
Inferring an Original Sequence from Erroneous Copies: a Bayesian
Approach

Jonathan M. Keith1 Peter Adams1 Darryn Bryant1 Keith R. Mitchelson2,3

Duncan A. E. Cochran1,2 Gita H. Lala1,2

1Department of Mathematics
The University of Queensland

St Lucia, Qld 4072
Australia

2Australian Genome Research Facility
The University of Queensland

St Lucia, Qld 4072
Australia

3Institute for Molecular Bioscience
The University of Queensland

St Lucia, Qld 4072
Australia

Email: j.keith1@mailbox.uq.edu.au

Abstract

This paper considers the problem of inferring an original se-
quence from a number of erroneous copies. The problem arises

in DNA sequencing, particularly in the context of emerging

technologies that provide high throughput or other advantages,
but at the cost of introducing many errors. We develop a

Bayesian probabilistic model of the introduction of errors, and
search for a sequence that has maximum posterior probabil-

ity with respect to the model. We present results of exten-

sive tests in which error-prone sequencing of real DNA was
simulated. The results obtained using the new approach are

compared to results obtained by deriving a consensus sequence
from a multiple sequence alignment. We find that a significant

improvement in accuracy is obtained using the new approach.

The implication is that high error levels need not be a barrier
to the adoption of sequencing technologies that are in other

respects promising, because most errors can be detected and
corrected using a small number of reads.

Keywords: DNA sequencing, sequencing error,
Bayesian inference, consensus sequence.

1 Introduction

The need to infer an original sequence from a num-
ber of erroneous copies is common in DNA sequenc-
ing. All DNA sequencing technologies are imperfect,
and it is therefore not advisable to place too much
confidence in sequence obtained from a single read.
By generating multiple overlapping reads, and com-
paring them, errors can be detected and a closer ap-
proximation to the actual sequence can be obtained.
This issue is particularly important for certain emerg-
ing technologies that promise rapid sequencing at the
cost of an increased number of errors. Kececioglu
et al. (Kececioglu, Li & Tromp 1997) cites single-
molecule DNA sequencing as an example of such a
technology. In another example, the authors are cur-
rently developing a technology in which as many as
Copyright c©2003, Australian Computer Society, Inc. This paper
appeared at First Asia-Pacific Bioinformatics Conference, Ade-
laide, Australia. Conferences in Research and Practice in Infor-
mation Technology, Vol. 19. Yi-Ping Phoebe Chen, Ed. Repro-
duction for academic, not-for profit purposes permitted provided
this text is included.

20-30% of the bases in any given read may be erro-
neous. If such technologies gain currency, the ability
to accurately and efficiently infer a sequence from er-
roneous copies may become increasingly important.
Indeed, that ability may be crucial in rendering such
technologies feasible.

By far the most common approach to this prob-
lem, used in all major sequencing projects, is to
form a multiple sequence alignment of the erroneous
reads and to determine a (possibly weighted) con-
sensus character for each column of the alignment.
This approach is attributable to no single author or
group, but Gusfield (Gusfield 1997) provides an inter-
esting discussion of it. Kececioglu et al. (Kececioglu
et al. 1997) described an elegant approach based on
aligning sequences in groups of three. Li et al. (Li,
Ma & Wang 2000) developed a number of Polynomial
Time Approximation Schemes for determining con-
sensus sequences under various assumptions. Keith
et al. (Keith et al. to appear) developed a simulated
annealing algorithm to search for a Steiner string un-
der the edit distance metric. (A Steiner string is a
sequence that minimises the sum of distances to each
of the input sequences, and is a form of consensus
sequence.)

In this paper, we advocate a Bayesian approach
to the problem. The advantage of a Bayesian ap-
proach is that it enables diverse kinds of information
to be taken into account when drawing an inference.
For example, prior information about the length and
composition of the original sequence, and more impor-
tantly, information about the kinds and frequencies of
errors that can occur, can all be used to inform the in-
ference. The result is a reconstructed sequence that is
potentially more accurate, and also more meaningful
in the sense that one may make probabilistic state-
ments about what it represents. For example, one
may state that the reconstructed sequence is, with
some probability, the original sequence from which
the erroneous copies were derived. One may also de-
termine probabilities for other candidate sequences.
In fairness, it should be noted that some of the other
approaches mentioned above can also incorporate var-
ious kinds of information, mediated by the choice of
value for certain parameters. However, it is not al-
ways clear how one should set the parameters in the
light of the information available. A Bayesian ap-

proach is more direct, more natural, more flexible,
and as we have already stated, more meaningful.

It is not our intention, in this paper, to model the
actual mechanisms by which sequencing errors are in-
troduced. Rather, we propose an idealised model of
the introduction of errors. This is not to under-rate
the method - we believe the resulting algorithm is
a powerful, practical tool for inferring an original se-
quence from erroneous copies. But our main purposes
here are to illustrate the Bayesian approach to this
problem and to test its computational feasibility. This
latter purpose is important because Bayesian models,
despite their advantages, can lead to computationally
inefficient or infeasible algorithms.

The paper is structured as follows. In Section 2
we describe a probabilistic model of the introduction
of errors. In Sections 3 and 4 we describe computa-
tional methods used in drawing inferences from the
model. In Section 5, we present and discuss results of
extensive tests in which modified copies of an origi-
nal DNA sequence are simulated and the original se-
quence is then reconstructed from these copies. For
comparison, we also present results of similar tests in
which consensus sequences were obtained from mul-
tiple sequence alignments produced by a well-known
alignment package.

2 The probabilistic model

Most DNA sequencing techniques read molecules se-
quentially. Consequently, once a part of the molecule
has been read, no further errors can be introduced to
that part of the sequence. This observation suggests
the following model, in which insertions, deletions and
substitutions are introduced into the sequence in or-
der from left to right.

Let the original sequence be X and suppose that
it is formed from characters of a finite alphabet Σ.
Let the left-most character of X be temporarily des-
ignated the current character. Now, consider in-
serting a character immediately to the left of the
current character. Let the probability of inserting
character x ∈ Σ, be r(−, x) and the probability of
not inserting any character be r(−,−). Note that
r(−,−)+

∑
x r(−, x) = 1. If a character was inserted,

consider a second insertion immediately to the right
of the inserted character, that is, immediately to the
left of the current character. The probability of in-
serting a character x, or of not inserting any charac-
ter, is here assumed to be the same for the second
(and subsequent) insertions as for the first insertion,
namely r(−, x) and r(−,−). Characters are inserted
in this manner until a decision is made not to insert
a character.

Next, choose whether to substitute the current
character with a different character, delete the cur-
rent character, or leave the current character unal-
tered. Let the value of the current character be x ∈ Σ
and let the probability of substituting this character
with character y ∈ Σ be r(x, y). Let the probability
of deleting character x be r(x,−) and let the prob-
ability of leaving the character unaltered be r(x, x).
Note that r(x,−) +

∑
y r(x, y) = 1. Having made

this choice, let the next character in the sequence be
designated the current character and consider making
insertions, deletions and substitutions as before. Con-
tinue this process until the last character is reached.
At this point, make a final round of insertions at the
end of the sequence.

In summary, the process consists of the following
steps. For ease of description, we suppose that a ter-
mination character has been appended at the right

end of X.

1. Set i := 1.

2. Consider an insertion immediately to the left of
character i of X.

3. If an insertion was made at Step 2,

(a) Set i := i+ 1.
(b) Go to Step 2.

4. If character i is not the termination character,

(a) Consider deleting or substituting character
i of X.

(b) If a deletion was not made at Step 4(a), set
i := i+ 1.

(c) Go to Step 2.

Now, we want to compute the probability that the
sequence generated by applying this process to X is
a given sequence Y . To do this, we must consider all
possible alignments of Y to X. Each alignment may
be interpreted as showing a possible way in which Y
could have been obtained from X. In a given align-
ment, each character in Y that is aligned to a char-
acter in X is interpreted as having been substituted
for that character if the characters are different, or as
having been preserved from X if the characters are
the same. Each character of X that is aligned to a
space in Y is interpreted as having been deleted, and
each character of Y that is aligned to a space in X
is interpreted as having been inserted. A probability
can thus be assigned to each alignment, specifically
the probability that the point mutations implied by
the alignment would occur under the model. The
probability p(Y |X) that a sequence Y is obtained by
modifying a sequence X is then the sum of these prob-
abilities over all alignments. LettingM(X,Y) denote
the set of all such alignments, this probability may be
written as shown in Equation 1.

p(Y |X) = r(−,−)m+1
∑

M∈M(X,Y)

len(M)∏
k=1

r(sk, tk) (1)

Here m is the length of sequence X, len(M) is the
length of the alignment M, sk is the kth token in
the row of the alignment corresponding to X (a token
being a character or a space), and tk is the kth token
in the row of the alignment corresponding to Y . Note
that the term r(−,−)m+1 results from the fact that
the decision not to insert another character must be
made for each of the m+1 positions between adjacent
characters of X and at the ends of X.

Suppose that we are now given q independently
generated modified copies Y1, Y2, . . . , Yq of an un-
known original sequence. Using Bayes’ rule, the pos-
terior probability that the original sequence was X is
given by Equation 2

p(X|Y1, Y2, . . . , Yq) =

p(X)
q∏

k=1

p(Yk|X)

∑
Z

p(Z)
q∏

k=1

p(Yk|Z)

, (2)

where p(X) is the prior probability that the origi-
nal sequence was X. The prior probability encapsu-
lates information about X that was available prior
to observing the erroneous sequence reads, such as

information about the length and composition of X.
Here we assume that all sequences of equal length are
equally probable prior to observing the reads. Since
there are |Σ|L reads of length L, where |Σ| is the num-
ber of characters in the alphabet, the prior probabil-
ity can be written as p(X) = f(L(X))/|Σ|L(X), where
L(X) is the length of X and f is a prior probability
distribution with regard to the length of the origi-
nal sequence. We further assume that all sequence
lengths are equally likely prior to observing the reads,
and hence that f is uniform.

This model thus determines the probability
p(X|Y1, Y2, . . . , Yq) that any given sequence X was
the original sequence from which the erroneous copies
were derived. In Section 4, we mention an efficient
Markov Chain Monte Carlo (MCMC) sampler that
can be used to sample from probability distributions
of this form. This sampler was used in the context
of simulated annealing to determine the most prob-
able original sequence X∗ under the model for the
test cases presented in Section 5. However, we do not
regard this search technique as a defining property
of the method, and there may be many alternative
search techniques that could be used with equal suc-
cess.

3 Computing a sum over all alignments

Equation 1 involves summing over all possible align-
ments of two sequences. This sounds like a formidable
computational task, but in fact it can be done effi-
ciently using dynamic programming. We require the
following notation. Let the prefix of X ending at
character i be denoted X[1..i] and the prefix of Y
ending at character j be denoted Y [1..j]. Moreover,
let X[1..0] and Y [1..0] represent the null prefixes of
X and Y respectively. Define

σ(i, j) =
∑

M∈M(X[1..i],Y [1..j])

len(M)∏
k=1

r(sk, tk)

for all i = 0, . . . ,m and j = 0, . . . , n where m and
n are the lengths of X and Y respectively. These
values may be calculated by first setting the boundary
conditions:

σ(0, 0) = 1,

σ(i, 0) =
i∏

k=1

r(xk,−) for i = 1, . . . ,m

and

σ(0, j) =
j∏

k=1

r(−, yk) for j = 1, . . . , n,

and calculating the remaining values using the recur-
rence relation:

σ(i, j) = r(xi,−)σ(i− 1, j) +
r(xi, yj)σ(i− 1, j − 1) +
r(−, yj)σ(i, j − 1)

where xi is the ith character of X and yj is the jth
character of Y . The three summands in the recur-
rence relation correspond to sums over all alignments
of the prefixes in which the last column of the align-
ments is (xi,−)T , (xi, yj)T and (−, yj)T respectively,
where the superscript T denotes transposition. Then
p(Y |X) = r(−,−)m+1σ(m,n).

Since the values calculated using this procedure
are usually extremely small, it is convenient to
work with logarithms as follows. Define q(a, b) =
log[r(a, b)] and ρ(i, j) = log[σ(i, j)]. The initial con-
ditions become

ρ(0, 0) = 0,

ρ(i, 0) =
i∑

k=1

q(xk,−)

and

ρ(0, j) =
j∑

k=1

q(−, yk),

and the recurrence relation becomes

ρ(i, j) = log[eq(xi,−)+ρ(i−1,j) +

eq(xi,yj)+ρ(i−1,j−1) +
eq(−,yj)+ρ(i,j−1)].

Then log(p(Y |X)) = (m+1)q(−,−)+ρ(m,n). To
ensure that at least one of the exponentials in the
recurrence relation does not result in underflow, one
may use the identity

log[ea + eb + ec] = d+ log[ea−d + eb−d + ec−d]

where d = max{a, b, c}.

4 Updating a sum over all alignments

The dynamic programming algorithm described
above enables P (Y |X) to be computed in time O(mn)
for sequences X and Y , where m and n are the lengths
of X and Y respectively. In this section, we show how
to calculate P (Y |X) in time O(n), assuming certain
values have previously been computed and stored. We
also outline a Markov Chain Monte Carlo sampler
called the string sampler, and demonstrate that with
this technique the required values can indeed be com-
puted and stored for future use.

We require the following notation. Given a se-
quence X and an erroneous copy Y derived from
X, define σ′(i, 0) = σ(i, 0) for i = 0, . . . ,m and
σ′(i, j) = σ(i, j)− r(−, yj)σ(i, j − 1) for i = 0, . . . ,m
and j = 1, . . . , n, where σ is as defined above. Then
σ′(i, j) is a sum over all alignments of X[1..i] and
Y [1..j] excluding those which end with the column
(−, yj)T . In other words, σ′(i, j) is a sum over all
alignments of these prefixes in which xi is opposite
yj or opposite a space to the right of yj . Let X[i..m]
denote the suffix of X beginning at character i and
Y [j..n] denote the suffix of Y beginning at character
j. Moreover, let X[(m+ 1)..m] and Y [(n+ 1)..n] rep-
resent the null suffixes of X and Y respectively. Then
define:

τ(i, j) =
∑

M∈M(X[i..m],Y [j..n])

len(M)∏
k=1

r(sk, tk)

for each i = m+ 1, . . . , 1 and j = n+ 1, . . . , 1. These
values can be calculated via dynamic programming
by setting the boundary conditions:

τ(m+ 1, n+ 1) = 1,

τ(i, n+ 1) =
m∏
k=i

r(xk,−) for i = m, . . . , 1

and

τ(m+ 1, j) =
n∏
k=j

r(−, yk) for j = n, . . . , 1,

and using the recurrence relation:

τ(i, j) = r(xi,−)τ(i+ 1, j) +
r(xi, yj)τ(i+ 1, j + 1) +
r(−, yj)τ(i, j + 1)

for the remaining values.
Then we have the following result.

Lemma For any i = 0, . . . ,m,

σ(m,n) =
n∑
j=0

σ′(i, j)τ(i+ 1, j + 1).

To see why this is so, observe firstly that for any i
and j in the specified ranges, σ′(i, j)τ(i+ 1, j+ 1) ex-
pands to a sum of terms of the form

∏len(M)
k=1 r(sk, tk)

for some M ∈M(X,Y). Also observe that this sum
is over all alignments of X and Y in which xi is oppo-
site yj or a space between yj and yj+1. Consequently,
for fixed i, each alignment of X and Y contributes a
term to the expansion of σ′(i, j)τ(i+ 1, j + 1) for one
and only one j. One may therefore compute the sum
of these terms over all alignments of X and Y by sum-
ming σ′(i, j)τ(i + 1, j + 1) over j for any fixed i, as
stated in the lemma.

This lemma can be used to calculate p(X ′|Y) for a
sequence X ′ differing by a single-character insertion,
deletion or substitution from a sequence X for which
certain values are known. We consider insertion, dele-
tion and substitution separately.

Firstly, suppose that X ′ differs from X only by a
single-character insertion between characters i−1 and
i of X, for some i ∈ {1, . . . ,m+1}. Also suppose that
the values σX,Y (i− 1, j) and τX,Y (i, j+ 1) are known
for all j = 0, . . . , n. Since X[1..(i− 1)] and X ′[1..(i−
1)] are identical, we have σX′,Y (i − 1, j) = σX,Y (i −
1, j). Also, since X[i..m] and X ′[(i + 1)..m + 1] are
identical, we have τX′,Y (i+ 1, j + 1) = τX,Y (i, j + 1).
One may therefore calculate the values σX′,Y (i, j) for
j = 0, . . . , n using the recurrence relation for σ and
then calculate σX′,Y (m,n) using the lemma. This
requires O(n) operations.

Secondly, suppose that X ′ differs from X only by
a single-character deletion of character i for some i ∈
{1, . . . ,m}. Also suppose that the values σX,Y (i−1, j)
and τX,Y (i+ 1, j + 1) are known for all j = 0, . . . , n.
Since X[1..(i − 1)] and X ′[1..(i − 1)] are identical,
we have σX′,Y (i − 1, j) = σX,Y (i − 1, j). Also, since
X[(i+1)..m] and X ′[i..(m−1)] are identical, we have
τX′,Y (i, j+1) = τX,Y (i+1, j+1). One may therefore
calculate σX′,Y (m,n) using the lemma. This requires
O(n) operations.

Thirdly, suppose that X ′ differs from X only
by a single-character substitution at character i for
some i ∈ {1, . . . ,m}. Also suppose that the values
σX,Y (i − 1, j) and τX,Y (i + 1, j + 1) are known for
all j = 0, . . . , n. Since X[1..(i− 1)] and X ′[1..(i− 1)]
are identical, we have σX′,Y (i−1, j) = σX,Y (i−1, j).
Also, since X[(i+ 1)..m] and X ′[(i+ 1)..m] are iden-
tical, we have τX′,Y (i+ 1, j + 1) = τX,Y (i+ 1, j + 1).
One may therefore calculate the values σX′,Y (i, j) for
j = 0, . . . , n using the recurrence relation for σ and
then calculate σX′,Y (m,n) using the lemma. This re-
quires O(n) operations.

We use these results to efficiently sample from the
probability distribution p(X|Y1, Y2, . . . , Yq) using the
string sampler. The string sampler is described in
detail by Keith et al. (Keith, Kroese & Bryant sub-
mitted) and an example of its use is given by Keith
et al. (Keith et al. to appear). Here it is sufficient
to observe that, beginning with an arbitrary initial
sequence, the sampler iteratively scans from left to
right through the sequence making single-character
insertions, deletions and substitutions in the follow-
ing manner. For ease of description we suppose that
each sequence generated by the sampler has a termi-
nation character appended at its right end.

1. Set i := 1.

2. Generate a new sequence by either inserting a
character immediately to the left of character i
of the previous sequence, or else repeating the
sequence unchanged.

3. If a character was inserted at Step 2,

(a) Set i:=i+1.
(b) Go to Step 2.

4. If character i is not the termination character,

(a) Generate a new sequence by either deleting
character i of the previous sequence, sub-
stituting a different character in place of
character i, or repeating the sequence un-
changed.

(b) If a character was deleted at Step 4(a) and
character i is not now the termination char-
acter, go to Step 4(a).

5. If character i is not the termination character,

(a) Set i:=i+1.
(b) Go to Step 2.

New sequences are selected at Steps 2 and 4(a).
Whether a new sequence X ′ is selected at these steps
depends upon the value of p(X ′|Y1, . . . , Yq) (although
we shall not go into details of the selection crite-
ria here). Computation of this probability requires
p(Yk|X) to be evaluated for each k = 1, . . . , q. As we
have seen, if X ′ differs from the previous sequence X
only by an insertion immediately to the left of char-
acter i, as at Step 2, p(Yk|X ′) can be calculated in
time O(nk), where nk is the length of Yk, provided
that the values σX,Yk(i− 1, j) and τX,Yk(i, j + 1) are
known for all j = 0, . . . , nk. Similarly, if X ′ differs
from the previous sequence X only by deletion or sub-
stitution of character i, as at Step 4(a), p(Yk|X ′) can
be calculated in time O(nk), provided that the values
σX,Yk(i−1, j) and τX,Yk(i+1, j+1) are known for all
j = 0, . . . , nk. To ensure that these values are avail-
able when they are needed, we do the following. Prior
to each iteration, we calculate and store the values
τX,Yk(i, j) for all i = m+1, . . . , 1 and j = nk+1, . . . , 1.
These values do not need to be updated during the
iteration, since at the time the value τX,Yk(i, j) is
needed, the characters to the right of and including
character i in X will not have changed since the be-
ginning of the iteration, and consequently this value
will not have changed either. We also initially calcu-
late and store the values σX,Yk(0, j) for j = 0, . . . , nk.
Now, whenever an insertion is made at Step 2, and
whenever a deletion is not made at Step 4(a), we
calculate and store the values of σX,Yk(i, j) for all
j = 0, . . . , nk, for use in future calculations. Note that
once σX,Yk(i, j) has been calculated, σX,Yk(i − 1, j)

will not be needed again during that iteration, and
hence the former value may overwrite the latter.

Using these computational techniques, it is appar-
ent that the time required by each iteration of the
string sampler is O(Lmax

∑q
k=1 nk), where Lmax is

the length of the longest sequence generated in that
iteration. The memory requirements of that itera-
tion are O(Linit

∑q
k=1 nk), where Linit is the length

of the initial sequence for that iteration. This is be-
cause we have to store the values of τX,Yk(i, j) for
all i = Linit + 1, . . . , 1 and j = nk + 1, . . . , 1 at
the beginning of the iteration. It should be possi-
ble to reduce memory requirements to O(

∑q
k=1 nk)

because the recurrence relations for τ are invertible,
by which we mean that the values of τ(i + 1, j) for
j = nk+1, . . . , 1 can be back-calculated from the val-
ues τ(i, j) for j = nk + 1, . . . , 1. It should therefore
only by necessary to store the values of τX,Yk(i, j) for
a single value of i at any one time. However, we have
not tried this, nor have we analysed the consequences
of finite precision arithmetic for such a procedure.

5 Results and Discussion

To test the method, the following simulations were
performed. Fragments of known sequence were se-
lected at random from a database of human DNA.
A number of erroneous copies were then simulated
for each original sequence. The algorithm used to
generate the erroneous copies was that described in
Section 2. This was done for various choices of model
parameters, although all substitutions were assumed
to be equally likely in all tests. That is, r(x, y) was
assumed to be independent of x and y for all x, y ∈ Σ
with x 6= y. We then attempted to reconstruct the
original sequence by searching for a sequence with
maximum posterior probability with respect to the
model described above. The search was performed
using the string sampler in the context of simulated
annealing. That is, we used the string sampler to
sample from a succession of distributions of the form
[p(X|Y1, . . . , Yq)]1/T , where T is the temperature of
the distribution. The temperature was gradually low-
ered until the sample converged to a single sequence.
We then calculated the edit distance between each re-
constructed sequence and the corresponding original
sequence, as a measure of the correctness of the re-
construction. For comparison, we also attempted to
reconstruct the original sequence by forming a mul-
tiple sequence alignment of the erroneous sequences
using the well-known alignment program ClustalW
(Thompson, Higgins & Gibson 1994) and then taking
a consensus character for each column of the align-
ment.

Figures 1 to 4 show how the average number of
errors (that is, the average edit distance between the
reconstruction and the original) varied with the num-
ber of erroneous sequences used, for various proba-
bilities of insertion, deletion and substitution. In all
of these tests, the length of the original sequence was
400 bases. Each data point in the figures represents
an average over approximately 1000 simulations. Re-
sults are shown for the new method (lower, black line)
and for ClustalW (higher, grey line). Figure 5 shows
how the number of errors varies with sequence length
using five reads and with probabilities of insertion,
deletion and substitution being 0.01, 0.01, and 0.2
respectively.

In Figures 1 to 4, we observe that the number of
errors decreases exponentially with the number of se-
quences when sequences are inferred using the new
algorithm. This is a desirable behaviour, as it means

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 10 15 20

Number of reads

A
ve

ra
g

e
n

u
m

b
er

 o
f

er
ro

rs

Figure 1: Probabilities of insertion, deletion and sub-
stitution are 0.01, 0.01 and 0.03 respectively.

0

5

10

15

20

25

30

35

40

5 10 15 20

Number of reads

A
ve

ra
g

e
n

u
m

b
er

 o
f

er
ro

rs

Figure 2: Probabilities of insertion, deletion and sub-
stitution are 0.01, 0.01 and 0.2 respectively.

0

20

40

60

80

100

120

5 10 15 20

Number of reads

A
ve

ra
g

e
n

u
m

b
er

 o
f

er
ro

rs

Figure 3: Probabilities of insertion, deletion and sub-
stitution are 0.05, 0.05 and 0.2 respectively.

0

20

40

60

80

100

120

5 10 15 20

Number of reads

A
ve

ra
g

e
n

u
m

b
er

 o
f

er
ro

rs

Figure 4: Probabilities of insertion, deletion and sub-
stitution are 0.1, 0.1 and 0.1 respectively.

0

20

40

60

80

100

120

400 600 800 1000 1200 1400

Original Fragment Length

A
ve

ra
g

e
n

u
m

b
er

 o
f

er
ro

rs

Figure 5: Graph showing the approximately linear
dependence of number of errors on sequence length.

that a highly accurate sequence can be inferred from
a surprisingly small number of highly inaccurate se-
quences. We observe that in most cases the sequences
inferred using ClustalW resulted in a curve of simi-
lar shape, but that the limiting number of errors is
non-zero. In Figure 1, the average number of er-
rors actually appears to increase as the number of
reads increases, when the number of reads is large.
These are highly undesirable behaviours, and we do
not know how to account for them. We suspect, how-
ever, that the problem is with the sequential align-
ment approach on which ClustalW is based.

In Figure 5, we observe that the number of er-
rors increases approximately linearly with the length
of the original sequence, using the new algorithm.
Consequently, the proportion of errors in the recon-
structed sequence is independent of length. This
property should facilitate estimating the number of
reads required to achieve a desired accuracy.

When the proportion of errors in the uncorrected
sequences is already quite low, as it is for the data
presented in Figure 1, the number of errors obtained
using either approach is small. Based on these re-
sults, it would not be appropriate to claim that there
is an urgent need for major sequencing projects to
adopt a Bayesian approach to inferring an original se-
quence. We do, however, make the following points.
Firstly, there seems to be a limit to the accuracy that
can be achieved by obtaining a consensus sequence
from a multiple sequence alignment, at any rate when
the alignment is performed using ClustalW. That this
should be the case for such a widely used alignment
package is concerning. Whether the same is true
of the consensus sequences produced by sequencing
projects is something that needs to be investigated.
Secondly, the Bayesian approach has the flexibility
to incorporate application-specific information about
the kinds and types of errors that may occur, such
as specific sequence patterns that are known to cause
errors, or more generally how error probabilities are
affected by local sequence characteristics. Detailed
models of this kind could enable automated sequence
editing of a quality that is currently only possible for
an informed human editor.

The advantage conferred by the Bayesian ap-
proach is much more significant when the propor-
tion of errors is high, as it is for the data displayed
in Figures 2 to 4. The ability to infer high-quality
sequence from a small number of inaccurate reads
could make the difference between a competitive and
a non-competitive sequencing technology. An impor-
tant conclusion that may be drawn from this study is
that error-prone sequencing technologies may in fact
be feasible if they possess compensating advantages

such as high throughput or low cost.

6 References

References

Gusfield, D. (1997), Algorithms on strings, trees and
sequences, Cambridge University Press.

Kececioglu, J., Li, M. & Tromp, J. (1997), ‘Inferring
a DNA sequence from erroneous copies’, Theo-
retical Computer Science, 185(1), 3–13.

Keith, J. M., Adams, P., Bryant, D., Kroese. D. P.,
Mitchelson, K. R., Cochran, D. A. E. &Lala,
G.H. (to appear), ‘A simulated annealing algo-
rithm for finding a consensus sequence’, To ap-
pear in Bioinformatics.

Keith, J. M., Kroese, D. P., Bryant, D. (submitted),
‘A generalised Markov sampler’.

Li, M., Ma, B., Wang, L. (2000), Near Optimal Mul-
tiple Alignment Within a Band in Polynomial
Time, in ‘32nd ACM Symposium on Theory of
Computing (STOC2000)’, pp. 425–434.

Thompson, J. D., Higgins, D. G., Gibson, T. J.
(1994), ‘CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment
through sequence weighting, positions-specific
gap penalties and weight matrix choice’ , Nucleic
Acids Res., 22, 4673–4680.

