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LECTURE 2
Image Representation and Distance

Measurement

2.1. Images as Vectors

Representing images as vectors allows one to perform various mathematical
operations on the image data. In its simplest form, transforming an image
into a vector may be performed by simply stacking all the columns on the
matrix I (original image). This is illustrated in Figure 1: a 28×28 grayscale
image, in this case an MNIST digit 1 represented as a 2-D pixel array I(x, y),
is concatenated into a column vector x ∈ Rd, where d = 784. In this vector
form, we can do all the things one usually does with vectors, such as averaging
(mean), calculating the covariance matrix, clustering, manifold analysis, and
so on. This technique of transforming a full image can be seen in applications
such as the eigenfaces used in face recognition.
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Figure 1. Transformation from an image (left) to a column vector (right).
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Figure 2. (a) Original image. (b) Slightly translated image with respect
to (a). (c) Difference in vectors x1 and x2 corresponding to images in
(a) and (b), depicted in a d-dimensional space (where d is the length of
x1 and x2) with both vectors starting at the origin.

Much like how an entire image can be transformed into a vector, im-
age regions or patches can similarly be transformed into vectors. A third
representation involves vectors of filter responses. 2

Although vectorial representations of images are crucial to image pro-
cessing and computer vision, there are some drawbacks, namely that the
spatial organization of the image disappears in the vector format. As an ex-
ample, consider an image in Figure 2(a). Translating the letter “A” by one
pixel in (x, y) space to Figure 2(b) results in unintuitive leaps in Rd, shown
in Figure 2(c). This issue provides motivation for using filter responses or
extracting patches around interest points; we will be covering these topics in
later lectures.

2It is worth noting that the transformation of images into vectors in image processing and
computer vision is different than “vectorization” in computer graphics. “Vectorization”
refers to parametric modeling of curves in the image for loss-less zooming and object
manipulations.
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Effects of 2-D transformations in Rd are humbling enough; it is even
heavier to consider that the 2-D images are projections of 3-D objects –
consider out-of-plane rotations, for example. Nevertheless, the image-as-
vector representation is widely used and very powerful in many applications.
We follow by reviewing some relevant properties from vector spaces.

2.2. Vector Norms and Measurements of Distance

Norms do for a vector space what the absolute value does for the one-dimen-
sional number line: they provide a measure of distance: Rn+ ‘a norm’ =
metric space (e.g . 3-D Euclidean space).

Definition 2.1. The vector norm is a function f : Rn → R satisfying:

• f(x) ≥ 0,∀x ∈ Rn

• f(x) = 0⇔ x = 0
• f(x + y) ≤ f(x) + f(y),∀(x,y) ∈ Rn

• f(αx) = |α|f(x), ∀(α,x) ∈ R× Rn

and we notate the norm as: f(x) = ‖x‖.

2.2.1. The Lp-norm, for p = {1, 2,∞}

A widely used class of norms is the p-norm or Lp-norm:

(2.2) ‖x‖p = (|x1|+ · · ·+ |xn|)1/p, p ≥ 1

Most commonly, we see p = {1, 2,∞}:
• ‖x‖1 = |x1|+ · · ·+ |xn|, the L1 or the Manhattan norm.

• ‖x‖2 =
√
|x1|2 + · · ·+ |xn|2, the L2 or Euclidean norm.

• ‖x‖∞ = max1≤i≤n |xi|, the L∞-norm.

Note that the unit vector for any norm ‖·‖ satisfies ‖x‖ = 1. For intu-
ition, we can visualize what the unit circle looks like for the above norms,
as shown in Figure 3.

Lp-norms are defined for p ≥ 1. However, there is a notion of 0-norm, yet
it is not a norm in the strict sense, but simply a count of non-zero entries in
the vector.

2.2.2. Norm Properties and Relationships

The Cauchy-Schwartz inequality is probably familiar:

(2.3) |x>y| ≤ ‖x‖2‖y‖2
(This is a special case of the Hölder inequality: |x>y| ≤ ‖x‖p‖y‖p for 1

p
+ 1
q

=

1.) Recall for intuition that in R2 we have

(2.4) |x>y| = ‖x‖‖y‖ · cos(θ) ≤ ‖x‖‖y‖.
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Figure 3. Unit “circle” representation for L1, L2, and L∞ norms.

We also formalize the concept of norm equivalence.

Definition 2.5. If we can find positive constants c1 and c2 such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α, ∀‖x‖2 ∈ Rn,

we say the norms ‖·‖α and ‖·‖β are equivalent.

Example 1. Here are a few equivalences between norms:

• ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

• ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

• ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
Hence, L1, L2, and L∞ norms are equivalent. Formally, equivalence does not
mean that these norms are the same; this is evident from Figure 3.

2.2.3. Definitions of Errors

Here we’ll define the error measurement using the L2-norm and the distance
between vectors. We define

(2.6) εabs = ‖x− y‖22 = (x− y)>(x− y) = ‖x‖22 + ‖y‖22 − 2x>y

where εabs is the absolute error, also called the sum of squared errors (SSE)
in image processing, or the sum of squared distances (SSD):

(2.7) e = x− y, ‖e‖22 = e>e =
n∑
i=1

e2i =
∑
i

(xi − yi)2.

Recall that x and y could be entire images or patches. A historically
relevant approach to recognition is to compare images, or patches, to a pre-
defined template, or in particular measuring the distance between the two.
An important case of error evaluation is cross correlation, where x is a
“template” and y is an image patch (extracted by sliding a window over an
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image). Consider the template and an image in Figure 4. By sliding a win-
dow across this image, we want to measure the error between the template
and the given patch. Cross correlation between these vectorized patches is
the cross term of ‖x‖22 + ‖y‖22 − 2x>y, which is just as informative as the
SSD if ‖y‖2 is approximately constant (clearly ‖x‖2 is always constant).

In practice, cross correlation has some shortcomings. For example, con-
sider the effects of brightness and contrast variations of the image. Let
images I1 and I2 be related as follows in a simple linear case of a bright-
ness transform: I2(x, y) = αI1(x, y) + β, where α and β are contrast scale
factor and brightness offset respectively. Perceptually, α and β do not have
a dramatic effect on human recognition ability, but computationally, cross
correlation completely misinterprets these variations.

To avoid such behavior of cross correlation, normalized cross correlation
(NCC) has been adopted. Let

(2.8) x̄ =
1

n

n∑
i=1

xi,

and define x̃ = x− x̄1 and ỹ = y − ȳ1, where 1 is a column vector of ones.
Then,

(2.9) NCC(x,y) =
x̃>ỹ

‖x̃‖2‖ỹ‖2
;

by subtracting out the mean we address the brightness offset and by dividing
by the product of the norms we address contrast differences.3 Note that
NCC is not a norm, it is a function of two vectors: it uses a norm in the
denominator. NCC, as humble and simple as it is, is widely used (the Matlab
implementation normxcorr2.m is very fast; it uses FFTs and the integral
image trick).

color
based
image
retrieval

e

Figure 4. Example template (left) and test image (right).

3It is important to note that NCC is undefined in constant regions of the image, as the
denominator goes to zero. In later lectures we will address this problem by only considering
non-constant regions using interest point detectors.
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2.3. Applications

Measuring distances between vectors is commonly used in many areas of
computer vision. In this class we will pay close attention to two of them:
distance based classification and clustering. Classification and clustering,
instances of supervised and unsupervised learning, respectively, rely on com-
puting distances between vectors, whether it be all pairs of vectors (cluster-
ing) or finding the smallest distance between a query vector and a vector in
the training set (classification).

2.3.1. Classification

Minimum-distance based classification is both simple and effective; however,
this brute force approach can be expensive and memory intensive. One
example of this type of classification is k-nearest neighbor (k-NN), a form of
instance-based learning, also called “lazy learning” (versus “eager learning,”
which attempts to do some kind of generalization in the training stage, or
before testing data is even considered).

Choosing an appropriate k is a case of model-order selection, and one
possible heuristic for this task is cross validation, which involves partitioning
the data into subsets for training and testing, and repeating the validation
multiple times for different partitions.

Classification is an instance – probably one of the simplest – of super-
vised learning; we can also use distances between vectors in an unsupervised
fashion, for example, using a clustering algorithm.

2.3.2. Clustering

Clustering involves partitioning a dataset (a collection of vectors, in this case)
into subsets or clusters so that the data in each subset share a common trait,
e.g. proximity. A sizeable area of research in machine learning, clustering
was recently re-energized by the emergence of kernel-based methods in the
mid-1990s.

Qualitatively, in this course, we will encounter two motivations for clus-
tering:

(1) data-compression-style (for instance, vector quantization), where we do
not impute deep meaning to the resulting clusters; and

(2) prototype-seeking, where we aspire to discover intuitively meaningful
structures.

In (1), the data could be spread uniformly and we would still get a benefit, as
when computing a compact palette for a color image. For (2), we presuppose
that the data exhibits a “clumpy” structure (kernels generalize the notion of
clumpiness, but that’s for another time).
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Examples of clustering algorithms include k-means (Lloyd-Max, 1982),
which is implemented as kmeans.m in Matlab; and mean-shift (Fukunaga
and Hostetler, 1975). Both of these are iterative and need a magic parameter
(either k or kernel width). For k-means, we start by picking k centroids and
they migrate; in the other case (mean-shift), every point starts as a cluster
center, and they all migrate to the modes, hopefully coalescing.


