Spring til indhold

Bruger:Sasha/Kladde1: Forskelle mellem versioner

Fra Wikipedia, den frie encyklopædi
Content deleted Content added
m småret
m Datomaerker kilde mangler-skabeloner i sandkasser og diskussionssider med en speciel dato for at få dem ud af kategorien (fjerner gl. dato); kosmetiske ændringer
 
(8 mellemliggende versioner af en anden bruger ikke vist)
Linje 13: Linje 13:
}}
}}


'''FIV''' ('''felin immundefektvirus''') er en [[lentivirus]], der påvirker [[kat|tamme huskatte]] over hele verden og er den virus, der forårsager [[katteaids]]. Ca. 11%<ref>{{cite journal| doi = 10.1016/j.biologicals.2005.08.004| title = Felin immundefektvirus-vaccine: Implikationer for diagnosticering og sygdomsbehandling| year = 2005| author = Richards, J| journal = Biologicals| volume = 33| pages = 215 }}</ref> af katte på verdensplan, og omkring 2,5% af alle katte i [[USA]]<ref name="Zislin, A 2005 219">{{cite journal| doi = 10.1016/j.biologicals.2005.08.012| title = Felin immundefektvirus-vaccine: En rationel paradigme for kliniske beslutningsprocesser| year = 2005| author = Zislin, A| journal = Biologicals| volume = 33| pages = 219}}</ref> er inficeret med FIV. FIV adskiller [[taxonomi]]sk fra to andre katte-retrovira, felin leukæmi-virus (FeLV) og katteskummende virus (FFV), og er mere tæt forbundet med [[HIV|human immundefektvirus]] (HIV). FIV har fem undertyper (der er identificeret), som baseret på nukleotidsekvens-forskelle, der koder for den virale envelop (ENV) eller polymerase (POL). FIV er den eneste ikke-[[primater|primatær]]e lentivirus, der forårsager en AIDS-lignende [[syndrom]], men FIV giver ikke altid en dødsdom til katte; de kan leve forholdsvis sundt som bærere og sendere af sygdommen i mange år. Der findes en [[vaccine]], selv om dens effekt er fortsat usikker, og katte vil blive testet positiv for FIV-antistoffer efter vaccination.
'''FIV''' ('''felin immundefektvirus''') er en [[lentivirus]], der påvirker [[kat|tamme huskatte]] over hele verden og er den virus, der forårsager [[katteaids]]. Ca. 11%<ref>{{cite journal| doi = 10.1016/j.biologicals.2005.08.004| title = Felin immundefektvirus-vaccine: Implikationer for diagnosticering og sygdomsbehandling| year = 2005| author = Richards, J| journal = Biologicals| volume = 33| pages = 215 }}</ref> af katte på verdensplan, og omkring 2,5% af alle katte i [[USA]]<ref name="Zislin, A 2005 219">{{cite journal| doi = 10.1016/j.biologicals.2005.08.012| title = Felin immundefektvirus-vaccine: En rationel paradigme for kliniske beslutningsprocesser| year = 2005| author = Zislin, A| journal = Biologicals| volume = 33| pages = 219}}</ref> er inficeret med FIV. FIV adskiller sig [[taxonomi]]sk fra to andre katte-retrovira, felin leukæmi-virus (FeLV) og katteskummende virus (FFV), og er mere tæt forbundet med [[HIV|human immundefektvirus]] (HIV). FIV har fem undertyper (der er identificeret), som baseret på nukleotidsekvens-forskelle, der koder for den virale envelop (ENV) eller polymerase (POL). FIV er den eneste ikke-[[primater|primatære]] lentivirus, der forårsager en AIDS-lignende [[syndrom]], men FIV giver ikke altid en dødsdom til katte; de kan leve forholdsvis sundt som bærere og sendere af sygdommen i mange år. Der findes en [[vaccine]], selv om dens effekt er fortsat usikker, og katte vil blive testet positiv for FIV-antistoffer efter vaccination.


FIV blev først opdaget i 1986 i en koloni af katte, der havde en høj forekomst af opportunistiske infektioner og degenerative betingelser, og er siden blevet identificeret som en endemisk [[sygdom]] i huskatte, gældende for hele verden<ref name="Zislin, A 2005 219"/>.
FIV blev først opdaget i 1986 i en koloni af katte, der havde en høj forekomst af opportunistiske infektioner og degenerative betingelser, og er siden blevet identificeret som en endemisk [[sygdom]] i huskatte, gældende for hele verden<ref name="Zislin, A 2005 219"/>.


==Transmission==
== Smitte ==
De primære former for FIV-transmissionen er dybe bide-sår og skrammer, hvor kattens infecerede spyt bliver ført ind i en anden kats [[blodåre]]r. FIV kan også overføres fra gravide hunkatte til deres fostre i livmoderen<ref name="cornellfiv">{{cite web|work=Cornell Felin Helbreds-Center|title=Felin Immundefektirus|publisher=Cornell-Universitetet, Universitetet for Veterinærmedicin|author=Amerikanske Forbindelser mellem Felin-Praktikere|year=2002|accessdate=2008-11-12|url=http://www.vet.cornell.edu/fhc/brochures/fiv.html}}</ref>. Dette adskiller sig fra [[FeLV]], der kan spredes via mere afslappet ikke-aggressiv kontakt, da virus er også til stede ved slimhindeinfektioner som dem i munden, endetarmen og skeden. Tilfældig kontakt kan derfor ikke udelukkes som en potentiel transmission.
De primære former for FIV-smitte forekommer ved dybe bide-sår og skrammer, hvor kattens infecerede spyt bliver ført ind i en anden kats [[blodåre]]r. FIV kan også overføres fra gravide hunkatte til deres fostre i livmoderen<ref name="cornellfiv">{{cite web|work=Cornell Felin Helbreds-Center|title=Felin Immundefektirus|publisher=Cornell-Universitetet, Universitetet for Veterinærmedicin|author=Amerikanske Forbindelser mellem Felin-Praktikere|year=2002|accessdate=2008-11-12|url=http://www.vet.cornell.edu/fhc/brochures/fiv.html}}</ref>. Dette adskiller sig fra [[FeLV]], der kan spredes via mere afslappet ikke-aggressiv kontakt, da virus er også til stede ved slimhindeinfektioner som dem i munden, endetarmen og skeden. Tilfældig kontakt kan derfor ikke udelukkes som en potentiel transmission.


==Testing==
== Testning ==
Når dyrlæger vil kontrollere en kats historie og stamtræ for at se om sygdommen blev overført arveligt, og eventuelt administrere en blodprøve for FIV-[[antistof]]fer. FIV rammer 2-3% af alle katte i [[USA]] og derfor er testning let tilgængelig. Det skal bemærkes, at denne test identificerer de katte som er påført FIV-antistof, og ''detekterer ikke selve virussen''. Derfor finder en positiv test nødvendigvis ikke at katten er bærer af FIV.


Falske positiver opstår når katten bærer FIV-antistof (som er uskadeligt), men ikke selve virus. Den hyppigste forekomst af dette er når killingerne er testet efter indtagelse af antistoffer fra modermælken, og test af katte der tidligere er blevet vaccineret for FIV. Af denne grund er hverken killinger under 8 uger eller katte, der tidligere er blevet vaccineret, testes.
Veterinarians will check a cat's history, look for clinical signs, and possibly administer a blood test for [[FIV]] [[antibodies]]. [[FIV]] affects 2-3% of cats in the US and testing is readily available. It should be noted that this testing identifies those cats that carry the FIV antibody, and ''does not detect the actual virus''. Therefore, a positive test does not necessarily mean the cat is a carrier of FIV.


Killinger og unge katte der testes positive for FIV-antistof, kan med en test, hvor forekomst af et negativt resultat på et senere tidspunkt på grund af [[seroreversion]], forudsat at de aldrig er blevet smittet med FIV og aldrig er blevet vaccineret med FIV-vaccinen.
False positives occur when the cat carries the antibody (which is harmless), but does not carry the actual virus. The most frequent occurrence of this is when kittens are tested after ingesting the antibodies from mother's milk, and when testing cats that have been previously vaccinated for FIV. For this reason, neither kittens under 8 weeks, nor cats that have been previously vaccinated are tested.


Katte der er blevet vaccineret vil testes positiv for FIV-antistof for resten af deres liv på grund af [[serokonversion]]en, selv om de ikke er smittet. Derfor er tests af adopterede katte er noget usikre, da det er umuligt at vide hvorvidt de er blevet vaccineret i fortiden. Af disse grunde bør en positiv FIV-antistoftest i sig selv aldrig bruges som kriterier for [[aktiv dødshjælp]].{{kilde mangler|dato=(sandkasse eller diskussionsside)}}
Kittens and young cats that test positive for the FIV antibody may test negative at a later time due to [[seroreversion]], provided they have never been infected with FIV and have never been immunized with the FIV vaccine.


Test kan gennemføres i en dyrlæges rum med resultater på få minutter, der giver mulighed for hurtig konsultation. Tidlig opdagelse hjælper med at bevare kattens sundhed og forhindrer spredning af smitte til andre katte. Med ordentlig pleje kan smittede katte lever langt og sundt liv.
Cats that have been vaccinated will test positive for the FIV antibody for the rest of their life due to [[seroconversion]], even though they are not infected. Therefore, testing of strays or adopted cats is inconclusive, since it is impossible to know whether or not they have been vaccinated in the past. For these reasons, a positive FIV antibody test by itself should never be used as criteria for [[euthanasia]].{{Citation needed|date=October 2009}}


== Vaccine ==
Tests can be performed in a vet's office with results in minutes, allowing for quick consultation. Early detection helps maintain the cat's health and prevents spreading infection to other cats. With proper care, infected cats can live long and healthy lives.

==Vaccine==
A vaccine for FIV is available ([[ATCvet]] code: {{ATCvet|I06|AA10}}), and was developed using isolates of two of the five FIV subtypes (or clades): A and D.<ref>{{Citation | doi = 10.1016/j.jfms.2008.03.002| title = 2008 American Association of Feline Practitioners' feline retrovirus management guidelines| year = 2008| author = Levy, J| journal = Journal of Feline Medicine & Surgery| volume = 10| pages = 300}}</ref> The vaccine was shown to be moderately protective (82% of cats were protected) against subtype A FIV,<ref>{{Citation | last1 = Huang | first1 = C. | last2 = Conlee | first2 = D. | last3 = Loop | first3 = J. | last4 = Champ | first4 = D. | last5 = Gill | first5 = M. | last6 = Chu | first6 = H.J. | year = 2004 | title = Efficacy and safety of a feline immunodeficiency virus vaccine | journal = Animal Health Research Reviews | volume = 5 | pages = 295–300 | doi = 10.1079/AHR200487}}</ref> but a later study showed it to offer no protection against subtype A.<ref>{{Citation | last1 = Dunham | first1 = S.P. | last2 = Bruce | first2 = J. |last3 = Mackay | first3 = S. | last4 = Golder | first4 = M. |last5 = Jarrett | first5 = O. | last6 = Neil | first6 = J.C. | year = 2006 | title = Limited efficacy of an inactivated feline immunodeficiency virus vaccine. | journal = Veterinary Record | volume = 158 | pages = 561–562}}</ref> It has shown 100% effectiveness against two different subtype B FIV strains.<ref>{{Citation | last1 = Kusuhara | first1 = H. | last2 = Hohdatsu | first2 = T. | last3 = Okumura | first3 = M. | last4 = Sato | first4 = K. | last5 = Suzuki | first5 = Y. | last6 = Motokawa | first6 = K. | last7 = Gemma | first7 = T. | last8 = Watanabe | first8 = R. | last9 = Huang | first9 = C. | last10 = Arai | first10 = S. | last11 = Koyama | first11 = H. | year = 2005 | title = Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats. | journal = Veterinary Microbiology | volume = 108 | pages = 155–165 | doi = 10.1016/j.vetmic.2005.02.014 }}</ref><ref>{{Citation | last1 = Pu | first1 = R. | last2 = Coleman | first2 = J. | last3 = Coisman | first3 = J. | last4 = Sato | first4 = E. | last5 = Tanabe | first5 = T. | last6 = Arai | first6 = M. | last7 = Yamamoto | first7 = JK. | year = 2005 | title = Dual-subtype FIV vaccine (Fel-O-Vax FIV) protection against a heterologous subtype B FIV isolate. | journal = Journal of Feline Medicine and Surgery | volume = 7 | pages = 65–70 | doi = 10.1016/j.jfms.2004.08.005}}</ref> Vaccination will cause cats to have positive results on FIV tests, making diagnosis more difficult. For these reasons the vaccine is considered "non-core", and the decision to vaccinate should be made after discussion with a veterinarian and consideration of the risks vs. the effectiveness.<ref>{{Citation | doi = 10.1016/j.jfms.2008.03.002| title = 2008 American Association of Feline Practitioners' feline retrovirus management guidelines| year = 2008| author = Levy, J| journal = Journal of Feline Medicine & Surgery| volume = 10| pages = 300–316}}</ref>
A vaccine for FIV is available ([[ATCvet]] code: {{ATCvet|I06|AA10}}), and was developed using isolates of two of the five FIV subtypes (or clades): A and D.<ref>{{Citation | doi = 10.1016/j.jfms.2008.03.002| title = 2008 American Association of Feline Practitioners' feline retrovirus management guidelines| year = 2008| author = Levy, J| journal = Journal of Feline Medicine & Surgery| volume = 10| pages = 300}}</ref> The vaccine was shown to be moderately protective (82% of cats were protected) against subtype A FIV,<ref>{{Citation | last1 = Huang | first1 = C. | last2 = Conlee | first2 = D. | last3 = Loop | first3 = J. | last4 = Champ | first4 = D. | last5 = Gill | first5 = M. | last6 = Chu | first6 = H.J. | year = 2004 | title = Efficacy and safety of a feline immunodeficiency virus vaccine | journal = Animal Health Research Reviews | volume = 5 | pages = 295–300 | doi = 10.1079/AHR200487}}</ref> but a later study showed it to offer no protection against subtype A.<ref>{{Citation | last1 = Dunham | first1 = S.P. | last2 = Bruce | first2 = J. |last3 = Mackay | first3 = S. | last4 = Golder | first4 = M. |last5 = Jarrett | first5 = O. | last6 = Neil | first6 = J.C. | year = 2006 | title = Limited efficacy of an inactivated feline immunodeficiency virus vaccine. | journal = Veterinary Record | volume = 158 | pages = 561–562}}</ref> It has shown 100% effectiveness against two different subtype B FIV strains.<ref>{{Citation | last1 = Kusuhara | first1 = H. | last2 = Hohdatsu | first2 = T. | last3 = Okumura | first3 = M. | last4 = Sato | first4 = K. | last5 = Suzuki | first5 = Y. | last6 = Motokawa | first6 = K. | last7 = Gemma | first7 = T. | last8 = Watanabe | first8 = R. | last9 = Huang | first9 = C. | last10 = Arai | first10 = S. | last11 = Koyama | first11 = H. | year = 2005 | title = Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats. | journal = Veterinary Microbiology | volume = 108 | pages = 155–165 | doi = 10.1016/j.vetmic.2005.02.014 }}</ref><ref>{{Citation | last1 = Pu | first1 = R. | last2 = Coleman | first2 = J. | last3 = Coisman | first3 = J. | last4 = Sato | first4 = E. | last5 = Tanabe | first5 = T. | last6 = Arai | first6 = M. | last7 = Yamamoto | first7 = JK. | year = 2005 | title = Dual-subtype FIV vaccine (Fel-O-Vax FIV) protection against a heterologous subtype B FIV isolate. | journal = Journal of Feline Medicine and Surgery | volume = 7 | pages = 65–70 | doi = 10.1016/j.jfms.2004.08.005}}</ref> Vaccination will cause cats to have positive results on FIV tests, making diagnosis more difficult. For these reasons the vaccine is considered "non-core", and the decision to vaccinate should be made after discussion with a veterinarian and consideration of the risks vs. the effectiveness.<ref>{{Citation | doi = 10.1016/j.jfms.2008.03.002| title = 2008 American Association of Feline Practitioners' feline retrovirus management guidelines| year = 2008| author = Levy, J| journal = Journal of Feline Medicine & Surgery| volume = 10| pages = 300–316}}</ref>


== Godkendt behandling ==
==Approved treatment==


In 2006, the [[United States Department of Agriculture]] issued a conditional license for a new treatment aid termed [[Lymphocyte T-Cell Immune Modulator]].<ref>United States Department of Agriculture. [http://www.aphis.usda.gov/vs/cvb/RegsGuidance/CurrentProdCodeBook.pdf Veterinary Biological Products; Licensees and Permittees], December 2006.</ref> Lymphocyte T-Cell Immune Modulator is manufactured by T-Cyte Therapeutics, Inc., exclusively licensed by [[IMULAN BioTherapeutics, LLC]] and distributed in the United States by ProLabs Animal Health (www.prolabsanimalhealth.com). However, thus far, only one trial has been published in a reputable veterinary journal, and that trial consisted of only about half a dozen cats. At this time, rigorous clinical trials have yet to be conducted and published. The cost of obtaining the treatment aid is very high and its efficacy is often disappointing in individual cases.
In 2006, the [[United States Department of Agriculture]] issued a conditional license for a new treatment aid termed [[Lymphocyte T-Cell Immune Modulator]].<ref>United States Department of Agriculture. [http://www.aphis.usda.gov/vs/cvb/RegsGuidance/CurrentProdCodeBook.pdf Veterinary Biological Products; Licensees and Permittees], December 2006.</ref> Lymphocyte T-Cell Immune Modulator is manufactured by T-Cyte Therapeutics, Inc., exclusively licensed by [[IMULAN BioTherapeutics, LLC]] and distributed in the United States by ProLabs Animal Health (www.prolabsanimalhealth.com). However, thus far, only one trial has been published in a reputable veterinary journal, and that trial consisted of only about half a dozen cats. At this time, rigorous clinical trials have yet to be conducted and published. The cost of obtaining the treatment aid is very high and its efficacy is often disappointing in individual cases.
Linje 45: Linje 44:
Lymphocyte T-Cell Immune Modulator is a single chain [[polypeptide]]. It is a strongly cationic [[glycoprotein]], and is purified with cation exchange resin. Purification of protein from bovine-derived [[stromal cell]] supernatants produces a substantially homogeneous factor, free of extraneous materials. The bovine protein is homologous with other mammalian species and is a homogeneous 50 kDa glycoprotein with an isoelectric point of 6.5. The protein is prepared in a lyophilized 1 microgram dose. Reconstitution in sterile diluent produces a solution for subcutaneous injection.<ref>{{Ref patent|country=US|inventor=Beardsley, Terry R.|number=5616554|title=Immune-enhancing agent for therapeutic use in immunocompromised hosts|fdate=1994-07-26|gdate=1997-04-01|status=patent}}</ref>
Lymphocyte T-Cell Immune Modulator is a single chain [[polypeptide]]. It is a strongly cationic [[glycoprotein]], and is purified with cation exchange resin. Purification of protein from bovine-derived [[stromal cell]] supernatants produces a substantially homogeneous factor, free of extraneous materials. The bovine protein is homologous with other mammalian species and is a homogeneous 50 kDa glycoprotein with an isoelectric point of 6.5. The protein is prepared in a lyophilized 1 microgram dose. Reconstitution in sterile diluent produces a solution for subcutaneous injection.<ref>{{Ref patent|country=US|inventor=Beardsley, Terry R.|number=5616554|title=Immune-enhancing agent for therapeutic use in immunocompromised hosts|fdate=1994-07-26|gdate=1997-04-01|status=patent}}</ref>


==Effects==
== Effekter ==


FIV can attack the [[immune system]] of cats, much like the [[HIV|human immunodeficiency virus]] (HIV) can attack the immune system of human beings. FIV infects many cell types in its host, including CD4+ and CD8+ T lymphocytes, B lymphocytes, and macrophages. FIV can be tolerated well by cats, but can eventually lead to debilitation of the immune system in its feline hosts by the infection and exhaustion of T-helper (CD4+) cells.
FIV can attack the [[immune system]] of cats, much like the [[HIV|human immunodeficiency virus]] (HIV) can attack the immune system of human beings. FIV infects many cell types in its host, including CD4+ and CD8+ T lymphocytes, B lymphocytes, and macrophages. FIV can be tolerated well by cats, but can eventually lead to debilitation of the immune system in its feline hosts by the infection and exhaustion of T-helper (CD4+) cells.
Linje 57: Linje 56:
FIV infects other feline species, and in fact is endemic in some large wild cats, such as [[Africa]]n [[lion]]s. Unlike domestic cats, these species do not necessarily exhibit symptoms, perhaps because they have developed [[evolution]]ary [[mutation]]s that confer [[Disease resistance|resistance]].
FIV infects other feline species, and in fact is endemic in some large wild cats, such as [[Africa]]n [[lion]]s. Unlike domestic cats, these species do not necessarily exhibit symptoms, perhaps because they have developed [[evolution]]ary [[mutation]]s that confer [[Disease resistance|resistance]].


== See also ==
== Referencer ==
*[[Feline vaccination]]

==References==
{{Reflist|2}}
{{Reflist|2}}
*{{Harvard reference | last=Johnson | first= | authorlink= | year=2005 | title=Proceedings | periodical= | volume= | issue= | pages=| url=http://www.ivis.org/proceedings/acvp/2005/Johnson/chapter.asp?LA=1 | access-date=}}
* {{Harvard reference | last=Johnson | first= | authorlink= | year=2005 | title=Proceedings | periodical= | volume= | issue= | pages=| url=http://www.ivis.org/proceedings/acvp/2005/Johnson/chapter.asp?LA=1 | access-date=}}
*{{Harvard reference | last=Might | first=Jennifer Lynne | authorlink= | year=2004 | title=Feline Immunodeficiency Virus (FIV) | periodical= | volume= | issue= | pages=| url=http://www.blackgiraffe.com/jmight/fiv/fiv.html| access-date=2006-01-23}}
* {{Harvard reference | last=Might | first=Jennifer Lynne | authorlink= | year=2004 | title=Feline Immunodeficiency Virus (FIV) | periodical= | volume= | issue= | pages=| url=http://www.blackgiraffe.com/jmight/fiv/fiv.html| access-date=2006-01-23}}
*{{Harvard reference | last=Wise | first= | authorlink= | year=2005 | title=Chapter | periodical= | volume= | issue= | pages=| url=http://www.ivis.org/advances/carter/Part2Chap15/chapter.asp?LA=1#fel_immuno | access-date=}}
* {{Harvard reference | last=Wise | first= | authorlink= | year=2005 | title=Chapter | periodical= | volume= | issue= | pages=| url=http://www.ivis.org/advances/carter/Part2Chap15/chapter.asp?LA=1#fel_immuno | access-date=}}
*{{Harvard reference | last=The Lion Research Center | first= | authorlink= | year=2005 | title=FIV in African Lions| periodical= | volume= | issue= | pages=| url=http://www.lionresearch.org/current_docs/fiv.html | access-date=2008-07-22}}
* {{Harvard reference | last=The Lion Research Center | first= | authorlink= | year=2005 | title=FIV in African Lions| periodical= | volume= | issue= | pages=| url=http://www.lionresearch.org/current_docs/fiv.html | access-date=2008-07-22}}
*{{Harvard reference | last=Alley Cat Allies| first= | authorlink= | year=2001 | title=Should we release FIV+ cats? | periodical= | volume= | issue= | pages=| url=http://www.alleycat.org/pdf/shouldwerelease.pdf | access-date=2008-07-22}}
* {{Harvard reference | last=Alley Cat Allies| first= | authorlink= | year=2001 | title=Should we release FIV+ cats? | periodical= | volume= | issue= | pages=| url=http://www.alleycat.org/pdf/shouldwerelease.pdf | access-date=2008-07-22}}


== External links ==
== Eksterne links ==
* [http://www.imulan.com/felv-fiv-treatment.html Lymphocyte T-Cell Immunomodulator (LTCI)]
* [http://www.imulan.com/felv-fiv-treatment.html Lymphocyte T-Cell Immunomodulator (LTCI)]
* [http://www.lionresearch.org/current_docs/fiv.html FIV in lions]
* [http://www.lionresearch.org/current_docs/fiv.html FIV in lions]
Linje 75: Linje 71:
Kategori:Vira]]
Kategori:Vira]]
Kategori:HIV/AIDS]]
Kategori:HIV/AIDS]]




'''Radiokemi''' er [[kemi]]en i [[radioaktivt]] materiale, hvor de radioaktive [[isotop]]er af elementer bruges til at undersøge de egenskaber og kemiske reaktioner af ikke-radioaktive isotoper (ofte inden radiokemi, mangel af radioaktivitet fører til et stof, der beskrives som værende inaktiv som stabile isotoper). Meget af radiokemibygningen omhandler brugen af radioaktivitet til at studere almindelige [[kemisk reaktion|kemiske reaktion]]er.

Radiokemi omfatter undersøgelse af både naturlige og menneskeskabte radioaktive isotoper.

==Primære henfald==
Alle radioisotoper er ustabile [[isotop]]er af elementer, den gennemgår radioaktive henfald og udsender en form for [[stråling]]. Den udsendte stråling kan være en af tre typer, der kaldes [[alfastråling|alfa-]], [[betastråling|beta-]], eller [[gammastråling]].

1. [[alfastråling|α(alfa)-stråling]] - emissionen af en alfa-partikel (som indeholder 2 protoner og 2 neutroner) fra en [[atomkerne]]. Når dette sker, vil atomets atommasse falde med 4 enheder og [[atomnummer]]et vil falde med 2 enheder.

2. [[betastråling|β(beta)-stråling]] - [[transmutation]] af en [[neutron]] til en [[elektron]] og en [[proton]]. Når dette sker, udsendes elektronen fra kernen i [[orbitalen]]en.

3. [[gammastråling|γ(gamma)-stråling]] - emission af elektromagnetisk energi (såsom [[røntgenstråling|røntgenstråler]]) fra kernen af et atom. Dette sker normalt i løbet af alfa-eller beta radioaktivt henfald.

Disse tre typer af stråling kan karakteriseres ved deres forskel i de gennemtrængende effekter.

Alphastråling kan stoppes ret let ved nogle få centimeter i [[luft]], eller et stykke papir og er ekvivalent til en heliumkerne. Betastråling kan blive afskåret af en aluminiumplade, der blot er et par millimeter tyk og her bremses den elektroner. Gammastråling er den mest gennemtrængende af de tre og er masseløse højenergi-[[foton]]er. Gammastråling kræver en betydelig mængde af tungmetaller som beskyttelse mod [[strålebeskyttelse|stråling]] (som regel [[bly]]- eller [[barium]]-baseret) for at reducere dens intensitet.

==Activation analysis==
By [[neutron]] irradiation of objects it is possible to induce radioactivity; this activation of stable isotopes to create radioisotopes is the basis of [[neutron activation analysis]]. One of the most interesting objects which has been studied in this way is the hair of [[Napoleon]]'s head, which have been examined for their [[arsenic]] content.<ref>H. SMITH, S. FORSHUFVUD & A. WASSÉN, ''Nature'', 1962, '''194'''(26 May), 725-726</ref>

A series of different experimental methods exist, these have been designed to enable the measurement of a range of different elements in different matrices. To reduce the effect of the [[matrix (chemical analysis)|matrix]] it is common to use the chemical extraction of the wanted element ''and/or'' to allow the radioactivity due to the matrix elements to decay before the measurement of the radioactivity. Since the matrix effect can be corrected for by observing the decay spectrum, little or no sample preparation is required for some samples, making neutron activation analysis less susceptible to contamination.

The effects of a series of different cooling times can be seen if a hypothetical sample which contains sodium, uranium and cobalt in a 100:10:1 ratio was subjected to a very short pulse of [[thermal neutron]]s. The initial radioactivity would be dominated by the <sup>24</sup>Na activity ([[half-life]] 15 h) but with increasing time the <sup>239</sup>Np (half-life 2.4 d after formation from parent <sup>239</sup>U with half-life 24 min) and finally the <sup>60</sup>Co activity (5.3 yr) would predominate.

==Biochemical uses==
One biological application is the study of [[DNA]] using radioactive [[phosphorus]]-32. In these experiments stable phosphorus is replaced by the chemical identical radioactive P-32, and the resulting radioactivity is used in analysis of the molecules and their behaviour.

Another example is the work which was done on the methylation of elements such as [[sulfur]], [[selenium]], [[tellurium]] and [[polonium]] by living organisms. It has been shown that [[bacteria]] can convert these elements into volatile compounds,<ref>N. Momoshima, Li-X. Song, S. Osaki and Y. Maeda, "Biologically induced Po emission from fresh water", ''Journal of Environmental Radioactivity'', 2002, '''63''', 187-197</ref> it is thought that [[methylcobalamin]] ([[vitamin]] [[vitamin B12|B12]]) alkylates these elements to create the dimethyls. It has been shown that a combination of [[Cobaloxime]] and inorganic polonium in [[sterile]] water forms a volatile polonium compound, while a control experiment which did not contain the [[cobalt]] compound did not form the volatile polonium compound.<ref>N. Momoshima, Li-X. Song, S. Osaki and Y. Maeda, "Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin", ''Environmental Science and Technology'', 2001, '''35''', 2956-2960</ref> For the [[sulfur]] work the isotope <sup>35</sup>S was used, while for polonium <sup>207</sup>Po was used. In some related work by the addition of <sup>57</sup>Co to the bacterial culture, followed by isolation of the cobalamin from the bacteria (and the measurement of the radioactivity of the isolated cobalamin) it was shown that the bacteria convert available cobalt into methylcobalamin.

==Environmental==
Radiochemistry also includes the study of the behaviour of radioisotopes in the environment; for instance, a forest or grass fire can make radioisotopes become mobile again.<ref>Yoschenko VI ''et al.'' (2006) Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments ''J Envir Radioact'' '''86''':143-63 PMID 16213067</ref> In these experiments, fires were started in the exclusion zone around [[Chernobyl]] and the radioactivity in the air downwind was measured.

It is important to note that a vast number of processes are able to release radioactivity into the environment, for example the action of [[cosmic ray]]s on the air is responsible for the formation of radioisotopes (such as <sup>14</sup>C and <sup>32</sup>P), the decay of <sup>226</sup>Ra forms <sup>222</sup>Rn which is a gas which can diffuse through rocks before entering buildings<ref>Janja Vaupotič and Ivan Kobal, "Effective doses in schools based on nanosize radon progeny aerosols", ''Atmospheric Environment'', 2006, '''40''', 7494-7507</ref><ref>Michael Durand, Building and Environment, "Indoor air pollution caused by geothermal gases", 2006, '''41''', 1607-1610</ref><ref>Paolo Boffetta, "Human cancer from environmental pollutants: The epidemiological evidence", ''Mutation Research/Genetic Toxicology and Environmental Mutagenesis'', 2006, '''608''', 157-162</ref> and dissolve in water and thus enter [[drinking water]]<ref>M. Forte, R. Rusconi, M.T. Cazzaniga and G. Sgorbati, "The measurement of radioactivity in Italian drinking waters", ''Microchemical Journal'', 2007, '''85''', 98-102</ref> in addition human activities such as [[bomb test]]s, accidents,<ref>R. Pöllänen, M.E. Ketterer, S. Lehto, M. Hokkanen, T.K. Ikäheimonen, T. Siiskonen, M. Moring, M.P. Rubio Montero and A. Martín Sánchez, "Multi-technique characterization of a nuclearbomb particle from the Palomares accident", ''Journal of Environmental Radioactivity'', 2006, '''90''', 15-28</ref> and normal releases from industry have resulted in the release of radioactivity.

===Chemical form of the actinides===
The environmental chemistry of some radioactive elements such as plutonium is complicated by the fact that solutions of this element can undergo [[disproportionation]]<ref>Rabideau, S.W., ''Journal of the American Chemical Society'', 1957, '''79''', 6350-6353</ref> and as a result many different oxidation states can coexist at once. Some work has been done on the identification of the oxidation state and coordination number of plutonium and the other actinides under different conditions has been done.[http://www.fas.org/sgp/othergov/doe/lanl/pubs/00818043.pdf] This includes work on both solutions of relatively simple complexes<ref>P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, and T. Reich, "Investigation of Aquo and Chloro Complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray Absorption Fine Structure Spectroscopy ", ''Inorganic Chemistry'', 1997, '''36''', 4676-4683</ref><ref>David L. Clark, Steven D. Conradson, D. Webster Keogh Phillip D. Palmer Brian L. Scott and C. Drew Tait, "Identification of the Limiting Species in the Plutonium(IV) Carbonate System. Solid State and Solution Molecular Structure of the [Pu(CO3)5]6- Ion", ''Inorganic Chemistry'', 1998, '''37''', 2893-2899</ref> and work on [[colloids]]<ref>Jörg Rothe, Clemens Walther, Melissa A. Denecke, and Th. Fanghänel, "XAFS and LIBD Investigation of the Formation and Structure of Colloidal Pu(IV) Hydrolysis Products ", ''Inorganic Chemistry'', 2004, '''43''', 4708-4718</ref> Two of the key matrixes are [[soil]]/[[rocks]] and [[concrete]], in these systems the chemical properties of plutonium have been studied using methods such as [[EXAFS]] and [[XANES]].<ref>M. C. Duff, D. B. Hunter, I. R. Triay, P. M. Bertsch, D. T. Reed, S. R. Sutton, G. Shea-McCarthy, J. Kitten, P. Eng, S. J. Chipera, and D. T. Vaniman, "Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff", ''Environ. Sci. Technol'', 1999, '''33''', 2163-2169</ref>[http://www.wmsym.org/Abstracts/2002/Proceedings/6b/188.pdf][http://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/02spring/synchrotron.html]

===Movement of colloids===
While binding of a metal to the surfaces of the soil particles can prevent its movement through a layer of soil, it is possible for the particles of soil which bear the radioactive metal can migrate as colloidal particles through soil. This has been shown to occur using soil particles labeled with <sup>134</sup>Cs, these have been shown to be able to move through cracks in the soil.<ref>R.D. Whicker and S.A. Ibrahim, "Vertical migration of 134Cs bearing soil particles in arid soils: implications for plutonium redistribution", ''Journal of Environmental Radioactivity'', 2006, '''88''', 171-188.</ref>

=====Normal background=====

Radioactivity is present everywhere (and has been since the formation of the earth). According to the [[International Atomic Energy Agency]], one kilogram of soil typically contains the following amounts of the following three natural radioisotopes 370 Bq <sup>40</sup>K (typical range 100-700 Bq), 25 Bq <sup>226</sup>Ra (typical range 10-50 Bq), 25 Bq <sup>238</sup>U (typical range 10-50 Bq) and 25 Bq <sup>232</sup>Th (typical range 7-50 Bq).<ref>Generic Procedures for Assessment and Response during a Radiological Emergency, International Atomic Energy Agency TECDOC Series number 1162, published in 2000 [http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId=5926]</ref>

===Action of microorganisms===

The action of micro-organisms can fix uranium; [[Thermoanaerobacter]] can use [[chromium]](VI), [[iron]](III), [[cobalt]](III), [[manganese]](IV) and '''uranium(VI)''' as electron acceptors while [[acetate]], [[glucose]], [[hydrogen]], [[lactic acid|lactate]], [[pyruvate]], [[succinate]], and [[xylose]] can act as electron donors for the metabolism of the bacteria. In this way the metals can be reduced to form [[magnetite]] (Fe<sub>3</sub>O<sub>4</sub>), [[siderite]] (FeCO<sub>3</sub>), [[rhodochrosite]] (MnCO<sub>3</sub>), and '''[[uraninite]] (UO<sub>2</sub>)'''.<ref>Yul Roh, Shi V. Liu, Guangshan Li, Heshu Huang, Tommy J. Phelps, and Jizhong Zhou, "Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado", ''Applied and Environmental Microbiology'', 2002, '''68''', 6013-6020.</ref> Other researchers have also worked on the fixing of uranium using bacteria[http://www.physorg.com/news67270244.html][http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.0040282][http://www.pnl.gov/news/release.asp?id=175], Francis R. Livens ''et al.'' (Working at [[Manchester]]) have suggested that the reason why ''Geobacter sulfurreducens'' can reduce UO<sub>2</sub><sup>2+</sup> cations to uranium dioxide is that the bacteria reduce the uranyl cations to UO<sub>2</sub><sup>+</sup> which then undergoes disproportionation to form UO<sub>2</sub><sup>2+</sup> and UO<sub>2</sub>. This reasoning was based (at least in part) on the observation that NpO<sub>2</sub><sup>+</sup> is not converted to an insoluble neptunium oxide by the bacteria.<ref>Joanna C. Renshaw, Laura J. C. Butchins, Francis R. Livens, Iain May, John M. Charnock, and Jonathan R. Lloyd, ''Environ. Sci. Technol.'', 2005, '''39'''(15), 5657-5660.</ref>

== References ==
{{reflist}}

Nuværende version fra 13. sep. 2011, 09:14

FIV
FIV-protease
FIV-protease
Videnskabelig klassifikation
DomæneVira (Virus)
(urangeret)Gruppe VI (ssRNA-RT)
FamilieRetroviridae (Retrovirus)
SlægtLentivirus
Hjælp til læsning af taksobokse

FIV (felin immundefektvirus) er en lentivirus, der påvirker tamme huskatte over hele verden og er den virus, der forårsager katteaids. Ca. 11%[1] af katte på verdensplan, og omkring 2,5% af alle katte i USA[2] er inficeret med FIV. FIV adskiller sig taxonomisk fra to andre katte-retrovira, felin leukæmi-virus (FeLV) og katteskummende virus (FFV), og er mere tæt forbundet med human immundefektvirus (HIV). FIV har fem undertyper (der er identificeret), som baseret på nukleotidsekvens-forskelle, der koder for den virale envelop (ENV) eller polymerase (POL). FIV er den eneste ikke-primatære lentivirus, der forårsager en AIDS-lignende syndrom, men FIV giver ikke altid en dødsdom til katte; de kan leve forholdsvis sundt som bærere og sendere af sygdommen i mange år. Der findes en vaccine, selv om dens effekt er fortsat usikker, og katte vil blive testet positiv for FIV-antistoffer efter vaccination.

FIV blev først opdaget i 1986 i en koloni af katte, der havde en høj forekomst af opportunistiske infektioner og degenerative betingelser, og er siden blevet identificeret som en endemisk sygdom i huskatte, gældende for hele verden[2].

De primære former for FIV-smitte forekommer ved dybe bide-sår og skrammer, hvor kattens infecerede spyt bliver ført ind i en anden kats blodårer. FIV kan også overføres fra gravide hunkatte til deres fostre i livmoderen[3]. Dette adskiller sig fra FeLV, der kan spredes via mere afslappet ikke-aggressiv kontakt, da virus er også til stede ved slimhindeinfektioner som dem i munden, endetarmen og skeden. Tilfældig kontakt kan derfor ikke udelukkes som en potentiel transmission.

Når dyrlæger vil kontrollere en kats historie og stamtræ for at se om sygdommen blev overført arveligt, og eventuelt administrere en blodprøve for FIV-antistoffer. FIV rammer 2-3% af alle katte i USA og derfor er testning let tilgængelig. Det skal bemærkes, at denne test identificerer de katte som er påført FIV-antistof, og detekterer ikke selve virussen. Derfor finder en positiv test nødvendigvis ikke at katten er bærer af FIV.

Falske positiver opstår når katten bærer FIV-antistof (som er uskadeligt), men ikke selve virus. Den hyppigste forekomst af dette er når killingerne er testet efter indtagelse af antistoffer fra modermælken, og test af katte der tidligere er blevet vaccineret for FIV. Af denne grund er hverken killinger under 8 uger eller katte, der tidligere er blevet vaccineret, testes.

Killinger og unge katte der testes positive for FIV-antistof, kan med en test, hvor forekomst af et negativt resultat på et senere tidspunkt på grund af seroreversion, forudsat at de aldrig er blevet smittet med FIV og aldrig er blevet vaccineret med FIV-vaccinen.

Katte der er blevet vaccineret vil testes positiv for FIV-antistof for resten af deres liv på grund af serokonversionen, selv om de ikke er smittet. Derfor er tests af adopterede katte er noget usikre, da det er umuligt at vide hvorvidt de er blevet vaccineret i fortiden. Af disse grunde bør en positiv FIV-antistoftest i sig selv aldrig bruges som kriterier for aktiv dødshjælp.[kilde mangler]

Test kan gennemføres i en dyrlæges rum med resultater på få minutter, der giver mulighed for hurtig konsultation. Tidlig opdagelse hjælper med at bevare kattens sundhed og forhindrer spredning af smitte til andre katte. Med ordentlig pleje kan smittede katte lever langt og sundt liv.

A vaccine for FIV is available (ATCvet code: Skabelon:ATCvet), and was developed using isolates of two of the five FIV subtypes (or clades): A and D.[4] The vaccine was shown to be moderately protective (82% of cats were protected) against subtype A FIV,[5] but a later study showed it to offer no protection against subtype A.[6] It has shown 100% effectiveness against two different subtype B FIV strains.[7][8] Vaccination will cause cats to have positive results on FIV tests, making diagnosis more difficult. For these reasons the vaccine is considered "non-core", and the decision to vaccinate should be made after discussion with a veterinarian and consideration of the risks vs. the effectiveness.[9]

Godkendt behandling

[redigér | rediger kildetekst]

In 2006, the United States Department of Agriculture issued a conditional license for a new treatment aid termed Lymphocyte T-Cell Immune Modulator.[10] Lymphocyte T-Cell Immune Modulator is manufactured by T-Cyte Therapeutics, Inc., exclusively licensed by IMULAN BioTherapeutics, LLC and distributed in the United States by ProLabs Animal Health (www.prolabsanimalhealth.com). However, thus far, only one trial has been published in a reputable veterinary journal, and that trial consisted of only about half a dozen cats. At this time, rigorous clinical trials have yet to be conducted and published. The cost of obtaining the treatment aid is very high and its efficacy is often disappointing in individual cases.

Lymphocyte T-Cell Immune Modulator is intended as an aid in the treatment of cats infected with feline leukemia virus (FeLV) and/or feline immunodeficiency virus (FIV), and the associated symptoms of lymphocytopenia, opportunistic infection, anemia, granulocytopenia, or thrombocytopenia. The absence of any observed adverse events in several animal species, suggests that the product has a very low toxicity profile.

Lymphocyte T-Cell Immune Modulator is a potent regulator of CD-4 lymphocyte production and function.[11] It has been shown to increase lymphocyte numbers and Interleukin 2 production in animals.[12]

Lymphocyte T-Cell Immune Modulator is a single chain polypeptide. It is a strongly cationic glycoprotein, and is purified with cation exchange resin. Purification of protein from bovine-derived stromal cell supernatants produces a substantially homogeneous factor, free of extraneous materials. The bovine protein is homologous with other mammalian species and is a homogeneous 50 kDa glycoprotein with an isoelectric point of 6.5. The protein is prepared in a lyophilized 1 microgram dose. Reconstitution in sterile diluent produces a solution for subcutaneous injection.[13]

FIV can attack the immune system of cats, much like the human immunodeficiency virus (HIV) can attack the immune system of human beings. FIV infects many cell types in its host, including CD4+ and CD8+ T lymphocytes, B lymphocytes, and macrophages. FIV can be tolerated well by cats, but can eventually lead to debilitation of the immune system in its feline hosts by the infection and exhaustion of T-helper (CD4+) cells.

FIV and HIV are both lentiviruses; however, neither can infect the other's usual host: humans cannot be infected by FIV nor can cats be infected by HIV. FIV is transmitted primarily through saliva (bites), such as those incurred during territorial battles between males. Cats housed exclusively indoors are much less likely to be infected, provided they do not come in contact with infected cats.

Consensus whether there is a need to euthanize FIV infected cats has not been established. The American Associations of Feline Practitioners, as well as many feral cat organizations, recommend against euthanizing FIV+ cats, or even spending funds to test for the virus, as spaying or neutering cats seems to effectively control transmission - as neutered cats are less likely to engage in territorial fights. A vigilant pet owner who treats secondary infections can assist an infected cat to live a reasonably long life. The chance that an FIV infected cat will pass the disease on to other cats within a household remains, and increases with serious fighting or biting (American Association of Feline Practitioners 2002). There is a quantifiable risk that cats living outside of a home can spread the disease to others and can also spread the disease in a group setting in a shelter. Cats living alone as a single pet, rarely left to roam free, pose a diminished, but not non-existent risk.

The disease occurs in three stages: First is the Acute Stage (1–2 months after transmission) in which fever, depression, and generalized lymphadenopathy are observed (Wise 2005). Second is the Subclinical Stage (4 weeks to X months after transmission), in which symptoms of the disease decrease or disappear; however, all cats remain viremic for life. Third is the Chronic Stage, in which cats eventually succumb to chronic infections due to suppressed immune system function. Cats may incur stomatitis, odontoclasia, periodontitis, gingivitis, rhinitis, conjunctivitis, pneumonitis, enteritis, and dermatitis in the later stages of infection. FIV+ cats are less likely to develop AIDS-like symptoms than HIV+ humans.

FIV infects other feline species, and in fact is endemic in some large wild cats, such as African lions. Unlike domestic cats, these species do not necessarily exhibit symptoms, perhaps because they have developed evolutionary mutations that confer resistance.

  1. ^ Richards, J (2005). "Felin immundefektvirus-vaccine: Implikationer for diagnosticering og sygdomsbehandling". Biologicals. 33: 215. doi:10.1016/j.biologicals.2005.08.004.
  2. ^ a b Zislin, A (2005). "Felin immundefektvirus-vaccine: En rationel paradigme for kliniske beslutningsprocesser". Biologicals. 33: 219. doi:10.1016/j.biologicals.2005.08.012.
  3. ^ Amerikanske Forbindelser mellem Felin-Praktikere (2002). "Felin Immundefektirus". Cornell Felin Helbreds-Center. Cornell-Universitetet, Universitetet for Veterinærmedicin. Hentet 2008-11-12.
  4. ^ Levy, J (2008), "2008 American Association of Feline Practitioners' feline retrovirus management guidelines", Journal of Feline Medicine & Surgery, 10: 300, doi:10.1016/j.jfms.2008.03.002
  5. ^ Huang, C.; Conlee, D.; Loop, J.; Champ, D.; Gill, M.; Chu, H.J. (2004), "Efficacy and safety of a feline immunodeficiency virus vaccine", Animal Health Research Reviews, 5: 295-300, doi:10.1079/AHR200487
  6. ^ Dunham, S.P.; Bruce, J.; Mackay, S.; Golder, M.; Jarrett, O.; Neil, J.C. (2006), "Limited efficacy of an inactivated feline immunodeficiency virus vaccine.", Veterinary Record, 158: 561-562
  7. ^ Kusuhara, H.; Hohdatsu, T.; Okumura, M.; Sato, K.; Suzuki, Y.; Motokawa, K.; Gemma, T.; Watanabe, R.; Huang, C.; Arai, S.; Koyama, H. (2005), "Dual-subtype vaccine (Fel-O-Vax FIV) protects cats against contact challenge with heterologous subtype B FIV infected cats.", Veterinary Microbiology, 108: 155-165, doi:10.1016/j.vetmic.2005.02.014
  8. ^ Pu, R.; Coleman, J.; Coisman, J.; Sato, E.; Tanabe, T.; Arai, M.; Yamamoto, JK. (2005), "Dual-subtype FIV vaccine (Fel-O-Vax FIV) protection against a heterologous subtype B FIV isolate.", Journal of Feline Medicine and Surgery, 7: 65-70, doi:10.1016/j.jfms.2004.08.005
  9. ^ Levy, J (2008), "2008 American Association of Feline Practitioners' feline retrovirus management guidelines", Journal of Feline Medicine & Surgery, 10: 300-316, doi:10.1016/j.jfms.2008.03.002
  10. ^ United States Department of Agriculture. Veterinary Biological Products; Licensees and Permittees, December 2006.
  11. ^ Beardsley, et al. "Induction of T-Cell Maturation by a Cloned Line of Thymic Epithelium (TEPI) Immunology 80: pp. 6005-6009, (Oct. 1983).
  12. ^ Skabelon:Ref patent
  13. ^ Skabelon:Ref patent
[redigér | rediger kildetekst]

Kategori:Vira]] Kategori:HIV/AIDS]]