
CS 61A Final Exam Study Guide – Page 1

SELECT [expression] AS [name], [expression] AS [name], ... ;

Latitude Longitude Name

38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

A table has columns and rows

A column 
has a 

name and 
a type

A row has a value for each column

The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated

kind legs weight

dog 4 20

cat 4 10

ferret 4 10

parrot 2 6

penguin 2 10

t-rex 2 12000

weight/
legs count(*)

5 2

2 2

weight/legs=5

weight/legs=2

weight/legs=2

weight/legs=3

weight/legs=5

weight/legs=6000

SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];                                          

(define size 5) ; =>  size 
(* 2 size) ; =>  10 
(if (> size 0) size (- size)) ; =>  5 
(cond ((> size 0) size) ((= size 0) 0) (else (- size))) ; =>  5 
((lambda (x y) (+ x y size)) size (+ 1 2)) ; =>  13 
(map (lambda (x) (+ x size)) (quote (2 3 4))) ; =>  (7 8 9) 
(filter odd? (quote (2 3 4))) ; =>  (3) 
(list (cons 1 nil) size 'size) ; =>  ((1) 5 size) 
(list (equal? 1 2) (null? nil) (= 3 4) (eq? 5 5)) ; => (#f #t #f #t) 
(list (or #f #t) (or) (or 1 2)) ; =>  (#t #f 1) 
(list (and #f #t) (and) (and 1 2)) ; =>  (#f #t 2) 
(list 'a 2) ; =>  (a 2) 
(append '(1 2) '(3 4)) ; =>  (1 2 3 4) 
(not (> 1 2)) ; =>  #t 
(begin (define x (+ size 1)) (* x 2)) ; =>  12

Exceptions are raised with a raise statement.
raise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.
try: 
    <try suite> 
except <exception class> as <name>: 
    <except suite>

The <try suite> is executed first. 
If, during the course of executing the 
<try suite>, an exception is raised 
that is not handled otherwise, and

>>> try: 
        x = 1/0 
    except ZeroDivisionError as e: 
        print('handling a', type(e)) 
        x = 0 

handling a <class 'ZeroDivisionError'> 
>>> x 
0

If the class of the exception inherits from <exception class>, then 
The <except suite> is executed, with <name> bound to the exception.

The way in which names are looked up in Scheme and Python is 
called lexical scope (or static scope). 
Lexical scope: The parent of a frame is the environment in 
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in 
which a procedure was called.  (mu ...)

> (define f (mu (x) (+ x y))) 
> (define g (lambda (x y) (f (+ x x)))) 
> (g 3 7) 
13

101

102

103

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS s; 
sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1)  
        FROM phrase; 
low

Basic string manipulation is built into SQL, but differs from Python

sqlite> SELECT "hello," || " world"; 
hello, world

String values can be combined to form longer strings

(append s t): list the elements of s and t; append can be called 
on more than 2 lists 
(map f s): call a procedure f on each element of a list s and list 
the results 
(filter f s): call a procedure f on each element of a list s and 
list the elements for which a true value is the result 
(apply f s): call a procedure f with the elements of a list as its 
arguments

(define (factorial n) 
   (if (= n 0) 1 
       (* n (factorial (- n 1))))) 

(define (fib n) 
   (cond 
      ((= n 0) 0) 
      ((= n 1) 1) 
      (else (+ (fib (- n 2)) (fib (- n 1)))))) 

(define (nines num) 
   (if (= num 0) 
      0 
      (if (= (modulo num 10) 9 ) 
          (+ 1 (nines (floor (/ num 10)))) 
          (nines (floor (/ num 10)))))) 

CREATE TABLE lift AS 
  SELECT 101 AS chair, 2 AS single, 2 AS pair UNION 
  SELECT 102         , 0          , 3         UNION 
  SELECT 103         , 4          , 1;

SELECT weight/legs, count(*) FROM animals  
                             GROUP BY weight/legs  
                             HAVING COUNT(*)>1;

An aggregate function in the [columns] clause computes a value 
from a group of rows: 
• MAX([expression]) evaluates to the largest value of [expression] 
for any row in a group 

• COUNT(*) evaluates to the number of rows in a group 
• MIN, SUM, & AVG are also aggregate functions similar to MAX 
With no GROUP BY clause, aggregation is performed over all rows:

select max(legs) from animals; max(legs)

4

How do you describe concurrent code? 
    await, async, asyncio.run(), asyncio.to_thread() 
To run things concurrently: asyncio.gather() 
How does concurrent code share state? 
   Until you call await, nothing will change 
   Mutable objects may be different after await

async def apollo(): 
    await asyncio.sleep(600) 
async def kay(): 
    await doordash_boba() 
async def harry(): 
    await cupcake() 
async def start(): 
    await asyncio.gather( 
        apollo(), 
        kay(), 
        harry(), 
    ) 
asyncio.run(start())

Run all of the 
awaitables (e.g., 

coroutines) 
concurrently

Give up control until 
asyncio.sleep(600)  

finishes

A coroutine function 
(may await!)

Start an event loop 
(environment that knows how to 

handle concurrent work)

tconst title year
tt8267604 Capernaum 2018

tt8367814 The Gentlemen 2019

tt8404614 The Two Popes 2019

tt8503618 Hamilton 2020

titles

tconst avgRating numVotes
tt8503618 8.3 134421
tt8579674 8.2 749471
tt8613070 8.0 123438
tt8404614 7.6 144516

ratings

SELECT * FROM titles JOIN ratings ON titles.tconst=ratings.tconst; 
tconst     title          year  tconst     averageRating  numVotes

tt8404614  The Two Popes  2019 tt8404614  7.6 144516

tt8503618  Hamilton       2020 tt8503618  8.3 134421

Implicit join syntax: Use a comma (or just JOIN) and put all conditions 
in the WHERE clause

Explicit join syntax: Use FROM [table] JOIN [table] ON [condition]
SELECT title, averageRating FROM titles JOIN ratings 
  ON titles.tconst=ratings.tconst LIMIT 3;

Leaving out the ON or WHERE clause is allowed and creates all pairs of rows

E.g., create a table of remakes: two movies that have the same title
SELECT old.title, old.year AS first, new.year AS second  
  FROM titles AS old JOIN titles AS new  
    ON old.title=new.title AND old.year < new.year;

A table can be joined by itself to compare one row to another row 
Aliases are required

SELECT title, averageRating FROM titles, ratings  
  WHERE titles.tconst=ratings.tconst LIMIT 3;

Tables A & B are joined by JOIN (or a comma) to form combos of an A row & a B row 
A join often has some conditions for matching up the rows of two (or more) tables



Scheme programs consist of expressions, which can be: 
• Primitive expressions: 2, 3.3, true, +, quotient, ... 
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values. 
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form: 
• If expression:  (if <predicate> <consequent> <alternative>) 
• Binding names:  (define <name> <expression>) 
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
  (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
  (define (plus4 x) (+ x 4)) 
  (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
  ((lambda (x y z) (+ x y (square z))) 1 2 3)

  > (define pi 3.14) 
  > (* pi 2) 
  6.28

  > (define (abs x) 
      (if (< x 0) 
          (- x) 
          x)) 
  > (abs -3) 
  3

In the late 1950s, computer scientists used confusing names. 
• cons: Two-argument procedure that creates a Link 
• car:  Procedure that returns the first element of a Link 
• cdr:  Procedure that returns the second element of a Link 
• nil:  The empty list 
They also used a non-obvious notation for linked lists. 
• A (linked) Scheme list has a first element and the rest, which may 

either be a Scheme list or nil (the empty Scheme list) 
• Scheme lists are written as space-separated combinations.
  > (define x (cons 1 nil)) 
  > x 
  (1) 
  > (car x) 
  1 
  > (cdr x) 
  () 
  > (cons 1 (cons 2 (cons 3 (cons 4 nil)))) 
  (1 2 3 4)

Symbols normally refer to values; how do we refer to symbols?
  > (define a 1) 
  > (define b 2) 
  > (list a b) 
  (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in 
the resulting value

  > (list 'a 'b) 
  (a b) 
  > (list 'a b) 
  (a 2)

Quotation can also be applied to combinations to form lists.
  > (car '(a b c)) 
  a 
  > (cdr '(a b c)) 
  (b c)

Symbols are now values

A Scheme list is written as elements in parentheses: 

(<element0> <element1> ... <elementn>) 

Each <element> can be a combination or atom (primitive). 
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

A  Scheme list

Apply

Eval

Recursive calls:  
• Eval(operator, operands) of call expressions 
• Apply(procedure, arguments) 
• Eval(sub-expressions) of special forms

Base cases:  
• Primitive values (numbers) 
• Look up values bound to symbols 

Base cases:  
• Built-in primitive procedures 
Recursive calls:  
• Eval(body) of user-defined procedures 

Requires an 
environment 
for name 
lookup

The structure 
of the Scheme 
interpreter

To apply a user-defined procedure, create a new frame in which 
formal parameters are bound to argument values, whose parent 
is the env of the procedure, then evaluate the body of the 
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Link

2

Link

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 2

Creates a new 
environment each 

time a user-
defined procedure 

is applied

(* 3  
   (+ 4 5) 
   (* 6 7 8))

Calculator Expression Expression Tree

The Calculator language has primitive expressions and call expressions

* 3

+ 4 5 * 6 87

(car (cons 1 nil)) -> 1 
(cdr (cons 1 nil)) -> () 
(cdr (cons 1 (cons 2 nil))) -> (2) 

There are two ways to quote an expression 
  Quote:      '(a b)   =>   (a b) 
  Quasiquote: `(a b)   =>   (a b) 
Parts of a quasiquoted expression can be unquoted with , 
              (define b 4) 
  Quote:      '(a ,(+ b 1))  =>   (a (unquote (+ b 1)) 
  Quasiquote: `(a ,(+ b 1))  =>   (a 5) 
Quasiquotation is convenient for generating Scheme expressions: 
              (define (make-add-lambda n) `(lambda (d) (+ d ,n))) 
              (make-add-lambda 2)  => (lambda (d) (+ d 2))

Constructs & evaluates the expression: 
(begin (print 2) (print 2))

(define-macro (twice expr)  
  (list 'begin expr expr))

Evaluation procedure of a macro call expression: 
• Evaluate the operator sub-expression (evaluates to a macro) 
• Call the macro procedure on the operand expressions without 

evaluating them first 
• Evaluate the expression returned from the macro procedure

> (twice (print 2)) 
2 
2

A macro is an operation performed on the source code of a program 
before evaluation 
Macros exist in many languages, but are easiest to define 
correctly in a language like Lisp 
Scheme has a define-macro special form that defines a source code 
transformation

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as Link objects

f is ... 
  a two-argument function that returns a first argument 
s is ... 
  a sequence of values that can be the second argument 
initial is ...    
  a value that can be the first argument 

def reduce(f, s, initial): 
    """Combine elements of s pairwise using f, starting with initial. 
    E.g., reduce(mul, [2, 4, 8], 1) is equivalent to  
          mul(mul(mul(1, 2), 4), 8). 

    >>> reduce(mul, [2, 4, 8], 1) 
    64 
    """ 
    for x in s: 
        initial = f(initial, x) 
    return initial

The Scheme version of reduce doesn't have an initial argument: 
scm> (reduce * (list 2 4 8)) 
64

scm> (list 'quotient 10 2) 
(quotient 10 2)

The built-in Scheme list data structure (which is a linked list) 
can represent a Scheme expression

scm> (define (fact n)       
       (if (= n 1) 1 (* n (fact (- n 1))))) 
fact 
scm> (fact 5) 
120 
scm> (define (fact-expr n)  
       (if (= n 1) 1 (list '* n (fact-expr (- n 1))))) 
fact-expr 
scm> (fact-expr 5) 
(* 5 (* 4 (* 3 (* 2 1)))) 
scm> (define (fact-expr-quasiquoted n)  
       (if (= n 1) 1 `(* ,n ,(fact-expr-quasiquoted (- n 1))))) 
fact-expr-quasiquoted 
scm> (fact-expr-quasiquoted 5) 
(* 5 (* 4 (* 3 (* 2 1))))

scm> (eval (list 'quotient 10 2)) 
5 


