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LECTURE 8
Image Segmentation

I stand at the window and see a house, trees, sky. Theoretically
I might say there were 327 brightnesses and nuances of colour.
Do I have “327”? No. I have sky, house, and trees. It is
impossible to achieve “327” as such. And yet even though
such droll calculation were possible and implied, say, for the
house 120, the trees 90, the sky 117 – I should at least have
this arrangement and division of the total, and not, say, 127
and 100 and 100; or 150 and 177.

Max Wertheimer (1923)

8.1. Grouping

Grouping is still an open question in computer vision. It has been studied
for some time, and early insight into grouping in the HVS was offered by the
psychologists of the Gestalt movement at the beginning of the 20th century.
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Figure 1. Gestalt’s grouping factors.

This philosophical movement has put forward several grouping factors
that describe how the human visual stimulus works, illustrated in Figure ??.
Most of the research activity in grouping today in the area of image segmen-
tation is focused on the problem of operationalizing the so-called Gestalt
factors of grouping:

• Proximity
• Similarity
• Common Fate
• Common Region
• Parallelism
• Symmetry
• Continuity
• Closure

The Gestalt school is known for the saying that “the whole is different
than the sum of the parts.” They used the term gestalt qualität to describe
the set of internal relationships that makes the scene a whole. While the
Gestalt school failed to provide any implementation details, they did make
the point that we should exploit ecologically valid visual effects when at-
tempting to organize a scene. Their ideas were left for several decades until
implementations became possible on machines.

Remark. The anti-segmentation people say that people cannot come up
with the same segmentation, e.g . BSE (Fowlkes et al., CVPR’03). In general,
it is difficult to study segmentation in isolation, but having a database of
human segmented images helps a lot. As Yair Weiss noted: “It is true that
people cannot agree on what is a good segmentation, but people agree on
what is a bad segmentation” (Figure ??).
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Figure 2. Several human segmentations of the same image (from Martin
et al., ICCV ’01).

8.2. Normalized-Cut

8.2.1. Introduction

Normalized-Cut (Shi & Malik, CVPR’97) is one means of operationalizing
a Gestalt-inspired framework for image segmentation. We will focus on the
“engine” and not as much on the cues; cue integration is difficult and as of
yet unsolved.

Definition 8.1. In Normalized-Cut, the image is represented as a graph
G = (V,E) where the nodes are the pixels and the edge weights represent
the “affinities” between pixels. Affinities (wij) are high (≈ 1) for very similar
pixels, low (≈ 0) for very dissimilar pixels (Figure ??); the similarity is based
on proximity and color.

Figure 3. Illustration of the graph interpretation of an image. The
thicker the edges, the greater the affinity between pixels (from Shi &
Malik, CVPR’97).

8.2.2. Going from local to global

We store the affinities wij ∈ [0, 1] in a matrix W – for example, wij =

e−(dij/.5)2 . This is the “local”; how do we find the “global”? One way is to
recast the problem in terms of a random walk on the graph.
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To make this work, we need to convert the affinities into probabilities,
so that the total probability of hopping from one pixel to all the pixels it is
connected to is equal to one. In order to achieve this, we divide each row
of W by its sum, which forms a row-stochastic or “Markov” matrix, with
nonnegative entries and rows summing to 1:

• Define the diagonal matrix D: Dii =
∑

j Wij

• Form the row-stochastic matrix P = D−1W (0 ≤ Pij ≤ 1 and∑
j Pij = 1).

P represents the state transition matrix of a finite Markov chain. We will
restrict our attention to “reversible” Markov chains, which is a kind of sym-
metry property on P , and we’ll say more about them shortly.

8.2.3. Markov chains

To understand the “global” effects of the local grouping factors, we need to
understand the long range or “steady-state” behavior of this Markov chain.
Thus, we need to review some of the properties of Markov chains. The
Markov property says that the next state of a system only depends on the
present state and not the past history. Therefore, we need to know the state
now, but not how it got there.

Let us consider the 2-state Markov chain in Figure ??, where:

(8.2) P =

[
1− p p
q 1− q

]
.

1 2

p

q

1-q1-p

Figure 4. Simple Markov Chain

For example, state 1 means the phone is free, and state 2 means the phone
is busy.

Suppose we have an initial probability distribution given by the row vec-
tor φ0 =

[
1 0

]
. Then to find the probability of finding it in each state at

the next timestep, we “clock” the Markov chain once by computing φ0P ,
which is of course:

φ1 = φ0P =
[
1− p p

]
.
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What about n timesteps later? Because of the Markov property, we can
write:

φn = φn−1P = φ0P · · ·P = φ0P
n.

For example, assume the phone is free at time 0; we find the probability the
phone is busy at time n = 6, where p = 1

4
, q = 1

6
:

P 6 =

[
3/4 1/4
1/6 5/6

]6

=

[
0.424 0.576
0.384 0.616

]
and φ0 =

[
1 0

]
then:

φ0P
6 =

[
0.424 0.576

]
,

where 0.576 is the probability the phone is busy at time 6.
To study the long term behavior, we consider the case where n→∞; for

large n, P n stabilizes at:

P n =

[
0.4 0.6
0.4 0.6

]
.

The invariant probability distribution is: π =
[
0.4 0.6

]
. If ν is any proba-

bility vector, we have:

(8.3) lim
n→∞

νP n = π.

No matter what the initial state is, we end up π. In particular, it is straight-
forward to show π = πP , which means that π is a left eigenvector of P with
eigenvalue 1:

if π = lim
n→∞

νP n then

π = lim
n→∞

νP n+1 = ( lim
n→∞

νP n)P = πP

It is also easy to check that the vector of all ones 1 =
[
1 1

]
is a right

eigenvector of P , with eigenvalues 1: P1> = 1>. This just restates that all
the rows of P sum to one.

One can prove that if P is a row stochastic matrix with Pij > 0, then the
Perron-Frobenius theorem says:

• 1 is a simple eigenvalue for P
• left eigenvectors can be chosen to have all positive entries (and hence

can be made into a probability vector by multiplying by an appro-
priate constant)
• all other eigenvalues are < 1.

Finally, reversibility means that πiPij = πjPji. These “detailed balance
equations” mean that we can run the system forwards or backwards in time,
because in equilibrium the behavior is the same.
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8.2.4. Power method

Consider the 2×2 example from before: we can diagonalize P as P = QΛQ−1

where

Q =

[
1 −p
1 q

]
,Λ =

[
1 0
0 1− p− q

]
, Q−1 =

1

p+ q

[
q p
−1 1

]
then

P n =
(
QΛQ−1

)n
= QΛnQ−1

= Q

[
1 0
0 (1− p− q)n

]
Q−1 ' Q

[
1 0
0 0

]
Q−1 =

1

p+ q

[
q p
q p

]
=

[
π
π

]
.

In numerical linear algebra, this is known as the power method for finding
eigenvectors and eigenvalues – note that when an eigenvalue is repeated, it
doesn’t work. We will assume the eigenvalue 1 is simple; if it’s not, it means
the graph contains two or more (trivially) disconnected components, each of
which has the desired behavior with the simple eigenvalue of 1.

8.2.5. Segmentation

To connect this to the problem of segmentation, we need to consider the
rate of convergence of the chain to its stationary distribution, known as the
“time to equilibrium” or “mixing time.” This rate of convergence is governed
by the “gap” between the 1st and 2nd eigenvalues, since the larger the 2nd
eigenvalue, the longer it takes for λn

2 to get driven to zero. In the case of
image segmentation, we are interested in the slowly mixing case, i.e. where
λ2 is close to λ1, which means that there are sets of pixels that are hard to
“leave.”

We’d like to find these groups of pixels and segment them out. How do
we do this? Shi & Malik (CVPR’97) proposed, in the two group case, to use
the 2nd right eigenvector of P after thresholding it. (In the k-group case, one
can either do this recursively or use multiple eigenvectors; we will revisit this
situation later.) Recall that segmentation demands a hard decision; the 2nd
eigenvector, which is necessarily orthogonal to 1, in general has a continuum
of values, not just two. However, they observed that when clear partitions of
the data are present, this second eigenvector is very nearly piecewise constant
within each group. The nature of this approximation is studied in detail in
spectral graph theory (cf . work by Fan Chung Graham).

For now, we will look at its empirical behavior. For the general case, how
do we pick out the threshold? Shi & Malik (as well as Meila & Shi, 2001)
address this problem by choosing the threshold version of ν2 yielding the
minimum “normalized cut” given a putative partition V = A∪B, A∩B = φ,
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Figure 5. A result of normalized cut. (a) The original image (b) Up-
dated values of the pixels taking affinities into account (c) The thresh-
olded result.

NCut(A,B) = PAB + PBA, i.e. the probability of transitioning between A
and B in one step (either A → B or B → A), where PAB = Pr[A → B|A],
is given by:

PAB =

∑
i∈A,j∈B πiPij∑

i∈A πi

=

∑
i∈A,j∈B Wij

vol(A)
=

cut(A)

vol(A)
(8.4)

⇒ NCut(A,B) = cut(A,B)

(
1

vol(A)
+

1

vol(B)

)
.(8.5)

(Note vol(A) is also given by vol(A) =
∑

i∈A,j∈V Wij.)

Shi & Malik (with Papadimitriou) proved that exactly minimizing NCut(A,B)
over all choices of A and B is NP-complete, but they proposed using ν2 as
a starting point, then scanning over thresholds and picking the one with the
lowest exact NCut value.

8.2.6. Spring-mass interpretation

Normalized-Cut can be studied from a different point of view by means of
an analogy to a spring-mass system, which can offer some insight in cases
of more than two groups. In the spring-mass setup, pixels are equivalent to
point masses and affinities are represented by spring stiffnesses. To go from
local to global, we pick up the resulting system and shake it, and the pixels
in the different groups should “shake together.”

8.2.7. k-group case

What are some ways of thresholding the eigenvectors to find the segments
when there are more than two groups? As mentioned previously, recursive
splitting based on the second eigenvector is one possibility. Another one is
to take the first k eigenvectors and do clustering on them. Selecting k is not
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easy to do in general, but sometimes we can look for the gap. We can also
do weighting on the eigenvectors; one option is “equipartition weighting,”
which says to weight the kth mode by 1

wk
, but other alternatives have been

proposed. Given these vectors, one can feed them to a standard clustering
algorithm, e.g . k-means.

This reveals the “big secret” about eigenvector-based segmentation meth-
ods: they’re not segmenting anything! You put in one segmentation problem
and get out another. The benefit, of course, is that generally speaking, the
second segmentation problem is easier. Thus, if you can get away with sim-
ple “central” clustering methods, go no further. In general, though, the
eigenvectors obtained from NCut will yield a simpler clustering problem.


