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Abstract—Multi-core processors have replaced single-core sys-
tems in almost every segment of the industry. Unfortunately, their
increased complexity often causes a loss of temporal predictability
which represents a key requirement for hard real-time systems.
Major sources of unpredictability are the shared low level
resources, such as the memory hierarchy and the I/O subsystem.

In this paper, we approach the problem of shared resource
arbitration at an OS-level and propose a novel scratchpad-
centric OS design for multi-core platforms. In the proposed
OS, the predictable usage of shared resources across multiple
cores represents a central design-time goal. Hence, we show (i)
how contention-free execution of real-time tasks can be achieved
on scratchpad-based architectures, and (ii) how a separation of
application logic and I/O operations in the time domain can be
enforced. To validate the proposed design, we implemented the
proposed OS using a commercial-off-the-shelf (COTS) platform.
Experiments show that this novel design delivers predictable
temporal behavior to hard real-time tasks, and it improves
performance up to 2.1x compared to traditional approaches.

I. INTRODUCTION

Multi-core platforms are mainstream products. Multi-core
chips allow different processing tasks to execute in parallel
while accessing a set of shared hardware resources, including:
main memory, buses, caches, and I/O peripherals. Unfortu-
nately, when one or more of these resources is utilized up to its
saturation point, severe and unpredictable inter-core interfer-
ence can heavily affect the system’s temporal behavior. From
a real-time point of view, unregulated contention on shared
resources induces significant execution time variance. Hence,
specific mechanisms to manage and schedule shared resources
need to be designed and validated. This problem has also been
acknowledged by the Federal Aviation Administration (FAA),
which currently imposes the use of a single core for safety-
critical avionic applications unless proper analysis and mitiga-
tion of inter-core interference channels are demonstrated [1].

This problem has been approached from different perspec-
tives: a) novel multi-core hardware platforms have been de-
signed [2, 3], b) new OS-level techniques have been developed
to perform shared resource partitioning and management on
commercial-off-the-shelf (COTS) platforms [4]. While a hard-
ware solution might be desirable to meet the needs of modern
real-time systems, it does not represent a viable solution in the
short term for the embedded industry. Conversely, enforcing
determinism at software level on a general-purpose COTS
architecture may trade some performance with execution time
predictability. In this work, we propose an approach that lies

in between with respect to the aforementioned methodologies.
In fact, (i) we consider a segment of COTS platforms that
are designed to support desirable features for hard real-time
computation and (ii) redesign parts of the operating system
(OS), leveraging such features to guarantee predictability
and preserve performance. With these objectives in mind,
we focus on emerging embedded scratchpad-based multi-core
platforms. Scratchpad memories, in fact, have been proven to
provide better temporal isolation when compared to traditional
caches [5, 6]. Alongside, we exploit additional hardware fea-
tures that vendors are now including in some modern families
of multi-core platforms designed for the embedded market,
such as: separate I/O and memory buses, the presence of dual-
port memories with DMA support, and core specialization.
Thereby, this work provides following contributions:

1) A novel operating system design is built ground-up to
achieve temporal predictability. Our OS design targets
multi-core embedded COTS platforms and exploits core
specialization and low level resource management poli-
cies.

2) To the best of our knowledge, this is the first OS that in-
tegrates a scratchpad-based CPU scheduling mechanism
with a task schedule-aware I/O subsystem.

3) A novel analysis is derived to calculate the response
time of real-time tasks under the proposed scheduling
strategy.

4) Finally, a full implementation of the proposed OS has
been performed using a commercially available multi-
core micro-controller. Its design has been validated using
a combination of synthetic tasks and EMBC bench-
marks.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. Next, Section III introduces
the considered system model and architectural assumptions.
The design of the proposed OS is described in Section IV,
while Section V discusses how to conduct task schedulability
analysis. We describe the performed implementation in Sec-
tion VI, and discuss the experimental results in Section VII.
Finally, the paper concludes in Section VIII.

II. RELATED WORK

Temporal predictability is a crucial design-time constraint
for real-time operating systems (RTOS). Several RTOS de-
signs have been proposed, and a number of implementations
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are available, such as: QNX Neutrino1, FreeRTOS2, Wind
River VxWorks3. These RTOS were designed for single-core
platforms, where the use of real-time scheduling policies,
efficient inter-process communication and prioritized interrupt
handling were enough to ensure temporal predictability. Sup-
port for multi-core platforms was later introduced without
a substantial change in design. Unfortunately, however, a
new set of challenges (mainly related to shared hardware
resource management [2, 3, 4]) is faced when trying to achieve
predictability on multi-core systems.

In avionic standards such as ARINC 653 and ARINC 651,
the concept of resource partitioning is central for the design
of safety-critical systems. Even if different partitions execute
on the same physical processor, the behavior/misbehavior of a
software component should not affect the execution of another
component running on a separate partition [7]. In single-
core systems, requirement for inter-partition isolation can be
achieved by employing time division and fault containment
strategies. On multi-core systems, however, how to enforce
and certify strong partitioning across different cores is still an
active research topic.

In [8], Jean et al. provide a high-level discussion of the
main issues for the extension of existing avionic standards to
multi-core systems. The work considers multi-core integrated
modular avionic (IMA) systems were partitions may run in
parallel on different cores. The authors raise the concern
that in the presence of faults, the use of shared hardware
resources may lead to a violation of strict inter-partition
isolation requirements. In multi-core systems, interference
channels (if not carefully mitigated) are also present under
normal operating conditions. This has been acknowledged by
certification authorities [1] and it represents a source of con-
cern for the use of multi-core processors in avionics systems.
In this work, we propose a RTOS design that leverages co-
scheduling techniques of shared resources to mitigate inter-
core performance interference. Although we envision that
some of the proposed design principles could be reused to
enhance temporal protection in multi-core avionics systems,
the proposed OS design rather targets embedded platforms
suitable for automotive systems and its extension to IMA is
currently out of the scope of this work.

The proposed layer of OS-level strategies to perform co-
scheduling of shared resources is in line with the concept
of Deterministic Platform Software (DPS) as defined in [9].
Specifically, in our system we enforce a deterministic execu-
tion model for running applications, constructing a DPS that
actively controls and schedules access to shared resources.
Following the nomenclature proposed in [9], since tasks need
to be specifically engineered and compiled to comply with our
task model, the proposed solution is application aware. In this
work, the multi-stage task model is also consistent with the
Acquisition Execution Restitution (AER) task model proposed
in [10].

The AER model proposed in [10] achieves predictability
by executing tasks from local core memories (scratchpads),
while shared memory resources are only used for inter-core

1http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
2http://www.freertos.org/
3http://www.windriver.com/products/vxworks/

communication and device I/O during acquisition and/or resti-
tution phases. Inter-core interference arising from unregulated
access to shared memory is mitigated by ensuring that: (i) the
execution phase of different tasks can progress in parallel on
multiple cores; and (ii) at most one acquisition or restitution
phase is in execution at any instant of time. In [10], the
fundamental assumption is that the total footprint of all the
tasks assigned to a core fits inside the core’s local memory.
In this work, we relax this constraint and only require that a
task fits in half of the local memory space. This relaxation
leads to important differences in the RTOS design: in fact,
dynamic loading and unloading of tasks from/to local mem-
ories (together with I/O data) need to be handled. For these
reasons, tasks’ execution phases are parallelized; additionally,
task loading/unloading is pipelined with execution by using
DMA engines. Finally, asynchronous I/O device activity is
deconflicted from applications by exploiting hardware spe-
cialization at the bus level and by handling system-to-device
interaction inside an isolated I/O subsystem.

Techniques to derive WCET bounds on a multi-core system
accounting for the major sources of unpredictability have been
thoroughly analyzed in [11]. The latter work provides an in-
depth overview of the state-of-the-art analysis methodologies
for shared buses, shared caches as well as scratchpad memo-
ries. Its focus, however, is the derivation of safe WCET bounds
in presence of typical platform features and given a known task
set. However, there is no discussion on how a real-time OS can
be designed on multi-core platforms to support multi-tasking
subject to temporal constraints.

The design of multi-core architectures that are able to
provide worst-case execution time guarantee have been pro-
posed in [2, 3]. Specifically, the precision timed (PRET)
architecture [2] introduces task runtime control and deadline
enforcement at the instruction set (ISA) level. Additional
hardware modifications allow to achieve better performance
without sacrificing predictability. Similarly, in the MERASA
project [3, 12], predictability is achieved at hardware level
by controlling inter-core interference. These works propose
architectural features that have been prototyped on field-
programmable gate array (FPGA), but unfortunately such
features cannot be found in COTS system-on-chips (SoC).

In [4, 13, 14, 15] the authors presented the Single-Core
Equivalence framework: that is a set of OS-level techniques
that can be implemented on COTS platforms to enforce
spatial and temporal partitioning of shared memory resources.
Derived analysis and experimental validation showed that
WCET of tasks can be bounded and that inter-core temporal
isolation can be achieved. Three main differences exist with
respect to the proposed approach. First, the work in [4]
assumes a traditional task execution model, while in this
work this assumption is relaxed using a three-phase execution
model. Second, in this paper we focus on scratchpad-based
architectures. Finally, this work also proposes the design of a
novel I/O subsystem.

The proposed work is a contribution to existing literature
on the usage of scratchpad memories (SPM) for real-time
systems [5, 6, 16, 17, 18, 19]. In fact, a number of works have
explored the benefits of scratchpad memories over traditional
caches for multi-core platforms [5, 6]. Other works on embed-



ded systems exist that propose scratchpad memory allocation
strategies targeting real-time applications [20, 21, 22, 23, 24].
In [19] the authors propose a scratchpad memory management
technique for preemptive multi-tasking systems where they
introduce three methods for SPM partitioning that are: (i)
spatial, (ii) temporal, and (iii) hybrid approaches. By em-
ploying these three methodologies on a real-time operating
system the authors show that they were able to save 73% of
energy when compared to the standard approach. The authors
also conclude that hybrid approaches outperform the other
two approaches. However, this work has not been applied
to multi-core processors. Moreover, the focus of [19] is not
predictability but energy efficiency, making its contribution
substantially different from the proposed work.

Finally, our design shares some similarities with scratchpad
scheduling approaches that have been proposed in [16, 17, 18,
25]. Compared to these works, our approach mainly differs in
three aspects: (i) it is not focused exclusively on scratchpad
management, but we rather show how a scratchpad can be
integrated within an overall OS design; (ii) a full OS design
is implemented on a commercially available (COTS) micro-
controller; and (iii) it is also discussed how I/O traffic issued
by different cores is deconflicted.

III. SYSTEM MODEL AND ASSUMPTIONS

This section summarizes the task model that we use and
the hardware assumptions we rely on for the design of the
proposed predictable operating system, namely SPM-centric
OS.

a) Scratchpad Memories: The first assumption we make
is the presence of scratchpad memory (SPM). We assume that
each core in our system features a block of private scratchpad
memory. Moreover, in this work we assume that the size
of each per-core scratchpad memory is big enough to fully
contain the footprint of any two tasks in the system. Hence,
the footprint of the largest task in the system is at most half the
size of the scratchpad memory. Although this assumption may
appear restrictive, we make the following considerations. First,
modern scratchpad-based micro-controllers provide scratchpad
memories that have a size in the same order of magnitude as
the main memory. For instance, in the MPC5777M that we use
for our evaluation, each core includes 80 KB of scratchpad
with a total main memory size of about 400 KB. Second,
hard real-time control tasks typically are compact in terms
of memory size. Third, if a task violates this size constraint,
known methodologies exist [26, 27] to split a large application
into smaller sub-tasks that are individually compliant with the
imposed constraint.

As discussed in Section IV, before tasks can be executed
from SPM, their code and data need to be transferred from
main memory. Thus, we adopt a task model that is composed
of three phases: a load phase, an execution phase and an
unload phase. First, during the load phase, the code and data
image for the activated task is copied from main memory to
the SPM. Next, during the execution phase, the loaded task
executes on the CPU by relying on in-scratchpad data. Finally,
the portion of data that has been modified and needs to remain
persistent across subsequent activations of the task is written
back to main memory during the unload phase.

b) DMA Engines: To avoid to stall the CPU when
load/unload operations are performed, we assume that copy
operations toward/from the scratchpad memories can proceed
in parallel with task executions. This can be achieved as long
as execution and load/unload phases belong to two distinct
tasks. In order to parallelize load/unload operations with task
execution, we rely on direct memory access (DMA) engines.
We assume that the hardware provides DMA engines that
are able to transfer data from the main memory into the
scratchpad and vice versa. By exploiting (i) the capability
of parallelizing load/unload operations together with task
execution, and (ii) the assumption that any task image can
fit in half of the scratchpad memory, it is possible to hide
task loading/unloading overhead during task execution, as we
discuss in Section IV.

c) Dedicated I/O Bus: The next made assumption is
about the organization of the I/O subsystem. Since the activity
of I/O devices is typically triggered by external events, it
is inherently asynchronous. Unfortunately, unregulated I/O
activity on the system bus can lead to unpredictable con-
tention with CPU activity [28]. Hence, unarbitrated I/O traffic
represents one of the major sources of unpredictability in
real-time systems. To deconflict the inherently asynchronous
activity of I/O devices from application cores’ activity, we
assume that a dedicated bus exists to route I/O traffic without
directly interfering with CPU-originated memory requests. The
idea of co-scheduling CPU activity and I/O traffic is not
new and specific solutions have been proposed in [28, 29].
However, the increased awareness of chip manufacturers about
this problem has resulted in the design of COTS platforms that
use dedicated buses to handle I/O transactions. Table I shows
a non-exhaustive list of COTS platforms with this feature. In
this work, we assume that suitable hardware exists to enforce
a separation between I/O and CPU-originated memory trans-
actions. Furthermore, traffic transmitted over the dedicated
I/O bus needs to be handled, pre-processed and scheduled
before reaching the application cores. Thus, we assume that
an I/O processor exists, which we hereafter refer to as I/O
core. Just like the application cores, the I/O core features a
scratchpad memory that is used to buffer I/O data before they
are delivered to applications.

Typically, devices that support high-bandwidth operations
are DMA-capable. Instead, slower devices expose memory-
mapped input/output buffers that can be read/written using
generic platform DMA engines. Without loss of generality, we
assume I/O data transfers from/to the I/O core are performed
by DMA engines and that data from I/O devices can directly
be transferred into the I/O core’s scratchpad memory. In other
words, I/O devices are not allowed to initiate asynchronous
transfers directly towards main memory. As previously dis-
cussed, this design choice allows us to perform co-scheduling
of CPU and I/O activities to achieve higher system predictabil-
ity. A summary of the architectural assumptions discussed so
far is provided in Figure 1.

d) Memory Organization: As micro-controllers evolve
into complex multi-core systems, more advanced support of
memory protection schemes is provided. However, for the
purpose of this work, no specific assumption needs to be
made about platform memory protection features. Hence, the



Fig. 1. Multicore architecture satisfying our hardware assumptions

presence of a memory management unit (MMU) is not a
necessary requirement. We discuss in Section VI how task
relocation from main memory to scratchpads can be achieved
without MMU support. Intuitively, MMU support allows for a
straightforward implementation of task relocation by relying
on page table manipulation. Usually, systems without MMU
include a memory protection unit (MPU). MPUs support
the definition of per-core access permissions based on linear
ranges of physical memory addresses. Although they are not
necessary to implement our system, MPUs can be easily
supported within our design.

The hardware assumptions described so far represent de-
sirable features that are becoming increasingly common in
modern COTS micro-controllers used for safety-critical appli-
cations. Table I provides a list of some of the available COTS
platforms that satisfy the described assumptions.

TABLE I
SUITABLE COMMERCIAL MULTICORE COTS PLATFORMS

Features MPC5777M MPC5746M TMS320C6678
Scratchpad 3 3 3

DMA engines 3 3 3
Dedicated I/O bus 3 3 7

e) Task Model: For the proposed design, we consider a
partitioned and fixed priority scheduling policy; additionally,
each core has a set Γ of N sporadic tasks, {τ1, ...., τN}, each
with different priority whereby τ1 has the highest priority
and τN has the lowest priority. The deadline of each task
is assumed to be less than or equal to its minimum inter
arrival time. Table II summarizes the notation used for task
parameters. As discussed in Section IV, tasks follow a three-
phases model. Hence, to satisfy temporal constraints, the last
phase (unload) of a task needs to complete before the deadline.
For ease of implementation, this work assumes non-preemptive
tasks, although we plan to relax this assumption as part of our
future work.

IV. PROPOSED OPERATING SYSTEM DESIGN

In this section, we describe the design of the proposed SPM-
centric OS by relying on the previously discussed assumptions.

A. Overview
The central idea of the proposed SPM-centric OS is resource

specialization. As previously mentioned, a specialized I/O core
and I/O bus are used to handle peripheral traffic. Similarly, a
specific role is assigned to different memory resources in the
system. Specifically, three types of memory resources exist in
our system, as depicted in Figure 1. First, flash memories are
used to persistently store application/OS code, read-only data,

TABLE II
TASK’S PARAMETERS

Term Definition
τi a task in the system
τi.T task’s MIT or period(if task is periodic)
τi.c task’s execution time including all overheads
σ TDMA slot size for the DMA operation

as well as initialization values of read-write portions of main
memory. Next, the SRAM (main) memory contains writable
application and system data that represent the time-variant
state of the system. Finally, scratchpad memories temporarily
store a copy of code and data images for those tasks that are
currently being scheduled for execution.

In our solution, applications are never executed directly
from main memory, thus we adopt the following strategy:
(1) task images are permanently stored in flash and loaded
into main memory at system boot; (2) a dedicated DMA
engine is used to move task images to/from SPM upon task
activation; (3) a secondary DMA engine is used to perform
I/O data transfers between devices and I/O core; (4) tasks
always execute from SPM; (5) only task-relevant I/O data are
transferred upon task load from the I/O subsystem. The benefit
of this design is twofold. First, it allows high-level scheduling
of accesses to main memory, ultimately achieving conflict-free
execution of tasks from local memories. Second, performance
benefits derived from the usage of fast scratchpad memories
are exploited, ultimately combining better performance with
higher temporal determinism.

We refer to the capability of our SPM-centric OS to dynam-
ically move applicative tasks in and out of the SPM memories
as support for relocatable tasks. As mentioned in Section III,
if hardware MMU support exists, task relocation can be
achieved using page table manipulation. Otherwise, advanced
compiler level techniques can be exploited to generate position
independent code, as described in Section VI.

In the proposed SPM-centric OS, a DMA engine is used
to position the image of a relocatable task inside a SPM
for execution. We refer to this DMA engine as application
DMA. Similarly, we refer to the platform DMA used for I/O
transfers as peripheral DMA. Typically, a single DMA engine
is capable of utilizing the full main memory bandwidth in
micro-controller platforms. Nonetheless, the design constraint
that imposes the use of a single applicative DMA can be
relaxed if the main memory subsystem allows two or more
DMA engines to transfer data concurrently without saturating
the main memory bandwidth.

B. Scratchpad and CPU Co-scheduling

Load/unload operations for tasks running on the M ap-
plicative cores need to be serialized to prevent unregulated
contention over the memory bus. Hence, only a single DMA
is required as application DMA for all the M applicative cores.
Several schemes are known to fairly share a single resource
across different consumers. For the scope of our design, we
employ a time division multiple access (TDMA) scheme to
serialize task load/unload operations among M applicative
cores. The main advantage of the TDMA scheme lies in its
simplicity of implementation. Although in this work we restrict
our discussion to TDMA sharing of the applicative DMA, the
proposed OS can be extended to consider round-robin policies
as well as budget-based schemes.



In order to perform TDMA-based scheduling of the applica-
tion DMA, time is partitioned into slots of fixed size. In each
slot, only a single DMA operation can be performed, either
a task load or unload. The slot size is chosen to ensure that
the task with the largest footprint in the system can be loaded
within the slot time window. Figure 2 depicts the sequence of
operations in our TDMA scheme for a system with M = 2
application CPUs. Note that the TDMA enforcement needs to
be centralized. Hence, in our design, the I/O core is responsible
for interfacing with application cores’ schedulers through
active/ready queues, programming the application DMA as
well as enforcing the time-triggered TDMA slots. In particular,
Figure 2 depicts three tasks scheduled on one core. Up arrows
in blue color represent the arrival times of the considered tasks;
we use colors for two different partitions. A task can only run
after its load operation has been completed and the previous
task on the other partition has completed, (see τ2 to τ3 and
τ1 to τ2 for example of the two cases). There might be slots
where no load/unload is performed. This happens at time 8: τ1
finishes right after the beginning of the slot, so both partitions
are full at the beginning of the slot and the I/O core can neither
load nor unload any applicative core scratchpad. Effectively,
the slot is wasted.

Since tasks need to be loaded/unloaded in parallel with
respect to CPU activity, two partitions are created on the
scratchpad. There is logically no difference between the two
scratchpad partitions. Thereby, tasks may execute from either
one of the two, depending on their arrival time. Interchange-
ably, one of them contains the image of the task which is
currently being executed, while the second half is used to load
(unload) the image of the next (previous) task to be executed
(that was completed). Note that when a task is executing on the
CPU while a second task is loaded/unloaded in background,
CPU and DMA contend for scratchpad access. However, the
impact of this contention on the timing of the tasks is typically
negligible for two main reasons. First, scratchpads are often
implemented as dual-ported memories; thus, they are able
to support stall-free CPU and DMA operations. In fact, on
the considered MPC5777M platform we have verified this by
experimentation and found that both the core and the DMA
module do not suffer any delay when they access the SPM
simultaneously. Second, in a system with M CPUs, DMA-
CPU contention over scratchpad involves only two masters,
as opposed to the traditional approach where up to M masters
could contend for main memory.

As depicted in Figure 2, the application DMA is alterna-
tively assigned to transfer data for a specific core. Within
a single slot, either an unload operation for a previously
running task or a load operation for the next scheduled task is
performed. The specific operation to be performed is decided

Fig. 2. Scheduling CPU, DMA and local memory

Fig. 3. Interaction between I/O Core and Core 1 for task scheduling.

as follows:
Rule 1: If a load operation can be performed, a load

operation is programmed on the application DMA;
Rule 2: If a load cannot be performed and there is a

previously running task to be unloaded, an unload
operation is programmed on the application DMA.

Note that Rule 1 can be activated by the following condi-
tions: (i) at least one of the two SPM partitions is available
(i.e. has been previously unloaded), and (ii) a task has been
released and is ready to be loaded. Similarly, Rule 2 can be
activated if no load can be performed, at least one partition is
not empty and the task loaded on that partition has completed.

In the proposed design, the next task to be executed is
loaded in background while the foreground running task is
not interrupted until its completion. The described mechanism
allows to hide the DMA loading overhead, avoiding contention
in main memory and exploiting performance benefits deriving
from SPM usage.

The work-flow followed by an applicative core and the
I/O core at the boundary of each TDMA slot is depicted in
Figure 3. Specifically, at each time slot, the I/O core checks the
status of the queue of active tasks belonging to the considered
core. If a task that is active for execution but not ready (i.e. not
relocated in scratchpad) is found, the I/O core checks which
SPM partition (P1 or P2) is empty on the application core.
If any partition is found to be empty (Slot #1), the I/O core
programs the application DMA to load the topmost active task
to the empty partition. Once the load is complete, the I/O
core updates the active and ready queues of the considered
application core. The latter operation allows the application
core to begin the execution of the task (Slot #2). Note that
since only one task can be in running state on the CPU, there
is always a SPM partition that is available for load/unload
operations.

C. I/O Subsystem Design

Together with memory resources, applications typically
need to communicate with peripherals and thus require I/O
data to operate. We propose an I/O subsystem design that
enforces a complete separation between task execution and the
asynchronous activity of I/O peripherals: this goal is achieved
by offering to application tasks a synchronous view of I/O
data. It is achieved by distinguishing between data production



and their dispatch to/from tasks. In fact, we allow I/O data to
flow from/to I/O subsystem to tasks only at the boundary of
load/unload operations.

As mentioned in Section III, we assume that a dedicated
bus connects the SPM of I/O core with peripherals. Hence,
asynchronous peripheral traffic can reach the I/O subsystem
without interfering with task execution. For each device used
in the proposed system, the OS defines a statically positioned
device buffer on the I/O core scratchpad. A device buffer
is further divided into a input device buffer and a output
device buffer. The input (output) device buffer represents the
position in memory where data produced by devices (tasks) is
accumulated before being dispatched to tasks (devices).

In our design, peripheral drivers can operate with an
interrupt-driven or polling mechanism. For DMA-capable pe-
ripherals supporting interrupt-driven interaction, the driver
only needs to specify the address in SPM of the device buffer
from/to where data are transferred. The driver is also respon-
sible for updating device-specific buffer pointers to prevent a
subsequent data event from overwriting unprocessed data. For
interrupt-driven interaction with non-DMA-capable devices,
the driver uses the platform peripheral DMA to perform data
movement. Similarly, the device driver is periodically activated
and the peripheral DMA is used to perform data transfer for
polling-based interaction with devices.

In general, device-originated interrupts as well as timer
interrupts for device driver activations are prioritized according
to how critical is the interaction with the considered device.
Nonetheless, all the device-related events are served with
priority levels that are lower than task-scheduling events,
such as: (i) TDMA slot timer events and (ii) completion of
application DMA loads/unloads.

In order to interface with a peripheral, application tasks
define subscriptions to I/O flows. A subscription represents
an association between a task and a stream of data at the I/O
device. For instance, a given task could subscribe for all the
packets arriving at a network interface with a specific source
address prefix. Task subscriptions are metadata that are stored
within the task descriptor.

For each task in the system, a pair of buffers (for input
and output respectively) is defined on the SPM of the I/O
core to temporarily store data belonging to subscribed streams.
Since the content of these buffers will be copied to/from the
application cores upon task load/unload, we refer to them as
task mirror buffers. Consider the arrival of I/O data from a
device. As soon as the interaction with the driver is completed,
the arrived data is present in the corresponding device buffer.
According to task subscriptions, the OS is responsible for
copying the input data to all the mirror buffers of those tasks
subscribed to the flow.

The advantage of defining mirror buffers lies in the fact
that when a task needs to be loaded, all the peripheral data
that need to be provided are clustered in a single memory
range. Consequently, during the loading phase of a task, the
application DMA is programmed to copy the content of the
mirror input buffer together with task code and data images
to the application core. The reverse path is followed by task-
produced output data during the task unload phase.

Since I/O data are delivered to applicative tasks at the
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Fig. 4. SPM-centric OS task scheduling. Scheduling intervals are highlighted.

boundary of load/unload operations, the approach presented in
Section V for the calculation of tasks’ response time can be
reused to reason about end-to-end delay of I/O-related events.

V. SCHEDULABILITY ANALYSIS

Given the scheduling strategy described in Section IV, we
can calculate a safe bound on the worst case execution time
based on all tasks’ parameters in an approach similar to [25].
Note that we assume that the task’s execution time, τi.c, is
actually the adjusted execution time in which all the overheads
are included, such as the context-switch and the DMA setup
routines. Also note that for simplicity we discuss the case with
M = 2 cores, since it is used in our prototype, but the analysis
could be trivially extended to account for any number of cores
by changing the length of the DMA operations.

Figure 4 depicts an illustrative example of the worst case
scheduling scenario (critical instant) for an example task set
where τ3 is the task under analysis. The schedule depicts a
busy period where τ3 suffers interference from two higher-
priority tasks, τ1 and τ2. As in [25], we consider the busy
period as composed by a sequence of scheduling intervals
Interval1, Interval2, Interval3, Interval4 (each bounded
by bold vertical lines in the figure), followed by a final
interval IntervalF . During each scheduling interval, only one
blocking or interfering task runs. During the final interval, the
task under analysis runs. Each scheduling interval always starts
with a CPU execution and ends either when the CPU finishes
executing the task or when the next task finishes being loaded
by the DMA, whichever happen last; at this point, the next
interval starts with the execution of the loaded task. The final
interval starts with the execution of the task under analysis
and finishes when the task under analysis is unloaded.

We say that a scheduling interval is CPU-bound when
it ends with CPU execution (ex: Interval1, Interval3 and
Interval4 in the figure), and I/O-bound when it ends with
DMA load operation (ex: Interval2). The length of a schedul-
ing interval is the maximum between the execution time of the
task running in the interval and the DMA operations required
to load the next task. We denote the size of the TDMA slot as
σ; since in the worst case a load/unload operation can occupy
the entire slot, we upper bound the length of DMA operations
as a multiple of σ.

A. Response Time Calculation

Building on the above-mentioned definitions, we can use
the same algorithm detailed in [25] to compute the worst case



response time for the task under analysis, by showing that the
problem is equivalent to the one in [25]. The algorithm in
[25] computes the response time by adding three components:
(1) the blocking time B caused by a lower priority task that
starts executing before the beginning of the busy period; this is
Interval1 executing task τ5 in the figure; (2) the interference
H comprising the remaining scheduling intervals in the busy
period, which are Interval2, Interval3 and Interval4 in the
figure. The number of such intervals is equal to the number of
interfering higher priority jobs plus one, since an extra lower
priority job that starts loading before the beginning of the busy
period (τ4 in the figure) can execute within the busy period
itself; (3) the computation of the task under analysis (τi.c). The
algorithm builds a list of DMA times and computation times
for tasks executed in H , then it derives a provably safe bound
on the length of H using standard response time iteration.

Compared to [25], our solution differs in three aspects. First,
in this work we use fixed-size DMA operations, while [25]
employs dynamic-size DMA operations. Therefore, we need
to discuss how to compute the length of the DMA operations
that are inserted in the list of DMA times. Second, we need
to recompute the length of the blocking time B since the next
task to be loaded is determined at a different time. Finally,
unlike [25], we consider the task under analysis finished when
the task is unloaded, at the end of IntervalF . Consequently,
we can use the same algorithm to compute the worst case
response by replacing τi.c with the length of IntervalF . We
address each point in sequence.

B. Scheduling Intervals in The Busy Period (H)

When the system is busy with both SPM partitions occupied
and at least one pending task, within each interval we need
to first unload the previous partition and then load it with
the next task. Therefore, for any scheduling interval, it will
require four TDMA slots (4 · σ) to load the next task if the
interval was preceded by another I/O-bound interval, such as
for Interval3 in the figure. On the other hand, if the interval
is preceded by a CPU-bound interval, it might require up to
five TDMA slots (5 · σ) to finish loading the next task in the
worst case, as for Interval2. This is because the CPU-bound
interval can induce an unused empty TDMA slot in the next
interval (slot [4:5] in the figure).

As a result, the length of any scheduling interval can be
computed as either max(τ.c, 4 ·σ) or max(τ.c, 5 ·σ). We now
formally prove that for any CPU-bound interval to cause the
worst case scenario, with the exception of the first interval
Interval1, the CPU execution has to be strictly longer than
four TDMA slots (4 · σ).

Lemma 1: For any scheduling interval in H , no extra empty
slot will be induced in the next interval unless the length of
the CPU execution is strictly greater than four TDMA slots
(4 · σ).

Proof:

X X X X X
τ
x

We show that any scheduling interval in H with CPU
execution less than 4 · σ cannot induce an empty slot in the
next interval. By considering the figure above, the execution

of τx in the middle interval is greater than 4 ·σ, and it induces
an empty slot in the next interval. Since both partitions must
be full during the execution of intervals in H , it follows that
the interval to which τx belongs must include both a load and
an unload operation; in the worst case showed in the figure,
the interval could start with the unload operation. Still, clearly
if the execution time of τx is reduced to less than 4 · σ, the
interval will finish before the next slot assigned to the core
under analysis is reached, and hence no empty slot will be
induced. Note that if the execution of τx is reduced further,
it could make the interval into an I/O-bound interval, which
would end right after finishing the load of the next task; thus,
the next interval would not suffer from an empty induced slot
either.

Based on Lemma 1, we can construct the list of DMA times
used by the algorithm as follows: we insert in the list a number
of 5 · σ time values equal to the number of tasks executed in
H with length greater than 4 ·σ, plus one task (to account for
the task in Interval1, which can cause an extra empty TDMA
slot as in the figure). The remaining DMA times in the list
are equal to 4 · σ.

C. Critical Instant and Blocking Time (B)

At the beginning of the example schedule in Figure 4, the
system has two free local SPM partitions at time zero. In
Interval1, the task under analysis τ3 is released along with all
higher-priority tasks after an arbitrarily small time (ε) when all
free partitions have been loaded or have started loading lower-
priority tasks (τ5 and τ4); this is ε after time 2 in the figure.
The task under analysis τ3 cannot run until the pre-loaded
lower-priority tasks (τ5 and τ4) plus all higher-priority tasks
(τ1 and τ2) finish execution. We now prove that the discussed
scenario is indeed the critical instant for our system, leading
to the worst case response time for the task under analysis.

Lemma 2: The critical instant is produced when the task un-
der analysis τi and all higher priority tasks arrive immediately
after a lower priority task has started loading into a partition,
and the other partition was loaded with another lower priority
task as late as possible (i.e., two slots before).

Proof: We first show that in the worst case, both τi and
all higher priority tasks must arrive ε time after the beginning
of a slot where a lower priority task is loaded. If either τi or a
higher priority task would arrive at or before the beginning
of the slot, then such task would be loaded and executed
in place of the lower priority task. Hence, the length of the
busy period would decrease by one scheduling interval, which
cannot produce the worst case response time for τi. If instead
τi arrives some δ time later during the busy period, then the
finishing time of τi would not change, but the response time
of τi would decrease by δ. Finally, if a higher priority task
arrives later during the busy period, the number of interfering
jobs of the task could only be lower or equal compared to
releasing it immediately after the beginning of the slot. Hence,
the described activation pattern must lead to the critical instant.

For what concerns the lower priority task pre-loaded in the
other partition, it suffices to notice that loading the task as late
as possible (i.e., two slots before τi arrives, which is slot [0:1]
in Figure 4) maximizes the amount of execution of the task
within the busy period.



Based on Lemma 2, the worst case blocking time B can
be obtained as the length of Interval1 minus σ, where the
length of Interval1 is bounded by max(τu.c, 2 ·σ); here, τu.c
represents any low priority task executed in Interval1, while
the length 2·σ accounts for the fact that the next task is loaded
in the second slot of the interval (slot [2:3] in the figure).
Similar to [25], since we can make no assumption on which
lower priority tasks execute in Interval1 and Interval2, the
algorithm simply considers the two lower priority tasks with
the longest execution times.

D. Final Interval (F )

The length of the final interval IntervalF can be computed
as max(τi.c+ 5 ·σ, 7 ·σ), where τi is the task under analysis.
In the example depicted in Figure 4, the length of IntervalF
is τ3.c+ 5 · σ. The other case can happen when τ3.c is short
enough and slot [22:33] is utilized, in the worst case, to load
the next task. In this situation, up to seven TDMA slots are
required to finish unloading τ3, as formally proven below.

Lemma 3: The length of IntervalF is upper bounded by
max(τi.c+ 5 · σ, 7 · σ).

Proof: Similar to scheduling intervals in H , we need to
consider two cases: (1) the length of the interval is bounded
by τi.c plus the time required to unload the task; (2) the length
of the interval is bounded by the time required to unload/load
the other partition before unloading τi.c. For the first case,
note that differently from scheduling intervals in H , there
might be no pending task at the start of IntervalF , since the
last task in the busy period (task under analysis) is running.
Therefore, a new job of any task could be release later during
IntervalF and start a load operation. In particular, the new job
could arrive just before the unload of the task under analysis
(τi), as shown in Figure 4. In this case, since there is one
free partition and load operations have priority over unload
operations (Rules 1,2), the new job has to be loaded first; thus,
the unload of τi is delayed by up to 5 · σ in the worst case
(one empty slot plus four other slots, as shown in Figure 4
for slots [22:27]; no more than 5 slots are possible since after
the load at [24:25], both partitions are full and thus an unload
must happen next). In this case the length of IntervalF is
upper bounded by τi.c+ 5 · σ.

The following figure shows the other case where the length
of IntervalF is 7 · σ in the worst case. This case happens
when the execution of the task under analysis is very small to
the point that τi.c+ 5 · σ is smaller than the required number
of TDMA slots to actually unload τi. When CPU execution
of τi is sufficiently small, the load of the next task has to be
after 5 · σ at most regardless of the release time of the next
task, otherwise τi would be unloaded by the fifth slot. If the
next task is indeed loaded before the unload of τi as shown
in the figure, then in the worst case it takes two more slots to
unload τi (given that both partitions are full after loading the
next task), hence resulting in a bound of 7 ·σ. To conclude, by
taking the maximum of the two cases we guarantee to capture
the worst case.

X X X X X X X
τ
i

TABLE III
CHARACTERISTICS OF FREESCALE MPC5777M SOC

Chip Name MPC5777M (Matterhorn)
Manufacturer Freescale
Architecture Power-PC, 32-bit

CPU Unit 2x E200-Z710 + 1x E200-Z709 +
1x E200-Z425 (I/O)

Processing Unit CPUs, DMA, Interrupt Controller, NIC
Operational Modes Parallel + Lockstep (on one applicative core)
ECC Protection Cache, RAM, Flash Storage

Cache Hierarchy L1 (Private Instructions + Data) +
Local Memory

Local Memory (SPMs) Instructions (16 KB) + Data (64 KB)
L1 Cache Size Instructions (16 KB) + Data (4 KB)
SRAM Size 404 KB
Flash Size 8 MB
Main Peripherals Ethernet, FlexRay, CAN, I2C, SIUL

VI. IMPLEMENTATION

In this section, we provide the details of SPM-centric
OS implemented using a COTS platform that supports the
hardware assumptions described in Section IV.

A. Architectural Overview of Considered Platform

For the implementation, we used a Freescale MPC5777M
micro-controller unit (MCU). This MCU is the most advanced
SoC in the Freescale MPC line as of Q4 2015. A brief
summary of the architectural features of the MPC5777M MCU
is provided in Table III. The chip includes four processors:
two E200Z710 application cores operating at 300 MHz and a
single E200Z425 I/O core. An additional non-programmable
core is included for delayed lockstep operation.

Each core features private, globally accessible scratchpads
for instructions and data, with a size of 16 KB and 64 KB
respectively. No MMU is available on this platform. Hence,
there is no support for virtual memory. Application cores can
directly access the SRAM through a dedicated bus. A separate
and slower bus is dedicated for transferring peripheral data
to/from the I/O core.

B. Implementation of SPM-centric OS using Erika Enterprise

The proposed SPM-centric OS was implemented using
Evidence Erika Enterprise4. Erika Enterprise is an open-source
RTOS that is compliant with the AUTOSAR5 (Automotive
Open System Architecture) standard. AUTOSAR is an open
standard for automotive architectures providing a basic in-
frastructure for vehicular software. Erika Enterprise features a
small memory footprint, supports multi-core platforms and im-
plements common scheduling policies for periodic tasks. We
performed a porting of Erika Enterprise on the MPC5777M
MCU, adding support for UART communication interface,
interrupt controller, caches, memory protection unit (MPU),
data engines (DMA), and Ethernet controller.

In order to implement our SPM-centric OS, we have
augmented Erika Enterprise to support position-independent
(relocatable) tasks. We rely on the compiler6 support for
far-data and far-code addressing modes. In this way,
tasks are compiled to perform program-counter-relative jumps
and indirect data addressing with respect to an OS-managed

4http://erika.tuxfamily.org/drupal/
5http://www.autosar.org/
6Applications and OS are compiled using the WindRiver Diab Compiler

version 5.9.4 - http://www.windriver.com/products/development-tools/



base register. We have extended the default task loader to
exploit DMAs for transferring task images from SRAM to
local memories and vice-versa. Similarly, the OS scheduler
has been adapted to implement the strategy discussed in
Section IV.

In Erika Enterprise, tasks are compiled and linked directly
inside the image of the OS. For each task in the system, Erika-
specific meta-data need to be defined. Additionally, meta-data
that extend the task descriptors for SPM-centric operations
are required. Manually configuring these parameters is tedious
and error-prone; hence, we developed an OS configurator. The
tool uses high-level task definitions and generates the final
configuration for our SPM-centric OS. Specifically, each core
is associated with a set of configuration files that describe:
number of tasks, their priority, task entry points, initial status
and so on. When a task is added, these files need to be
configured accordingly.

First, the body of all the tasks is placed in an ad-hoc file.
Similarly, task-specific data that need to be preserved across
activations are defined in different files and surrounded with
appropriate compiler-specific PRAGMA. This is fundamental
to ensure that: (A) specific linker section is used to store
task code and data images; and (B) position-independent data
and instructions are generated. A separate file also defines
the relocatable task table, which stores the status of each
relocatable task. This structure includes: (A) position in SRAM
of the task code and data images; (B) position of the task’s
I/O data buffers; (C) current status of the task (e.g. loaded,
completed, unloaded); (D) SPM partition of last relocation.

VII. EVALUATION
To validate the proposed design and implementation, we

performed a series of experiments, whose results are sum-
marized in this section. First we investigate the overhead of
SPM management. Next, we consider the performance and
predictability benefits of our approach with synthetic as well
as real benchmarks. The achievable I/O bandwidth supported
by our design is also measured. Finally, we investigate the
schedulability results of the proposed strategy.

A. SPM-Centric OS Overhead Evaluation
A crucial parameter of the proposed system is the size of

the TDMA slot. This should be long enough to allow the
completion of a load (or unload) operation for the task with the
largest footprint in the system. However, in order to derive an
upper-bound, we assume that a task footprint is constrained by
the size of an SPM partition. Thereby, we measured the time
to copy from/to half SPM (one partition) of an applicative
core and derive the TDMA slot size accordingly. The results
are reported in Table IV.

The application DMA needs to be programmed by the I/O
Core to perform task relocation. Hence, DMA programming
time represents an overhead introduced by our design. The
time required to program the DMA has been measured and is
reported in Table IV. Similarly, Table IV reports the measured
context-switch overhead of the implemented scheduler.

B. Results of Achievable I/O Bandwidth
The performance of the proposed I/O subsystem (see Sec-

tion IV-C) depends on the frequency of load/unload opera-
tions. In order to measure the achievable I/O bandwidth of

TABLE IV
DETAILS OF OS PARAMETERS

Parameter Time (µs)
Partition load time 432

Partition unload time 432
DMA setup 3.16

Context switch 0.46

Fig. 5. Experimental execution time for synthetic benchmarks.

the proposed design, we have implemented support for the
onboard Fast Ethernet Controller (FEC). The FEC is capable
of transmitting data at the highest bandwidth among all the
devices of the considered MCU. Hence, it represents the best
I/O component to stress-test our design.

We have connected the FEC to an external node which
generates constant-rate traffic. Specifically, the traffic source
generates a 1 KB packet every 100 µs (1000 Hz, about
82 Mb/s). The payload of each packet contains a flow-ID
chosen from 4 different values in round-robin. On used MCU,
each applicative core runs two tasks that have subscribed to I/O
data flows based on packets’ flow-IDs. Device buffers and task
(mirror) I/O buffers have been dimensioned to accommodate
a single packet per task, with an overwrite policy.

With this setup, we have derived the raw achievable band-
width considering two different values of TDMA slot size.
Specifically, we measured the data rate of packets that are
processed and looped back on the network interface using
the Wireshark packet analyzer7. Our experiments revealed
an achievable bandwidth for the outgoing traffic of 4 Mb/s
with a TDMA slot of 800 µs, and 8 Mb/s with a TDMA
slot of 400 µs. Although this represents a fraction of the
physically available bandwidth (100 Mb/s), being able to
sustain a bandwidth higher than 1 Mb/s constitutes a promising
result given that the platform operates at a clock frequency of
few hundred Hz.

C. Results of Synthetic Benchmarks

We investigate the performance of SPM-based execution as
opposed to a traditional execution model. For this purpose,
we have developed a set of synthetic benchmarks that exhibit
different memory access patterns. Figure 5 depicts the runtime
for such benchmarks on one of the two applicative cores. The

7https://www.wireshark.org/



Fig. 6. Experimental execution time for EEMBC benchmarks.

first cluster of bars refer to the runtime of the benchmark that
exhibits good data locality. Hence, when it is executed from
SRAM, caches are effective at hiding SRAM access latency
and significantly reduce task execution time. The next two
clusters of bars show that misses suffered for only instruction
fetches or only data fetches already induce a significant exe-
cution slowdown (around 2x). The need for accessing SRAM
data also introduces runtime fluctuation (about 25%) as a result
of inter-core interference. Such effect becomes even more
severe with applicative code that experiences misses while
accessing both instructions and data. If the cost of accessing
SRAM memory together with the slowdown due to inter-
core interference are considered, an overall 3.5x slowdown
is experienced when compared to what has been observed in
the ideal case (100% cache hits). Finally, notice that if a task
is able to entirely execute from scratchpad, its execution time
is comparable to the ideal case and inter-core interference is
prevented. These results are a strong motivation to best use
available scratchpads in order to improve performance and
avoid inter-core interference.

D. Results of EEMBC Benchmarks
Next, we investigate the behavior of EEMBC benchmarks

on the selected platform. For this purpose, we have ported
and measured the execution time of the full suite of auto-
motive EEMBC benchmarks under two scenarios: traditional
contention-based execution from SRAM and the proposed
SPM-based execution. The results of normalized execution
times are shown in Figure 6. From the results, we note that
computation intensive benchmarks do not benefit from SPM-
based execution. Conversely, for memory intensive bench-
marks SPM-based execution determines substantial speed-ups
(up to 2.1x).

Table V shows the execution time of the full suite of
EEMBC automotive benchmarks. Furthermore, Table V also
provides the footprint size of the considered benchmarks. It
can be noted that all the considered benchmarks fit into a single
scratchpad partition. These results validate the applicability of
the proposed design in real scenarios.

E. Schedulability Analysis

For the schedulability evaluation of our approach, we com-
pare our system against the contention-based system, in which
cores use caches but are left unregulated when accessing main
memory. Standard response time analysis is applied on both
our system and the contention-based system for the same

TABLE V
DETAILS OF EEMBC BENCHMARKS.

Benchmark SPM
Time
(µs)

SRAM
Time
(µs)

Code Size
(bytes)

Relocatable
Code Size
(bytes)

Data Size
(bytes)

tblook 1013 1015 1804 1892 10516
matrix 1053 1054 4430 4774 4488
a2time 1002 1029 2175 2538 1704
pntrch 1036 1145 1000 1398 4924
ttsprk 383 425 4124 4772 8160
iirflt 1040 1189 3288 3512 1000

canrdr 1009 1359 1370 1562 12440
bitmnp 990 1389 3152 3282 1116
rspeed 1012 1457 710 1208 13212
puwm 1036 1540 1716 2500 2412
aifirf 1005 1564 1554 2286 1552
aifftr 916 1642 3720 4458 8448
aiifft 1170 2092 2796 3540 9224
idct 1045 2126 4498 4690 244
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Fig. 7. Schedulability with SPM-based and traditional scheduling models.

simulated workload. We have considered the applications in
Table V to generate sets of random tasks (workloads). Given
a system utilization, each application is randomly selected and
assigned a random period in the range between 10 ms to
100 ms. The task’s utilization is then computed based on the
measured execution time of each application and its selected
period. At every iteration a new task is randomly generated.
The generation stops when the sum of the individual tasks’
utilizations reaches the required system utilization. After that,
the overhead is added, such as context-switch and DMA setup.
For the contention-based system, the execution times reported
in SRAM column in Table V are used to represent the worst-
case execution time including the contention overhead.

Figure 7 shows the result of the schedulability analysis
when using the proposed SPM-centric OS versus a contention
based SRAM system. The figure shows the results in terms of
proportion of schedulable task sets for both approaches. Each
point in the graph represents 1000 task sets. The results show
that the schedulability of the system increases significantly
when the proposed SPM-centric approach is used. Hence, the
described SPM-centric OS not only improves the predictability
of task execution, but it also improves task set schedulability
by hiding the main memory access latency, especially for
memory intensive applications.

VIII. CONCLUSION

In this paper, we presented a novel OS design, namely
SPM-centric OS. Proposed SPM-centric OS aims at providing
predictability for hard real-time applications on multi-core
embedded systems. In order to achieve this goal, we com-
bined resource specialization, high-level scheduling of shared



hardware resources as well as a three-phases task execution
model. Theoretical results on how to perform schedulability
analysis of the proposed scheduling strategy were presented.
A complete implementation using a commercially available
multi-core platform was also performed to assess the feasibil-
ity of our design.

Finally, in order to validate proposed OS design, we have
combined experimental results from synthetic and automotive
EEMBC benchmarks on the considered platform. In addition
to the strong temporal predictability achieved by enhancing
inter-core isolation, we are able to exploit the performance
benefits of scratchpad memories. Hence, a schedulability im-
provement over traditional contention-based approaches was
obtained. As part of our future work on SPM-centric OS, we
plan to investigate the following aspects: support for task pre-
emption, inter-process communication, and compliance with
standard application interfaces (e.g. AUTOSAR, POSIX).
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