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Undirected

• Margulis ‘74

• Talagrand ‘93
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Directed

• Chakrabarty and Seshadhri ‘13

• Khot, Minzer, Safra ‘15

For Boolean functions on the hypercube: 𝑓: 0,1 𝑑 → {0,1}.

We generalize these inequalities to real-valued functions: 𝑓: 0,1 𝑑 → ℝ.

Motivation:

• To understand the structure of real-valued functions. 

• To improve sublinear algorithms for monotonicity.

Overview 



1. Explain our results in monotonicity testing. 

2. Give some background on the inequalities. 

3. Prove our generalized inequalities.  

Plan 
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• Hypercube has 2𝑑 vertices, the points in 0,1 𝑑.

• 𝑥 → 𝑦 is an edge if:

• 𝑥𝑖 = 0, 𝑦𝑖= 1

• 𝑥𝑗 = 𝑦𝑗 for all 𝑗 ∈ 𝑛 \{𝑖}

• 𝑓 is monotone if the value of 𝑓 along every edge does not decrease. 

• Edge 𝑥 → 𝑦 is influential if 𝑓 𝑥 ≠ 𝑓(𝑦).

• Edge 𝑥 → 𝑦 is violated if 𝑓 𝑥 > 𝑓 𝑦 .
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• Let 𝐝𝐢𝐬𝐭(𝒇,𝐦𝐨𝐧𝐨) denote the distance of 𝑓 to monotonicity 

• 𝐝𝐢𝐬𝐭(𝒇,𝐦𝐨𝐧𝐨) = least number values of 𝑓 that need to be changed to make 𝑓
monotone
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dist(𝑓,mono) = 3dist(𝑓,mono) = 0
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• Monotonicity testing:
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algorithmFunction 𝑓

𝑥

𝑓(𝑥)

• Accept if 𝑓 monotone

• Reject whp if far from 

monotone: 

𝐝𝐢𝐬𝐭(𝒇, 𝐦𝐨𝐧𝐨)≥ ε ⋅ 2𝑑

• Approximating distance to monotonicity:

o Given oracle access to 𝑓 s.t. dist 𝑓,mono ≥ 𝛼 ⋅ 2𝑑 . 

o Achieves 𝒄-approximation if it returns estimate Ƹ𝜀 that whp: 

dist 𝑓,mono ≤ Ƹ𝜀 ≤ 𝒄 ⋅ dist 𝑓,mono

can turn this into additive error

Algorithmic tasks 

[Rubinfeld Sudan '96] [Goldreich Goldwasser Ron '98]

[Goldreich Goldwasser Lehman Ron Samorodnitsky ’00]

[Parnas, Ron, Rubinfeld '06], [Fattal, Ron '10]

𝜀α

Estimate Ƹ𝜀



Extensively studied problem [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan '00][Dodis Goldreich Lehman Raskhodnikova '99][Lehman Ron '01][Ailon 

Chazelle '06][Fischer '04][Halevy Kushilevitz '08][Batu Rubinfeld White '05][Ailon Chazelle Seshadhri Liu '07][Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff '12][Briet 

Chakraborty Soriano Matsliah '12 ][Blais Raskhodnikova Yaroslavtsev '14][Chakrabarty Seshadhri '13'14'16'19][Chen Servedio Tan '14][Belovs Blais '16][Pallavoor Raskhodnikova Varma 

'18][Black Chakrabarty Seshadhri '18'20]

Functions on the hypercube 0,1 𝑑, 𝒓 = number of distinct values of 𝑓. 
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Boolean Real-Valued (Previous) Real-Valued (Our results)

Upper bounds
෨𝑂

𝑑

𝜀2

[Khot Minzer Safra ’15]

𝑂
𝑑

𝜀

[Chakrabarty Seshadhri ‘13] 

෨𝑂 (min
𝑟 𝑑

𝜀2
,
𝑑

𝜀
)

Lower Bounds

Nonadaptive: ෩Ω 𝑑
[Fischer Lehman Newman 

Raskhodnikova Rubinfeld '02]

[Chen De Servedio Tan '15] 

[Chen Waingarten Xie '17]

Adaptive : ෩Ω d1/3

[Chen Waingarten Xie '17]

Ω(min(𝑑, 𝑟2))

[Blais Brody Matulef '12]

Ω(min( 𝑟 𝑑, 𝑑))

Nonadaptive, 1-sided error

Results – Monotonicity Testing 

nonadaptive = 

tester makes all its 

queries in advance



Functions on the hypercube: 0,1 𝑑, 𝑟 = number of distinct values of 𝑓
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Boolean Real-Valued 

(Previous)

Real-Valued (Our 

results)

Upper bounds

𝑑 log𝑑-factor

[Pallavoor Raskhodnikova 

Waingarten ’20]

𝑑 log 𝑟 –factor 

[Fattal Ron ‘10] 

𝑑 log𝑑-factor

Lower bounds

𝑑 - factor 

(nonadaptive)

[Pallavoor Raskhodnikova 

Waingarten ’20]

Results – Distance Approximation

no dependence on 𝑟

All algorithms have query 

complexity 𝑝𝑜𝑙𝑦(𝑑,
1

𝛼
)



• An edge (𝑥, 𝑦) is influential if 𝑓 𝑥 ≠ 𝑓 𝑦 .

• Let 𝐼𝑓 𝑥 = # influential edges (𝑥, 𝑦) s.t. 𝑓 𝑥 > 𝑓(𝑦).

• [Talagrand ’93] For a Boolean function 𝑓,

෍

𝑥∈ 0,1 𝑑

𝐼𝑓 (𝑥) = Ω var 𝑓 ⋅ 2𝑑

• [Margulis ’74] For a Boolean function 𝑓,
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𝑝0 = fraction of zeros

var 𝑓 = 𝑝0 1 − 𝑝0

0 1

0 0

0 0

1 1

boundary vertices

(#influential edges) ⋅ (#boundary vertices)

22𝑑
= Ω(var 𝑓 2)

Isoperimetric Inequalities (Undirected)



• An edge 𝑥 → 𝑦 is violated if 𝑓 𝑥 > 𝑓(𝑦). 

• Let 𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥.

• [Khot Minzer Safra ‘15] For a Boolean function 𝑓,

෍

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono

• [Chakrabarty Seshadhri ’13] For a Boolean function 𝑓,
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(#violated edges) ⋅ (#boundary vertices) = Ω(dist 𝑓,mono 2)

0 1

0 0

0 0

1 1

boundary vertices

variance → dist to mono 

Isoperimetric Inequalities (Directed) 

[Pallavoor Raskhodnikova Waingarten '20]



• (Directed) For all real-valued functions 𝑓: {0,1}𝑑 → ℝ:

෍

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono

• (Undirected) For all real-valued functions 𝑓: {0,1}𝑑 → ℝ:

෍

𝑥∈ 0,1 𝑑

𝐼𝑓 (𝑥) = Ω dist 𝑓, 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

Our inequalities 
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no dependence on the range of 𝑓

Number of values that need to be 

changed to make 𝑓 constantFor a Boolean function, variance and normalized 

distance to constant are within a factor of 2 

We don’t care about the magnitude of change

𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥

𝐼𝑓 𝑥 = # influential edges at 𝑥



• (Directed) For all real-valued functions 𝑓: {0,1}𝑑 → ℝ:

෍

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono

• Inequality we use for our applications. 

• Implies all other inequalities mentioned in this talk.  

• We show how to prove it. 

Main inequality
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𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥



• (Directed) For all real-valued functions 𝑓: {0,1}𝑑 → ℝ:

෍

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono

Main inequality
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𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥

dist 𝑓,mono = 3

෍

𝑥∼ 0,1 𝑑

𝐼𝑓
−(𝑥)

= 2 + 2 + 1

2 2

2 2

3 1

3 2

2 2

3 1

3 1

3 3

dist 𝑓,mono = 4

෍

𝑥∼ 0,1 𝑑

𝐼𝑓
−(𝑥)

= 2 + 2 + 2



• (Directed) For all real-valued functions 𝑓: {0,1}𝑑 → ℝ:

෍

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono

• We prove it by reducing to the Boolean case, via Boolean Decomposition 
Theorem. 

Main inequality
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𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥



• It works for every partially ordered domain, which we represent as a DAG 𝐺.

• Monotonicity testing on posets first considered by [Fischer Lehman Newman Raskhodnikova Rubinfeld '02].

• Vertices 𝑉 𝐺 , edges 𝐸 𝐺 . 

• 𝑥 ≼ 𝑦 iff there is directed path from 𝑥 to 𝑦. 

• Edge 𝑥 → 𝑦 is violated if 𝑓 𝑥 > 𝑓(𝑦). 

Boolean Decomposition Theorem

15
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𝑓: 𝑉 𝐺 → ℝ



• Let VIOL(𝑓) denote the violated edges of 𝑓.

BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 

𝑘 ≥ 1, there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint 

subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘 of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
1

2
dist(𝑓,mono)

(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓

(3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖

Boolean Decomposition Theorem
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collectively capture distance to monotonicity of 𝑓

edges violated by 𝑓𝑖 are also violated by 𝑓

edges violated by 𝑓𝑖 are contained in 𝐻𝑖



෍

𝒙∈{𝟎,𝟏}𝒅

𝐼𝑓
−(𝑥) ≥ ෍

𝒙∈⋃𝑯𝒊

𝐼𝑓
− 𝑥

≥ ෍

𝒊∈ 𝒌

෍

𝑥∈𝐻𝑖

𝐼𝑓
− 𝑥

≥ ෍

𝑖∈[𝑘]

෍

𝑥∈𝐻𝑖

𝐼𝒇𝒊
− 𝑥

≥
𝐶

2
⋅ dist(𝑓,mono)

BD Theorem → Main inequality
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≥ ෍

𝑖∈[𝑘]

𝐶 ⋅ dist 𝒇𝒊,mono

the 𝐻𝑖 are disjoint subgraphs 

⋃𝐻𝑖 is a subgraph of original graph

edges violated by 𝑓𝑖 are a subset of 

edges violated by 𝑓

from the Boolean 

case

capture dist 𝑓,mono

𝐼𝑓
− 𝑥 = # outgoing violated edges at 𝑥

edges violated by 

𝑓𝑖 are in 𝐻𝑖



Proof of BD Theorem
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖

⇒ Main inequality ෎

𝑥∈ 0,1 𝑑

𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono



We can reduce from real-valued to Boolean functions via thresholding. 

Thresholding intuition
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1 if 𝑓 𝑥 ≥ 𝑡

0 if 𝑓 𝑥 < 𝑡
ℎ𝑡 𝑥 =

0

1
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1
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1

𝑡 = 1



We can reduce from real-valued to Boolean functions via thresholding. 

Thresholding intuition

20

ℎ𝑡 𝑥 =
1 if 𝑓 𝑥 ≥ 𝑡

0 if 𝑓 𝑥 < 𝑡

• Edges violated by ℎ𝑡 are a subset of the edges violated by 𝑓.

• But dist 𝑓,mono can decrease by a factor of 𝑟 (# distinct values of 𝑓)

• Can construct function so that dist 𝑓,mono decreases by 𝑟 for all thresholds 𝑡 ∈ 𝑟 .

• BD Theorem allows us to apply different thresholds in disjoint locations of hypercube. 

1

41
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1
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𝑡 = 2



1. How to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

2. Specify a special matching.

3. Define Boolean functions 𝑓𝑖 given subgraphs 𝐻𝑖 .

4. Prove desired properties of 𝑓𝑖 .

Proof of BD Theorem
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖



Definition (Sweeping Graphs) For two disjoint sets of vertices 𝑆, 𝑇 ⊆ 𝑉(𝐺):

subgraph Sweep 𝑆, 𝑇 = subgraph formed from union of all directed paths

from vertices in 𝑆 to vertices in 𝑇

Step 1: Disjoint Subgraphs 𝐻𝑖

Call (𝑆, 𝑇) a set-pair.

22

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇



Definition (Sweeping Graphs) For two disjoint sets 𝑆, 𝑇 ⊆ 𝑉(𝐺):

subgraph Sweep 𝑆, 𝑇 = subgraph formed from union of all directed paths

from vertices in 𝑆 to vertices in 𝑇

Step 1: Disjoint Subgraphs 𝐻𝑖

23

Useful properties: 

• Sweep 𝑆, 𝑇 is an induced subgraph

• A vertex outside Sweep 𝑆, 𝑇 cannot be 

both "above" and "below" Sweep 𝑆, 𝑇

it has a path to a 

vertex in 

Sweep(𝑆, 𝑇)

it has a path from

a vertex in in 

Sweep(𝑆, 𝑇)

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇



We consider matchings 𝑀:𝑆 → 𝑇, where 𝑆, 𝑇 ⊆ 𝑉 𝐺 .

𝑀 contains disjoint pairs (𝑥, 𝑦) of vertices such that 𝑥 ≼ 𝑦.

A pair (𝑥, 𝑦) in 𝑀 is violated if 𝑓 𝑥 > 𝑓(𝑦). 

Fact. For every function 𝑓 and maximal matching 𝑀 of violated pairs:

maximal matching ≤ dist 𝑓,mono ≤ 2|maximal matching|

Step 1: Disjoint Subgraphs 𝐻𝑖

24

𝑆 = lower endpoints, 

𝑇 = upper endpoints

[Fischer Lehman Newman 

Raskhodnikova Rubinfeld '02].

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛



Step 1: Disjoint Subgraphs 𝐻𝑖
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Recall Sweep 𝑋, 𝑌 = subgraph of paths from vertices in 𝑋 to vertices in 𝑌

Two set-pairs of vertices (𝑋, 𝑌) and (𝑋′, 𝑌′) conflict if:

o Sweep 𝑋, 𝑌 intersects Sweep 𝑋′, 𝑌′ .

Algorithm Merge-Conflicts:

o Input: matching 𝑀:𝑆 → 𝑇

o Initialize collection of set-pairs 𝑠 , 𝑡 for all 𝑠, 𝑡 ∈ 𝑀

o Repeat until there are no conflicts: 

o if two set-pairs pairs 𝑋, 𝑌 and 𝑋′, 𝑌′ conflict, merge them, 

o i.e. remove them from collection of pairs, and add new pair (𝑋 ∪ 𝑋′, 𝑌 ∪ 𝑌′)



Merge-Conflicts Illustration
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𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆 𝑇



Merge-Conflicts Illustration
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𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

Sweep 𝑎 , 𝑥
union of paths from 𝑎 𝑡𝑜 {𝑥}



Merge-Conflicts Illustration
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𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Conflict! 

Collection = 𝑎 , {𝑥} , 𝑏 , {𝑦} , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

Sweep 𝑏 , 𝑦
union of paths from 𝑏 𝑡𝑜 {𝑦}

Sweep 𝑎 , 𝑥
union of paths from 𝑎 𝑡𝑜 {𝑥}



Merge-Conflicts Illustration

29

𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎, 𝑏 , 𝑥, 𝑦 , 𝑐 , {𝑧}

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

Sweep 𝑎, 𝑏 , 𝑥, 𝑦
union of paths from 𝑎, 𝑏 𝑡𝑜 {𝑥, 𝑦}



Merge-Conflicts Illustration
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𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 }

Collection = 𝑎, 𝑏 , 𝑥, 𝑦 , 𝑐 , {𝑧} Final collection

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

No conflict!
Sweep 𝑐 , 𝑧

union of paths from 𝑐 𝑡𝑜 {𝑧}

Sweep 𝑎, 𝑏 , 𝑥, 𝑦
union of paths from 𝑎, 𝑏 𝑡𝑜 {𝑥, 𝑦}



Algorithm Merge-Conflicts with matching 𝑀: 𝑆 → 𝑇 gives set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , (𝑆𝑘 , 𝑇𝑘)

such that:

o The sets 𝑆𝑖 partition 𝑆, the sets 𝑇𝑖 partition 𝑇.

o The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

o (Rematching property) For 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 such that 𝑥 ≼ 𝑦: there exists another matching 

𝑀′: 𝑆 → 𝑇 that matches (𝑥, 𝑦).

Step 1: Disjoint Subgraphs 𝐻𝑖

31

𝑆 𝑇

𝑆1

𝑆2

𝑆3

𝑇1

𝑇2

𝑇3Sweep(𝑆2, 𝑇3)

Sweep(𝑆1, 𝑇1)

Sweep(𝑆2, 𝑇2)



Step 1: Disjoint Subgraphs 𝐻𝑖

32𝑀 = { 𝑎, 𝑥 , 𝑏, 𝑦 , 𝑐, 𝑧 } 𝑀′ = { 𝑎, 𝑦 , 𝑏, 𝑥 , 𝑐, 𝑧 }

𝒂

𝒃

𝒄

𝒙

𝒚

𝒛

𝑆1

𝑆2

𝑇1

𝑇2

Algorithm Merge-Conflicts with matching 𝑀: 𝑆 → 𝑇 gives set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , (𝑆𝑘 , 𝑇𝑘)

such that:

o The sets 𝑆𝑖 partition 𝑆, the sets 𝑇𝑖 partition 𝑇.

o The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

o (Rematching property) For 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 such that 𝑥 ≼ 𝑦: there exists another matching 

𝑀′: 𝑆 → 𝑇 that matches (𝑥, 𝑦).



✓ How to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

2. Specify a special matching.

3. Define Boolean functions 𝑓𝑖 given subgraphs 𝐻𝑖 .

4. Prove desired properties of 𝑓𝑖 .

Proof of BD Theorem
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖



Use a special matching 𝑀 (max-weight, min-cardinality):

o it maximizes weight σ 𝑥,𝑦 ∈𝑀(𝑓 𝑥 − 𝑓(𝑦)),

o and amongst such matchings has the fewest pairs. 

Run algorithm Merge-Conflicts with special matching 𝑀.

Violation Lemma. The set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , (𝑆𝑘 , 𝑇𝑘) satisfy:

• For all 𝑖 ∈ 𝑘 , 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 , such that  𝑥 ≼ 𝑦, we have 𝑓 𝑥 > 𝑓(𝑦). 

Step 2: Special matching 

34

can threshold while 

preserving violations. 
will need to be more 

careful about 

thresholding

• 𝑀 is maximal

• all pairs in 𝑀 are 

violated

Sweep(𝑆𝑖 , 𝑇𝑖) are the 

subgraphs 𝐻𝑖 .



Violation Lemma. The set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , (𝑆𝑘 , 𝑇𝑘) obtained from the special 

matching 𝑀 satisfy: For all 𝑖 ∈ 𝑘 , 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 , s.t. 𝑥 ≼ 𝑦, we have 𝑓 𝑥 > 𝑓(𝑦). 

Proof. 

• Suppose that for some 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 , with 𝑥 ≼ 𝑦 we have 𝑓 𝑥 ≤ 𝑓 𝑦 . 

• Use the rematching property to get a new matching 𝑀′: 𝑆 → 𝑇 that matches (𝑥, 𝑦). 

• 𝑀′ has the same weight as 𝑀, since the endpoints have not changed. 

• 𝑀′ \ (𝑥, 𝑦) has weight at least as big as 𝑀, because 𝑓 𝑥 − 𝑓 𝑦 ≤ 0. 

• But 𝑀′ \ (𝑥, 𝑦) has fewer pairs. Contradiction. 

Step 2: Special matching 
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weight:  σ 𝑥,𝑦 ∈𝑀(𝑓 𝑥 − 𝑓 𝑦 )



• Start with special matching 𝑀:𝑆 → 𝑇 (max weight, min-cardinality).

• 𝑀 is a maximal matching of violated pairs: 𝑀 < dist 𝑓,mono < 2|𝑀|

• Run algorithm Merge-Conflicts to obtain set-pairs 𝑆1, 𝑇1 , 𝑆2, 𝑇2 , … , (𝑆𝑘 , 𝑇𝑘)

• The subgraphs Sweep 𝑆𝑖 , 𝑇𝑖 are vertex-disjoint.

• (Violation Lemma) For 𝑥 ∈ 𝑆𝑖 , 𝑦 ∈ 𝑇𝑖 such that 𝑥 ≼ 𝑦 we have 𝑓 𝑥 > 𝑓(𝑦). 

Step 1+2 summary
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𝑆 𝑇

𝑆1

𝑆2

𝑆3

𝑇1

𝑇2

𝑇3

Sweep(𝑆1, 𝑇1)

Sweep(𝑆2, 𝑇2)

Sweep(𝑆2, 𝑇3)

Sweep(𝑆1, 𝑇1)

Sweep(𝑆2, 𝑇2)



✓ How to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖



𝑇𝑖

𝑆𝑖

Given (𝑆𝑖 , 𝑇𝑖), define 𝑓𝑖: 𝑉 𝐺 → {0,1}

Step 3: Define Boolean Functions

38

𝑧

in Sweep(𝑆𝑖 , 𝑇𝑖)

not in  Sweep(𝑆𝑖 , 𝑇𝑖)

• 𝑓 𝑧 > max
𝑥∈𝑇𝑖,𝑧≼𝑥

𝑓(𝑥) , then 𝑓𝑖 𝑧 = 1

• 𝑓 𝑧 ≤ max
𝑥∈𝑇𝑖,𝑧≼𝑥

𝑓 𝑥 , then 𝑓𝑖 𝑧 = 0

max value of 𝑓 achieved by 

points in 𝑇𝑖 above 𝑧

highest threshold

lowest threshold

individual threshold 

𝑓𝑖 (𝑑) will be 0

𝑓𝑖 (𝑎) will be 1
𝑎

𝑏

𝑐

𝑑



Given (𝑆𝑖 , 𝑇𝑖), define 𝑓𝑖: 𝑉 𝐺 → {0,1}

Step 3: Define Boolean Functions
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𝑧

in Sweep(𝑆𝑖 , 𝑇𝑖)

not in  Sweep(𝑆𝑖 , 𝑇𝑖)

• 𝑓 𝑧 > max
𝑥∈𝑇𝑖,𝑧≼𝑥

𝑓(𝑥) , then 𝑓𝑖 𝑧 = 1

• 𝑓 𝑧 ≤ max
𝑥∈𝑇𝑖,𝑧≼𝑥

𝑓 𝑥 , then 𝑓𝑖 𝑧 = 0

• above, then 𝑓𝑖 𝑧 = 1

• not above, then 𝑓𝑖 𝑧 = 0

a vertex cannot be both above 

and below Sweep(𝑆𝑖 , 𝑇𝑖)

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0

don't want violations 

outside of Sweep(𝑆𝑖 , 𝑇𝑖)



✓ How to obtain disjoint subgraphs 𝐻𝑖 from a matching of vertices.

✓ Specify a special matching.

✓ Define Boolean functions 𝑓𝑖 given subgraphs 𝐻𝑖 .

4. Prove desired properties of 𝑓𝑖 .

Proof of BD Theorem
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖



(1) The functions 𝒇𝒊 preserve dist(𝒇,𝐦𝐨𝐧𝐨). 

• Each vertex in 𝑇𝑖 will have value 0.

• Each vertex in 𝑆𝑖 will have value 1. 

o If 𝑧 ∈ 𝑆𝑖 , then 𝑓 𝑧 > 𝑓 𝑥 for all 𝑥 ∈ 𝑇𝑖 above 𝑧.

• ⇒ 𝑓𝑖 has matching of violated pairs 𝑀𝑖: 𝑆𝑖 → 𝑇𝑖.

• 𝑀𝑖 is restriction of 𝑀 to Sweep(𝑆𝑖 , 𝑇𝑖).

• All the 𝑀𝑖 for 𝑖 ∈ 𝑘 are disjoint. 

෍

𝑖∈[𝑘]

dist 𝑓𝑖 , mono ≥ ෍

𝑖∈ 𝑘

𝑀𝑖 ≥ 𝑀 ≥
1

2
dist(𝑓,mono)

Step 4: Proof of BD Theorem
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Vertex 𝑧 ∈ 𝑇𝑖 , and 𝑧 above 𝑧

By Violation Lemma. 

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0



(2) Edges violated by 𝒇𝒊 are contained in 𝐒𝐰𝐞𝐞𝐩 𝑺𝒊, 𝑻𝒊

Consider edge 𝑥 → 𝑦 not in Sweep 𝑆𝑖 , 𝑇𝑖

𝑦 above Sweep 𝑆𝑖 , 𝑇𝑖 , 𝑓𝑖 𝑦 = 1.

Step 4: Proof of BD Theorem
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𝑥

𝑦

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0



(2) Edges violated by 𝒇𝒊 are contained in 𝐒𝐰𝐞𝐞𝐩 𝑺𝒊, 𝑻𝒊

Consider edge 𝑥 → 𝑦 not in Sweep 𝑆𝑖 , 𝑇𝑖

𝑥 below Sweep 𝑆𝑖 , 𝑇𝑖 , 𝑓𝑖 𝑥 = 0.

Step 4: Proof of BD Theorem
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𝑥

𝑦

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0



(2) Edges violated by 𝒇𝒊 are contained in 𝐒𝐰𝐞𝐞𝐩 𝑺𝒊, 𝑻𝒊

Consider edge 𝑥 → 𝑦 not in Sweep 𝑆𝑖 , 𝑇𝑖

Step 4: Proof of BD Theorem
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𝑥

𝑦

𝑆𝑖

𝑇𝑖

1

0

1

0

0 0



(3) Edges violated by 𝒇𝒊 are violated by 𝒇

Consider edge 𝑥 → 𝑦 violated by 𝑓𝑖 (in Sweep 𝑆𝑖 , 𝑇𝑖 )

𝑓𝑖 𝑥 = 1, 𝑓𝑖 (𝑦) = 0

For 𝑡 ∈ 𝑇𝑖 such that 𝑦 ≼ 𝑡, then  𝑥 ≼ 𝑡.

Therefore:

𝑓 𝑥 > max
𝑡∈𝑇𝑖,𝑥≼𝑡

𝑓(𝑡) ≥ max
𝑡∈𝑇𝑖,𝑦≼𝑡

𝑓(𝑡) ≥ 𝑓(𝑦)

⇒ Edge 𝑥 → 𝑦 violated by 𝑓

Step 4: Proof of BD Theorem
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𝑥

𝑦

𝑆𝑖

𝑇𝑖

1

0

1

0 0
threshold for 𝑥 threshold for 𝑦
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Proof of BD Theorem
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BD Theorem: Let 𝐺 be a DAG, and 𝑓: 𝑉(𝐺) → ℝ a nonmonotone function. For some 𝑘 ≥ 1, 

there exist Boolean functions  𝑓1, 𝑓2, … , 𝑓𝑘: 𝑉(𝐺) → {0,1} and disjoint subgraphs 𝐻1, 𝐻2, … , 𝐻𝑘

of 𝐺 such that:

(1) σ𝑖∈[𝑘]dist(𝑓𝑖 , mono) ≥
dist(𝑓,mono)

2
(2) VIOL 𝑓𝑖 ⊆ VIOL 𝑓 (3) VIOL 𝑓𝑖 ⊆ 𝐸 𝐻𝑖

⇒ Main inequality σ𝑥∈ 0,1 𝑑 𝐼𝑓
−(𝑥) = Ω dist 𝑓,mono



• Improved sublinear algorithms for monotonicity. 

• Generalized isoperimetric inequalities. 

• Proved the Boolean Decomposition Theorem. 

Open Question. Do the isoperimetric inequalities hold for other domains?

• Specifically, the hypergrid domain 𝑛 𝑑 .

• Margulis type inequality holds [Black Chakrabarty Seshadhri '18] . What about Talagrand?

• It would suffice to show such inequality for the Boolean case. 

• Use our BD Theorem to generalize to real-valued functions.

• Improve algorithms for monotonicity testing on hypergrid.  

Conclusion
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