Environments



Announcements



Print and None Review



Fall 2022 CS 61A Midterm 1, Question 1

What does the long expression print?

s = "Knock"

print(print(print(s, s) or print("Who's There?")), "Who?") Knock Knock

! t None None Who's There?
\\ e NOﬂe<<:This None is passed to print! :) None
RN _ — . None Who?
T L None<<:Thls None 1s passed to print! :)
None
False values in Python: False, 0, '', None (more to come)

To evaluate the expression <left> or <right>:
1. Evaluate the subexpression <left>.
2. If the result is a true value v, then the expression evaluates to v.
3. Otherwise, the expression evaluates to the value of the subexpression <right>.



Iteration Review



Spring 2023 Midterm 1, Question 3(a)

Definition: A positive integer n 1S a repeating sequence of positive integer m if n 1is written by

repeating the digits of m one or more times. For example, 616161 is a repeating sequence of
61, but 61616 is not.

Hint: pow(10, 3) is 1000, and 654321 % pow(10, 3) is 321 (the last 3 digits).

Implement repeating which takes positive integers t and n. It returns whether n 1is a
repeating sequence of some t-digit integer.

: 616161
def repeating(t, n):
"HUHReturn whether t digits repeat to form positive integer n. 6161
>>> repeating(1l, 616161)
False 61
>>> repeating(2, 616161) # repeats 61 (2 digits)
True 0

An iterative appraoch: Repeatedly remove t digits from the end, and make sure that the last t
digits never change.

Code structure: A while loop that checks the last t digits and returns False 1f they change.

See "Lecture Example: Repeating" on Pensieve



Repeating (Spring 2023 Midterm 1 Q3a)

def repeating(t, n):

"""Return whether t digits repeat to form positive integer n.

>>> repeating(1,
False

>>> repeating(2,
True

>>> repeating(3,
False

>>> repeating(4,
True

>>> repeating(5,
False

if pow(10, t-1) > n:

return False
rest = n
while rest:

if rest % pow(10, t) !=

return False

6161)

6161)

6161)

rest = rest // pow(10, t)

6161)

# repeats 61 (2 digits)

6161)

# repeats 6161 (4 digits)

# there are only 4 digits

# make sure n has at least t digits

Go through
digits,
looking for
something

n % pow(10, t) <

return True

See "Lecture Example: Repeating" on Pensieve

The iterative process
to implement "whether"
functions 1is often to
look for something that
determines the
function's output, and
return when it's found.



Environments for Higher-Order Functions

Student advice from the Fall 2024 final survey:

"ENVIRONMENT DIAGRAMS ARE EXTREMELY IMPORTANT! Taking this class with no prior Python
experience and minimal overall programming experience, taking time to understand environment
diagrams helped me fully understand step-by-step how my code is interpreted, and any areas

where my code may be going wrong. This made coding more intuitive for me, as it helped me gain
a understanding of the connections being made between my code and carried out functions."



Names can be Bound to Functional Arguments

Global frame./////,——%>func apply_twice(f, x) [parent=Global]
apply_twice

def apply twice(f, x):
return f(f(x))

def square(x):
return x * x

=¥ 7 result = apply twice(square, 2)
def apply_ twice(f, x):
- return f(f(x))
def SQUare(x):.' """"""""
return x * x .

result = apply_twice(square, 2)

: apply_twice [parent=Global]

'///f———%>func
square

Global frame

apply_twice

square

square(x) [parent=Global]

Applying a user-defined function:
®* Create a new frame

® Bind formal parameters
(f & x) to arguments

* Execute the body:
return f(f(x))

func apply_twice(f, x) [parent=Global]

func square(x) [parent=Global]

pythontutor.com/composingprograms.html#code=def%20apply_twice%s28f,%20x%29%3A%0A%20%20%20%20 return%207%281%28x%29%29%0A%20%20%20%20%0Ade f%20square%s28x%29%3A%0A%20%20%20%20 re turn%s20x%s20+%20x%0A%20%20%20%20%0Ares u1t%20%3D%20apply_twice%28square,%202%29&mode=display&origin=composingprograms. js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0



Environment Diagrams for Nested Def Statements

[Nested def j

_______

‘def“make_adder(n):

Global frame func make_adder(n) [parent=Global]

make _adder -~ = meeeeeeeeeeeeeeeen
add_three |« 7 | Seeeeeeeeeegeeeeeees

-------

return K + n

m— : . _
return adder : ) fl: make adder [parent=G]
‘.'. ...... ", NNt iussasssssssssssmmsnn n 3

adder

add _three = make_adder(3) Retumn

value

add _three(4)

® Every user—-defined function has
a parent frame (often global)

® The parent of a function is the
frame in which it was defined

® Every local frame has a parent
frame (often global)

® The parent of a frame 1is the
parent of the function called

http://pythontutor.com/composingprograms.html#code=def%20make_adde r%28n%29%3A%0A%20%20%20%20de f%20adde res28k%29%3A%0A%20%20%20%20%20%20%20%20 re turnss20k%s20%2B%20n%0A%20%20%20%20 return%20adde ris0A%20%20%20%20%0Athree_more_than%20%3D%20make_adder%s283%29%0Aresult%20%3D%20three_more_than%284%29&cumulative=false&curInstr=0&mode=display&origin=composingprograms. js&py=3&rawInputLstJISON=%5B%5D



How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent 1is the current frame.

fl: make_adder func adder (k) [parent=f1]
Bind <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.
JKJZ.Copy the parent of the function to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments 1in the local frame.

4., Execute the body of the function in the environment that starts with the local frame.



Lambda Expressions

(Demo)

https://pythontutor.com/cp/composingprograms.html#code=def%20apply_twice%28f,%20x%29%3A%0A%20%20%20%20 return%s201%28 f%28x%29%29%0A%20%20%20%20%0Ax%20%3D%203%0Aresu1t%20%3D%20app ly_twice%28lambda%20y%s3A%20x%20%%20y ,%202%29&cumulative=t rue&curInstr=0&mode=display&origin=composingprograms. j s&py=3&rawInputLstISON=%5B%5D

https://pythontutor.com/cp/composingprograms.html#code=bears20%3D%20-1%0A05ski%20%3D%20 lambda%20print%3A%20print%28bears29%0Abears20%3D%20-2%0Aprint%280ski%28abs%29%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms. js&py=3&rawInputlLstJSON=%5B%5D



