Narozeninový problém

matematický problém

V teorii pravděpodobnosti je narozeninový problém úloha vypočítat minimální početnost skupiny lidí, ve které je alespoň 50% pravděpodobnost nalezení dvojice se stejným datem narození (den a měsíc). Narozeninovým paradoxem je pak označována skutečnost, že tento počet (23) je mnohem menší než intuitivní odhad. Pro skupinu 57 a více lidí je tato pravděpodobnost už více než 99 %, postupně rostoucí až ke 100 % pro 366 lidí (za předpokladu že pracujeme s rokem o 365 dnech).[p. 1] Matematika skrytá za tímto problémem vede k známému kryptografickému útoku zvanému narozeninový útok.

Výpočet pravděpodobnosti

editovat
 
Graf s křivkou přibližné pravděpodobnosti, že alespoň dva lidé sdílejí narozeniny v dané skupině lidí.

Pro výpočet pravděpodobnosti, že v místnosti s n lidmi alespoň dva mají narozeniny ve stejný den, budeme předpokládat rovnoměrné rozdělení narozenin během roku (tj. budeme ignorovat přestupné roky, dvojčata atd.)

Je jednodušší nejprve spočítat pravděpodobnost p(n), že všech n narozenin je rozdílných. Pro n > 365 je tato pravděpodobnost, s ohledem na Dirichletův princip, rovna nule. Pro n ≤ 365 je dána vzorcem:

 

Protože druhá osoba nemůže mít stejné narozeniny jako první (364/365), třetí nemůže mít stejné narozeniny jako první dvě (363/365), atd.

Skutečnost, že nejméně dva z n lidí mají stejné narozeniny je komplementární jevu, že všechna data narozenin jsou různá. Proto pravděpodobnost p(n) je

 

Tato pravděpodobnost překračuje 1/2 pro n = 23 (hodnota kolem 50,7 %). Následující tabulka ukazuje pravděpodobnosti pro některé další hodnoty n (Tabulka ignoruje přestupné roky, jak již bylo výše popsáno):

Tento problém může být vypočítán také jako (1 − variace (365, počet studentů) / variace s opakováním (365, počet studentů)).

n p(n)
10 12 %
20 41 %
23 50,7 %
30 70 %
50 97 %
100 99,99997 %
200 99,9999999999999999999999999998 %
300 (100 − 6×10−80) %
350 (100 − 3×10−129) %
366 100 %

Poznámky

editovat
  1. Úloha předpokládá stejnou pravděpodobnost narození v každém dni roku, ve skutečnosti však nejsou data narození rozprostřena rovnoměrně v průběhu roku, a to nikoliv pouze kvůli 29. únoru, který se vyskytuje pouze jednou za čtyři roky.[1]

Reference

editovat

Externí odkazy

editovat