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Overview

For Boolean functions on the hypercube: f:{0,1}¢ — {0,1}.

Undirected Directed
* Margulis '74 . > » Chakrabarty and Seshadhri "13
» Talagrand '93  Khot, Minzer, Safra ‘15

We generalize these inequalities to real-valued functions: f:{0,1}¢ - R.

Motivation:
 To understand the structure of real-valued functions.

« To improve sublinear algorithms for monotonicity.



Plan

1. Explain our results in monotonicity testing.
2. Give some background on the inequalities.

3. Prove our generalized inequalities.



The d-dimensional hypercube

» Hypercube has 2¢ vertices, the points in {0,1}. f((311) ,, f(111)
« x — yisan edge if: H010)f "} f(110)
* x;=0y=1 £(001) X
- x; = y; forall j € [n]\{i} f(101)
f(000) >f(100)

f is monotone if the value of f along every edge does not decrease.

Edge x — y isinfluential if f(x) # f(y).
Edge x — yisviolated if f(x) > f(y).



Distance to monotonicity

* Let dist(f, mono) denote the distance of f to monotonicity

* dist(f, mono) = least number values of f that need to be changed to make f
monotone
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dist(f, mono) = 0 dist(f, mono) = 3



Algorithmic tasks

[Rubinfeld Sudan '96] [Goldreich Goldwasser Ron '98]
[Goldreich Goldwasser Lehman Ron Samorodnitsky '00]

o
|

« Monotonicity testing:

< * « Accept if f monotone
algorithm — EstRepet svhp if far from

> monotone:
f(x) dist(f, mono)> ¢ - 2¢

» Approximating distance to monotonicity: [Pamas, Ron, Rubinfeld '06], [Fattal, Ron '10]

o Given oracle access to f s.t. dist(f, mono) > «a - 2% .«— can turn this into additive error

o Achieves c-approximation if it returns estimate £ that whp:

dist(f, mono) < € < c - dist(f, mono)



Results — Monotonicity Testing

EXtenS|Ve|y StUd IEd prOblem [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan '00][Dodis Goldreich Lehman Raskhodnikova '99][Lehman Ron '01][Ailon

Chazelle '06][Fischer '04][Halevy Kushilevitz '08][Batu Rubinfeld White '05][Ailon Chazelle Seshadhri Liu '07][Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff '12][Briet
Chakraborty Soriano Matsliah '12 ][Blais Raskhodnikova Yaroslavtsev '14][Chakrabarty Seshadhri '13'14'16'19][Chen Servedio Tan '14][Belovs Blais '16][Pallavoor Raskhodnikova Varma

"18][Black Chakrabarty Seshadhri '18'20]

Functions on the hypercube {0,1}¢, r = number of distinct values of f.

Boolean Real-Valued (Previous) | Real-Valued (Our results)
~ (Vd d
o(2) L
Upper bounds £ 0 <€> 0 (min <@)ﬂ>)
[Khot Minzer Safra '15] [Chakrabarty Seshadhri “13] ¢ ¢

nonadaptive =

tester makes all its . X
queries in advance anadaptwe. Q(\/a)
[Fischer Lehman Newman

Raskhodnikova Rubinfeld '02] _ 5
[Chen De Servedio Tan '15] Q(mln(d, r )) Q(min( T\/E, d))

Lower Bounds | chen Waingarten Xie '17] .
[Blais Brody Matulef '12] Nonadaptive, 1-sided error

Adaptive : ﬁ(d1/3)

[Chen Waingarten Xie '17]




Results — Distance Approximation

Functions on the hypercube: {0,1}¢, r = number of distinct values of f

Boolean

Real-Valued
(Previous)

Real-Valued (Our
results)

Upper bounds

\/dlog d-factor

[Pallavoor Raskhodnikova
Waingarten '20]

d log r —factor

[Fattal Ron "10]

\/dlogd-factor

N

Lower bounds

Vd - factor
(nonadaptive)

[Pallavoor Raskhodnikova
Waingarten '20]

no dependence on r

N

All algorithms have query

complexity poly(d, i)




Isoperimetric Inequalities (Undirected)

* An edge (x,y) is influential if f(x) # f(y).

* Let Is(x) = # influential edges (x,y) s.t. f(x) > f(y).

- [Talagrand ‘93] For a Boolean function f,

x€{0,1}4

- [Margulis '74] For a Boolean function f,

(#influential edges) - (#boundary vertices)

po = fraction of zeros
var(f) = po(1 — po)

Z [W‘ = Q(var(f)) - 2°

22d

boundary vertices

= Q(var(f)?)




Isoperimetric Inequalities (Directed)

* An edge x — y is violated if f(x) > f(y). ) .

* Let I- (x) = # outgoing violated edges at x.

=

- [Khot Minzer Safra ‘15] For a Boolean function f,
[Pallavoor Raskhodnikova Waingarten '20]

> [ \/%] = Q(dist(f, mono)) 7

x€{0,1}4 boundary vertices

+ [Chakrabarty Seshadhri '13] For a Boolean function f,

variance — dist to mono

(#violated edges) - (#boundary vertices) = Q(dist(f, mono)?)
10



Our inequalities

- (Directed) For all real-valued functions f: {0,1}¢ > R: I7 (x) = # outgoing violated edges at x

x€{0,1}4

» (Undirected) For all real-valued functions f: {0,1}¢ - R:

z [ /If (x)] = Q(dist(f, constant))
'\

x€{0,1}4

z hlf_ (x)] - Q(diSt(f; mono)) <— no dependence on the range of f

I¢(x) = # influential edges at x

For a Boolean function, variance and normalized
distance to constant are within a factor of 2

Number of values that need to be
changed to make f constant

We don't care about the magnitude of change

11



MCIin ineqUCI Ii,l_y Iz (x) = # outgoing violated edges at x

- (Directed) For all real-valued functions f: {0,1}¢ - R:

Z [ /If‘(x)] = Q(dist(f, mono))

x€{0,1}4

* Inequality we use for our applications.
 Implies all other inequalities mentioned in this talk.
« We show how to prove it.

12



Iz (x) = # outgoing violated edges at x

Main inequality

- (Directed) For all real-valued functions f: {0,1}¢ - R:

z [ /If‘(x)] = Q(dist(f, mono))

x€{0,1}4
2 2 2 2
! 1 dist(f, mono) = 3 ! g dist(f, mono) = 4
3 1 3 1
A g A g
Z [ /If‘(x)] 2 [ a (x)]
2 |2 x~{0,1}4 G N 1 x~{0,1}4
R =V2+V2+ V1 v =V2+ V2 + V2
3) (2 3 ©

13



Main inequality

Iz (x) = # outgoing violated edges at x

- (Directed) For all real-valued functions f: {0,1}¢ - R:

2.

x€{0,1}4

[ /If‘(x)] = Q(dist(f, mono))

* We prove it by reducing to the Boolean case, via Boolean Decomposition

Theorem.

14



Boolean Decomposition Theorem

It works for every partially ordered domain, which we represent as a DAG G.

Monotonicity testing on posets first considered by (rischer Lehman Newman Raskhodnikova Rubinfeld '02].

Vertices V(G), edges E(G). E
x < y iff there is directed path from x to y. 6 \2
Edge x — y is violated if f(x) > f(y). A
3
0
f:V(G) - R

15



Boolean Decomposition Theorem

 Let VIOL(f) denote the violated edges of f.

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some
k > 1, there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint

subgraphs Hq, H,, ..., H, of G such that:

(1) 2iepky dist(f;, mono) = % dist(f, mono)

(2) VIOL(f;) € VIOL(f) —

(3) VIOL(f) € E(H,;) N—

collectively capture distance to monotonicity of f

edges violated by f; are also violated by f

edges violated by f; are contained in H;

16



BD Theo rem — MCIin inequq Ii-l-y Iz (x) = # outgoing violated edges at x

[ /If (x) [ /If (x) ] UH; is a subgraph of original graph

x€{0,1}4 x€UH;
[, /If (x ] the H; are disjoint subgraphs
J| x€EH;

edges violated by :

f, are in H; I~ (x edges violated t?y f; are a subset of

fi edges violated by f
from the Boolean xEHl
case

\ > Z C - dist(f,-} mono) > %-dist(f, mono)
i€[k]
\

capture dist(f, mono)




Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy

of G such that:
(1) Ziepey dist(f;, mono) > “LEED - 2) VIOL(f;) € VIOL(f)  (3) VIOL(f;) € E(Hy)

= Main inequality 2 [ /I‘(x)] = Q(dist(f, mono))
x€{0,1}4 !

18



Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

he(x) = { (1)

if f(x) >t
if f(x) <t

1

A

2
A

19



Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

1 4 0

Y

_ 1 lff(X)Zt A
ht(x)_{o if f(x) <t 5

Y
o

Y

Y

t =2

Edges violated by h; are a subset of the edges violated by f.

But dist(f, mono) can decrease by a factor of r (# distinct values of f)

Can construct function so that dist(f, mono) decreases by r for all thresholds t € [r].
BD Theorem allows us to apply different thresholds in disjoint locations of hypercube.

20



Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy

of G such that:
(1) Ziepey dist(f;, mono) > “LEED - 2) VIOL(f;) € VIOL(f)  (3) VIOL(f;) € E(Hy)

1. How to obtain disjoint subgraphs H; from a matching of vertices.
2. Specify a special matching.
3. Define Boolean functions f; given subgraphs H;.

4. Prove desired properties of f;.

21



Step 1: Disjoint Subgraphs H;
Definition (Sweeping Graphs) For two disjoint sets of vertices S,T € V(G):

subgraph Sweep(S,T) = subgraph formed from union of all directed paths
from vertices in S to vertices in T

S T Call (§,T) a set-pair.

C\./Z
22



Step 1: Disjoint Subgraphs H;
Definition (Sweeping Graphs) For two disjoint sets §,T € V(G):

subgraph Sweep(S,T) = subgraph formed from union of all directed paths
from vertices in S to vertices in T

Useful properties:
* Sweep(S,T) is an induced subgraph
« A vertex outside Sweep(S,T) cannot be

a e— —® x
./\ both "above" and "below" Sweep(S,T)
b o y / \

c -0 z it has a path from it has a path to a
a vertex inin vertex in
Sweep(S,T) Sweep(S, T)

23



Step 1: Disjoint Subgraphs H;

) , S = lower endpoints,
We consider matchings M:S —» T, where S, T € V(G). T = upper endpoints

M contains disjoint pairs (x,y) of vertices such that x < y.

A pair (x,y) in M is violated if f(x) > f(y). ae ~® x

b @< -0 y

c @< > —0 z
[Fischer Lehman Newman \/
Raskhodnikova Rubinfeld '02].
Fact. For every function f and maximal matching M of violated pairs:

|maximal matching| < dist(f, mono) < 2|maximal matching|

24



Step 1: Disjoint Subgraphs H;
Recall Sweep(X,Y) = subgraph of paths from vertices in X to vertices in Y

Two set-pairs of vertices (X,Y) and (X', Y") conflict if:
o Sweep(X,Y) intersects Sweep(X',Y").

Algorithm Merge-Conflicts:
o Input: matching M:S - T
o Initialize collection of set-pairs ({s},{t}) for all (s,t) e M
o Repeat until there are no conflicts:
o If two set-pairs pairs (X,Y) and (X', Y") conflict, merge them,

o I.e. remove them from collection of pairs, and add new pair (X U X', Y UY")

25



Merge-Conflicts lllustration

S T
a e p e x
b @< >0 y

M = {(a,x), (b,y), (c,2)}
Collection = ({a}, {x}), ({b}, {¥}), ({c}, {z})

26



Merge-Conflicts lllustration

Sweep({al, (x}) o
union of paths from {a} to {x}

M = {(a,x), (b,y), (c,2)}
Collection = ({a}, {x}), ({b}, {¥}), ({c}, {z})

27



Merge-Conflicts lllustration

Sweep({a}, {x})
union of paths from {a} to {x}

Sweep({b}, {y})
union of paths from {b} to {y}

Conflict!
a /\;
b &= ~® y
c Og >0 —%0 z

M = {(a,x), (b,y), (c,z)}
Collection = ({a}, {x}), ({b}, {¥}), ({c}, {z})

28



Merge-Conflicts lllustration

Sweep({a, b}, {x,y})
union of paths from {a, b} to {x, y}

a /‘\ﬂx
ey

M = {(a,x), (b,y),(c,2)}
Collection = ({a, b}, {x,y}), ({c},{z})

29



Merge-Conflicts lllustration

Sweep({a, b}, {x,y})
union of paths from {a, b} to {x, y}

b &=

/.\“x
ey

>@

c @

Collection = ({a, b}, {x,y}), ({c}, {z})«—

No conflict!
¢ oz

M = {(a,x), (b,y), (c,2)}

Final collection

30



Step 1: Disjoint Subgraphs H;

Algorithm Merge-Conflicts with matching M: S — T gives set-pairs (S, T;), (S5, T2), ..., (S, Ty)
such that:

o The sets S; partition S, the sets T; partition T.
o The subgraphs Sweep(S;, T;) are vertex-disjoint.

o (Rematching property) For x € S;, y € T; such that x < y: there exists another matching
M':S - T that matches (x,y). S T

31



Step 1: Disjoint Subgraphs H;

Algorithm Merge-Conflicts with matching M: S — T gives set-pairs (S, T;), (S5, T2), ..., (S, Ty)
such that:

o The sets S; partition S, the sets T; partition T.
o The subgraphs Sweep(S;, T;) are vertex-disjoint.

o (Rematching property) For x € S;, y € T; such that x < y: there exists another matching
M':S - T that matches (x,y).

a ~® x

b = e }Oy
SZ c @ e oz T2
L

M ={(ax),(by),(cz)} == M ={(ay)bx),(,2)} 32



Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy

of G such that:
(1) Ziepey dist(f;, mono) > “LEED - 2) VIOL(f;) € VIOL(f)  (3) VIOL(f;) € E(Hy)

v" How to obtain disjoint subgraphs H; from a matching of vertices.

2. Specify a special matching.
3. Define Boolean functions f; given subgraphs H;.

4. Prove desired properties of f;.

33



Step 2: Special matching

Use a special matching M (max-weight, min-cardinality):

o it maximizes weight ¥, ,yeu, (f (x) — (1)),

o and amongst such matchings has the fewest pairs.

M is maximal
< « all pairsin M are
violated

Sweep(S;, T;) are the

Run algorithm Merge-Conflicts with special matching M.  «— | subgraphs H;.

Violation Lemma. The set-pairs (51,T;), (S,,T>), ..., (Sk, Tx) satisfy:

« Forallie k], x€S;, y€T; suchthat|x <y,

/

will need to be more
careful about
thresholding

we have f(x) > f(y).

T~

can threshold while
preserving violations.

34




Step 2: Special matching

Violation Lemma. The set-pairs (51,T;), (S,,T5), ..., (Sx, Tx) obtained from the special
matching M satisfy: Foralli € [k], x € S;, y € T;, st. x <y, wehave f(x) > f(y).

weight: Y, 1)en(f () = F(¥))

Proof.

« Suppose that for some x € S;, y € T;, with x < y we have f(x) < f(y).

« Use the rematching property to get a new matching M’: § — T that matches (x, y).

« M’ has the same weight as M, since the endpoints have not changed.
« M'\ (x,y) has weight at least as big as M, because f(x) — f(y) <0.
« But M"\ (x,y) has fewer pairs. Contradiction.

35



Step 1+2 summary

 Start with special matching M:S - T (max weight, min-cardinality).

* M is a maximal matching of violated pairs: |[M| < dist(f, mono) < 2|M|

* Run algorithm Merge-Conflicts to obtain set-pairs (S, T;), (S, T3), ..., (S, T)
« The subgraphs Sweep(S;, T;) are vertex-disjoint.

« (Violation Lemma) For x € S;, y € T; such that x < y we have f(x) > f(y).

)
~3

36



Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy

of G such that:
(1) Ziepey dist(f;, mono) > “LEED - 2) VIOL(f;) € VIOL(f)  (3) VIOL(f;) € E(Hy)

v" How to obtain disjoint subgraphs H; from a matching of vertices.

v' Specify a special matching.

3. Define Boolean functions f; given subgraphs H;.
4. Prove desired properties of f;.

37



Step 3: Define Boolean Functions

max value of f achieved by
points in T; above z

in Sweep(S;, T-z/// individual threshold
¢ f(z2) > max f(x) then f;(z) =1

Given (§;,T;), define f;: V(G) - {0,1}

XET;,z
) . F2) < maX f(x) then £.(2) = 0 fi (d)\WI” be 0
xX€T;,z lowest threshold

2>

hlghest threshold
fi (@) will be 1

38



Step 3: Define Boolean Functions

Given (§;,T;), define f;: V(G) - {0,1}

In Sweep(S;, T;)

* f(z) > max f(x), thenf;(z) =1

X€T,zsXx

7 * f(z2) < max f(x), thenfi(z) =0

X€Ti,zsx

not in Sweep(S;, T;)

« above, then f;(z) = 1
* not above, then f;(z) =0

X

X

a vertex cannot be both above
and below Sweep(S;, T;)

don't want violations
outside of Sweep(S;, T;)

39



Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy
of G such that:

(1) i dist(fi, mono) = = 'zm"“") (2) VIOL(f,) € VIOL(f) (3) VIOL(f,) € E(H,)

v" How to obtain disjoint subgraphs H; from a matching of vertices.
v" Specify a special matching.

v Define Boolean functions f; given subgraphs H;.

4. Prove desired properties of f;.

40



Step 4: Proof of BD Theorem

(1) The functions f; preserve dist(f, mono).
« Each vertex in T; will have value 0. — |

) . e By Violation Le
* Each vertex in S; will have value 1.

o If z € S;, then f(z) > f(x) for all x € T; above z.

Vertex z € T;, and z above z

AN

« = f; has matching of violated pairs M;: S; — T;.
* M; is restriction of M to Sweep(S;, T;).
« All the M; fori € |k] are disjoint.

1
2 dist(f;, mono) > Z IM;| = |M| = > dist(f, mono)
i€[k]

i€[k]

41



Step 4: Proof of BD Theorem

(2) Edges violated by f; are contained in Sweep(S;, T;)
Consider edge x — y not in Sweep(S;, T;)
y above Sweep(S;, T;), f; (y) = 1.

42



Step 4: Proof of BD Theorem

(2) Edges violated by f; are contained in Sweep(S;, T;)
Consider edge x — y not in Sweep(S;, T;)
x below Sweep(S;, T;), f;(x) = 0.

43



Step 4: Proof of BD Theorem

(2) Edges violated by f; are contained in Sweep(S;, T;)
Consider edge x — y not in Sweep(S;, T;)

44



Step 4: Proof of BD Theorem

(3) Edges violated by f; are violated by f

Consider edge x — y violated by f; (in Sweep(S;, T;))
fitx) =1, f;(y») =0

Fort € T; suchthat y < t, then x < t.

Therefore:

threshold for x threshold for y

f(x)> max f(t)= max f(t)=f()

teT;x<t tET;, <t

= Edge x — y violated by f

45



Proof of BD Theorem

BD Theorem: Let G be a DAG, and f:V(G) - R a nonmonotone function. For some k > 1,
there exist Boolean functions fi, f5, ..., fx: V(G) — {0,1} and disjoint subgraphs Hy, Hy, ..., Hy
of G such that:

(1) i dist(fi, mono) = = 'zm"“o) (2) VIOL(f,) € VIOL(f) (3) VIOL(f,) € E(H,)

How to obtain disjoint subgraphs H; from a matching of vertices.
Specify a special matching.

Define Boolean functions f; given subgraphs H;.

DN N NN

Prove desired properties of f;.

= Main inequality er{o,1}d[ /If‘(x)] = Q(dist(f, mono))




Conclusion

Improved sublinear algorithms for monotonicity.
Generalized isoperimetric inequalities.

Proved the Boolean Decomposition Theorem.

Open Question. Do the isoperimetric inequalities hold for other domains?

Specifically, the hypergrid domain [n]¢.

Margulis type inequality holds [Black Chakrabarty Seshadhri ‘18] . What about Talagrand?
It would suffice to show such inequality for the Boolean case.
Use our BD Theorem to generalize to real-valued functions.

Improve algorithms for monotonicity testing on hypergrid.



