
A Processing Model for the Optimal Querying of Encrypted XML
Documents in XQuery

Tao-Ku Chang

Graduate Institute of Information and Computer
Education, National Taiwan Normal University

Taipei, Taiwan
tkchang@ice.ntnu.edu.tw

Gwan-Hwan Hwang
Department of Computer Science and Information

Engineering, National Taiwan Normal University Taipei,
Taiwan

ghhwang@csie.ntnu.edu.tw

Abstract
XQuery is a powerful and convenient language that is
designed for querying the data in XML documents. In
this paper, we address how to optimally query encrypted
XML documents using XQuery, with the key point being
how to eliminate redundant decryption so as to
accelerate the querying. We propose a processing model
that can automatically and appropriately translate the
XQuery statements for encrypted XML documents.
Furthermore, we show that XML schema is significantly
associated with queries over XML documents. The
implementation and experimental results demonstrate the
practicality of the proposed model.
Keyword: XML, XQuery, DSL, Security, Database.

1 Introduction
The XQuery language (Scott et al., 2005) proposed by
W3C was designed to be broadly applicable across all
types of XML data sources. Its mission is to provide
flexible query facilities to extract data from real and
virtual documents on the Web. XQuery uses an XML
data model that can represent XML documents,
sequences, or atomic elements (such as integers or
strings). The concept of XQuery is depicted in Figure 1.
Q represents an XQuery program that includes
navigation in XML documents using XPath (Clark and
DeRose, 1999), database statements (the so-called
FLWOR expressions), construction of new XML
elements, operations on XML Schema types, and
function calls. The XQuery engine queries and formats
data from an XML database that stores XML documents
according to Q, with the resultant XML document being
R.

XML is becoming a widespread data-encoding format
for Web applications and services, which makes it
important to secure XML documents in various ways.
For example, we may need to sign and encrypt XML
documents in order to ensure nonrepudiation and
confidentiality (Schneier, 1995). Based on XML
element-wise encryption (Maruyama and Imamura,
2000), the W3C’s XML encryption working group
(http://www.w3.org/Encryption/2001/Overview.html)
delivered a recommendation specification for XML
encryption (Imamura et al., 2002). The encrypted

Copyright (c) 2007, Australian Computer Society, Inc. This paper
appeared at the Eighteenth Australasian Database Conference
(ADC2007), Ballarat, Victoria, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 63. James Bailey
and Alan Fekete, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

document specifies a process for encrypting data and
representing the result in XML. The encrypted data may
be arbitrary data, an XML element, or the content of an
XML element. Figure 2 illustrates the concept of
element-wise encryption. Only one element (“Number”)
of the original document is encrypted. This enables XML
files to protect themselves because the sensitive data in
XML are encrypted by particular keys.

XQuery

Result R

Q

R

XQuery
engine

X1 X2 X3

X4 X5 X6

X7 Xn
…..

XML database

Figure 1: The data flow for querying XML documents

This paper addresses how to query data from these

encrypted XML documents in XQuery. The intuitive,
trivial method is to first decrypt the encrypted XML
documents and then use an XQuery program to obtain
the desired documents (see Figure 3). The drawback of
this approach is that it is quite inefficient in certain
situations because all of the encrypted elements in the
queried XML document must be decrypted. According
to its operational semantics, XQuery is normally used to
obtain a small set of elements from the target XML
documents. It is not theoretically necessary to decrypt all
the encrypted elements in the target XML document –
we only have to decrypt those elements that belong to
the result elements of the issued query. It is obvious that
a scheme that does not need to decrypt unwanted
elements should be more efficient than a scheme that
decrypts all the encrypted elements.

The first aim is to eliminate unnecessary decryption.
According to the specification of W3C XML encryption
(Imamura et al., 2002), the scopes of encryption could be
“element”, which encrypts a whole element (including
the start/end tags), or “content”, which encrypts the
content of an element (between the start/end tags).
Consider the XML document shown in Figure 4. The
“payer” and “cardinfo” elements are encrypted as a
whole; that is, their encryption scope is set to “element”.
In the encrypted XML document shown in Figure 5, the
“CipherData” element contains the encrypted data of the

“payer” and “cardinfo” elements, and is wrapped by
the “EncryptedData” element. We see that the tag
names of the “payer” and “cardinfo” elements
disappear. Figure 5 indicates that once the encryption
scope of an element is set to “element”, its tag name
cannot be examined unless we first decrypt the element.
The type of encryption scope is helpful to data security
because there is no clue about which element is
encrypted. Figure 6 lists an XQuery program that is used
to obtain the value of the “cardinfo” element from
Figure 4. It is obvious that we cannot use this program to
query the encrypted document shown in Figure 5; it
appears that we have to decrypt the two encrypted
elements before performing the query. However, since
we only want to query one of them, one of the
decryptions is redundant.

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#‘

Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData>

<CipherValue>A23B45C56</CipherValue>
</CipherData>

</EncryptedData> </Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

Original XML
document

Element-wise
encrypted
document

Perform element-wise encryption

Figure 2: Example of element-wise encryption

XQuery

Result X

Q

X

XQuery
engine

Xs1 Xs2 Xs3

Xs4 Xs5 Xs6

Xs7 Xsn
…..

XML database

Decryption

Figure 3: A trivial way to query encrypted XML

documents
To improve the efficiency of decryption of encrypted

XML documents in the query process, we should avoid
performing unnecessary decryption. For the example
shown in Figure 4, Figure 5, and Figure 6, it is obvious
that some additional information is necessary to
eliminate the redundant decryption because the
encryption may break the structure of the XML
document. Sometimes the structure information should
be referred to during the query. As noted above, we use
XML Schema (Fallside and Walmsley, 2004) that
provides a means for defining the structure, content and
semantics of XML documents to support it. It is usually
used to validate XML documents but plays an important
role in the XML queries in this research. We will
illustrate it in Section 3. In this paper, we present the
type of information required to eliminate redundant

decryption and propose a processing model to
automatically translate an XQuery program written by
users to another one that can accurately locate the target
elements that should be decrypted. The presented
translation algorithm is optimal in terms of the
computation required for decryption.

<?xml version='1.0'?>

<transactions>

 <transaction>

 <payer id = “M123456789”>tony yao</payer>

 <price current="TWD">1350</price>

 <cardinfo>

 <cardtype>g</cardtype>

 <orgination>visa</orgination>

 <owner>tony yao</owner>

 <creditline>200000</creditline>

 <expiredate>12/01/2007</expiredate>

</cardinfo>

 </transaction >

</transactions>
Figure 4: An XML document

<?xml version='1.0'?>

<transactions>

 <transaction>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

mrs79DfdL+ODXzur3DZXBDJx2EwRgz+MRP3Nv9T20J2L

ltPYthkSAG0zVoCt+GZhSdcf4T9xLp78tOxRN/PgmGo2

hLSO/3OtqTNukDooxPmA7sADaWiZOe6rbrNdFY5QgjBA

Z8TlnQ3SSBiSM11rygoDei4LTJEROcN6Lq5lL/c=

<CipherValue>

 <CipherData>

</EncryptedData>

<price current="TWD">1350</price>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

h3IkkoyhsUL0uuC7MtSyw/xMfWlcKb144rH5EAQQ8vrj

rs3B1RwmIDF9lYBChHkfghk3eW4Jb6fQrnemykms7ZIA

y7dHpxL2lC7sJ0rX1UlDjzNoRHKVZo80IZzQ9yP/+mBl

br6C/mD5vE9aa2FEEAlFvdGxPeW62fKCD3ZM15kotIRw

yf5O+Ja1UJgLN2Juu5AQ3qkpScJBeocSeF207rveeCYP

yd+Nh/GrDFzjCndBOB1YV7RXXyUvaDu2PZ55OTwNufUQ

ggpvxpDZUZ7fSOkjzHrDN88ZwULKIf6aLBt1M=

<CipherValue>

 <CipherData>

</EncryptedData>

 </transaction>

</transactions>
Figure 5: An encrypted XML document

<transactions>

 {

 for $b in

doc("example.xml")/transactions/transaction/cardinfo

 where $b/cardno = "1234-5678-8765-4321"

 return

 $b/cardno

 }

</transactions>
Figure 6: An XQuery to extract “cardinfo” from an

XML file

The remainder of this paper is organized as follows:
Section 2 presents the proposed processing model,
Section 3 presents an algorithm for the transformation of
XQuery statements for querying encrypted XML
documents, Section 4 presents our implementation and
experimental results, and Section 5 concludes the paper.

2 The Processing Model for Querying Encrypted
XML Documents
Optimally querying the encrypted XML documents in
XQuery requires information about security. Note that an
optimal query is defined as that requiring minimal
decryption for encrypted elements in the target XML
documents. Generally speaking, the encryption and
signature standards proposed by W3C offer a complete
definition of the format for the encrypted XML
document (Imamura et al., 2002). However, the language
is not sufficiently powerful for the programmer to
specify how to encrypt and sign his or her XML
documents. To overcome this limitation, we previously
proposed a security language that allows a programmer
to specify the security detail of XML documents: the
document security language (DSL) (Hwang and Chang,
2001, 2003, 2004, 2005). The DSL can be used to define
how to perform encryption and decryption, and the
embedding and verification of signatures. It offers a
security mechanism that integrates element-wise
encryption and temporal-based element-wise digital
signatures. Also, because the syntax of the
“EncryptedData” element in the XML encryption
standard prevents its extension to handle attribute
encryption, the DSL supports a type of element-wise
encryption that is more general: the scope of encryption
(or encryption granularity) can be a whole element, some
of the attributes of an element, or the content of an
element; where an attribute has two possible types of
encryption: (1) to only encrypt its value and (2) to
encrypt both its name and value (Chang and Hwang,
2003). The encrypted document produced by the DSL
securing tool can be made compatible with the XML
encryption and digital signature standard in cases where
attribute encryption is not applied.
Figure 7 illustrates the relationship between XML, DSL,
and the DSL securing tool. Figure 7A shows the process
of encrypting and embedding digital signatures. The
details of the encryption process and the digital signature
itself are stored in a DSL document in DP, DT, and DSig:
DP is the security pattern definition that specifies the
combination of security algorithms and encryption and
decryption keys, DT is the transformation description
definition that specifies the actual data transformation of
element-wise encryption, and DSig specifies how to
embed digital signatures in the resulting XML document.
The target XML document that is ready to be encrypted
and signed is X. The DSL securing tool reads, parses,
and analyzes DP, DT, DSig, and X, and then generates Xs
and DP’. Xs is still an XML document, but some of its
elements contain ciphertexts that are translated by the
DSL securing tool according to the encryption details
recorded in DP and DT. In addition to the encrypted
elements, Xs also contains signatures that are embedded
by the DSL securing tool. Each signature signs a portion

of the data in X. It should be noted that DP and DP’ may
contain different information: DP holds information
describing how to encrypt X, whereas DP’ should include
details of how to decrypt Xs. In addition, we have
developed a DSL editor with a graphical user-friendly
interface to make it easier for users to generate DSL
documents (Hwang and Chang, 2005).

(A) E n cry ptin g an d em bed d in g s ign atu res

(B) D ecryptin g a n d ve rify in g sign atu res

D S L
securing

tool

X M L X s

D S L D P ' + D Sig

X M L X ´

R esults o f d ig ita l
signature verification

D S L
securing

tool

X M L X s

D S L D P ' + D Sig

X M L X

D S L D P + D T + D Sig

Figure 7: The operational model for securing XML

documents

XQuery

Result

Translator Q

R

XQuery Q’

XML database
stores encrypted
XML documents

DSL DSchema S
XQuery
engine

Extension objects

Xs

Figure 8: The processing model for querying encrypted

XML documents
Figure 8 depicts the processing model we propose for
the efficient querying of encrypted XML documents. Q
is the original XQuery program. Note that Q is written to
query data from the original XML document (i.e., the
unencrypted document). D is a DSL document. The
encrypted XML document Xs is encrypted according to
D and is stored in the XML storage. Before Q is sent to
the XQuery engine, the translator parses it and translates
it into Q’. Q’ is also an XQuery program, but some
expressions in it are translated according to D and the
XML Schema S (Fallside and Walmsley, 2004). In cases
where the result document R contains some encrypted
elements in Xs or the query needs to consult some
encrypted element in Xs, Q’ contains codes to invoke
decryption functions that are the extension objects. Note
that the XML Schema S may not be available; however,
D is generally sufficient to generate an efficient XQuery
Q’. In certain circumstances the information contained in
S can be used to generate a more efficient query
compared with a transformation obtained by only
consulting D. The translation from Q to Q’ is detailed in
Section 3.

3 The Transformation Algorithm of XQuery
Statements for Querying Encrypted XML
Documents
Now we present our design of an algorithm that is used

to transform the XQuery statements; that is, the design of
the translator shown in Figure 8. We begin by
considering the syntax of the XQuery statement. Each
XQuery program contains one or more query
expressions. The FLWOR expression is the most
powerful of the XQuery expressions and is, in many
ways, similar to the SELECT-FROM-WHERE statement used
in SQL (ISO/IEC 9075-2, 2003). The formal grammar
for a FLWOR expression in XQuery is defined in (Boag
et al., 2005) as follows:
FLWORExpr ::= (ForClause | LetClause)

WhereClause? OrderByClause?
return ExprSingle

The above BNF1 form of the FLWOR expression is quite
protean, being capable of generating a large number of
possible query instances. The ExprSingle term
following the “return” keyword can itself be replaced
by another FLWOR expression, so that FLWOR
expressions can be strung together ad infinitum. The
replacement of an ExprSingle term by any other
expression type is what makes XQuery composable and
gives it its rich, expressive power. There are many
expression types in XQuery, each of which can be
plugged into the grammar wherever a more generic
ExprSingle expression is called for.

In this paper, we focus on FLWOR expressions to
implement the transformation algorithm, which is listed
in Figure 9. In the following we use four examples to
demonstrate this algorithm.
Algorithm: Transform a FLWOR expression for querying

encrypted XML documents

Input:

 Let F is a FLWOR expression of the form:

 FLWORExpr ::= (ForClause | LetClause)

 WhereClause? OrderByClause? return ExprSingle

 Let D is a DSL file

 Let S is an XML Schema

Output:

 N = A FLWOR expression

Begin_of_Algorithm

{

● Step 1:

Let T_set represents the set of the path templates in the

DSL file

Let IF_set represents the set of the paths in ForClause

Let IW_set represents the set of the paths in WhereClause?

 Let I_set = (IF_set ∪ IW_set)

Let R_set represents the set of paths referred in

ExprSingle. Note that if the ExprSingle is a FLWOR

expression, we do not add the paths referred in the

FLWOR expression to R_set

 BoundVariable_set = The bound variables in ForClause

TargetXML_set = The file names of target XML documents

in doc function

ForClause_String = The string of ForClause in F

 WhereClause_String = The string of WhereClause? in F

 ReturnClause_String = The string of “return” + ExprSingle

in F

N = Null string

● Step 2:

 if Intersection(I_set,T_set)=∅2 and

Intersection(R_set,T_set)=∅
{

 N = F

 }

 if Intersection(I_set,T_set)≠∅ and
Intersection(R_set,T_set)=∅

{

1 See Fischer and LeBlanc (1991) for more information about the
BNF representation. In this paper, all the nonterminal symbols are
underscored.
2 The symbol ∅ indicates the empty set.

 P_set = XPath_Transformation (IF_set,T_Set,S);

 Scope_Array =

Decryption_Scope (IF_Set,IW_set,R_set,T_set);

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 BoundVariable_set_1(i) =

BoundVariable_set(i) +“_1”;

 }

 N = “for ”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = BoundVariable_set_1(i) +“ in

doc(”+TargetXml_set(i)+“)”+P_set(i)+“\n”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 N = N +“let ” + BoundVariable_set(i)+

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

Scope_Array(i)+”\“)”+“\n”;

 }

 N = N + “return” + “\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

 if Intersection(I_set,T_set)=∅ and
Intersection(R_set,T_set)≠∅

{

Scope_Array =

Decryption_Scope(IF_set,IW_set,R_set,T_set);

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 BoundVariable_set_1(i) =

BoundVariable_set(i) +“_1”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 New_forClause =

ForClause_String.replace(BoundVariable_set(i),

BoundVariable_set_1(i))

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

 New_whereClause =

WhereClause_String.replace(BoundVariable_set(i),

BoundVariable_set_1(i))

 }

 N = N + New_forClause +“\n”

 N = N + New_whereClause +“\n”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“let ” + BoundVariable_set(i) +

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

Scope_Array(i)+"\“)”+“\n”;

 }

 N = N +“retrun”+“\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

 if Intersection(I_set,T_set)≠∅ and

Intersection(R_set,T_set)≠∅
{

P_set = XPath_Transformation(IF_set, T_set, S)

Scope_Array =

Decryption_Scope(IF_set, IW_set, R_set, T_set);

 N =“for ”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = BoundVariable_set_1(i) +“ in

doc(”+TargetXml_set(i)+“)”+P_set(i)+“\n”;

 }

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 N = N +“let ” + BoundVariable_set(i)+

“=decryption(”+ BoundVariable_set_1(i)+“,\“”+

scope_Array(i)+”\“)”+“\n”;

 }

 N = N + “return”+ “\n”;

 N = N + “if”

 For i = 1 to (the number of bound variables in

BoundVariable_set)

 {

N = N +“ ”+“(count(”+BoundVariable_set(i)+“)>0)”

if BoundVariable_set(i) ≠ null
{

 N = N + “ and”

}

}

 N = N + “ and ”+WhereClause_string+“\n”+“then ”+

ReturnCluase_string+“\n”+“else ()”+“\n”;

}

}

End_of_Algorithm

Procedure XPath_Transformation(IF_set,T_set,S)

Input:

 IF_set = A set of paths

 T_set = The set of path templates in the DSL file

 S = An XML Schema

Output:

 P_set = A set of paths

Begin

{

 For i = 1 to (the number of paths in IF_set)

 {

if (IF_set(i) T_set) { ⊆
 Pt0 = A string in IF_set(i) from right to left until

character is “/”

Pt1 = Delete Pt0 in IF_set(i) from right

index = 0;

If S is available {

 index = check-schema (IF_set(i), S)

 }

 if index >=1{

P = Pt1 + “EncryptedData”+

“[” +index.toString()+“]”}

 else{

P = Pt1 + “EncryptedData”

 }

 }

 else {P=IF_set(i)}

 Write P to P_set

 }

}

End

Procedure Decryption_Scope(IF_set,IW_set,R_set,T_set,S)

Input:

 IF_set = The set of the path in ForClause

 IW_set = The set of the path in WhereClause?

 R_set = The set of paths referred in ExprSingle. Note that

if the ExprSingle is a FLWOR expression, we do not

add the paths referred in the FLWOR expression to

R_set

 T_set = The set of path templates in the DSL file

 S = An XML Schema

Output:

 Scope_Array = String Array

Begin

{

 for i = 1 to (the number of paths in IF_set)

 {

 scope = null string

if (IF_set(i) T_set) { ⊆
 scope = “all”

 Write scope to scope_Array

 Continue for loop

}

if (IW_set ⊆ T_set) and ((IW_set ∩ IF_set(i) ≠∅){
If S is available {

 index = check-schema (IW_set, S)

 }

 if (index >=1){

scope = scope + “child:EncryptedData”+

“[”+index.toString()+“]”

}

 else{

scope = scope + “child:EncryptedData”

 }

 }

if (R_set ⊆ T_set) and ((R_set ∩ IF_set(i) ≠∅) {
If S is available {

 index = check-schema (R_set, S)

 }

 if (scope <> null){

 scope = scope + “;”

 }

 if (index >=1){

scope = “child:EncryptedData”+

“[”+index.toString()+“]”

}

 else{

scope = “child:EncryptedData”

 }

 }

 Write scope to Scope_Array

 }

}

End

Figure 9: Transformation algorithm
The first example demonstrates an XQuery program

that queries some of the encrypted elements from the
target XML document.
Figure 10A lists a FLWOR expression that performs a
simple search that returns the “cardinfo” element from
the document example.xml (see Figure 4) where the
value of “/transactions/transaction/price” is
“1350”. The XML document shown in Figure 5 is that
encrypted according to the DSL document shown in
Figure 11. The input includes a FLWOR expression, a
DSL document, and an XML Schema. Step 1 defines
some variables: “T_set” represents the set of path
templates in the DSL file, “I_set” represents the set of
paths in “ForClause” and “WhereClause”, and “R_set”
represents the set of paths referred to in ExprSingle.
Note that if ExprSingle is a FLWOR expression, we do
not add the paths referred to in the FLWOR expression
to “R_set”. We present the situation in which
ExprSingle is a FLWOR expression in the third example.
In Step 2, we first compute the intersections of “I_set”
and “T_set” and of “R_set” and “T_set”. The intersection
of “I_set” and “T_set” is not the empty set when the
queried elements according to “ForClause” and
“WhereClause” contain encrypted elements. Similarly,
the intersection of “I_set” and “R_set” is not empty
when the return elements contain encrypted elements. In
this example there are two path templates in the DSL
document (see Figure 11), and we have T_set =
{“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”}, ForClause
= “for $b in

doc("example.xml")/transactions/transaction”,
WhereClause? = “where $b/price=1350”, I_set =
{“/transactions/transaction,”
“/transactions/transaction/cardinfo/price”},
ExprSingle = “$b/cardinfo”, and R_set =
{“/transactions/transaction/cardinfo”}. The
intersection of “I_set” and “T_set” is not the empty set,
whereas that of R_set and T_set is the empty set.

According to the algorithm listed in Figure 9, the
translator then generates the transformed FLWOR
expression. The “ForClause” and “WhereClause?”
statements are changed to “for $b_1 in

doc("example.xml")/transactions/transaction” and
“where $b_1/price=1350”, respectively. A “LetClause”
statement (“let $b =

decryption($b_1,”child:EncryptedData[2]”)”) is
added after the “ForClause” and “WhereClause?”
statements. Note that “LetClause” invokes a decryption
function to decrypt the $b_1 variable since it contains the
encrypted elements that the original XQuery statement
wants to query. Finally, we change ExprSingle to “if
(count($b) >0 then {$b/cardinfo} else ()”. The
output FLWOR expression is listed in Figure 10B.

<transactions>
{
for $b in doc("example.xml")/transactions/transaction
where $b/price=1350
return

$b/cardinfo
}

</transactions>
(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactions/transaction
where $b_1/price=1350
let $b = decryption($b_1, “child:EncryptedData[2]”)
return

if (count($b) >0
then

{
$b/cardinfo

}
else ()

}
</transactions>

(B) An output FLWOR expression
Figure 10: An XQuery to extract “cardinfo” from an

encrypted XML file

<?xml version="1.0" ?>

<dsl:security_document

xmlns:dsl="http://www.xml-dsl.com/2002/dsl" version="1.0">

:

:

<dsl:template match="/transactions/transaction/payer">

<dsl:value-of-encrypted-node scope="element"

pattern="pattern1"/>

</dsl:template>

 <dsl:template match="/transactions/transaction/cardinfo">

 <dsl:value-of-encrypted-node scope="element"

pattern="pattern2"/>

 </dsl:template>

</dsl:security_document >

Figure 11: A DSL document

Figure 12A shows our second XQuery program, whose
“ForClause”, “WhereClause?”, and ExprSingle
expressions contain XPaths that point to encrypted
elements. The program performs a search that returns the
“cardno” element from the document example.xml (see
Figure 4), where the value of
“/transactions/transaction/cardinfo/cardno” is
“1234-5678-8765-4321”. In this example, we have T_set
= {“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”}, I_set =
{“/transactions/transaction/cardinfo,”
“/transactions/transaction/cardinfo/cardno”},
and R_set =
{“/transactions/transaction/cardinfo/cardno”}.

The intersections of I_set and T_set and of R_set and
T_set are not the empty set. According to the algorithm
listed in Figure 9, “ForClause” is changed to “for $b_1
in
doc("example.xml")/transactions/transaction/Enc

ryptedData[2]”. A “LetClause” statement (“let $b =
decryption($b_1,”all”)”) is added after the
“ForClause” statement. “LetClause” invokes a
decryption function to decrypt the $b_1 variable which
represents the elements pointed at by the XPath
/transactions/transaction/EncryptedData[2].
Finally, ExprSingle is modified by adding “if
(count($b) >0 and $b/cardno =

“1234-5678-8765-4321” then $b/cardno else ()”. The
output FLWOR expression is listed in Figure 12B.

<transactions>
{
for $b in doc("example.xml")/transactions/transaction/cardinfo
where $b/cardno = "1234-5678-8765-4321"
return

$b/cardno
}

</transactions>
(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactions/transaction/EncryptedData[2]
let $b = decryption($b_1, “all”)
return
if (count($b) >0 and $b/cardno = "1234-5678-8765-4321"
then $b/cardno
else ()

}
</transactions>

(B) An output FLWOR expression

Figure 12: An XQuery to extract “cardinfo” from an
encrypted XML file

Figure 13A is the third example, which is a more
complicated XQuery program. The ExprSingle
statement contains an FLWOR expression. The
“WhereClause?” statement in the outer FLWOR
expression contains encrypted elements. The FLWOR
expressions ExprSingle and “ForClause” also contain
encrypted elements. The transformation process occurs
from outside to inside. We first transform the outer
FLWOR expression: we have
T_set={“/transactions/transaction/payer,”
“/transactions/transaction/cardinfo”} and
I_set={“/transactions/transaction,”
“/transactions/transaction/payer”}. The inner
FLWOR expression “for $a in $b/cardinfo return $a”
will not be changed when transforming the outer
FLWOR expression: thus we have
R_set={“/transactions/transaction/price”}. After
invoking the intersection function, the intersection of
“I_set” and “T_set” is not the empty set whereas that of
R_set and T_set is the empty set. The “ForClause”
statement is changed to “for $b_1 in

doc("example.xml")/transactions/transaction”. A
“LetClause” statement (“let $b = decryption($b_1,
“child:EncryptedData[1]”)”) is added after
“ForClause”, which invokes a decryption function to
decrypt the $b_1 variable. Finally, we transform the
ExprSingle into the following statements:
“if (count($b) >0 and $b/payer = “tony yao”
then

{

 <transaction>

 {

 $b/price

 for $a in $b/cardinfo return $a

 }

 </transaction>

}

else ()”.

After transforming the outer FLWOR expression, we
should proceed to transform the inner FLWOR
expression “for $a in $b/cardinfo return $a” to “for
$a_1 in $b/EncryptedData[2] $a =
decryption($b_1,"all") if count($a)>0 then return

$a else()” according to the algorithm listed in Figure 9.
The output XQuery program is listed in Figure 13B.

<transactions>

{
for $b in doc("example.xml")/transactions/transaction
where $b/payer="tony yao"
return

<transaction>
{

$b/price
for $a in $b/cardinfo
return $a

}
</transaction>

}
</transactions>

(A) An input FLWOR expression

<transactions>
{
for $b_1 in doc("example.xml")/transactins/transaction
let $b = decryption($b_1, "child:EncryptedData[1]")
return

if (count($b)>0 and $b/payer="tony yao")
then
{

<transaction>
{

$b/price
for $a_1 in $b/EncryptedData[2]
$a = decryption($b_1,"all")
if count($a)>0
then

return $a
else()

}
</transaction>

}
else()

}
</transactions>

(B) An output FLWOR expression

Figure 13: An XQuery to extract “cardinfo” from an
encrypted XML file

It is essential to use the DSL in the proposed

processing model because the translator must investigate
the DSL document to determine which elements were
encrypted. Although it is not compulsory to use XML
Schema, it can be used to further reduce the times
required for decryption. XML Schema is a DTD
successor that expresses shared vocabularies and
provides a guide for characterizing the structure, content,
and semantics of an XML document. Furthermore, XML
Schema offers (1) XML query validation, by exploiting
the XML query language syntax to translate relative
paths into absolute paths; and (2) identification of
parent–child relationships, which improves the
performance in solving XML queries for applications
that require detection of these and other
ancestor–descendant relationships.

In the following, we demonstrate that the XML
Schema can be used to optimize the query. Figure 14 is
an encrypted version of the XML document shown in
Figure 4. Note that all child nodes of the transaction

element are encrypted as a whole. If the user wants to
obtain the value of the “cardinfo” element, s/he must
write a “ForClause” statement such as “$b in
doc("example.xml")/transactions/transaction/Enc

ryptedData” in an XQuery program. However, there are
three elements with tags named “EncryptedData”. These
elements will be decrypted to check their tag names to
identify which is the “cardinfo” element. We can use
XML Schema to avoid the redundant decryption. Figure
15 lists the XML Schema of the XML document shown
in Figure 4. The translator looks it up to determine that
the “cardinfo” element is the third child element of the
“transaction” element. Thus, the “ForClause”
statement can be changed to
“doc("example.xml")/transactions/transaction/En
cryptedData[3]”, where the “[3]” means that only the
third “EncryptedData” element needs to be decrypted.

<?xml version='1.0'?>

<transactions>

 <transaction>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

mrs79DfdL+ODXzur3DZXBDJx2EwRgz+MRP3Nv9T20J2LltPY

thkSAG0zVoCt+GZhSdcf4T9xLp78tOxRN/PgmGo2hLSO/3Ot

qTNukDooxPmA7sADaWiZOe6rbrNdFY5QgjBAZ8TlnQ3SSBiS

M11rygoDei4LTJEROcN6Lq5lL/c=

<CipherValue>

 <CipherData>

</EncryptedData>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

CyT4UQrOQ1vijcGM8nbKsB1ckUTpBoNH1USfvHTiwhZjN/2+

bAyEoqzU07IbYXTCKzslnymXivI7waPYZ76V97W2/JqYxRpv

kBcml4MSulhbekSW+S//jRSjxPuk0FW1POaj7gF9lyWEN+F0

VpNvqMLceZAVWB7TKTVRx8LGU5l0w=

<CipherValue>

 <CipherData>

</EncryptedData>

 <EncryptedData

Type='http://www.w3.org/2001/04/xmlenc#Element'

 xmlns='http://www.w3.org/2001/04/xmlenc#'>

 <CipherData>

<CipherValue>

h3IkkoyhsUL0uuC7MtSyw/xMfWlcKb144rH5EAQQ8vrjrs3B

1RwmIDF9lYBChHkfghk3eW4Jb6fQrnemykms7ZIAy7dHpxL2

lC7sJ0rX1UlDjzNoRHKVZo80IZzQ9yP/+mBlbr6C/mD5vE9a

a2FEEAlFvdGxPeW62fKCD3ZM15kotIRwyf5O+Ja1UJgLN2Ju

u5AQ3qkpScJBeocSeF207rveeCYPyd+Nh/GrDFzjCndBOB1Y

V7RXXyUvaDu2PZ55OTwNufUQggpvxpDZUZ7fSOkjzHrDN88Z

wULKIf6aLBt1M=

<CipherValue>

 <CipherData>

</EncryptedData>

 </transaction>

</transactions>

Figure 14: An encrypted XML document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="transaction">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="payer"/>

 <xs:element ref="price"/>

 <xs:element ref="cardinfo"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="transactions">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="transaction"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 15: An XML Schema

4 Implementation and Experimental Results
Many implementations of the XQuery engine exist. For
example, Galax (http://www.galaxquery.org) is a
lightweight and extensible implementation of XQuery
1.0. Since it closely tracks the definition of XQuery 1.0
as specified by the W3C, it also implements XPath 2.0,
which is a subset of XQuery 1.0. Qexo
(http://www.gnu.org/software/qexo/) is a partial
implementation of the XQuery language that exhibits a
good performance because a query is compiled down to
the Java byte codes. Saxon (http://www.saxonica.com/)
is a complete and conformable implementation of XSLT
2.0, XQuery 1.0, and XPath 2.0. We employ Saxon as
the XQuery engine for executing XQuery programs.
According to the processing model shown in Figure 8,
we implement a translator that enables XQuery programs
written by users to query data from encrypted XML
documents according to the algorithm listed in Figure 9.
We also implement extension objects to perform the
decryption processes.

We have conducted experiments to evaluate the
performance of querying data from encrypted XML
documents. All of the experiments were performed on a
PC with a 2.4-GHz Pentium 4 processor, 1024 MB of
RAM, the MS Windows 2000 operating system, and
Java Development Kit 1.4 (Sun Microsystems). The
original XML document had 101 elements: a tree with
one root node and its 100 child element nodes, in which
each child node was associated with a text node which in
turn comprised either 100 or 500 bytes. Table 1 lists the
times required to decrypt the whole encrypted XML
document and then to query target elements. The
processing time increases dramatically with the number
of encrypted elements because all encrypted elements
need to be decrypted first. For comparison, Table 2 lists
the times required to query encrypted documents using
the XQuery statements generated by the algorithm listed
in Figure 9. The algorithm ensures that only target
elements are decrypted regardless of the number of
encrypted elements. It is obvious that eliminating
redundant decryption dramatically enhances the
performance of the query process: increasing the number
of encrypted elements in the target element has little
effect on the time required to perform the query, which
demonstrates the effectiveness of the processing model
proposed in the paper.

Average time
(in seconds) Total

elements
in

XML
file

Number
of

queried
elements
which are
encrypted

Number
of

elements
that are

decrypted

Number
of

encrypted
elements 100

bytes*
500

bytes*

101 10 10 10 1.8984 3.7687
101 10 20 20 3.1155 6.7626
101 10 30 30 4.3640 9.8033
101 10 40 40 5.2296 12.7827
101 10 50 50 6.5156 15.7282
101 10 60 60 7.3671 18.6812
101 10 70 70 8.6720 21.4690
101 10 80 80 9.9843 24.8675
101 10 90 90 11.2171 27.3998
101 10 100 100 12.1735 29.9295

*Number of bytes to be encrypted in an element

Table 1: The time required to obtain encrypted data by
decrypting the whole XML document

Average time
(in seconds) Total

elements
in

XML
file

Number
of

queried
elements
which are
encrypted

Number
of

elements
that are

decrypted

Number
of

encrypted
elements 100

bytes*
500

bytes*

101 10 10 10 1.8937 3.7672
101 10 10 20 1.8968 3.7735
101 10 10 30 1.8921 3.7781
101 10 10 40 1.8984 3.7702
101 10 10 50 1.8077 3.7626
101 10 10 60 1.9157 3.7657
101 10 10 70 1.8469 3.7656
101 10 10 80 1.8531 3.7765
101 10 10 90 1.1987 3.7891
101 10 10 100 1.8938 3.7828

*Number of bytes to be encrypted in an element

Table 2: The time required to query encrypted
documents using the XQuery statements generated by

our algorithm

5 Conclusion
In this paper we have presented a processing model for
efficiently querying encrypted XML documents using
XQuery. This model requires some documents for
optimal querying, including a DSL that specifies how to
encrypted the XML documents and the XML Schema of
the original XML documents. We can use this model to
optimally query the encrypted XML documents, in terms
of the computation required for decryption during the
query process. Moreover, the experimental results
presented here demonstrate that XQuery programs that
are transformed according DSL and XML Schema
exhibit good performance.

References
Boag Scott, Chamberlin Don, Fernández Mary F., Florescu

Daniela, Robie Jonathan and Siméon Jérôme (2005),

“XQuery 1.0: An XML Query Language W3C Working

Draft.” http://www.w3.org/TR/xquery/

Clark J. and DeRose S. (1999), “XML Path Language (XPath)

Version 1.0. W3C Recommendation,”

http://www.w3.org/TR/1999/REC-xpath-19991116.xml

Schneier Bruce (1995), “Applied Cryptography: Protocols,

Algorithms, and Source Code in C,” 2nd Edition, published

by John Wiley & Sons.

Maruyama Hiroshi and Imamura Takeshi (2000),

“Element-wise XML Encryption.”

 http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

“XML Encryption WG.”

http://www.w3.org/Encryption/2001/Overview.html.

Imamura Takeshi, Dillaway Blair, and Simon Ed (2002), “XML

Encryption Syntax and Processing. W3C Recommendation

10 December 2002.” http://www.w3.org/TR/xmlenc-core/

Hwang Gwan-Hwan and Chang Tao-Ku (2001), “Document

Security Language (DSL) and an Efficient Automatic

Securing Tool for XML Documents,” International

Conference on Internet Computing 2001, 24-28 June, Las

Vegas, Nevada, USA, pp: 393-399

Hwang Gwan-Hwan and Chang Tao-Ku (2004). “An

operational model and language support for securing XML

documents,” Computers & Security, Volume 23, Issue 6,

September 2004, pp: 498-529.

Chang Tao-Ku and Hwang Gwan-Hwan (2003), “Towards

Attribute Encryption and a Generalized Encryption Model

for XML,” International Conference on Internet Computing

2003, 23-26 June, Las Vegas, Nevada, USA, pp: 455-461.

Hwang Gwan-Hwan and Chang Tao-Ku (2005) “DSL Editior,”

http://www.xml-dsl.com/DSL_editor_detail.htm

Fallside David C. and Walmsley Priscilla (2004), “XML

Schema Part 0: Primer,” W3C Recommendation, 28

October 2004. http://www.w3.org/TR/xmlschema-0/

International Organization for Standardization, Information

Technology- Database Language-SQL-Part 2: Framework

(SQL/Framework), ISO/IEC 9075-2: 2003 and Information

Technology- Database Language-SQL-Part 2: Foundation

(SQL/Foundation), ISO/IEC 9075-2: 2003,

http://www.iso.org.

Fischer Charles N. and LeBlanc Richard J Jr. (1991). “Crafting

A Compiler with C”. The Benjamin/Cummings Publishing

Company, Inc.

Galax. Available from: http://www.galaxquery.org

Qexo. The GNU Kawa implementation of XQuery. Available

from: http://www.gnu.org/software/qexo/

Saxon. Available from: http://www.saxonica.com/

Sun Microsystems, “The Source for Java(TM) Technology,”

http://java.sun.com

http://www.w3.org/TR/xmldsig-core/

	
	

