
Control

Announcements

Environment Diagrams

Calling User-Defined Functions

Procedure for calling/applying user-defined func5ons (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal
parameter

bound
 to argument Return value

(not a binding!)

Built-in function

User-defined
function

5
http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Parent:Global

Frames & Environments

Frame: Holds name-value bindings; looks like a box; no repeated names allowed!

Global frame: The frame with built-in names (min, pow, etc.)

Environment: A sequence of frames that always ends with the global frame

Lookup: Find the value for a name by looking in each frame of an environment

A name (which is a type of expression) such as x is evaluated by looking it up

6

A Sequence of Frames

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the
current environment in which that name is found.

7

...

f1

...

f2

...

Global Frame

ea
rl

ie
r

la
te

r

The global frame is
always the last place

you look

Even though all three frames are in the same diagram,
they might not be in the same environment

Frames & Environments

Why organize informa/on this way?

• Local context before global context

• Calling or returning changes the local context

• Assignment within a function's local frame doesn't affect other frames

8

Multiple Assignment

Multiple Assignment

Execu5on rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

10

Just executed

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Print and None

(Demo)

Control

Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may
not be evaluated.

14

if x > 2:
 print('big')
if x > 0:
 print('positive')

if x > 2:
 print('big')
elif x > 0:
 print(‘less big’)

if x > 2:
 print('big')
elif x > 0:
 print(‘less big')
else:
 print(‘not pos')

Two separate (unrelated)
conditional statements

One statement with two
clauses: if and elif
Only one body can ever
be executed

One statement with three
clauses: if, elif, else
Only one body can ever
be executed

x=10 x=1 x=-1

big
positive

big

big

positive

less big

less big not pos

While Statements

While statements contain statements that are repeated as long as some condition is true.

Important considerations:

• How many separate names are needed and what do they mean?

• The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

• Once the while condition is evaluated, the entire body is executed.

15

Names and their initial values
The while condition is evaluated before

each iteration

A name that appears in the while
condition is changing Executed even when is set to 3

Example: Prime Factorization

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

...
8 = 2 * 2 * 2
9 = 3 * 3
10 = 2 * 5
11 = 11
12 = 2 * 2 * 3
...

How can we determine whether a number is divisible by another?

One approach: Find the smallest prime factor of n, then divide by it

17

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13

(Demo)

