CS 61A Final Exam Study Guide — Page 1

How do you describe concurrent code?
await, async, asyncio.run(), asyncio.to_thread()
To run things concurrently: asyncio.gather()
How does concurrent code share state?
Until you call await, nothing will change
Mutable objects may be different after await

async def apollo(): A coroutine function
{await;asyncio.sleep(600) (may await!)
async d?f kay(): Give up control until
await doordash_boba() asyncio.sleep(600)
async def harry(): finishes
await cupcake()
async def start():
await {asyncio. gather Run all of the
I : awaitables (e.g.,
apollo(7), coroutines)
kay(), concurrently
harry(),
________ o, Start an event loop
‘fasyncio.run{start())| (environment that knows how to
""""""""""" handle concurrent work)

Exceptions are raised with a raise statement.
raise <expr>
<expr> must evaluate to a subclass of BaseException or an instance of one.

try: >>> try:
<try suite> X =
except <exception class> as <name>

<except suite>

1/0

except ZeroDivisionError as e:
print('handling a', type(e))
X =0

The <try suite> is executed first.

If, during the course of executing the

<try suite>, an exception is raised

that is not handled otherwise, and 0

handling a <class 'ZeroDivisionError'>

>>> X

If the class of the exception inherits from <exception class>, then
The <except suite> is executed, with <name> bound to the exception.

(append s t): list the elements of s and t; append can be called
on more than 2 lists

(map f s): call a procedure f on each element of a list s and list
the results

(filter f s): call a procedure f on each element of a list s and
list the elements for which a true value is the result

(apply f s): call a procedure f with the elements of a list as its
arguments

I:A table has columns and rows]

Latitude Longitude Name A column

has a
,,,,,,,,,,,,,,,, 38 220 i Berkeley 1! | name and
42 71 Cambridge a type

7[70rder] ;

Tables A & B are joined by JOIN (or a comma) to form combos of an A row & a B row
A join often has some conditions for matching up the rows of two (or more) tables

titles ratings

tconst title year tconst avgRating | numVotes
tt8267604 | Capernaum 2018 tt8503618 8.3 134421
tt8367814 | The Gentlemen |2019 tt8579674 8.2 749471
tt8404614 | The Two Popes |2019 tt8613070 8.0 123438
tt8503618 Hamilton 2020 tt8404614 7.6 144516
SELECT * FROM titles JOIN ratings ON titles.tconst=ratings.tconst;
tconst title year | tconst averageRating numVotes
tt8404614 | The Two Popes 2019 | tt8404614 |7.6 144516
t18503618 | Hamilton 2020 | tt8503618 |8.3 134421

Explicit join syntax: Use FROM [table] JOIN [table]l ON [condition]
SELECT title, averageRating FROM titles JOIN ratings
ON titles.tconst=ratings.tconst LIMIT 3;
Implicit join syntax: Use a comma (or just JOIN) and put all conditions
in the WHERE clause
SELECT title, averageRating FROM titles, ratings
WHERE titles.tconst=ratings.tconst LIMIT 3;

Leaving out the ON or WHERE clause is allowed and creates all pairs of rows

A table can be joined by itself to compare one row to another row

Aliases are required

E.g., create a table of remakes: two movies that have the same title
SELECT old.title, old.year AS first, new.year AS second

FROM titles AS old JOIN titles AS new
ON old.title=new.title AND old.year < new.year;

CREATE TABLE lift AS

103

SELECT 101 AS chair, 2 AS single, 2 AS pair UNION 1ol
SELECT 102 "o "3 UNION 10
SELECT 103 4 T

= size

10
size (- size)) ;

(define size 5) ;
(x 2 size) ; =>

(if (> size @) = 5

(cond ((> size @) size) ((= size @) 0) (else (- size))) ; == 5
((lambda (x y) (+ x y size)) size (+ 1 2)) ; => 13
(map (lambda (x) (+ x size)) (quote (2 3 4))) ; == (7 8 9)

(filter odd? (quote (2 3 4))) ; => (3)

(list (cons 1 nil) size 'size) ; => ((1) 5 size)

(list (equal? 1 2) (null? nil) (= 3 4) (eq? 5 5)) ; => (#f #t #f #t)
(list (or #f #t) (or) (or 1 2)) ; => (#t #f 1)

(list (and #f #t) (and) (and 1 2)) ; => (#f #t 2)

(list 'a 2) ; => (a 2)

(append '(1 2) '(3 4)) ; = (1234)

(not (> 12)) ; == #t

(begin (define x (+ size 1)) (x x 2)) ; => 12

String values can be combined to form longer strings

sqlite> SELECT "hello," || " world";
hello, world

Basic string manipulation is built into SQL, but differs from Python

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS s;

sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1)
FROM phrase;

Tlow

(define (factorial n)
(if (=nwo) 1
(x n (factorial (- n 1)))))

(define (fib n)

(cond
((=n o) o)
((=n1)1)

(else (+ (fib (- n 2)) (fib (- n 1))))))
(define (nines num)
(if (= num @)

0

(if (= (modulo num 10) 9)
(+ 1 (nines (floor (/ num 10))))
(nines (floor (/ num 10))))))

The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated
SELECT weight/legs, count(x) FROM animals

GROUP BY weight/legs
HAVING COUNT(*)>1;

kind legs weight
; weight/legs=5 dog 4 20
wleelg:u count(*) L’ ght/leg
-% , weight/legs=2 cat 4 10
5 2 { e
‘):_', -* weight/legs=2 ferret 4 10
2 2 s)
‘\\ weight/legs=3 parrot 2 6
* weight/legs=5 penguin 2 10
weight/1legs=6000| trex 2 12000

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)

Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))

> (define g (lambda (x y) (f (+ x x))))
> (g 37)

13

An aggregate function in the [columns] clause computes a value
from a group of rows:

« MAX([expression]) evaluates to the largest value of [expression]
for any row in a group

+ COUNT (%) evaluates to the number of rows in a group
+ MIN, SUM, & AVG are also aggregate functions similar to MAX
With no GROUP BY clause, aggregation is performed over all rows:

select max(legs) from animals; max(legs)

4

CS 61A Final Exam Study Guide — Page 2

A Scheme list is written as elements in parentheses:

Scheme programs consist of expressions, which can be:

e Primitive expressions: 2, 3.3, true, +, quotient : " ;

. Combinations[:) (quotient 10 2), (not truet)l (celemento>)(<elements> ... <elementn>): A Scheme list
Numbers are self-evaluating; symbols are bound to values. T T e ’ .
Call expressions have an operator and © or more operands. Each <element> can be a combination or atom (primitive).

(+ (3 (+ (x24) (+35))) (+(-107) 6))

A combination that is not a call expression is a special form:

« If expression: (if <predicate> <consequent> <alternative>) def reduce(f, s, initial):
* Binding names: (define <name> <expression>) ""iCombine elements of s pairwise using f, starting with initial.
e New procedures: (define (<name> <formal parameters>) <body>) E.g., reduce(mul, [2, 4, 8], 1) is equivalent to
> (define pi 3.14) > (define (abs x) mul(mul(mul(1, 2), 4), 8).
> (x pi 2) (if (< x 0)
6.28 (- x) >>> reduce(mul, [2, 4, 8], 1)
X)) e
> (abs -3)
3 for x in s:

initial = f(initial, x)

Lambda expressions evaluate to anonymous procedures. return initial

(lambda (<formal-parameters>) <body>) f is ...
Two equivalent expressions: A a two-argument function that returns a first argument
(define (plus4 x) (+ x 4)) s is .

(define plus4 (lambda (x) (+ x 4))) a sequence of values that can be the second argument
An operator can be a combination too: initial is ...

((lambda (x y z) (+ x y (square z))) 1 2 3) a value that can be the first argument
In the late 1950s, computer scientists used confusing names.
- cons: Two-argument procedure that creates a Link

« car: Procedure that returns the first element of a Link The Scheme versior.1 of reduce doesn't have an initial argument:
e cdr: Procedure that returns the second element of a Link scm> (reduce * (list 2 4 8))
e nil: The empty list 64

They also used a non-obvious notation for linked lists.
« A (linked) Scheme list has a first element and the rest, which may

either be a Scheme list or nil (the empty Scheme list) The structure
e Scheme lists are written as space-separated combinations. Base cases: Eval of the Scheme
> (define x (cons 1 nil)) * Primitive values (numbers) interpreter
> x e Look up values bound to symbols
(12) Recursive calls: Creates a new
; car x + Eval(operator, operands) of call expressions enﬁ;onment ifCh
> (cdr x) * Apply(procedure, arguments) defineed apruosceeclure
0 * Eval(sub-expressions) of special forms is applied
> (cons 1 (cons 2 (cons 3 (cons 4 nil))))
(123 4)
Symbols normally refer to values; how do we refer to symbols? Requires an Base cases:
> Egei}“e E B enfvolrronnanrlr?ent « Built-in primitive procedures
> \detine No sign of “a” and “b” in ; .
> (list a b) thg resulting value Lookup Recursive calls: i
(12) 9 e Eval(body) of user-defined procedures
Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b) To apply a user-defined procedure, create a new frame in which
(a b) Symbol 1 formal parameters are bound to argument values, whose parent
> (list 'a b) YIS EIrE M VEIlES is the env of the procedure, then evaluate the body of the
(a 2) procedure in the environment that starts with this new frame.
Quotation can also be applied to combinations to form lists. (define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))
: (car *(a b c)) (f (list 1 2))
> (cdr '(a b c)) g: Global frame
(b c) £ e« LambdaProcedure instance [parent=g]
(car (cons 1 nil)) 1 “ =

(cdr (cons 1 nil)) ()

[oeneg s A= [i [F[2[A
(cdr (cons 1 (cons 2 nil))) (2)
The built-in Scheme list data structure (which is a linked list)

can represent a Scheme expression

[parent=g] s

scm> (list 'quotient 10 2) scm> (eval (list 'quotient 10 2))
(quotient 10 2) 5
. There are two ways to quote an expression

scm> (define (fact n) Quote: '(ab) = (ab)

(if (= n 1) 1 (* n (fact (- n 1))))) Quasiquote: ‘(a b) => (a b)
fact Parts of a quasiquoted expression can be unquoted with ,
scm> (fact 5) (define b 4)
120 } Quote: ‘(a ,(+ b 1)) => (a (unquote (+ b 1))
scm> (deflne (fact—exprAn) ‘ Quasiquote: “(a ,(+ b 1)) => (a 5)

(if (= n 1) 1 (list 'x n (fact-expr (- n 1))))) Quasiquotation is convenient for generating Scheme expressions:
fact-expr (define (make-add-lambda n) " (lambda (d) (+ d ,n)))

scm> (fact-expr 5) (make-add-lambda 2) => (lambda (d) (+ d 2))
(x5 (x4 (3 (x21))))

scm> (define (fact-expr-quasiquoted n)

(if (=n 1) 1 "(x ,n ,(fact-expr-quasiquoted (- n 1))))) A macro is an operation performed on the source code of a program
fact-expr-quasiquoted before evglua‘Flon .)
scm> (fact-expr-quasiquoted 5) Macros exist in many languages, but are easiest to define
(x5 (x4 (x3 (x21)))) correctly in a language like Lisp
Scheme has a define-macro special form that defines a source code
The Calculator language has primitive expressions and call expressions transformation 3
) . Constructs & evaluates the expression:
Calculator Expression Expression Tree (begin (print 2) (print 2))
(x 3
(+ 4 5) (define-macro (twice expr)
(x 67 8)) * 3 (list 'begin expr expr))
Representation as Link objects + 4 5 x 6 7 8) .
Evaluation procedure of a macro call expression:
First [rest First [res rst |[rest First Jrest * Evaluate the operator sub-expression (evaluates to a macro)
* 3 1 nil ¢ Call the macro procedure on the operand expressions without
) evaluating them first

First

& ‘nll‘ * Evaluate the expression returned from the macro procedure

ENEENCAESSE,
ENEIEAE

<

nit

B

