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Abstract

Time-to-market is a critical factor in the commercial
success of new consumer devices. To minimise de-
lays, system developers and third party software ven-
dors must be able to test their applications before the
hardware platform becomes available. Instruction Set
Simulators (ISS’s) underpin this early development
by emulating new platforms on ordinary desktop ma-
chines. As target platforms become faster the per-
formance demands on ISS’s become greater. A key
challenge is to leverage available simulator technol-
ogy to produce, at low cost, incremental performance
gains needed to keep up with these demands. In this
work we use a very simple strategy: in-place-block-
replacement to produce improvements in the perfor-
mance of the popular QEMU functional simulator.
The replacement blocks are generated at runtime us-
ing the LLVM JIT running on spare processor cores.
This strategy provides a very lightweight way to in-
crementally build an alternate code generator within
an existing ISS framework without incurring a sub-
stantial runtime cost. We show the approach is effec-
tive in reducing the runtimes of the QEMU user-space
emulator on a number of SPECint 2006 benchmarks.
Keywords: Instruction Set Simulation, Dynamic Bi-
nary Translation, Background Optimisation, LLVM,
QEMU

1 Introduction

Instruction Set Simulators (ISSs) are software plat-
forms that run on a host hardware architecture and
emulate a guest hardware architectures. An ISS
allows developers to test and use systems and ap-
plication software whenever using the actual hard-
ware platform is not an easy option. ISSs are
used for reasons of security and safety[Vachharajani
et al., 2004], cross-platform-support[Adams and Age-
sen, 2006, Bellard, 2005, Chernoff et al., 1998] or just
because they may be more readily available than the
actual hardware. In the extreme, an ISS can provide
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a platform for software development before the corre-
sponding hardware platform exists. This last mode
of use for ISSs permits the parallel-development of
hardware and software for new mobile and embed-
ded devices. Such parallel-development reduces time-
to-market which is vital in the commercial success
of these devices[De Michell and Gupta, 1997]. With
mobile devices becoming faster, and competitive pres-
sures shortening production cycles, there is strong de-
mand for faster emulation from ISSs.

ISSs emulate at a variety of levels. Cycle-accurate
ISSs[Lee et al., 2008] emulate the timing of hardware
devices to allow debugging at the hardware/system
interface. Functional ISSs[Adams and Agesen, 2006,
Bellard, 2005, Magnusson et al., 2002, Cmelik and
Keppel, 1994, Witchel and Rosenblum, 1996] emu-
late architectures at the behavioural level providing a
platform for interactive testing of systems and appli-
cation software. Functional ISSs are generally much
faster than cycle-accurate ISSs making them attrac-
tive for high-level system and application developers.
Functional ISSs can further subdivided into whole-
system simulators, able to emulate an entire operat-
ing system[Adams and Agesen, 2006, Bellard, 2005,
OVP, 2011] and process-VMs or user-mode emula-
tors which can run a single application. This work
describes enhancements to the performance of the
QEMU ISS[Bellard, 2005]. QEMU is one of the most
popular ISS’s. It provides fast emulation for a va-
riety of target and source architecture and forms
the basis of a number of industrial emulators in-
cluding the Android mobile device emulator[Google
.Inc, 2011]. QEMU provides both system-mode em-
ulation for whole-systems and user-mode emulation
for single-applications. In this article we focus on
enhancements to the simpler, and faster, user-mode
QEMU.

Like many ISSs, QEMU uses Dynamic Binary
Translation (DBT) to translate blocks of guest plat-
form code to host platform code at runtime. Once
blocks are translated, they can be run natively on the
host platform – greatly improving performance over
simple interpretation of guest instructions[Arnold
et al., 2005]. However, good performance is only pos-
sible if translation is done quickly. On single processor
systems, any attempt at optimising translated code
is time-constrained: time spent optimising translated
code is time not spent running translated code. When
emulating on a multi-core host these constraints are
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less severe. After an initial fast translation, idle cores
can be utilised to perform background optimisation
in a separate thread. Such background optimisation
is relatively common in high-level-language process-
VMs[Krintz et al., 2001, Alpern et al., 2005] but rel-
atively rare in DBT-Based ISSs[Qin et al., 2006]. For
simulators where the host and guest Instruction-Set-
Architecture (ISA) is the same, this rarity is unsur-
prising: we would expect gains from further optimi-
sation of already-optimised code in same-ISA simu-
lation to be small[Adams and Agesen, 2006, Arnold
et al., 2005]. However, this rarity is harder to explain
in different-ISA ISSs, the architectural gap between
the guest ISA and the host ISA is usually large enough
to leave room for further optimisation.

In this article we describe an implementation that
experiments with the use of background optimisa-
tion to improve the speed of user-mode QEMU run-
ning ARM binaries on a multi-core x86-64 host. In
our experiments we use LLVM components, running
on a spare core, to perform background optimisa-
tion and replacement of cached blocks of dynamically
translated code. We show that this approach is suc-
cessful in producing speedups in the simulation of a
number of the SPECint 2006[Standard-Performance-
Evaluation-Corporation, 2011] benchmarks.

At this point it should be emphasised that the fo-
cus of this work is in utilising spare cores to improve
code quality and hence the simulation speed of each-
thread of an application. This is in contrast to the
orthogonal, and well-studied, problem of using mul-
tiple cores to help simulate multi-threaded applica-
tions[Jiang et al., 2009, Almer et al., 2011, Wentzlaff
and Agarwal, 2006]. The primary aim of this work
is to improve thread code quality with the goal of
reducing overall execution time.

This paper makes the following contributions:

• It is the first successful attempt to boost the per-
formance of QEMU through background optimi-
sation.

• Moreover, to the best of our knowledge, it is the
second successful attempt to use background op-
timisation of already translated code to boost the
performance of any different-ISA ISS, the other
being SIMIT-ARM[Qin et al., 2006] and the first
to use spare cores on the same machine.

• It demonstrates that background optimisation
can be added cheaply and incrementally and still
achieve faster execution (section 4.5) and bet-
ter quality host-code (section 4.4). Performance
gains can be had before, covering all instructions
instructions and before implementing heuristics
for selecting blocks for replacement. Moreover,
our optimisation is still useful at the level of the
basic block - allowing gains to be enjoyed before
block aggregation and inter-block optimisation is
implemented. In summary, there is a path to
retro-fit changes cheaply, incrementally and pro-
ductively to an existing ISS, using standard tools.

The rest of this paper is structured as follows. In the
next section we describe related work. In section 3
we describe our approach starting with the base com-
ponents of QEMU and LLVM followed by an expla-
nation how these are combined to make Augmented-
QEMU which uses background optimisation for faster
execution. In section 4 we describe our experimental
results. Finally, in section 5 we summarise our results
and propose future directions for research.

2 Related Work

The most closely related work to ours is Scheller’s
LLVM-QEMU project[Scheller, 2008]. Like our work,
LLVM-QEMU used the LLVM Just-in-Time compiler
(LLVM-JIT). However, in his work he uses the LLVM-
JIT to replace the role QEMU’s native code genera-
tor – the Tiny Code Generator (TCG). In our work
we the LLVM-JIT to complement the role of TCG.
We allow TCG to perform a fast initial translation
for immediate execution and use the LLVM-JIT to
replace selected blocks as QEMU is running. Our
work also differs in the use of a separate thread1 to
run the LLVM-JIT. This combination of differences
results in our implementation achieving faster perfor-
mance overall with speedup, rather than slowdown,
on most benchmarks.

Also related is the identically named LLVM-
QEMU project by Chipounov and Candea[Chipounov
and Candea, 2010]. They also used the LLVM-JIT
to bypass TCG in QEMU. They compiled all micro-
operations into C functions which were then trans-
lated into LLVM Intermediate Representation (LLVM
IR) and then optimised before execution. Again, the
overheads of running the LLVM-JIT were substantial,
resulting in slowdown when compared to the original
QEMU.

Again, our work differs most from the above ap-
proaches in leaving TCG intact. By leaving most of
the QEMU infrastructure in place we are able to focus
on incrementally increasing the number of blocks we
handle as we add new, carefully-handwritten, transla-
tions from individual ARM instructions to LLVM-IR
code. These direct hand-written translations appear,
a-priori, easier to optimise than LLVM-IR generated
from C or TCG intermediate code.

Looking more broadly at related DBTs, same-ISA
DBTs[Watson, 2008, Adams and Agesen, 2006] have
the option of preserving most optimisations already
present in the source binary. This can give very
good performance[Adams and Agesen, 2006] though,
in some cases, knowledge gained from runtime pro-
files can be used for even more optimisation[Bruening
et al., 2003]. Unfortunately most ISSs are by ne-
cessity different-ISA DBTs[OVP, 2011, Magnusson
et al., 2002, Qin et al., 2006, Bellard, 2005]. These
face greater challenges than same-ISA DBTs due to
the unavoidable loss of platform-specific optimisa-
tions during translation between ISAs.

The trade-off between running translated code and
optimising translated code means that optimisation
must be done sparingly on a single processor ma-
chine. On multi-core machines, optimisation can be
carried out in a separate thread. Such background op-
timisation relatively common in process VMs for high
level languages such as Java (Kulkarni[Kulkarni et al.,
2007] gives an overview of the impact of these opti-
misations). In contrast, the use of such background
optimisation is rare in different-ISA DBTs.

One exception is SIMIT-ARM[Qin et al., 2006]
which, concurrently with interpretation of guest code,
translates guest code into large, fixed-size blocks of C
code and then compiles these into dynamically-linked-
libraries (DLLs) using gcc running on separate hosts.
As the new DLLs are produced they are loaded in and
run. The amount of optimisation performed by gcc is
trivially controlled using compiler flags. The DLLs in
SIMIT-ARM are persistent between runs which lets
applications run much faster the second time they
are invoked. In earlier experiments[Lee, 2009] it was

1It should be noted that LLVM-QEMU was a short summer-
project and multi-threading was on the list of things to do.
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found that SIMIT-ARM was able to run at speeds
comparable to QEMU in user-mode when it runs on
these cached DLLs.

Our work differs from SIMIT-ARM in our use of
spare cores rather than separate hosts, and the fo-
cus of optimisation on small basic blocks rather than
large fixed-sized blocks with multiple entry points2.
Our approach, through the use of a lightweight-JIT,
working in a shared memory space, provides a lower
latency on block optimisation – which is likely to be
important in the context of the relatively fast QEMU
simulator.

Finally, there is substantial work that applies op-
timisation to the initial translation phase of an ISS.
Almer [Almer et al., 2011] uses the LLVM-JIT to
translate and optimise hot traces in their multi-
threaded ISS. Wentzlaff[Wentzlaff and Agarwal, 2006]
also performs translation and optimisation of code
blocks in their parallel ISS. Both these works differ
from ours by applying optimisation only during the
initial translation of each trace or block as such they
do not have to perform runtime block-replacement of
translated code.

This concludes our overview of related literature.
In the next section we describe our approach.

3 Approach

In this section we describe the implementation
used in this work: Augmented-QEMU. The goal
of Augmented-QEMU is to provide faster emula-
tion by performing background optimisation of guest
(ARMv5) instructions to host (x86-64) instructions.
Augmented-QEMU is built using the following soft-
ware components:

• QEMU version 0.10.6, running in user-mode,
which we call vanilla-QEMU,

• The LLVM optimisers and x86 code-generator
that are part of the LLVM just-in-time compiler
version 2.6 (LLVM-JIT).

We describe each of these in turn before explaining
how they are combined to form Augmented-QEMU
in section 3.3.

3.1 Vanilla-QEMU

QEMU[Bellard, 2005] is a widely used, versatile and
portable DBT system. QEMU is cross-platform. It
supports a variety of host and guest ISAs. It is able
to exploit the features of its host architecture. For
example, when run on a 64bit host such as the x86-
64 architecture it is able to exploit the extra registers
to provide better performance. QEMU is a functional
simulator, it emulates program behaviour rather than
simulating accurate timings of events in hardware.
QEMU has two modes: a system-mode with detailed
hardware models for emulating entire systems; and a,
somewhat faster, user-mode that acts as a process-
VM on which to run a single application. QEMU
is quite fast, with quoted emulation speeds of 400 to
500 MIPS. In terms of actual runtimes, on our experi-
mental machine, we found that QEMU running cross-
compiled ARM binaries ran approximately ten times
slower than native x86 compiled benchmarks. The

2The approach of SIMIT-ARM is highly original and starkly dif-
ferent from the basic-block-oriented approach taken by most DBTs.
The use of multiple-entry points leads to blocks being cast as large
switch statements. The potential impact of this format on different
levels of optimisation is unknown and warrants further study.

Guest
Basic
Block

two-stage
TCG

codegen

Emulated ARM Machine State 

reads/transforms

Host
Translation

Block
(TB)

Figure 1: Basic Translation Schema for QEMU

following is a brief outline of how QEMU CPU simu-
lation works. For a more detailed overview see [Bel-
lard, 2005].

3.1.1 The QEMU Simulation Process

QEMU performs computation by maintaining an ab-
stract CPU state for the guest architecture. This
state includes program counters, stack pointers, con-
trol flags and general-purpose registers. QEMU
translates guest binary code to host code that then
acts on this processor state. At the start of simula-
tion, this state is initialised as it would be at the start
of program execution on the guest architecture. For
Augmented-QEMU, the guest architecture is a 32 bit
ARM machine and the state is called CPUARMState.
Figure 1 illustrates this basic execution schema. Note
that, unlike some other VMs[Bruening et al., 2003,
Krintz et al., 2001], QEMU does not initially di-
rectly interpret guest code. Instead it relies on a
fast translator, called Tiny Code Generator (TCG)
to quickly produce basic blocks of host code. These
blocks, called Translation Blocks (TBs), are cached
in an area called the translation cache and then im-
mediately executed. TCG runs in two-phases. The
first phase translates the guest ISA to TCG code –
a generalised intermediate form. The second phase
converts TCG code to the host ISA. This two-phase
design aids portability by decoupling the source and
host ends of the translation process.

The translation schema described above sits in the
context of the broader control structure for QEMU
shown in figure 2. In the figure, control flows are in-
dicated with thin lines and flows of code with thick
dashed grey lines. At the core of QEMU simulation
is the cpu exec() function. This function is respon-
sible for the controlling the translation and execu-
tion of basic blocks of guest code. During simulation,
cpu exec() operates as follows. First, when a block
of guest code needs to be executed, the source pro-
gram counter (SPC) is read from the guest CPU state
(step (1) in figure 2). Next, the SPC is looked up in
the map table (step (2)). At this point one of two
things can happen:

1. The block starting at the SPC is found to have
already been translated and stored in the transla-
tion cache. In this case the map table will return
the address of the relevant TB in the translation
cache. Or,

2. The block starting at the SPC is not in the trans-
lation cache and so is not found in the map table.
In this case the guest block is new and will need
to be translated prior to execution.
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TB TB

Guest BinaryMap Table

Guest CPU State TCG
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cpu_exec()

Translation

Cache

(1)

(2)

(3)
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(6)

(a)

(b)

ARM

x86-84

Figure 2: Control structure for QEMU centred
around the core execution loop: cpu exec(). Show-
ing the actions creating new TBs ((a) and (b)) and
actions to execute extant TB’s ((1) to (7)).

In the case of the relevant TB being found, control is
passed from cpu exec() to a block of prologue code
(step (3)). The prologue saves QEMU’s register state
before jumping to the relevant TB (step (4)). The
TB then executes. In many cases, when the end
of the TB is reached, control is not passed back to
cpu exec() but instead the TB branches to itself or
other TBs. This internal branching within the trans-
lation cache (indicated with thin dashed lines in in fig-
ure 2) is called chaining. Chaining is a simple optimi-
sation that often avoids the overhead of going back to
cpu exec(). QEMU is able to spend substantial time
running in chained TBs of blocks within the transla-
tion cache. Eventually, one of the TBs will return
control back to some epilogue code (step (5)) which
updates the SPC in the guest CPU state and and re-
stores the QEMU register state before returning to
cpu exec() (step (6)).

In the case of the required TB not being found,
a new TB will have to be generated from the guest
binary. This is done by calling TCG with the current
SPC (step (a)) and inserting it into the translation
cache (step (b)). Note that the chaining between TBs
is performed by TCG as blocks are inserted into the
translation cache. Once the new TB is in the cache,
an entry for it is inserted into the map table and its
execution can proceed.

It should be noted that, overall, this simula-
tion infrastructure is quite efficient, in earlier exper-
iments[Jeffery, 2010] we found that QEMU spent a
large majority of its time running in the translated
code cache when run in user-mode on SPECint 2006
benchmarks.

This concludes our brief overview of vanilla
QEMU. It is worth noting that our modifications,
which we describe shortly, leave this basic structure
intact. Our changes basically leverage LLVM-JIT de-
scribed next, to improve the code in the TBs.

3.2 LLVM

The LLVM compiler Infrastructure[Lattner and
Adve, 2004] is a set of open-source components which
can be used as building blocks for custom compilers.
The aim of the LLVM project is to provide modular
components, such as optimisers, and code-generators
that can be reused in different language implementa-
tions. The key to reusability is the use of a general
purpose intermediate representation, LLVM-IR, to

act as an interface between components. The LLVM
project envisages that any compiler using LLVM com-
ponents can have easy access to the frequent improve-
ments made to these components.

LLVM is well-supported and being used in many
significant projects[LLVM-Project, 2011]. In this
work, we combine a short series of optimisation
passes, described in the section below and the LLVM-
JIT code generator to produce blocks of fast x86-64
code from LLVM-IR that our own custom translator
generates from ARM instructions. Next, we describe
the process by which we exploit these components in
Augmented-QEMU.

3.3 Augmented-QEMU

Augmented QEMU performs background optimisa-
tion and replacement of blocks, using LLVM, to im-
prove the performance of QEMU. The modifications
used to produce Augmented-QEMU in the context
of vanilla-QEMU are shown in figure 3. Note, to
provide context, the components of vanilla-QEMU
from figure 2 are shown in grey. The new and mod-
ified components are drawn in black. Control flows
are represented by solid black arrows and data flows
(labelled with their type) by dashed grey arrows.
There are two threads, the original QEMU thread and
a new LLVM thread. Communication between the
threads is managed by two queues, the block trans-
lation queue, which contains pointers to guest binary
blocks awaiting further optimisation; and the block
replacement queue, which contains pointers to opti-
mised replacement TBs. A brief summary of how
Augmented QEMU works follows. Each part of the
summary is cross-referenced to the steps in figure 3.
In addition, more detailed descriptions of these parts
follow this summary.

Steps (i) and (ii), Testing Eligibility: Whenever
TCG produces a new TB from a block of guest
binary code, our modified cpu exec performs an
eligibility check. The eligibility check scans the
block of guest binary and checks that we have im-
plemented LLVM translations for every instruc-
tion in the block (step (i)). If so, a pointer to this
block is queued for translation (step (ii)). This
process is described in section 3.3.1.

Steps (iii) and (iv) , Block Translation: The
addition of a new pointer to the block transla-
tion queue wakes the LLVM thread (step (iii))
which immediately passes the block of guest bi-
nary to our own LLVM-IR code generator for
translation (step (iv)). This process is described
in section 3.3.2.

Steps (v) and (vi), Block-optimisation/Code
Generation: The new block of LLVM IR is
given to the LLVM-JIT (step (v)). The LLVM-
JIT performs a series of optimisations and then
generates a block of host code. This process is
described in section 3.3.3. A pointer to this new
code is added to the block replacement queue
(step (vi)).

Steps (vii),(viii) and (ix), Block-
Replacement: The replace-block function,
de-queues pointers to any newly generated
blocks (step (vii)) and, if the block fits in the
space allocated by the original TB, it uses a
memcopy operation (step (viii)) to overwrite the
original TB block. Finally, a jump instruction
is added from the end of the new code block to
the end of the space occupied by the original
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Figure 3: The modifications used to produce Augmented-QEMU (in black) in the context of vanilla-QEMU
(in grey).

Execution Count
seng

ldr 2594556723
add 618512755
str 595786363
sub 432138506
cmp 428270933
mov 408249153
bne 204144055
lsl 170450711

beq 96700869
bl 94330545
asr 87404495
bx 63627453
and 58944875

Table 1: Top instruction execution counts for seng
SPECint 2006 benchmark (instructions we translate
are in green)

TB (step (ix)). This process is described in
section 3.3.4

More detailed explanations of each of these steps fol-
low.

3.3.1 Testing Eligibility

Augmented-QEMU uses a slightly modified version of
cpu exec() to guide the block-optimisation and re-
placement process. Immediately before any new TB
is formed by TCG, an eligibility check is performed
on the same block of guest binary code to determine
if it can also be translated by the LLVM thread. This
check needs to be done because not all of the guest
binary instruction set is handled by our LLVM op-
timisation thread. The choice of which instructions
to handle first is guided by benchmarking. We ran
a number of the SPECint 2006 benchmarks compiled
to ARM by GCC 4.4.3 (arm-softfloat-linux-gnueabi)
to get counts of each instruction. The counts for the
sjeng chess-playing benchmark on test workload are
shown in table 1. The instructions marked in green
are among the ones currently translated by our block

translator3. Branches, marked in yellow, are excluded
because they appear only after the end of each trans-
lation block, either as part of chaining or jumps back
to the epilogue. Instructions in red are yet to be im-
plemented in the block translator. Other SPECint
2006 benchmarks had roughly similar distributions.
In our tests, data movement, arithmetic and compar-
ison operators tended to dominate guest-code so we
focused on implementing these. Note that only blocks
that we can translate entirely are considered eligible.
By this measure, currently more than half the total
number of blocks in the SPECint 2006 benchmarks
are eligible.

After a guest block is found to be eligible for trans-
lation, a pointer to that block is queued for transla-
tion by the LLVM thread. Access to the translation
queue is guarded by a lock to prevent race-conditions.
No lock is needed for accessing the guest binary code
because it is read-only in this context4.

3.3.2 Block Translation

The addition of the new block-pointer to the queue
wakes up the LLVM thread which de-queues the
pointer and gives it to the block translator. This stage
generates LLVM-IR for each ARM instruction in the
block in the guest binary referenced by the de-queued
pointer. The block translator is hand-written by us
and its creation was the most labour-intensive part
of this project. This block translator is, essentially,
a partially complete ARM binary to LLVM-IR front-
end for the QEMU virtual machine. In detail, the
block-translation:

1. Sets up a function prototype with a call to
LLVMFunctionType(), so that a pointer to the
guest CPU state (CPUARMState) structure is
passed as the first parameter making it accessible
to the code generated by LLVM.

2. Allocates a new empty LLVM IR function using
a call to LLVMAddFunction() with the prototype
created in step 1 above.

3We also implemented translations for a number of logic opera-
tors such as eor and oor not on the list above.

4Any attempt at self-modification by the guest-binary causes
QEMU to flush it’s entire translation cache and map-table.

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

15



define { [16 x i32] }* @block_test({ [16 x i32] }*) {
entry:
%tmp1 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 0
%tmp2 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 2
%tmp3 = load i32* %tmp2
store i32 %tmp3, i32* %tmp1
ret { [16 x i32] }* %0
}

Figure 4: LLVM intermediate representation of mov r2, r0

3. Transcribes the ARM instructions one at a
time with the help of an LLVM builder ob-
ject made by a call to LLVMCreateBuilder()
on the function described in step 2 above.
Using this builder LLVM IR instructions can
be added to the function by calling functions
such as: LLVMBuildAdd(), LLVMBuildStore(),
LLVMBuildIntToPtr() and several others.

4. Finally, finishes off the function with a call to
LLVMBuildRet() to build a return statement.

At the end of this process we have a pointer to the
new LLVM IR function.

To help visualise block-translation, consider a hy-
pothetical block consisting of a single ARM instruc-
tion5: mov r2, r0. Our Block Translator would
build the LLVM IR function shown in figure 4.

A short semantics of this code is as follows. %tmp1
holds a pointer into state pointing to r0, while %tmp2
holds a pointer to r2. The value at the address
in %tmp2 is then loaded into %tmp3, which is subse-
quently stored at the location pointed to by %tmp1.
At this stage our mov instruction is complete and the
function returns.

Note that each basic block is mapped by our block
translator to one LLVM-IR function. Each LLVM-IR
function created by the block translator is immedi-
ately passed to the optimisation and code generation
stages. We describe these stages next.

3.3.3 Code optimisation and generation

These stages are calls to pre-existing LLVM compiler
components. Thus, from the implementer’s point of
view, this stage is straightforward. We first add op-
timisation passes to the LLVM JIT and then call the
LLVM JIT to optimise and generate the LLVM IR
block created by the block translator described in the
previous section. In this project, we add optimisation
passes by calling the following functions:

LLVMAddConstantPropagationPass();
LLVMAddPromoteMemoryToRegisterPass();
LLVMAddDeadInstEliminationPass();
LLVMAddDeadStoreEliminationPass();
LLVMAddInstructionCombiningPass();
LLVMAddGVNPass();

The purpose of each of these passes is fairly self-
explanatory except for the LLVMAddGVNPass which
does global value numbering to help eliminate equiv-
alent values.

Once the passes are set up, then the LLVM JIT
can be called on each block to perform translation.
This translation can be triggered simply by calling
LLVMGetPointerToGlobal() which returns a pointer
to the optimised and translated host (x86-64) block.
The host block produced from the code in figure 4
is shown in figure 5. This code bears some explana-

5We actually do get a few such one-instruction blocks in our
benchmarks.

mov %r14, %rdi
mov 0x8(%rdi), %eax
mov %eax, (%rdi)
mov %rdi, %rax
ret

Figure 5: The x86-64 block produced by the LLVM
JIT for the code shown in figure 4.

tion as the first instruction is not in-fact generated
by LLVM. mov %r14, %rdi is related to the LLVM
function prototype outlined previously: The x86-64 C
ABI designates that the first struct pointer provided
as a parameter to a function should be passed in regis-
ter %rdi, however QEMU pins the CPU state pointer
in %r14. As LLVM doesnt support pinned registers6

the mov instruction is introduced as a work-around
to move the CPU state pointer to %rdi where it can
be accessed by the LLVM-generated code. The next
two lines implement the actual move and the last two
lines return the pointer to the register state. These
last two lines are not required when the the code is
copied back to the TB during block replacement so
they are dropped during this process.

Once the x86 block has been generated as above, it
is added to the block-replacement queue. We describe
how block replacement works next.

3.3.4 Block Replacement

The task of block replacement is to copy the host
code blocks made by the LLVM JIT back into the
correct TBs in the translation cache. Block replace-
ment has to be carefully timed so as not to overwrite
the contents of a block while it is running. In our
implementation we took the simple choice of only al-
lowing block replacement just before TCG is called
to translate another new block. This choice guaran-
tees safety – QEMU is guaranteed not to be running
in the code cache when it is about to invoke TCG.
Moreover, as we shall see in section 4.2 it allows for
tolerably fast block replacement.

Block replacement is done by a simple memcopy
back to the address of the original TB. The block
replacing the original TB is usually shorter than the
original TB. When it is shorter, we add code at the
end of our new block to jump to the chaining section
of the original TB (step (ix) of figure 3). In rarer
cases where the optimised block is too big to fit back
into the original TB we simply discard the new block
on the assumption that, being so large, it is unlikely
to be efficient in any case.

There is one more important detail to add. We
had to make a special arrangement for dealing with
the ARM compare instruction: cmp. This instruction
is not easily implemented efficiently in TCG interme-
diate code so, instead, QEMU uses a pre-compiled

6which would have allowed us to use %r14 directly
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bench total queued gen repl discard

hmmer 5231 2417 2413 2297 116
gcc 69411 40912 40886 37461 3425

sjeng 4717 2529 2525 2460 65

Table 2: Comparison of blocks queued, generated,
replaced and discarded compared to the total number
of blocks in three SPECint 2006 benchmarks.

helper function to implement cmps semantics. How-
ever, when using the LLVM-JIT, by far the easiest
option is to inline the x86 code for cmp. This adds, in
the worst case, 48 bytes of extra space to our compiled
block. To account for this we added a small amount
of logic to the QEMU code that allocates space for
each new block in its code cache. This logic allocates
48 bytes of additional space in each new TB to allow
for a bigger inlined version of the TB to be copied
back in.

This concludes our description of the modifications
made to implement augmented QEMU. Next we as-
sess the impact of these modifications on QEMU per-
formance.

4 Results

This section presents our experimental results. All ex-
periments were carried out on an Intel Core 2 Quad
Processor Q8200, running at 2.3GHz, with 4GB of
memory. This is an x86- 64 architecture providing,
more general purpose registers than IA- 32 architec-
tures.

We summarise our results in terms of code-
coverage (next), measured code size (sec-
tion 4.3),timeliness of block-replacement 4.2,
informal measures of code quality (section 4.4), and,
importantly, code speed (section 4.5). We discuss
each of these in turn.

4.1 Code Coverage

Code coverage is the number of blocks we are able
to replace in our benchmarks. In Augmented QEMU
this is, primarily, a function of choice and number of
instructions supported by our block translator. We
found our code coverage to be quite consistent across
benchmarks. Table 2 presents statistics collected
for three SPECint 2006 benchmarks running on test
data. As can be seen in all three applications slightly
more than half the total number of basic blocks were
found to be eligible for block-translation and queued.
Of these, most had time to be generated and most of
these were small enough to replace the original block.
A very small percentage were discarded because they
were too large - perhaps indicating reasonably effec-
tive optimisation. In summary, Augmented QEMU,
is able to achieve moderately good code coverage with
a small number of implemented instructions. A very
high percentage of eligible blocks go on to be replaced.

4.2 Timeliness of Replacement

As we can see from above, a reasonable number of
blocks are being replaced on the benchmarks. How-
ever, these blocks will not do much good if they are
not being replaced in a timely manner.

To assess the speed of block replacement we plot-
ted a count of blocks queued and blocks replaced over
time during the running of the sjeng benchmark. Fig-
ure 6 shows the blocks queued (blue dots) and the
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Figure 6: Cumulative block totals for queueing (blue
dots) and replacement (red dots) over length of sjeng
benchmark on test workload
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Figure 7: Zoom in on first part of figure 6.

blocks replaced (red dots) over the entire length of
the sjeng benchmark on the test workload. As can be
seen in this benchmark, queueing and replacement of
blocks track each other closely. Moreover the great
majority of blocks are replaced quickly. This fast re-
placement helps maximise their chance of being run.
Note that a small gap grows between blocks queued
and blocks generated as the run proceeds. This gap
is due to the small number of blocks being discarded
for being too large. Our manual tracking of blocks
queued and replaced on other benchmarks revealed a
similar pattern to above.

The sheer number of blocks replaced in the graph
above makes it difficult to discern the pattern of in-
dividual replacements. In order to see some of these
figure 7 zooms in on the first part of of figure 6. As
can be seen, even at this scale, the rate of queue-
ing and replacement is relatively steady. However the
small gaps visible in the graph indicate either:

1. A temporary lack of need to replace blocks due
to the replacement queue being empty; or

2. A temporary lack of opportunity to replace blocks
due to cpu exec() finding all the blocks it
needs in the map table, thus not triggering
TCG/replacement; or

Proceedings of the Thirty-Fifth Australasian Computer Science Conference (ACSC 2012), Melbourne, Australia

17



Benchmark raw size opt size reduction

hmmer 79.7 44.8 41%
gcc 85.44 46.6 42%

sjeng 104.9 56.1 44%

Table 3: Percentage of optimised blocks that are
smaller and larger and the percentage of code saved
on replaced blocks for three benchmarks

0x400818b4: add ip, pc, #0
0x400818b8: add ip, ip, #147456
0x400818bc: ldr pc, [ip, #1796]!

Figure 8: An example ARM code block

3. A temporary lack of opportunity to replace blocks
because QEMU is running inside a chain in the
translation cache and is not passing control to
cpu exec().

The first scenario above is benign. The second and
third are not. The second scenario can occur because
we only trigger replacement when TCG is triggered.
To test the impact of the second scenario we changed
the replacement strategy so replacement could also
occur at regular intervals when TCG is not triggered.
We found that, across a range of benchmarks, this al-
ternative strategy of periodic checking had almost no
impact on the timing of replacements and a negative
impact on runtimes (due to the maintenance of an in-
terval counter in cpu exec()). We tested for the third
scenario and found that, while on most benchmarks
QEMU spends only short intervals running chained
blocks in the translation cache there were some bench-
marks which spent long times. The mcf benchmark
in particular spent a substantial proportion of its ex-
ecution time running within a single chain. Such be-
haviour, while good for performance, has the poten-
tial to impact negatively on the current replacement
strategy of augmented QEMU.

4.3 Code Size

Augmented QEMU produces significant reductions in
the amount of code in the blocks it replaces. Table 3
shows results for three SPECint 2006 benchmarks,
gcc, hmmer and sjeng on test workloads (adjusted for
the inlined cmp instructions mentioned previously).
The results show that almost all blocks that are opti-
mised result in smaller code with substantial savings
in space overall. In general we assume that this reduc-
tion in code size correlates with more efficient code.
We look more closely at this issue next.

4.4 Code Quality

In this context we define code quality by efficiency and
lack of redundancy. To ascertain the relative quality
of the code being produced by the LLVM-JIT we per-
formed a side-by-side inspection of a number of opti-
mised and unoptimised cache blocks. Some of these
revealed very substantial improvements. For example
the ARM code block shown in figure 8 is translated by
TCG into the reasonably compact x86 code shown in
figure 9. However, the code produced by the LLVM-
JIT is much better still, just two instructions:

mov %r14, %rdi
mov 0x400a58bc, 0x30(%rdi)

xor %r12d,%r12d
mov $0x400818bc,%r15d
add %r12d,%r15d
mov %r15d,0x30(%r14)
mov $0x24000,%r12d
mov 0x30(%r14),%r15d
add %r12d,%r15d
mov %r15d,0x30(%r14)

Figure 9: TCG translation of code from figure 8

the first of which is just moving the pointer to the
CPU state struct. The savings come from eliminating
a redundant move of the pc to ip and realising that,
in this case pc can be recognised as a constant and
folded in. These are just standard optimisations but
TCG, which has to stamp its code out very quickly,
doesnt have time to perform optimisations stretching
over more than one ARM instruction.

The LLVM-JIT was also successful in removing a
lot of redundant loads and stores which saved values
out to the CPU state struct only to read them in
again.

4.5 Code Speed

To test the raw speed of Augmented QEMU we ran
11 SPECint 2006 benchmarks on ARM code pro-
duced by GCC 4.4.3 (arm-softfloat-linux-gnueabi).
All benchmarks were run on test workloads with the
exception of specrand, which was run against its refer-
ence workload and gobmk which was run against its
13x13.txt reference workload in order to get longer
runtimes.

Depending on length, each benchmark was run be-
tween 5 and 30 times and averaged. An exception
was the gobmk benchmark which, due to its very
long run-time on a reference workload was run twice.
Absolute runtimes varied between three seconds for
libquantum and 40 minutes for gobmk. In our exper-
iments we measured real runtimes, with all QEMU
logging turned off. The machine was dedicated to
these experiments and so was lightly loaded at the
time giving very consistent results - usually to within
half-a-percent variation.

Figure 10 shows the relative speeds of:

raw-qemu: The time for vanilla-QEMU always nor-
malised to one.

no-replace: The time for augmented-QEMU but
without replacing any blocks – this gives an in-
dication of overhead.

replace: The time for augmented-QEMU – blocks
are replaced.

net: The net cost of augmented-QEMU assuming
that there are no overheads.

Note, in order to make-visible the impact of over-
heads, the y-scale in figure 10 starts at 0.75. Speedup
between vanilla-QEMU and augmented-QEMU var-
ied from negative one percent on gcc, omnetpp,
and specrand to 12 percent on the mcf benchmark.
Speedup seemed not to correlate strongly with the
size of the benchmark in terms of run time or in terms
of the number of blocks it contained. It can be conjec-
tured that the benchmarks that exhibited some regu-
larity in their computation over time gained most but
this will require further investigation to confirm.

The overhead of running augmented-QEMU can
be estimated as the difference between raw-qemu and
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Figure 10: Relative run-times of various forms of QEMU on SPECint 2006 benchmarks. (note: scale starts at
0.75).

no-replace in figure 10. In our experiments with the
sjeng benchmarks almost all of this overhead is the
cost of detecting which blocks are eligible for transla-
tion. Running the translation and the LLVM-JIT in
a separate thread had no discernible impact on times
and locks on the ring-buffers suffered almost no con-
tention.

If the costs of the overhead are subtracted from the
augmented-QEMU run-times then we have a rough
estimate of the impact of code improvement sans over-
heads. The last net column for each benchmark in
figure 10 represents this measure. In all cases the im-
pact of the code replacement was either positive or
neutral7.

Note that any of the improvements shown above
can only come from TBs that are run after replace-
ment. If a replaced TB is run only for a short time
or not run at all after replacement it can have very
limited impact. We briefly investigated this issue by
modifying the test workload input to the sjeng bench-
mark so it was forced to repeat the computation in-
volved in the test workload three times. This gives
more time for the replaced blocks to have an impact
in reducing runtime. We found that there was very
little reduction in runtime from running with the re-
placed blocks for longer. This seems to indicate, that
on this benchmark, that the replacement-blocks that
reduce runtime appear in the translation-cache early.

5 Conclusions, Limitations and Future work

In this article we have described Augmented-QEMU,
a set of small modifications to QEMU that lever-
age the LLVM-JIT, running on a separate processor
core, to improve simulation performance. This work
demonstrates that it is feasible to improve the speed
of an already-fast ISS by conservative, incremental,
and minimally intrusive changes using an established
compiler framework. While work to date is promising,
it is a work in progress, and there there are a number
of limitations to the current framework that we plan
to address in our future work. These limitations are:

Code Coverage Currently, not all ARM instruc-
tions have translations to LLVM-IR. We will con-
tinue to implement these incrementally to im-
prove coverage and performance.

Single Background Core Currently we only use
one core for optimisation. This limitation is

7Though the libquantum benchmark actually displayed a very
slighly shorter runtime in the no-replace case. This is likely to be
due to sampling noise between runs since libquantum has a very
short run-time.

partly due to LLVM versions 2.6 and, to a
lesser extent, 2.7 not being perfectly amenable
to multi-threaded execution. This limitation ap-
pears to be addressed in version 2.9 and we
plan to expand background optimisation to more
cores using this version.

ARM-only Guest The current implementation is
specialised to translate only ARM guest code.
We made this choice primarily because of the ex-
pressiveness and relative ease of translation in
the LLVM framework of the ARM instruction
set relative to TCG intermediate code. However,
full-portability, could be achieved if we do trans-
late from TCG intermediate code to LLVM IR
and this is a worthy future goal.

Timing of Replacement The limiting of block re-
placement to when TCG is running is safe and is
low-overhead but can potentially lead to blocks
not being replaced until after they are needed. A
better future strategy is to build our own transla-
tion cache, complete with chaining, and perform
thread-safe fix-ups to do indirect jumps to the
translation cache.

Exception Emulation QEMU keeps track of ev-
ery register in the processor state except the SPC
while it runs the the TB. When an exception or
interrupt is triggered vanilla-QEMU rebuilds the
real value of the SPC by abstractly re-executing
from the start of the current TB, keeping track
of what would happen to the SPC on the way.
When the host PC reaches the point at which
the exception was triggered the SPC is recorded
in the processor state and the exception can then
be handled. Our block replacement strategy pre-
vents this abstract-re-execution to get the SPC
value. While this is not an issue for SPECint
benchmarks in user-mode QEMU it will need to
be addressed in future. One good way to address
this is to build our own translation cache, this
would leave QEMU’s Translation Cache intact
allowing QEMU’s current mechanism to work.

Note that the last two of these limitations can be ad-
dressed by building a separate translation-cache for
our LLVM-JIT generated code. A new code cache
would also open up opportunities to improve chain-
ing form and perform new inter-block optimisations.
Finally, using a separate code cache would give us op-
portunity to build super-blocks with the potential to
be efficiently saved either in binary form or as LLVM-
IR to speed up future runs as is done in SIMIT-
ARM. We believe that an incrementally constructed
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combination of background optimisation, building of
large chains, and code persistence has the potential to
greatly increase the execution speed of ISSs in future.
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