
Probe Distance-Hereditary Graphs

Maw-Shang Chang1 Ling-Ju Hung1 Peter Rossmanith2

1 Department of Computer Science and Information Engineering
National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan

Email: {mschang,hunglc}@cs.ccu.edu.tw
2 Department of Computer Science

RWTH Aachen University, Aachen 52056, Germany
Email: rossmani@informatik.rwth-aachen.de

Abstract

A graph G = (V,E) is called a probe graph of
graph class G if V can be partitioned into two sets
P (probes) and N (nonprobes), where N is an inde-
pendent set, such that G can be embedded into a
graph of G by adding edges between certain non-
probes. A graph is distance hereditary if the dis-
tance between any two vertices remains the same
in every connected induced subgraph. Distance-
hereditary graphs have been studied by many re-
searchers. In this paper we give an O(nm)-time al-
gorithm for recognizing probe graphs of distance-
hereditary graphs.

1 Introduction

A probe graph P is a two-tuple (G,L) where G is a
graph and L is a function from VG to the set {P, N, U}
of labels. We use PG and PL for the first and second
tuple of P , respectively, and use PV and PE for the
sets of vertices and edges of PG, respectively. We also
use PP, PN, and PU for the sets of vertices v ∈ PV with
PL(v) = P, PL(v) = N, and PL(v) = U, respectively.
A probe graph P is fully (resp. partially) partitioned if
PU = ∅ (resp. PU 6= ∅). A probe graph P is unpar-
titioned if PP = PN = ∅. We call probe graph P ′ a
subgraph of a probe graph P if P ′

G is a subgraph of
PG and P ′

L(v) = PL(v) for v ∈ P ′
V . Let X be a subset

of PV . A subgraph of P induced by X is the subgraph
P ′ of P with P ′

G = PG[X], i.e., P ′
G is the subgraph of

PG induced by X . For v ∈ PV , use P−v to denote the
probe subgraph of P induced by PV −v. We also use
P − X for the subgraph of probe graph P induced
by PV − X for a subset X of PV . We call a vertex
v ∈ PV a probe, a nonprobe, and a prime if PL(v) = P,
PL(v) = N, and PL(v) = U, respectively.

A probe graph P is feasible if PN is an indepen-
dent set of PG. We say a probe graph P ∗ is an em-
bedding of probe graph P if P ∗

V = PV , PE ⊆ P ∗
E ,

PN ⊆ P ∗
N , PP ⊆ P ∗

P , P ∗ is fully partitioned, i.e.,

This research was supported by NSC-DAAD Sandwich Program
under grant no. 96-2911-I-194-007-2 and partially supported by
National Science Council of Taiwan under grant no. NSC 95-2221-
E-194-038-MY3.

Copyright c©2010, Australian Computer Society, Inc. This paper
appeared at the 16th Computing: the Australasian Theory Sym-
posium (CATS), Brisbane, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 109, A. Potanin
and A. Viglas, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

P ∗
U = ∅, P ∗

N is an independent set of PG, and for
(u, v) ∈ P ∗

E − PE we have P ∗
L(u) = P ∗

L(v) = N. Let G
be a class of graphs. We call probe graph P a probe G
graph if there exists an embedding P ∗ of P such that
P ∗

G ∈ G. If probe graph P is not feasible, then it does
not have any embedding by definition and hence it
is not a probe G graph for any graph class G. The
recognition of fully partitioned (resp. unpartitioned)
probe G graphs is to determine whether a fully parti-
tioned (resp. unpartitioned) probe graph has an em-
bedding in G.

Zhang et al. (1994) introduced the recognition of
fully partitioned probe interval graphs for solving
the problem called physical mapping with connection
of the human genome project. Later, the recogni-
tion of probe graphs of different graph classes ap-
peals to many researchers (Golumbic & Lipshteyn
2004, Chang et al. 2005, Chandler et al. 2006, Berry
et al. 2007, Chandler et al. 2007, Le & de Ridder 2007,
Chandler et al. 2008, McConnell & Nussbaum 2009).

The recognition of fully partitioned probe G
graphs is a special case of the graph sandwich prob-
lem (Golumbic et al. 1995). Given G1 = (V,E1) and
G2 = (V,E2) where E1 ⊆ E2, the graph sandwich
problem asks whether there exists a graph G = (V,E),
E1 ⊆ E ⊆ E2, where G is in a specific graph
class G. For example, the interval sandwich problem
asks ”Is there an interval graph G = (V,E) where
E1 ⊆ E ⊆ E2?”. The partitioned probe graph recog-
nition problem is equivalent to the graph sandwich
problem in which G1 = G and E2 = E1 + {(u, v) |
PL(u) = PL(v) = N}.

Probe distance-hereditary graphs were intro-
duced by Chandler et al. (2006). They gave an O(n2)-
time algorithm to recognize fully partitioned probe
distance-hereditary graphs. Instead of studying the
recognition of fully partitioned (or unpartitioned)
probe distance-hereditary graphs directly, we study
the recognition of partially partitioned probe distance-
hereditary graphs. The recognition of partially parti-
tioned probe distance-hereditary graphs is equiva-
lent to the recognition of fully partitioned distance-
hereditary graphs if PU = ∅ and is equivalent
to the recognition of unpartitioned probe distance-
hereditary graphs if PP = PN = ∅. In this paper, we
give an O(nm)-time algorithm to recognize partially
partitioned probe distance-hereditary graphs.

2 Preliminaries

For a vertex v of G, the open neighborhood of v, de-
noted by NG(v), consists of all vertices adjacent to v

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

55

Table 1: Some results and open problems on probe
graphs.

Graph class Fully partitioned
probe chordal O(|P|m) (Golumbic & Lipshteyn

2004, Berry et al. 2007)
probe strongly chordal Poly. (Chandler et al. 2007)
probe chordal bipartite Poly. (Chandler et al. 2007)
probe interval O(n + m) (McConnell & Nussbaum

2009)
Probe DHG O(n2) (Chandler et al. 2006)
probe cographs O(n + m) (Le & de Ridder 2007)
Probe bipartite DHG O(n2) (Chandler et al. 2006)
probe ptolemaic O(nm) (Chang & Hung 2009)
probe comparability O(nm) (Chandler et al. 2008)
probe co-comparability O(n3) (Chandler et al. 2008)
probe permutation O(n2) (Chang et al. 2009)
Graph class Unpartitioned
probe chordal O(m2) (Berry et al. 2007)
probe strongly chordal Open
probe chordal bipartite Open
probe interval Poly. (Chang et al. 2005)
Probe DHG O(nm) [this paper]
probe cographs O(n + m) (Le & de Ridder 2007)
Probe bipartite DHG O(nm) (Chang et al. 2009)
probe ptolemaic O(n3) (Chang & Hung 2009)
probe comparability Open
probe co-comparability Open
probe permutation Open

in G. We use NG[v] for NG(v) + v, called the closed
neighborhood of v. For a subset X of V , we use
NG(X) = ∪x∈XNG(x) − X to denote the neighbor-
hood of X in G. A subset X of V is called a module in
G if for every x ∈ X NG(x) − X = NG(X). Two ver-
tices u 6= v are false twins in G if NG(u) = NG(v) and
are true twins if NG[u] = NG[v]. We say they are twins
if NG(u) − v = NG(v) − u. A vertex v in G is called
a pendant vertex if the degree of v is one. A vertex v
in G is called a universal vertex if the degree of v is
|V | − 1. A vertex v in G is simplicial if NG(v) induces
a complete subgraph of G. In a graph G = (V,E),
two disjoint subsets S and T of V are fully adjacent if
every vertex of S is adjacent to all vertices in T . Two
sets A and B are incomparable if A∩B 6= ∅, A−B 6= ∅,
and B − A 6= ∅. For two vertices u, v ∈ V , we use
dG(u, v) to denote the distance of u and v in a graph
G = (V,E).

We say a graph G is a distance-hereditary graph
(DHG for short) if the distance between any two ver-
tices remains the same in every connected induced
subgraph of G. It is a classical result that distance-
hereditary graphs can be captured by forbidden in-
duced subgraphs (Bandelt & Mulder 1986). For the
house, hole, domino, and gem, we refer to Fig. 1.
A hole is a k-cycle where k ≥ 5.

Theorem 1. (Bandelt & Mulder 1986) Let G be a graph.
The following conditions are equivalent:

1. G is distance hereditary.

2. G contains no house, hole, domino, or gem as an in-
duced subgraph.

3. Every connected induced subgraph of G with at least
two vertices has a pendant vertex or a twin.

4. For every pair of vertices x and y with d(x, y) = 2,
there is no induced x, y-path of length greater than
two.

Cographs are a subclass of distance-hereditary
graphs. The following property of cographs is used
in the paper.

Theorem 2. (Brandstädt et al. 1999) The following con-
ditions are equivalent:

1. G is a cograph;

2. Every induced subgraph of G with at least two ver-
tices has at least one pair of twins;

3. G is P4-free.

Figure 1: A house, a hole, a domino, and a gem.

In (D’Atri & Moscarini 1988) the notion of a hang-
ing of G by a vertex v was introduced.

Definition 1. (D’Atri & Moscarini 1988) The hanging
Φ of G = (V,E) by v is an (`+1)-tuple (L0, L1, . . . , L`)
where ` = maxu∈V dG(u, v), L0 = {v}, and Li = {u ∈
V | dG(u, v) = i} for 1 ≤ i ≤ `.

Definition 2. Let Φ = (L0, L1, . . . , L`) be a hanging
of G. For x ∈ Li, 0 < i ≤ `, use N−

Φ (x) for NG(x) ∩
Li−1. Denote the subgraph of G induced by ∪i≤j≤`Lj

by Gi for 0 ≤ i ≤ `. By definition, G = G0. Let x
and y be vertices in Li with 1 ≤ i ≤ `. We say that
(i) x properly contains y, denoted by x À y, if N−

Φ (x)
properly contains N−

Φ (y); (ii) x and y are equivalent,
denoted by x ≡ y, if N−

Φ (x) = N−
Φ (y); and (iii) x is

minimal (resp. maximal) if there does not exist any other
vertex z ∈ Li such that x À z (resp. z À x).

Remark 1. Let C be a component of Gi where 0 < i ≤ `.
By definition of hanging, NG(C) ⊆ Li−1.

Theorem 3. (D’Atri & Moscarini 1988) A connected
graph G is distance hereditary if and only if for every
hanging Φ = (L0, L1, . . . , L`) of G and every pair of ver-
tices x, y ∈ Li (1 ≤ i ≤ `) that are in the same compo-
nent of Gi, we have N−

Φ (x) = N−
Φ (y). In other words,

for a component C of Gi, NG(C) and C ∩ Li are fully
adjacent.

Theorem 4. (Hammer & Maffray 1990) Suppose Φ =
(L0, L1, . . . , L`) is a hanging of a connected distance-
hereditary graph G. For any two vertices x, y ∈ Li

with 1 ≤ i ≤ `, N−
Φ (x) and N−

Φ (y) are disjoint or
N−

Φ (x) ⊆ N−
Φ (y) or N−

Φ (y) ⊆ N−
Φ (x).

The following corollary can be seen from the
above two theorems.

Corollary 1. Suppose Φ = (L0, L1, . . . , L`) is a hang-
ing of a connected distance-hereditary graph G. For any
two components C1 and C2 of Gi with 1 ≤ i ≤ `,
NG(C1) and NG(C2) are disjoint or NG(C1) ⊆ NG(C2)
or NG(C2) ⊆ NG(C1).

Theorem 5. (Hammer & Maffray 1990) Suppose Φ =
(L0, L1, . . . , L`) is a hanging of a connected distance-
hereditary graph G. For each 1 ≤ i ≤ `, there exists
a minimal vertex v. In addition, if v is minimal then
NG(x) − N−

Φ (v) = NG(y) − N−
Φ (v) for every pair of

vertices x and y in N−
Φ (v).

By Theorem 3 and Theorem 5, we get the follow-
ing corollary.

CRPIT Volume 109 - Theory of Computing 2010

56

Corollary 2. Suppose Φ = (L0, L1, . . . , L`) is a hang-
ing of a connected distance-hereditary graph G. For each
1 ≤ i ≤ `, Gi has a minimal component C, i.e., NG(C)
does not properly contain NG(C ′) for any component C ′

of Gi. In addition, if C is a minimal component of Gi then
NG(C) is a module of G.

Corollary 3. Suppose G is a biconnected distance-
hereditary graph and Φ = (L0, L1, . . . , L`) is a hanging
of G. Let C be a component of Gi where 1 < i ≤ `. Then
NG(C) contains a pair of twins.

Proof. For every component C of Gi, there exists a
minimal component C∗ such that NG(C∗) ⊆ NG(C).
For every component C of Gi, NG(C) induces a co-
graph. Otherwise by Theorem 2 there exists a P4 in
G[NG(C)]. The P4 with any x ∈ C induces a gem, a
contradiction. Because G is biconnected, |NG(C∗)| >
1. By Corollary 2, NG(C∗) is a module of G. Since
NG(C∗) induces a cograph in G, there exists two ver-
tices NG(C∗) that are twins in the subgraph induced
by NG(C∗). They are twins in G. ¤

In the rest of this section, we give some observa-
tions on a probe distance-hereditary graph and its
distance-hereditary embedding.

Proposition 1. Suppose P is a probe distance-hereditary
graph and P ∗ is a distance-hereditary embedding of P .
Then the following statements are true:

1. Any two probes in P ∗ that are false twins in P ∗ are
false twins in P .

2. Any two probes in P ∗ that are true twins in P ∗ are
true twins in P .

3. Any two nonprobes in P ∗ that are false twins in P ∗

are false twins in P .

4. Any two nonprobes in P ∗ that are true twins in P ∗

are false twins in P .

Lemma 1. If P is a probe distance-hereditary graph, then
the universal vertex of any induced gem of PG is a probe
in any distance-hereditary embedding of P .

Proof. Suppose the universal vertex of any induced
gem is a nonprobe. Then all the other vertices in the
gem are probes. Hence the same five vertices will
induce a gem in any embedding of P , a contradic-
tion. ¤
The next lemma shows that also any induced house
can be assigned a designated vertex.

Lemma 2. If P is a probe distance-hereditary graph, then
the simplicial vertex of any induced house of PG is a non-
probe in any distance-hereditary embedding of P .

Proof. An induced house in PG can have only two
nonprobes in any distance-hereditary embedding
of P . If they are two vertices of the square, then
adding an edge creates a gem, which is a contradic-
tion. ¤
Theorem 6. If P is a probe distance-hereditary graph and
the subgraph of PG induced by a set D of six vertices is a
domino, then in any distance-hereditary embedding of P ,
D has exactly two nonprobes which are at distance three
in the subgraph of PG induced by D.

Proof. Any maximal independent set in a domino
has either two or three vertices. Assume there
are three nonprobes in a distance-hereditary embed-
ding of P . Then the three nonprobes have pair-
wise distance two in PG. If only one edge is added,
this creates a house. If two or three edges are
added in the embedding it creates a house or a gem.
Hence a domino has two nonprobes in any distance-
hereditary embedding of P . If they are at distance
two, a house is created in the embedding. Hence
there are exactly two nonprobes in any distance-
hereditary embedding of P and they are at distance
three in PG. ¤
Corollary 4. If P is probe distance-hereditary and the
subgraph of G induced by a set D of six vertices is a
domino, then the two vertices that have degree three in
the subgraph of PG induced by D are probes.

Definition 3. Two disjoint vertex sets X and Y are called
probe adjacent if X can be partitioned into two non-
empty sets X1 and X2 and Y can be partitioned into
two non-empty sets Y1 and Y2 such that every vertex in
X1 (resp. Y1) is adjacent to all vertices of Y (resp. X)
and every vertex in X2 (resp. Y2) is adjacent to all ver-
tices of Y1 (resp. X1) but not adjacent to any vertex of
Y2 (resp. X2).

Lemma 3. Let P be a probe graph and P ∗ be a distance-
hereditary embedding of P . Suppose X and Y are two
disjoint vertex sets of PG of size greater than one and X
and Y are fully adjacent in P ∗

G. If both X and Y have
vertices with labels both P and N in P ∗, then X and Y are
probe adjacent in G. Besides, a vertex x ∈ X (resp. Y) is
a probe in P ∗ if and only if x is adjacent to all vertices in
Y (resp. X).

Proof. By definition. ¤

Theorem 7. Suppose P is a probe graph and u is a uni-
versal vertex of PG. Then P is a probe distance-hereditary
graph if and only if one of the following conditions is sat-
isfied:

(i) PL(u) = P and P − u is a probe cograph.

(ii) PL(u) = N and P − u is a cograph.

(iii) PL(u) = U and P − u is a probe cograph.

Proof. If P has a distance-hereditary embedding P ∗,
then P ∗−u is a cograph, i.e., P−u is a probe cograph.
Otherwise there exists an induced P4 in P ∗ − u and
the P4 with u induces a gem in P ∗, a contradiction. If
u is a nonprobe, then all vertices in P − u are probes.
Hence P − u must be a cograph.

Suppose P − u is a probe cograph. Let P ′ be a co-
graph embedding of P−u. We create a new graph P ∗

from P ′ by letting u be adjacent to all vertices of P ′.
It cannot introduce any induced P4 in P ∗ including u
since u is a universal vertex. Hence P ∗ is a cograph
embedding of P and a distance-hereditary embed-
ding of P . Suppose P − u is a cograph. There is no
induced P4 including u since u is a universal vertex.
Thus P is a cograph and also a distance-hereditary
graph if u is a universal vertex and P − u is a co-
graph. ¤

Corollary 5. Suppose P is a probe graph and u is a uni-
versal vertex of PG. Then P is a probe distance-hereditary
graph if and only if P is a probe cograph.

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

57

3 The algorithm

In this section, we give an O(nm)-time algorithm
to recognize probe distance-hereditary graphs. This
algorithm is a recursive one. We denote the in-
put probe graph by P . The algorithm first checks
whether P is feasible. If P is not feasible, then it is
not a probe distance-hereditary graph. Set PL(u) = P
for all vertices of u ∈ PU that are adjacent to v ∈ PV

with PL(v) = N. This can be done in linear time.
In the following assume P is feasible, i.e., all neigh-
bors of a nonprobe must be probes. The algorithm
checks to which of the following classes the input
probe graph P does belong and takes action accord-
ingly:

P 1. PG has twins. If it has one, reduce the size of
P according to Lemma 4 and 5 and solve the
problem recursively. The two lemmas and the
reduction steps will be described in Section 3.1.

P 2. |PV | ≤ c for some constant c. Solve the problem
by brute force in O(1) time.

P 3. P is fully partitioned. Use the O(n2)-time algo-
rithm in (Chandler et al. 2006).

P 4. PG is biconnected and without twins. Call Al-
gorithm B, to be given in Section 3.2, to solve
the problem.

P 5. PG is not biconnected and without twins. Call
Algorithm R, to be given in Section 3.3 to solve
the problem recursively.

It is easy to see the correctness of the algorithm if
the algorithm for each class of input is correct. We
analyze the time complexity of the algorithm in Sec-
tion 3.4.

3.1 Twins

In this subsection we first prove two lemmas and
show how to use them to solve the problem recur-
sively.

Lemma 4. Suppose P is a probe graph and u and v are
true twins in PG satisfying one of the following condi-
tions.

1. PL(u) = PL(v) = P or U.

2. PL(u) = P, PL(v) = N or U.

Let P ′ = P − v if PL(u) = P. If PL(u) = PL(v) = U,
let P ′ be the probe graph obtained from P −v by changing
the label of u from U to P, i.e., P ′

G = PG − v, P ′
L(u) = P,

and P ′
L(x) = PL(x) for x ∈ PV − u − v. Then P is a

probe distance-hereditary graph if and only if P ′ is a probe
distance-hereditary graph.

Proof. If P has an embedding P ∗, then P ∗ − v is an
embedding of P − v. Thus P ∗ − v is an embedding
of P ′. Next we show that P has a distance-hereditary
embedding if P − v has one. Assume that P ′′ is a
distance-hereditary embedding of P ′.
Suppose that PL(u) = P. We obtain P ∗ from P ′′ by
attaching v as a true twin of u and relabel v as a probe
in P ∗ if PL(v) = U. Since u is a probe, we have
NP ′(u) = NP ′′(u) and hence NP∗(v) = NP (v). By
Theorem 1, P ∗ is a distance-hereditary embedding
of P .

Suppose that PL(u) = PL(v) = U. Since u and v are
adjacent in P , one of u and v is not a nonprobe in any
embedding of P . Without loss of generality assume
that u is a probe. Since P ′

L(u) = P, NP ′(u) = NP ′′(u).
We obtain P ∗ from P ′′ by attaching v as a true twin
of u and relabel v as a probe in P ∗. By Theorem 1, P ∗

is a distance-hereditary embedding. ¤

Lemma 5. Suppose P is a probe graph and u and v are
false twins in PG satisfying one of the following condi-
tions.

1. PL(u) = PL(v) = P, N, or U.

2. PL(u) = P, PL(v) = N or U.

3. PL(u) = N, PL(v) = U.

Then P is a probe distance-hereditary graph if and only if
P − v is a probe distance-hereditary graph.

Proof. If P has a distance-hereditary embedding P ∗,
then P ∗−v is an embedding of P −v. Next we show
that P has a distance-hereditary embedding if P − v
has one. Suppose P − v has an embedding P ′. We
then obtain P ∗ from P ′ by attaching v as a false twin
of u. Let P ∗

L(v) = P ′
L(u) if PL(v) = U. If P ∗

L(u) =
P, we see NP (u) = NP∗(u) and NP (v) = NP∗(v).
Suppose P ∗

L(u) = N and PL(v) = N or U. Assume
NP∗(u) = NP (u)+X , all vertices in X are nonprobes.
We obtain P ∗ from P ′ by attaching v as a false twin
of u and letting P ∗

L(v) = N if PL(v) = U. Hence
NP∗(v) = NP∗(u) = NP (u) + X . By Theorem 1, we
see P ∗ is a distance-hereditary embedding of P . ¤

The proofs of the above two lemmas explicitly
point out how to reduce the size of input probe
graph P and imply the problem can be solved recur-
sively. In (Lanlignel & Thierry 2000), an O(n2)-time
algorithm was developed for removing all twins in a
given graph. The following lemma summarizes the
result of this subsection.

Lemma 6. Given a graph, removing vertices that have a
twin until it is not possible can be done in O(n2) time.

3.2 Kernel probe graphs and Algorithm B

In the subsection we deal with the case that input
graph P is of class P 4. This is the most crucial
part of the algorithm. We will show that whether
such a probe graph P is a probe distance-hereditary
graph can be recognized in O(n2) time. There are
two stages in Algorithm B. At the first stage of Algo-
rithm B, we check whether P is a probe cograph. A
probe cograph can be recognized in linear time (Le
& de Ridder 2007). If P is not a probe cograph,
we do the second stage of Algorithm B. First arbi-
trarily pick an edge (x, y) of PE . In any distance-
hereditary embedding of P , either x is a probe or y
is a probe. Hence we reduce the problem to the case
that there is a vertex p ∈ PV with PL(p) = P. We call
a probe graph P satisfying the following four condi-
tions a kernel probe graph: (i) PG is biconnected, (ii)
PG has no twins, (iii) there is a vertex p ∈ PV with
PL(p) = P, and (iv) P is not a probe cograph. Given
a kernel probe graph P and a probe p, our goal is to
determine whether P is a probe distance-hereditary
graph. We say that a kernel probe graph P is well-
labeled if there is a vertex p such that PL(p) = P and

CRPIT Volume 109 - Theory of Computing 2010

58

PL(x) 6= U for every vertex x in the open neighbor-
hood of p in PG. Let Φ = (L0, L1, . . . , L`) be the
hanging of PG by p. Since P is not a probe cograph,
by Corollary 5 there is no universal vertex in PG,
` > 1. For clarity of the notation, use G for PG. The
second stage of Algorithm B checks to which class of
probe graphs the input kernel probe graph P does
belong and takes action accordingly:

C 1. P is well-labeled.

C 2. P is not well-labeled.

To handle the case that P is of class C 2, i.e., not well-
labeled, the algorithm again checks to which class of
probe graphs the input kernel probe graph P does
belong and takes action accordingly:

D 1. there is a component C in G2 with |C ∩L2| ≥ 2.
If ` > 2, there must be a component C in G2

with |C ∩ L2| ≥ 2 since G is biconnected.

D 2. ` = 2, |C| = 1 for every component C in G2 and
there is a vertex q ∈ L2 with PL(q) = P.

D 3. ` = 2, |C| = 1 for every component C in G2 and
every vertex in L2 is not a probe.

In the following assume that P is a kernel probe
graph and P ∗ is a minimal distance-hereditary em-
bedding of P . For simplicity, use G and G∗ for
PG and P ∗

G, respectively. Let p be a probe of P ∗,
Φ = (L0, L1, . . . , L`) and Ψ = (Z0, Z1, . . . , Zh) be the
hangings of G and G∗ by vertex p, respectively. The
above notation will be used in lemmas and theorems
in the rest of this subsection. Now we give some ob-
servations on both the hangings of G and G∗ by a
probe p.

Lemma 7. Suppose C is a component of G∗
i with 1 <

i ≤ h. Then NG∗(C) contains probes and nonprobes in
P ∗. In addition, if |C ∩Zi| > 1 then C ∩Zi also contains
probes and nonprobes in P ∗.

Proof. First we prove that NG∗(C) contains probes
and nonprobes in P ∗. By Corollary 3, NG∗(C) con-
tains a pair of twins, u and v. If the labels of u and
v in P ∗ are the same, then u and v are twins of G.
This contradicts the assumption that G has no twins.
Hence one of u and v is a probe and the other is a
nonprobe in G∗. Next we show that C ∩ Zi also con-
tains probes and nonprobes in G∗ if |C ∩ Zi| > 1.
There are two cases:

1. i = h or i < h and C ∩ Zi+1 = ∅. Notice that
C∩Zi = C in this case. Since a vertex in NG∗(C)
is adjacent to all vertices in C, C induces a co-
graph in G∗. There is a pair of twins in G∗[C].
Since C and NG∗(C) are fully adjacent in G∗

they are also twins of G∗. If both of them have
the same label in P ∗ then they are also twins in
G, a contradiction. Thus one of them is a probe
and the other is a nonprobe in P ∗.

2. i < h and C∩Zi+1 6= ∅. Let C ′ be a component of
G∗

i+1 with C ′ ⊂ C. Then NG∗(C ′) ⊆ (C∩Zi). By
the first statement of this lemma, NG∗(C ′) con-
tains probes and nonprobes in P ∗. Hence C ∩Zi

also contains probes and nonprobes in P ∗.

¤
Corollary 6. For x ∈ Zi where 1 < i ≤ h, N−

Ψ (x)
contains probes and nonprobes in P ∗.

Proof. Since G∗ is biconnected and distance heredi-
tary, |N−

Ψ (x)| > 1. Obviously, x ∈ C for some compo-
nent C of G∗

i . By Lemma 7, NG∗(C) contains probes
and nonprobes in P ∗. By Theorem 3, x is adjacent to
all vertices in NG∗(C) in G∗. Hence N−

Ψ (x) contains
probes and nonprobes in P ∗.. ¤

Lemma 8. ` = h > 1 and Li = Zi for 0 ≤ i ≤ ` = h.

Proof. Since P is not a probe cograph, there is no
universal vertex in G∗. Because p is not a universal
vertex of G∗, h > 1. Since G∗ is obtained from G
by adding edges, ` ≥ h. Clearly, L0 = Z0 = {p}. Be-
cause p is a probe, L1 = Z1. By induction hypothesis,
assume that Lj = Zj for 0 ≤ j < i. By the assump-
tion, dG(y, p) = dG∗(y, p) for every y ∈ Lj . We com-
plete the proof by showing that every vertex x ∈ Zi

is also in Li. Let x be a vertex in Zi. By definition,
dG∗(x, p) = i. Notice that dG∗(x, p) ≤ dG(x, p) since
G∗ is obtained from G by adding edges between non-
probes. By Corollary 6, x is adjacent to a probe y in
Zi−1 = Li−1. Hence dG(x, p) = dG(y, p) + 1 = i and
x ∈ Li. ¤
Theorem 8. For 1 < i ≤ ` and x ∈ Li, x is a probe
in P ∗ if and only if in G x is adjacent to some vertices in
Li−1 that are nonprobes in P ∗.

Proof. By Lemma 8, x ∈ Zi since x ∈ Li. By Corol-
lary 6, in G∗ every vertex in Zi is adjacent to vertices
in Zi−1 that are nonprobes in P ∗. Since x is a probe,
NG(x) = NG∗(x). By Lemma 8, Li−1 = Zi−1. Hence
in G x is adjacent to vertices in Li−1 that are non-
probes in P ∗. On the other hand, x must be a probe
in P ∗ if in G x is adjacent to some vertices that are
nonprobes in P ∗. ¤

Algorithm W. Now we are ready to show the al-
gorithm for the case that P is of class C 1, i.e., a
well-labeled kernel probe graph. We refer to the al-
gorithm for handling this case as Algorithm W. We
will see that Algorithm W serves as a major subrou-
tine to be used later. The algorithm is as follows.
By definition, the labels of vertices in NG[p] are ei-
ther P or N. Compute P ′ from P as follows. Let
P ′

G = PG and let P ′
L(y) = PL(y) for all y ∈ NG[p].

For every i from i = 2 to i = ` and every y ∈ Li

with PL(y) = U, let P ′
L(y) = P if in G y is adjacent

to some vertex z ∈ Li−1 with P ′
L(z) = N; and let

P ′
L(y) = N otherwise. By Theorem 8, we see that

P is a probe distance-hereditary graph if and only if
P ′ is a probe distance-hereditary graph. Apparently
P ′ is fully partitioned. Use the O(n2)-time algorithm
in (Chandler et al. 2006) to determine whether P ′ is a
probe distance-hereditary graph. It is not hard to see
that Algorithm W runs in O(n2) time.

In the following we give observations to be used
for handling probe graphs of class C 2.

Lemma 9. Suppose P ∗ is a minimal distance-hereditary
embedding of P . Then the following statements hold:

(1) A component of Gi is a component of G∗
i for 0 ≤ i ≤

`.

(2) For any component C of Gi with 1 ≤ i ≤ `, C∩Li =
C ∩ Zi.

(3) For any component C of Gi with 1 ≤ i ≤ ` and
|C ∩ Li| > 1, NG(C) = NG∗(C).

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

59

Proof. First we prove Statement (1). By Lemma 8,
h = ` and Li = Zi for 0 ≤ i ≤ h = `. In addi-
tion, G∗ is obtained from G by adding edges. Hence
a component of G∗

i , 0 ≤ i ≤ h, is a component of Gi

or the union of some components of Gi. Since both
G and G∗ are biconnected, all G0, G1, G∗

0, and G∗
1

have only one component. Hence the lemma holds
for i = 0 and i = 1. For 1 < i ≤ `, we prove
the statement by contradiction showing that if some
component C of G∗

i is not a component of Gi then
P ∗ is not a minimal distance-hereditary embedding
of P . Suppose C is a component of G∗

i that properly
contains a component D of Gi. Let P ′ be an embed-
ding of P obtained from P ∗ by removing edges con-
necting a vertex in C − D and another vertex in D.
Use G′ for P ′

G. Clearly NG∗(C) = NG∗(D) ∩ Zi−1 =
NG∗(C −D)∩Zi−1 = NG′(D) = NG′(C −D). If P ′ is
still a distance-hereditary embedding of P , then P ∗

is not minimal. In the following we prove that P ′

is still a distance-hereditary embedding of P by con-
tradiction again. Assume that P ′ is not a distance-
hereditary embedding of P , i.e., G′ is not a distance-
hereditary graph. There is an induced forbidden
subgraph in G′. Let F be the set of vertices that in-
duces a hole or a domino or a gem or a house in G′.
Because the induced forbidden subgraph is formed
by removing edges connecting a vertex in D and an-
other vertex in C−D, |D∩F | ≥ 1 and |(C−D)∩F | ≥
1. Since all induced forbidden subgraph are bicon-
nected, |F ∩ NG′(C)| = |F ∩ NG∗(C)| ≥ 2. Without
loss generality assume that x1, x2, x3, and x4 are ver-
tices in F where x1 ∈ (C − D), x2 ∈ D, and x3, x4 ∈
NG∗(C). By definition, x1 and x2 are not adjacent in
G′. By assumption, x1, x2 ∈ Zi and x3, x4 ∈ Zi−1.
Clearly {x1, x2} and {x3, x4} are fully adjacent both
in G∗ and in G′. Depending on whether x3 and x4

are adjacent or not, in G′ the four vertices x1, x2, x3,
and x4 induce either a cycle of length four or a cycle
of length four with a chord. Therefore it is impossi-
ble for F to induce a hole. If x3 and x4 are adjacent,
then F must induce a gem. Otherwise F induces a
house or a domino.

1. x3 and x4 are adjacent and F induces a gem. By
observation, the universal vertex of the gem is
either x3 or x4. Without loss of generality as-
sume x3 is the universal of the gem. Then the
fifth vertex x5 of F is adjacent to x3 and one of
x1 or x2. In other words, x5 is adjacent to a ver-
tex in Zi and another vertex in Zi−1. Therefore
x5 ∈ Zi or x5 ∈ Zi−1. If x5 ∈ Zi, then x5 is
also adjacent to x4. If x5 ∈ Zi−1, then x5 is also
adjacent to both x1 and x2. It contradicts that F
induces a gem.

2. x3 and x4 are not adjacent and F induces a
house. Then the fifth vertex x5 of F is the sim-
plicial vertex of the house. It is adjacent to a
vertex in Zi and another vertex in Zi−1. By ar-
guments similar to those for proving the above
case, it contradicts the assumption that F in-
duces a house.

3. x3 and x4 are not adjacent and F induces a
domino. The fifth vertex x5 and the sixth vertex
x6 of F are adjacent and one of them is adjacent
to a vertex in Zi and the other is adjacent to a
vertex in Zi−1. Thus at least one of them is in Zi
or in Zi−1. In G′ if it is in Zi then it is adjacent to

both x3 and x4 and if it is in Zi−1 then it is adja-
cent to both x1 and x2. In other words, F does
not induce a domino, a contradiction.

Next we prove Statement (2). By Statement (1),
C is also a component of G∗

i . By Lemma 8, Zi = Li

for 0 ≤ i ≤ `. Hence C ∩ Zi ⊆ C ∩ Li. Since G∗ is
obtained from G by adding edges, C ∩ Li ⊆ C ∩ Zi.
Therefore C ∩ Zi = C ∩ Li.

Finally, we prove Statement (3). Clearly the state-
ment is true if i = 1. In the following assume
1 < i ≤ `. By Statement (1) of this lemma, C is also
a component of G∗

i . By Statement (2) of this lemma,
C∩Zi = C∩Li. Since |C∩Zi| > 1, by Lemma 7 both
NG∗(C) and C ∩ Zi contains probes and nonprobes.
Let x ∈ C ∩ Zi be a probe in G∗. Since G∗ is distance
hereditary, NG∗(C) = N−

Ψ (x) by Theorem 3. Because
Zi = Li for 0 ≤ i ≤ ` (see Lemma 8) and x is a probe
in P ∗, N−

Ψ (x) = N−
Φ (x). Since G∗ is obtained from G

by adding edges, we have NG(C) ⊆ NG∗(C). Thus
NG∗(C) = N−

Ψ (x) = N−
Φ (x) ⊆ NG(C) ⊆ NG∗(C).

This proves the statement. ¤

Theorem 9. Suppose P ∗ is a minimal distance-
hereditary embedding of P and C is a component of Gi

with |C ∩ Li| > 1 and 1 < i ≤ `. A vertex x ∈ C ∩ Li
(resp. NG(C)) is a probe in P ∗ if and only if x is adjacent
to all vertices in NG(C) (resp. C).

Proof. By Statement (2) of Lemma 9, C ∩ Zi =
C ∩ Li. Hence |C ∩ Zi| > 1. By Statement (3) of
Lemma 9, NG(C) = NG∗(C). Since G∗ is bicon-
nected, |NG∗(C)| > 1. Since G∗ is distance heredi-
tary, NG∗(C) and C ∩ Zi are fully adjacent by Theo-
rem 3. By Lemma 3, the theorem holds. ¤

Next we show how to use the above lemmas and
theorems to handle the case that P is of class C 2.
Algorithm for D 1. In this case there is a compo-
nent C in G2 with |C ∩ L2| ≥ 2. By Lemma 9 and
Theorem 9, a vertex x ∈ C ∩ L2 (resp. NG(C)) is
a probe in P ∗ if and only if x is adjacent to all ver-
tices in NG(C) (resp. C). Compute P ′ from P as fol-
lows. Let P ′

G = PG and P ′
L(y) = PL(y) for every

y ∈ PV − (C ∪ NG(C)). For every y ∈ (C ∪ NG(C)),
let P ′

L(y) = PL(y) if PL(y) 6= U. For every y ∈ NG(C)
with PL(y) = U, let P ′

L(y) = P if in G y is adjacent
to all vertices z ∈ C ∩ L2 and let P ′

L(y) = N other-
wise. If we let P ′

L(y) = PL(y) for all primes y ∈ C,
we see that P is a probe distance-hereditary graph if
and only if P ′ is a probe distance-hereditary graph
by Theorem 9. But we will go further. Clearly all
vertices in NG(C) are not primes now. From i = 2
to i = `, for every y ∈ C ∩ Li with PL(y) = U, let
P ′

L(y) = P if in G y is adjacent to some nonprobes
in Li−1 and let P ′

L(y) = N otherwise. By Theorem 9,
we see that P is a probe distance-hereditary graph if
and only if P ′ is a probe distance-hereditary graph
after we relabel primes of P in C. In P ′, there must
be a probe p′ in C ∩ L2. Besides P ′

L(y) 6= U for ev-
ery y ∈ NG(p′). Thus P ′ is a well-labeled kernel
probe graph. We then call Algorithm W to determine
whether P ′ is a probe distance-hereditary graph. It
takes linear time to find a component C of G2 with
|C ∩ L2| > 1 and obtain P ′ in linear time. Thus the
algorithm for D 1 runs in O(n2) time.
Algorithm for D 2. In this case ` = 2 and there is
a component C of G` that C = {q} and PL(q) = P.

CRPIT Volume 109 - Theory of Computing 2010

60

If NG(q) = L1, then q is a false twin of p, a contra-
diction. Thus L1 − NG(q) 6= ∅. Let (L′

0, L
′
1, . . . , L

′
k)

be the hanging of G by q. Then p and all vertices in
L1 −NG(q) are in L′

2 and are in the same component
of G−NG[q]. Hence P is also of class D 1 and the al-
gorithm is finished by calling the algorithm for D 1.
Thus the algorithm for D 2 runs in O(n2) time.
Algorithm for D 3. In this case ` = 2, |C| = 1 for ev-
ery component of G2, and every vertex in L2 is not a
probe. Let q be a vertex in L2 and be of minimum de-
gree among vertices in L2. By definition, PL(q) = U
or PL(q) = N. Let P̂ be the probe graph (PG, P̂L)
where P̂L(q) = P and P̂L(x) = PL(x) for x ∈ PV − q.
Let P̌ be the probe graph (PG, P̌L) where P̌L(q) = N,
P̌L(y) = P for y ∈ NG(q), and P̌L(x) = PL(x) for x ∈
PV −NG[q]. If PL(q) = U, then P is a probe distance-
hereditary graph if and only if one of P̂ and P̌ is
a probe distance-hereditary graph. It is easy to see
that we can use the algorithm for D 2 to test whether
P̂ is a probe distance-hereditary graph. In the fol-
lowing we focus on checking whether P̌ is a probe
distance-hereditary graph. Notice that P̌G = G. In
the following we use G to refer to P̌G. Since G has no
twins, N−

Φ (q) 6= N−
Φ (q′) for any q′ ∈ L2 and q′ 6= q.

We distinguish the following two classes of the input
graph:

N 1. There exists a vertex q′ ∈ L2, q′ 6= q, that N−
Φ (q′)

and N−
Φ (q) are incomparable, i.e., N−

Φ (q′) ∩
N−

Φ (q) 6= ∅, N−
Φ (q′) − N−

Φ (q) 6= ∅, and N−
Φ (q) −

N−
Φ (q′) 6= ∅.

N 2. For all q′ ∈ L2, q′ 6= q, either N−
Φ (q) ⊂ N−

Φ (q′),
or N−

Φ (q) and N−
Φ (q′) are disjoint.

To which of the above two classes P̌ does belong can
be determined in O(n+m) time. We refer to the algo-
rithms for input probe graphs of classes N 1 and N 2
as Algorithm N 1 and Algorithm N 2, respectively.
Algorithm N 1. Let y1, y2 ∈ N−

Φ (q) where y2 ∈
N−

Φ (q′) and y1 /∈ N−
Φ (q′). Let z ∈ N−

Φ (q′) but
z /∈ N−

Φ (q). Notice that y1 and y2 must be probes
in any distance-hereditary embedding of P̌ . Sup-
pose y1 and y2 are not adjacent in G. Consider the
hanging (Ľ0, Ľ1, . . . , Ľk) of G by y1. By definition,
dG(y1, q

′) ≥ 2. Thus k ≥ 2. Clearly dG(y1, y2) = 2.
If dG(y1, q

′) = 2, then both y2 and q′ are in Ľ2 and
in the same components of the graph obtained by re-
moving NG[y1]. If dG(y1, q

′) > 2, then k > 2. We
see that P̌ is of class D 1. Hence whether P̌ is a
probe distance-hereditary graph can be determined
in O(n2). In the following assume that y1 and y2 are
adjacent in G. Hence dG(y1, q

′) = 2. Suppose z is not
adjacent to y1. Then, dG(y1, z) = 2. Hence z and q′

are in Ľ2 and in the same components of the graph
obtained by removing NG[y1]. Clearly P̌ is of class
D 1 and we can finish this case in O(n2) time. In ad-
dition, assume z and y1 are adjacent in the following.
Consider the following subcases:

(a) z is adjacent to y2 in G. {y1, y2, z, q, q′} induces a
gem as shown in Fig. 2(a) where y2 is the univer-
sal vertex and qy1zq′ is the P4 of the gem. Sup-
pose q′ is a nonprobe in the embedding. For de-
stroying this gem we must add edge (q, q′) in the

embedding. Besides z must be a probe. Then
{y2, p, y1, q, q

′} induces another gem, where y2 is
the universal vertex and py1qq

′ is the P4, in the
embedding and we have no way to destroy it by
adding edges between nonprobes. Thus q′ must
be a probe in any distance-hereditary embedding
of P̌ . Let P ′ be the probe graph (P̌G, P ′

L) where
P ′

L(q′) = P and P ′
L(x) = P̌L(x) for x ∈ PV − q′.

It is easy to see that P ′ is of class D 2. Hence
this case can be done in O(n2) time by calling the
algorithm for D 2.

(b) z is not adjacent to y2 in G. {q, y1, y2, q
′, z}

induces a house as shown in Fig. 2(b) where
y1y2q

′zy1 is the C4 of the house. Suppose q′ is
a nonprobe in the embedding. Similar to the
above case, edge (q, q′) must be added to destroy
this house in the embedding and hence creating
a gem induced by {y2, p, y1, q, q

′}, where y2 is the
universal vertex and py1qq

′ is the P4, in the em-
bedding and we have no way to destroy it by
adding edges between nonprobes. Thus q′ must
be a probe in any distance-hereditary embedding
of P̌ . By arguments similar to those given in the
above case, we can finish this case in O(n2) time.

Algorithm N 2. Let Y denote the set of vertices in
L1 −N−

Φ (q) that are adjacent to some but not all ver-
tices of N−

Φ (q). Let X denote the set of vertices in
L1 −N−

Φ (q) that are adjacent to all vertices of N−
Φ (q).

Notice that all vertices in N−
Φ (q) are probes in any

distance-hereditary embedding. Hence N−
Φ (q) in-

duces a cograph in G. There is a pair of twins in the
subgraph of G induced by N−

Φ (q). If Y = ∅, then they
are also twins of G, a contradiction. Assume Y 6= ∅
in the following. Let y be any vertex in Y . By defini-
tion there are y1, y2 ∈ N−

Φ (q) such that y is adjacent
to y2 but not adjacent to y1. The subgraph of G in-
duced by {p, y1, y2, y, q} is either a house or a gem as
shown in Fig. 2(c) depending on whether y1 and y2

are adjacent in G. The only way to destroy the house
or the gem is to make y a nonprobe and to add edge
(y, q) in the embedding. Thus all vertices in Y must
be nonprobes in any distance-hereditary embedding.
Let x be a vertex in X . If x is adjacent to some ver-
tex in Y , then x must be a probe in any embedding.
Suppose x is not adjacent to any vertex in Y . Af-
ter adding edge (y, q), {y2, x, p, y, q} induces a gem,
where y2 is the universal vertex and xpyq is the P4, in
the embedding. For destroying the gem, x must be
a nonprobe in any distance-hereditary embedding.
Let Q = {q′ | q′ ∈ L2, q

′ 6= q,N−
Φ (q) ⊆ N−

Φ (q′)}. If
q′ ∈ Q is adjacent to some vertex in Y , then it must be
a probe in any distance-hereditary embedding. Sup-
pose q′ ∈ Q is not adjacent to any vertex of Y . Similar
to the case for vertex x ∈ X not adjacent to any ver-
tex in Y , we can show that q′ must be a nonprobe in
any distance-hereditary embedding. From the argu-
ments above we see that every vertex in NG(NG(q))
has a unique label among all distance-hereditary em-
beddings of P̌ . Let P ′ be the probe graph (PG, P ′

L)
where P ′

L(y) = N for y ∈ Y , P ′
L(x) = N for x ∈ X

not adjacent to any vertex in Y , P ′
L(x) = P for x ∈ X

adjacent to some vertex in Y , P ′
L(q′) = N for q′ ∈ Q

not adjacent to any vertex in Y , P ′
L(q′) = P for q′ ∈ Q

adjacent to some vertex in Y , and P ′
L(u) = P̌L(u) for

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

61

u ∈ PV −(X+Y +Q). From the above arguments, we
see that P̌ is a probe distance-hereditary graph if and
only if P ′ is a probe distance-hereditary graph. Let
p′ be some vertex in NG(q). We see that p′ is a probe
in P ′ and P ′

L(u) 6= U for every u ∈ NG(p′). Thus P ′

is well-labeled with respect to p′ (C 1). Hence we can
call Algorithm W to complete the job in O(n2) time.

p

y1 y2
z

q q′

(a)

p

y1 y2
z

q q′

(b)

p

x
y1

y2
y

q q′

(c)
Figure 2: Some induced subgraphs in P where a dot-
ted line denotes two vertices are possibly adjacent or
possibly not adjacent.

The following lemma summarizes the results of
this subsection.

Lemma 10. Whether a probe graph of class P 4 is a probe
distance-hereditary graph can be determined in O(n2)
time.

3.3 Non-biconnected probe graphs without twins
and Algorithm R

In this subsection we show how to solve the prob-
lem recursively when the input probe graph P has
no twins and is not biconnected. Our algorithm is
based upon the following two lemmas.

Lemma 11. Suppose P is a connected probe graph and
P ∗ is a minimal distance-hereditary embedding of P .
Then a vertex is a cut vertex of P ∗ if and only if it is a
cut vertex of P .

Proof. Suppose P has k biconnected compo-
nents C1, C2, . . . , Ck. Let P ∗

G be the graph
(P ∗

V ,∪k
j=1P

∗
E [Ci])). It is easy to see that a ver-

tex is a cut vertex of P ∗ if and only if it is a cut
vertex of P . We then prove the lemma by showing
that P ∗ is indeed a distance-hereditary embedding
of P . If P ′ is a distance-hereditary embedding of P
and P ′ 6= P ∗, then P ′ is not minimal, a contradic-
tion. Thus P ′ = P ∗ if P ∗ is a distance-hereditary
embedding of P .
Now we prove that P ∗ is a distance-hereditary em-
bedding of P . Suppose that P ∗ is not a distance-
hereditary embedding of P . That is, P ∗ has a
forbidden induced subgraph of distance-hereditary
graphs. Let F be the vertex set of a forbidden
induced subgraph. Since P ∗[Ci] is a distance-
hereditary embedding of P [Ci], F is not a subset of
any Ci for 1 ≤ i ≤ k. Notice that F induces a hole, a
gem, a house, or a domino. All these four forbidden
induced subgraphs are biconnected. Thus F must be
a subset of some Ci, a contradiction. This completes
the proof. ¤

Lemma 12. Let P be a probe graph. If there exists a cut
vertex v in P and C is a component of PG−v, then P is a
probe distance-hereditary graph if and only if P−C has an
embedding P ′ and P [C + v] has an embedding P ′′ where
either P ′

L(v) = P ′′
L(v) = P or P ′

L(v) = P ′′
L(v) = N.

Proof. If P has a distance-hereditary embedding P ∗,
then P ∗[C +v] is a distance-hereditary embedding of
P [C + v] and P ∗−C is a distance-hereditary embed-
ding of P − C.
Suppose that PL(v) = P or N. By Lemma 11, P ∗ =
P ′ + P ′′ is a distance-hereditary embedding of P .
Suppose that PL(v) = U. If P [C + v] has no distance-
hereditary embedding that v is a probe or a non-
probe, then P is not a probe distance-hereditary
graphs. If P [C + v] has a distance-hereditary em-
bedding P̂ that v is a probe but has no distance-
hereditary embedding that v is a nonprobe, then P
has a distance-hereditary embedding if and only if
P − C has a distance-hereditary embedding that v
is a probe. Conversely, if P [C + v] has a distance-
hereditary embedding P̌ that v is a nonprobe but
has no embedding that v is a probe, then P has a
distance-hereditary embedding if and only if P − C
has a distance-hereditary embedding that v is a non-
probe. If P [C + v] has a distance-hereditary embed-
ding P̂ that v is a probe and P [C + v] has a distance-
hereditary embedding P̌ that v is a nonprobe, then
P has a distance-hereditary embedding if and only if
P − C has a distance-hereditary embedding. ¤

The proof of the above lemma is constructive. It
points out a recursive way to solve the problem. We
now describe Algorithm R in detail. Let v be a cut
vertex of PG and C be a component of PG − v such
that C does not contain any other cut vertex of PG.
In other words, C + v induces a biconnected compo-
nent of PG. There are two cases:
1. PL(v) = P or N. By Lemma 12, P is a probe
distance-hereditary graph if and only if both P [C+v]
and P−C are probe distance-hereditary graphs. Call
Algorithm C to check whether P [C + v] has an em-
bedding and recursively call the main algorithm to
check whether P − C has an embedding.
2. PL(v) = U. Let P̂ be the probe graph (PG[C +
v], P̂L) where P̂L(v) = P and P̂L(x) = PL(x) for
x ∈ C. Let P̌ be the probe graph (PG[C + v], P̌L)
where P̌L(v) = N, P̌L(x) = P for x ∈ NG(v) ∩ C,
and P̌L(x) = PL(x) for x ∈ C − NG(v). Let P ′ be the
probe graph (PG[V − C], P ′

L) where P ′
L(v) = P and

P ′
L(x) = PL(x) for x ∈ V −C−v. Let P ′′ be the probe

graph (PG[V − C], P ′′
L) where P ′′

L(v) = N, P ′′
L(x) = P

for x ∈ (P − C) ∩ NG(v), and P ′′
L(x) = PL(x) for

x ∈ V − C − NG[v]. Call Algorithm C to check
whether P̂ and P̌ have embeddings. There are four
subcases:

(a) If neither P̂ nor P̌ is a probe distance-hereditary
graph, then P is not a probe distance-hereditary
graph.

(b) If both P̂ and P̌ are probe distance-hereditary
graphs, then P is a probe distance-hereditary
graph if and only if P − C is a probe distance-
hereditary graph. Recursively call the main al-
gorithm to check whether P − C has an embed-
ding.

(c) If P̂ is a probe distance-hereditary graph but P̌ is
not, then P is a probe distance-hereditary graph
if and only if P ′ is a probe distance-hereditary
graph. Recursively call the main algorithm to

CRPIT Volume 109 - Theory of Computing 2010

62

check whether P ′ has a distance-hereditary em-
bedding.

(d) If P̂ is not a probe distance-hereditary graph but
P̌ is, then P is a probe distance-hereditary graph
if and only if P ′′ is a probe distance-hereditary
graph. Recursively call the main algorithm to
check whether P ′′ has a distance-hereditary em-
bedding.

We call a probe graph P a pseudo-kernel probe graph
if it satisfies one of the following three conditions:
(i) P is biconnected without twins, (ii) P is bicon-
nected and has only one pair of twins. One of the
pair of twins is not a prime, (iii) P is non-biconnected
without twins and has only one cut vertex. The cut
vertex is not a prime.

Suppose v is the cut vertex of PG used to decom-
pose PG into PG[C + v] and PG − C in Algorithm R.
We have the following observations. For simplifying
the notation, we use G and GC + v to denote PG and
PG[C + v] respectively.

Theorem 10. Suppose G is a non-biconnected graph
without twins. There exists a biconnected component
GC + v of G that only contains a cut vertex v of G. Then
one of the following statements holds.

(i) There are no twins in GC + v.

(ii) There is only one pair of twins in GC + v, v is one
of the pair of twins. After removing one of the pair
of twins from GC + v, the resulting graph has no
twins and either it is biconnected or it has only one
cut vertex which is one of the pair of twins in GC+v.

Proof. Since G has no twins, no x, y ∈ GC are twins
in GC + v. After the decomposition, only the neigh-
borhood of the vertex used to decompose the graph
is changed. Hence v must be one of the pair of twins,
and there exists only one vertex u in GC that u and v
are twins in GC + v.

Suppose there exists a pair of twins x and y in GC .
Removing v from GC +v only changes the neighbor-
hood of vertices in NGC

[u], where u and v are twins
in GC + v. Hence one of x, y ∈ NGC [u]. If u = x and
y ∈ NGC

(u), y and v are twins in GC +v, a contradic-
tion. If u = x and y 6∈ NGC [u], y and v are twins in
GC + v, a contradiction. Suppose x 6= u and y 6= u.
If x, y ∈ NGC (u), they are twins in GC + v, a contra-
diction. If x ∈ NGC

(u) but y 6∈ NGC
[u], then they are

not twins in GC since y is not adjacent to u, contra-
diction. Hence there are no twins in GC . Similarly,
we can show that there are no twins in GC + v − u.

Suppose GC is non-biconnected. If u is not a cut
vertex, let x 6= u be a cut vertex of GC . Let C1 and C2
be two components of GC −x. Since GC +v is bicon-
nected, v is adjacent to some vertex of C1 and some
vertex of C2 in GC + v. Since u and v are twins in
GC + v, in GC u is adjacent to some vertex of C1 and
some vertex of C2, a contradiction to the assumption
that x 6= u is a cut vertex. Hence u is the only cut
vertex in GC . Similarly, we can show v is the only
cut vertex of GC + v − u. ¤
Corollary 7. The probe graph P [C + v] produced in
Case 1. of Algorithm R and the probe graphs P̂ and P̌
produced in Case 2. of Algorithm R are pseudo-kernel
probe graphs. In addition, if u and v are the only pair of
twins in PG[C + v], after removing a twin according to

Lemma 4 and 5 from P [C + v], P̂ , and P̌ , the resulting
probe graph R is a pseudo-kernel probe graph.

Proof. Note that PG[C + v] satisfies one of the con-
ditions of Theorem 10 and v is not a prime. Assume
u is the twin of v. By the steps of removing twins ac-
cording to Lemma 4 and 5, if v is a probe, we remove
u; if v is a nonprobe and u is a nonprobe or a prime,
we remove u; if v is a nonprobe and u is a probe,
we remove v. After removing twins, if the resulting
probe graph R is biconnected, by Theorem 10 it is a
kernel probe graph. Assume R is non-biconnected,
by Theorem 10 one of u and v is the only cut ver-
tex of R. Moreover, the only cut vertex in R is not a
prime. ¤

Now we are ready to describe Algorithm C. The
input of Algorithm C is a two-tuple (P, v) where P
is a pseudo-kernel probe graph and v is a vertex in
P with PL(v) = P or N. Note that if PG is bicon-
nected, it has at most one pair of twins and v is one
of the twins. If PG is non-biconnected, v is the only
cut vertex in PG.
Algorithm C. We distinguish the following four
classes of the input graphs.

E 1 |PV | ≤ c for some constant c. Solve the problem
by brute force in O(1) time.

E 2 P is biconnected without twins. Call Algo-
rithm B to solve the problem in O(n2) time.

E 3 PG is biconnected and v has a twin u. It is easy
to see that u can be found in linear time by sim-
ply checking whether the neighborhood of the
other vertices is the same as v. By Lemma 4
and 5, we can remove one of u and v from P ,
and check whether the resulting probe graph is
a probe distance-hereditary graph. We have the
following two cases:

(i) PL(v) = P. Recursively call Algorithm C to
check (P − u, v).

(ii) PL(v) = N. If PL(u) = N or U, recursively
call Algorithm C to check (P − u, v). If
PL(u) = P, recursively call Algorithm C to
check (P − v, u).

E 4 PG is non-biconnected without twins, v is the
only cut vertex in PG. Let C1, C2, . . . , Cr be bi-
connected components of PG. Since v is the only
cut vertex in PG, Ci ∩Cj = {v} for 1 ≤ i < j ≤ r.
For each Ci, i = 1, 2, . . . , r, call Algorithm C to
check (P [Ci], v).

Lemma 13. Whether a pseudo-kernel probe graph is a
probe distance-hereditary graph can be checked in O(nm)
time.

Proof. Let g(n) denote the time complexity of Al-
gorithm C. We claim that g(n) ≤ c1nm. The input
graph of class E 1 can be recognized in O(1) time.
The input graph of class E 2 can be recognized in
O(n2) time. The input graph of class E 3 can be rec-
ognized in g(n−1)+c0(n+m) time where c0(n+m) is
the time spent for decomposing the input graph into
biconnected components and removing a twin from
it. It is easy to see that g(n − 1) + c0(n + m) ≤ c1nm
if c1 ≥ 2c0. The input of class E 4 can be recognized
in Σr

i=1g(ni) + c0(n + m) time where ni = |Ci| and
C1, C2, . . . , Cr are biconnected components in PG.

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

63

g(n) = Σr
i=1g(ni) + c0(n + m)

≤ Σr
i=1c1nimi + c0(n + m)

≤ c1(n − 1)m + c0(m + m)
≤ c1nm − (c1 − 2c0)m
≤ c1nm where c1 ≥ 2c0.

This completes the proof. ¤

3.4 Time complexity

In this subsection we analyze the time complexity of
the algorithm.

Theorem 11. There exists an O(nm)-time algorithm to
check if a probe graph P is a probe distance-hereditary
graph.

Proof. By using the data structure described in (Lan-
lignel & Thierry 2000), we can repeat the step of
removing twins until input probe graph P has no
twins in O(n2) time. If P is biconnected after re-
moving all twins, then call Algorithm B to complete
the algorithm. Suppose P is not biconnected after
removing all twins. We go on performing the re-
cursive step that decomposes P into two subgraphs
PG[C + v] and PG −C (Algorithm R). The algorithm
calls Algorithm C to test P [C + v] (Case 1 of Algo-
rithm R) or P̂ and P̌ (Case 2 of Algorithm R) and
goes on testing the subgraph P − C obtained recur-
sively. Note that removing all twins from P − C
only takes O(n + m) time. After removing C from P
only the neighborhood of the cut vertex v is changed.
Since P has no twins, there is only one pair of twins
in P−C and v is one of the twins. Let t(n) be the time
of the whole algorithm. Then t(n) = t1(n′) + O(n2)
where n′ is the number of vertices in the input probe
graph after removing all twins and t1(n′) is the time
spent by the algorithm after removing all twins. Let
C1, C2, . . . Ck be the biconnected components pro-
duced by Algorithm R in each recursive call. For
each Ci we call Algorithm C at most two times. As-
sume |Ci| = ni for i = 1, . . . , k. Let mi denote the
number of edges in PG[Ci]. We use g(ni) to denote
the time spent by Algorithm C for i = 1, . . . , k.

t1(n′) = 2g(n1) + t1(n′ − n1 + 1) + c0(n′ + m′)
= 2g(n1) + . . . + 2g(nk) + c0k(n′ + m′)

= 2Σk
i=1g(nimi) + c0k(n′ + m′)

= 2Σk
i=1c1nimi + c0k(n′ + m′)

≤ 2c1n
′Σk

i=1mi + c0k(n′ + m′)
≤ 2c1n

′m′ + c0n
′(m′ + m′)

≤ c2n
′m′ where c2 ≥ 4c1

= O(n′m′)

Since t(n) = t1(n′) + O(n2) and t1(n′) = O(n′m′),
we have t(n) = O(nm). This completes the proof of
the theorem. ¤

References

Bandelt, H. J. & Mulder, H. M. (1986), Distance-
hereditary graphs, Journal of Combinatorial Theory,
Series B 41, 182–208.

Berry, A., Golumbic, M. C. & Lipshteyn, M. (2007),
Recognizing Chordal Probe Graphs and Cycle-
Bicolorable Graphs, SIAM J. Discrete Math., 21,
573–591.

Brandstädt, A., Le, V. B. & Spinrad, J. P. (1999), Graph
classes: A survey, SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia.

Chandler, D. B., Chang, M.-S., Kloks, T., Liu, J. &
Peng, S.-L. (2006), Recognition of probe cographs
and partitioned probe distance hereditary graphs,
Proceedings of AAIM 2006, LNCS 4041, 267-278.

Chandler, D. B., Guo, J., Kloks, T. & Niedermeier,
R. (2007), Probe matrix problems: totally bal-
anced matrices, Proceeding of AAIM 2007, LNCS
4508, 368–377.

Chandler, D. B., Chang, M.-S., Kloks, T., Liu, J. &
Peng, S.-L. (2008), Partitioned probe comparability
graphs, Theoretical Computer Science, 396, 212–222.

Chandler, D. B., Chang, M.-S., Kloks, T., Le, V. B.
& Peng, S.-L. (2008), Probe ptolemaic graphs, Pro-
ceedings of COCOON 2008, LNCS 5092, 468–477.

Chandler, D. B., Chang, M.-S., Kloks, A. J.J., Liu, J. &
Peng, S.-L. (2009), On probe permutation graphs,
Discrete Applied Mathematics, 157, 2611–2619.

Chang, G. J., Kloks, A. J. J., Liu, J. & Peng, S.-L. (2005),
The PIGs full monty - a floor show of minimal sep-
arators, Proceedings STACS 2005, LNCS 3404, 521–
532.

Chang, M.-S. & Hung, L.-J. (2009), Partially parti-
tioned probe ptolemaic graphs, Manuscript.

Chang, M.-S., Hung, L.-J. & Rossmanith P. (2009),
Probe bipartite distance-hereditary graphs,
Manuscript.

D’Atri, A. & Moscarini, M. (1988), Distance-
hereditary graphs, Steiner trees, and connected
domination, SIAM Journal on Computing 17, 521–
538.

Golumbic, M.C., Kaplan, H. & Shamir, R. (1995),
Graph sandwich problems, Journal of Algorithms
19, 449–473.

Golumbic, M. C. & Lipshteyn, M. (2004), Chordal
probe graphs, Discrete Applied Mathematics 43, 221–
237.

Hammer, P. L. & Maffray, F. (1990), Completely sep-
arable graphs, Discrete Applied Mathematics 27, 85-
99.

Lanlignel, J.-M. & Thierry, E. (2000), Pruning graphs
with digital search trees. Application to distance
hereditary graphs, Proceedings of STACS 2000,
LNCS 1770, 529–541.

Le, V. B. & de Ridder, H. N. (2007), Characterisations
and linear-time recognition of probe cographs.
Proceedings of WG 2007, LNCS 4769, 226–237.

McConnell, R. M. & Nussbaum, Y. (2009), Linear-
time recognition of probe interval graphs, to ap-
pear in Proceedings of ESA2009.

Zhang, P. E., Schon, A., Fischer, S. G., Cayanis, E.,
Weiss, J., Kistler, S. & Bourne, E. (1994), An al-
gorithm based on graph theory for the assembly
of contigs in physical mapping of DNA, CABIOS
10, 309–317.

CRPIT Volume 109 - Theory of Computing 2010

64

