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• ML models commonly used to make predictions that aid institutions in decision-making

• Two key assumptions in supervised learning:

• data is iid

• data is obtained from a fixed distribution (future is like the past)

• Distribution shift and sample bias have been widely studied

• ML predictions themselves can affect behavior of the population they are trying to predict

• Such changes can manifest as a shift in the data-generating distribution

• Distributions are decision-dependent, or predictions are performative

• Common heuristic in practice: retraining. Does it converge? What does it converge to?
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Will a loan applicant 

default? 

Will a user respond well 

to recommendations?

Will a candidate perform 

well in this job?
Is this email scam?

Loan applicants 

strategically manipulate 

credit card usage

User preferences shift as 

they interact with 

recommended items. 

Job applicants tailor 

resumes to resume-

parsing algorithms.

Scamming becomes

more sophisticated

Performativity



Performative prediction in a stateful world

Overview
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• [Perdomo Zrnic Mendler-Dünner Hardt '20]: data 

distribution is a deterministic function of 

the currently public classifier 𝜃 → 𝑓 𝜃

[Drusvyatskiy Xiao '20] [Izzo Ying Zou '21] 

[Mendler-Dünner Perdomo Zrnic Hardt '20] 

[Miller Perdomo Zrnic '21] [Dong Ratliff '21] 

[Maheshwari Chiu Mazumdar Sastry Ratliff '21]

[Jagadeesan Mendler-Dünner Hardt '21]

• framework has no memory of previous 

classifiers / distributions

• once classifier is fixed, the distribution

does not change

• incorporate state: data distribution is 

function of the classifier and previous 

distribution

• decision-dependent distributions in a 

dynamic environment

[This work '20] 

[Wood Bianchin Dall'Anese '21] 

[Li Wai '21]

[Ray Ratliff Drusvyatskiy Fazel '21] 

Commonalities:

- Supervised learning setting

- Institution uses empirical risk 

minimization

- Study retraining heuristics

- Provide formal guarantees about

convergence of such heuristics

e.g., unemployment benefits depend 

on number of children



• Describe our performativity framework

• Describe our results within the framework

• Describe a simulation on credit loan applicants

• Open questions
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Plan
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Publish classifier 𝜃𝑡

Receive sampes from 𝑑𝑡

Institution
World

Train classifier 𝜃𝑡 with 

data drawn from 

distribution 𝑑𝑡−1

Distribution shifts to

𝑑𝑡 = 𝑓(𝜃𝑡)

[Perdomo Zrnic Mendler-Dünner Hardt '20] 

RRM

chose 𝜃𝑡+1 so 

that it minimizes 

loss on 𝑑𝑡

Suffer loss 𝔼[ℓ 𝑑𝑡; 𝜃𝑡 ]

Performativity without State
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Publish classifier 𝜃𝑡

Receive sampes from 𝑑𝑡

Institution
World

Train classifier 𝜃𝑡 with 

data drawn from 

distribution 𝑑𝑡−1

Distribution shifts to

𝑑𝑡 = 𝑓(𝜃𝑡)

[Perdomo Zrnic Mendler-Dünner Hardt '20] 

RRM

chose 𝜃𝑡+1 so 

that it minimizes 

loss on 𝑑𝑡

Suffer loss 𝔼[ℓ 𝑑𝑡; 𝜃𝑡 ]

This model is memoryless:

• the current distribution has no dependence on previously deployed classifiers

• no dependence on previous distributions

• if the classifier stays the same, the distribution never changes

Performativity without State



1. There are scenarios where to model updated distribution, we also need information 

about previous distribution

2. Information propagates at different rates, so it takes time for distribution to settle
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Every day, commuters 

choose between train or 

car based on projected 

traffic. 
Stateless

College admission criteria 

change over the years, but 

information propagates at 

different rates across high 

schools. Stateful

Consumers modify credit 

card usage to improve their 

credit score

Stateful

Performativity with State
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Publish classifier 𝜃𝑡

Receive sampes from 𝑑𝑡

Institution
World

Train classifier 𝜃𝑡
with data from 𝑑𝑡−1

Update

𝑑𝑡 = Tr(𝑑𝑡−1, 𝜃𝑡)

Transition map is 

fixed and 

unknown to 

institution

Transition map is 

deterministic

Suffer loss 𝔼[ℓ 𝑑𝑡; 𝜃𝑡 ]

RRM

chose 𝜃𝑡+1 so 

that it minimizes 

loss on 𝑑𝑡

Assume 𝜃 ∈ ℝ𝑛

Performativity with State
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Publish classifier 𝜃𝑡

Receive sampes from 𝑑𝑡

Institution
World

Train classifier 𝜃𝑡
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RRM

chose 𝜃𝑡+1 so 

that it minimizes 

loss on 𝑑𝑡

Assume 𝜃 ∈ ℝ𝑛

Questions about the framework?

Transition map is 

fixed and 

unknown to 

institution

Transition map is 

deterministic

Performativity with State



k Groups Respond Slowly 

• Assume there is a best response function 𝑓 𝜃 as in [Perdomo Zrnic Mendler-Dünner Hardt '20]: 

Geometric Decay 

• Assume there is a best response function 𝑓 𝜃 as in [Perdomo Zrnic Mendler-Dünner Hardt '20]: 

Tr 𝑑𝑡−1, 𝜃𝑡 = 1 − 𝛿 𝑑𝑡−1 + 𝛿𝑓(𝜃𝑡) for 𝛿 ∈ 0,1

• Setting studied in [Ray Ratliff Drusvyatskiy Fazel '21]

Markov transitions

• Tr 𝑑, 𝜃 = 𝐴𝜃𝑑, where 𝐴𝜃 is a stochastic matrix.

• Studied in [Li Wai '21] 10

Group 1

Group 2

Group 3

React to 𝜃𝑡: 𝑓(𝜃𝑡)

React to 𝜃𝑡−1: 𝑓 𝜃𝑡−1

React to 𝜃𝑡−2: 𝑓 𝜃𝑡−2

𝑑𝑡

Theoretical Examples



✓Describe our performativity framework

• Describe our results within the framework

• Describe a simulation on credit loan applicants

• Open questions
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Plan



• How do we define an optimal strategy – ideally no dependence on initialal distribution 𝑑0

• Applying the same classifier can cause e.g., alternation between two distributions

• Require the transition map to be contractive (𝜀-Lipschitz with 𝜀 < 1) w.r.t. to 𝜃:

• Iterated application of the same classifier causes sequence of distributions to converge

• Given 𝜃, let 𝑑𝜃 be (unique) fixed-point distribution for 𝜃 (Banach's fixed point theorem)
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𝒲1(Tr 𝑑, 𝜃 , Tr 𝑑′, 𝜃 ) ≤ 𝜀𝒲1(𝑑, 𝑑
′)

𝑑
Tr(⋅, 𝜃)

𝑑′
Tr(⋅, 𝜃)

Tr(⋅, 𝜃)

𝑑 𝑑𝜃

Tr(𝑑𝜃 , 𝜃) = 𝑑𝜃
Tr(⋅, 𝜃)

Optimal Pair



• Given 𝜃, let 𝑑𝜃 be (unique) fixed-point distribution for 𝜃 (Banach's fixed point theorem)

• For each 𝑑𝜃 , 𝜃 evaluate 𝔼[ℓ 𝑑𝜃; 𝜃 ]

• Choose pair that minimizes this quantity

𝜃𝑜𝑝 = argmin 𝜃∈Θ 𝔼[ℓ 𝑑𝜃; 𝜃 ]
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Tr(⋅, 𝜃)

𝑑 𝑑𝜃

Optimal pair

Optimal Pair



• Given 𝜃, let 𝑑𝜃 be (unique) fixed-point distribution for 𝜃 (Banach's fixed point theorem)

• For each 𝑑𝜃 , 𝜃 evaluate 𝔼[ℓ 𝑑𝜃; 𝜃 ]

• Choose pair that minimizes this quantity

𝜃𝑜𝑝 = argmin 𝜃∈Θ 𝔼[ℓ 𝑑𝜃; 𝜃 ]

• If institution applies 𝜃𝑜𝑝 repeatedly from the beginning, it converges to 𝑑𝜃𝑜𝑝at linear rate

• … and achieves smallest loss as compared to all single-classifier strategies

• Optimal points always exist if Tr map is contractive
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Optimal pair

Tr(⋅, 𝜃)

𝑑 𝑑𝜃

Questions about optimality?

Optimal Pair



• Institution does not know Tr map a priori, so it cannot directly calculate 𝜃𝑜𝑝

• Unfortunately, RRM does not converge to 𝜃𝑜𝑝

• Instead, we show conditions so that RRM can converge to a pair that is near (𝑑𝑜𝑝, 𝜃𝑜𝑝)

• Convergence is to a stable pair (𝑑𝑠, 𝜃𝑠)

• 𝜃𝑠 is the best classifier for 𝑑𝑠 (no need to retrain)

Stable Pair
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𝑑 𝑑′
𝑇𝑟(⋅, 𝜃)

𝑑 𝑑′′
RM

Train 𝜃 on 𝑑
𝑑′′ = Tr(𝑑, 𝜃)

RM

Stable pair

Tr(⋅, 𝜃𝑠)

Optimal pair

𝑑𝑜𝑝
Tr(⋅, 𝜃𝑜𝑝)

𝑑𝑠



• Institution does not know Tr map a priori, so it cannot directly calculate 𝜃𝑜𝑝

• Unfortunately, RRM does not converge to 𝜃𝑜𝑝

• Instead, we show conditions so that RRM can converge to a pair that is near (𝑑𝑜𝑝, 𝜃𝑜𝑝)

• Convergence is to a stable pair (𝑑𝑠, 𝜃𝑠)

• 𝜃𝑠 is the best classifier for 𝑑𝑠 (no need to retrain)

• Whereas 𝜃𝑜𝑝 is not necessarily the best classifier for 𝑑𝑜𝑝

• Stable pairs need not always exist (even if Tr map is contractive) 

Stable Pair
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Optimal pair
𝑑 𝑑′

𝑇𝑟(⋅, 𝜃)

𝑑 𝑑′′
RM

Train 𝜃 on 𝑑
𝑑′′ = Tr(𝑑, 𝜃)

𝑑𝑠

RM

Stable pair

Tr(⋅, 𝜃𝑠)

RM

𝑑𝑜𝑝
Tr(⋅, 𝜃𝑜𝑝)

Questions about stability?



For each 𝜃, the fixed-point distribution is 1 + 𝜀𝑑𝜃 + 𝜀𝜃 = 𝑑𝜃 ⇒ 𝑑𝜃 =
1+𝜀𝜃

1−𝜀

Example. Distributions 𝑑 are point mass over [1,∞). Suppose 𝑑0 = 1. 

Tr 𝑑, 𝜃 = 1 + 𝜀𝑑 + 𝜀𝜃. Loss function is 𝑦 − 𝜃 2. 𝜃 ∈ [1,∞). 𝜀 < 1
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1 + 2𝜀 + 4𝜀2

Optimality: Amongst all 𝜃 ∈ [1,∞), choose the one that 

minimizes 

𝑔 𝜃 = 𝔼[ 𝑑𝜃 − 𝜃 2] = 
1+𝜀𝜃

1−𝜀
− 𝜃

2

Suppose 𝜀 = 0.6

• The optimal pair is 𝜃𝑜𝑝 = 1, 𝑑𝑜𝑝 =
1.6

0.4

• A stable pair does not exist 

𝑑𝑡 = ∑ 2𝜀 𝑡

𝜃1 = 1

𝑑0 = 1 1 + 2𝜀

1 + 2𝜀

𝜃

𝑔 𝜃

RM

𝑑𝑡 = ∑ 2𝜀 𝑡 𝑑𝑡+1 = ∑ 2𝜀 𝑡+1

Example



For each 𝜃, the fixed-point distribution is 1 + 𝜀𝑑𝜃 + 𝜀𝜃 = 𝑑𝜃 ⇒ 𝑑𝜃 =
1+𝜀𝜃

1−𝜀

Example. Distributions 𝑑 are point mass over [1,∞). Suppose 𝑑0 = 1. 

Tr 𝑑, 𝜃 = 1 + 𝜀𝑑 + 𝜀𝜃. Loss function is 𝑦 − 𝜃 2. 𝜃 ∈ [1,∞). 𝜀 < 1

Example
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Optimality: Amongst all 𝜃 ∈ [1,∞), choose the one that 

minimizes 

𝑔 𝜃 = 𝔼[ 𝑑𝜃 − 𝜃 2] = 
1+𝜀𝜃

1−𝜀
− 𝜃

2

Suppose 𝜀 = 0.4

• The stable pair is 𝑑𝑠, 𝜃𝑠 =
1

1−2𝜀

• Optimal pair is the same

𝜃

𝑔 𝜃

RM

𝑑𝑠 =
1

1 − 2𝜀
Tr(⋅, 𝜃𝑠)

1 + 2𝜀 + 4𝜀2 𝑑𝑡 = ∑ 2𝜀 𝑡

𝜃1 = 1

𝑑0 = 1 1 + 2𝜀

1 + 2𝜀



Conditions for RRM to converge to a stable pair:

• Loss function is smooth (w. parameter 𝛽)

• Loss function is strongly convex in 𝜃 (w. parameter 𝛾)

• Transition map is jointly 𝜀-Lipschitz

• 𝜀 1 +
β

𝛾
< 1

Thm 1. If above conditions hold, RRM converges to a stable pair at a linear rate, i.e., it comes 

within distance 𝛿 of a stable pair after 

1 − 𝜀 1 +
β

𝛾

−1

O(log
1

𝛿
) steps
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𝒲1 Tr 𝑑, 𝜃 , Tr 𝑑′, 𝜃′ ≤ 𝜀𝒲1 𝑑, 𝑑′ + 𝜀 𝜃 − 𝜃′ 2

Gradient ∇𝜃ℓ 𝑧, 𝜃 is 𝛽-Lipschitz in 𝑧

RM 

𝑑0

𝑑0

𝑑𝑠𝜃𝑠

Convergence to Stable Pair



Thm 2. Suppose:

• loss function ℓ 𝑧, 𝜃 is 𝐿𝑧-Lipschitz in 𝑧 and 𝛾-strongly convex

• transition map is 𝜀-jointly Lipschitz with 𝜀 < 1

For all 𝜃𝑠 and 𝜃𝑜𝑝 it holds 

𝜃𝑜𝑝 − 𝜃𝑠 2
≤

2𝐿𝑧𝜀

𝛾 1 − 𝜀

20

𝑑0

𝑑0

𝑑𝑠

𝜃𝑠

𝑑𝑜𝑝 𝜃𝑜𝑝

Convergence near Optimal Pair



Example. Distributions 𝑑 are point mass over [1,∞). Suppose 𝑑0 = 1. 

Tr 𝑑, 𝜃 = 1 + 𝜀𝑑 + 𝜀𝜃. Loss function is 𝑦 − 𝜃 2. 𝜃 ∈ [1,∞). 𝜀 < 1

Example
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1 + 2𝜀 + 4𝜀2 𝑑𝑡 = ∑ 2𝜀 𝑡

𝜃1 = 1

𝑑0 = 1 1 + 2𝜀

1 + 2𝜀

The loss function is 𝛽-jointly smooth and 𝛾-strongly convex with 𝛽 = 𝛾 = 2

If 𝜀 <
1

1+𝛽/𝛾
=

1

2
, RRM converges to stable distribution and classifier 

1

1−2𝜀

If 𝜀 >
1

2
, RRM diverges



• Delayed RRM is a "lazier" algorithm for convergence to a stable point

• Uses the fact that the transition map is contractive

• Potentially fewer retraining rounds

• Speed of convergence is 𝑂 log2
1

𝛿
, i.e., square of speed of convergence of RRM

• RRM make progress towards a fixed-point distribution and a stable pair at the same time 22

Repeat 𝑂 log
1

𝛿
times:

• Repeatedly deploy the same 𝜃 until distribution approaches 𝑑𝜃 within radius 𝑂 log
1

𝛿

• Perform empirical risk minimization on 𝑑

𝜃1𝜃1 𝜃1

𝑑𝑠

𝜃2𝜃2 𝜃2

𝑑0

𝜃0 𝜃0 𝜃0

RRM vs Delayed RRM



Thm 1. If the loss function is 𝛾 −strongly convex and 𝛽-smooth, and the transition map is 𝜀-

jointly Lipschitz, then for 𝜀 small enough, RRM converges to a stable point at linear rate.

Thm 2. If the loss function is 𝛾 −strongly convex and 𝐿𝑧-Lipschitz, and the transition map is 

𝜀-jointly Lipschitz with 𝜀 < 1, all stable points are near optimal points. 

• Institution chooses the loss function

• No clear way to measure Lipschitzness of transition map

• Do provide some assurance that retraining converges (fast enough) to a desirable outcome
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Summary of Results



✓Describe our performativity framework

✓Describe our results within the framework

• Describe a simulation on credit loan applicants

• Open questions

24

Plan



• Semi-synthetic data on loan applicants from Kaggle's GiveMeSomeCredit dataset

• Bank tries to predict whether applicant will default, using logistic regression

• Initial state of the world is determined by the dataset (11 features x 18k rows)

• Individuals update their features strategically but in the delayed fashion of k-Groups 

Respond Slowly

• Best-response of an individual is based on a utility and cost function

25

𝜀 controls strength of strategic response

Lower 𝜀 → Higher cost → Less performativity

𝑢 𝑥 = −⟨𝜃, 𝑥⟩ 𝑐 𝑥, 𝑥′ =
1

2𝜀
𝑥′ − 𝑥 2

2

maximize 𝑢 𝑥′, 𝜃 − 𝑐(𝑥′, 𝑥)

Simulation on Loan Applicants
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React to 𝜃1: 𝑑1

𝑑0

𝑑0 𝑑0

Group 1

Group 2

Group 3

𝑑0

𝑑0

𝑑0

Timestep 0 Timestep 1 Timestep 2

Train and 

publish 𝜃1

Classify with 𝜃1
Receive updated data

Train and publish 𝜃2

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

React to 𝜃2: 𝑑2

React to 𝜃1: 𝑑1

Timestep 3

Group 1

Group 2

Group 3

React to 𝜃3: 𝑑3

React to 𝜃2: 𝑑2

Classify with 𝜃2
Receive updated data

Train and publish 𝜃3

React to 𝜃1: 𝑑1

𝜃1 𝜃2 𝜃3

Simulation on Loan Applicants - RRM
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Group 1

Group 2

Group 3

𝑑0

𝑑0

𝑑0

Timestep 0 Timestep 1 Timestep 2

Train and 

publish 𝜃1

Group 1 Group 1

Group 2

Group 3

Timestep 3

Group 1

Group 2

Group 3

𝜃1

React to 𝜃1: 𝑑1

Group 2

Group 3

𝑑0

𝑑0

Classify with 𝜃1
Publish 𝜃1

𝑑0

𝑑1

React to 𝜃1: 𝑑1

Classify with 𝜃1
Publish 𝜃1

𝜃1 𝜃1

React to 𝜃1: 𝑑1

𝑑1

𝑑1

Classify with 𝜃1
Receive updated data

Train and publish 𝜃2

Simulation on Loan Applicants – Delayed RRM



28

Convergence to a stable point for 3 different values of 𝜀

In Delayed RRM the classifier is 

the same for 3 rounds, so we 

only consider retraining rounds 

Simulation on Loan Applicants
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From the perspective of the groups – desirable outcomes achieved

• Up until convergence, Group 1 benefits more from strategic response than other groups

• With Delayed RRM, the benefit of Group 1 (and other groups) is slightly higher

• After convergence, negative rate settles to the same value for all groups

Simulation on Loan Applicants



✓Describe our performativity framework

✓Describe our results within the framework

✓Describe a simulation on credit loan applicants

• Open questions
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Plan



• We consider full access to distribution – what happens when sample is finite?

[Perdomo Zrnic Mendler-Dünner Hardt '20] [Ray Ratliff Drusvyatskiy Fazel '21]

• Can we use stochastic methods to converge?

[Drusvyatskiy Xiao '20] [Mendler-Dünner Perdomo Zrnic Hardt '20] [Wood Bianchin Dall'Anese '21]

• Can we converge to an optimal point (as opposed to near the optimal point)

[Izzo Ying Zou '21][Miller Perdomo Zrnic '21] [Ray Ratliff Drusvyatskiy Fazel '21]

• Can we learn something about the transition function & use this information? [Miller 

Perdomo Zrnic '21]

• Reinforcement learning approaches?

• Is the optimal point desirable?

• In a recommender system setting, retraining can push towards distributions where users have 

more extreme and less diverse preferences (fewer items are consumed)

• What if instead of fixed points, cycling between a few states is good enough? 31

Open Questions



Thank you!

32



Example. 

• 𝑑𝜃 = 𝒩(0, 1) if 𝜃 ≠ 0

• 𝑑𝜃 = point mass at 0.1 if 𝜃 = 0

• Loss function is 𝑦 − 𝜃 2

Optimal 𝜃 minimizes 𝔼[ 𝑑𝜃 − 𝜃 2] ⇒ 𝜃𝑜𝑝 = 0

But 𝜃 = 0 is not stable, since 𝜃 = 0 does not minimize loss on point mass distribution at 0.1

And any 𝜃 ≠ 0 is stable, since it achieves loss 1, which is minimum loss on 𝑑𝜃 = 𝒩(0, 1)

⇒ Institution would prefer to play 𝜃 = 0

⇒ Might have to settle for a stable point 

Stable Points vs Optimal Points
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𝜃 ≠ 0 𝜃 = 0

Distribution 𝑑𝜃 Distribution 𝑑𝜃


