
Deferred Incremental Refresh of XML Materialized Views:
Algorithms and Performance Evaluation*

Hyunchul Kang Hosang Sung ChanHo Moon
Dept. of Computer Science and Engineering

Chung-Ang University
Seoul, 156-756, Korea

hckang@cau.ac.kr {hssung,moonch}@dblab.cse.cau.ac.kr

Abstract
The view mechanism can provide the user with an appropriate
portion of database through data filtering and integration. Views
are often materialized for query performance improvement, and
in that case, their consistency needs to be maintained against the
updates of the underlying data. They can be either recomputed
or incrementally refreshed by reflecting only the relevant
updates. With the emergence of XML as the standard for data
exchange on the Web, active research is under way for efficient
storing and querying XML documents with the DBMS. In this
paper, we investigate XML views, their materialization and
incremental refresh. The object-relational DBMS is employed
for storing XML documents and their materialized views, and
the update log is used for deferred view refresh. The algorithms
for checking a update’s relevance to views and for generating
the operations and data necessary for view refresh are proposed.
The experimental results show that the proposed scheme
outperforms recomputation of XML views.

Keywords: XML, materialized view, deferred incremental view
refresh, semistructured data

1 Introduction

In database systems, the view concept has been a useful
and effective mechanism in accessing and controlling
data. It is related to many aspects of data management
and database design. Among others, one of the most
important applications of the view is information filtering
and integration, functionality which is getting even more
crucial for information processing in today’s Web-based
computing environment where vast amount of
heterogeneous information proliferates every day.
Views are often materialized for query performance,
requiring their consistency to be maintained against the
updates of the underlying data (Gupta and Mumick 1999).
Consistency maintenance can be done either by
recomputing the view from the source data or by
incrementally refreshing the outdated materialized view.
The latter can be done either immediately after the source
update occurs or in a deferred way.

* This work was supported by grant No. R01-2000-000-00272-0
from the Basic Research Program of the Korea Science &
Engineering Foundation.
Copyright © 2003, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Australasian Database
Conference (ADC2003), Adelaide, Australia. Conferences in
Research and Practice in Information Technology, Vol. 17.
Xiaofang Zhou and Klaus-Dieter Schewe, Eds. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

Since XML emerged as a standard for data exchange on
the Web, many research issues in XML data management
have been investigated. The view concept is also useful
for XML data, and active research is being conducted on
it (Abiteboul 1999, Abiteboul et al. 1999, Cluet et al.
2001, Hristidis and Petropoulos 2002, Chen et al. 2002,
Chen and Rundensteiner 2002, Quan et al. 2000, Chen
and Rundensteiner 2000).
In this paper, we investigate the XML materialized view
for fast retrieval of XML documents. An XML view
against XML documents is defined by an XML query
language (say, XQuery (Boag et al. 2002)) expression. Its
materialization which is also an XML document is
maintained with deferred incremental refresh.

The problem of incremental refresh of materialized views
received much attention in relational database systems
(Gupta and Mumick 1999). The same problem was
investigated for the views over XML data (Quan et al.
2000, Chen and Rundensteiner 2000) and for those over
semistructured data (Suciu 1996, Zhuge and
Garcia-Molina 1998, Abiteboul et al. 1998) in the context
of a semistructured DBMS such as Lore (McHugh et al.
1997).

In this paper, however, we explore a different direction.
We investigate the problem for the case where the XML
documents as well as their materialized views are stored
in a relational DBMS (RDBMS) or an object-relational
DBMS (ORDBMS) instead of the semistructured one.
Since the traditional RDBMSs and the modern
ORDBMSs are in dominantly wide use, storing and
querying XML documents with them is of pragmatic
importance and has attracted much attention (Florescu
and Kossmann 1999a, Shanmugasundaram et al. 1999,
Deutsch et al. 1999, Tian et al. 2002).
The rest of this paper is organized as follows: Section 2
surveys the related work. Section 3 deals with the issues
involved in XML view materialization. They include (1)
design of the object-relational database schema to store
not just the base XML documents but the materialized
views derived from them, and some other information
necessary for view refresh (The ORDBMS is preferred to
the RDBMS in our work because we need to have some
table columns of structured and collection types.), (2)
logging of updates to the base XML documents, and (3)
the algorithms for deferred incremental refresh of the
XML materialized view, the core of which is relevance
checking between a update and a view. Section 4 presents
the experimental results on performance. Finally, Section
5 gives some concluding remarks.

2 Related Work

When the XML documents are stored in the RDBMS,
efficient table schema (XML to relational mapping) and
XML-SQL translations are required. Given an XML
query or update, it needs to be translated into the
appropriate SQL expressions, and their result sets need to
be tagged and returned in XML. These issues have been
well addressed in recent research on storing XML data in
the RDBMS (Shanmugasundaram et al. 1999, Florescu
and Kossmann 1999b, Deutsch et al. 1999), on publishing
relational or object-relational data as XML (Fernandez et
al. 2000, Fernandez et al. 2001, Shanmugasundaram et al.
2000, Carey et al. 2000, Shanmugasundaram et al. 2001),
and on XML update (Tatarinov et al. 2001). These issues
are beyond the scope of this paper. We rather focus on the
aspect of materialization and incremental refresh of XML
views in the context of the ORDBMS.
In (Quan et al. 2000, Chen and Rundensteiner 2000),
incremental refresh of the materialized views over the
XML data was investigated. The XML sources are stored
in the binary form of persistent DOMs, and the views are
defined in a subset of XQL (Robie et al. 1998). The
updates considered are the insertion/deletion of a segment
of an XML tree and modification on the value of a leaf
node of the XML tree. An auxiliary information structure
called the aggregate path index(APIX) which holds the
collection of qualified data objects with respect to the
query pattern (Chen and Rundensteiner 2000) is used to
check the updates’ relevance to the view. The APIX is
generated when the view is initially computed and
maintained against the subsequent updates on the XML
sources.
In (Suciu 1996), incremental refresh of the materialized
views over the semistructured database of the rooted trees
with labeled edges was investigated. The views
considered are defined in UnQL (Buneman et al. 1995)
without joins. The updates considered are the insertion of
a tree to another one as a subtree of one of its nodes, and
the replacement of a subtree with a new tree. When the
update to the data source occurs, it is notified to the sites
where the views derived from it reside, and the new
subtree for insertion or replacement is transmitted. The
view site then incrementally refreshes the view with the
received subtree. This scheme does not have to access the
data source for view refresh, and yet it does not support
the join view nor the value modification of the data
source.
In (Zhuge and Garcia-Molina 1998), incremental refresh
of the materialized views over the graph-structured
database was investigated. An example of such a database
is the linked Web pages, and any database that can be
modeled as a set of objects (nodes) with pointers (edges)
is applicable. The views considered are the ones defined
in an extended OQL (Cattell et al. 1994), and the
materialized view is represented as a set of objects
satisfying the view condition without links (i.e., edges)
among them. The updates to data source considered
include the edge insertion between two objects, the edge
deletion, and the atomic object’s value modification. The
insertion/deletion of objects was not considered. When
the update occurs, the queries against the data source are

g
n
i

I
m
E
i
i
t
r
o
a
d
G
s
a
m
r

3

T
a
v
T
d
1
a
a
t
a
m
a
f
T
t
e
i
T
v
v
n
r
t
a
X
r

XM L M aterialized View Area Base XM L Document Area

V1 V2

V4

V3

Vm… .

ViewElem
Table

ViewElem
Table

ViewInfo
Table

ViewInfo
Table

XML1 XML1 XML1… …

ViewRefresh
Table

ViewRefresh
Table

<start1>
<end1>

…
<start2>
<end2>

…
<start3>
<end3>

…
…
…

<start4>
<end4>

…

<start1>
<end1>

…
<start2>
<end2>

…
<start3>
<end3>

…
…
…

<start4>
<end4>

…

Update Log

XM L
M aterialized

View
Refresh Info

XM L
M aterialized

View
Refresh Info

Generate

Refresh
Request

Send

DTD1 DTD2 DTDn

X
M

L
 B

ase D
ocum

ent M
anager

X
M

L
 B

ase D
ocum

ent M
anager

X
M

L
 M

aterialized V
iew

 M
anager

X
M

L
 M

aterialized V
iew

 M
anager

XM LElem
Table

XM LElem
Table

Index

Index

Figure 1. Management of XML Materialized Views
enerated and executed to figure out which objects are
eeded to refresh the view. The retrieved objects are
nserted to or deleted from the materialized view.
n (Abiteboul et al. 1998), incremental refresh of the
aterialized views over the semistructured data in Object
xchange Model (Papakonstantinou et al. 1995) was

nvestigated. The views considered are the ones defined
n an extended version of Lorel (Abiteboul et al. 1996),
he query language of Lore (McHugh et al. 1997). The
epresentation of a materialized view is the same to that
f (Zhuge and Garcia-Molina 1998) except that the edges
mong objects are included. The model of update to the
ata source is the same as that of (Zhuge and
arcia-Molina 1998), and the view refresh is also done

imilarly. With a update, the queries to be executed
gainst the data source, which are called view
aintenance statements, are generated and executed. The

etrieved objects are reflected to the materialized view.

 Management of XML Materialized View

his section describes the storage structures and
lgorithms proposed to support the XML materialized
iews and their deferred incremental refresh.
he XML store consists of two areas: the underlying base
ocument area and the materialized view area (see Figure
). The former is managed by the base document manager,
nd the latter by the view manager. In the base document
rea, the DTDs and the XML documents conforming to
hem are stored. Document indexing is provided for fast
ccess to them. In the view area, on the other hand, the
aterialized views and the information on the views such

s their definition are stored. Indexing is also provided for
ast retrieval of the materialized views.
he updates to the base XML documents considered in

his paper are the document insertion/deletion and the
lement modification. When these updates occur, the
nformation on the update is logged in the update log.
his is for deferred incremental refresh of materialized
iews. We assume that view refresh is done when the
iew is requested by a user. That is, the updates are
either immediately nor periodically propagated to the
elevant views. Such a materialized view access model is
he one employed in (Roussopoulos 1991, Roussopoulos
nd Kang 1986). In all, the scenario for retrieval of an
ML materialized view is as follows: When view V is

equested by a user, the view manager requests the

document manager to send it the information necessary
for V’s refresh. Then, the document manager examines
the update log to figure out which updates done to the
base documents thus far are relevant to V, generates the
view refresh information, and sends it to the view
manager. Now the view manager refreshes V as directed
by the received view refresh information, and then
provides up-to-date V to the user.

3.1 Storage Structures for XML Documents

and Materialized Views
We assume that the XML documents are the valid ones
conforming to their corresponding DTDs. They are
decomposed into elements and stored in XMLElem table
each of whose record corresponds to an element of a
document (see Figure 2). A record of XMLElem table
consists of DID, DTDID, EID, Ename, and Content
columns among others.1 DID stores the identifier of the
XML document, DTDID stores the identifier of the DTD
to which the document conforms, EID stores the element

identifier, Ename stores the element name, and Content
stores the value of the element. EID assignment assumed
in this paper is the following: For an element with EID x,
the EIDs of its children elements are ‘xd’ where d denotes
the system-defined n digit representation of integers
starting from 1 assigned to each of the children in their
order in the document. For example, when n = 2, which is
used throughout the examples of the paper, the EID of the
root element is ‘01’, and for a parent element with EID
‘0101’, the EIDs of its first and second child elements are
‘010101’ and ‘010102’, respectively.

1 This table schema is based on the XML-relational mapping by
the edge-inlining approach investigated in (Florescu and
Kossmann 1999a). In this paper, however, we do not deal with
every issue involved in storing XML documents in
object-relational database tables. That is beyond the scope of
this paper. Rather, we focus on XML materialized view
management using the ORDBMS.

Let us consider a DTD on papers as shown in Figure 3. It
consists of ‘title’, ‘author’, ‘abstract’, ‘keyword’, and
‘section’ elements, and ‘section’ element consists of
‘paragraph’ element. Each of ‘title’, ‘author’, ‘abstract’,
and ‘keyword’ element appear once in an XML document
whereas ‘section’ and ‘paragraph’ elements appear zero
or more times. Figure 2 shows an example of the
XMLElem table storing three XML documents on papers.
Meanwhile, ViewInfo table and ViewElem table are

<!ELEMENT paper (title, author, abstract, keyword, section*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT abstract (#PCDATA)>
<!ELEMENT keyword (#PCDATA)>
<!ELEMENT section (#PCDATA, paragraph*)>
<!ELEMENT paragraph (#PCDATA)>

Figure 3. DTD on Papers
D T D ID E ID E nam e C ontent
1 1 01 paper -
1 1 0101 title E valuation of a S torage M anager for R etrieval and U pdate of X M L D ata
1 1 0102 author A . Sm ith and M . Jones
1 1 0103 abstract X M L has em erged as a standard for W eb docum ents … ..
1 1 0104 keyword X M L, W eb, sto rage m anager, perform ance evaluation,
1 1 0105 section 1 . Introduction
1 1 010501 paragraph T he W eb was the m ost in fluential in advance of the internet
1 1 010502 paragraph T he reason why W eb has becom e the core of … ..
1 1 010503 paragraph In m ost app lications today, the W eb-based user interface is
1 1 0106 section 2 . T ypes of X M L D ocum ents
1 1 010601 paragraph T he X M L docum ents are either w ith the D T D or w ithout
1 1 010602 paragraph T he valid X M L docum ents are the ones that are
2 1 01 paper -
2 1 0101 title A Snapshot D ifferential R efresh A lgorithm
2 1 0102 author B . L indsay et al.
2 1 0103 abstract T his artic le p resents an algorithm to refresh the contents o f database…
2 1 0104 keyword D atabase snapshot, d ifferential refresh, …
2 1 0105 section 1 . Introduction
2 1 010501 paragraph A D B M S provides a m echanism for m aintaining, access, and updating…
2 1 010502 paragraph T he notion of a database snapshot w as introduced in [A D IB A 80]… .
2 1 0106 section 2 . Snapshot R efresh O bjectives
2 1 010601 paragraph Snapshot re fresh should m ake the snapshot reflect the current, …
2 1 0107 section 3 . A lternative R efresh M ethods
2 1 010701 paragraph Several alternatives are available for im plem enting snapshot refresh… .
2 1 010702 paragraph A nother alternative is to buffer the changes to the base tab le and …
3 1 01 paper -
3 1 0101 title D ocum ent L ink and V iew U pdate in X M L R eposito ry
3 1 0102 author U . Fox and S . K ing
3 1 0103 abstract D ue to the pro liferation of X M L docum ents on the W eb …
3 1 0104 keyword X M L, W eb database, extended link, … ..
3 1 0105 section 1 . Introduction
3 1 010501 paragraph T he d ifference betw een the conventional H T M L links … ..
3 1 010502 paragraph T he virtual docum ent can be im plem ented on the W eb … ..
3 1 010503 paragraph T here are so m any heterogeneous types of inform ation on the W eb … ..
3 1 0106 section 2 . R elated W ork
3 1 010601 paragraph A n X M L docum ent can represent the structure of … ..
3 1 010602 paragraph T he links of X M L can use X link [6] and X pointer [7] … ..

Figure 2. XMLElem Table

D ID

employed to store the information on the views and their
materialization. Each record of ViewInfo table
corresponds to a materialized view, and stores the view
identifier (ViewID), the view definition (ViewDef), and
the identifier of the DTD to which the view’s source
documents conform (DTDID). In this paper, we assume
that an XML view is derived from the base XML
documents that conform to the same (and therefore, a
single) DTD. In order to efficiently represent the view
definition, column ViewDef can be of a structured type
having a collection type as one of its members. Both type
constructors are provided in the ORDBMS. Complexity
of XML view definition allowed directly affects the
process of view refresh. Complex views require more
work than simpler ones both in checking a update’s
relevance to them and in generating their refresh
information. For incremental refresh of views to be
effective, it is desirable to perform both of the
above-mentioned tasks with no or least access to the
source data (i.e., XMLElem table in our case). The views
dealt with in this paper as the first step of our work are
the ones which rarely require access to XMLElem table
in their refresh, and yet are practical (see the footnote of
Section 3.3.2). The filtering condition of the view is
specified only on one of those elements that appear just
once in the XML document. That element is called the
condition element. For the XML documents on papers
above, for example, the condition element could be any
one of ‘title’, ‘author’, ‘abstract’, or ‘keyword’. Elements
‘section’ and ‘paragraph’ are not eligible because they
could appear more than once. For more complicated
views, especially the ones with more than one condition
elements, the process of checking relevance between a
update and a view and of generating the view refresh
information described in Section 3.3.2 needs extension
(see the concluding remarks in Section 5). As for the
target elements that are the elements to be retrieved for
the view, however, there is no restriction. Any element
can be a target element. If an element which has
subelements is designated as a target, then all of its
descendant elements are the targets as well. For the XML
documents on papers above, for example, if ‘title’,
‘abstract’, and ‘section’ are designated as target elements,
the ‘paragraph’, a subelement of ‘section’ is also a target
element. In all, a view definition has three components:
(1) filtering condition P, (2) condition element (CE), and
(3) a set of target elements (TE). These are stored in
ViewDef column of a structured type with P, CE, and TE
as its members where TE is of a collection type. Figure 4
shows an example of ViewInfo table with one record for
the view named V1 whose definition is “retrieve ‘title’,
‘author’, ‘abstract’ elements where ‘title’ contains the
word ‘Refresh’”.

{title, author, abstract}

TE

title

CE

ViewDef

V1

ViewID

1contains(“Refresh”)

DTDID
P

Figure 4. ViewInfo Table

The XML materialized view is represented as an XML
document. Figure 5(a) shows the template of an XML
materialized view document. Each element ‘qdocu’

which stands for ‘the base document qualified for the
view’ is for a base document that satisfies the view’s
filtering condition, and its subelements ‘ti’, i = 1, …, n,
are the target elements of the view retrieved from that
particular base document. Figure 5(b) shows the XML
materialized view document for view V1. An XML
materialized view document is decomposed into elements
each of which is stored as a record of ViewElem table. Its
record consists of ViewID, DID, BaseEID, and Content
columns among others. ViewID, the identifier of the view,
is a foreign key referencing ViewID column of ViewInfo
table. DID stores the identifier of the base document
qualified for the view, from which the current element
was retrieved. BaseEID stores the identifier of the current
element in its base document identified by DID. Finally,
Content stores the value of the element. Figure 5(c)
shows ViewElem table that stores the elements of view
V1.

<view>
<qdocu>

<t1> … </t1>
:

<tn> … </tn>
</qdocu>

:
<qdocu>

<t1> … </t1>
:

<tn> … </tn>
</qdocu>

</view>

(a) Template of an XML Materialized View Document

<view>
<qdocu>

<title>A Snapshot Differential Refresh Algorithm</title>
<author>B. Lindsay et al.</author>
<abstract>This article presents an algorithm to refresh the …</abstract>

</qdocu>
</view>

 (b) XML Materialized View Document for view V1

A Snapshot Differential Refresh Algorithm01012V1

B. Lindsay et al.01022V1

This article presents an algorithm to refresh the …01032V1

--2V1

---V1

ContentBaseEIDDIDViewID

(c) ViewElem Table

Figure 5. XML Materialized View Document and
ViewElem Table

3.2 Logging of Updates to the Base XML
Documents

The XML documents could be updated in the unit of
document, element, and/or attribute. In this paper, we
consider the document insertion/deletion and the element
modification. What we mean by element modification is
modification of data value of the element which does not
have any subelement.

Each update done to the base XML documents is
recorded in the update log chronologically for deferred
incremental refresh of materialized views. The data

3.3.1 Update Log Scan

Since our update log is a chronological one, it needs to be
scanned only for those records logged after the view to be
refreshed was refreshed last time. The pointer to the first
of those records can be found from ViewRefresh table,
<StartUpdateLog, DTDID, DID, ObjType, OpType>
<[BaseEID, Ename, Content>[,< BaseEID, Ename, Content>,…]]
<EndUpdateLog>

Figure 6. Data Structure of a Update Log Record
structure of the update log record is shown in Figure 6. A
log record is in a block structure, starting with
<StartUpdateLog> field and ending wth
<EndUpdateLog> field, to log a related series of updates
as an atomic action. In case that an XML document is
inserted, for example, it amounts to a sequence of
element insertions, and they are logged as an atomic
update.

For a update, DTDID represents the identifier of DTD to
which the base document involved in the update
conforms. DID represents the identifier of the updated
document. ObjType denotes whether the unit of update is
either element (‘ELEMENT’) or document
(‘DOCUMENT’). OpType denotes the type of the update.
For element modification, it takes ‘MODIFY’. For
insertion of a new document, it takes ‘INSERT’, whereas
for deletion of an existing document, it takes ’DELETE’.
The triplet <BaseEID, Ename, Content> records the
information on the updated element, and could be either
skipped or appear once or more times in a log record
depending on the value of OpType. BaseEID and Ename
are the identifier and the name of the element involved in
the update, respectively. Content records the value of the
modified or inserted element when OpType=’MODIFY’
or ‘INSERT’, respectively. When OpType=’DELETE’, it
is set to NULL.

3.3 Incremental Refresh of an XML
Materialized View

The process of incremental refresh of an XML
materialized view starts with scanning of the update log
for generation of the view refresh information followed
by its reflection to the materialized view.

which stores the information necessary for incremental
refresh of views, and resides at the base XML document
area of the XML store (see Figure 1). Figure 7 depicts the
structure of ViewRefresh table and its relationship with
the update log. Each record of ViewRefresh table is for a
materialized view, storing its identifier (ViewID), the
identifier of DTD to which the view’s source documents
conform (DTDID), the pointer to the first log record with
which the log scan is to start (FirstLROffset), and the list
of identifiers of the base documents satisfying the
condition of the view (DIDList). Note that the data type
of DIDList column needs to be a collection one provided
in the ORDBMS.

FirstLROffset is represented as a byte offset from the
start of the update log. The log scan starts with the log
record whose first byte is stored at FirstLROffset, and
ends when the end of log is reached. When a materialized
view is created, FirstLROffset column value of its record
in ViewRefresh table is initialized to point to the end of
the update log. When the log scan for view refresh is
completed, it is also set to the end of the log. In Figure 7,
for example, when V1 is to be refreshed, the log records
from the offset 150 to the end (i.e., offset 1800) are
scanned, and then, FirstLROffset of V1 in ViewRefresh
table is modified to 1800.

The garbage collection for the update log can be simply
done by referring to all the FirstLROffset values in
ViewRefresh table. First of all, we need to figure out
which log record could be eliminated from the log. They
are those records stored at the offset less than the
minimum of all the FirstLROffset values in ViewRefresh
table. Their deletion from the update log entails
adjustment of the FirstLROffset values in ViewRefresh
table. Each FirstLROffset value in the table is
decremented by the above-mentioned minimum offset
value. In Figure 6, for example, since FirstLROffset of V1,
which is 150, is the smallest, those records before offset
150 could be deleted. If that is done, FirstLROffset values
of V1, V2, V3, and V4 are adjusted to 0, 50, 850, and 1650,
respectively.

3.3.2 Generation of the View Refresh
Information

While the update log is scanned, the view refresh
information which consists of the operations and their
data for view refresh is generated. The view refresh
information is represented as a table whose record format
consists of RefType, DID, BaseEID, and Content
columns. For each update log record, the corresponding
update is checked if it is relevant to the view to be
refreshed. If it is, the values of the above columns are
obtained and gathered to form one or more view refresh
information records and added to the view refresh
information table under construction. Note that all the
above columns except RefType are those constituting

ViewRefresh Table

Update Log

{3,5,6}

{2,4,5,7}

{1,3}

{2}

DIDList

…

1800

1000

200

150

FirstLROffset

…

V4

V3

V2

V1

ViewID

…

2

3

1

1

DTDID

…
<StartUpdateLog, 1, 1, ELEMENT, MODIFY> ← offset 150
<0101, title, ‘Performance Evaluation … ’>
<EndUpdateLog>
…
<StartUpdateLog, 1, 3, ELEMENT, MODIFY > ← offset 200
<0103, abstract, ‘A Web document can be … ’>
<EndUpdateLog>
…
<StartUpdateLog, 2, 5, ELEMENT, MODIFY> ← offset 1000
<010502, color, ‘yellow’>
<EndUpdateLog>
(End of Update Log) ← offset 1800

Figure 7. ViewRefresh Table and Update Log

ViewElem table record. RefType denotes the refresh type
whose value is one of ‘MODIFY’, ‘INSERT’, and
‘DELETE’, and it indicates the operation to be performed
to the ViewElem table with other column values as its
data.
Figure 8 is the C-like pseudo code of algorithm
Gen_RefreshInfo which generates the view refresh
information through update log scan. The input
parameters to Gen_RefreshInfo are the identifier
(ViewID) and the definition (ViewDef) of the view to be
refreshed. Gen_RefreshInfo works as follows: After
initializing the refresh information table RefreshInfo
(init_refreshinfo()) and retrieving the FirstLROffset value
from ViewRefresh table, it checks if there is any update
in the log to examine. If none exists, it terminates by
returning RefreshInfo which is empty. Otherwise, it
opens the update log (open_updatelog()) and starts log
scanning from the log record pointed to by FirstLROffset
to the end of the log. For each log record, it performs the
relevance checking (check_relevance()). The function
check_relevance() returns the relevance type value
(rel_type), which is either NULL (indicating that the
update is not relevant to the view) or one of MODIFY-M,
MODIFY-I, MODIFY-D, INSERT, and DELETE
(indicating that it is relevant. These relevance types will
be explained in detail shortly.) If the update is relevant, it
generates the refresh information records appropriately
depending on rel_type and add them to RefreshInfo
(gen_add_refinfo()). When the end of log is reached, it
modifies the FirstLROffset and the DIDList columns of
the view’s record in ViewRefresh table, retruns
RefreshInfo, and terminates.
In the relevance check, the definition (ViewDef), DTDID,
and DIDList of the view are referred to. ViewDef is given
as a parameter to Gen_RefreshInfo so that condition P,
condition element CE, and the set of target elements TE
of the view are referred to. DTDID and DIDList are
retrieved from ViewRefresh table. Given update log
record U and view V, their relevance checking proceeds
as follows: First, equivalence between the DTDID of U

and that of V is examined. For U to be relevant to V,
basically the two should be the same. If they are, further
conditions described below are checked to see if U is
relevant to V. There are five types of relevance:
MODIFY-M, MODIFY-I, MODIFY-D, INSERT, and
DELETE. For each of these types, the further conditions
to be checked, how to generate the refresh information
record(s), and how to modify the DIDList are described
in the following where U.x and V.y denote field x of U
and some information y on V, respectively.

Type MODIFY-M:
If (U.OpType = 'MODIFY' AND U.Ename ∈ V.TE AND
U.DID ∈ V.DIDList AND (U.Ename ≠ V.CE OR
V.P(U.Content)) where P(x) returns TRUE if x satisfies
predicate condition P and returns FALSE otherwise, then
it implies that one of V’s target elements of the base
document (U.Ename ∈ V.TE) which is qualified for V
(U.DID ∈ V.DIDList) was modified (U.OpType =
'MODIFY'), and that the document is still qualified for V
despite the modification (U.Ename ≠ V.CE OR
V.P(U.Content). As such, it is necessary to reflect the
same modification to V as well. The view refresh
information record added to RefreshInfo is (MODIFY,
U.DID, U.BaseEID, U.Content).

Type MODIFY-I:
If (U.OpType = 'MODIFY' AND U.Ename = V.CE AND
U.DID ∉ V.DIDList AND V.P(U.Content)), it implies that
a base document which was not qualified for V (U.DID ∉
V.DIDList) is now qualified for V (V.P(U.Content)) due
to the modification (U.OpType = 'MODIFY') of an
element which is the condition element of V (U.Ename =
V.CE). As such, it is necessary to insert the records that
are to represent V’s target elements of the modified
document into ViewElem table. To generate required
refresh information records to be added to RefreshInfo,
XMLElem table needs to be accessed through the index
on DID to retrieve V’s target elements of the modified
document unless V’s condition element is the only target
element. 2 Those records are in the form (INSERT,
U.DID, BaseEID, Content) where BaseEID and Content
values are retrieved from XMLElem Table. Also, U.DID
is inserted into V.DIDList.

Gen_RefreshInfo(ViewID, ViewDef)
{

RefreshInfo = init_refreshinfo(); /* intialization of view refresh information table */
i = 0; /* intialization of RefreshInfo table index */
LRoffset = ViewRefresh[ViewID].FirstLROffset; /* retrieval of FirstLROffset from ViewRefresh

table with ViewID */
if (LRoffset != NULL && UpdateLog[LRoffset] != end_of_log) /* update exists */
{

DTDID = ViewRefresh[ViewID].DTDID;
DIDList = ViewRefresh[ViewID].DIDList; /* retrieval of DIDList from ViewRefresh

table with ViewID */
DIDListUpdated = False;
open_updatelog(LRoffset); /* open update log for scan */
do {

LRoffset = scan_updatelog(LRoffset, &Ulog_Rec); /* retrieval of log record */
rel_type = relevance_check(ViewDef, DTDID, DIDList, Ulog_Rec);

/* checking relevance between update and view */
if (rel_type != NULL) {/* if relevant */

i = append_refreshinfo(rel_type, RefreshInfo, DIDList, Ulog_Rec , i);
/* generation and addition of view refresh information records */
if (rel_type != MODIFY) DIDListUpdated = TRUE;

}
} while (!end_of_log);
ViewRefresh[ViewID].FirstLROffset = LRoffset; /* update of FirstLROffset */
if (DIDListUpdated) ViewRefresh[ViewID].DIDList = DIDList; /* update of DIDList */

}
return (RefreshInfo);

}

Figure 8. Algorithm for Generation of View Refresh
Information

Type MODIFY-D:
If (U.OpType = 'MODIFY' AND U.Ename = V.CE AND
U.DID ∈ V.DIDList AND (NOT V.P(U.Content))), it
implies that the modified document which was qualified
for V (U.DID ∈ V.DIDList) is now not so (NOT
V.P(U.Content)) due to the modification (U.OpType =
'MODIFY') of its condition element (U.Ename = V.CE).
As such, it is necessary to delete all the records
representing V’s target elements of the modified

2 With the restrictions imposed on XML view definition
described in Section 3.1, relevance checking can be done with
no access to XMLElem table at all, and Modify-I is the only
relevance type requiring access to XMLElem table for
generating the view refresh information. If we relax those
restrictions, accesses to XMLElem table are required not just for
generation of the refresh information records but also for
relevance checking.

document from ViewElem table. The record to be added
to RefreshInfo is (DELETE, U.DID, NULL, NULL) so
that all the records of ViewElem table whose DID equals
U.DID may be deleted. Also, U.DID is deleted from
V.DIDList.

Type INSERT:
If (U.OpType = 'INSERT' AND V.P(U.Content where
U.Ename = V.CE)) where the clause ‘U.Content where
U.Ename = V.CE’ designates the Content field of the
triplet <BaseEID, Ename, Content> in U whose Ename
equals V.CE, it implies that a new document was inserted
(U.OpType = 'INSERT') which is qualified for V
(V.P(U.Content where U.Ename = V.CE)). As such, it is
necessary to insert the records representing all of V’s
target elements of the inserted document to ViewElem
table. The necessary values to constitute the records
added to RefershInfo are retrieved from the triplets
<BaseEID, Ename, Content> in U where Ename equals
one of the target elements in V.TE. They are in the form
(INSERT, U.DID, U.BaseEID, U.Content). Also, U.DID
is inserted into V.DIDList.

Type DELETE:
If (U.OpType = 'DELETE' AND U.DID ∈ V.DIDList), it
implies that the document which was qualified for V
(U.DID ∈ V.DIDList) was deleted (U.OpType =
'DELETE'). As such, all the records representing V’s
target elements of the deleted document need to be
deleted from ViewElem table. The record to be added to
RefreshInfo is (DELETE, U.DID, NULL, NULL) so that
all the records of ViewElem table whose DID equals to
U.DID may be deleted. Also, U.DID is deleted from
V.DIDList.

3.3.3 Reflection of View Refresh Information
to Materialized View

Figure 9 is the C-like pseudo code of algorithm
Refresh_MV which reflects the view refresh information
returned by algorithm Gen_RefreshInfo into ViewElem
table. It first checks the returned RefreshInfo table. If it is
empty, it means that the materialized view is already
up-to-date, and as such, the view refresh is vacuously

completed. Otherwise, it reads the refresh information
record in RefreshInfo one at a time into RInfo of the type
with the same structure as that of the refresh information
record depicted in Figure 11, and performs the following:
First, it checks the refresh type value, RInfo.RefType. If
it is ‘MODIFY’, it searches ViewElem table for the
record to be modified with ViewID, Rinfo.DID, and
RInfo.BaseEID values, and replaces its Content field with
RInfo.Content (modify_content()). In doing so,
ViewElem table is searched through the index on
ViewID.

If RInfo.RefType is ‘INSERT’, it first inserts into
ViewElem table a record where ViewID value is set to
the identifier of the view being refreshed and the values
of the remaining columns are set to NULL. Then, it
inserts into ViewElem table another record with the same
ViewID value where the values of the remaining columns
are from Rinfo. Such insertions continue for the next
records out of RefreshInfo as long as their RefType value
is ‘INSERT’ and their DID value remains the same. In
this insertion process, ViewElem table is accessed
through the index on ViewID (insert_document()).

If RInfo.RefType is 'DELETE', it searches ViewElem
table for the records of the view through the index on
ViewID, and deletes all the records whose DID values
equals RInfo.DID (delete_document()).

4 Performance Evaluation
Our proposal described in the previous section was
implemented in Java with Oracle 8i, resulting in a
prototype XML storage system running on Windows
2000 Server. In this section, the results of performance
experiments with the implemented system are reported.

4.1 Overview
Two types of base XML documents were used in the
experiments. One is on movies of small size consisting of
about 20 elements per document on the average. The
other is the plays of Shakespeare (Bosak 1999) whose
average number of elements per document is about 7,000.
The views were defined similarly to the one used as the
running example in the previous section: They have one
condition element and three target elements. Table 1
shows the performance parameters, their description, and
setting for the experiments.

i);

The major goal of our experiments is to figure out in what
condition incremental refresh of the materialized view
outperforms view recomputation. The most influencing
performance parameter in this regard is the amount of
logged updates to be examined for deferred incremental
refresh. As such, in our experiments, we assumed that the
number of the base XML documents remained the same
with the document insertions and deletions. We also
assumed that the size of the retrieved view is the same all
the time. These assumptions are to have the view
recomputation time to remain virtually the same despite
the updates done to the base documents whereas the time
with incremental refresh increases as more updates have
been done. To achieve this, the number of document
insertions and that of deletions are kept the same (i.e., I =
Refresh_MV (ViewID, RefreshInfo)
{

i = 0; /* initialization of RefreshInfo table index */
if (check_empty(RefreshInfo) != EMPTY)

/* non-empty refresh information */
do { RInfo = fetch(RefreshInfo[i++]);

switch (RInfo.RefType) {
case MODIFY : /* element modification */

modify_content(ViewID, RInfo);
/* replacement of element content */

break;
case INSERT : /* document insertion */

i = insert_document(ViewID, Rinfo, RefreshInfo,
break;

case DELETE : /* document deletion */
delete_document(ViewID, Rinfo.DID);
break;

} /* end of switch */
} while (!end_of_RefreshInfo)

}

Figure 9. Algorithm for Reflecting View Refresh
Information to Materialized View

D),
the
also
ele
tha
MD
the
R =

4.2
The
of
rec
thro
the
upd
tim
tha
wh
doc
rec
upp
refr
goe
exp
(S
as
exp

P

The
rev

arameter Description Setting
D The number of base XML documents conforming to a DTD 20000 (movie), 1000 (play)
U The proportion of base document updates 0, 0.1, 0.2, 0.3, 0.4, 0.5
S View Selectivity: The proportion of base documents satisfying view’s condition 0.2, 0.3
R Relevance Ratio: The proportion of update log records relevant to the view 0.2, 0.3
I The proportion of INSERT logging 0.2, 0.4
D The proportion of DELETE logging 0.2, 0.4
M The proportion of MODIFY logging 0.6, 0.2
MI The proportion of MODIFY-I out of all the relevant MODIFY log records 0.2, 0.4
MD The proportion of MODIFY-D out of all the relevant MODIFY log records 0.2, 0.4
MM The proportion of MODIFY-M out of all the relevant MODIFY log records 0.6, 0.2

Table 1. Performance Parameters
 and among them, the number of insertions relevant to
 view and that of deletions relevant to the view are
 kept the same (i.e., I×R = D×R). The number of

ment modifications of MODIFY-I relevance type and
t of MODIFY-D type are also kept the same (i.e., MI =
). One more assumption in the experiments was that

 relevance ratio is the same as the view selectivity (i.e.,
 S).

 View Retrieval Time
 time for XML view retrieval with incremental refresh
the materialized view and that with view

omputation were measured for comparison. Figure 10
ugh Figure 12 compare the view retrieval times by

se two methods as the proportion of base document
ates (U) increases. We note that as U increases, the
e with view recomputation is not changing whereas
t with incremental refresh increases. In Figure 10,
ich is out of the experiments against the movie
uments, incremental refresh outperforms view
omputation as long as U is less than about 27%. This
er limit on the amount of updates for incremental
esh to be more effective than view recomputation
s up further in Figure 11, which is also out of the
eriments against the movie documents, to about 31%

= 0.2) and about 33% (S = 0.3). It goes up to as much
about 42% in Figure 12, which is out of the
eriments against the play documents.

 results in Figure 12 compared to those in Figure 10
eal that incremental refresh gets more effective than

view recomputation as the volume of the view’s source
documents gets larger. This implies that XML view
materialization would be very effective in providing the
database like services out of a large-scale XML
warehouse like the one investigated in Xyleme project
(Xyleme 2001).

"The Play of Shakespeare"
XML Documents(I:D:M=2:2:6)

0

10000

20000

30000

40000

50000

0 10% 20% 30% 40% 50%

Base Document Update

V
ie

w
 R

et
rie

va
l T

im
e(

m
s)

incremental refresh(S=0.2)
view recomputation(S=0.2)

 Figure 12. View Retrieval Time w.r.t Varying
Proportion of Base Document Updates

.2)
0.2)
.3)

0.3)

Effectiveness of incremental refresh compared to view
recomputation is also observed as the size of the view
gets larger or as the occurrences of complex type of
relevant updates decreases. As the view selectivity (S)
increases from 0.2 to 0.3 in Figure 10 and Figure 11, both
view recomputation time and the time with incremental
refresh increase because the size of the view gets larger.
"Movie" XML Documents(I:D:M=2:2:6)

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10% 20% 30% 40% 50%

Base Document Update

V
ie

w
 R

et
rie

va
l T

im
e(

m
s)

incremental refresh(S= 0
view recomputation(S=
incremental refresh(S= 0
view recomputation(S=

 Figure 10. View Retrieval Time w.r.t Varying
Proportion of Base Document Updates

Figure 11. View Retrieval Time w.r.t Varying
Proportion of Base Document Updates

"Movie" XML Documents(I:D:M=4:4:2)

0

20000

40000

60000

80000

100000

120000

140000

0 10% 20% 30% 40% 50%

Base Document Update

V
ie

w
 R

et
rie

va
l T

im
e(

m
s)

incremental refresh(S= 0.2)
view recomputation(S=0.2)
incremental refresh(S= 0.3)
view recomputation(S=0.3)

However, we can observe that view refresh is less
sensitive to that especially when U is less than around
30%.

1

10

100

1000

INSERT DELETE MODIFY-I MODIFY-D MODIFY-M

Relevance Type

G
en

er
at

io
n

Ti
m

e(
m

s)

"Movie" XML Document(S=0.2)
"Play" XML Document(S=0.2)

Figure 13. Time for Generating Refresh Information
for each Relevance Type

In the experiments of Figure 10, the ratio among the
relevant updates I:D:M was set to 2:2:6 whereas in Figure
11, it changed to 4:4:2. The reduction of the relevant
updates of MODIFY type results in reduction of
MODIFY-I type updates. As explained in Section 3.3.2,
MODIFY-I is the only relevance type which requires the
access to the view’s source documents (i.e., XMLElem
table) to generate the corresponding refresh information
which is not found in the update log. As such, it takes the
longest time to process among all the five relevance types.
We can note that the view retrieval times with
incremental refresh in Figure 11 have decreased
compared to those in Figure 10.

4.3 Time for Generating Refresh Information
Figure 13 shows the time it took to generate the refresh
information for each relevant update type. As explained
in Section 3.3.2 and in the previous subsection,
MODIFY-I takes the longest time among all the five
relevance type updates.
The second longest one is INSERT, and the remaining
three follows without notable difference. The INSERT
type update requires more time than the other three
because it needs to search its log record for the condition
element and the target ones whereas the other three can
simply generate the refresh information.

4.4 Time for Tasks of Incremental Refresh
There are three tasks involved in the view retrieval with
incremental refresh of the materialized view: (1) scanning
the update log, (2) checking relevance between the
updates and the view and generating the view refresh
information for the relevant updates, and (3) reflecting it
into the materialized view. Figure 14 compares the time it
took for each task while refreshing a materialized view
from the movie documents. We note that the most time
consuming part is the second one, the core of the XML
view materialization with the highest complexity of the
three. Next is the log scanning which requires disk I/O’s.

5 Concluding Remarks
In this paper, we investigated the XML view: its
materialization and incremental refresh. Instead of relying
on the semistructured DBMS for XML data storage, we
employed the ORDBMS because of its pragmatic
importance.
The object-relational database schema for storing the base
XML documents, the materialized views derived from
them, and other information for view refresh is designed.
We adopted the deferred view refresh policy, requiring
the update log. The data structure of the update log record
and how the update log is managed and scanned is
described. We proposed two algorithms Gen_RefreshInfo
and Refresh_MV. The former scans the update log,
checks if each logged update is relevant to the view to be
refreshed, and generates the view refresh information that
consists of the operations and their data necessary for
view refresh. The latter algorithm incrementally refreshes

the materialized view with the view refresh information.
Finally, a detailed set of experimental results on
performance were presented, showing that our proposed
scheme outperforms view recomputation.

0

10000

20000

30000

40000

50000

Pr
oc

es
si

ng
 T

im
e(

m
s)

0% 10% 20% 30% 40% 50%

Base Document Update

"Movie" XML Documents Update Log Scan
Refresh Information Generation
Refresh Information Reflection

 Figure 14. Time for each Task in Incremetal Refresh
of Materialized View

The issues requiring further investigation include the
following: First, we adopted the deferred view refresh
policy in this paper. That would give us an opportunity
for post optimization in generating the view refresh
information. Once the view refresh information is
generated by algorithm Gen_RefreshInfo as described in
section 3.3.2, it could be optimized by merging the
related refresh information records. For example, if an
element of a newly inserted document is modified later,
then their refresh information records can be merged into
one so that the modified value may be inserted instead of
the original one. As for another example, if the document
with one of its element modified is later deleted, then the
earlier element modification need not be reflected to the
materialization of the view.
Secondly, a scheme for efficient logging of document
insertion or element modification needs to be devised.
This is to avoid the log records of very large size when
inserting a large document or modifying a large element.
The logged data values of elements are redundantly
stored in the corresponding base documents. As such,
some referencing mechanism where a log record points to
its relevant portion of the base document, is desirable.
The penalty for that is on the process of checking the
update’s relevance to a view, which inevitably requires
access to the base documents.

Thirdly, the views with unrestricted filtering condition
need to be dealt with. In this paper, given a log record, its
update’s relevance to a view can be determined without
access to the base documents at all. Besides, Modify-I is
the only relevance type requiring access to the base
documents for generating view refresh information.
However, as mentioned in Section 3.3.2, with the view
whose condition is more general than that described in
Section 3.1, base document access is inevitable both for
checking update/view relevance and for generating view
refresh information.
Fourthly, the finer unit of updates to the XML documents
needs to be considered. In this paper, the granularity for a
update we considered is either the entire document for
insertion and deletion or the element for modification.
We need to extend the result of this paper to incorporate
more complicated model of updates like the element
insertion and deletion, which results in structural change
of the XML documents.
Finally, performance analysis needs to be conducted to
derive the equation on the metadata in the XML store
whose value is a priori known or can be estimated so that
the XML query optimizer can always choose the winner
of incremental refresh and recomputation given a request
of the XML view that is maintained as a materialized one.

6 References
Abiteboul, S. (1999): On views and XML. Proc. ACM Symp. on

Principles of Database System, 1-9.

Abiteboul, S. et al. (1996): The Lorel query language for
semistructured data. J. of Digital Libraries 1(1).

Abiteboul, S. et al. (1998): Incremental maintenance for
materialized views over semistructured data. Proc. Int'l Conf.
on VLDB, 38-49.

Abiteboul, S. et al. (1999): Active views for electronic
commerce. Proc. Int'l Conf. on VLDB, 138-149.

Boag, S. et al. (2002): XQuery 1.0: an XML query language.
http://www.w3.org/TR/xquery/.

Bosak, J. (1999): The plays of Shakespeare.
http://www.ibiblio.org/bosak/.

Buneman, P. et al. (1995): Programming constructs for
unstructured data. Proc. DBPL.

Carey, M. et al. (2000): XPERANTO: publishing
object-relational data as XML. Proc. Workshop on the Web
and Databases.

Cattell, R. et al. (1994): The object database standard:
ODMG-93. Morgan Kaufmann.

Chen, L. and Rundensteiner, E. (2000): Aggregate path index
for incremental Web view maintenance. Proc. 2nd Int’l
Workshop on Advanced Issues of E-Commerce and
Web-based Information Systems.

Chen, L. and Rundensteiner, E. (2002): ACE-XQ: a
cache-aware XQuery answering system. Proc. Workshop on
the Web and Databases.

Chen, L. et al. (2002): XCache - a semantic caching system for
XML queries. Proc. ACM SIGMOD Int'l Conf. on
Management of Data, Demonstration paper.

Cluet, S. et al. (2001): Views in a large scale XML repository.
Proc. Int'l Conf. on VLDB, 271-280.

Deutsch, A. et al. (1999): Storing semistructured data with
STORED. Proc. ACM SIGMOD Int'l Conf. on Management
of Data, 431-442.

Fernandez, M. et al. (2000): SilkRoute: trading between
relations and XML. Proc. the 9th WWW Conf., 723-746.

Fernandez, M. et al. (2001): Efficient evaluation of XML
middle-ware queries. Proc. ACM SIGMOD Int'l Conf. on
Management of Data, 103-114.

Florescu, D. and Kossmann, D. (1999a): Storing and querying
XML data using an RDBMS. IEEE Data Eng. Bulletin
22(3):27-34.

Florescu, D. and Kossmann, D. (1999b): A performance
evaluation of alternative mapping schemes for storing XML
data in a relational database. Tech. Rep., INRIA, France.

Gupta, A. and Mumick, I. (ed.) (1999): Materialized views:
techniques, implementations, and applications. MIT Press.

Hristidis, V. and Petropoulos, M. (2002): Semantic caching of
XML databases. Proc. Workshop on the Web and Databases.

McHugh, J. et al. (1997): Lore: a database management system
for semistructured data. ACM SIGMOD Record 26(3):54-66.

Papakonstantinou, Y. et al. (1995): Object exchange across
heterogeneous information sources. Proc. Int'l Conf. on Data
Engineering, 251-260.

Quan, L. et al. (2000): Argos: efficient refresh in an XQL-based
Web caching system. Proc. Workshop on the Web and
Databases, 23-28.

Robie, J. et al. (1998): XML query language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

Roussopoulos, N. (1991): An incremental access method for
ViewCache: concept, algorithms, and cost analysis. ACM
Trans. on Database Systems 16(3):535-563.

Roussopoulos, N. and Kang, H. (1986): Principles and
techniques in the design of ADMS±. IEEE Computer
19(12):19-25.

Shanmugasundaram, J. et al. (1999): Relational databases for
querying XML documents: limitations and opportunities.
Proc. Int'l Conf. on VLDB, 302-314.

Shanmugasundaram, J. et al. (2000): Efficiently publishing
relational data as XML documents. Proc. Int'l Conf. on VLDB,
65-76.

Shanmugasundaram, J. et al. (2001): Querying XML views of
relational data. Proc. Int'l Conf. on VLDB, 261-270.

Suciu, D. (1996): Query decomposition and view maintenance
for query languages for unstructured data. Proc. Int'l Conf. on
VLDB, 227-238.

Tatarinov, I. et al. (2001): Updating XML. Proc. ACM
SIGMOD Int'l Conf. on Management of Data, 413-424.

Tian, F. et al. (2002): The design and performance evaluation of
alternative XML storage strategies. ACM SIGMOD Record
31(1):5-10.

Xyleme, L. (2001): A dynamic warehouse for XML data of the
Web. IEEE Data Eng. Bulletin 24(2):40-47.

Zhuge, Y. and Garcia-Molina, H. (1998): Graph structured
views and their incremental maintenance. Proc. Int'l Conf. on
Data Engineering, 116-125.

