 InternetArchiveBot
}}</ref>

<ref name="ten">{{Internetquelle
| hrsg = www.tennet.eu
| url = https://www.tennet.eu/de/tinyurl-storage/news/schwere-jungs-am-wuergauer-berg-tennet-startet-trafotransporte-zum-umspannwerk-wuergau-und-macht-die/
| titel = Schwere Jungs am Würgauer Berg: TenneT startet Trafotransporte zum Umspannwerk Würgau und macht die Anlage zu dem bayerischen Drehkreuz für Grünstrom
| datum = 2021-06-08
| zugriff = 2022-04-02
}}</ref>
</references>


[[Kategorie:Elektrische Energietechnik]]
[[Kategorie:Elektrische Energietechnik]]

Aktuelle Version vom 25. November 2024, 00:03 Uhr

Phasenschiebertransformator mit 400 MVA für den Betrieb an einer 220/115-kV-Leitung

Ein Phasenschiebertransformator, auch Querregeltransformator, ist ein spezieller Leistungstransformator, welcher im Bereich elektrischer Wechselstromnetze dazu dient, den elektrischen Lastfluss bei parallel verlaufenden Leitungen gezielt zu steuern. Anwendungen finden diese Transformatoren in Hochspannungsnetzen wie der 220-kV- oder 380-kV-Spannungsebene. Die Scheinleistung beträgt bis zu 1500 MVA.

Im Gegensatz zu der üblichen Anwendung von Transformatoren, der Umsetzung von Wechselspannungen auf verschiedene Spannungsniveaus, dienen diese Transformatoren als Phasenschieber, um so die Leistung durch eine elektrische Leitung, beispielsweise eine Freileitung, gezielt zu beeinflussen. Wenn zwischen zwei Schaltanlagen oder Umspannwerken mehrere Leitungen auf unterschiedlichen Wegen geführt sind, kann mittels Phasenschiebertransformator festgelegt werden, wie die Leistung aufgeteilt wird. Dies ist insbesondere dann von Bedeutung, wenn die vorhandenen Leitungen unterschiedlichen Spannungsebenen zugeordnet sind, deutlich unterschiedliche Transportleistungen aufweisen oder Freileitungen mit Erdkabeln kombiniert werden.

Vereinfachte Schaltung eines Phasenschiebertransformators

Ein Phasenschiebertransformator besteht, wie in nebenstehender Abbildung schematisch dargestellt, aus einem Serientransformator, ähnlich einem Stromwandler, und einem Erregertransformator („Shunt-Transformator“), über welchen mittels eines Stufenschalters eine bestimmte Phasenverschiebung eingestellt werden kann.

Beim üblicherweise eingesetzten Dreiphasenwechselstrom ist für jeden Außenleiter ein Serien- und ein Stelltransformator vorhanden. Die Wechselspannung wird links über die Anschlüsse L1, L2 und L3 zugeführt. Über den Stelltransformator wird pro Phase über Schalter eine Spannung abgegriffen, welche gegenüber der Außenleiterspannung gegen Erde um 90° versetzt ist und über den rechts dargestellten Serientransformator mittels Vektoraddition zu einer an L1', L2' und L3' phasenverschobenen Spannung führt. Diese Art der Lastflussbeeinflussung wird auch als Querkompensation bezeichnet, im Gegensatz zu der Längskompensation mittels Drosseln oder Kondensatorbatterien, wie sie bei der statischen Blindleistungskompensation (SVC) anzutreffen ist. Da der Lastfluss durch den Phasenschiebertransformator in beiden Richtungen erfolgen kann, kann „Eingang“ bzw. „Ausgang“ im Prinzip beliebig gewählt werden.

Der Einstellbereich der phasenverschobenen Spannung ist je nach Typ verschieden. Er liegt typischerweise im Bereich von ±10° und kann bei speziellen Ausführungen bis zu 30° betragen. Bei realen Phasenschiebertransformatoren (es gibt mehrere Schaltungsvarianten) werden zusätzliche Komponenten eingesetzt, z. B. ein Advanced Retard Switch (ARS) am Serientransformator zur Vorzeichenumkehr der Phasenlage.

Durch den Phasenschiebertransformator entsteht in der Masche (Schleife), welche im einfachsten Fall durch zwei parallel geführte Leitungen gebildet wird, ein zusätzlicher Lastfluss, welcher dem äußeren Lastfluss durch die beiden Leitungen überlagert ist. Dadurch kommt es, je nach eingestellter Phasenverschiebung, zu einer Reduktion bzw. Steigerung des Lastflusses in den einzelnen Leitungen. Bei Umkehrung des äußeren Leistungsflusses muss, bei Erhaltung der Leistungsaufteilung, die Phasenlage invertiert werden.

Leistungsaufteilung zwischen zwei Leitungen bei unterschiedlichen Phasenwerten

Im abgebildeten Einliniendiagramm ist die Aufteilung der Lastflüsse zwischen zwei Leitungen bei unterschiedlichen Einstellungen am Phasenschiebertransformator dargestellt. Die am Generator eingespeiste Leistung und die entnommene Leistung ist in beiden Fällen gleich groß, ohne Beachtung der Verluste beispielsweise jeweils 100 MVA. Es handelt sich um beispielhafte Zahlenwerte, die verschobene Wirkleistung, gemessen in MW, hängt bei gegebenem Phasenwinkel von den elektrischen Eigenschaften des Phasenschiebers und des Übertragungssystems ab.

Durch den Phasenschiebertransformator können nun die Leistungsflüsse und damit die Ströme in den beiden Leitungen eingestellt werden. Im linken Teilbild ist der Phasenwinkel so gewählt, dass über beide Leitungen die gleiche Leistung von 50 MW übertragen wird. Im rechten Teilbild ist der Phasenwinkel am Transformator geändert, wodurch auf der einen Leitung 73 MW und auf der anderen Leitung 27 MW transportiert werden. Die Summe entspricht jedes Mal der Gesamtleistung von 100 MW.

In realen Anlagen treten hier nicht dargestellte, zusätzliche Verluste auf, bedingt durch die thermischen Verluste des Phasenschiebertransformators und zusätzliche Leitungsverluste auf der Leitung mit dem größeren Leistungsfluss, um die sich in diesem Fall die entnehmbare Leistung gegenüber der eingespeisten Leistung verringert. Außerdem sind in realen Energieversorgungsnetzen im Regelfall nicht nur zwei parallele Leitungen zwischen zwei Umspannwerken vorhanden, wie in diesem vereinfachten Beispiel, sondern durch die Vermaschung in einem Verbundnetz ergeben sich weitere wechselseitige Beeinflussungen der Lastflüsse.

Installierte Anlagen

[Bearbeiten | Quelltext bearbeiten]

Installierte Phasenschieberanlagen befinden sich im 400-kV-Netz zwischen den Niederlanden und Belgien, an der Grenze zwischen Deutschland und den Niederlanden, im deutschen Netz im Umspannwerk Diele und im 110-kV-Netz im Umspannwerk Hagermarsch, wo die See-/Erdkabelverbindung des Offshore-Windparks alpha-ventus in das Freileitungsnetz eingespeist wird

Im Jahr 2021 wurden im Umspannwerk Würgau von Tennet TSO vier jeweils 940 t schwere Phasenschiebertransformatoren mit einer Leistung von jeweils 1,2 GVA aufgestellt, die zukünftig der Lastflussregelung der 380-kV-Systeme der Verbindung Raitersaich-Würgau-Redwitz dienen.[1]

Im österreichischen 220-kV-Netz der Austrian Power Grid (APG) gab es 2007 bereits in den 4 Umspannwerken (UW) Ternitz, Ernsthofen, Lienz und Tauern Phasenschiebertransformatoren.[2] Später wurden zwei weitere im UW Nauders errichtet.

Im November 2024 ging der 100. Trafo im APG-Netz im Umspannwerk Ybbsfeld in St. Martin-Karlsbach (Bezirk Melk) in Betrieb. (Trafo 900 Tonnen Masse, 600 MVA Leistung, 30 Mio. Euro Kosten). Damit stehen in Österreich ab nun insgesamt 7 Phasenschiebertransformatoren im APG-Netz.[3]

Am 17. Januar 2017 nahm der tschechische Übertragungsnetzbetreiber ČEPS im Umspannwerk Hradec eine Sperranlage mit zwei Phasenschiebertransformatoren in Betrieb.[4][5] Jeder der beiden Transformatoren wiegt 300 t. Die Gesamtkosten für die Anlage liegen bei insgesamt rund 75 Mio. €. Die Installation der Phasenschiebertransformatoren wurde nötig, um den Zufluss von Ökostrom aus Deutschland besser regulieren und steuern zu können.[4] Der deutsche Übertragungsnetzbetreiber 50 Hertz hat im Januar 2018 zwei Phasenschiebertransformatoren im Umspannwerk Röhrsdorf in Betrieb genommen[6]. Die Umspannwerke Röhrsdorf und Hradec sind über zwei 400-kV-Leitungen verbunden. Bei einer hohen Leistungseinspeisung in Deutschland kommt es immer wieder zu ungeplanten Leistungsflüssen, die zu starken Belastungen des tschechischen Netzes und einer Gefährdung des sicheren Netzbetriebs führten.[5]

  • Rene Flosdorff, Günther Hilgarth: Elektrische Energieverteilung. Teubner, 2003, ISBN 3-519-26424-2.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Schwere Jungs am Würgauer Berg: TenneT startet Trafotransporte zum Umspannwerk Würgau und macht die Anlage zu dem bayerischen Drehkreuz für Grünstrom. www.tennet.eu, 8. Juni 2021, abgerufen am 2. April 2022.
  2. Phasenschiebertransformatoren im APG, ew – Magazin für die Energiewirtschaft, Jahrgang 106, 2007, Heft 11.
  3. https://noe.orf.at/stories/3282467/ Ybbsfeld : Neuer Spezial-Trafo kann Strom umleiten orf.at 2024-11-24
  4. a b Tschechien nimmt Sperranlage gegen deutschen Ökostrom in Betrieb. www.finanzen.net, 17. Januar 2017, abgerufen am 20. Januar 2017.
  5. a b Tschechien nimmt erste Phasenschieber in Betrieb. www.energate-messenger.de, 17. Januar 2017, abgerufen am 20. Januar 2017.
  6. Stromflüsse nach Tschechien haben sich verbessert. www.zfk.de, 19. Januar 2018, archiviert vom Original am 23. Januar 2018; abgerufen am 22. Januar 2018.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.zfk.de