Sublinear-time Computation in the Presence of Online Erasures

Iden Kalemaj

Sofya RaskhodnikovaNithin Varma22 November 2021

To appear at ITCS '22

Overview

Goal of this work: study basic computational tasks in extremely adversarial environments

- property testing tasks
- algorithm has query access to a very large dataset via an oracle
- answer yes/no questions about global properties of the dataset

- an adversary/oracle makes changes to the dataset
- we focus on erasures
- the changes happen "online", as the dataset is being queried
- adversary can adapt to actions of algorithm

Standard property testing model

[Rubinfeld Sudan '96] [Goldreich Goldwasser Ron '98]

- Interested in query complexity of tester
- #queries should be sublinear in size of domain of *f*

Standard property testing model

[Rubinfeld Sudan '96] [Goldreich Goldwasser Ron '98]

We want to make tester robust to:

- data is missing/ corrupted
- data is erased, corrupted adversarially
- privacy concerns

[Parnas Ron Rubinfeld '06]

Tolerant property testing

[Dixit Raskhodnikova Thakurta Varma '18] Erasure-resilient property testing

- Property testing with erasures was first studied by Dixit Raskhodnikova Thakurta Varma '18
- Oracle erases at most α fraction of the input values, before algorithm makes any queries.
- What if erasures happen during the querying process?

Oracle can erase t entries after answering each query of the tester

Does *f* have a property, or is it far from having the property?

Oracle can erase t entries after answering each query of the tester

Does *f* have a property, or is it far from having the property?

Oracle can erase t entries after answering each query of the tester

Does *f* have a property, or is it far from having the property?

Oracle can erase t entries after answering each query of the tester

Does *f* have a property, or is it far from having the property?

Online-Erasure-Resilient Tester

Oracle can erase t entries after answering each query of the tester

Assumptions:

- Oracle knows the description of the algorithm
- Oracle does not have access to random coins of algorithm

Example:

"Query location 1 with probability 1/2 and query location 2 with remaining probability"

Questions about the model?

Oracle can erase t entries after answering each query of the tester

Does *f* have a **property**, or is it far from having the **property**?

Motivating Scenarios

- Individuals request that their data be removed from a dataset
 - They are prompted to restrict access to their data after noticing an inquiry into their or other's data (online)
 - Adversarial assumption allows us to study worst-case
- In a criminal investigation / fraud detection setting, adversary reacts by erasing data after some of their records are pulled by authorities
- In legal setting, adversary is served a subpoena; after answering the query, they can destroy related evidence not involved in the subpoena
 - In our model, adversary can make erasures only after answering the query of the algorithm

Results

- Some properties can be tested with the same query complexity as in the standard model:
 - linearity and quadraticity (for constant erasure budget *t*)
- For linearity, we show matching upper and lower bounds in terms of t
- Some properties are impossible to test, even for t = 1: sortedness of arrays
 - The structure of violations to the property plays a role in determining testability

Plan

- Show the tester for linearity (with a light proof)
- Show the lower bound for linearity
- Show idea behind tester for quadraticity
- Show the impossibility of testing sortedness

Function $f: \{0,1\}^d \rightarrow \{0,1\}$ is linear if can be expressed as sum of $x[i], i \in [d]$

Equivalently, if f(x) + f(y) = f(x + y) for all x, y in domain.

Standard Model	Online-Erasures Model		
[Blum Luby Rubinfeld '93] [Bellare Coppersmith Hastad Kiwi Sudan '96] $O\left(\frac{1}{\epsilon}\right)$ queries	This work $\tilde{O}(\frac{\log t}{d})$ queries		
BLR Tester: • Sample $x, y \sim \{0,1\}^d$. • Query $f(x), f(y), f(x + y)$. • Reject if $f(x) + f(y) \neq f(x + y)$.	 Issue with standard linearity tester: Query x. Receive f(x). Query y. Receive f(y). Oracle erases x + y. 		
If $f: \{0,1\}^d \rightarrow \{0,1\}$ is ε -far from linear then an ε -fraction of pairs (x, y) violate linearity.			

BLR Tester:

- Sample $x, y \sim \{0, 1\}^d$.
- Query f(x), f(y), f(x + y).
- Reject if $f(x) + f(y) \neq f(x + y)$.

Can you come up with winning strategy for player 1?

X

x + y

y

2-player game:

1) Player 1 draws a vertex or edge connecting two vertices in blue

2) Player 2 draws an edge between existing vertices in red

Function $f: \{0,1\}^d \rightarrow \{0,1\}$ is linear if can be expressed as sum of $x[i], i \in [d]$

Equivalently, if f(x) + f(y) = f(x + y) for all x, y in domain.

Standard Model	Online-Erasures Model		
[Blum Luby Rubinfeld '93] [Bellare Coppersmith Hastad Kiwi Sudan '96]	This work		
$O\left(\frac{1}{\varepsilon}\right)$ queries	$\tilde{O}(\frac{\log t}{\varepsilon})$ queries		
BLR Tester:	Issue with standard linearity tester:		
• Sample $x, y \sim \{0, 1\}^d$.	• Query x. Receive $f(x)$.		
• Query $f(x), f(y), f(x + y)$.	• Query y. Receive $f(y)$.		
• Reject if $f(x) + f(y) \neq f(x + y)$.	• Oracle erases $x + y$.		
If $f: \{0,1\}^d \rightarrow \{0,1\}$ is ε -far from linear then an ε -fraction of pairs (x, y) violate linearity.	Thm. If $f: \{0,1\}^d \rightarrow \{0,1\}$ is ε -far from		
	linear then, for all even k , an ε -fraction		
	of k-tuples (x_1, x_2, \dots, x_k) violate		
	linearity. $f(x_1) + \dots + f(x_k) \neq f(x_1 + \dots + x_k)$		
	Proof via Fourier analysis		

Algorithm. Online-erasure-resilient linearity tester

(1) Query $q = 2\log(t/\varepsilon)$ points $x_i \sim \{0,1\}^d$

(2) Repeat $1/\varepsilon$ times:

- Sample nonempty even-sized subset I of [q]
- Query f at $\sum_{i \in I} x_i$
- **Reject** if $\sum_{i \in I} f(x_i) \neq f(\sum_{i \in I} x_i)$ (and all points are non-erased)

(3) **Accept**

Proof. Algorithm always accepts if f is linear. Suppose f is ε -far from linear.

- Goal: obtain, nonerased, all values of some *k*-tuple that violates linearity.
- Step (1): All x_i are sampled iid, so they are nonerased with high probability.
- Step (2):
 - Number of even-sized subsets of $[q]: 2^{q-1} = t^2/\varepsilon^2$
 - Expected number of violating sets (by structural Theorem): $\varepsilon \cdot 2^{q-1} = t^2/\varepsilon$
 - Number of even-sized sets spoiled by adversary: $t\left(q+\frac{1}{\epsilon}\right) = 2t\log\frac{t}{\epsilon} + \frac{t}{\epsilon} \leq \frac{3t\log t}{\epsilon}$
 - Expected fraction of nonerased violating even-sized sets $\geq \varepsilon/2$
 - After $O(1/\varepsilon)$ iteratitions, tester will sample nonerased violating sum

t = erasures per query t = 2

Q. Why not just query sums of pairs, i.e., why do we need the structural theorem? A. To obtain optimal dependence on *t* in the query complexity of the tester

Algorithm. Online-erasure-resilient linearity tester

(1) Query $q = O(t^2)$ points $x_i \sim \{0,1\}^d$

(2) Repeat $1/\varepsilon$ times:

- Sample nonempty subset *I* of [*q*] of size 2.
- Query f at $\sum_{i \in I} x_i$

• Reject if $\sum_{i \in I} f(x_i) \neq f(\sum_{i \in I} x_i)$ (and all points are non-erased)

(3) Accept

Plan

✓ Show the tester for linearity (with a light proof)

- Show the lower bound for linearity
- Show idea behind tester for quadraticity
- Show the impossibility of testing sortedness

Linearity Lower Bound

Thm. Every online-erasure-resilient linearity tester must make at least log t queries.

Proof. Via Yao's minimax principle.

To show a lower bound q on randomized algorithms for testing a property it suffices to show:

- two distributions D^+ and D^- over functions f
- functions from D^+ have the property
- functions from D^- are far from the property (w.h.p.)
- a <u>deterministic</u> tester is given query access to f generated from D^+ or D^-
- if the tester makes < q queries, it cannot decide between D⁺ and D⁻ with low prob. of error

Linearity Lower Bound

Thm. Every online-erasure-resilient linearity tester must make at least log t queries.

Proof. Via Yao's minimax principle.

To show a lower bound q on randomized algorithms for testing a property it suffices to show:

- two distributions D^+ and D^- over functions f
- functions from D^+ have the property
- functions from D^- are far from the property (w.h.p.)
- an erasure strategy for t-online-erasure oracle O
- a <u>deterministic</u> tester is given query access via O to f generated from D^+ or D^-
- if the tester makes < q queries, it cannot decide between D⁺ and D⁻ with low prob. of error

Linearity Lower Bound

Thm. Every online-erasure-resilient linearity tester must make at least log t queries.

Proof. Via Yao's minimax principle.

D⁺: random linear

D⁻: random function

- D^+ : Uniform distribution over linear functions on $\{0,1\}^d$
- D^- : Uniform distribution over all Boolean functions on $\{0,1\}^d$ ($\frac{1}{4}$ -far from linear w.h.p)
- Oracle O: erase t sums of previous queries of the tester (in some specific order)
- If tester makes $q < \log t$ queries, with t erasures the oracle can erase $t > 2^q$ points
- i.e., oracle erases all sums of queried elements
- Tester only sees linearly independent vectors from $\{0,1\}^d$
- For a uniformly random linear function, the distribution of values over a set of linearly independent vectors is uniform
- A linear function is fully specified by its values on the basis vectors for $\{0, 1\}^d$
- If tester makes $< \log t$ queries, it cannot distinguish D^+ from D^-

Plan

- ✓ Show the tester for linearity (with a light proof)
- ✓ Show the lower bound for linearity
- Show idea behind tester for quadraticity
- Show the impossibility of testing sortedness

Function $f: \{0,1\}^d \rightarrow \{0,1\}$ is quadratic if can be expressed as polynomial of degree at most 2 e.g., f(x) = x[1]x[2] + x[3]

Standard Model	Online Erasures Model		
[Alon Kaufman Krivelevich Litsyn Ron '05] [Bhattacharyya Kopparty Schoenebeck Sudan Zuckerman '10] $O\left(\frac{1}{\varepsilon}\right)$ queries	This work $O\left(\frac{1}{\varepsilon}\right)$ queries for constant t Doubly exponential in t		
Tester:	Raise of hands: Can one modify this tester		
• Sample $x_1, x_2, x_3 \sim \{0,1\}^d$	to work with erasures?		
• For all nonempty $S \subseteq [3]$, query $\sum_{i \in S} x_i$			
• Reject if the sum of <i>f</i> on 7 queries is 1.	Recall 2 player game.		

2-player game:

- Player 1 draws a vertex or edge connecting two vertices or colors a triangle in blue
- Player 2 draws an edge between existing vertices or colors a triangle in red

Raise of hands: Can one modify this tester to work with erasures?

Recall 2 player game.

 $y_{1,1}$ y_1 $y_{1,2}$ x_3 x_1 x_4 x_2

From the game to the algorithm:

- Probability that the queries made by the the tester are nonerased when queried?
- Probability that the "triangle" completed violates quadraticity?

Generalize to t: A strategy for Player 1 with $t^{O(t)}$ moves

Plan

- ✓ Show the tester for linearity (with a light proof)
- \checkmark Show the lower bound for linearity
- ✓ Show idea behind tester for quadraticity
- Show the impossibility of testing sortedness

Sortedness

Array $f: [n] \to \mathbb{N}$ is sorted if $f(x) \le f(y)$ for all $x \le y$

Standard Model	Offline-Erasures Model	Online-Erasures Model
[Ergun Kannan Kumar Rubinfeld Viswanathan '00] [Fischer Lehman Newman, Raskhodnikova Rubinfeld Alex Samorodnitsky '04][Fischer '06] [Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff '12] [Chakrabarty Seshadhri '18][Belovs '18] $\Theta(\log \varepsilon n / \varepsilon)$ queries $O(\sqrt{n/\varepsilon})$ uniform iid queries	[Dixit Raskhodnikova Thakurta Varma '18] $O(\log n / \varepsilon)$ queries	This work Impossible to test

- array is 1/2-far from sorted
- all violations are disjoint
- in linearity and quadraticity, violations overlap with each other

Plan

✓ Show the tester for linearity (with a light proof)

- ✓ Show the lower bound for linearity
- ✓ Show idea behind tester for quadraticity

 \checkmark Show the impossibility of testing sortedness

Conclusions & Open Questions

- Designed efficient testers for several important properties (linearity and quadraticity)
- Showed tight bounds for testing linearity in terms of erasure budget t
- Showed that some basic properties cannot be tested in our model, even for t = 1.

- Sortedness can be tested in the offline erasures model, but not in the online erasures model.
 - Is there a property that has smaller query complexity in online model vs offline model?
- Is there a tester for testing that a function is polynomial of degree at most k for $k \ge 3$?
 - In standard model this is possible with $O(2^k/\varepsilon)$ queries
- What is the query complexity for testing quadraticity in terms of *t*?
 - Current tester has doubly exponential dependence on t