
Package ‘rms’
February 18, 2026

Version 8.1-1
Date 2026-02-17

Title Regression Modeling Strategies

Depends R (>= 4.4.0), Hmisc (>= 5.2-5)

Imports methods, survival, quantreg, ggplot2, Matrix, SparseM, rpart,
nlme (>= 3.1-123), polspline, multcomp, htmlTable (>= 1.11.0),
htmltools, MASS, cluster, digest, colorspace, knitr, grDevices,
scales

Suggests boot, tcltk, plotly (>= 4.5.6), mice, icenReg, rmsb, nnet,
VGAM, lattice, kableExtra

Description Regression modeling, testing, estimation, validation,
graphics, prediction, and typesetting by storing enhanced model design
attributes in the fit. 'rms' is a collection of functions that
assist with and streamline modeling. It also contains functions for
binary and ordinal logistic regression models, ordinal models for

continuous Y with a variety of distribution families, and the Buckley-James
multiple regression model for right-censored responses, and implements
penalized maximum likelihood estimation for logistic and ordinary
linear models. 'rms' works with almost any regression model, but it
was especially written to work with binary or ordinal regression
models, Cox regression, accelerated failure time models,
ordinary linear models,the Buckley-James model, generalized least
squares for serially or spatially correlated observations, generalized
linear models, and quantile regression.

License GPL (>= 2)

URL https://hbiostat.org/R/rms/, https://github.com/harrelfe/rms

LazyLoad yes

RoxygenNote 7.3.3
NeedsCompilation yes

Author Frank E Harrell Jr [aut, cre]
Maintainer Frank E Harrell Jr <fh@fharrell.com>

Repository CRAN
Date/Publication 2026-02-18 06:30:02 UTC

1

https://hbiostat.org/R/rms/
https://github.com/harrelfe/rms

2 Contents

Contents
adapt_orm . 4
anova.rms . 5
as.data.frame.Ocens . 12
bj . 13
bootBCa . 17
bootcov . 18
bplot . 27
calibrate . 30
contrast.rms . 34
cph . 43
cr.setup . 50
datadist . 52
ExProb . 55
fastbw . 57
Function . 59
gendata . 61
ggplot.npsurv . 63
ggplot.Predict . 65
gIndex . 73
Glm . 77
Gls . 79
groupkm . 81
hazard.ratio.plot . 83
ie.setup . 85
impactPO . 86
importedexported . 89
infoMxop . 90
intCalibration . 92
is.na.Ocens . 94
latex.cph . 94
latexrms . 96
lrm . 98
lrm.fit . 107
LRupdate . 111
matinv . 112
nomogram . 114
npsurv . 121
Ocens . 123
Ocens2ord . 123
Ocens2Surv . 126
Olinks . 126
ols . 127
ordESS . 130
ordParallel . 131
orm . 133
orm.fit . 141

Contents 3

pentrace . 144
plot.contrast.rms . 148
plot.Predict . 149
plot.rexVar . 157
plot.xmean.ordinaly . 159
plotIntercepts . 161
plotp.Predict . 162
poma . 165
pphsm . 166
predab.resample . 167
Predict . 171
predict.lrm . 177
predictrms . 180
print.cph . 187
print.Glm . 188
print.impactPO . 189
print.Ocens . 189
print.ols . 190
print.rexVar . 191
prmiInfo . 192
processMI . 193
processMI.fit.mult.impute . 193
psm . 195
Punits . 200
recode2integer . 201
residuals.cph . 202
residuals.Glm . 204
residuals.lrm . 205
residuals.ols . 210
rexVar . 212
rms . 213
rms.trans . 216
rmsMisc . 219
rmsOverview . 226
robcov . 236
Rq . 239
sensuc . 241
setPb . 245
specs.rms . 247
summary.rms . 248
survest.cph . 252
survest.orm . 255
survest.psm . 256
survfit.cph . 258
survplot . 259
survplot.orm . 266
val.prob . 269
val.surv . 273

4 adapt_orm

validate . 278
validate.cph . 280
validate.lrm . 283
validate.ols . 286
validate.rpart . 287
validate.Rq . 289
vif . 291
which.influence . 292
Xcontrast . 293
[.Ocens . 294

Index 296

adapt_orm Adaptive orm Fit For a Single Continuous Predictor

Description

Finds the best fitting orm model for a single continuous predictor x, starting by finding the link
function with the smallest deviance when the predictor is modeled with 4 knots in a restricted
cubic spline function. Then the function finds the number of knots minimizing AIC when this link
function is used. Candidate number of knots are 0 (linear fit), 3, 4, 5, maxk.

Usage

adapt_orm(x, y, maxk = 6, ...)

Arguments

x a numeric vector

y a numeric or factor variable representing an ordinal dependent variable, or an
Ocens object

maxk maximum number of knots to try

... arguments to orm other than family, x, y

Value

the best orm fit object

Author(s)

Frank Harrell

anova.rms 5

Examples

Not run:
f <- adapt_orm(age, blood_pressure)
f$stats['d.f.'] # print no. of parameters for age
f$family # print optimum link found

End(Not run)

anova.rms Analysis of Variance (Wald, LR, and F Statistics)

Description

The anova function automatically tests most meaningful hypotheses in a design. For example,
suppose that age and cholesterol are predictors, and that a general interaction is modeled using a
restricted spline surface. anova prints Wald statistics (F statistics for an ols fit) for testing linearity
of age, linearity of cholesterol, age effect (age + age by cholesterol interaction), cholesterol effect
(cholesterol + age by cholesterol interaction), linearity of the age by cholesterol interaction (i.e.,
adequacy of the simple age * cholesterol 1 d.f. product), linearity of the interaction in age alone,
and linearity of the interaction in cholesterol alone. Joint tests of all interaction terms in the model
and all nonlinear terms in the model are also performed. For any multiple d.f. effects for continuous
variables that were not modeled through rcs, pol, lsp, etc., tests of linearity will be omitted. This
applies to matrix predictors produced by e.g. poly or ns.

For lrm, orm, cph, psm and Glm fits, the better likelihood ratio chi-square tests may be obtained
by specifying test='LR'. Fits must use x=TRUE, y=TRUE to run LR tests. The tests are run fairly
efficiently by subsetting the design matrix rather than recreating it.

print.anova.rms is the printing method. plot.anova.rms draws dot charts depicting the impor-
tance of variables in the model, as measured by Wald or LR χ2, χ2 minus d.f., AIC, P -values,
partial R2, R2 for the whole model after deleting the effects in question, or proportion of overall
model R2 that is due to each predictor. latex.anova.rms is the latex method. It substitutes
Greek/math symbols in column headings, uses boldface for TOTAL lines, and constructs a caption.
Then it passes the result to latex.default for conversion to LaTeX.

When the anova table was converted to account for missing data imputation by processMI, a sepa-
rate function prmiInfo can be used to print information related to imputation adjustments.

For Bayesian models such as blrm, anova computes relative explained variation indexes (REV)
based on approximate Wald statistics. This uses the variance-covariance matrix of all of the poste-
rior draws, and the individual draws of betas, plus an overall summary from the posterior mode/mean/median
beta. Wald chi-squares assuming multivariate normality of betas are computed just as with frequen-
tist models, and for each draw (or for the summary) the ratio of the partial Wald chi-square to the
total Wald statistic for the model is computed as REV.

The print method calls latex or html methods depending on options(prType=). For latex a
table environment is not used and an ordinary tabular is produced. When using html with Quarto
or RMarkdown, results='asis' need not be written in the chunk header.

html.anova.rms just calls latex.anova.rms.

6 anova.rms

Usage

S3 method for class 'rms'
anova(object, ..., main.effect=FALSE, tol=.Machine$double.eps,

test=c('F','Chisq','LR'), india=TRUE, indnl=TRUE, ss=TRUE,
vnames=c('names','labels'),
posterior.summary=c('mean', 'median', 'mode'), ns=500, cint=0.95,
fitargs=NULL)

S3 method for class 'anova.rms'
print(x,

which=c('none','subscripts','names','dots'),
table.env=FALSE, ...)

S3 method for class 'anova.rms'
plot(x,

what=c("chisqminusdf","chisq","aic","P","partial R2","remaining R2",
"proportion R2", "proportion chisq"),

xlab=NULL, pch=16,
rm.totals=TRUE, rm.ia=FALSE, rm.other=NULL, newnames,
sort=c("descending","ascending","none"), margin=c('chisq','P'),
pl=TRUE, trans=NULL, ntrans=40, height=NULL, width=NULL, ...)

S3 method for class 'anova.rms'
latex(object, title, dec.chisq=2,

dec.F=2, dec.ss=NA, dec.ms=NA, dec.P=4, dec.REV=3,
table.env=TRUE,
caption=NULL, fontsize=1, params, ...)

S3 method for class 'anova.rms'
html(object, ...)

Arguments

object a rms fit object. object must allow vcov to return the variance-covariance ma-
trix. For latex is the result of anova.

... If omitted, all variables are tested, yielding tests for individual factors and for
pooled effects. Specify a subset of the variables to obtain tests for only those
factors, with a pooled tests for the combined effects of all factors listed. Names
may be abbreviated. For example, specify anova(fit,age,cholesterol) to
get a Wald statistic for testing the joint importance of age, cholesterol, and any
factor interacting with them. Add test='LR' to get a likelihood ratio chi-square
test instead.
Can be optional graphical parameters to send to dotchart2, or other parameters
to send to latex.default. Ignored for print.
For html.anova.rms the arguments are passed to latex.anova.rms.

main.effect Set to TRUE to print the (usually meaningless) main effect tests even when the
factor is involved in an interaction. The default is FALSE, to print only the effect
of the main effect combined with all interactions involving that factor.

anova.rms 7

tol singularity criterion for use in matrix inversion

test For an ols fit, set test="Chisq" to use Wald χ2 tests rather than F-tests. For
lrm, orm, cph, psm and Glm fits set test='LR' to get likelihood ratio χ2 tests.
This requires specifying x=TRUE, y=TRUE when fitting the model.

india set to FALSE to exclude individual tests of interaction from the table

indnl set to FALSE to exclude individual tests of nonlinearity from the table

ss For an ols fit, set ss=FALSE to suppress printing partial sums of squares, mean
squares, and the Error SS and MS.

vnames set to 'labels' to use variable labels rather than variable names in the output
posterior.summary

specifies whether the posterior mode/mean/median beta are to be used as a mea-
sure of central tendence of the posterior distribution, for use in relative explained
variation from Bayesian models

ns number of random samples from the posterior draws to use for REV highest
posterior density intervals

cint HPD interval probability

fitargs a list of extra arguments to be passed to the fitter for LR tests

x for print,plot,text is the result of anova.

which If which is not "none" (the default), print.anova.rms will add to the right-
most column of the output the list of parameters being tested by the hypothesis
being tested in the current row. Specifying which="subscripts" causes the
subscripts of the regression coefficients being tested to be printed (with a sub-
script of one for the first non-intercept term). which="names" prints the names
of the terms being tested, and which="dots" prints dots for terms being tested
and blanks for those just being adjusted for.

what what type of statistic to plot. The default is the χ2 statistic for each factor
(adding in the effect of higher-ordered factors containing that factor) minus its
degrees of freedom. The R2 choices for what only apply to ols models.

xlab x-axis label, default is constructed according to what. plotmath symbols are
used for R, by default.

pch character for plotting dots in dot charts. Default is 16 (solid dot).

rm.totals set to FALSE to keep total χ2s (overall, nonlinear, interaction totals) in the chart.

rm.ia set to TRUE to omit any effect that has "*" in its name

rm.other a list of other predictor names to omit from the chart

newnames a list of substitute predictor names to use, after omitting any.

sort default is to sort bars in descending order of the summary statistic. Available
options: ’ascending’, ’descending’, ’none’.

margin set to a vector of character strings to write text for selected statistics in the
right margin of the dot chart. The character strings can be any combination
of "chisq", "d.f.", "P", "partial R2", "proportion R2", and "proportion
chisq". Default is to not draw any statistics in the margin. When plotly is in
effect, margin values are instead displayed as hover text.

8 anova.rms

pl set to FALSE to suppress plotting. This is useful when you only wish to analyze
the vector of statistics returned.

trans set to a function to apply that transformation to the statistics being plotted, and
to truncate negative values at zero. A good choice is trans=sqrt.

ntrans n argument to pretty, specifying the number of values for which to place tick
marks. This should be larger than usual because of nonlinear scaling, to provide
a sufficient number of tick marks on the left (stretched) part of the chi-square
scale.

height, width height and width of plotly plots drawn using dotchartp, in pixels. Ignored for
ordinary plots. Defaults to minimum of 400 and 100 + 25 times the number of
test statistics displayed.

title title to pass to latex, default is name of fit object passed to anova prefixed with
"anova.". For Windows, the default is "ano" followed by the first 5 letters of
the name of the fit object.

dec.chisq number of places to the right of the decimal place for typesetting χ2 values
(default is 2). Use zero for integer, NA for floating point.

dec.F digits to the right for F statistics (default is 2)

dec.ss digits to the right for sums of squares (default is NA, indicating floating point)

dec.ms digits to the right for mean squares (default is NA)

dec.P digits to the right for P -values

dec.REV digits to the right for REV

table.env see latex

caption caption for table if table.env is TRUE. Default is constructed from the response
variable.

fontsize font size for html output; default is 1 for 1em

params used internally when called through print.

Details

If the statistics being plotted with plot.anova.rms are few in number and one of them is negative
or zero, plot.anova.rms will quit because of an error in dotchart2.

The latex method requires LaTeX packages relsize and needspace.

Value

anova.rms returns a matrix of class anova.rms containing factors as rows and χ2, d.f., and P -
values as columns (or d.f., partial SS,MS,F, P). An attribute vinfo provides list of variables
involved in each row and the type of test done. plot.anova.rms invisibly returns the vector of
quantities plotted. This vector has a names attribute describing the terms for which the statistics in
the vector are calculated.

Side Effects

print prints, latex creates a file with a name of the form "title.tex" (see the title argument
above).

anova.rms 9

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

prmiInfo, rms, rmsMisc, lrtest, rms.trans, summary.rms, plot.Predict, ggplot.Predict,
solvet, locator, dotchart2, latex, xYplot, anova.lm, contrast.rms, pantext

Examples

require(ggplot2)
n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
treat <- factor(sample(c('a','b','c'), n,TRUE))
num.diseases <- sample(0:4, n,TRUE)
age <- rnorm(n, 50, 10)
cholesterol <- rnorm(n, 200, 25)
weight <- rnorm(n, 150, 20)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(num.diseases) <- 'Number of Comorbid Diseases'
label(cholesterol) <- 'Total Cholesterol'
label(weight) <- 'Weight, lbs.'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc

Specify population model for log odds that Y=1
L <- .1*(num.diseases-2) + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(treat=='a') +
3.5*(treat=='b')+2*(treat=='c'))

Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

fit <- lrm(y ~ treat + scored(num.diseases) + rcs(age) +
log(cholesterol+10) + treat:log(cholesterol+10),

x=TRUE, y=TRUE) # x, y needed for test='LR'
a <- anova(fit) # Test all factors
b <- anova(fit, treat, cholesterol) # Test these 2 by themselves

to get their pooled effects
a
b
a2 <- anova(fit, test='LR')
b2 <- anova(fit, treat, cholesterol, test='LR')
a2
b2

Add a new line to the plot with combined effects
s <- rbind(a2, 'treat+cholesterol'=b2['TOTAL',])

10 anova.rms

class(s) <- 'anova.rms'
plot(s, margin=c('chisq', 'proportion chisq'))

g <- lrm(y ~ treat*rcs(age))
dd <- datadist(treat, num.diseases, age, cholesterol)
options(datadist='dd')
p <- Predict(g, age, treat="b")
s <- anova(g)
tx <- paste(capture.output(s), collapse='\n')
ggplot(p) + annotate('text', x=27, y=3.2, family='mono', label=tx,

hjust=0, vjust=1, size=1.5)

plot(s, margin=c('chisq', 'proportion chisq'))
new plot - dot chart of chisq-d.f. with 2 other stats in right margin
latex(s) # nice printout - creates anova.g.tex
options(datadist=NULL)

Simulate data with from a given model, and display exactly which
hypotheses are being tested

set.seed(123)
age <- rnorm(500, 50, 15)
treat <- factor(sample(c('a','b','c'), 500, TRUE))
bp <- rnorm(500, 120, 10)
y <- ifelse(treat=='a', (age-50)*.05, abs(age-50)*.08) + 3*(treat=='c') +

pmax(bp, 100)*.09 + rnorm(500)
f <- ols(y ~ treat*lsp(age,50) + rcs(bp,4))
print(names(coef(f)), quote=FALSE)
specs(f)
anova(f)
an <- anova(f)
options(digits=3)
print(an, 'subscripts')
print(an, 'dots')

an <- anova(f, test='Chisq', ss=FALSE)
plot(0:1) # make some plot
tab <- pantext(an, 1.2, .6, lattice=FALSE, fontfamily='Helvetica')
create function to write table; usually omit fontfamily
tab() # execute it; could do tab(cex=.65)
plot(an) # new plot - dot chart of chisq-d.f.
Specify plot(an, trans=sqrt) to use a square root scale for this plot
latex(an) # nice printout - creates anova.f.tex

Example to save partial R^2 for all predictors, along with overall
R^2, from two separate fits, and to combine them with ggplot2

require(ggplot2)

anova.rms 11

set.seed(1)
n <- 100
x1 <- runif(n)
x2 <- runif(n)
y <- (x1-.5)^2 + x2 + runif(n)
group <- c(rep('a', n/2), rep('b', n/2))
A <- NULL
for(g in c('a','b')) {

f <- ols(y ~ pol(x1,2) + pol(x2,2) + pol(x1,2) %ia% pol(x2,2),
subset=group==g)

a <- plot(anova(f),
what='partial R2', pl=FALSE, rm.totals=FALSE, sort='none')

a <- a[-grep('NONLINEAR', names(a))]
d <- data.frame(group=g, Variable=factor(names(a), names(a)),

partialR2=unname(a))
A <- rbind(A, d)

}
ggplot(A, aes(x=partialR2, y=Variable)) + geom_point() +

facet_wrap(~ group) + xlab(ex <- expression(partial~R^2)) +
scale_y_discrete(limits=rev)

ggplot(A, aes(x=partialR2, y=Variable, color=group)) + geom_point() +
xlab(ex <- expression(partial~R^2)) +
scale_y_discrete(limits=rev)

Suppose that a researcher wants to make a big deal about a variable
because it has the highest adjusted chi-square. We use the
bootstrap to derive 0.95 confidence intervals for the ranks of all
the effects in the model. We use the plot method for anova, with
pl=FALSE to suppress actual plotting of chi-square - d.f. for each
bootstrap repetition.
It is important to tell plot.anova.rms not to sort the results, or
every bootstrap replication would have ranks of 1,2,3,... for the stats.

n <- 300
set.seed(1)
d <- data.frame(x1=runif(n), x2=runif(n), x3=runif(n),

x4=runif(n), x5=runif(n), x6=runif(n), x7=runif(n),
x8=runif(n), x9=runif(n), x10=runif(n), x11=runif(n),
x12=runif(n))

d$y <- with(d, 1*x1 + 2*x2 + 3*x3 + 4*x4 + 5*x5 + 6*x6 +
7*x7 + 8*x8 + 9*x9 + 10*x10 + 11*x11 +
12*x12 + 9*rnorm(n))

f <- ols(y ~ x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12, data=d)
B <- 20 # actually use B=1000
ranks <- matrix(NA, nrow=B, ncol=12)
rankvars <- function(fit)

rank(plot(anova(fit), sort='none', pl=FALSE))
Rank <- rankvars(f)
for(i in 1:B) {

j <- sample(1:n, n, TRUE)
bootfit <- update(f, data=d, subset=j)
ranks[i,] <- rankvars(bootfit)

12 as.data.frame.Ocens

}
lim <- t(apply(ranks, 2, quantile, probs=c(.025,.975)))
predictor <- factor(names(Rank), names(Rank))
w <- data.frame(predictor, Rank, lower=lim[,1], upper=lim[,2])
ggplot(w, aes(x=predictor, y=Rank)) + geom_point() + coord_flip() +

scale_y_continuous(breaks=1:12) +
geom_errorbar(aes(ymin=lim[,1], ymax=lim[,2]), width=0)

as.data.frame.Ocens Convert ‘Ocens‘ Object to Data Frame to Facilitate Subset

Description

Converts an ‘Ocens‘ object to a data frame so that subsetting will preserve all needed attributes

Usage

S3 method for class 'Ocens'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

Arguments

x an ‘Ocens‘ object

row.names optional vector of row names

optional set to ‘TRUE‘ if needed

... ignored

Value

data frame containing a 2-column integer matrix with attributes

Author(s)

Frank Harrell

bj 13

bj Buckley-James Multiple Regression Model

Description

bj fits the Buckley-James distribution-free least squares multiple regression model to a possibly
right-censored response variable. This model reduces to ordinary least squares if there is no cen-
soring. By default, model fitting is done after taking logs of the response variable. bj uses the rms
class for automatic anova, fastbw, validate, Function, nomogram, summary, plot, bootcov, and
other functions. The bootcov function may be worth using with bj fits, as the properties of the
Buckley-James covariance matrix estimator are not fully known for strange censoring patterns.

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html". When using html with Quarto or RMark-
down, results='asis' need not be written in the chunk header.

The residuals.bj function exists mainly to compute residuals and to censor them (i.e., return
them as Surv objects) just as the original failure time variable was censored. These residuals are
useful for checking to see if the model also satisfies certain distributional assumptions. To get these
residuals, the fit must have specified y=TRUE.

The bjplot function is a special plotting function for objects created by bj with x=TRUE, y=TRUE
in effect. It produces three scatterplots for every covariate in the model: the first plots the original
situation, where censored data are distingushed from non-censored data by a different plotting sym-
bol. In the second plot, called a renovated plot, vertical lines show how censored data were changed
by the procedure, and the third is equal to the second, but without vertical lines. Imputed data are
again distinguished from the non-censored by a different symbol.

The validate method for bj validates the Somers’ Dxy rank correlation between predicted and
observed responses, accounting for censoring.

The primary fitting function for bj is bj.fit, which does not allow missing data and expects a full
design matrix as input.

Usage

bj(formula, data=environment(formula), subset, na.action=na.delete,
link="log", control, method='fit', x=FALSE, y=FALSE,
time.inc)

S3 method for class 'bj'
print(x, digits=4, long=FALSE, coefs=TRUE,
title="Buckley-James Censored Data Regression", ...)

S3 method for class 'bj'
residuals(object, type=c("censored","censored.normalized"),...)

bjplot(fit, which=1:dim(X)[[2]])

S3 method for class 'bj'

14 bj

validate(fit, method="boot", B=40,
bw=FALSE,rule="aic",type="residual",sls=.05,aics=0,
force=NULL, estimates=TRUE, pr=FALSE,

tol=1e-7, rel.tolerance=1e-3, maxiter=15, ...)

bj.fit(x, y, control)

Arguments

formula an S statistical model formula. Interactions up to third order are supported. The
left hand side must be a Surv object.

data, subset, na.action
the usual statistical model fitting arguments

fit a fit created by bj, required for all functions except bj.

x a design matrix with or without a first column of ones, to pass to bj.fit. All
models will have an intercept. For print.bj is a result of bj. For bj, set x=TRUE
to include the design matrix in the fit object.

y a Surv object to pass to bj.fit as the two-column response variable. Only right
censoring is allowed, and there need not be any censoring. For bj, set y to TRUE
to include the two-column response matrix, with the event/censoring indicator
in the second column. The first column will be transformed according to link,
and depending on na.action, rows with missing data in the predictors or the
response will be deleted.

link set to, for example, "log" (the default) to model the log of the response, or
"identity" to model the untransformed response.

control a list containing any or all of the following components: iter.max (maximum
number of iterations allowed, default is 20), eps (convergence criterion: concer-
gence is assumed when the ratio of sum of squared errors from one iteration to
the next is between 1-eps and 1+eps), trace (set to TRUE to monitor iterations),
tol (matrix singularity criterion, default is 1e-7), and ’max.cycle’ (in case of
nonconvergence the program looks for a cycle that repeats itself, default is 30).

method set to "model.frame" or "model.matrix" to return one of those objects rather
than the model fit.

time.inc setting for default time spacing. Default is 30 if time variable has units="Day",
1 otherwise, unless maximum follow-up time < 1. Then max time/10 is used
as time.inc. If time.inc is not given and max time/default time.inc is > 25,
time.inc is increased.

digits number of significant digits to print if not 4.

long set to TRUE to print the correlation matrix for parameter estimates

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

title a character string title to be passed to prModFit

object the result of bj

bj 15

type type of residual desired. Default is censored unnormalized residuals, defined as
link(Y) - linear.predictors, where the link function was usually the log function.
You can specify type="censored.normalized" to divide the residuals by the
estimate of sigma.

which vector of integers or character strings naming elements of the design matrix (the
names of the original predictors if they entered the model linearly) for which to
have bjplot make plots of only the variables listed in which (names or num-
bers).

B, bw, rule, sls, aics, force, estimates, pr, tol, rel.tolerance, maxiter
see predab.resample

... ignored for print; passed through to predab.resample for validate

Details

The program implements the algorithm as described in the original article by Buckley & James.
Also, we have used the original Buckley & James prescription for computing variance/covariance
estimator. This is based on non-censored observations only and does not have any theoretical jus-
tification, but has been shown in simulation studies to behave well. Our experience confirms this
view. Convergence is rather slow with this method, so you may want to increase the number of
iterations. Our experience shows that often, in particular with high censoring, 100 iterations is not
too many. Sometimes the method will not converge, but will instead enter a loop of repeating values
(this is due to the discrete nature of Kaplan and Meier estimator and usually happens with small
sample sizes). The program will look for such a loop and return the average betas. It will also issue
a warning message and give the size of the cycle (usually less than 6).

Value

bj returns a fit object with similar information to what survreg, psm, cph would store as well as
what rms stores and units and time.inc. residuals.bj returns a Surv object. One of the com-
ponents of the fit object produced by bj (and bj.fit) is a vector called stats which contains the
following names elements: "Obs", "Events", "d.f.","error d.f.","sigma","g". Here sigma
is the estimate of the residual standard deviation. g is the g-index. If the link function is "log", the
g-index on the anti-log scale is also returned as gr.

Author(s)

Janez Stare
Department of Biomedical Informatics
Ljubljana University
Ljubljana, Slovenia
<janez.stare@mf.uni-lj.si>

Harald Heinzl
Department of Medical Computer Sciences
Vienna University
Vienna, Austria
<harald.heinzl@akh-wien.ac.at>

Frank Harrell
Department of Biostatistics

16 bj

Vanderbilt University
<fh@fharrell.com>

References

Buckley JJ, James IR. Linear regression with censored data. Biometrika 1979; 66:429–36.

Miller RG, Halpern J. Regression with censored data. Biometrika 1982; 69: 521–31.

James IR, Smith PJ. Consistency results for linear regression with censored data. Ann Statist 1984;
12: 590–600.

Lai TL, Ying Z. Large sample theory of a modified Buckley-James estimator for regression analysis
with censored data. Ann Statist 1991; 19: 1370–402.

Hillis SL. Residual plots for the censored data linear regression model. Stat in Med 1995; 14:
2023–2036.

Jin Z, Lin DY, Ying Z. On least-squares regression with censored data. Biometrika 2006; 93:147–
161.

See Also

rms, psm, survreg, cph, Surv, na.delete, na.detail.response, datadist, rcorr.cens, GiniMd,
prModFit, dxy.cens

Examples

require(survival)
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
ftime <- 10*rexp(200)
stroke <- ifelse(ftime > 10, 0, 1)
ftime <- pmin(ftime, 10)
units(ftime) <- "Month"
age <- rnorm(200, 70, 10)
hospital <- factor(sample(c('a','b'),200,TRUE))
dd <- datadist(age, hospital)
options(datadist="dd")

Prior to rms 6.0 and R 4.0 the following worked with 5 knots
f <- bj(Surv(ftime, stroke) ~ rcs(age,3) + hospital, x=TRUE, y=TRUE)
add link="identity" to use a censored normal regression model instead
of a lognormal one
anova(f)
fastbw(f)
validate(f, B=15)
plot(Predict(f, age, hospital))
needs datadist since no explicit age,hosp.
coef(f) # look at regression coefficients
coef(psm(Surv(ftime, stroke) ~ rcs(age,3) + hospital, dist='lognormal'))

compare with coefficients from likelihood-based
log-normal regression model
use dist='gau' not under R

bootBCa 17

r <- resid(f, 'censored.normalized')
survplot(npsurv(r ~ 1), conf='none')

plot Kaplan-Meier estimate of
survival function of standardized residuals

survplot(npsurv(r ~ cut2(age, g=2)), conf='none')
may desire both strata to be n(0,1)

options(datadist=NULL)

bootBCa BCa Bootstrap on Existing Bootstrap Replicates

Description

This functions constructs an object resembling one produced by the boot package’s boot func-
tion, and runs that package’s boot.ci function to compute BCa and percentile confidence limits.
bootBCa can provide separate confidence limits for a vector of statistics when estimate has length
greater than 1. In that case, estimates must have the same number of columns as estimate has
values.

Usage

bootBCa(estimate, estimates, type=c('percentile','bca','basic'),
n, seed, conf.int = 0.95)

Arguments

estimate original whole-sample estimate

estimates vector of bootstrap estimates

type type of confidence interval, defaulting to nonparametric percentile

n original number of observations

seed .Random.seem in effect before bootstrap estimates were run

conf.int confidence level

Value

a 2-vector if estimate is of length 1, otherwise a matrix with 2 rows and number of columns equal
to the length of estimate

Note

You can use if(!exists('.Random.seed')) runif(1) before running your bootstrap to make
sure that .Random.seed will be available to bootBCa.

Author(s)

Frank Harrell

18 bootcov

See Also

boot.ci

Examples

Not run:
x1 <- runif(100); x2 <- runif(100); y <- sample(0:1, 100, TRUE)
f <- lrm(y ~ x1 + x2, x=TRUE, y=TRUE)
seed <- .Random.seed
b <- bootcov(f)
Get estimated log odds at x1=.4, x2=.6
X <- cbind(c(1,1), x1=c(.4,2), x2=c(.6,3))
est <- X
ests <- t(X
bootBCa(est, ests, n=100, seed=seed)
bootBCa(est, ests, type='bca', n=100, seed=seed)
bootBCa(est, ests, type='basic', n=100, seed=seed)

End(Not run)

bootcov Bootstrap Covariance and Distribution for Regression Coefficients

Description

bootcov computes a bootstrap estimate of the covariance matrix for a set of regression coefficients
from ols, lrm, cph, psm, Rq, and any other fit where x=TRUE, y=TRUE was used to store the data
used in making the original regression fit and where an appropriate fitter function is provided
here. The estimates obtained are not conditional on the design matrix, but are instead unconditional
estimates. For small sample sizes, this will make a difference as the unconditional variance esti-
mates are larger. This function will also obtain bootstrap estimates corrected for cluster sampling
(intra-cluster correlations) when a "working independence" model was used to fit data which were
correlated within clusters. This is done by substituting cluster sampling with replacement for the
usual simple sampling with replacement. bootcov has an option (coef.reps) that causes all of
the regression coefficient estimates from all of the bootstrap re-samples to be saved, facilitating
computation of nonparametric bootstrap confidence limits and plotting of the distributions of the
coefficient estimates (using histograms and kernel smoothing estimates).

The loglik option facilitates the calculation of simultaneous confidence regions from quantities
of interest that are functions of the regression coefficients, using the method of Tibshirani(1996).
With Tibshirani’s method, one computes the objective criterion (-2 log likelihood evaluated at the
bootstrap estimate of β but with respect to the original design matrix and response vector) for the
original fit as well as for all of the bootstrap fits. The confidence set of the regression coefficients is
the set of all coefficients that are associated with objective function values that are less than or equal
to say the 0.95 quantile of the vector of B + 1 objective function values. For the coefficients satis-
fying this condition, predicted values are computed at a user-specified design matrix X, and minima
and maxima of these predicted values (over the qualifying bootstrap repetitions) are computed to
derive the final simultaneous confidence band.

bootcov 19

The bootplot function takes the output of bootcov and either plots a histogram and kernel density
estimate of specified regression coefficients (or linear combinations of them through the use of a
specified design matrix X), or a qqnorm plot of the quantities of interest to check for normality of the
maximum likelihood estimates. bootplot draws vertical lines at specified quantiles of the bootstrap
distribution, and returns these quantiles for possible printing by the user. Bootstrap estimates may
optionally be transformed by a user-specified function fun before plotting.

The confplot function also uses the output of bootcov but to compute and optionally plot non-
parametric bootstrap pointwise confidence limits or (by default) Tibshirani (1996) simultaneous
confidence sets. A design matrix must be specified to allow confplot to compute quantities of
interest such as predicted values across a range of values or differences in predicted values (plots of
effects of changing one or more predictor variable values).

bootplot and confplot are actually generic functions, with the particular functions bootplot.bootcov
and confplot.bootcov automatically invoked for bootcov objects.

A service function called histdensity is also provided (for use with bootplot). It runs hist and
density on the same plot, using twice the number of classes than the default for hist, and 1.5
times the width than the default used by density.

A comprehensive example demonstrates the use of all of the functions.

When bootstrapping an ordinal model for a numeric Y (when ytarget is not specified), some
original distinct Y values are not sampled so there will be fewer intercepts in the model. bootcov
linearly interpolates and extrapolates to fill in the missing intercepts so that the intercepts are aligned
over bootstrap samples. Also see the Hmisc ordGroupBoot function.

Usage

bootcov(fit, cluster, B=200, fitter,
coef.reps=TRUE, loglik=FALSE,
pr=FALSE, group=NULL, stat=NULL,
seed=sample(10000, 1), ytarget=NULL, ...)

bootplot(obj, which=1 : ncol(Coef), X,
conf.int=c(.9,.95,.99),
what=c('density', 'qqnorm', 'box'),
fun=function(x) x, labels., ...)

confplot(obj, X, against,
method=c('simultaneous','pointwise'),
conf.int=0.95, fun=function(x)x,
add=FALSE, lty.conf=2, ...)

histdensity(y, xlab, nclass, width, mult.width=1, ...)

Arguments

fit a fit object containing components x and y. For fits from cph, the "strata"
attribute of the x component is used to obtain the vector of stratum codes.

20 bootcov

obj an object created by bootcov with coef.reps=TRUE.

X a design matrix specified to confplot. See predict.rms or contrast.rms.
For bootplot, X is optional.

y a vector to pass to histdensity. NAs are ignored.

cluster a variable indicating groupings. cluster may be any type of vector (factor,
character, integer). Unique values of cluster indicate possibly correlated group-
ings of observations. Note the data used in the fit and stored in fit$x and fit$y
may have had observations containing missing values deleted. It is assumed
that if there were any NAs, an naresid function exists for the class of fit.
This function restores NAs so that the rows of the design matrix coincide with
cluster.

B number of bootstrap repetitions. Default is 200.

fitter the name of a function with arguments (x,y) that will fit bootstrap samples.
Default is taken from the class of fit if it is ols, lrm, cph, psm, Rq.

coef.reps set to TRUE if you want to store a matrix of all bootstrap regression coefficient
estimates in the returned component boot.Coef.

loglik set to TRUE to store -2 log likelihoods for each bootstrap model, evaluated against
the original x and y data. The default is to do this when coef.reps is specified as
TRUE. The use of loglik=TRUE assumes that an oos.loglik method exists for
the type of model being analyzed, to calculate out-of-sample -2 log likelihoods
(see rmsMisc). After the B -2 log likelihoods (stored in the element named
boot.loglik in the returned fit object), the B+1 element is the -2 log likelihood
for the original model fit.

pr set to TRUE to print the current sample number to monitor progress.

group a grouping variable used to stratify the sample upon bootstrapping. This allows
one to handle k-sample problems, i.e., each bootstrap sample will be forced to
select the same number of observations from each level of group as the number
appearing in the original dataset. You may specify both group and cluster.

stat a single character string specifying the name of a stats element produced by
the fitting function to save over the bootstrap repetitions. The vector of saved
statistics will be in the boot.stats part of the list returned by bootcov.

seed random number seed for set.seed, defaults to a random integer between 1 and
10000; user should specify a constant for reproducibility

ytarget when using orm, set ytarget=NA to save only the intercept that corresponds to
the median Y. Set ytarget to a specific value (including a character value) to
use a different target for the sole retained intercept.

which one or more integers specifying which regression coefficients to plot for bootplot

conf.int a vector (for bootplot, default is c(.9,.95,.99)) or scalar (for confplot,
default is .95) confidence level.

what for bootplot, specifies whether a density or a q-q plot is made, a ggplot2 is
used to produce a box plot of all coefficients over the bootstrap reps

fun for bootplot or confplot specifies a function used to translate the quantities
of interest before analysis. A common choice is fun=exp to compute anti-logs,
e.g., odds ratios.

bootcov 21

labels. a vector of labels for labeling the axes in plots produced by bootplot. Default
is row names of X if there are any, or sequential integers.

... For bootcov, extra arguments to pass to any of the fitting functions. For bootplot
these are optional arguments passed to histdensity. Also may be optional ar-
guments passed to plot by confplot or optional arguments passed to hist from
histdensity, such as xlim and breaks. The argument probability=TRUE is
always passed to hist.

against For confplot, specifying against causes a plot to be made (or added to). The
against variable is associated with rows of X and is used as the x-coordinates.

method specifies whether "pointwise" or "simultaneous" confidence regions are de-
rived by confplot. The default is simultaneous.

add set to TRUE to add to an existing plot, for confplot

lty.conf line type for plotting confidence bands in confplot. Default is 2 for dotted
lines.

xlab label for x-axis for histdensity. Default is label attribute or argument name
if there is no label.

nclass passed to hist if present

width passed to density if present

mult.width multiplier by which to adjust the default width passed to density. Default is 1.

Details

If the fit has a scale parameter (e.g., a fit from psm), the log of the individual bootstrap scale estimates
are added to the vector of parameter estimates and and column and row for the log scale are added
to the new covariance matrix (the old covariance matrix also has this row and column).

For Rq fits, the tau, method, and hs arguments are taken from the original fit.

Value

a new fit object with class of the original object and with the element orig.var added. orig.var is
the covariance matrix of the original fit. Also, the original var component is replaced with the new
bootstrap estimates. The component boot.coef is also added. This contains the mean bootstrap
estimates of regression coefficients (with a log scale element added if applicable). boot.Coef is
added if coef.reps=TRUE. boot.loglik is added if loglik=TRUE. If stat is specified an additional
vector boot.stats will be contained in the returned object. B contains the number of successfully
fitted bootstrap resamples. A component clusterInfo is added to contain elements name and n
holding the name of the cluster variable and the number of clusters.

bootplot returns a (possible matrix) of quantities of interest and the requested quantiles of them.
confplot returns three vectors: fitted, lower, and upper.

Side Effects

bootcov prints if pr=TRUE

22 bootcov

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

Bill Pikounis
Biometrics Research Department
Merck Research Laboratories
https://billpikounis.com/wpb/

References

Feng Z, McLerran D, Grizzle J (1996): A comparison of statistical methods for clustered data
analysis with Gaussian error. Stat in Med 15:1793–1806.

Tibshirani R, Knight K (1996): Model search and inference by bootstrap "bumping". Department
of Statistics, University of Toronto. Technical report available from
http://www-stat.stanford.edu/~tibs/. Presented at the Joint Statistical Meetings, Chicago, August
1996.

See Also

ordGroupBoot, robcov, sample, rms, lm.fit, lrm.fit, orm.fit, survival-internal, predab.resample,
rmsMisc, Predict, gendata, contrast.rms, Predict, setPb, multiwayvcov::cluster.boot

Examples

set.seed(191)
x <- exp(rnorm(200))
logit <- 1 + x/2
y <- ifelse(runif(200) <= plogis(logit), 1, 0)
f <- lrm(y ~ pol(x,2), x=TRUE, y=TRUE)
g <- bootcov(f, B=50, pr=TRUE, seed=3)
anova(g) # using bootstrap covariance estimates
fastbw(g) # using bootstrap covariance estimates
beta <- g$boot.Coef[,1]
hist(beta, nclass=15) #look at normality of parameter estimates
qqnorm(beta)
bootplot would be better than these last two commands

A dataset contains a variable number of observations per subject,
and all observations are laid out in separate rows. The responses
represent whether or not a given segment of the coronary arteries
is occluded. Segments of arteries may not operate independently
in the same patient. We assume a "working independence model" to
get estimates of the coefficients, i.e., that estimates assuming
independence are reasonably efficient. The job is then to get
unbiased estimates of variances and covariances of these estimates.

https://billpikounis.com/wpb/

bootcov 23

set.seed(2)
n.subjects <- 30
ages <- rnorm(n.subjects, 50, 15)
sexes <- factor(sample(c('female','male'), n.subjects, TRUE))
logit <- (ages-50)/5
prob <- plogis(logit) # true prob not related to sex
id <- sample(1:n.subjects, 300, TRUE) # subjects sampled multiple times
table(table(id)) # frequencies of number of obs/subject
age <- ages[id]
sex <- sexes[id]
In truth, observations within subject are independent:
y <- ifelse(runif(300) <= prob[id], 1, 0)
f <- lrm(y ~ lsp(age,50)*sex, x=TRUE, y=TRUE)
g <- bootcov(f, id, B=50, seed=3) # usually do B=200 or more
diag(g$var)/diag(f$var)
add ,group=w to re-sample from within each level of w
anova(g) # cluster-adjusted Wald statistics
fastbw(g) # cluster-adjusted backward elimination
plot(Predict(g, age=30:70, sex='female')) # cluster-adjusted confidence bands

Get design effects based on inflation of the variances when compared
with bootstrap estimates which ignore clustering
g2 <- bootcov(f, B=50, seed=3)
diag(g$var)/diag(g2$var)

Get design effects based on pooled tests of factors in model
anova(g2)[,1] / anova(g)[,1]

Simulate binary data where there is a strong
age x sex interaction with linear age effects
for both sexes, but where not knowing that
we fit a quadratic model. Use the bootstrap
to get bootstrap distributions of various
effects, and to get pointwise and simultaneous
confidence limits

set.seed(71)
n <- 500
age <- rnorm(n, 50, 10)
sex <- factor(sample(c('female','male'), n, rep=TRUE))
L <- ifelse(sex=='male', 0, .1*(age-50))
y <- ifelse(runif(n)<=plogis(L), 1, 0)

f <- lrm(y ~ sex*pol(age,2), x=TRUE, y=TRUE)
b <- bootcov(f, B=50, loglik=TRUE, pr=TRUE, seed=3) # better: B=500

24 bootcov

par(mfrow=c(2,3))
Assess normality of regression estimates
bootplot(b, which=1:6, what='qq')
They appear somewhat non-normal

Plot histograms and estimated densities
for 6 coefficients
w <- bootplot(b, which=1:6)
Print bootstrap quantiles
w$quantiles

Show box plots for bootstrap reps for all coefficients
bootplot(b, what='box')

Estimate regression function for females
for a sequence of ages
ages <- seq(25, 75, length=100)
label(ages) <- 'Age'

Plot fitted function and pointwise normal-
theory confidence bands
par(mfrow=c(1,1))
p <- Predict(f, age=ages, sex='female')
plot(p)
Save curve coordinates for later automatic
labeling using labcurve in the Hmisc library
curves <- vector('list',8)
curves[[1]] <- with(p, list(x=age, y=lower))
curves[[2]] <- with(p, list(x=age, y=upper))

Add pointwise normal-distribution confidence
bands using unconditional variance-covariance
matrix from the 500 bootstrap reps
p <- Predict(b, age=ages, sex='female')
curves[[3]] <- with(p, list(x=age, y=lower))
curves[[4]] <- with(p, list(x=age, y=upper))

dframe <- expand.grid(sex='female', age=ages)
X <- predict(f, dframe, type='x') # Full design matrix

Add pointwise bootstrap nonparametric
confidence limits
p <- confplot(b, X=X, against=ages, method='pointwise',

add=TRUE, lty.conf=4)
curves[[5]] <- list(x=ages, y=p$lower)
curves[[6]] <- list(x=ages, y=p$upper)

bootcov 25

Add simultaneous bootstrap confidence band
p <- confplot(b, X=X, against=ages, add=TRUE, lty.conf=5)
curves[[7]] <- list(x=ages, y=p$lower)
curves[[8]] <- list(x=ages, y=p$upper)
lab <- c('a','a','b','b','c','c','d','d')
labcurve(curves, lab, pl=TRUE)

Now get bootstrap simultaneous confidence set for
female:male odds ratios for a variety of ages

dframe <- expand.grid(age=ages, sex=c('female','male'))
X <- predict(f, dframe, type='x') # design matrix
f.minus.m <- X[1:100,] - X[101:200,]
First 100 rows are for females. By subtracting
design matrices are able to get Xf*Beta - Xm*Beta
= (Xf - Xm)*Beta

confplot(b, X=f.minus.m, against=ages,
method='pointwise', ylab='F:M Log Odds Ratio')

confplot(b, X=f.minus.m, against=ages,
lty.conf=3, add=TRUE)

contrast.rms makes it easier to compute the design matrix for use
in bootstrapping contrasts:

f.minus.m <- contrast(f, list(sex='female',age=ages),
list(sex='male', age=ages))$X

confplot(b, X=f.minus.m)

For a quadratic binary logistic regression model use bootstrap
bumping to estimate coefficients under a monotonicity constraint
set.seed(177)
n <- 400
x <- runif(n)
logit <- 3*(x^2-1)
y <- rbinom(n, size=1, prob=plogis(logit))
f <- lrm(y ~ pol(x,2), x=TRUE, y=TRUE)
k <- coef(f)
k
vertex <- -k[2]/(2*k[3])
vertex

Outside [0,1] so fit satisfies monotonicity constraint within
x in [0,1], i.e., original fit is the constrained MLE

26 bootcov

g <- bootcov(f, B=50, coef.reps=TRUE, loglik=TRUE, seed=3)
bootcoef <- g$boot.Coef # 100x3 matrix
vertex <- -bootcoef[,2]/(2*bootcoef[,3])
table(cut2(vertex, c(0,1)))
mono <- !(vertex >= 0 & vertex <= 1)
mean(mono) # estimate of Prob{monotonicity in [0,1]}

var(bootcoef) # var-cov matrix for unconstrained estimates
var(bootcoef[mono,]) # for constrained estimates

Find second-best vector of coefficient estimates, i.e., best
from among bootstrap estimates
g$boot.Coef[order(g$boot.loglik[-length(g$boot.loglik)])[1],]
Note closeness to MLE

Not run:
Get the bootstrap distribution of the difference in two ROC areas for
two binary logistic models fitted on the same dataset. This analysis
does not adjust for the bias ROC area (C-index) due to overfitting.
The same random number seed is used in two runs to enforce pairing.

set.seed(17)
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- sample(0:1, 100, TRUE)
f <- lrm(y ~ x1, x=TRUE, y=TRUE)
g <- lrm(y ~ x1 + x2, x=TRUE, y=TRUE)
f <- bootcov(f, stat='C', seed=4)
g <- bootcov(g, stat='C', seed=4)
dif <- g$boot.stats - f$boot.stats
hist(dif)
quantile(dif, c(.025,.25,.5,.75,.975))
Compute a z-test statistic. Note that comparing ROC areas is far less
powerful than likelihood or Brier score-based methods
z <- (g$stats['C'] - f$stats['C'])/sd(dif)
names(z) <- NULL
c(z=z, P=2*pnorm(-abs(z)))

For an ordinal y with some distinct values of y not very popular, let
bootcov use linear extrapolation to fill in intercepts for non-sampled levels

f <- orm(y ~ x1 + x2, x=TRUE, y=TRUE)
bootcov(f, B=200)

Instead of filling in missing intercepts, perform minimum binning so that
there is a 0.9999 probability that all distinct Y values will be represented
in bootstrap samples
y <- ordGroupBoot(y)
f <- orm(y ~ x1 + x2, x=TRUE, y=TRUE)
bootcov(f, B=200)

bplot 27

Instead just keep one intercept for all bootstrap fits - the intercept
that pertains to y=10

bootcov(f, B=200, ytarget=10) # use ytarget=NA for the median

End(Not run)

bplot 3-D Plots Showing Effects of Two Continuous Predictors in a Regres-
sion Model Fit

Description

Uses lattice graphics and the output from Predict to plot image, contour, or perspective plots show-
ing the simultaneous effects of two continuous predictor variables. Unless formula is provided, the
x-axis is constructed from the first variable listed in the call to Predict and the y-axis variable
comes from the second.

The perimeter function is used to generate the boundary of data to plot when a 3-d plot is made.
It finds the area where there are sufficient data to generate believable interaction fits.

Usage

bplot(x, formula, lfun=lattice::levelplot, xlab, ylab, zlab,
adj.subtitle=!info$ref.zero, cex.adj=.75, cex.lab=1,
perim, showperim=FALSE,
zlim=range(yhat, na.rm=TRUE), scales=list(arrows=FALSE),
xlabrot, ylabrot, zlabrot=90, ...)

perimeter(x, y, xinc=diff(range(x))/10, n=10, lowess.=TRUE)

Arguments

x for bplot, an object created by Predict for which two or more numeric predic-
tors varied. For perim is the first variable of a pair of predictors forming a 3-d
plot.

formula a formula of the form f(yhat) ~ x*y optionally followed by |a*b*c which are
1-3 paneling variables that were specified to Predict. f can represent any R
function of a vector that produces a vector. If the left hand side of the formula
is omitted, yhat will be inserted. If formula is omitted, it will be inferred from
the first two variables that varied in the call to Predict.

lfun a high-level lattice plotting function that takes formulas of the form z ~ x*y. The
default is an image plot (levelplot). Other common choices are wireframe for
perspective plot or contourplot for a contour plot.

xlab Character string label for x-axis. Default is given by Predict.

ylab Character string abel for y-axis

28 bplot

zlab Character string z-axis label for perspective (wireframe) plots. Default comes
from Predict. zlab will often be specified if fun was specified to Predict.

adj.subtitle Set to FALSE to suppress subtitling the graph with the list of settings of non-
graphed adjustment values. Default is TRUE if there are non-plotted adjustment
variables and ref.zero was not used.

cex.adj cex parameter for size of adjustment settings in subtitles. Default is 0.75
cex.lab cex parameter for axis labels. Default is 1.
perim names a matrix created by perimeter when used for 3-d plots of two continu-

ous predictors. When the combination of variables is outside the range in perim,
that section of the plot is suppressed. If perim is omitted, 3-d plotting will use
the marginal distributions of the two predictors to determine the plotting region,
when the grid is not specified explicitly in variables. When instead a series of
curves is being plotted, perim specifies a function having two arguments. The
first is the vector of values of the first variable that is about to be plotted on the
x-axis. The second argument is the single value of the variable representing dif-
ferent curves, for the current curve being plotted. The function’s returned value
must be a logical vector whose length is the same as that of the first argument,
with values TRUE if the corresponding point should be plotted for the current
curve, FALSE otherwise. See one of the latter examples.

showperim set to TRUE if perim is specified and you want to show the actual perimeter used.
zlim Controls the range for plotting in the z-axis if there is one. Computed by default.
scales see wireframe

xlabrot rotation angle for the x-axis. Default is 30 for wireframe and 0 otherwise.
ylabrot rotation angle for the y-axis. Default is -40 for wireframe, 90 for contourplot

or levelplot, and 0 otherwise.
zlabrot rotation angle for z-axis rotation for wireframe plots
... other arguments to pass to the lattice function
y second variable of the pair for perim. If omitted, x is assumed to be a list with

both x and y components.
xinc increment in x over which to examine the density of y in perimeter

n within intervals of x for perimeter, takes the informative range of y to be the
nth smallest to the nth largest values of y. If there aren’t at least 2n y values in
the x interval, no y ranges are used for that interval.

lowess. set to FALSE to not have lowess smooth the data perimeters

Details

perimeter is a kind of generalization of datadist for 2 continuous variables. First, the n smallest
and largest x values are determined. These form the lowest and highest possible xs to display.
Then x is grouped into intervals bounded by these two numbers, with the interval widths defined by
xinc. Within each interval, y is sorted and the nth smallest and largest y are taken as the interval
containing sufficient data density to plot interaction surfaces. The interval is ignored when there are
insufficient y values. When the data are being readied for persp, bplot uses the approx function to
do linear interpolation of the y-boundaries as a function of the x values actually used in forming the
grid (the values of the first variable specified to Predict). To make the perimeter smooth, specify
lowess.=TRUE to perimeter.

bplot 29

Value

perimeter returns a matrix of class perimeter. This outline can be conveniently plotted by
lines.perimeter.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

datadist, Predict, rms, rmsMisc, levelplot, contourplot, wireframe

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

p <- Predict(fit, age, cholesterol, sex, np=50) # vary sex last
require(lattice)
bplot(p) # image plot for age, cholesterol with color

coming from yhat; use default ranges for
both continuous predictors; two panels (for sex)

bplot(p, lfun=wireframe) # same as bplot(p,,wireframe)
View from different angle, change y label orientation accordingly
Default is z=40, x=-60
bplot(p,, wireframe, screen=list(z=40, x=-75), ylabrot=-25)
bplot(p,, contourplot) # contour plot
bounds <- perimeter(age, cholesterol, lowess=TRUE)
plot(age, cholesterol) # show bivariate data density and perimeter

30 calibrate

lines(bounds[,c('x','ymin')]); lines(bounds[,c('x','ymax')])
p <- Predict(fit, age, cholesterol) # use only one sex
bplot(p, perim=bounds) # draws image() plot

don't show estimates where data are sparse
doesn't make sense here since vars don't interact

bplot(p, plogis(yhat) ~ age*cholesterol) # Probability scale
options(datadist=NULL)

calibrate Resampling Model Calibration

Description

Uses bootstrapping or cross-validation to get bias-corrected (overfitting- corrected) estimates of
predicted vs. observed values based on subsetting predictions into intervals or better on nonpara-
metric or adaptive parametric smoothers. There are calibration functions for Cox (cph), parametric
survival models (psm), binary and ordinal logistic models (lrm, orm) and ordinary least squares
(ols). For survival models and orm, "predicted" means predicted survival probability at a single
time point, and "observed" refers to the corresponding Kaplan-Meier survival estimate, stratifying
on intervals of predicted survival, or, the predicted survival probability as a function of transformed
predicted survival probability using the flexible hazard regression approach or for orm and probably
better, smoothed overlapping moving Kaplan-Meier estimates (see the val.surv.args argument
and val.surv function for details). Nonparametric calibration curves are estimated over a regular
sequence of predicted values. The fit must have specified x=TRUE, y=TRUE.

See predab.resample for information about confidence limits. Confidence limits for bootstrap
overfitting-corrected calibration curves are not computed for psm fits. This is because of calibrate.psm
averages over multiple bootstrap loops. This can probably be changed.

The print and plot methods print the mean absolute error in predictions, the mean squared error,
and the 0.9 quantile of the absolute error. Here, error refers to the difference between the predicted
values and the corresponding bias-corrected calibrated values.

Below, calibrate.default is for the ols and lrm.

Usage

calibrate(fit, ...)
Default S3 method:
calibrate(fit, predy,
method=c("boot","crossvalidation",".632","randomization"),
B=40, bw=FALSE, rule=c("aic","p"),
type=c("residual","individual"),
sls=.05, aics=0, force=NULL, estimates=TRUE, pr=FALSE, kint,
smoother="lowess", digits=NULL, ...)

S3 method for class 'cph'
calibrate(fit, cmethod=c('hare', 'KM'),
method="boot", u, m=150, pred, cuts, B=40,
bw=FALSE, rule="aic", type="residual", sls=0.05, aics=0, force=NULL,

calibrate 31

estimates=TRUE,
pr=FALSE, what="observed-predicted", tol=1e-12, maxdim=5, ...)

S3 method for class 'orm'
calibrate(fit,

method="boot", u, m=150, pred, B=40,
bw=FALSE, rule="aic",
type="residual", sls=.05, aics=0, force=NULL,
estimates=TRUE, pr=FALSE, what="observed-predicted",
val.surv.args=list(method='smoothkm', eps=30),
...)

S3 method for class 'psm'
calibrate(fit, cmethod=c('hare', 'KM'),
method="boot", u, m=150, pred, cuts, B=40,
bw=FALSE,rule="aic",
type="residual", sls=.05, aics=0, force=NULL, estimates=TRUE,
pr=FALSE, what="observed-predicted", tol=1e-12, maxiter=15,
rel.tolerance=1e-5, maxdim=5, ...)

S3 method for class 'calibrate'
print(x, B=Inf, ...)
S3 method for class 'calibrate.default'
print(x, B=Inf, ...)

S3 method for class 'calibrate'
plot(x, xlab, ylab, subtitles=TRUE, conf.int=TRUE,
cex.subtitles=.75, riskdist=TRUE, add=FALSE,
scat1d.opts=list(nhistSpike=200), par.corrected=NULL, ...)

S3 method for class 'calibrate.default'
plot(x, xlab, ylab, xlim, ylim,
legend=TRUE, subtitles=TRUE, cex.subtitles=.75, riskdist=TRUE,
scat1d.opts=list(nhistSpike=200), ...)

Arguments

fit a fit from ols, lrm, cph or psm

x an object created by calibrate

method, B, bw, rule, type, sls, aics, force, estimates
see validate. For print.calibrate, B is an upper limit on the number of
resamples for which information is printed about which variables were selected
in each model re-fit. Specify zero to suppress printing. Default is to print all
re-samples.

cmethod method for validating survival predictions using right-censored data. The default
is cmethod='hare' to use the hare function in the polspline package. Specify
cmethod='KM' to use less precision stratified Kaplan-Meier estimates. If the
polspline package is not available, the procedure reverts to cmethod='KM'.

u the time point for which to validate predictions for survival models. For cph
fits, you must have specified surv=TRUE, time.inc=u, where u is the constant

32 calibrate

specifying the time to predict.

m group predicted u-time units survival into intervals containing m subjects on the
average (for survival models only)

pred vector of predicted survival probabilities at which to evaluate the calibration
curve. By default, the low and high prediction values from datadist are used,
which for large sample size is the 10th smallest to the 10th largest predicted
probability.

cuts actual cut points for predicted survival probabilities. You may specify only one
of m and cuts (for survival models only)

pr set to TRUE to print intermediate results for each re-sample

what The default is "observed-predicted", meaning to estimate optimism in this
difference. This is preferred as it accounts for skewed distributions of predicted
probabilities in outer intervals. You can also specify "observed". This argu-
ment applies to survival models only.

tol criterion for matrix singularity (default is 1e-12)

maxdim see hare

maxiter for psm, this is passed to survreg.control (default is 15 iterations)

rel.tolerance parameter passed to survreg.control for psm (default is 1e-5).

predy a scalar or vector of predicted values to calibrate (for lrm, ols). Default is
50 equally spaced points between the 5th smallest and the 5th largest predicted
values. For lrm the predicted values are probabilities (see kint).

kint For an ordinal logistic model the default predicted probability that Y ≥ the
middle level. Specify kint to specify the intercept to use, e.g., kint=2 means
to calibrate Prob(Y ≥ b), where b is the second level of Y .

val.surv.args a list containing arguments to send to val.surv when running calibrate.orm.
By default smoothed overlapping windows of Kaplan-Meier estimates are used
for orm. The val.surv.args argument is especially useful for specifying band-
widths and the movStats eps argument.

smoother a function in two variables which produces x- and y-coordinates by smoothing
the input y. The default is to use lowess(x, y, iter=0).

digits If specified, predicted values are rounded to digits digits before passing to the
smoother. Occasionally, large predicted values on the logit scale will lead to
predicted probabilities very near 1 that should be treated as 1, and the round
function will fix that. Applies to calibrate.default.

... other arguments to pass to predab.resample, such as conf.int, group, cluster,
and subset. Also, other arguments for plot.

xlab defaults to "Predicted x-units Survival" or to a suitable label for other models

ylab defaults to "Fraction Surviving x-units" or to a suitable label for other models

xlim, ylim 2-vectors specifying x- and y-axis limits, if not using defaults

subtitles set to FALSE to suppress subtitles in plot describing method and for lrm and ols
the mean absolute error and original sample size

conf.int set to FALSE to suppress plotting 0.95 confidence intervals for Kaplan-Meier
estimates

calibrate 33

cex.subtitles character size for plotting subtitles

riskdist set to FALSE to suppress the distribution of predicted risks (survival probabili-
ties) from being plotted

add set to TRUE to add the calibration plot to an existing plot

scat1d.opts a list specifying options to send to scat1d if riskdist=TRUE. See scat1d.

par.corrected a list specifying graphics parameters col, lty, lwd, pch to be used in drawing
overfitting-corrected estimates. Default is col="blue", lty=1, lwd=1, pch=4.

legend set to FALSE to suppress legends (for lrm, ols only) on the calibration plot, or
specify a list with elements x and y containing the coordinates of the upper left
corner of the legend. By default, a legend will be drawn in the lower right 1/16th
of the plot.

Details

If the fit was created using penalized maximum likelihood estimation, the same penalty and
penalty.scale parameters are used during validation.

See https://www.fharrell.com/post/bootcal/ for simulations of the accuracy of various smoothers
for binary logistic model calibration, as well as simulations of confidence interval coverage.

Value

matrix specifying mean predicted survival in each interval, the corresponding estimated bias-corrected
Kaplan-Meier estimates, number of subjects, and other statistics. For linear and logistic models,
the matrix instead has rows corresponding to the prediction points, and the vector of predicted
values being validated is returned as an attribute. The returned object has class "calibrate" or
"calibrate.default". plot.calibrate.default invisibly returns the vector of estimated pre-
diction errors corresponding to the dataset used to fit the model.

Side Effects

prints, and stores an object pred.obs or .orig.cal

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

validate, predab.resample, groupkm, errbar, scat1d, cph, psm, lowess,fit.mult.impute,
processMI, val.surv, orm, movStats

https://www.fharrell.com/post/bootcal/

34 contrast.rms

Examples

require(survival)
set.seed(1)
n <- 200
d.time <- rexp(n)
x1 <- runif(n)
x2 <- factor(sample(c('a', 'b', 'c'), n, TRUE))
f <- cph(Surv(d.time) ~ pol(x1,2) * x2, x=TRUE, y=TRUE, surv=TRUE, time.inc=1.5)
#or f <- psm(S ~ \dots)
pa <- requireNamespace('polspline')
if(pa) {
cal <- calibrate(f, u=1.5, B=20) # cmethod='hare'
plot(cal)

}
cal <- calibrate(f, u=1.5, cmethod='KM', m=50, B=20) # usually B=200 or 300
plot(cal, add=pa)

set.seed(1)
y <- sample(0:2, n, TRUE)
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)
f <- lrm(y ~ x1 + x2 + x3 * x4, x=TRUE, y=TRUE)
cal <- calibrate(f, kint=2, predy=seq(.2, .8, length=60),

group=y)
group= does k-sample validation: make resamples have same
numbers of subjects in each level of y as original sample

plot(cal)
#See the example for the validate function for a method of validating
#continuation ratio ordinal logistic models. You can do the same
#thing for calibrate

contrast.rms General Contrasts of Regression Coefficients

Description

This function computes one or more contrasts of the estimated regression coefficients in a fit from
one of the functions in rms, along with standard errors, confidence limits, t or Z statistics, P-values.
General contrasts are handled by obtaining the design matrix for two sets of predictor settings (a,
b) and subtracting the corresponding rows of the two design matrics to obtain a new contrast de-
sign matrix for testing the a - b differences. This allows for quite general contrasts (e.g., estimated
differences in means between a 30 year old female and a 40 year old male). This can also be used
to obtain a series of contrasts in the presence of interactions (e.g., female:male log odds ratios for
several ages when the model contains age by sex interaction). Another use of contrast is to obtain
center-weighted (Type III test) and subject-weighted (Type II test) estimates in a model containing

contrast.rms 35

treatment by center interactions. For the latter case, you can specify type="average" and an op-
tional weights vector to average the within-center treatment contrasts. The design contrast matrix
computed by contrast.rms can be used by other functions.

When the model was fitted by a Bayesian function such as blrm, highest posterior density intervals
for contrasts are computed instead, along with the posterior probability that the contrast is positive.
posterior.summary specifies whether posterior mean/median/mode is to be used for contrast point
estimates.

contrast.rms also allows one to specify four settings to contrast, yielding contrasts that are double
differences - the difference between the first two settings (a - b) and the last two (a2 - b2). This
allows assessment of interactions.

If usebootcoef=TRUE, the fit was run through bootcov, and conf.type="individual", the confi-
dence intervals are bootstrap nonparametric percentile confidence intervals, basic bootstrap, or BCa
intervals, obtained on contrasts evaluated on all bootstrap samples.

By omitting the b argument, contrast can be used to obtain an average or weighted average of a
series of predicted values, along with a confidence interval for this average. This can be useful for
"unconditioning" on one of the predictors (see the next to last example).

Specifying type="joint", and specifying at least as many contrasts as needed to span the space
of a complex test, one can make multiple degree of freedom tests flexibly and simply. Redundant
contrasts will be ignored in the joint test. See the examples below. These include an example of
an "incomplete interaction test" involving only two of three levels of a categorical variable (the test
also tests the main effect).

When more than one contrast is computed, the list created by contrast.rms is suitable for plotting
(with error bars or bands) with xYplot or Dotplot (see the last example before the type="joint"
examples).

When fit is the result of a Bayesian model fit and fun is specified, contrast.rms operates alto-
gether differently. a and b must both be specified and a2, b2 not specified. fun is evaluated on the
estimates separately on a and b and the subtraction is deferred. So even in the absence of interac-
tions, when fun is nonlinear, the settings of factors (predictors) will not cancel out and estimates
of differences will be covariate-specific (unless there are no covariates in the model besides the one
being varied to get from a to b).

That the the use of offsets to compute profile confidence intervals prevents this function from work-
ing with certain models that use offsets for other purposes, e.g., Poisson models with offsets to
account for population size.

Usage

contrast(fit, ...)
S3 method for class 'rms'
contrast(fit, a, b, a2, b2, ycut=NULL, cnames=NULL,

fun=NULL, funint=TRUE,
type=c("individual", "average", "joint"),
conf.type=c("individual","simultaneous","profile"), usebootcoef=TRUE,
boot.type=c("percentile","bca","basic"),
posterior.summary=c('mean', 'median', 'mode'),
weights="equal", conf.int=0.95, tol=1e-7, expand=TRUE,
se_factor=4, plot_profile=FALSE, ...)

36 contrast.rms

S3 method for class 'contrast.rms'
print(x, X=FALSE,

fun=function(u)u, jointonly=FALSE, prob=0.95, ...)

Arguments

fit a fit of class "rms"

a a list containing settings for all predictors that you do not wish to set to default
(adjust-to) values. Usually you will specify two variables in this list, one set to a
constant and one to a sequence of values, to obtain contrasts for the sequence of
values of an interacting factor. The gendata function will generate the necessary
combinations and default values for unspecified predictors, depending on the
expand argument.

b another list that generates the same number of observations as a, unless one of
the two lists generates only one observation. In that case, the design matrix
generated from the shorter list will have its rows replicated so that the contrasts
assess several differences against the one set of predictor values. This is useful
for comparing multiple treatments with control, for example. If b is missing, the
design matrix generated from a is analyzed alone.

a2 an optional third list of settings of predictors

b2 an optional fourth list of settings of predictors. Mandatory if a2 is given.

ycut used of the fit is a constrained partial proportional odds model fit, to specify the
single value or vector of values (corresponding to the multiple contrasts) of the
response variable to use in forming contrasts. When there is non-proportional
odds, odds ratios will vary over levels of the response variable. When there
are multiple contrasts and only one value is given for ycut, that value will be
propagated to all contrasts. To show the effect of non-proportional odds, let
ycut vary.

cnames vector of character strings naming the contrasts when type!="average". Usu-
ally cnames is not necessary as contrast.rms tries to name the contrasts by
examining which predictors are varying consistently in the two lists. cnames
will be needed when you contrast "non-comparable" settings, e.g., you compare
list(treat="drug", age=c(20,30)) with list(treat="placebo"), age=c(40,50))

fun a function to evaluate on the linear predictor for each of a and b. Applies to
Bayesian model fits. Also, a function to transform the contrast, SE, and lower
and upper confidence limits before printing. For example, specify fun=exp to
anti-log them for logistic models.

type set type="average" to average the individual contrasts (e.g., to obtain a Type
II or III contrast). Set type="joint" to jointly test all non-redundant contrasts
with a multiple degree of freedom test and no averaging.

conf.type The default type of confidence interval computed for a given individual (1 d.f.)
contrast is a pointwise confidence interval. Set conf.type="simultaneous" to
use the multcomp package’s glht and confint functions to compute confidence
intervals with simultaneous (family-wise) coverage, thus adjusting for multiple
comparisons. Note that individual P-values are not adjusted for multiplicity.

contrast.rms 37

usebootcoef If fit was the result of bootcov but you want to use the bootstrap covariance
matrix instead of the nonparametric percentile, basic, or BCa method for confi-
dence intervals (which uses all the bootstrap coefficients), specify usebootcoef=FALSE.

boot.type set to 'bca' to compute BCa confidence limits or 'basic' to use the basic
bootstrap. The default is to compute percentile intervals

posterior.summary

By default the posterior mean is used. Specify posterior.summary='median'
to instead use the posterior median and likewise posterior.summary='mode'.
Unlike other functions, contrast.rms does not default to 'mode' because point
estimates come from contrasts and not the original model coefficients point es-
timates.

weights a numeric vector, used when type="average", to obtain weighted contrasts

conf.int confidence level for confidence intervals for the contrasts (HPD interval proba-
bility for Bayesian analyses)

tol tolerance for qr function for determining which contrasts are redundant, and for
inverting the covariance matrix involved in a joint test. This should be larger
than the usual tolerance chosen when just inverting a matrix.

expand set to FALSE to have gendata not generate all possible combinations of predictor
settings. This is useful when getting contrasts over irregular predictor settings.

se_factor multiplier for a contrast’s standard error used for root finding of the profile like-
lihood confidence limits when conf.type='profile'. The search is over the
maximum likelihood estimate plus or minus se_factor times the standard er-
ror. This approach will fail when the Hauck-Donner effect is in play, because
the standard error blows up when regression coefficients are estimating infinity.

plot_profile when conf.type='profile' specify plot_profile to plot the change in de-
viance from the full model as a function of the contrast estimate, separately by
each row of the contrast matrix. The contrast estimate varies from the max-
imum likelihood estimate plus or minus se_factor times the standard error,
with a regular grid of 50 points.

... passed to print for main output. A useful thing to pass is digits=4. Used also
to pass convergence criteria arguments to fitting functions when conf.type is
"profile".

x result of contrast

X set X=TRUE to print design matrix used in computing the contrasts (or the average
contrast)

funint set to FALSE if fun is not a function such as the result of Mean, Quantile, or
ExProb that contains an intercepts argument

jointonly set to FALSE to omit printing of individual contrasts

prob highest posterior density interval probability when the fit was Bayesian and fun
was specified to contrast.rms

Value

a list of class "contrast.rms" containing the elements Contrast, SE, Z, var, df.residual Lower,
Upper, Pvalue, X, cnames, redundant, which denote the contrast estimates, standard errors, Z or

38 contrast.rms

t-statistics, variance matrix, residual degrees of freedom (this is NULL if the model was not ols),
lower and upper confidence limits, 2-sided P-value, design matrix, contrast names (or NULL), and
a logical vector denoting which contrasts are redundant with the other contrasts. If there are any
redundant contrasts, when the results of contrast are printed, and asterisk is printed at the start
of the corresponding lines. The object also contains ctype indicating what method was used for
compute confidence intervals.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University School of Medicine
fh@fharrell.com

See Also

Predict, gendata, bootcov, summary.rms, anova.rms,

Examples

require(ggplot2)
set.seed(1)
age <- rnorm(200,40,12)
sex <- factor(sample(c('female','male'),200,TRUE))
logit <- (sex=='male') + (age-40)/5
y <- ifelse(runif(200) <= plogis(logit), 1, 0)
f <- lrm(y ~ pol(age,2)*sex)
anova(f)
Compare a 30 year old female to a 40 year old male
(with or without age x sex interaction in the model)
contrast(f, list(sex='female', age=30), list(sex='male', age=40))
Test for interaction between age and sex, duplicating anova
contrast(f, list(sex='female', age=30),

list(sex='male', age=30),
list(sex='female', age=c(40,50)),
list(sex='male', age=c(40,50)), type='joint')

Duplicate overall sex effect in anova with 3 d.f.
contrast(f, list(sex='female', age=c(30,40,50)),

list(sex='male', age=c(30,40,50)), type='joint')
For females get an array of odds ratios against age=40
k <- contrast(f, list(sex='female', age=30:50),

list(sex='female', age=40))
print(k, fun=exp)
Plot odds ratios with pointwise 0.95 confidence bands using log scale
k <- as.data.frame(k[c('Contrast','Lower','Upper')])
ggplot(k, aes(x=30:50, y=exp(Contrast))) + geom_line() +

geom_ribbon(aes(ymin=exp(Lower), ymax=exp(Upper)),
alpha=0.15, linetype=0) +

scale_y_continuous(trans='log10', n.breaks=10,
minor_breaks=c(seq(0.1, 1, by=.1), seq(1, 10, by=.5))) +

xlab('Age') + ylab('OR against age 40')

contrast.rms 39

For an ordinal model with 3 variables (x1 is quadratic, x2 & x3 linear)
Get a 1 d.f. likelihood ratio (LR) test for x1=1 vs x1=0.25
For the other variables get contrasts and LR tests that are the
ordinary ones for their original coefficients.
Get 0.95 profile likelihood confidence intervals for the x1 contrast
and for the x2 and x3 coefficients
set.seed(7)
x1 <- runif(50)
x2 <- runif(50)
x3 <- runif(50)
dd <- datadist(x1, x2, x3); options(datadist='dd')
y <- x1 + runif(50) # need x=TRUE,y=TRUE for profile likelihood
f <- orm(y ~ pol(x1, 2) + x2 + x3, x=TRUE, y=TRUE)
a <- list(x1=c(1,0,0), x2=c(0,1,0), x3=c(0,0,1))
b <- list(x1=c(0.25,0,0), x2=c(0,0,0), x3=c(0,0,0))
k <- contrast(f, a, b, expand=FALSE) # Wald intervals and tests
k; k$X[1,]
summary(f, x1=c(.25, 1), x2=0:1, x3=0:1) # Wald intervals
anova(f, test='LR') # LR tests
contrast(f, a, b, expand=FALSE, conf.type='profile', plot_profile=TRUE)
options(datadist=NULL)

For a model containing two treatments, centers, and treatment
x center interaction, get 0.95 confidence intervals separately
by center
center <- factor(sample(letters[1 : 8], 500, TRUE))
treat <- factor(sample(c('a','b'), 500, TRUE))
y <- 8*(treat == 'b') + rnorm(500, 100, 20)
f <- ols(y ~ treat*center)

lc <- levels(center)
contrast(f, list(treat='b', center=lc),

list(treat='a', center=lc))

Get 'Type III' contrast: average b - a treatment effect over
centers, weighting centers equally (which is almost always
an unreasonable thing to do)
contrast(f, list(treat='b', center=lc),

list(treat='a', center=lc),
type='average')

Get 'Type II' contrast, weighting centers by the number of
subjects per center. Print the design contrast matrix used.
k <- contrast(f, list(treat='b', center=lc),

list(treat='a', center=lc),
type='average', weights=table(center))

print(k, X=TRUE)
Note: If other variables had interacted with either treat
or center, we may want to list settings for these variables

40 contrast.rms

inside the list()'s, so as to not use default settings

For a 4-treatment study, get all comparisons with treatment 'a'
treat <- factor(sample(c('a','b','c','d'), 500, TRUE))
y <- 8*(treat == 'b') + rnorm(500, 100, 20)
dd <- datadist(treat, center); options(datadist='dd')
f <- ols(y ~ treat*center)
lt <- levels(treat)
contrast(f, list(treat=lt[-1]),

list(treat=lt[1]),
cnames=paste(lt[-1], lt[1], sep=':'), conf.int=1 - .05 / 3)

Compare each treatment with average of all others
for(i in 1 : length(lt)) {

cat('Comparing with', lt[i], '\n\n')
print(contrast(f, list(treat=lt[-i]),

list(treat=lt[i]), type='average'))
}
options(datadist=NULL)

Six ways to get the same thing, for a variable that
appears linearly in a model and does not interact with
any other variables. We estimate the change in y per
unit change in a predictor x1. Methods 4, 5 also
provide confidence limits. Method 6 computes nonparametric
bootstrap confidence limits. Methods 2-6 can work
for models that are nonlinear or non-additive in x1.
For that case more care is needed in choice of settings
for x1 and the variables that interact with x1.

Not run:
coef(fit)['x1'] # method 1
diff(predict(fit, gendata(x1=c(0,1)))) # method 2
g <- Function(fit) # method 3
g(x1=1) - g(x1=0)
summary(fit, x1=c(0,1)) # method 4
k <- contrast(fit, list(x1=1), list(x1=0)) # method 5
print(k, X=TRUE)
fit <- update(fit, x=TRUE, y=TRUE) # method 6
b <- bootcov(fit, B=500)
contrast(fit, list(x1=1), list(x1=0))

In a model containing age, race, and sex,
compute an estimate of the mean response for a
50 year old male, averaged over the races using
observed frequencies for the races as weights

f <- ols(y ~ age + race + sex)

contrast.rms 41

contrast(f, list(age=50, sex='male', race=levels(race)),
type='average', weights=table(race))

For a Bayesian model get the highest posterior interval for the
difference in two nonlinear functions of predicted values
Start with the mean from a proportional odds model
g <- blrm(y ~ x)
M <- Mean(g)
contrast(g, list(x=1), list(x=0), fun=M)

For the median we have to make sure that contrast can pass the
per-posterior-draw vector of intercepts through
qu <- Quantile(g)
med <- function(lp, intercepts) qu(0.5, lp, intercepts=intercepts)
contrast(g, list(x=1), list(x=0), fun=med)

End(Not run)

Plot the treatment effect (drug - placebo) as a function of age
and sex in a model in which age nonlinearly interacts with treatment
for females only

set.seed(1)
n <- 800
treat <- factor(sample(c('drug','placebo'), n,TRUE))
sex <- factor(sample(c('female','male'), n,TRUE))
age <- rnorm(n, 50, 10)
y <- .05*age + (sex=='female')*(treat=='drug')*.05*abs(age-50) + rnorm(n)
f <- ols(y ~ rcs(age,4)*treat*sex)
d <- datadist(age, treat, sex); options(datadist='d')

show separate estimates by treatment and sex

require(ggplot2)
ggplot(Predict(f, age, treat, sex='female'))
ggplot(Predict(f, age, treat, sex='male'))
ages <- seq(35,65,by=5); sexes <- c('female','male')
w <- contrast(f, list(treat='drug', age=ages, sex=sexes),

list(treat='placebo', age=ages, sex=sexes))
add conf.type="simultaneous" to adjust for having done 14 contrasts
xYplot(Cbind(Contrast, Lower, Upper) ~ age | sex, data=w,

ylab='Drug - Placebo')
w <- as.data.frame(w[c('age','sex','Contrast','Lower','Upper')])
ggplot(w, aes(x=age, y=Contrast)) + geom_point() + facet_grid(sex ~ .) +

geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0)
ggplot(w, aes(x=age, y=Contrast)) + geom_line() + facet_grid(sex ~ .) +

geom_ribbon(aes(ymin=Lower, ymax=Upper), width=0, alpha=0.15, linetype=0)
xYplot(Cbind(Contrast, Lower, Upper) ~ age, groups=sex, data=w,

ylab='Drug - Placebo', method='alt bars')
options(datadist=NULL)

42 contrast.rms

Examples of type='joint' contrast tests

set.seed(1)
x1 <- rnorm(100)
x2 <- factor(sample(c('a','b','c'), 100, TRUE))
dd <- datadist(x1, x2); options(datadist='dd')
y <- x1 + (x2=='b') + rnorm(100)

First replicate a test statistic from anova()

f <- ols(y ~ x2)
anova(f)
contrast(f, list(x2=c('b','c')), list(x2='a'), type='joint')

Repeat with a redundancy; compare a vs b, a vs c, b vs c

contrast(f, list(x2=c('a','a','b')), list(x2=c('b','c','c')), type='joint')

Get a test of association of a continuous predictor with y
First assume linearity, then cubic

f <- lrm(y>0 ~ x1 + x2)
anova(f)
contrast(f, list(x1=1), list(x1=0), type='joint') # a minimum set of contrasts
xs <- seq(-2, 2, length=20)
contrast(f, list(x1=0), list(x1=xs), type='joint')

All contrasts were redundant except for the first, because of
linearity assumption

f <- lrm(y>0 ~ pol(x1,3) + x2, x=TRUE, y=TRUE)
anova(f)
anova(f, test='LR') # discrepancy with Wald statistics points out a problem w/them

contrast(f, list(x1=0), list(x1=xs), type='joint')
print(contrast(f, list(x1=0), list(x1=xs), type='joint'), jointonly=TRUE)

All contrasts were redundant except for the first 3, because of
cubic regression assumption
These Wald tests and intervals are not very accurate. Although joint
testing is not implemented in contrast(), individual profile likelihood
confidence intervals and associted likelihood ratio tests are helpful:
contrast(f, list(x1=0), list(x1=xs), conf.type='profile', plot_profile=TRUE)

Now do something that is difficult to do without cryptic contrast
matrix operations: Allow each of the three x2 groups to have a different
shape for the x1 effect where x1 is quadratic. Test whether there is
a difference in mean levels of y for x2='b' vs. 'c' or whether
the shape or slope of x1 is different between x2='b' and x2='c' regardless
of how they differ when x2='a'. In other words, test whether the mean
response differs between group b and c at any value of x1.
This is a 3 d.f. test (intercept, linear, quadratic effects) and is
a better approach than subsetting the data to remove x2='a' then

cph 43

fitting a simpler model, as it uses a better estimate of sigma from
all the data.

f <- ols(y ~ pol(x1,2) * x2)
anova(f)
contrast(f, list(x1=xs, x2='b'),

list(x1=xs, x2='c'), type='joint')

Note: If using a spline fit, there should be at least one value of
x1 between any two knots and beyond the outer knots.
options(datadist=NULL)

cph Cox Proportional Hazards Model and Extensions

Description

Modification of Therneau’s coxph function to fit the Cox model and its extension, the Andersen-
Gill model. The latter allows for interval time-dependent covariables, time-dependent strata, and
repeated events. The Survival method for an object created by cph returns an S function for
computing estimates of the survival function. The Quantile method for cph returns an S function
for computing quantiles of survival time (median, by default). The Mean method returns a function
for computing the mean survival time. This function issues a warning if the last follow-up time is
uncensored, unless a restricted mean is explicitly requested.

Usage

cph(formula = formula(data), data=environment(formula),
weights, subset, na.action=na.delete,
method=c("efron","breslow","exact","model.frame","model.matrix"),
singular.ok=FALSE, robust=FALSE,
model=FALSE, x=FALSE, y=FALSE, se.fit=FALSE,
linear.predictors=TRUE, residuals=TRUE, nonames=FALSE,
eps=1e-4, init, iter.max=10, tol=1e-9, surv=FALSE, time.inc,
type=NULL, vartype=NULL, debug=FALSE, ...)

S3 method for class 'cph'
Survival(object, ...)
Evaluate result as g(times, lp, stratum=1, type=c("step","polygon"))

S3 method for class 'cph'
Quantile(object, ...)
Evaluate like h(q, lp, stratum=1, type=c("step","polygon"))

S3 method for class 'cph'
Mean(object, method=c("exact","approximate"), type=c("step","polygon"),

n=75, tmax, ...)
E.g. m(lp, stratum=1, type=c("step","polygon"), tmax, \dots)

44 cph

Arguments

formula an S formula object with a Surv object on the left-hand side. The terms can
specify any S model formula with up to third-order interactions. The strat
function may appear in the terms, as a main effect or an interacting factor. To
stratify on both race and sex, you would include both terms strat(race) and
strat(sex). Stratification factors may interact with non-stratification factors;
not all stratification terms need interact with the same modeled factors.

object an object created by cph with surv=TRUE

data name of an S data frame containing all needed variables. Omit this to use a data
frame already in the S “search list”.

weights case weights

subset an expression defining a subset of the observations to use in the fit. The de-
fault is to use all observations. Specify for example age>50 & sex="male" or
c(1:100,200:300) respectively to use the observations satisfying a logical ex-
pression or those having row numbers in the given vector.

na.action specifies an S function to handle missing data. The default is the function
na.delete, which causes observations with any variable missing to be deleted.
The main difference between na.delete and the S-supplied function na.omit
is that na.delete makes a list of the number of observations that are miss-
ing on each variable in the model. The na.action is usally specified by e.g.
options(na.action="na.delete").

method for cph, specifies a particular fitting method, "model.frame" instead to return
the model frame of the predictor and response variables satisfying any subset or
missing value checks, or "model.matrix" to return the expanded design matrix.
The default is "efron", to use Efron’s likelihood for fitting the model.
For Mean.cph, method is "exact" to use numerical integration of the survival
function at any linear predictor value to obtain a mean survival time. Spec-
ify method="approximate" to use an approximate method that is slower when
Mean.cph is executing but then is essentially instant thereafter. For the approxi-
mate method, the area is computed for n points equally spaced between the min
and max observed linear predictor values. This calculation is done separately for
each stratum. Then the n pairs (X beta, area) are saved in the generated S func-
tion, and when this function is evaluated, the approx function is used to evaluate
the mean for any given linear predictor values, using linear interpolation over the
n X beta values.

singular.ok If TRUE, the program will automatically skip over columns of the X matrix that
are linear combinations of earlier columns. In this case the coefficients for such
columns will be NA, and the variance matrix will contain zeros. For ancillary
calculations, such as the linear predictor, the missing coefficients are treated as
zeros. The singularities will prevent many of the features of the rms library from
working.

robust if TRUE a robust variance estimate is returned. Default is TRUE if the model
includes a cluster() operative, FALSE otherwise.

model default is FALSE(false). Set to TRUE to return the model frame as element model
of the fit object.

cph 45

x default is FALSE. Set to TRUE to return the expanded design matrix as element x
(without intercept indicators) of the returned fit object.

y default is FALSE. Set to TRUE to return the vector of response values (Surv object)
as element y of the fit.

se.fit default is FALSE. Set to TRUE to compute the estimated standard errors of the
estimate of X beta and store them in element se.fit of the fit. The predictors
are first centered to their means before computing the standard errors.

linear.predictors

set to FALSE to omit linear.predictors vector from fit
residuals set to FALSE to omit residuals vector from fit
nonames set to TRUE to not set names attribute for linear.predictors, residuals,

se.fit, and rows of design matrix
eps convergence criterion - change in log likelihood.
init vector of initial parameter estimates. Defaults to all zeros. Special residuals can

be obtained by setting some elements of init to MLEs and others to zero and
specifying iter.max=1.

iter.max maximum number of iterations to allow. Set to 0 to obtain certain null-model
residuals.

tol tolerance for declaring singularity for matrix inversion (available only when sur-
vival5 or later package is in effect)

surv set to TRUE to compute underlying survival estimates for each stratum, and to
store these along with standard errors of log Lambda(t), maxtime (maximum
observed survival or censoring time), and surv.summary in the returned object.
Set surv="summary" to only compute and store surv.summary, not survival
estimates at each unique uncensored failure time. If you specify x=TRUE and
y=TRUE, you can obtain predicted survival later, with accurate confidence inter-
vals for any set of predictor values. The standard error information stored as a
result of surv=TRUE are only accurate at the mean of all predictors. If the model
has no covariables, these are of course OK. The main reason for using surv
is to greatly speed up the computation of predicted survival probabilities as a
function of the covariables, when accurate confidence intervals are not needed.

time.inc time increment used in deriving surv.summary. Survival, number at risk, and
standard error will be stored for t=0, time.inc, 2 time.inc, ..., maxtime,
where maxtime is the maximum survival time over all strata. time.inc is also
used in constructing the time axis in the survplot function (see below). The
default value for time.inc is 30 if units(ftime) = "Day" or no units attribute
has been attached to the survival time variable. If units(ftime) is a word other
than "Day", the default for time.inc is 1 when it is omitted, unless maxtime<1,
then maxtime/10 is used as time.inc. If time.inc is not given and maxtime/
default time.inc > 25, time.inc is increased.

type (for cph) applies if surv is TRUE or "summary". If type is omitted, the method
consistent with method is used. See survfit.coxph (under survfit) or survfit.cph
for details and for the definitions of values of type
For Survival, Quantile, Mean set to "polygon" to use linear interpolation in-
stead of the usual step function. For Mean, the default of step will yield the sam-
ple mean in the case of no censoring and no covariables, if type="kaplan-meier"

46 cph

was specified to cph. For method="exact", the value of type is passed to the
generated function, and it can be overridden when that function is actually in-
voked. For method="approximate", Mean.cph generates the function different
ways according to type, and this cannot be changed when the function is actu-
ally invoked.

vartype see survfit.coxph

debug set to TRUE to print debugging information related to model matrix construction.
You can also use options(debug=TRUE).

... other arguments passed to coxph.fit from cph. Ignored by other functions.

times a scalar or vector of times at which to evaluate the survival estimates

lp a scalar or vector of linear predictors (including the centering constant) at which
to evaluate the survival estimates

stratum a scalar stratum number or name (e.g., "sex=male") to use in getting survival
probabilities

q a scalar quantile or a vector of quantiles to compute

n the number of points at which to evaluate the mean survival time, for method="approximate"
in Mean.cph.

tmax For Mean.cph, the default is to compute the overall mean (and produce a warn-
ing message if there is censoring at the end of follow-up). To compute a re-
stricted mean life length, specify the truncation point as tmax. For method="exact",
tmax is passed to the generated function and it may be overridden when that
function is invoked. For method="approximate", tmax must be specified at the
time that Mean.cph is run.

Details

If there is any strata by covariable interaction in the model such that the mean X beta varies
greatly over strata, method="approximate" may not yield very accurate estimates of the mean
in Mean.cph.

For method="approximate" if you ask for an estimate of the mean for a linear predictor value that
was outside the range of linear predictors stored with the fit, the mean for that observation will be
NA.

Value

For Survival, Quantile, or Mean, an S function is returned. Otherwise, in addition to what is listed
below, formula/design information and the components maxtime, time.inc, units, model, x,
y, se.fit are stored, the last 5 depending on the settings of options by the same names. The
vectors or matrix stored if y=TRUE or x=TRUE have rows deleted according to subset and to missing
data, and have names or row names that come from the data frame used as input data.

n table with one row per stratum containing number of censored and uncensored
observations

coef vector of regression coefficients

cph 47

stats vector containing the named elements Obs, Events, Model L.R., d.f., P, Score,
Score P, R2, Somers’ Dxy, g-index, and gr, the g-index on the hazard ratio scale.
R2 is the Nagelkerke R-squared, with division by the maximum attainable R-
squared.

var variance/covariance matrix of coefficients
linear.predictors

values of predicted X beta for observations used in fit, normalized to have overall
mean zero, then having any offsets added

resid martingale residuals

loglik log likelihood at initial and final parameter values

score value of score statistic at initial values of parameters

times lists of times (if surv="T")

surv lists of underlying survival probability estimates

std.err lists of standard errors of estimate log-log survival

surv.summary a 3 dimensional array if surv=TRUE. The first dimension is time ranging from
0 to maxtime by time.inc. The second dimension refers to strata. The third
dimension contains the time-oriented matrix with Survival, n.risk (number
of subjects at risk), and std.err (standard error of log-log survival).

center centering constant, equal to overall mean of X beta.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
<fh@fharrell.com>

See Also

coxph, survival-internal, Surv, residuals.cph, cox.zph, survfit.cph, survest.cph, survfit.coxph,
survplot, datadist, rms, rms.trans, anova.rms, summary.rms, Predict, fastbw, validate,
calibrate, plot.Predict, ggplot.Predict, specs.rms, lrm, which.influence, na.delete,
na.detail.response, print.cph, latex.cph, vif, ie.setup, GiniMd, dxy.cens, concordance

Examples

Simulate data from a population model in which the log hazard
function is linear in age and there is no age x sex interaction

require(survival)
require(ggplot2)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n,

rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)

48 cph

h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
dt <- -log(runif(n))/h
label(dt) <- 'Follow-up Time'
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
dd <- datadist(age, sex)
options(datadist='dd')
S <- Surv(dt,e)

f <- cph(S ~ rcs(age,4) + sex, x=TRUE, y=TRUE)
cox.zph(f, "rank") # tests of PH
anova(f)
ggplot(Predict(f, age, sex)) # plot age effect, 2 curves for 2 sexes
survplot(f, sex) # time on x-axis, curves for x2
res <- resid(f, "scaledsch")
time <- as.numeric(dimnames(res)[[1]])
z <- loess(res[,4] ~ time, span=0.50) # residuals for sex
plot(time, fitted(z))
lines(supsmu(time, res[,4]),lty=2)
plot(cox.zph(f,"identity")) #Easier approach for last few lines
latex(f)

f <- cph(S ~ age + strat(sex), surv=TRUE)
g <- Survival(f) # g is a function
g(seq(.1,1,by=.1), stratum="sex=Male", type="poly") #could use stratum=2
med <- Quantile(f)
plot(Predict(f, age, fun=function(x) med(lp=x))) #plot median survival

Fit a model that is quadratic in age, interacting with sex as strata
Compare standard errors of linear predictor values with those from
coxph
Use more stringent convergence criteria to match with coxph

f <- cph(S ~ pol(age,2)*strat(sex), x=TRUE, eps=1e-9, iter.max=20)
coef(f)
se <- predict(f, se.fit=TRUE)$se.fit
require(lattice)
xyplot(se ~ age | sex, main='From cph')
a <- c(30,50,70)
comb <- data.frame(age=rep(a, each=2),

sex=rep(levels(sex), 3))

p <- predict(f, comb, se.fit=TRUE)
comb$yhat <- p$linear.predictors
comb$se <- p$se.fit
z <- qnorm(.975)
comb$lower <- p$linear.predictors - z*p$se.fit
comb$upper <- p$linear.predictors + z*p$se.fit
comb

age2 <- age^2

cph 49

f2 <- coxph(S ~ (age + age2)*strata(sex))
coef(f2)
se <- predict(f2, se.fit=TRUE)$se.fit
xyplot(se ~ age | sex, main='From coxph')
comb <- data.frame(age=rep(a, each=2), age2=rep(a, each=2)^2,

sex=rep(levels(sex), 3))
p <- predict(f2, newdata=comb, se.fit=TRUE)
comb$yhat <- p$fit
comb$se <- p$se.fit
comb$lower <- p$fit - z*p$se.fit
comb$upper <- p$fit + z*p$se.fit
comb

g <- cph(Surv(hospital.charges) ~ age, surv=TRUE)
Cox model very useful for analyzing highly skewed data, censored or not
m <- Mean(g)
m(0) # Predicted mean charge for reference age

#Fit a time-dependent covariable representing the instantaneous effect
#of an intervening non-fatal event
rm(age)
set.seed(121)
dframe <- data.frame(failure.time=1:10, event=rep(0:1,5),

ie.time=c(NA,1.5,2.5,NA,3,4,NA,5,5,5),
age=sample(40:80,10,rep=TRUE))

z <- ie.setup(dframe$failure.time, dframe$event, dframe$ie.time)
S <- z$S
ie.status <- z$ie.status
attach(dframe[z$subs,]) # replicates all variables

f <- cph(S ~ age + ie.status, x=TRUE, y=TRUE)
#Must use x=TRUE,y=TRUE to get survival curves with time-dep. covariables

#Get estimated survival curve for a 50-year old who has an intervening
#non-fatal event at 5 days
new <- data.frame(S=Surv(c(0,5), c(5,999), c(FALSE,FALSE)), age=rep(50,2),

ie.status=c(0,1))
g <- survfit(f, new)
plot(c(0,g$time), c(1,g$surv[,2]), type='s',

xlab='Days', ylab='Survival Prob.')
Not certain about what columns represent in g$surv for survival5
but appears to be for different ie.status
#or:
#g <- survest(f, new)
#plot(g$time, g$surv, type='s', xlab='Days', ylab='Survival Prob.')

#Compare with estimates when there is no intervening event
new2 <- data.frame(S=Surv(c(0,5), c(5, 999), c(FALSE,FALSE)), age=rep(50,2),

ie.status=c(0,0))

50 cr.setup

g2 <- survfit(f, new2)
lines(c(0,g2$time), c(1,g2$surv[,2]), type='s', lty=2)
#or:
#g2 <- survest(f, new2)
#lines(g2$time, g2$surv, type='s', lty=2)
detach("dframe[z$subs,]")
options(datadist=NULL)

cr.setup Continuation Ratio Ordinal Logistic Setup

Description

Creates several new variables which help set up a dataset with an ordinal response variable y for use
in fitting a forward continuation ratio (CR) model. The CR model can be fitted with binary logistic
regression if each input observation is replicated the proper number of times according to the y
value, a new binary y is computed that has at most one y = 1 per subject, and if a cohort variable
is used to define the current qualifying condition for a cohort of subjects, e.g., y ≥ 2. cr.setup
creates the needed auxilliary variables. See predab.resample and validate.lrm for information
about validating CR models (e.g., using the bootstrap to sample with replacement from the original
subjects instead of the records used in the fit, validating the model separately for user-specified
values of cohort).

Usage

cr.setup(y)

Arguments

y a character, numeric, category, or factor vector containing values of the re-
sponse variable. For category or factor variables, the levels of the variable
are assumed to be listed in an ordinal way.

Value

a list with components y, cohort, subs, reps. y is a new binary variable that is to be used in the
binary logistic fit. cohort is a factor vector specifying which cohort condition currently applies.
subs is a vector of subscripts that can be used to replicate other variables the same way y was
replicated. reps specifies how many times each original observation was replicated. y, cohort,
subs are all the same length and are longer than the original y vector. reps is the same length
as the original y vector. The subs vector is suitable for passing to validate.lrm or calibrate,
which pass this vector under the name cluster on to predab.resample so that bootstrapping can
be done by sampling with replacement from the original subjects rather than from the individual
records created by cr.setup.

cr.setup 51

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

References

Berridge DM, Whitehead J: Analysis of failure time data with ordinal categories of response. Stat
in Med 10:1703–1710, 1991.

See Also

lrm, glm, predab.resample

Examples

y <- c(NA, 10, 21, 32, 32)
cr.setup(y)

set.seed(171)
y <- sample(0:2, 100, rep=TRUE)
sex <- sample(c("f","m"),100,rep=TRUE)
sex <- factor(sex)
table(sex, y)
options(digits=5)
tapply(y==0, sex, mean)
tapply(y==1, sex, mean)
tapply(y==2, sex, mean)
cohort <- y>=1
tapply(y[cohort]==1, sex[cohort], mean)

u <- cr.setup(y)
Y <- u$y
cohort <- u$cohort
sex <- sex[u$subs]

lrm(Y ~ cohort + sex)

f <- lrm(Y ~ cohort*sex) # saturated model - has to fit all data cells
f

#Prob(y=0|female):
plogis(-.50078)
#Prob(y=0|male):
plogis(-.50078+.11301)
#Prob(y=1|y>=1, female):
plogis(-.50078+.31845)
#Prob(y=1|y>=1, male):
plogis(-.50078+.31845+.11301-.07379)

52 datadist

combinations <- expand.grid(cohort=levels(cohort), sex=levels(sex))
combinations
p <- predict(f, combinations, type="fitted")
p
p0 <- p[c(1,3)]
p1 <- p[c(2,4)]
p1.unconditional <- (1 - p0) *p1
p1.unconditional
p2.unconditional <- 1 - p0 - p1.unconditional
p2.unconditional

Not run:
dd <- datadist(inputdata) # do this on non-replicated data
options(datadist='dd')
pain.severity <- inputdata$pain.severity
u <- cr.setup(pain.severity)
inputdata frame has age, sex with pain.severity
attach(inputdata[u$subs,]) # replicate age, sex
If age, sex already available, could do age <- age[u$subs] etc., or
age <- rep(age, u$reps), etc.
y <- u$y
cohort <- u$cohort
dd <- datadist(dd, cohort) # add to dd
f <- lrm(y ~ cohort + age*sex) # ordinary cont. ratio model
g <- lrm(y ~ cohort*sex + age, x=TRUE,y=TRUE) # allow unequal slopes for

sex across cutoffs
cal <- calibrate(g, cluster=u$subs, subset=cohort=='all')
subs makes bootstrap sample the correct units, subset causes
Predicted Prob(pain.severity=0) to be checked for calibration

End(Not run)

datadist Distribution Summaries for Predictor Variables

Description

For a given set of variables or a data frame, determines summaries of variables for effect and plot-
ting ranges, values to adjust to, and overall ranges for Predict, plot.Predict, ggplot.Predict,
summary.rms, survplot, and nomogram.rms. If datadist is called before a model fit and the re-
sulting object pointed to with options(datadist="name"), the data characteristics will be stored
with the fit by Design(), so that later predictions and summaries of the fit will not need to access
the original data used in the fit. Alternatively, you can specify the values for each variable in the
model when using these 3 functions, or specify the values of some of them and let the functions look
up the remainder (of say adjustmemt levels) from an object created by datadist. The best method
is probably to run datadist once before any models are fitted, storing the distribution summaries
for all potential variables. Adjustment values are 0 for binary variables, the most frequent cate-
gory (or optionally the first category level) for categorical (factor) variables, the middle level for

datadist 53

ordered factor variables, and medians for continuous variables. See descriptions of q.display
and q.effect for how display and effect ranges are chosen for continuous variables.

Usage

datadist(..., data, q.display, q.effect=c(0.25, 0.75),
adjto.cat=c('mode','first'), n.unique=10)

S3 method for class 'datadist'
print(x, ...)
options(datadist="dd")
used by summary, plot, survplot, sometimes predict
For dd substitute the name of the result of datadist

Arguments

... a list of variable names, separated by commas, a single data frame, or a fit
with Design information. The first element in this list may also be an ob-
ject created by an earlier call to datadist; then the later variables are added
to this datadist object. For a fit object, the variables named in the fit are re-
trieved from the active data frame or from the location pointed to by data=frame
number or data="data frame name". For print, is ignored.

data a data frame or a search position. If data is a search position, it is assumed that
a data frame is attached in that position, and all its variables are used. If you
specify both individual variables in ... and data, the two sets of variables are
combined. Unless the first argument is a fit object, data must be an integer.

q.display set of two quantiles for computing the range of continuous variables to use
in displaying regression relationships. Defaults are q and 1 − q, where q =
10/max(n, 200), and n is the number of non-missing observations. Thus for
n < 200, the .05 and .95 quantiles are used. For n ≥ 200, the 10th smallest and
10th largest values are used. If you specify q.display, those quantiles are used
whether or not n < 200.

q.effect set of two quantiles for computing the range of continuous variables to use in es-
timating regression effects. Defaults are c(.25,.75), which yields inter-quartile-
range odds ratios, etc.

adjto.cat default is "mode", indicating that the modal (most frequent) category for cat-
egorical (factor) variables is the adjust-to setting. Specify "first" to use the
first level of factor variables as the adjustment values. In the case of many levels
having the maximum frequency, the first such level is used for "mode".

n.unique variables having n.unique or fewer unique values are considered to be discrete
variables in that their unique values are stored in the values list. This will
affect how functions such as nomogram.Design determine whether variables
are discrete or not.

x result of datadist

54 datadist

Details

For categorical variables, the 7 limits are set to character strings (factors) which correspond to
c(NA,adjto.level,NA,1,k,1,k), where k is the number of levels. For ordered variables with
numeric levels, the limits are set to c(L,M,H,L,H,L,H), where L is the lowest level, M is the middle
level, and H is the highest level.

Value

a list of class "datadist" with the following components

limits a 7 × k vector, where k is the number of variables. The 7 rows correspond
to the low value for estimating the effect of the variable, the value to adjust
the variable to when examining other variables, the high value for effect, low
value for displaying the variable, the high value for displaying it, and the overall
lowest and highest values.

values a named list, with one vector of unique values for each numeric variable having
no more than n.unique unique values

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

rms, rms.trans, describe, Predict, summary.rms

Examples

Not run:
d <- datadist(data=1) # use all variables in search pos. 1
d <- datadist(x1, x2, x3)
page(d) # if your options(pager) leaves up a pop-up

window, this is a useful guide in analyses
d <- datadist(data=2) # all variables in search pos. 2
d <- datadist(data=my.data.frame)
d <- datadist(my.data.frame) # same as previous. Run for all potential vars.
d <- datadist(x2, x3, data=my.data.frame) # combine variables
d <- datadist(x2, x3, q.effect=c(.1,.9), q.display=c(0,1))
uses inter-decile range odds ratios,
total range of variables for regression function plots
d <- datadist(d, z) # add a new variable to an existing datadist
options(datadist="d") #often a good idea, to store info with fit
f <- ols(y ~ x1*x2*x3)

options(datadist=NULL) #default at start of session
f <- ols(y ~ x1*x2)

ExProb 55

d <- datadist(f) #info not stored in `f'
d$limits["Adjust to","x1"] <- .5 #reset adjustment level to .5
options(datadist="d")

f <- lrm(y ~ x1*x2, data=mydata)
d <- datadist(f, data=mydata)
options(datadist="d")

f <- lrm(y ~ x1*x2) #datadist not used - specify all values for
summary(f, x1=c(200,500,800), x2=c(1,3,5)) # obtaining predictions
plot(Predict(f, x1=200:800, x2=3)) # or ggplot()

Change reference value to get a relative odds plot for a logistic model
d$limits$age[2] <- 30 # make 30 the reference value for age
Could also do: d$limits["Adjust to","age"] <- 30
fit <- update(fit) # make new reference value take effect
plot(Predict(fit, age, ref.zero=TRUE, fun=exp),

ylab='Age=x:Age=30 Odds Ratio') # or ggplot()

End(Not run)

ExProb Function Generators For Exceedance and Survival Probabilities

Description

For an orm object ExProb generates a function for computing the estimates of the function Prob(Y>=y)
given one or more values of the linear predictor using the reference (median) intercept. This function
can optionally be evaluated at only a set of user-specified y values, otherwise a right-step function is
returned. There is a plot method for plotting the step functions, and if more than one linear predic-
tor was evaluated multiple step functions are drawn. ExProb is especially useful for nomogram.
Survival generates a similar function but for computing survival probabilities Prob(Y>y) and
adding an origin of zero. Plotting of survival curves is done with a survplot method. For survival
estimation when interval censoring is present, times are taken as interval midpoints with intervals
corresponding to intercepts in the model.

Optionally a normal approximation (normality for the linear predictor) for a confidence interval for
exceedance probabilities will be computed, if conf.int > 0 is specified to the function generated
from calling ExProb or Survival. For ExProb, a "lims" attribute is included in the result computed
by the derived cumulative probability function. For Survival, the result is a data frame if conf.int
is specified or both time and the requested linear predictor are varying. In the data frame the limits
are variables lower and upper.

Usage

ExProb(object, ...)

56 ExProb

S3 method for class 'orm'
ExProb(object, codes = FALSE, ...)

S3 method for class 'ExProb'
plot(x, ..., data=NULL,

xlim=NULL, xlab=x$yname, ylab=expression(Prob(Y>=y)),
col=par('col'), col.vert='gray85', pch=20,
pch.data=21, lwd=par('lwd'), lwd.data=lwd,
lty.data=2, key=TRUE)

S3 method for class 'orm'
Survival(object, ...)

Arguments

object a fit object from orm. For Survival the fit may be from orm.fit. This is used to
estimate survival curves when there are no predictors in the model. In the case
the link function (family argument to orm.fit) does not affect survival prob-
abilities but does affect confidence limits. To get the same confidence intervals
as survival:survfit.formula use ormfit(y=, family='loglog') to corre-
spond to survfit(..., conf.type='log-log').

codes if TRUE, ExProb use the integer codes 1, 2, . . . , k for the k-level response instead
of its original unique values

... ignored for ExProb. Passed to plot for plot.ExProb

data Specify data if you want to add stratified empirical probabilities to the graph.
If data is a numeric vector, it is assumed that no groups are present. Otherwise
data must be a list or data frame where the first variable is the grouping variable
(corresponding to what made the linear predictor vary) and the second variable
is the data vector for the y variable. The rows of data should be sorted to be in
order of the linear predictor argument.

x an object created by running the function created by ExProb

xlim limits for x-axis; default is range of observed y

xlab x-axis label

ylab y-axis label

col color for horizontal lines and points

col.vert color for vertical discontinuities

pch plotting symbol for predicted curves

lwd line width for predicted curves
pch.data, lwd.data, lty.data

plotting parameters for data

key set to FALSE to suppress key in plot if data is given

Value

ExProb and Survival return an R function. Running the function returns an object of class
"ExProb" for ExProb, or a data frame or vector for Survival.

fastbw 57

Author(s)

Frank Harrell and Shengxin Tu

See Also

orm, Quantile.orm

Examples

set.seed(1)
x1 <- runif(200)
yvar <- x1 + runif(200)
f <- orm(yvar ~ x1)
d <- ExProb(f)
lp <- predict(f, newdata=data.frame(x1=c(.2,.8)))
w <- d(lp)
s1 <- abs(x1 - .2) < .1
s2 <- abs(x1 - .8) < .1
plot(w, data=data.frame(x1=c(rep(.2, sum(s1)), rep(.8, sum(s2))),

yvar=c(yvar[s1], yvar[s2])))

qu <- Quantile(f)
abline(h=c(.1,.5), col='gray80')
abline(v=qu(.5, lp), col='gray80')
abline(v=qu(.9, lp), col='green')
Not run:

Y <- Ocens(dtime, ifelse(censored, Inf, dtime))
f <- orm(Y ~ x, family='loglog')
s <- Survival(f)
s() # all times
s(times=c(1, 3))
d <- data.frame(x=2:4)
s(X=predict(f, d, conf.int=0.95) # all times
s(lp=predict(f, d)) # same surv estimates, no CLs
use s(..., forcedf=TRUE) to force output to be a data.frame

End(Not run)

fastbw Fast Backward Variable Selection

Description

Performs a slightly inefficient but numerically stable version of fast backward elimination on fac-
tors, using a method based on Lawless and Singhal (1978). This method uses the fitted complete
model and computes approximate Wald statistics by computing conditional (restricted) maximum
likelihood estimates assuming multivariate normality of estimates. fastbw deletes factors, not
columns of the design matrix. Factors requiring multiple d.f. will be retained or dropped as a
group. The function prints the deletion statistics for each variable in turn, and prints approximate

58 fastbw

parameter estimates for the model after deleting variables. The approximation is better when the
number of factors deleted is not large. For ols, the approximation is exact for regression coef-
ficients, and standard errors are only off by a factor equal to the ratio of the mean squared error
estimate for the reduced model to the original mean squared error estimate for the full model.

If the fit was from ols, fastbw will compute the usual R2 statistic for each model.

Usage

fastbw(fit, rule=c("aic", "p"),
type=c("residual", "individual", "total"),
sls=.05, aics=0, eps=.Machine$double.eps,
k.aic=2, force=NULL)

S3 method for class 'fastbw'
print(x, digits=4, estimates=TRUE, ...)

Arguments

fit fit object with Varcov(fit) defined (e.g., from ols, lrm, cph, psm, glmD)

rule Stopping rule. Defaults to "aic" for Akaike’s information criterion. Use rule="p"
to use P -values

type Type of statistic on which to base the stopping rule. Default is "residual" for
the pooled residual chi-square. Use type="individual" to use Wald chi-square
of individual factors.

sls Significance level for staying in a model if rule="p". Default is .05.

aics For rule="aic", variables are deleted until the chi-square - k.aic times d.f.
would rise above aics. Default aics is zero to use the ordinary AIC. Set aics
to say 10000 to see all variables deleted in order of descending importance.

eps Singularity criterion, default is 1E-14.

k.aic multiplier to compute AIC, default is 2. To use BIC, set k.aic equal to log(n),
where n is the effective sample size (number of events for survival models).

force a vector of integers specifying parameters forced to be in the model, not counting
intercept(s)

x result of fastbw

digits number of significant digits to print

estimates set to FALSE to suppress printing table of approximate coefficients, SEs, etc.,
after variable deletions

... ignored

Value

a list with an attribute kept if bw=TRUE, and the following components:

result matrix of statistics with rows in order of deletion.

names.kept names of factors kept in final model.

Function 59

factors.kept the subscripts of factors kept in the final model
factors.deleted

opposite of factors.kept.

parms.kept column numbers in design matrix corresponding to parameters kept in the final
model.

parms.deleted opposite of parms.kept.

coefficients vector of approximate coefficients of reduced model.

var approximate covariance matrix for reduced model.

Coefficients matrix of coefficients of all models. Rows correspond to the successive models
examined and columns correspond to the coefficients in the full model. For
variables not in a particular sub-model (row), the coefficients are zero.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Lawless, J. F. and Singhal, K. (1978): Efficient screening of nonnormal regression models. Biomet-
rics 34:318–327.

See Also

rms, ols, lrm, cph, psm, validate, solvet, rmsMisc

Examples

Not run:
fastbw(fit, optional.arguments) # print results
z <- fastbw(fit, optional.args) # typically used in simulations
lm.fit(X[,z$parms.kept], Y) # least squares fit of reduced model

End(Not run)

Function Compose an S Function to Compute X beta from a Fit

Description

Function is a class of functions for creating other S functions. Function.rms is the method for
creating S functions to compute X beta, based on a model fitted with rms in effect. Like latexrms,
Function.rms simplifies restricted cubic spline functions and factors out terms in second-order
interactions. Function.rms will not work for models that have third-order interactions involving
restricted cubic splines. Function.cph is a particular method for handling fits from cph, for which

60 Function

an intercept (the negative of the centering constant) is added to the model. sascode is a function
that takes an S function such as one created by Function and does most of the editing to turn the
function definition into a fragment of SAS code for computing X beta from the fitted model, along
with assignment statements that initialize predictors to reference values. perlcode similarly creates
Perl code to evaluate a fitted regression model.

Usage

S3 method for class 'rms'
Function(object, intercept=NULL,
digits=max(8, .Options$digits), posterior.summary=c('mean', 'median', 'mode'), ...)
S3 method for class 'cph'
Function(object, intercept=-object$center, ...)

Use result as fun(predictor1=value1, predictor2=value2, \dots)

sascode(object, file='', append=FALSE)

perlcode(object)

Arguments

object a fit created with rms in effect

intercept an intercept value to use (not allowed to be specified to Function.cph). The
intercept is usually retrieved from the regression coefficients automatically.

digits number of significant digits to use for coefficients and knot locations
posterior.summary

if using a Bayesian model fit such as from blrm, specifies whether to use poste-
rior mode/mean/median parameter estimates in generating the function

file name of a file in which to write the SAS code. Default is to write to standard
output.

append set to TRUE to have sascode append code to an existing file named file.

... arguments to pass to Function.rms from Function.cph

Value

Function returns an S-Plus function that can be invoked in any usual context. The function has
one argument per predictor variable, and the default values of the predictors are set to adjust-to
values (see datadist). Multiple predicted X beta values may be calculated by specifying vectors
as arguments to the created function. All non-scalar argument values must have the same length.
perlcode returns a character string with embedded newline characters.

Author(s)

Frank Harrell, Jeremy Stephens, and Thomas Dupont
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

gendata 61

See Also

latexrms, transcan, predict.rms, rms, rms.trans

Examples

suppressWarnings(RNGversion("3.5.0"))
set.seed(1331)
x1 <- exp(rnorm(100))
x2 <- factor(sample(c('a','b'),100,rep=TRUE))
dd <- datadist(x1, x2)
options(datadist='dd')
y <- log(x1)^2+log(x1)*(x2=='b')+rnorm(100)/4
f <- ols(y ~ pol(log(x1),2)*x2)
f$coef
g <- Function(f, digits=5)
g
sascode(g)
cat(perlcode(g), '\n')
g()
g(x1=c(2,3), x2='b') #could omit x2 since b is default category
predict(f, expand.grid(x1=c(2,3),x2='b'))
g8 <- Function(f) # default is 8 sig. digits
g8(x1=c(2,3), x2='b')
options(datadist=NULL)

Not run:
require(survival)
Make self-contained functions for computing survival probabilities
using a log-normal regression
f <- psm(Surv(d.time, death) ~ rcs(age,4)*sex, dist='gaussian')
g <- Function(f)
surv <- Survival(f)
Compute 2 and 5-year survival estimates for 50 year old male
surv(c(2,5), g(age=50, sex='male'))

End(Not run)

gendata Generate Data Frame with Predictor Combinations

Description

If nobs is not specified, allows user to specify predictor settings by e.g. age=50, sex="male",
and any omitted predictors are set to reference values (default=median for continuous variables,
first level for categorical ones - see datadist). If any predictor has more than one value given,
expand.grid is called to generate all possible combinations of values, unless expand=FALSE. If
nobs is given, a data frame is first generated which has nobs of adjust-to values duplicated. Then
an editor window is opened which allows the user to subset the variable names down to ones which

62 gendata

she intends to vary (this streamlines the data.ed step). Then, if any predictors kept are discrete
and viewvals=TRUE, a window (using page) is opened defining the possible values of this subset,
to facilitate data editing. Then the data.ed function is invoked to allow interactive overriding of
predictor settings in the nobs rows. The subset of variables are combined with the other predictors
which were not displayed with data.ed, and a final full data frame is returned. gendata is most
useful for creating a newdata data frame to pass to predict.

Usage

gendata(fit, ..., nobs, viewvals=FALSE, expand=TRUE, factors)

Arguments

fit a fit object created with rms in effect

... predictor settings, if nobs is not given.

nobs number of observations to create if doing it interactively using X-windows

viewvals if nobs is given, set viewvals=TRUE to open a window displaying the possible
value of categorical predictors

expand set to FALSE to prevent expand.grid from being called, and to instead just con-
vert to a data frame.

factors a list containing predictor settings with their names. This is an alternative to
specifying the variables separately in Unlike the usage of . . . , variables
getting default ranges in factors should have NA as their value.

Details

if you have a variable in ... that is named n, no, nob, nob, add nobs=FALSE to the invocation to
prevent that variable from being misrecognized as nobs

Value

a data frame with all predictors, and an attribute names.subset if nobs is specified. This attribute
contains the vector of variable names for predictors which were passed to de and hence were allowed
to vary. If neither nobs nor any predictor settings were given, returns a data frame with adjust-to
values.

Side Effects

optionally writes to the terminal, opens X-windows, and generates a temporary file using sink.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

ggplot.npsurv 63

See Also

predict.rms, survest.cph, survest.psm, rmsMisc, expand.grid, de, page, print.datadist,
Predict

Examples

set.seed(1)
age <- rnorm(200, 50, 10)
sex <- factor(sample(c('female','male'),200,TRUE))
race <- factor(sample(c('a','b','c','d'),200,TRUE))
y <- sample(0:1, 200, TRUE)
dd <- datadist(age,sex,race)
options(datadist="dd")
f <- lrm(y ~ age*sex + race)
gendata(f)
gendata(f, age=50)
d <- gendata(f, age=50, sex="female") # leave race=reference category
d <- gendata(f, age=c(50,60), race=c("b","a")) # 4 obs.
d$Predicted <- predict(f, d, type="fitted")
d # Predicted column prints at the far right
options(datadist=NULL)
Not run:
d <- gendata(f, nobs=5, view=TRUE) # 5 interactively defined obs.
d[,attr(d,"names.subset")] # print variables which varied
predict(f, d)

End(Not run)

ggplot.npsurv Title Plot npsurv Nonparametric Survival Curves Using ggplot2

Description

Title Plot npsurv Nonparametric Survival Curves Using ggplot2

Usage

S3 method for class 'npsurv'
ggplot(
data,
mapping,
conf = c("bands", "none"),
trans = c("identity", "logit", "probit", "loglog"),
logt = FALSE,
curtail = c(0, 1),
xlab,
ylab = "Survival Probability",
abbrev.label = FALSE,

64 ggplot.npsurv

levels.only = TRUE,
alpha = 0.15,
facet = FALSE,
npretty = 10,
onlydata = FALSE,
...,
environment

)

Arguments

data the result of npsurv

mapping unused

conf set to "none" to suppress confidence bands

trans the name of a transformation for the survival probabilities to use in drawing the
y-axis scale. The default is no transformation, and other choices are "logit", "probit", "loglog".
"loglog" represents −log(−log(S(t)))

logt set to TRUE to use a log scale for the x-axis

curtail set to a (lower, upper) 2-vector to curtail survival probabilities and confidence
limits before transforming and plotting

xlab x-axis label, the default coming from fit

ylab y-axis label, the default coming from fit

abbrev.label set to TRUE to abbreviate strata levels

levels.only set to FALSE to keep the original strata name in the levels

alpha transparency for confidence bands

facet when strata are present, set to TRUE to facet them rather than using colors on one
panel

npretty the number of major tick mark labels to be constructed by scales::breaks_pretty()
or pretty(). For transformed scales, twice this number is used.

onlydata set to TRUE to return the data frame to be plotted, and no plot

... ignored

environment unused

Value

a ggplot2 object, if onlydata=FALSE

Author(s)

Frank Harrell

ggplot.Predict 65

Examples

set.seed(1)
g <- c(rep('a', 500), rep('b', 500))
y <- exp(-1 + 2 * (g == 'b') + rlogis(1000) / 3)
f <- npsurv(Surv(y) ~ g)
ggplot(f, trans='logit', logt=TRUE)

ggplot.Predict Plot Effects of Variables Estimated by a Regression Model Fit Using
ggplot2

Description

Uses ggplot2 graphics to plot the effect of one or two predictors on the linear predictor or X beta
scale, or on some transformation of that scale. The first argument specifies the result of the Predict
function. The predictor is always plotted in its original coding.

If rdata is given, a spike histogram is drawn showing the location/density of data values for the
x-axis variable. If there is a groups (superposition) variable that generated separate curves, the data
density specific to each class of points is shown. This assumes that the second variable was a factor
variable. The histograms are drawn by histSpikeg.

To plot effects instead of estimates (e.g., treatment differences as a function of interacting factors)
see contrast.rms and summary.rms.

Usage

S3 method for class 'Predict'
ggplot(data, mapping, formula=NULL, groups=NULL,

aestype=c('color', 'linetype'),
conf=c('fill', 'lines'),
conflinetype=1,
varypred=FALSE, sepdiscrete=c('no', 'list', 'vertical', 'horizontal'),
subset, xlim., ylim., xlab, ylab,
colorscale=function(...) scale_color_manual(...,
values=c("#000000", "#E69F00", "#56B4E9",

"#009E73","#F0E442", "#0072B2", "#D55E00", "#CC79A7")),
colfill='black',
rdata=NULL, anova=NULL, pval=FALSE, size.anova=4,
adj.subtitle, size.adj=2.5, perim=NULL, nlevels=3,
flipxdiscrete=TRUE,
legend.position='right', legend.label=NULL,
vnames=c('labels','names'), abbrev=FALSE, minlength=6,
layout=NULL, addlayer,
histSpike.opts=list(frac=function(f) 0.01 +

0.02 * sqrt(f - 1)/sqrt(max(f, 2) - 1), side=1, nint=100),
type=NULL, ggexpr=FALSE, height=NULL, width=NULL, ..., environment)

66 ggplot.Predict

Arguments

data a data frame created by Predict

mapping kept because of ggplot generic setup. If specified it will be assumed to be
formula.

formula a ggplot faceting formula of the form vertical variables ~ horizontal variables,
with variables separated by * if there is more than one variable on a side. If omit-
ted, the formula will be built using assumptions on the list of variables that var-
ied in the Predict call. When plotting multiple panels (for separate predictors),
formula may be specified but by default no formula is constructed.

groups an optional character string containing the name of one of the variables in data
that is to be used as a grouping (superpositioning) variable. Set groups=FALSE
to suppress superpositioning. By default, the second varying variable is used for
superpositioning groups. You can also specify a length 2 string vector of vari-
able names specifying two dimensions of superpositioning, identified by differ-
ent aesthetics corresponding to the aestype argument. When plotting effects
of more than one predictor, groups is a character string that specifies a single
variable name in data that can be used to form panels. Only applies if using
rbind to combine several Predict results. If there is more than one groups
variable, confidence bands are suppressed because ggplot2:geom_ribbon does
not handle the aesthetics correctly.

aestype a string vector of aesthetic names corresponding to variables in the groups vec-
tor. Default is to use, in order, color, and linetype. Other permissible values
are size, shape.

conf specify conf="line" to show confidence bands with lines instead of filled rib-
bons, the default

conflinetype specify an alternative linetype for confidence intervals if conf="line"

varypred set to TRUE if data is the result of passing multiple Predict results, that repre-
sent different predictors, to rbind.Predict. This will cause the .set. variable
created by rbind to be copied to the .predictor. variable.

sepdiscrete set to something other than "no" to create separate graphics for continuous and
discrete predictors. For discrete predictors, horizontal dot charts are produced.
This allows use of the ggplot2 facet_wrap function to make better use of
space. If sepdiscrete="list", a list of two grid graphics objects is returned
if both types of predictors are present (otherwise one object for the type that
existed in the model). Set sepdiscrete="vertical" to put the two types of
plots into one graphical object with continuous predictors on top and given a
fraction of space relative to the number of continuous vs. number of discrete
variables. Set sepdiscrete="horizontal" to get a horizontal arrangements
with continuous variables on the left.

subset a subsetting expression for restricting the rows of data that are used in plotting.
For example, predictions may have been requested for males and females but
one wants to plot only females.

xlim. This parameter is seldom used, as limits are usually controlled with Predict.
Usually given as its legal abbreviation xlim. One reason to use xlim is to plot
a factor variable on the x-axis that was created with the cut2 function with

ggplot.Predict 67

the levels.mean option, with val.lev=TRUE specified to plot.Predict. In
this case you may want the axis to have the range of the original variable values
given to cut2 rather than the range of the means within quantile groups.

ylim. Range for plotting on response variable axis. Computed by default. Usually
specified using its legal definition ylim.

xlab Label for x-axis. Default is one given to asis, rcs, etc., which may have been
the "label" attribute of the variable.

ylab Label for y-axis. If fun is not given, default is "log Odds" for lrm, "log
Relative Hazard" for cph, name of the response variable for ols, TRUE or
log(TRUE) for psm, or "X * Beta" otherwise. Specify ylab=NULL to omit y-axis
labels.

colorscale a ggplot2 discrete scale function, e.g. function(...) scale_color_brewer(...,
palette='Set1', type='qual'). The default is the colorblind-friendly palette
including black in http://www.cookbook-r.com/Graphs/Colors_(ggplot2).
If you get an error "insufficient values in manual scale", which occurs when
there are more than 8 groups, just specify colorscale=function(...){} to
use default colors.

colfill a single character string or number specifying the fill color to use for geom_ribbon
for shaded confidence bands. Alpha transparency of 0.2 is applied to any color
specified.

rdata a data frame containing the original raw data on which the regression model
were based, or at least containing the x-axis and grouping variable. If rdata
is present and contains the needed variables, the original data are added to the
graph in the form of a spike histogram using histSpikeg in the Hmisc package.

anova an object returned by anova.rms. If anova is specified, the overall test of asso-
ciation for predictor plotted is added as text to each panel, located at the spot at
which the panel is most empty unless there is significant empty space at the top
or bottom of the panel; these areas are given preference.

pval specify pval=TRUE for anova to include not only the test statistic but also the
P-value

size.anova character size for the test statistic printed on the panel, mm

adj.subtitle Set to FALSE to suppress subtitling the graph with the list of settings of non-
graphed adjustment values. Subtitles appear as captions with ggplot2 using
labs(caption=).

size.adj Size of adjustment settings in subtitles in mm. Default is 2.5.

perim perim specifies a function having two arguments. The first is the vector of val-
ues of the first variable that is about to be plotted on the x-axis. The second
argument is the single value of the variable representing different curves, for the
current curve being plotted. The function’s returned value must be a logical vec-
tor whose length is the same as that of the first argument, with values TRUE if the
corresponding point should be plotted for the current curve, FALSE otherwise.
See one of the latter examples. perim only applies if predictors were specified
to Predict.

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)

68 ggplot.Predict

nlevels when groups and formula are not specified, if any panel variable has nlevels
or fewer values, that variable is converted to a groups (superpositioning) vari-
able. Set nlevels=0 to prevent this behavior. For other situations, a non-
numeric x-axis variable with nlevels or fewer unique values will cause a hori-
zontal dot plot to be drawn instead of an x-y plot unless flipxdiscrete=FALSE.

flipxdiscrete see nlevels
legend.position

"right" (the default for single-panel plots), "left", "bottom", "top", a two-
element numeric vector, or "none" to suppress. For multi-panel plots the default
is "top", and a legend only appears for the first (top left) panel.

legend.label if omitted, group variable labels will be used for label the legend. Specify
legend.label=FALSE to suppress using a legend name, or a character string
or expression to specify the label. Can be a vector is there is more than one
grouping variable.

vnames applies to the case where multiple plots are produced separately by predictor.
Set to 'names' to use variable names instead of labels for these small plots.

abbrev set to true to abbreviate levels of predictors that are categorical to a minimum
length of minlength

minlength see abbrev

layout for multi-panel plots a 2-vector specifying the number of rows and number of
columns. If omitted will be computed from the number of panels to make as
square as possible.

addlayer a ggplot2 expression consisting of one or more layers to add to the current plot
histSpike.opts a list containing named elements that specifies parameters to histSpikeg when

rdata is given. The col parameter is usually derived from other plotting infor-
mation and not specified by the user.

type a value ("l","p","b") to override default choices related to showing or con-
necting points. Especially useful for discrete x coordinate variables.

ggexpr set to TRUE to have the function return the character string(s) constructed to
invoke ggplot without executing the commands

height, width used if plotly is in effect, to specify the plotly image in pixels. Default is to
let plotly size the image.

... ignored
environment ignored; used to satisfy rules because of the generic ggplot

Value

an object of class "ggplot2" ready for printing. For the case where predictors were not specified to
Predict, sepdiscrete=TRUE, and there were both continuous and discrete predictors in the model,
a list of two graphics objects is returned.

Note

If plotting the effects of all predictors you can reorder the panels using for example p <- Predict(fit);
p$.predictor. <-factor(p$.predictor., v) where v is a vector of predictor names specified in
the desired order.

ggplot.Predict 69

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Fox J, Hong J (2009): Effect displays in R for multinomial and proportional-odds logit models:
Extensions to the effects package. J Stat Software 32 No. 1.

See Also

Predict, rbind.Predict, datadist, predictrms, anova.rms, contrast.rms, summary.rms,
rms, rmsMisc, plot.Predict, labcurve, histSpikeg, ggplot, Overview

Examples

require(ggplot2)
n <- 350 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) +
.01 * (blood.pressure - 120)

Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

an <- anova(fit)
Plot effects in two vertical sub-panels with continuous predictors on top
ggplot(Predict(fit), sepdiscrete='vertical')
Plot effects of all 4 predictors with test statistics from anova, and P
ggplot(Predict(fit), anova=an, pval=TRUE)
ggplot(Predict(fit), rdata=llist(blood.pressure, age))
spike histogram plot for two of the predictors

70 ggplot.Predict

p <- Predict(fit, name=c('age','cholesterol')) # Make 2 plots
ggplot(p)

p <- Predict(fit, age=seq(20,80,length=100), sex, conf.int=FALSE)
Plot relationship between age and log

odds, separate curve for each sex,
ggplot(p, subset=sex=='female' | age > 30)
No confidence interval, suppress estimates for males <= 30

p <- Predict(fit, age, sex)
ggplot(p, rdata=llist(age,sex))

rdata= allows rug plots (1-dimensional scatterplots)
on each sex's curve, with sex-
specific density of age
If data were in data frame could have used that

p <- Predict(fit, age=seq(20,80,length=100), sex='male', fun=plogis)
works if datadist not used

ggplot(p, ylab=expression(hat(P)))
plot predicted probability in place of log odds

per <- function(x, y) x >= 30
ggplot(p, perim=per) # suppress output for age < 30 but leave scale alone

Do ggplot2 faceting a few different ways
p <- Predict(fit, age, sex, blood.pressure=c(120,140,160),

cholesterol=c(180,200,215))
ggplot(p)
ggplot(p, cholesterol ~ blood.pressure)
ggplot(p, ~ cholesterol + blood.pressure)
color for sex, line type for blood.pressure:
ggplot(p, groups=c('sex', 'blood.pressure'))
Add legend.position='top' to allow wider plot
Map blood.pressure to line thickness instead of line type:
ggplot(p, groups=c('sex', 'blood.pressure'), aestype=c('color', 'size'))

Plot the age effect as an odds ratio
comparing the age shown on the x-axis to age=30 years

ddist$limits$age[2] <- 30 # make 30 the reference value for age
Could also do: ddist$limits["Adjust to","age"] <- 30
fit <- update(fit) # make new reference value take effect
p <- Predict(fit, age, ref.zero=TRUE, fun=exp)
ggplot(p, ylab='Age=x:Age=30 Odds Ratio',
addlayer=geom_hline(yintercept=1, col=gray(.8)) +
geom_vline(xintercept=30, col=gray(.8)) +
scale_y_continuous(trans='log',
breaks=c(.5, 1, 2, 4, 8))))

Compute predictions for three predictors, with superpositioning or
conditioning on sex, combined into one graph

p1 <- Predict(fit, age, sex)
p2 <- Predict(fit, cholesterol, sex)
p3 <- Predict(fit, blood.pressure, sex)

ggplot.Predict 71

p <- rbind(age=p1, cholesterol=p2, blood.pressure=p3)
ggplot(p, groups='sex', varypred=TRUE, adj.subtitle=FALSE)
ggplot(p, groups='sex', varypred=TRUE, adj.subtitle=FALSE, sepdiscrete='vert')

Not run:
For males at the median blood pressure and cholesterol, plot 3 types
of confidence intervals for the probability on one plot, for varying age
ages <- seq(20, 80, length=100)
p1 <- Predict(fit, age=ages, sex='male', fun=plogis) # standard pointwise
p2 <- Predict(fit, age=ages, sex='male', fun=plogis,

conf.type='simultaneous') # simultaneous
p3 <- Predict(fit, age=c(60,65,70), sex='male', fun=plogis,

conf.type='simultaneous') # simultaneous 3 pts
The previous only adjusts for a multiplicity of 3 points instead of 100
f <- update(fit, x=TRUE, y=TRUE)
g <- bootcov(f, B=500, coef.reps=TRUE)
p4 <- Predict(g, age=ages, sex='male', fun=plogis) # bootstrap percentile
p <- rbind(Pointwise=p1, 'Simultaneous 100 ages'=p2,

'Simultaneous 3 ages'=p3, 'Bootstrap nonparametric'=p4)
as.data.frame so will call built-in ggplot
ggplot(as.data.frame(p), aes(x=age, y=yhat)) + geom_line() +
geom_ribbon(data=p, aes(ymin=lower, ymax=upper), alpha=0.2, linetype=0)+
facet_wrap(~ .set., ncol=2)

Plots for a parametric survival model
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n,

rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
t <- -log(runif(n))/h
label(t) <- 'Follow-up Time'
e <- ifelse(t<=cens,1,0)
t <- pmin(t, cens)
units(t) <- "Year"
ddist <- datadist(age, sex)
require(survival)
Srv <- Surv(t,e)

Fit log-normal survival model and plot median survival time vs. age
f <- psm(Srv ~ rcs(age), dist='lognormal')
med <- Quantile(f) # Creates function to compute quantiles

(median by default)
p <- Predict(f, age, fun=function(x) med(lp=x))
ggplot(p, ylab="Median Survival Time")
Note: confidence intervals from this method are approximate since
they don't take into account estimation of scale parameter

Fit an ols model to log(y) and plot the relationship between x1

72 ggplot.Predict

and the predicted mean(y) on the original scale without assuming
normality of residuals; use the smearing estimator
See help file for rbind.Predict for a method of showing two
types of confidence intervals simultaneously.
Add raw data scatterplot to graph
set.seed(1)
x1 <- runif(300)
x2 <- runif(300)
ddist <- datadist(x1, x2); options(datadist='ddist')
y <- exp(x1 + x2 - 1 + rnorm(300))
f <- ols(log(y) ~ pol(x1,2) + x2)
r <- resid(f)
smean <- function(yhat)smearingEst(yhat, exp, res, statistic='mean')
formals(smean) <- list(yhat=numeric(0), res=r[! is.na(r)])
#smean$res <- r[! is.na(r)] # define default res argument to function
ggplot(Predict(f, x1, fun=smean), ylab='Predicted Mean on y-scale',

addlayer=geom_point(aes(x=x1, y=y), data.frame(x1, y)))
Had ggplot not added a subtitle (i.e., if x2 were not present), you
could have done ggplot(Predict(), ylab=...) + geom_point(...)

End(Not run)

Make an 'interaction plot', forcing the x-axis variable to be
plotted at integer values but labeled with category levels
n <- 100
set.seed(1)
gender <- c(rep('male', n), rep('female',n))
m <- sample(c('a','b'), 2*n, TRUE)
d <- datadist(gender, m); options(datadist='d')
anxiety <- runif(2*n) + .2*(gender=='female') + .4*(gender=='female' & m=='b')
tapply(anxiety, llist(gender,m), mean)
f <- ols(anxiety ~ gender*m)
p <- Predict(f, gender, m)
ggplot(p) # horizontal dot chart; usually preferred for categorical predictors
ggplot(p, flipxdiscrete=FALSE) # back to vertical
ggplot(p, groups='gender')
ggplot(p, ~ m, groups=FALSE, flipxdiscrete=FALSE)

options(datadist=NULL)

Not run:
Example in which separate curves are shown for 4 income values
For each curve the estimated percentage of voters voting for
the democratic party is plotted against the percent of voters
who graduated from college. Data are county-level percents.

incomes <- seq(22900, 32800, length=4)
equally spaced to outer quintiles
p <- Predict(f, college, income=incomes, conf.int=FALSE)
ggplot(p, xlim=c(0,35), ylim=c(30,55))

Erase end portions of each curve where there are fewer than 10 counties having
percent of college graduates to the left of the x-coordinate being plotted,

gIndex 73

for the subset of counties having median family income with 1650
of the target income for the curve

show.pts <- function(college.pts, income.pt) {
s <- abs(income - income.pt) < 1650 #assumes income known to top frame
x <- college[s]
x <- sort(x[!is.na(x)])
n <- length(x)
low <- x[10]; high <- x[n-9]
college.pts >= low & college.pts <= high

}

ggplot(p, xlim=c(0,35), ylim=c(30,55), perim=show.pts)

Rename variables for better plotting of a long list of predictors
f <- ...
p <- Predict(f)
re <- c(trt='treatment', diabet='diabetes', sbp='systolic blood pressure')

for(n in names(re)) {
names(p)[names(p)==n] <- re[n]
p$.predictor.[p$.predictor.==n] <- re[n]
}

ggplot(p)

End(Not run)

gIndex Calculate Total and Partial g-indexes for an rms Fit

Description

gIndex computes the total g-index for a model based on the vector of linear predictors, and the
partial g-index for each predictor in a model. The latter is computed by summing all the terms
involving each variable, weighted by their regression coefficients, then computing Gini’s mean
difference on this sum. For example, a regression model having age and sex and age*sex on the
right hand side, with corresponding regression coefficients b1, b2, b3 will have the g-index for age
computed from Gini’s mean difference on the product of age ×(b1 + b3w) where w is an indicator
set to one for observations with sex not equal to the reference value. When there are nonlinear terms
associated with a predictor, these terms will also be combined.

A print method is defined, and there is a plot method for displaying g-indexes using a dot chart.

These functions use Hmisc::GiniMd.

Usage

gIndex(object, partials=TRUE, type=c('ccterms', 'cterms', 'terms'),
lplabel=if(length(object$scale) && is.character(object$scale))
object$scale[1] else 'X*Beta',

74 gIndex

fun, funlabel=if(missing(fun)) character(0) else
deparse(substitute(fun)),
postfun=if(length(object$scale)==2) exp else NULL,
postlabel=if(length(postfun))
ifelse(missing(postfun),

if((length(object$scale) > 1) &&
is.character(object$scale)) object$scale[2] else
'Anti-log',
deparse(substitute(postfun))) else character(0),

...)

S3 method for class 'gIndex'
print(x, digits=4, abbrev=FALSE,
vnames=c("names","labels"), ...)

S3 method for class 'gIndex'
plot(x, what=c('pre', 'post'),
xlab=NULL, pch=16, rm.totals=FALSE,

sort=c('descending', 'ascending', 'none'), ...)

Arguments

object result of an rms fitting function

partials set to FALSE to suppress computation of partial gs

type defaults to 'ccterms' which causes partial discrimination indexes to be com-
puted after maximally combining all related main effects and interactions. The
is usually the only way that makes sense when considering partial linear predic-
tors. Specify type='cterms' to only combine a main effect with interactions
containing it, not also with other main effects connected through interactions.
Use type='terms' to separate interactions into their own effects.

lplabel a replacement for default values such as "X*Beta" or "log odds"/

fun an optional function to transform the linear predictors before computing the to-
tal (only) g. When this is present, a new component gtrans is added to the
attributes of the object resulting from gIndex.

funlabel a character string label for fun, otherwise taken from the function name itself

postfun a function to transform g such as exp (anti-log), which is the default for certain
models such as the logistic and Cox models

postlabel a label for postfun

... For gIndex, passed to predict.rms. Ignored for print. Passed to dotchart2
for plot.

x an object created by gIndex (for print or plot)

digits causes rounding to the digits decimal place

abbrev set to TRUE to abbreviate labels if vname="labels"

vnames set to "labels" to print predictor labels instead of names

what set to "post" to plot the transformed g-index if there is one (e.g., ratio scale)

gIndex 75

xlab x-axis label; constructed by default

pch plotting character for point

rm.totals set to TRUE to remove the total g-index when plotting

sort specifies how to sort predictors by g-index; default is in descending order going
down the dot chart

Details

For stratification factors in a Cox proportional hazards model, there is no contribution of variation
towards computing a partial g except from terms that interact with the stratification variable.

Value

gIndex returns a matrix of class "gIndex" with auxiliary information stored as attributes, such as
variable labels. GiniMd returns a scalar.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

David HA (1968): Gini’s mean difference rediscovered. Biometrika 55:573–575.

See Also

predict.rms,GiniMd

Examples

set.seed(1)
n <- 40
x <- 1:n
w <- factor(sample(c('a','b'), n, TRUE))
u <- factor(sample(c('A','B'), n, TRUE))
y <- .01*x + .2*(w=='b') + .3*(u=='B') + .2*(w=='b' & u=='B') + rnorm(n)/5
dd <- datadist(x,w,u); options(datadist='dd')
f <- ols(y ~ x*w*u, x=TRUE, y=TRUE)
f
anova(f)
z <- list()
for(type in c('terms','cterms','ccterms'))

{
zc <- predict(f, type=type)
cat('type:', type, '\n')
print(zc)
z[[type]] <- zc

76 gIndex

}

zc <- z$cterms
GiniMd(zc[, 1])
GiniMd(zc[, 2])
GiniMd(zc[, 3])
GiniMd(f$linear.predictors)
g <- gIndex(f)
g
g['Total',]
gIndex(f, partials=FALSE)
gIndex(f, type='cterms')
gIndex(f, type='terms')

y <- y > .8
f <- lrm(y ~ x * w * u, x=TRUE, y=TRUE, reltol=1e-5)

gIndex(f, fun=plogis, funlabel='Prob[y=1]')

Manual calculation of combined main effect + interaction effort of
sex in a 2x2 design with treatments A B, sexes F M,
model -.1 + .3*(treat=='B') + .5*(sex=='M') + .4*(treat=='B' & sex=='M')

set.seed(1)
X <- expand.grid(treat=c('A','B'), sex=c('F', 'M'))
a <- 3; b <- 7; c <- 13; d <- 5
X <- rbind(X[rep(1, a),], X[rep(2, b),], X[rep(3, c),], X[rep(4, d),])
y <- with(X, -.1 + .3*(treat=='B') + .5*(sex=='M') + .4*(treat=='B' & sex=='M'))
f <- ols(y ~ treat*sex, data=X, x=TRUE)
gIndex(f, type='cterms')
k <- coef(f)
b1 <- k[2]; b2 <- k[3]; b3 <- k[4]
n <- nrow(X)
((a+b)*c*abs(b2) + (a+b)*d*abs(b2+b3) + c*d*abs(b3))/(n*(n-1)/2)

Manual calculation for combined age effect in a model with sex,
age, and age*sex interaction

a <- 13; b <- 7
sex <- c(rep('female',a), rep('male',b))
agef <- round(runif(a, 20, 30))
agem <- round(runif(b, 20, 40))
age <- c(agef, agem)
y <- (sex=='male') + age/10 - (sex=='male')*age/20
f <- ols(y ~ sex*age, x=TRUE)
f
gIndex(f, type='cterms')
k <- coef(f)
b1 <- k[2]; b2 <- k[3]; b3 <- k[4]
n <- a + b
sp <- function(w, z=w) sum(outer(w, z, function(u, v) abs(u-v)))

(abs(b2)*sp(agef) + abs(b2+b3)*sp(agem) + 2*sp(b2*agef, (b2+b3)*agem)) / (n*(n-1))

Glm 77

(abs(b2)*GiniMd(agef)*a*(a-1) + abs(b2+b3)*GiniMd(agem)*b*(b-1) +
2*sp(b2*agef, (b2+b3)*agem)) / (n*(n-1))

Not run:
Compare partial and total g-indexes over many random fits
plot(NA, NA, xlim=c(0,3), ylim=c(0,3), xlab='Global',

ylab='x1 (black) x2 (red) x3 (green) x4 (blue)')
abline(a=0, b=1, col=gray(.9))
big <- integer(3)
n <- 50 # try with n=7 - see lots of exceptions esp. for interacting var
for(i in 1:100) {

x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
x4 <- runif(n)
y <- x1 + x2 + x3 + x4 + 2*runif(n)
f <- ols(y ~ x1*x2+x3+x4, x=TRUE)
f <- ols(y ~ x1+x2+x3+x4, x=TRUE) # also try this
w <- gIndex(f)[,1]
gt <- w['Total']
points(gt, w['x1, x2'])
points(gt, w['x3'], col='green')
points(gt, w['x4'], col='blue')
big[1] <- big[1] + (w['x1, x2'] > gt)
big[2] <- big[2] + (w['x3'] > gt)
big[3] <- big[3] + (w['x4'] > gt)
}

print(big)

End(Not run)

options(datadist=NULL)

Glm rms Version of glm

Description

This function saves rms attributes with the fit object so that anova.rms, Predict, etc. can be used
just as with ols and other fits. No validate or calibrate methods exist for Glm though.

Usage

Glm(
formula,
family = gaussian,
data = environment(formula),
weights,
subset,

78 Glm

na.action = na.delete,
start = NULL,
offset = NULL,
control = glm.control(...),
model = TRUE,
method = "glm.fit",
x = FALSE,
y = TRUE,
contrasts = NULL,
...

)

Arguments

formula, family, data, weights, subset, na.action, start, offset, control,
model, method, x, y, contrasts

see stats::glm(); for print x is the result of Glm

... ignored

Details

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html".

Value

a fit object like that produced by stats::glm() but with rms attributes and a class of "rms",
"Glm", "glm", and "lm". The g element of the fit object is the g-index.

See Also

stats::glm(),Hmisc::GiniMd(), prModFit(), stats::residuals.glm

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
f <- glm(counts ~ outcome + treatment, family=poisson())
f
anova(f)
summary(f)
f <- Glm(counts ~ outcome + treatment, family=poisson())
could have had rcs() etc. if there were continuous predictors
f
anova(f)
summary(f, outcome=c('1','2','3'), treatment=c('1','2','3'))

Gls 79

Gls Fit Linear Model Using Generalized Least Squares

Description

This function fits a linear model using generalized least squares. The errors are allowed to be cor-
related and/or have unequal variances. Gls is a slightly enhanced version of the Pinheiro and Bates
gls function in the nlme package to make it easy to use with the rms package and to implement
cluster bootstrapping (primarily for nonparametric estimates of the variance-covariance matrix of
the parameter estimates and for nonparametric confidence limits of correlation parameters).

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html". When using html with Quarto or RMark-
down, results='asis' need not be written in the chunk header.

Usage

Gls(model, data, correlation, weights, subset, method, na.action=na.omit,
control, verbose, B=0, dupCluster=FALSE, pr=FALSE, x=FALSE)

S3 method for class 'Gls'
print(x, digits=4, coefs=TRUE, title, ...)

Arguments

model a two-sided linear formula object describing the model, with the response on the
left of a ~ operator and the terms, separated by + operators, on the right.

data an optional data frame containing the variables named in model, correlation,
weights, and subset. By default the variables are taken from the environment
from which gls is called.

correlation an optional corStruct object describing the within-group correlation struc-
ture. See the documentation of corClasses for a description of the available
corStruct classes. If a grouping variable is to be used, it must be specified in
the form argument to the corStruct constructor. Defaults to NULL, correspond-
ing to uncorrelated errors.

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscesdatic errors.

subset an optional expression indicating which subset of the rows of data should be
used in the fit. This can be a logical vector, or a numeric vector indicating which
observation numbers are to be included, or a character vector of the row names
to be included. All observations are included by default.

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".

80 Gls

na.action a function that indicates what should happen when the data contain NAs. The
default action (na.omit) results in deletion of observations having any of the
variables of interest missing.

control a list of control values for the estimation algorithm to replace the default values
returned by the function glsControl. Defaults to an empty list.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

B number of bootstrap resamples to fit and store, default is none

dupCluster set to TRUE to have Gls when bootstrapping to consider multiply-sampled clus-
ters as if they were one large cluster when fitting using the gls algorithm

pr set to TRUE to show progress of bootstrap resampling

x for Gls set to TRUE to store the design matrix in the fit object; otherwise the
result of Gls

digits number of significant digits to print

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

title a character string title to be passed to prModFit

... ignored

Details

The na.delete function will not work with Gls due to some nuance in the model.frame.default
function. This probably relates to na.delete storing extra information in the "na.action" attribute
of the returned data frame.

Value

an object of classes Gls, rms, and gls representing the linear model fit. Generic functions such as
print, plot, ggplot, and summary have methods to show the results of the fit. See glsObject for
the components of the fit. The functions resid, coef, and fitted can be used to extract some of its
components. Gls returns the following components not returned by gls: Design, assign, formula
(see arguments), B (see arguments), bootCoef (matrix of B bootstrapped coefficients), boot.Corr
(vector of bootstrapped correlation parameters), Nboot (vector of total sample size used in each
bootstrap (may vary if have unbalanced clusters), and var (sample variance-covariance matrix of
bootstrapped coefficients). The g-index is also stored in the returned object under the name "g".

Author(s)

Jose Pinheiro, Douglas Bates <bates@stat.wisc.edu>, Saikat DebRoy, Deepayan Sarkar, R-core
<R-core@R-project.org>, Frank Harrell <fh@fharrell.com>, Patrick Aboyoun

References

Pinheiro J, Bates D (2000): Mixed effects models in S and S-Plus. New York: Springer-Verlag.

groupkm 81

See Also

gls glsControl, glsObject, varFunc, corClasses, varClasses, GiniMd, prModFit, logLik.Gls

Examples

Not run:
require(ggplot2)
ns <- 20 # no. subjects
nt <- 10 # no. time points/subject
B <- 10 # no. bootstrap resamples

usually do 100 for variances, 1000 for nonparametric CLs
rho <- .5 # AR(1) correlation parameter
V <- matrix(0, nrow=nt, ncol=nt)
V <- rho^abs(row(V)-col(V)) # per-subject correlation/covariance matrix

d <- expand.grid(tim=1:nt, id=1:ns)
d$trt <- factor(ifelse(d$id <= ns/2, 'a', 'b'))
true.beta <- c(Intercept=0,tim=.1,'tim^2'=0,'trt=b'=1)
d$ey <- true.beta['Intercept'] + true.beta['tim']*d$tim +

true.beta['tim^2']*(d$tim^2) + true.beta['trt=b']*(d$trt=='b')
set.seed(13)
library(MASS) # needed for mvrnorm
d$y <- d$ey + as.vector(t(mvrnorm(n=ns, mu=rep(0,nt), Sigma=V)))

dd <- datadist(d); options(datadist='dd')
f <- Gls(y ~ pol(tim,2) + trt, correlation=corCAR1(form= ~tim | id),

data=d, B=B)
f
AIC(f)
f$var # bootstrap variances
f$varBeta # original variances
summary(f)
anova(f)
ggplot(Predict(f, tim, trt))
v <- Variogram(f, form=~tim|id, data=d)
nlme:::summary.gls(f)$tTable # print matrix of estimates etc.

options(datadist=NULL)

End(Not run)

groupkm Kaplan-Meier Estimates vs. a Continuous Variable

Description

Function to divide x (e.g. age, or predicted survival at time u created by survest) into g quantile
groups, get Kaplan-Meier estimates at time u (a scaler), and to return a matrix with columns x=mean
x in quantile, n=number of subjects, events=no. events, and KM=K-M survival at time u, std.err

82 groupkm

= s.e. of -log K-M. Confidence intervals are based on -log S(t). Instead of supplying g, the user
can supply the minimum number of subjects to have in the quantile group (m, default=50). If cuts
is given (e.g. cuts=c(0,.1,.2,...,.9,.1)), it overrides m and g. Calls Therneau’s survfitKM in
the survival package to get Kaplan-Meiers estimates and standard errors.

Usage

groupkm(x, Srv, m=50, g, cuts, u,
pl=FALSE, loglog=FALSE, conf.int=.95, xlab, ylab,
lty=1, add=FALSE, cex.subtitle=.7, ...)

Arguments

x variable to stratify

Srv a Surv object - n x 2 matrix containing survival time and event/censoring 1/0
indicator. Units of measurement come from the "units" attribute of the survival
time variable. "Day" is the default.

m desired minimum number of observations in a group

g number of quantile groups

cuts actual cuts in x, e.g. c(0,1,2) to use [0,1), [1,2].

u time for which to estimate survival

pl TRUE to plot results

loglog set to TRUE to plot log(-log(survival)) instead of survival

conf.int defaults to .95 for 0.95 confidence bars. Set to FALSE to suppress bars.

xlab if pl=TRUE, is x-axis label. Default is label(x) or name of calling argument

ylab if pl=TRUE, is y-axis label. Default is constructed from u and time units at-
tribute.

lty line time for primary line connecting estimates

add set to TRUE if adding to an existing plot

cex.subtitle character size for subtitle. Default is .7. Use FALSE to suppress subtitle.

... plotting parameters to pass to the plot and errbar functions

Value

matrix with columns named x (mean predictor value in interval), n (sample size in interval), events
(number of events in interval), KM (Kaplan-Meier estimate), std.err (standard error of -log KM)

See Also

survfit, errbar, cut2, Surv, units

hazard.ratio.plot 83

Examples

require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50))
d.time <- -log(runif(n))/h
label(d.time) <- 'Follow-up Time'
e <- ifelse(d.time <= cens,1,0)
d.time <- pmin(d.time, cens)
units(d.time) <- "Year"
groupkm(age, Surv(d.time, e), g=10, u=5, pl=TRUE)
#Plot 5-year K-M survival estimates and 0.95 confidence bars by
#decile of age. If omit g=10, will have >= 50 obs./group.

hazard.ratio.plot Hazard Ratio Plot

Description

The hazard.ratio.plot function repeatedly estimates Cox regression coefficients and confidence
limits within time intervals. The log hazard ratios are plotted against the mean failure/censoring time
within the interval. Unless times is specified, the number of time intervals will be max(round(d/e), 2),
where d is the total number of events in the sample. Efron’s likelihood is used for estimating Cox
regression coefficients (using coxph.fit). In the case of tied failure times, some intervals may have
a point in common.

Usage

hazard.ratio.plot(x, Srv, which, times=, e=30, subset,
conf.int=.95, legendloc=NULL, smooth=TRUE, pr=FALSE, pl=TRUE,
add=FALSE, ylim, cex=.5, xlab="t", ylab, antilog=FALSE, ...)

Arguments

x a vector or matrix of predictors

Srv a Surv object

which a vector of column numbers of x for which to estimate hazard ratios across
time and make plots. The default is to do so for all predictors. Whenever one
predictor is displayed, all other predictors in the x matrix are adjusted for (with
a separate adjustment form for each time interval).

times optional vector of time interval endpoints. Example: times=c(1,2,3) uses
intervals [0,1), [1,2), [2,3), [3+). If times is omitted, uses intervals con-
taining e events

e number of events per time interval if times not given

84 hazard.ratio.plot

subset vector used for subsetting the entire analysis, e.g. subset=sex=="female"

conf.int confidence interval coverage

legendloc location for legend. Omit to use mouse, "none" for none, "ll" for lower left of
graph, or actual x and y coordinates (e.g. c(2,3))

smooth also plot the super–smoothed version of the log hazard ratios

pr defaults to FALSE to suppress printing of individual Cox fits

pl defaults to TRUE to plot results

add add this plot to an already existing plot

ylim vector of y-axis limits. Default is computed to include confidence bands.

cex character size for legend information, default is 0.5

xlab label for x-axis, default is "t"

ylab label for y-axis, default is "Log Hazard Ratio" or "Hazard Ratio", depending
on antilog.

antilog default is FALSE. Set to TRUE to plot anti-log, i.e., hazard ratio.

... optional graphical parameters

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

cox.zph, residuals.cph, survival-internal, cph, coxph, Surv

Examples

require(survival)
n <- 500
set.seed(1)
age <- 50 + 12*rnorm(n)
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50))
d.time <- -log(runif(n))/h
label(d.time) <- 'Follow-up Time'
e <- ifelse(d.time <= cens,1,0)
d.time <- pmin(d.time, cens)
units(d.time) <- "Year"
hazard.ratio.plot(age, Surv(d.time,e), e=20, legendloc='ll')

ie.setup 85

ie.setup Intervening Event Setup

Description

Creates several new variables which help set up a dataset for modeling with cph or coxph when
there is a single binary time-dependent covariable which turns on at a given time, and stays on. This
is typical when analyzing the impact of an intervening event. ie.setup creates a Surv object using
the start time, stop time format. It also creates a binary indicator for the intervening event, and a
variable called subs that is useful when attach-ing a dataframe. subs has observation numbers
duplicated for subjects having an intervening event, so those subject’s baseline covariables (that are
not time-dependent) can be duplicated correctly.

Usage

ie.setup(failure.time, event, ie.time, break.ties=FALSE)

Arguments

failure.time a numeric variable containing the event or censoring times for the terminating
event

event a binary (0/1) variable specifying whether observations had the terminating event
(event=1) or were censored (event=0)

ie.time intervening event times. For subjects having no intervening events, the corre-
sponding values of ie.time must be NA.

break.ties Occasionally intervening events are recorded as happening at exactly the same
time as the termination of follow-up for some subjects. The Surv and Surv
functions will not allow this. To randomly break the ties by subtracting a random
number from such tied intervening event times, specify break.ties=TRUE. The
random number is uniform between zero and the minimum difference between
any two untied failure.times.

Value

a list with components S, ie.status, subs, reps. S is a Surv object containing start and stop
times for intervals of observation, along with event indicators. ie.status is one if the inter-
vening event has occurred at the start of the interval, zero otherwise. subs is a vector of sub-
scripts that can be used to replicate other variables the same way S was replicated. reps specifies
how many times each original observation was replicated. S, ie.status, subs are all the same
length (at least the number of rows for S is) and are longer than the original failure.time vec-
tor. reps is the same length as the original failure.time vector. The subs vector is suitable
for passing to validate.lrm or calibrate, which pass this vector under the name cluster on
to predab.resample so that bootstrapping can be done by sampling with replacement from the
original subjects rather than from the individual records created by ie.setup.

86 impactPO

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

cph, coxph, Surv, cr.setup, predab.resample

Examples

failure.time <- c(1 , 2, 3)
event <- c(1 , 1, 0)
ie.time <- c(NA, 1.5, 2.5)

z <- ie.setup(failure.time, event, ie.time)
S <- z$S
S
ie.status <- z$ie.status
ie.status
z$subs
z$reps
Not run:
attach(input.data.frame[z$subs,]) #replicates all variables
f <- cph(S ~ age + sex + ie.status)
Instead of duplicating rows of data frame, could do this:
attach(input.data.frame)
z <- ie.setup(failure.time, event, ie.time)
s <- z$subs
age <- age[s]
sex <- sex[s]
f <- cph(S ~ age + sex + ie.status)

End(Not run)

impactPO Impact of Proportional Odds Assumpton

Description

Checks the impact of the proportional odds assumption by comparing predicted cell probabilities
from a PO model with those from a multinomial or partial proportional odds logistic model that re-
lax assumptions. For a given model formula, fits the model with both lrm and either nnet::multinom
or VGAM::vglm or both, and obtains predicted cell probabilities for the PO and relaxed models on
the newdata data frame. A print method formats the output.

impactPO 87

Usage

impactPO(
formula,
relax = if (missing(nonpo)) "multinomial" else "both",
nonpo,
newdata,
data = environment(formula),
minfreq = 15,
B = 0,
...

)

Arguments

formula a model formula. To work properly with multinom or vglm the terms should
have completely specified knot locations if a spline function is being used.

relax defaults to "both" if nonpo is given, resulting in fitting two relaxed models. Set
relax to "multinomial" or "ppo" to fit only one relaxed model. The multino-
mial model does not assume PO for any predictor.

nonpo a formula with no left hand side variable, specifying the variable or variables
for which PO is not assumed. Specifying nonpo results in a relaxed fit that is a
partial PO model fitted with VGAM::vglm.

newdata a data frame or data table with one row per covariate setting for which predic-
tions are to be made

data data frame containing variables to fit; default is the frame in which formula is
found

minfreq minimum sample size to allow for the least frequent category of the dependent
variable. If the observed minimum frequency is less than this, the Hmisc::combine.levels()
function will be called to combine enough consecutive levels so that this mini-
mum frequency is achieved.

B number of bootstrap resamples to do to get confidence intervals for differences
in predicted probabilities for relaxed methods vs. PO model fits. Default is
not to run the bootstrap. When running the bootstrap make sure that all model
variables are explicitly in data= so that selection of random subsets of data will
call along the correct rows for all predictors.

... other parameters to pass to lrm and multinom

Details

Since partial proportional odds models and especially multinomial logistic models can have many
parameters, it is not feasible to use this model comparison approach when the number of levels of
the dependent variable Y is large. By default, the function will use Hmisc::combine.levels() to
combine consecutive levels if the lowest frequency category of Y has fewer than minfreq observa-
tions.

88 impactPO

Value

an impactPO object which is a list with elements estimates, stats, mad, newdata, nboot, and
boot. estimates is a data frame containing the variables and values in newdata in a tall and
thin format with additional variable method ("PO", "Multinomial", "PPO"), y (current level of the
dependent variable), and Probability (predicted cell probability for covariate values and value of
y in the current row). stats is a data frame containing Deviance the model deviance, d.f. the total
number of parameters counting intercepts, AIC, p the number of regression coefficients, LR chi^2
the likelihood ratio chi-square statistic for testing the predictors, LR - p a chance-corrected LR chi-
square, LR chi^2 test for PO the likelihood ratio chi-square test statistic for testing the PO
assumption (by comparing -2 log likelihood for a relaxed model to that of a fully PO model), d.f.
the degrees of freedom for this test, Pr(>chi^2) the P-value for this test, MCS R2 the Maddala-
Cox-Snell R2 using the actual sample size, MCS R2 adj (MCS R2 adjusted for estimating p regression
coefficients by subtracting p from LR), McFadden R2, McFadden R2 adj (an AIC-like adjustment
proposed by McFadden without full justification), Mean |difference} from PO the overall mean
absolute difference between predicted probabilities over all categories of Y and over all covariate
settings. mad contains newdata and separately by rows in newdata the mean absolute difference
(over Y categories) between estimated probabilities by the indicated relaxed model and those from
the PO model. nboot is the number of successful bootstrap repetitions, and boot is a 4-way array
with dimensions represented by the nboot resamples, the number of rows in newdata, the number
of outcome levels, and elements for PPO and multinomial. For the modifications of the Maddala-
Cox-Snell indexes see Hmisc::R2Measures.

Author(s)

Frank Harrell fh@fharrell.com

References

Adjusted R-square note

See Also

nnet::multinom(), VGAM::vglm(), lrm(), Hmisc::propsPO(), Hmisc::R2Measures(), Hmisc::combine.levels()

Examples

Not run:
set.seed(1)
age <- rnorm(500, 50, 10)
sex <- sample(c('female', 'male'), 500, TRUE)
y <- sample(0:4, 500, TRUE)
d <- expand.grid(age=50, sex=c('female', 'male'))
w <- impactPO(y ~ age + sex, nonpo = ~ sex, newdata=d)
w
Note that PO model is a better model than multinomial (lower AIC)
since multinomial model's improvement in fit is low in comparison
with number of additional parameters estimated. Same for PO model
in comparison with partial PO model.

Reverse levels of y so stacked bars have higher y located higher

mailto:fh@fharrell.com
https://hbiostat.org/bib/r2.html

importedexported 89

revo <- function(z) {
z <- as.factor(z)
factor(z, levels=rev(levels(as.factor(z))))

}

require(ggplot2)
ggplot(w$estimates, aes(x=method, y=Probability, fill=revo(y))) +

facet_wrap(~ sex) + geom_col() +
xlab('') + guides(fill=guide_legend(title=''))

Now vary 2 predictors

d <- expand.grid(sex=c('female', 'male'), age=c(40, 60))
w <- impactPO(y ~ age + sex, nonpo = ~ sex, newdata=d)
w
ggplot(w$estimates, aes(x=method, y=Probability, fill=revo(y))) +

facet_grid(age ~ sex) + geom_col() +
xlab('') + guides(fill=guide_legend(title=''))

End(Not run)

importedexported Exported Functions That Were Imported From Other Packages

Description

Surv and ggplot are imported from, respectively, the survival and ggplot2 packages and are
exported from rms so that the user does not have to attach these packages to do simple things.

Usage

Surv(time, time2, event,
type = c("right", "left", "interval", "counting", "interval2"),
origin = 0)

ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())

Arguments

time, time2, event, type, origin
see Surv

data, mapping, ..., environment
see ggplot

Value

see documentation in the original packages

90 infoMxop

See Also

Surv, ggplot

Examples

Not run:
f <- psm(Surv(dtime, death) ~ x1 + x2 + sex + race, dist='gau')
ggplot(Predict(f))

End(Not run)

infoMxop Operate on Information Matrices

Description

Processes four types of information matrices: ones produced by the SparseM package for the orm or
lrm functions in rms version 6.9-0 and earlier, by the Matrix package for version 7.0-0 of rms using
a tri-band diagonal matrix for the intercepts, using Matrix for general sparse information matrices
for intercepts (when any interval-censored observations exist), or plain matrices. For Matrix, the
input information matrix is a list with three elements: a containing in two columns the diagonal
and superdiagonal for intercepts (when there is no interval censoring) or a list with three elements
row, col, a (when there is interval censoring), b, a square matrix for the covariates, and ab for
intercepts x covariates. If nothing else is specified, the assembled information matrix is returned for
Matrix, or the original info otherwise. If p=TRUE, the number of parameters in the model (number
of rows and columns in the whole information matrix) is returned. If i is given, the i elements
of the inverse of info are returned, using efficient calculation to avoid inverting the whole matrix.
Otherwise if invert=TRUE or B is given without i, the efficiently (if Matrix or SparseM) inverted
matrix is returned, or the matrix multiplication of the inverse and B. If both i and B are given, what
is returned is the i portion of the inverse of the information matrix, matrix multiplied by B. This is
done inside solve().

Usage

infoMxop(
info,
i,
invert = !missing(i) || !missing(B),
B,
np = FALSE,
tol = .Machine$double.eps,
abort = TRUE

)

infoMxop 91

Arguments

info an information matrix object

i integer vector specifying elements returned from the inverse. You an also specify
i='x' to return non-intercepts or i='i' to return intercepts.

invert set to TRUE to invert info (implied when i or B is given)

B multiplier matrix

np set to TRUE to just fetch the total number of parameters (intercepts + betas)

tol tolerance for matrix inversion singularity

abort set to FALSE to run the solve calculation through try() without aborting; the
user will detect that the operation did not success by examinine inherits(result,
'try-error') for being TRUE.

Details

When only variance-covariance matrix elements corresponding to the non-intercepts are desired,
specify i='x' or i=(k + 1) : nv where nv is the number of intercepts and slopes combined. infoMxop
computes the needed covariance matrix very quickly in this case. When inverting info, if info has
a 'scale' attribute with elements mean and sd, the scaling is reversed after inverting info.

When the number of intercepts is needed to be known and the info object is not a 3-element list,
info must have an intercepts attribute to define the number. This is used for example when
transx=TRUE is specified to lrm or lrm.fit.

Value

a single integer or a matrix

Author(s)

Frank Harrell

Examples

Not run:
f <- orm(y ~ x)
infoMxop(f$info.matrix) # assembles 3 pieces
infoMxop(v, i=c(2,4)) # returns a submatrix of v inverse
infoMxop(f$info.matrix, i='x') # sub-covariance matrix for just the betas

End(Not run)

92 intCalibration

intCalibration Check Parallelism Assumption of Ordinal Semiparametric Models

Description

For all the observations used a model fit, computes the estimated probability that Y is greater than
each of a number of cutoffs, and compares this to smoothed estimated probabilities as a func-
tion of predicted probabilities, to obtain internal model calibration plots with multiple cutpoints.
When Y is uncensored these are smoothed moving empirical cumulative distribution function esti-
mates, and when Y has censored observations these are smoothing moving Kaplan-Meier estimates.
Hmisc::movStats() is used to do the moving overlapping window calculations. When hare=TRUE,
adaptive linear spline hazard regression estimates are also made, using polspline::hare(). When
ordsurv=TRUE, adaptive ordinal regression estimates are made in addition.

Usage

intCalibration(
fit,
ycuts,
m,
x,
onlydata = FALSE,
eps = 25,
bass = 9,
tsmooth = "lowess",
hare = TRUE,
ordsurv = TRUE,
dec = 4,
xlab = bquote(hat(P)(.(yname) > y)),
ylab = "Nonparametric Estimate",
nrow = 1,
...

)

Arguments

fit a fit object for which there is a survest() method, with x=TRUE, y=TRUE in
effect

ycuts a vector of cutpoints on Y

m used when ycuts is not given. The lowest cutoff is chosen as the first Y value
having at meast m uncensored observations to its left, and the highest cutoff is
chosen so that there are at least m uncensored observations to the right of it. Cut-
offs are equally spaced between these values in terms of number of uncensored
observations. If omitted, m is set to the minimum of 50 and one quarter of the
uncensored sample size.

intCalibration 93

x a variable for which calibration-in-the-small is desired, instead of plotting pre-
dicted vs. observed probabilities. x will typically be chosen by virtue of being a
strong predictor (such that lack of fit will matter more) but doesn’t have to be in
the model.

onlydata set to TRUE to return a data frame suitable for plotting instead of actually plotting
eps, bass, tsmooth, hare, ordsurv

see Hmisc::movStats()

dec number of digits to the right of the decimal place to which to round computed
ycuts

xlab x-axis label with default constructed from the Y-variable name in the model fit
(y-axis label when x is specified)

ylab y-axis label
nrow if hare=TRUE or ordsurv=TRUE, the number of rows in the graph (must be 1 or

2)
... other arguments passed to Hmisc::movStats(). To control the number of knots

for ordsurv=TRUE specify k= here.

Details

These plots are plots of calibration-in-the-small. Alternate calibration-in-the-small plots may be
obtained by specifying a predictor variable x against which to plot both predicted and observed
probabilties as a function of x. This is the only place in the rms package where the "total effect" of a
predictor is estimated instead of a partial effect. When x varies and moving overlapping windows of
predicted and observed exceedance probabilities are estimated, if x is collinear with other predictors,
they will "come along for the ride".

The function also prints information on calibration-in-the-large, i.e., the mean predicted probability
of being beyond each cutpoint vs. the overall proportion of observations above that cutpoint. This
is when x is not given.

Value

ggplot2 object or a data frame

Author(s)

Frank Harrell

Examples

Not run:
getHdata(nhgh)
f <- orm(gh ~ rcs(age, 4), data=nhgh, family='loglog', x=TRUE, y=TRUE)
intCalibration(f, ycuts=c(5, 5.5, 6, 6.5))
f <- update(f, family='cloglog')
intCalibration(f, ycuts=c(5, 5.5, 6, 6.5))
intCalibration(f, ycuts=c(5, 6, 7), x=nhgh$age)

End(Not run)

94 latex.cph

is.na.Ocens is.na Method for Ocens Objects

Description

is.na Method for Ocens Objects

Usage

S3 method for class 'Ocens'
is.na(x)

Arguments

x an object created by Ocens

Value

a logical vector whose length is the number of rows in x, with TRUE designating observations having
one or both columns of x equal to NA

Examples

Y <- Ocens(c(1, 2, NA, 4))
Y
is.na(Y)

latex.cph LaTeX Representation of a Fitted Cox Model

Description

Creates a file containing a LaTeX representation of the fitted model.

Usage

S3 method for class 'cph'
latex(object, title,

file='',
append=FALSE, surv=TRUE, maxt=FALSE, which=NULL, varnames, columns=65,
inline=FALSE, before=if(inline)"" else "& &", after="", dec=3,
pretrans=TRUE, caption, digits=.Options$digits, size="",
...) # for cph fit

S3 method for class 'lrm'
latex(object, title, file, append, which, varnames,

latex.cph 95

columns, inline, before, after, pretrans, caption,
digits=.Options$digits, size="", ...) # for lrm fit

S3 method for class 'ols'
latex(object, title, file, append, which, varnames,
columns, inline, before, after, pretrans, caption,
digits=.Options$digits, size="", ...) # ols fit

S3 method for class 'orm'
latex(object, title, file, append, which, varnames,
columns, inline, before, after, pretrans, caption,
digits=.Options$digits, size="", intercepts=nrp < 10, ...) # for orm fit

S3 method for class 'pphsm'
latex(object, title, file, append, which=NULL, varnames,
columns, inline, before, after, pretrans, caption,
digits=.Options$digits, size="", ...) # pphsm fit

S3 method for class 'psm'
latex(object, title, file, append, which=NULL, varnames,
columns, inline, before, after, pretrans, caption,
digits=.Options$digits, size="", ...) # psm fit

Arguments

object a fit object created by a rms fitting function.

title ignored

file, append see latex.default. Defaults to the console. When using html/markdown,
file is ignored.

surv if surv=TRUE was specified to cph, the underlying survival probabilities from
object$surv.summary will be placed in a table unless surv=FALSE.

maxt if the maximum follow-up time in the data (object$maxtime) exceeds the last
entry in object$surv.summary, underlying survival estimates at object$maxtime
will be added to the table if maxt=TRUE.

which, varnames, columns, inline, before, dec, pretrans
see latex.default

after if not an empty string, added to end of markup if inline=TRUE

caption a character string specifying a title for the equation to be centered and typeset in
bold face. Default is no title.

digits see latexrms

size a LaTeX size to use, without the slash. Default is the prevailing size

intercepts for orm fits. Default is to print intercepts if they are fewer than 10 in number.
Set to TRUE or FALSE to force.

... ignored

96 latexrms

Value

the name of the created file, with class c("latex","file"). This object works with latex viewing
and printing commands in Hmisc. If file='' and options(prType=x is in effect, where x is
"html", "markdown" or "md", the result is run through knitr::asis_output so that it will be
rendered correctly no matter which options are in effect in the chunk header.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

latexrms, rcspline.restate, latex

Examples

Not run:
require(survival)
units(ftime) <- "Day"
f <- cph(Surv(ftime, death) ~ rcs(age)+sex, surv=TRUE, time.inc=60)
w <- latex(f, file='f.tex') #Interprets fitted model and makes table of S0(t)

#for t=0,60,120,180,...
w #displays image, if viewer installed and file given above
latex(f) # send LaTeX code to the console for knitr
options(prType='html')
latex(f) # for use with knitr and R Markdown/Quarto using MathJax

End(Not run)

latexrms LaTeX Representation of a Fitted Model

Description

Creates a file containing a LaTeX representation of the fitted model. For model-specific typesetting
there is latex.lrm, latex.cph, latex.psm and latex.ols. latex.cph has some arguments that
are specific to cph models. latexrms is the core function which is called internally by latexrms
(which is called by latex.cph, latex.ols, etc.). html and R Markdown-compatible markup (us-
ing MathJax) are written if options(prType='html').

Usage

latexrms(object,
file='',
append=FALSE, which=1:p, varnames, columns=65, prefix=NULL, inline=FALSE,
before=if(inline)"" else "& &", after="", intercept, pretrans=TRUE,
digits=.Options$digits, size="")

latexrms 97

Arguments

object a fit object created by a fitting function in the rms series

file name of .tex file to create, default is to write to console. file is ignored when
options(prType='html'.

append whether or not to append to an existing file

which a vector of subcripts (corresponding to object$Design$name) specifying a sub-
model to print. Default is to describe the whole model. which can also be a
vector of character strings specifying the factor names to print. Enough of each
string is needed to ensure a unique match. Names for interaction effects are of
the form "age * sex". For any interaction effect for which you do not request
main effects, the main effects will be added to which. When which is given,
the model structural statement is not included. In this case, intercepts are not
included either.

varnames variable names to substitute for non-interactions. Order must correspond to
object$Design$name and interactions must be omitted. Default is object$Design$name[object$Design$assume.code!=9].
varnames can contain any LaTeX commands such as subscripts and "\\\\frac"
(all "\" must be quadrupled.) Any "/" must be preceeded by "\\" (2, not 4 back-
slashes). Elements of varnames for interactions are ignored; they can be set to
any value.

columns maximum number of columns of printing characters to allow before outputting
a LaTeX newline command

prefix if given, a LaTeX \lefteqn command of the form \lefteqn{prefix =} \\ will
be inserted to print a left-hand-side of the equation.

inline Set to TRUE to create text for insertion in an in-line equation. This text contains
only the expansion of X beta, and is not surrounded by "$".

before a character string to place before each line of output. Use the default for a LaTeX
eqnarray environment. For inline=TRUE, the before string, if not an empty
string, will be placed once before the entire markup.

after a character string to place after the output if inline=TRUE

intercept a special intercept value to include that is not part of the standard model param-
eters (e.g., centering constant in Cox model). Only allowed in the latexrms
rendition.

pretrans if any spline or polynomial-expanded variables are themselves transformed, a
table of pre-transformations will be formed unless pretrans=FALSE.

digits number of digits of precision to use in formatting coefficients and other numbers

size a LaTeX font size to use for the output, without the slash. Default is current size.

Value

latexrms returns a character vector if file='', otherwise writes the output to file. For particular
model fits, the latex method returns the result of running knitr::asis_output on the LaTeX or
HTML code if file='', options(prType) was set but not to 'plain', and if knitr is currently
running. This causes correct output to be rendered whether or not results='asis' appeared in the
R Markdown or Quarto chunk header.

98 lrm

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

latex, rcspline.restate, rms

Examples

Not run:
f <- lrm(death ~ rcs(age)+sex)
w <- latex(f, file='f.tex')
w # displays, using e.g. xdvi
latex(f) # send LaTeX code to console, as for knitr
options(prType='html')
latex(f) # emit html and latex for knitr html and html notebooks

End(Not run)

lrm Logistic Regression Model

Description

Fit binary and proportional odds ordinal logistic regression models using maximum likelihood esti-
mation or penalized maximum likelihood estimation. See cr.setup for how to fit forward contin-
uation ratio models with lrm. The fitting function used by lrm is lrm.fit, for which details and
comparisons of its various optimization methods may be found here.

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html". When using html with Quarto or RMark-
down, results='asis' need not be written in the chunk header.

Usage

lrm(formula, data=environment(formula),
subset, na.action=na.delete, method="lrm.fit",
model=FALSE, x=FALSE, y=FALSE, linear.predictors=TRUE, se.fit=FALSE,
penalty=0, penalty.matrix,
var.penalty,
weights, normwt=FALSE, scale, ...)

S3 method for class 'lrm'
print(x, digits=4, r2=c(0,2,4),

coefs=TRUE, pg=FALSE,
intercepts=x$non.slopes < 10,
title='Logistic Regression Model', ...)

https://www.fharrell.com/post/mle/

lrm 99

Arguments

formula a formula object. An offset term can be included. The offset causes fitting
of a model such as logit(Y = 1) = Xβ + W , where W is the offset variable
having no estimated coefficient. The response variable can be any data type; lrm
converts it in alphabetic or numeric order to an S factor variable and recodes it
0,1,2,. . . internally.

data data frame to use. Default is the current frame.

subset logical expression or vector of subscripts defining a subset of observations to
analyze

na.action function to handle NAs in the data. Default is na.delete, which deletes any
observation having response or predictor missing, while preserving the attributes
of the predictors and maintaining frequencies of deletions due to each variable in
the model. This is usually specified using options(na.action="na.delete").

method name of fitting function. Only allowable choice at present is lrm.fit.

model causes the model frame to be returned in the fit object

x causes the expanded design matrix (with missings excluded) to be returned un-
der the name x. For print, an object created by lrm.

y causes the response variable (with missings excluded) to be returned under the
name y.

linear.predictors

causes the predicted X beta (with missings excluded) to be returned under the
name linear.predictors. When the response variable has more than two lev-
els, the first intercept is used.

se.fit causes the standard errors of the fitted values to be returned under the name
se.fit.

penalty The penalty factor subtracted from the log likelihood is 0.5β′Pβ, where β is
the vector of regression coefficients other than intercept(s), and P is penalty
factors * penalty.matrix and penalty.matrix is defined below. The de-
fault is penalty=0 implying that ordinary unpenalized maximum likelihood
estimation is used. If penalty is a scalar, it is assumed to be a penalty fac-
tor that applies to all non-intercept parameters in the model. Alternatively,
specify a list to penalize different types of model terms by differing amounts.
The elements in this list are named simple, nonlinear, interaction and
nonlinear.interaction. If you omit elements on the right of this series, val-
ues are inherited from elements on the left. Examples: penalty=list(simple=5,
nonlinear=10) uses a penalty factor of 10 for nonlinear or interaction terms.
penalty=list(simple=0, nonlinear=2, nonlinear.interaction=4) does not
penalize linear main effects, uses a penalty factor of 2 for nonlinear or interac-
tion effects (that are not both), and 4 for nonlinear interaction effects.

penalty.matrix specifies the symmetric penalty matrix for non-intercept terms. The default ma-
trix for continuous predictors has the variance of the columns of the design ma-
trix in its diagonal elements so that the penalty to the log likelhood is unit-
less. For main effects for categorical predictors with c categories, the rows
and columns of the matrix contain a c − 1 × c − 1 sub-matrix that is used to
compute the sum of squares about the mean of the c parameter values (setting

100 lrm

the parameter to zero for the reference cell) as the penalty component for that
predictor. This makes the penalty independent of the choice of the reference
cell. If you specify penalty.matrix, you may set the rows and columns for
certain parameters to zero so as to not penalize those parameters. Depending
on penalty, some elements of penalty.matrix may be overridden automati-
cally by setting them to zero. The penalty matrix that is used in the actual fit is
penalty × diag(pf)× penalty.matrix× diag(pf), where pf is the vector of
square roots of penalty factors computed from penalty by Penalty.setup in
rmsMisc. If you specify penalty.matrix you must specify a nonzero value of
penalty or no penalization will be done.

var.penalty deprecated and ignored

weights a vector (same length as y) of possibly fractional case weights

normwt set to TRUE to scale weights so they sum to the length of y; useful for sample
surveys as opposed to the default of frequency weighting

scale deprecated; see lrm.fit transx argument

... arguments that are passed to lrm.fit, or from print, to prModFit

digits number of significant digits to use

r2 vector of integers specifying which R^2 measures to print, with 0 for Nagelkerke
R^2 and 1:4 corresponding to the 4 measures computed by R2Measures. Default
is to print Nagelkerke (labeled R2) and second and fourth R2Measures which
are the measures adjusted for the number of predictors, first for the raw sample
size then for the effective sample size, which here is from the formula for the
approximate variance of a log odds ratio in a proportional odds model.

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

pg set to TRUE to print g-indexes

intercepts controls printing of intercepts. By default they are only printed if there aren’t
more than 10 of them.

title a character string title to be passed to prModFit

Value

The returned fit object of lrm contains the following components in addition to the ones mentioned
under the optional arguments.

call calling expression

freq table of frequencies for Y in order of increasing Y

stats vector with the following elements: number of observations used in the fit, max-
imum absolute value of first derivative of log likelihood, model likelihood ratio
χ2, d.f., P -value, c index (area under ROC curve), Somers’ Dxy , Goodman-
Kruskal γ, Kendall’s τa rank correlations between predicted probabilities and
observed response, the Nagelkerke R2 index, the Brier score computed with
respect to Y > its lowest level, the g-index, gr (the g-index on the odds ratio
scale), and gp (the g-index on the probability scale using the same cutoff used for

lrm 101

the Brier score). Probabilities are rounded to the nearest 0.0002 in the computa-
tions or rank correlation indexes. In the case of penalized estimation, the "Model
L.R." is computed without the penalty factor, and "d.f." is the effective d.f.
from Gray’s (1992) Equation 2.9. The P -value uses this corrected model L.R.
χ2 and corrected d.f. The score chi-square statistic uses first derivatives which
contain penalty components.

fail set to TRUE if convergence failed (and maxiter>1)

coefficients estimated parameters

var estimated variance-covariance matrix (inverse of information matrix). If penalty>0,
var is either the inverse of the penalized information matrix.

effective.df.diagonal

is returned if penalty>0. It is the vector whose sum is the effective d.f. of the
model (counting intercept terms).

u vector of first derivatives of log-likelihood

deviance -2 log likelihoods (counting penalty components) When an offset variable is
present, three deviances are computed: for intercept(s) only, for intercepts+offset,
and for intercepts+offset+predictors. When there is no offset variable, the vec-
tor contains deviances for the intercept(s)-only model and the model with inter-
cept(s) and predictors.

est vector of column numbers of X fitted (intercepts are not counted)

non.slopes number of intercepts in model

penalty see above

penalty.matrix the penalty matrix actually used in the estimation

Note

When creating ordinal levels for non-integer numeric Y, this function does not use the unique func-
tion because it was found to be non-reproducible across hardware platforms. Instead, intercepts are
mapped to integers obtained from rounding original Y levels after multiplying by 1e7 (by default).
The only way to guarantee the correct mapping to intercepts is to reference the "official" levels of Y
stored in the yunique object found in the fit object. Users may opt instead to replace original data
with e.g. 1e-7 * round(Y * 1e7) before model fitting.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Le Cessie S, Van Houwelingen JC: Ridge estimators in logistic regression. Applied Statistics
41:191–201, 1992.

Verweij PJM, Van Houwelingen JC: Penalized likelihood in Cox regression. Stat in Med 13:2427–
2436, 1994.

102 lrm

Gray RJ: Flexible methods for analyzing survival data using splines, with applications to breast
cancer prognosis. JASA 87:942–951, 1992.

Shao J: Linear model selection by cross-validation. JASA 88:486–494, 1993.

Verweij PJM, Van Houwelingen JC: Crossvalidation in survival analysis. Stat in Med 12:2305–
2314, 1993.

Harrell FE: Model uncertainty, penalization, and parsimony. ISCB Presentation on UVa Web page,
1998.

See Also

lrm.fit, predict.lrm, rms.trans, rms, glm, latex.lrm, residuals.lrm, na.delete, na.detail.response,
pentrace, rmsMisc, vif, cr.setup, predab.resample, validate.lrm, calibrate, Mean.lrm,
gIndex, prModFit

Examples

#Fit a logistic model containing predictors age, blood.pressure, sex
#and cholesterol, with age fitted with a smooth 5-knot restricted cubic
#spline function and a different shape of the age relationship for males
#and females. As an intermediate step, predict mean cholesterol from
#age using a proportional odds ordinal logistic model
#
require(ggplot2)
n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Group cholesterol unnecessarily into 40-tiles
ch <- cut2(cholesterol, g=40, levels.mean=TRUE) # use mean values in intervals
table(ch)
f <- lrm(ch ~ age)
options(prType='latex')
print(f) # write latex code to console if prType='latex' is in effect
m <- Mean(f) # see help file for Mean.lrm
d <- data.frame(age=seq(0,90,by=10))
m(predict(f, d))
Repeat using ols
f <- ols(cholesterol ~ age)
predict(f, d)

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

lrm 103

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)
cholesterol[1:3] <- NA # 3 missings, at random

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

x=TRUE, y=TRUE allows use of resid(), which.influence below
could define d <- datadist(fit) after lrm(), but data distribution
summary would not be stored with fit, so later uses of Predict
or summary.rms would require access to the original dataset or
d or specifying all variable values to summary, Predict, nomogram
anova(fit)
p <- Predict(fit, age, sex)
ggplot(p) # or plot()
ggplot(Predict(fit, age=20:70, sex="male")) # need if datadist not used
print(cbind(resid(fit,"dfbetas"), resid(fit,"dffits"))[1:20,])
which.influence(fit, .3)
latex(fit) #print nice statement of fitted model
#
#Repeat this fit using penalized MLE, penalizing complex terms
#(for nonlinear or interaction effects)
#
fitp <- update(fit, penalty=list(simple=0,nonlinear=10), x=TRUE, y=TRUE)
effective.df(fitp)
or lrm(y ~ \dots, penalty=\dots)

#Get fits for a variety of penalties and assess predictive accuracy
#in a new data set. Program efficiently so that complex design
#matrices are only created once.

set.seed(201)
x1 <- rnorm(500)
x2 <- rnorm(500)
x3 <- sample(0:1,500,rep=TRUE)
L <- x1+abs(x2)+x3
y <- ifelse(runif(500)<=plogis(L), 1, 0)
new.data <- data.frame(x1,x2,x3,y)[301:500,]
#
for(penlty in seq(0,.15,by=.005)) {

if(penlty==0) {
f <- lrm(y ~ rcs(x1,4)+rcs(x2,6)*x3, subset=1:300, x=TRUE, y=TRUE)
True model is linear in x1 and has no interaction
X <- f$x # saves time for future runs - don't have to use rcs etc.
Y <- f$y # this also deletes rows with NAs (if there were any)
penalty.matrix <- diag(diag(var(X)))
Xnew <- predict(f, new.data, type="x")
expand design matrix for new data

104 lrm

Ynew <- new.data$y
} else f <- lrm.fit(X,Y, penalty.matrix=penlty*penalty.matrix)

#
cat("\nPenalty :",penlty,"\n")
pred.logit <- f$coef[1] + (Xnew %*% f$coef[-1])
pred <- plogis(pred.logit)
C.index <- somers2(pred, Ynew)["C"]
Brier <- mean((pred-Ynew)^2)
Deviance<- -2*sum(Ynew*log(pred) + (1-Ynew)*log(1-pred))
cat("ROC area:",format(C.index)," Brier score:",format(Brier),

" -2 Log L:",format(Deviance),"\n")
}
#penalty=0.045 gave lowest -2 Log L, Brier, ROC in test sample for S+
#
#Use bootstrap validation to estimate predictive accuracy of
#logistic models with various penalties
#To see how noisy cross-validation estimates can be, change the
#validate(f, \dots) to validate(f, method="cross", B=10) for example.
#You will see tremendous variation in accuracy with minute changes in
#the penalty. This comes from the error inherent in using 10-fold
#cross validation but also because we are not fixing the splits.
#20-fold cross validation was even worse for some
#indexes because of the small test sample size. Stability would be
#obtained by using the same sample splits for all penalty values
#(see above), but then we wouldn't be sure that the choice of the
#best penalty is not specific to how the sample was split. This
#problem is addressed in the last example.
#
penalties <- seq(0,.7,length=3) # really use by=.02
index <- matrix(NA, nrow=length(penalties), ncol=11,

dimnames=list(format(penalties),
c("Dxy","R2","Intercept","Slope","Emax","D","U","Q","B","g","gp")))

i <- 0
for(penlty in penalties)
{

cat(penlty, "")
i <- i+1
if(penlty==0)
{
f <- lrm(y ~ rcs(x1,4)+rcs(x2,6)*x3, x=TRUE, y=TRUE) # fit whole sample
X <- f$x
Y <- f$y
penalty.matrix <- diag(diag(var(X))) # save time - only do once
}

else
f <- lrm(Y ~ X, penalty=penlty,

penalty.matrix=penalty.matrix, x=TRUE,y=TRUE)
val <- validate(f, method="boot", B=20) # use larger B in practice
index[i,] <- val[,"index.corrected"]

}
par(mfrow=c(3,3))
for(i in 1:9)
{

lrm 105

plot(penalties, index[,i],
xlab="Penalty", ylab=dimnames(index)[[2]][i])

lines(lowess(penalties, index[,i]))
}
options(datadist=NULL)

Example of weighted analysis
x <- 1:5
y <- c(0,1,0,1,0)
reps <- c(1,2,3,2,1)
lrm(y ~ x, weights=reps)
x <- rep(x, reps)
y <- rep(y, reps)
lrm(y ~ x) # same as above

#
#Study performance of a modified AIC which uses the effective d.f.
#See Verweij and Van Houwelingen (1994) Eq. (6). Here AIC=chisq-2*df.
#Also try as effective d.f. equation (4) of the previous reference.
#Also study performance of Shao's cross-validation technique (which was
#designed to pick the "right" set of variables, and uses a much smaller
#training sample than most methods). Compare cross-validated deviance
#vs. penalty to the gold standard accuracy on a 7500 observation dataset.
#Note that if you only want to get AIC or Schwarz Bayesian information
#criterion, all you need is to invoke the pentrace function.
#NOTE: the effective.df() function is used in practice
#
Not run:
for(seed in c(339,777,22,111,3)){
study performance for several datasets

set.seed(seed)
n <- 175; p <- 8
X <- matrix(rnorm(n*p), ncol=p) # p normal(0,1) predictors
Coef <- c(-.1,.2,-.3,.4,-.5,.6,-.65,.7) # true population coefficients
L <- X %*% Coef # intercept is zero
Y <- ifelse(runif(n)<=plogis(L), 1, 0)
pm <- diag(diag(var(X)))
#Generate a large validation sample to use as a gold standard
n.val <- 7500
X.val <- matrix(rnorm(n.val*p), ncol=p)
L.val <- X.val %*% Coef
Y.val <- ifelse(runif(n.val)<=plogis(L.val), 1, 0)
#
Penalty <- seq(0,30,by=1)
reps <- length(Penalty)
effective.df <- effective.df2 <- aic <- aic2 <- deviance.val <-
Lpenalty <- single(reps)

n.t <- round(n^.75)
ncv <- c(10,20,30,40) # try various no. of reps in cross-val.
deviance <- matrix(NA,nrow=reps,ncol=length(ncv))
#If model were complex, could have started things off by getting X, Y
#penalty.matrix from an initial lrm fit to save time
#

106 lrm

for(i in 1:reps) {
pen <- Penalty[i]
cat(format(pen),"")
f.full <- lrm.fit(X, Y, penalty.matrix=pen*pm)
Lpenalty[i] <- pen* t(f.full$coef[-1]) %*% pm %*% f.full$coef[-1]
f.full.nopenalty <- lrm.fit(X, Y, initial=f.full$coef, maxit=1)
info.matrix.unpenalized <- solve(f.full.nopenalty$var)
effective.df[i] <- sum(diag(info.matrix.unpenalized %*% f.full$var)) - 1
lrchisq <- f.full.nopenalty$stats["Model L.R."]
lrm does all this penalty adjustment automatically (for var, d.f.,
chi-square)
aic[i] <- lrchisq - 2*effective.df[i]
#
pred <- plogis(f.full$linear.predictors)
score.matrix <- cbind(1,X) * (Y - pred)
sum.u.uprime <- t(score.matrix) %*% score.matrix
effective.df2[i] <- sum(diag(f.full$var %*% sum.u.uprime))
aic2[i] <- lrchisq - 2*effective.df2[i]
#
#Shao suggested averaging 2*n cross-validations, but let's do only 40
#and stop along the way to see if fewer is OK
dev <- 0
for(j in 1:max(ncv)) {

s <- sample(1:n, n.t)
cof <- lrm.fit(X[s,],Y[s],

penalty.matrix=pen*pm)$coef
pred <- cof[1] + (X[-s,] %*% cof[-1])
dev <- dev -2*sum(Y[-s]*pred + log(1-plogis(pred)))
for(k in 1:length(ncv)) if(j==ncv[k]) deviance[i,k] <- dev/j

}
#
pred.val <- f.full$coef[1] + (X.val %*% f.full$coef[-1])
prob.val <- plogis(pred.val)
deviance.val[i] <- -2*sum(Y.val*pred.val + log(1-prob.val))

}
postscript(hor=TRUE) # along with graphics.off() below, allow plots
par(mfrow=c(2,4)) # to be printed as they are finished
plot(Penalty, effective.df, type="l")
lines(Penalty, effective.df2, lty=2)
plot(Penalty, Lpenalty, type="l")
title("Penalty on -2 log L")
plot(Penalty, aic, type="l")
lines(Penalty, aic2, lty=2)
for(k in 1:length(ncv)) {

plot(Penalty, deviance[,k], ylab="deviance")
title(paste(ncv[k],"reps"))
lines(supsmu(Penalty, deviance[,k]))

}
plot(Penalty, deviance.val, type="l")
title("Gold Standard (n=7500)")
title(sub=format(seed),adj=1,cex=.5)
graphics.off()

}

lrm.fit 107

End(Not run)
#The results showed that to obtain a clear picture of the penalty-
#accuracy relationship one needs 30 or 40 reps in the cross-validation.
#For 4 of 5 samples, though, the super smoother was able to detect
#an accurate penalty giving the best (lowest) deviance using 10-fold
#cross-validation. Cross-validation would have worked better had
#the same splits been used for all penalties.
#The AIC methods worked just as well and are much quicker to compute.
#The first AIC based on the effective d.f. in Gray's Eq. 2.9
#(Verweij and Van Houwelingen (1994) Eq. 5 (note typo)) worked best.

lrm.fit lrm.fit

Description

Logistic Model Fitter

Usage

lrm.fit(
x,
y,
offset = 0,
initial,
opt_method = c("NR", "nlminb", "LM", "glm.fit", "nlm", "BFGS", "L-BFGS-B", "CG",

"Nelder-Mead"),
maxit = 50,
reltol = 1e-10,
abstol = if (opt_method %in% c("NR", "LM")) 1e+10 else 0,
gradtol = if (opt_method %in% c("NR", "LM")) 0.001 else 1e-05,
factr = 1e+07,
eps = 5e-04,
minstepsize = 0.01,
trace = 0,
tol = .Machine$double.eps,
penalty.matrix = NULL,
weights = NULL,
normwt = FALSE,
transx = FALSE,
compstats = TRUE,
inclpen = TRUE,
initglm = FALSE,
y.precision = 7

)

108 lrm.fit

Arguments

x design matrix with no column for an intercept. If a vector is transformed to a
one-column matrix.

y response vector, numeric, categorical, or character. For ordinal regression, the
order of categories comes from factor levels, and if y is not a factor, from the
numerical or alphabetic order of y values.

offset optional numeric vector containing an offset on the logit scale

initial vector of initial parameter estimates, beginning with the intercepts

opt_method optimization method, with possible values

• 'NR' : the default, standard Newton-Raphson iteration using the gradient
and Hessian, with step-helving. All three convergence criteria of eps, gradtol, abstol
must be satisfied. Relax some of these if you do not want to consider some
of them at all in judging convergence. The defaults for the various toler-
ances for NR result in convergence being mainly judged by eps in most uses.
Tighten the non-eps parameters to give more weight to the other criteria.

• 'LM' : the Levenberg-Marquardt method, with the same convergence crite-
ria as 'NR'

• 'nlminb' : a quasi-Newton method using stats::nlminb() which uses
gradients and the Hessian. This is a fast and robust algorithm.

• 'glm.fit' : for binary y without penalization only
• 'nlm' : see stats::nlm(); not highly recommended
• 'BFGS' :
• 'L-BFGS-B' :
• 'CG' :
• 'Nelder-Mead' : see stats::optim() for these 4 methods

maxit maximum number of iterations allowed, which means different things for differ-
ent opt_method. For NR it is the number of updates to parameters not counting
step-halving steps. When maxit=1, initial is assumed to contain the max-
imum likelihood estimates already, and those are returned as coefficients,
along with u, info.matrix (negative Hessian) and deviance. stats are only
computed if compstats is explicitly set to TRUE by the user.

reltol used by BFGS, nlminb, glm.fit to specify the convergence criteria in relative
terms with regard to -2 LL, i.e., convergence is assume when one minus the
fold-change falls below reltol

abstol used by NR (maximum absolute change in parameter estimates from one iteration
to the next before convergence can be declared; by default has no effect), nlminb
(by default has no effect; see abs.tol argument; set to e.g. 0.001 for nlminb
when there is complete separation)

gradtol used by NR and LM (maximum absolute gradient before convergence can be de-
clared) and nlm (similar but for a scaled gradient). For NR and LM gradtol is
multiplied by the the sample size / 1000, because the gradient is proportional to
sample size.

factr see stats::optim() documentation for L-BFGS-B

lrm.fit 109

eps difference in -2 log likelihood for declaring convergence with opt_method='NR'.
At present, the old lrm.fit approach of still declaring convergence even if the
-2 LL gets worse by eps/10 while the maximum absolute gradient is below 1e-9
is not implemented. This handles the case where the initial estimates are actually
MLEs, and prevents endless step-halving.

minstepsize used with opt_method='NR' to specify when to abandon step-halving

trace set to a positive integer to trace the iterative process. Some optimization methods
distinguish trace=1 from trace higher than 1.

tol QR singularity criterion for opt_method='NR' updates; ignored when inverting
the final information matrix because chol is used for that.

penalty.matrix a self-contained ready-to-use penalty matrix - see lrm(). It is pxp where p is
the number of columns of x.

weights a vector (same length as y) of possibly fractional case weights

normwt set to TRUE to scale weights so they sum to n, the length of y; useful for sample
surveys as opposed to the default of frequency weighting

transx set to TRUE to center x and QR-factor it to orthogonalize. See this for details.

compstats set to FALSE to prevent the calculation of the vector of model statistics

inclpen set to FALSE to not include the penalty matrix in the Hessian when the Hes-
sian is being computed on transformed x, vs. adding the penalty after back-
transforming. This should not matter.

initglm set to TRUE to compute starting values for an ordinal model by using glm.fit to
fit a binary logistic model for predicting the probability that y exceeds or equals
the median of y. After fitting the binary model, the usual starting estimates for
intercepts (log odds of cumulative raw proportions) are all adjusted so that the
intercept corresponding to the median is the one from glm.fit.

y.precision when y`` is numeric, values may need to be rounded to avoid unpredictable behavior with [unique()] with floating-point numbers. Default is to round floating point y‘
to 7 decimal places.

Details

Fits a binary or propoortional odds ordinal logistic model for a given design matrix and response
vector with no missing values in either. Ordinary or quadratic penalized maximum likelihood esti-
mation is used.

lrm.fit implements a large number of optimization algorithms with the default being Newton-
Raphson with step-halving. For binary logistic regression without penalization iteratively reweighted
least squares method in stats::glm.fit() is an option. The -2 log likeilhood, gradient, and Hes-
sian (negative information) matrix are computed in Fortran for speed. Optionally, the x matrix is
mean-centered and QR-factored to help in optimization when there are strong collinearities. Pa-
rameter estimates and the covariance matrix are adjusted to the original x scale after fitting. More
detail and comparisons of the various optimization methods may be found here. For ordinal re-
gression with a large number of intercepts (distinct y values less one) you may want to use ‘op-
tim_method=’BFGS’, which does away with the need to compute the Hessian. This will be helpful
if statistical tests and confidence intervals are not being computed, or when only likelihood ratio
tests are done.

https://hbiostat.org/rmsc/mle#qr
https://www.fharrell.com/post/mle/

110 lrm.fit

When using Newton-Raphson or Levenberg-Marquardt optimization, sparse Hessian/information/variance-
covariance matrices are used throughout. For nlminb the Hessian has to be expanded into full
non-sparse form, so nlminb will not be very efficient for a large number of intercepts.

When there is complete separation (Hauck-Donner condition), i.e., the MLE of a coefficient is
±∞, and y is binary and there is no penalty, glm.fit may not converge because it does not have a
convergence parameter for the deviance. Setting trace=1 will reveal that the -2LL is approaching
zero but doesn’t get there, relatively speaking. In such cases the default of NR with eps=5e-4 or
using nlminb with its default of abstol=0.001 works well.

Value

a list with the following elements:

• call: the R call to lrm.fit

• freq: vector of y frequencies

• ymedian: median of original y values if y is numeric, otherwise the median of the integer-
recorded version of y

• yunique: vector of distinct original y values, subject to rounding

• sumty: vector of weighted y frequencies

• stats: vector with a large number of indexes and model parameters (NULL if compstats=FALSE):

– Obs: number of observations
– Max Deriv: maximum absolute gradiant
– Model L.R.: overall model LR chi-square statistic
– d.f.: degrees of freedom (number of non-intercepts)
– P: p-value for the overall Model L.R. and d.f.

– C: concordance probability between predicted probability and y

– Dxy: Somer’s Dxy rank correlation between predicted probability and y, = 2(C - 0.5)
– Gamma:
– Tau-a:
– R2: documented here; the first element, with the plain 'R2' name is Nagelkerke’s R2

– Brier: Brier score. For ordinal models this is computed with respect the the median
intercept.

– g: g-index (Gini’s mean difference of linear predictors)
– gr: g-index on the odds ratio scale
– gp: g-index on the probability scale

• fail: TRUE if any matrix inversion or failure to converge occurred, FALSE otherwise

• coefficients:

• info.matrix: normally a list of 3 elements a, b, ab with a being a $k x 2$ matrix for k
intercepts, b being $p x p$ for p predictors, and ab being $k x p$. See infoMxop() for easy
ways of operating on these 3 elements. When info.matrix is not a 3-element list, as when
transx=TRUE, it will have an intercepts attribute defining the number of intercepts in the
model.

• u: gradient vector

https://hbiostat.org/bib/r2.html/

LRupdate 111

• iter: number of iterations required. For some optimization methods this is a vector.

• deviance: vector of deviances: intercepts-only, intercepts + offset (if offset is present), final
model (if x is used)

• non.slopes: number of intercepts in the model

• linear.predictors: vector of linear predictors at the median intercept

• penalty.matrix: penalty matrix or NULL

• weights: weights or NULL

• xbar: vector of column means of x, or NULL if transx=FALSE

• xtrans: input value of transx

• R: R matrix from QR to be used to rotate parameters back to original scale in the future

• Ri: inverse of R

• opt_method: input value

Author(s)

Frank Harrell fh@fharrell.com

See Also

lrm(), stats::glm(), cr.setup(), gIndex(), stats::optim(), stats::nlminb(), stats::nlm(),stats::glm.fit(),
recode2integer(), Hmisc::qrxcenter(), infoMxop()

Examples

Not run:
Fit an additive logistic model containing numeric predictors age,
blood.pressure, and sex, assumed to be already properly coded and
transformed

fit <- lrm.fit(cbind(age,blood.pressure,sex=='male'), death)

End(Not run)

LRupdate LRupdate

Description

Update Model LR Statistics After Multiple Imputation

Usage

LRupdate(fit, anova)

mailto:fh@fharrell.com

112 matinv

Arguments

fit an rms fit object

anova the result of processMI(..., 'anova')

Details

For fits from orm, lrm, orm, cph, psm that were created using fit.mult.impute with lrt=TRUE
or equivalent options and for which anova was obtained using processMI(fit, 'anova') to com-
pute imputation-adjusted LR statistics. LRupdate uses the last line of the anova result (containing
the overall model LR chi-square) to update Model L.R. in the fit stats component, and to adjust
any of the new R-square measures in stats.

For models using Nagelkerke’s R-squared, these are set to NA as they would need to be recomputed
with a new intercept-only log-likelihood, which is not computed by anova. For ols models, R-
squared is left alone as it is sample-size-independent and print.ols prints the correct adjusted
R-squared due to fit.mult.impute correcting the residual d.f. in stacked fits.

Value

new fit object like fit but with the substitutions made

Author(s)

Frank Harrell

See Also

processMI.fit.mult.impute(), Hmisc::R2Measures()

Examples

Not run:
a <- aregImpute(~ y + x1 + x2, n.impute=30, data=d)
f <- fit.mult.impute(y ~ x1 + x2, lrm, a, data=d, lrt=TRUE)
a <- processMI(f, 'anova')
f <- LRupdate(f, a)
print(f, r2=1:4) # print all imputation-corrected R2 measures

End(Not run)

matinv Total and Partial Matrix Inversion using Gauss-Jordan Sweep Opera-
tor

Description

This function inverts or partially inverts a matrix using pivoting (the sweep operator). It is useful
for sequential model-building.

matinv 113

Usage

matinv(a, which, negate=TRUE, eps=1e-12)

Arguments

a square matrix to invert or partially invert. May have been inverted or partially
inverted previously by matinv, in which case its "swept" attribute is updated.
Will un-invert if already inverted.

which vector of column/row numbers in a to invert. Default is all, for total inverse.

negate So that the algorithm can keep track of which pivots have been swept as well as
roundoff errors, it actually returns the negative of the inverse or partial inverse.
By default, these elements are negated to give the usual expected result. Set
negate=FALSE if you will be passing the result right back into matinv, other-
wise, negate the submatrix before sending back to matinv.

eps singularity criterion

Value

a square matrix, with attributes "rank" and "swept".

References

Clarke MRB (1982). Algorithm AS 178: The Gauss-Jordan sweep operator with detection of
collinearity. Appl Statist 31:166–9.

Ridout MS, Cobb JM (1986). Algorithm AS R78 : A remark on algorithm AS 178: The Gauss-
Jordan sweep operator with detection of collinearity. Appl Statist 38:420–2.

See Also

lrm, solve

Examples

a <- diag(1:3)
a.inv1 <- matinv(a, 1, negate=FALSE) #Invert with respect to a[1,1]
a.inv1
a.inv <- -matinv(a.inv1, 2:3, negate=FALSE) #Finish the job
a.inv
solve(a)

114 nomogram

nomogram Draw a Nomogram Representing a Regression Fit

Description

Draws a partial nomogram that can be used to manually obtain predicted values from a regression
model that was fitted with rms. The nomogram does not have lines representing sums, but it has a
reference line for reading scoring points (default range 0–100). Once the reader manually totals the
points, the predicted values can be read at the bottom. Non-monotonic transformations of continu-
ous variables are handled (scales wrap around), as are transformations which have flat sections (tick
marks are labeled with ranges). If interactions are in the model, one variable is picked as the “axis
variable”, and separate axes are constructed for each level of the interacting factors (preference is
given automatically to using any discrete factors to construct separate axes) and levels of factors
which are indirectly related to interacting factors (see DETAILS). Thus the nomogram is designed
so that only one axis is actually read for each variable, since the variable combinations are disjoint.
For categorical interacting factors, the default is to construct axes for all levels. The user may spec-
ify coordinates of each predictor to label on its axis, or use default values. If a factor interacts with
other factors, settings for one or more of the interacting factors may be specified separately (this
is mandatory for continuous variables). Optional confidence intervals will be drawn for individual
scores as well as for the linear predictor. If more than one confidence level is chosen, multiple levels
may be displayed using different colors or gray scales. Functions of the linear predictors may be
added to the nomogram.

The datadist object that was in effect when the model was fit is used to specify the limits of the
axis for continuous predictors when the user does not specify tick mark locations in the nomogram
call.

print.nomogram prints axis information stored in an object returned by nomogram. This is useful
in producing tables of point assignments by levels of predictors. It also prints how many linear
predictor units there are per point and the number of points per unit change in the linear predictor.

legend.nomabbrev draws legends describing abbreviations used for labeling tick marks for levels
of categorical predictors.

Usage

nomogram(fit, ..., adj.to, lp=TRUE, lp.at=NULL,
fun=NULL, fun.at=NULL, fun.lp.at=NULL, funlabel="Predicted Value",
interact=NULL, kint=NULL, conf.int=FALSE,
conf.lp=c("representative", "all", "none"),
est.all=TRUE, posterior.summary=c('mean', 'median', 'mode'),
abbrev=FALSE, minlength=4, maxscale=100, nint=10,
vnames=c("labels","names"),
varname.label=TRUE, varname.label.sep="=",
omit=NULL, verbose=FALSE)

S3 method for class 'nomogram'
print(x, dec=0, ...)

nomogram 115

S3 method for class 'nomogram'
plot(x, lplabel="Linear Predictor", fun.side,
col.conf=c(1, 0.3),
conf.space=c(.08,.2), label.every=1, force.label=FALSE,
xfrac=.35, cex.axis=.85, cex.var=1, col.grid=NULL,
varname.label=TRUE, varname.label.sep="=", ia.space=.7,
tck=NA, tcl=-0.25, lmgp=.4, naxes,
points.label='Points', total.points.label='Total Points',
total.sep.page=FALSE, total.fun, cap.labels=FALSE, ...)

legend.nomabbrev(object, which, x, y, ncol=3, ...)

Arguments

fit a regression model fit that was created with rms, and (usually) with options(datadist
= "object.name") in effect.

... settings of variables to use in constructing axes. If datadist was in effect,
the default is to use pretty(total range, nint) for continuous variables, and
the class levels for discrete ones. For legend.nomabbrev, ... specifies op-
tional parameters to pass to legend. Common ones are bty = "n" to suppress
drawing the box. You may want to specify a non-proportionally spaced font
(e.g., courier) number if abbreviations are more than one letter long. This will
make the abbreviation definitions line up (e.g., specify font = 2, the default for
courier). Ignored for print and plot.

adj.to If you didn’t define datadist for all predictors, you will have to define ad-
justment settings for the undefined ones, e.g. adj.to= list(age = 50, sex =
"female").

lp Set to FALSE to suppress creation of an axis for scoring Xβ.

lp.at If lp=TRUE, lp.at may specify a vector of settings of Xβ. Default is to use
pretty(range of linear predictors, nint).

fun an optional function to transform the linear predictors, and to plot on another
axis. If more than one transformation is plotted, put them in a list, e.g. list(function(x)
x/2, function(x) 2*x). Any function values equal to NA will be ignored.

fun.at function values to label on axis. Default fun evaluated at lp.at. If more than
one fun was specified, using a vector for fun.at will cause all functions to be
evaluated at the same argument values. To use different values, specify a list of
vectors for fun.at, with elements corresponding to the different functions (lists
of vectors also applies to fun.lp.at and fun.side).

fun.lp.at If you want to evaluate one of the functions at a different set of linear predic-
tor values than may have been used in constructing the linear predictor axis,
specify a vector or list of vectors of linear predictor values at which to evaluate
the function. This is especially useful for discrete functions. The presence of
this attribute also does away with the need for nomogram to compute numerical
approximations of the inverse of the function. It also allows the user-supplied
function to return factor objects, which is useful when e.g. a single tick mark
position actually represents a range. If the fun.lp.at parameter is present, the
fun.at vector for that function is ignored.

116 nomogram

funlabel label for fun axis. If more than one function was given but funlabel is of length
one, it will be duplicated as needed. If fun is a list of functions for which
you specified names (see the final example below), these names will be used as
labels.

interact When a continuous variable interacts with a discrete one, axes are constructed so
that the continuous variable moves within the axis, and separate axes represent
levels of interacting factors. For interactions between two continuous variables,
all but the axis variable must have discrete levels defined in interact. For
discrete interacting factors, you may specify levels to use in constructing the
multiple axes. For continuous interacting factors, you must do this. Examples:
interact = list(age = seq(10,70,by=10), treat = c("A","B","D")).

kint for models such as the ordinal models with multiple intercepts, specifies which
one to use in evaluating the linear predictor. Default is to use fit$interceptRef
if it exists, or 1.

conf.int confidence levels to display for each scoring. Default is FALSE to display no
confidence limits. Setting conf.int to TRUE is the same as setting it to c(0.7,
0.9), with the line segment between the 0.7 and 0.9 levels shaded using gray
scale.

conf.lp default is "representative" to group all linear predictors evaluated into deciles,
and to show, for the linear predictor confidence intervals, only the mean linear
predictor within the deciles along with the median standard error within the
deciles. Set conf.lp = "none" to suppress confidence limits for the linear pre-
dictors, and to "all" to show all confidence limits.

est.all To plot axes for only the subset of variables named in ..., set est.all = FALSE.
Note: This option only works when zero has a special meaning for the variables
that are omitted from the graph.

posterior.summary

when operating on a Bayesian model such as a result of blrm specifies whether
to use posterior mean (default) vs. posterior mode/median of parameter values
in constructing the nomogram

abbrev Set to TRUE to use the abbreviate function to abbreviate levels of categorical
factors, both for labeling tick marks and for axis titles. If you only want to
abbreviate certain predictor variables, set abbrev to a vector of character strings
containing their names.

minlength applies if abbrev = TRUE. Is the minimum abbreviation length passed to the
abbreviate function. If you set minlength = 1, the letters of the alphabet
are used to label tick marks for categorical predictors, and all letters are drawn
no matter how close together they are. For labeling axes (interaction settings),
minlength = 1 causes minlength = 4 to be used.

maxscale default maximum point score is 100
nint number of intervals to label for axes representing continuous variables. See

pretty.
vnames By default, variable labels are used to label axes. Set vnames = "names" to

instead use variable names.
omit vector of character strings containing names of variables for which to suppress

drawing axes. Default is to show all variables.

nomogram 117

verbose set to TRUE to get printed output detailing how tick marks are chosen and labeled
for function axes. This is useful in seeing how certain linear predictor values
cannot be solved for using inverse linear interpolation on the (requested linear
predictor values, function values at these lp values). When this happens you will
see NAs in the verbose output, and the corresponding tick marks will not appear
in the nomogram.

x an object created by nomogram, or the x coordinate for a legend

dec number of digits to the right of the decimal point, for rounding point scores in
print.nomogram. Default is to round to the nearest whole number of points.

lplabel label for linear predictor axis. Default is "Linear Predictor".

fun.side a vector or list of vectors of side parameters for the axis function for labeling
function values. Values may be 1 to position a tick mark label below the axis (the
default), or 3 for above the axis. If for example an axis has 5 tick mark labels and
the second and third will run into each other, specify fun.side=c(1,1,3,1,1)
(assuming only one function is specified as fun).

col.conf colors corresponding to conf.int.

conf.space a 2-element vector with the vertical range within which to draw confidence bars,
in units of 1=spacing between main bars. Four heights are used within this range
(8 for the linear predictor if more than 16 unique values were evaluated), cycling
them among separate confidence intervals to reduce overlapping.

label.every Specify label.every = i to label on every ith tick mark.

force.label set to TRUE to force every tick mark intended to be labeled to have a label plotted
(whether the labels run into each other or not)

xfrac fraction of horizontal plot to set aside for axis titles

cex.axis character size for tick mark labels

cex.var character size for axis titles (variable names)

col.grid If left unspecified, no vertical reference lines are drawn. Specify a vector of
length one (to use the same color for both minor and major reference lines) or
two (corresponding to the color for the major and minor divisions, respectively)
containing colors, to cause vertical reference lines to the top points scale to be
drawn. For R, a good choice is col.grid = gray(c(0.8, 0.95)).

varname.label In constructing axis titles for interactions, the default is to add (interacting.varname
= level) on the right. Specify varname.label = FALSE to instead use "(level)".

varname.label.sep

If varname.label = TRUE, you can change the separator to something other than
= by specifying this parameter.

ia.space When multiple axes are draw for levels of interacting factors, the default is to
group combinations related to a main effect. This is done by spacing the axes
for the second to last of these within a group only 0.7 (by default) of the way
down as compared with normal space of 1 unit.

tck see tck under par

tcl length of tick marks in nomogram

lmgp spacing between numeric axis labels and axis (see par for mgp)

118 nomogram

naxes maximum number of axes to allow on one plot. If the nomogram requires more
than one “page”, the “Points” axis will be repeated at the top of each page when
necessary.

points.label a character string giving the axis label for the points scale
total.points.label

a character string giving the axis label for the total points scale

total.sep.page set to TRUE to force the total points and later axes to be placed on a separate page

total.fun a user-provided function that will be executed before the total points axis is
drawn. Default is not to execute a function. This is useful e.g. when total.sep.page
= TRUE and you wish to use locator to find the coordinates for positioning an
abbreviation legend before it’s too late and a new page is started (i.e., total.fun
= function() print(locator(1))).

cap.labels logical: should the factor labels have their first letter capitalized?

object the result returned from nomogram

which a character string giving the name of a variable for which to draw a legend with
abbreviations of factor levels

y y-coordinate to pass to the legend function. This is the upper left corner of the
legend box. You can omit y if x is a list with named elements x and y. To use
the mouse to locate the legend, specify locator(1) for x. For print, x is the
result of nomogram.

ncol the number of columns to form in drawing the legend.

Details

A variable is considered to be discrete if it is categorical or ordered or if datadist stored values
for it (meaning it had <11 unique values). A variable is said to be indirectly related to another
variable if the two are related by some interaction. For example, if a model has variables a, b, c, d,
and the interactions are a:c and c:d, variable d is indirectly related to variable a. The complete list
of variables related to a is c, d. If an axis is made for variable a, several axes will actually be drawn,
one for each combination of c and d specified in interact.

Note that with a caliper, it is easy to continually add point scores for individual predictors, and then
to place the caliper on the upper “Points” axis (with extrapolation if needed). Then transfer these
points to the “Total Points” axis. In this way, points can be added without writing them down.

Confidence limits for an individual predictor score are really confidence limits for the entire linear
predictor, with other predictors set to adjustment values. If lp = TRUE, all confidence bars for all lin-
ear predictor values evaluated are drawn. The extent to which multiple confidence bars of differing
widths appear at the same linear predictor value means that precision depended on how the linear
predictor was arrived at (e.g., a certain value may be realized from a setting of a certain predictor
that was associated with a large standard error on the regression coefficients for that predictor).

On occasion, you may want to reverse the regression coefficients of a model to make the “points”
scales reverse direction. For parametric survival models, which are stated in terms of increasing
regression effects meaning longer survival (the opposite of a Cox model), just do something like
fit$coefficients <- -fit$coefficients before invoking nomogram, and if you add function
axes, negate the function arguments. For the Cox model, you also need to negate fit$center. If
you omit lp.at, also negate fit$linear.predictors.

nomogram 119

Value

a list of class "nomogram" that contains information used in plotting the axes. If you specified
abbrev = TRUE, a list called abbrev is also returned that gives the abbreviations used for tick mark
labels, if any. This list is useful for making legends and is used by legend.nomabbrev (see the
last example). The returned list also has components called total.points, lp, and the function
axis names. These components have components x (at argument vector given to axis), y (pos for
axis), and x.real, the x-coordinates appearing on tick mark labels. An often useful result is stored
in the list of data for each axis variable, namely the exact number of points that correspond to each
tick mark on that variable’s axis.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

References

Banks J: Nomograms. Encylopedia of Statistical Sciences, Vol 6. Editors: S Kotz and NL Johnson.
New York: Wiley; 1985.

Lubsen J, Pool J, van der Does, E: A practical device for the application of a diagnostic or prognostic
function. Meth. Inform. Med. 17:127–129; 1978.

Wikipedia: Nomogram, https://en.wikipedia.org/wiki/Nomogram.

See Also

rms, plot.Predict, ggplot.Predict, plot.summary.rms, axis, pretty, approx, latexrms,
rmsMisc

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
d <- data.frame(age = rnorm(n, 50, 10),

blood.pressure = rnorm(n, 120, 15),
cholesterol = rnorm(n, 200, 25),
sex = factor(sample(c('female','male'), n,TRUE)))

Specify population model for log odds that Y=1
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
d <- upData(d,

L = .4*(sex=='male') + .045*(age-50) +
(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')),

y = ifelse(runif(n) < plogis(L), 1, 0))

ddist <- datadist(d); options(datadist='ddist')

f <- lrm(y ~ lsp(age,50) + sex * rcs(cholesterol, 4) + blood.pressure,

https://en.wikipedia.org/wiki/Nomogram

120 nomogram

data=d)
nom <- nomogram(f, fun=function(x)1/(1+exp(-x)), # or fun=plogis

fun.at=c(.001,.01,.05,seq(.1,.9,by=.1),.95,.99,.999),
funlabel="Risk of Death")

#Instead of fun.at, could have specified fun.lp.at=logit of
#sequence above - faster and slightly more accurate
plot(nom, xfrac=.45)
print(nom)
nom <- nomogram(f, age=seq(10,90,by=10))
plot(nom, xfrac=.45)
g <- lrm(y ~ sex + rcs(age, 3) * rcs(cholesterol, 3), data=d)
nom <- nomogram(g, interact=list(age=c(20,40,60)),

conf.int=c(.7,.9,.95))
plot(nom, col.conf=c(1,.5,.2), naxes=7)

require(survival)
w <- upData(d,

cens = 15 * runif(n),
h = .02 * exp(.04 * (age - 50) + .8 * (sex == 'Female')),
d.time = -log(runif(n)) / h,
death = ifelse(d.time <= cens, 1, 0),
d.time = pmin(d.time, cens))

f <- psm(Surv(d.time,death) ~ sex * age, data=w, dist='lognormal')
med <- Quantile(f)
surv <- Survival(f) # This would also work if f was from cph
plot(nomogram(f, fun=function(x) med(lp=x), funlabel="Median Survival Time"))
nom <- nomogram(f, fun=list(function(x) surv(3, x),

function(x) surv(6, x)),
funlabel=c("3-Month Survival Probability",

"6-month Survival Probability"))
plot(nom, xfrac=.7)

Not run:
nom <- nomogram(fit.with.categorical.predictors, abbrev=TRUE, minlength=1)
nom$x1$points # print points assigned to each level of x1 for its axis
#Add legend for abbreviations for category levels
abb <- attr(nom, 'info')$abbrev$treatment
legend(locator(1), abb$full, pch=paste(abb$abbrev,collapse=''),

ncol=2, bty='n') # this only works for 1-letter abbreviations
#Or use the legend.nomabbrev function:
legend.nomabbrev(nom, 'treatment', locator(1), ncol=2, bty='n')

End(Not run)

#Make a nomogram with axes predicting probabilities Y>=j for all j=1-3
#in an ordinal logistic model, where Y=0,1,2,3
w <- upData(w, Y = ifelse(y==0, 0, sample(1:3, length(y), TRUE)))
g <- lrm(Y ~ age+rcs(cholesterol,4) * sex, data=w)
fun2 <- function(x) plogis(x-g$coef[1]+g$coef[2])
fun3 <- function(x) plogis(x-g$coef[1]+g$coef[3])

npsurv 121

f <- Newlabels(g, c(age='Age in Years'))
#see Design.Misc, which also has Newlevels to change
#labels for levels of categorical variables
g <- nomogram(f, fun=list('Prob Y>=1'=plogis, 'Prob Y>=2'=fun2,

'Prob Y=3'=fun3),
fun.at=c(.01,.05,seq(.1,.9,by=.1),.95,.99))

plot(g, lmgp=.2, cex.axis=.6)
options(datadist=NULL)

npsurv Nonparametric Survival Estimates for Censored Data

Description

Computes an estimate of a survival curve for censored data using either the Kaplan-Meier or the
Fleming-Harrington method or computes the predicted survivor function. For competing risks data
it computes the cumulative incidence curve. This calls the survival package’s survfit.formula
function. Attributes of the event time variable are saved (label and units of measurement).

For competing risks the second argument for Surv should be the event state variable, and it should
be a factor variable with the first factor level denoting right-censored observations.

Usage

npsurv(formula, data=environment(formula),
subset, weights, na.action=na.delete, ...)

Arguments

formula a formula object, which must have a Surv object as the response on the left of
the ~ operator and, if desired, terms separated by + operators on the right. One
of the terms may be a strata object. For a single survival curve the right hand
side should be ~ 1.

data, subset, weights, na.action
see survfit.formula

... see survfit.formula

Details

see survfit.formula for details

Value

an object of class "npsurv" and "survfit". See survfit.object for details. Methods defined for
survfit objects are print, summary, plot,lines, and points.

Author(s)

Thomas Lumley <tlumley@u.washington.edu> and Terry Therneau

122 npsurv

See Also

survfit.cph for survival curves from Cox models. print, plot, lines, coxph, strata, survplot,
ggplot.npsurv

Examples

require(survival)
fit a Kaplan-Meier and plot it
fit <- npsurv(Surv(time, status) ~ x, data = aml)
plot(fit, lty = 2:3)
legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
ggplot(fit) # prettier than plot()

Here is the data set from Turnbull
There are no interval censored subjects, only left-censored (status=3),
right-censored (status 0) and observed events (status 1)
#
Time
1 2 3 4
Type of observation
death 12 6 2 3
losses 3 2 0 3
late entry 2 4 2 5
#
tdata <- data.frame(time = c(1,1,1,2,2,2,3,3,3,4,4,4),

status = rep(c(1,0,2),4),
n = c(12,3,2,6,2,4,2,0,2,3,3,5))

fit <- npsurv(Surv(time, time, status, type='interval') ~ 1,
data=tdata, weights=n)

#
Time to progression/death for patients with monoclonal gammopathy
Competing risk curves (cumulative incidence)
status variable must be a factor with first level denoting right censoring
m <- upData(mgus1, stop = stop / 365.25, units=c(stop='years'),

labels=c(stop='Follow-up Time'), subset=start == 0)
f <- npsurv(Surv(stop, event) ~ 1, data=m)

CI curves are always plotted from 0 upwards, rather than 1 down
plot(f, fun='event', xmax=20, mark.time=FALSE,

col=2:3, xlab="Years post diagnosis of MGUS")
text(10, .4, "Competing Risk: death", col=3)
text(16, .15,"Competing Risk: progression", col=2)

Use survplot for enhanced displays of cumulative incidence curves for
competing risks

survplot(f, state='pcm', n.risk=TRUE, xlim=c(0, 20), ylim=c(0, .5), col=2)
survplot(f, state='death', add=TRUE, col=3)

f <- npsurv(Surv(stop, event) ~ sex, data=m)
survplot(f, state='death', n.risk=TRUE, conf='diffbands')

Ocens 123

Ocens Censored Ordinal Variable

Description

Combines two variables a, b into a 2-column matrix, preserving label and units attributes and
converting character or factor variables into integers and added a levels attribute. This is used to
combine censoring points with regular points. If both variables are already factors, their levels are
distinctly combined starting with the levels for a. Character variables are converted to factors.

Usage

Ocens(a, b = a)

Arguments

a variable for first column

b variable for second column

Details

Left censored values will have -Inf for a and right-censored values will have Inf for b. Interval-
censored observations will have b > a and both finite. For factor or character variables it only makes
sense to have interval censoring.

If there is no censoring, a is returned as an ordinary vector, with label and units attributes.

Value

a numeric matrix of class Ocens

Author(s)

Frank Harrell

Ocens2ord Recode Censored Ordinal Variable

124 Ocens2ord

Description

Creates a 2-column integer matrix that handles left- right- and interval-censored ordinal or contin-
uous values for use in [rmsb::blrm()] and [orm()]. A pair of values ‘[a, b]‘ represents an interval-
censored value known to be in the interval ‘[a, b]‘ inclusive of ‘a‘ and ‘b‘. Left censored values are
coded as ‘(-Infinity, b)‘ and right-censored as ‘(a, Infinity)‘, both of these intervals being open at
the finite endpoints. Open left and right censoring intervals are created by adding a small increment
(subtracting for left censoring) to ‘a‘ or ‘b‘. When this occurs at the outer limits, new ordinal cate-
gories will be created by ‘orm‘ to capture the real and unique information in outer censored values.
For example if the highest uncensored value is 10 and there is a right-censored value in the data at
10, a new category ‘10+‘ is created, separate from the category for ‘10‘. So it is assumed that if an
exact value of 10 was observed, the pair of values for that observation would not be coded as ‘(10,
Infinity)‘.

Usage

Ocens2ord(
y,
precision = 7,
maxit = 10,
nponly = FALSE,
cons = c("intervals", "data", "none"),
verbose = FALSE

)

Arguments

y an ‘Ocens‘ object, which is a 2-column numeric matrix, or a regular vector rep-
resenting a ‘factor‘, numeric, integer, or alphabetically ordered character strings.
Censoring points have values of ‘Inf‘ or ‘-Inf‘.

precision when ‘y‘ columns are numeric, values may need to be rounded to avoid unpre-
dictable behavior with unique() with floating-point numbers. Default is to 7
decimal places. See [this](https://hbiostat.org/r/rms/unique-float/) for more de-
tails.

maxit maximum number of iterations allowed in the interval consolidation process
when ‘cons=’data’‘

nponly set to ‘TRUE‘ to return a list containing the survival curve estimates before
interval consolidation, using [icenReg::ic_np()]

cons set to ‘’none’‘ to not consolidate intervals when the survival estimate stays con-
stant; this will likely cause a lot of trouble with zero cell probabilities during
maximum likelihood estimation. The default is to consolidate consecutive inter-
vals. Set ‘cons=’data’‘ to change the raw data values to make observed intervals
wider, in an iterative manner until no more consecutive tied survival estimates
remain.

verbose set to ‘TRUE‘ to print information messages. Set ‘verbose‘ to a number greater
than 1 to get more information printed, such as the estimated survival curve at
each stage of consolidation.

Ocens2ord 125

Details

The intervals that drive the coding of the input data into numeric ordinal levels are the Turnbull inter-
vals computed by the non-exported ‘findMaximalIntersections‘ function in the ‘icenReg‘ package,
which handles all three types of censoring. These are defined in the ‘levels‘ and ‘upper‘ attributes
of the object returned by ‘Ocens‘. Sometimes consecutive Turnbull intervals contain the same sta-
tistical information likelihood function-wise, leading to the same survival estimates over two ore
more consecutive intervals. This leads to zero probabilities of involved ordinal values, preventing
‘orm‘ from computing a valid log-likeliihood. A limited about of interval consolidation is done by
‘Ocens‘ to alleviate this problem. Depending on the value of ‘cons‘ this consolidation is done by
intervals (preferred) or by changing the raw data. If ‘verbose=TRUE‘, information about the actions
taken is printed.

When both input variables are ‘factor‘s it is assumed that the one with the higher number of levels
is the one that correctly specifies the order of levels, and that the other variable does not contain
any additional levels. If the variables are not ‘factor‘s it is assumed their original values provide the
orderings. A left-censored point is is coded as having ‘-Inf‘ as a lower limit, and a right-censored
point is coded as having ‘Inf‘ as an upper limit. As with most censored-data methods, modeling
functions assumes that censoring is independent of the response variable values that would have
been measured had censoring not occurred. ‘Ocens‘ creates a 2-column integer matrix suitable for
ordinal regression. Attributes of the returned object give more information.

Value

a 2-column integer matrix of class ‘"Ocens"‘ with an attribute ‘levels‘ (ordered), and if there are
zero-width intervals arising from censoring, an attribute ‘upper‘ with the vector of upper limits.
Left-censored values are coded as ‘-Inf‘ in the first column of the returned matrix, and right-
censored values as ‘Inf‘. When the original variables were ‘factor‘s, these are factor levels, oth-
erwise are numerically or alphabetically sorted distinct (over ‘a‘ and ‘b‘ combined) values. When
the variables are not factors and are numeric, other attributes ‘median‘, ‘range‘, ‘label‘, and ‘npsurv‘
are also returned. ‘median‘ is the median of the uncensored values on the origiinal scale. ‘ranges‘
is a 3-element list, each element a 2-vector range. The element named ‘y‘ is the range of original
data values before adjustments. The ‘u‘ element is a 2-vector range of uncensored values before
adjustment, and the ‘c‘ element contains the lowest left censoring point and highest right-censored
point. Getting back to the main returned variables, ‘label‘ is the ‘label‘ attribute from the first of
‘a, b‘ having a label. ‘npsurv‘ is the estimated survival curve (with elements ‘time‘ and ‘surv‘)
from the ‘icenReg‘ package after any interval consolidation. If the argument ‘npsurv=TRUE‘ was
given, this ‘npsurv‘ list before consolidation is returned and no other calculations are done. When
the variables are factor or character, the median of the integer versions of variables for uncensored
observations is returned as attribute ‘mid‘. A final attribute ‘freq‘ is the vector of frequencies of
occurrences of all values. ‘freq‘ aligns with ‘levels‘. A ‘units‘ attribute is also included. Finally
there are two 3-vectors ‘Ncens1‘ and ‘Ncens2‘, the first containing the original number of left, right,
and interval-censored observations and the second containing the frequencies after altering some of
the data. For example, observations that are right-censored at or beyond the highest uncensored
value are coded as uncensored to get the correct likelihood component in ‘orm.fit‘. When only right
censoring is present and there are censored observations at or beyond the highest uncensored point,
another attribute ‘rt_cens_beyond‘ is included in the returned list. It has elements ‘newlevel‘ which
is the numeric uncensored value assigned to these observations, and ‘range‘ which is a 2-vector
containing the lowest and highest censored values beyond the last uncensored value.

126 Olinks

Author(s)

Frank Harrell

Ocens2Surv Ocens2Surv

Description

Converts an Ocens object to the simplest Surv object that works for the types of censoring that are
present in the data.

Usage

Ocens2Surv(Y)

Arguments

Y an Ocens object

Value

a Surv object

Examples

Y <- Ocens(1:3, c(1, Inf, 3))
Ocens2Surv(Y)

Olinks Likehood-Based Statistics for Other Links for orm Fits

Description

Likehood-Based Statistics for Other Links for orm Fits

Usage

Olinks(
object,
links = c("logistic", "probit", "loglog", "cloglog"),
dec = 3,
gradtol = 0.001

)

ols 127

Arguments

object an object created by orm with x=TRUE, y=TRUE

links a vector of links to consider other than the one used to get object

dec number of digits to the right of the decimal place to round statistics to

gradtol tolerance for convergence on the absolute gradient; see lrm.fit and orm.fit.

Value

data frame. The R2 column is from the last adjusted R2 computed by orm, which adjustes for the
effective sample size and the number of betas.

Author(s)

Frank Harrell

Examples

Not run:
f <- orm(y ~ x1 + x2, family='loglog', x=TRUE, y=TRUE)
Olinks(f)

End(Not run)

ols Linear Model Estimation Using Ordinary Least Squares

Description

Fits the usual weighted or unweighted linear regression model using the same fitting routines used
by lm, but also storing the variance-covariance matrix var and using traditional dummy-variable
coding for categorical factors. Also fits unweighted models using penalized least squares, with the
same penalization options as in the lrm function. For penalized estimation, there is a fitter function
call lm.pfit.

Usage

ols(formula, data=environment(formula), weights, subset, na.action=na.delete,
method="qr", model=FALSE,
x=FALSE, y=FALSE, se.fit=FALSE, linear.predictors=TRUE,
penalty=0, penalty.matrix, tol=.Machine$double.eps, sigma,
var.penalty=c('simple','sandwich'), ...)

128 ols

Arguments

formula an S formula object, e.g.
Y ~ rcs(x1,5)*lsp(x2,c(10,20))

data name of an S data frame containing all needed variables. Omit this to use a data
frame already in the S “search list”.

weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights weights (that is, minimizing sum(w∗
e2)); otherwise ordinary least squares is used.

subset an expression defining a subset of the observations to use in the fit. The de-
fault is to use all observations. Specify for example age>50 & sex="male" or
c(1:100,200:300) respectively to use the observations satisfying a logical ex-
pression or those having row numbers in the given vector.

na.action specifies an S function to handle missing data. The default is the function
na.delete, which causes observations with any variable missing to be deleted.
The main difference between na.delete and the S-supplied function na.omit
is that na.delete makes a list of the number of observations that are miss-
ing on each variable in the model. The na.action is usally specified by e.g.
options(na.action="na.delete").

method specifies a particular fitting method, or "model.frame" instead to return the
model frame of the predictor and response variables satisfying any subset or
missing value checks.

model default is FALSE. Set to TRUE to return the model frame as element model of the
fit object.

x default is FALSE. Set to TRUE to return the expanded design matrix as element
x (without intercept indicators) of the returned fit object. Set both x=TRUE if
you are going to use the residuals function later to return anything other than
ordinary residuals.

y default is FALSE. Set to TRUE to return the vector of response values as element
y of the fit.

se.fit default is FALSE. Set to TRUE to compute the estimated standard errors of the
estimate of Xβ and store them in element se.fit of the fit.

linear.predictors

set to FALSE to cause predicted values not to be stored

penalty see lrm

penalty.matrix see lrm

tol tolerance for information matrix singularity

sigma If sigma is given, it is taken as the actual root mean squared error parameter for
the model. Otherwise sigma is estimated from the data using the usual formulas
(except for penalized models). It is often convenient to specify sigma=1 for
models with no error, when using fastbw to find an approximate model that
predicts predicted values from the full model with a given accuracy.

var.penalty the type of variance-covariance matrix to be stored in the var component of
the fit when penalization is used. The default is the inverse of the penalized

ols 129

information matrix. Specify var.penalty="sandwich" to use the sandwich
estimator (see below under var), which limited simulation studies have shown
yields variances estimates that are too low.

... arguments to pass to lm.wfit or lm.fit

Details

For penalized estimation, the penalty factor on the log likelihood is −0.5β′Pβ/σ2, where P is de-
fined above. The penalized maximum likelihood estimate (penalized least squares or ridge estimate)
of β is (X ′X + P)−1X ′Y . The maximum likelihood estimate of σ2 is (sse + β′Pβ)/n, where
sse is the sum of squared errors (residuals). The effective.df.diagonal vector is the diagonal
of the matrix X ′X/(sse/n)σ2(X ′X + P)−1.

Value

the same objects returned from lm (unless penalty or penalty.matrix are given - then an ab-
breviated list is returned since lm.pfit is used as a fitter) plus the design attributes (see rms).
Predicted values are always returned, in the element linear.predictors. The vectors or ma-
trix stored if y=TRUE or x=TRUE have rows deleted according to subset and to missing data, and
have names or row names that come from the data frame used as input data. If penalty or
penalty.matrix is given, the var matrix returned is an improved variance-covariance matrix for
the penalized regression coefficient estimates. If var.penalty="sandwich" (not the default, as
limited simulation studies have found it provides variance estimates that are too low) it is defined
as σ2(X ′X + P)−1X ′X(X ′X + P)−1, where P is penalty factors * penalty.matrix, with a
column and row of zeros added for the intercept. When var.penalty="simple" (the default), var
is σ2(X ′X + P)−1. The returned list has a vector stats with named elements n, Model L.R.,
d.f., R2, g, Sigma. Model L.R. is the model likelihood ratio χ2 statistic, and R2 is R2. For pe-
nalized estimation, d.f. is the effective degrees of freedom, which is the sum of the elements of
another vector returned, effective.df.diagonal, minus one for the intercept. g is the g-index.
Sigma is the penalized maximum likelihood estimate (see below).

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

rms, rms.trans, anova.rms, summary.rms, predict.rms, fastbw, validate, calibrate, Predict,
specs.rms, cph, lrm, which.influence, lm, summary.lm, print.ols, residuals.ols, latex.ols,
na.delete, na.detail.response, datadist, pentrace, vif, abs.error.pred

Examples

set.seed(1)
x1 <- runif(200)
x2 <- sample(0:3, 200, TRUE)
distance <- (x1 + x2/3 + rnorm(200))^2
d <- datadist(x1,x2)

130 ordESS

options(datadist="d") # No d -> no summary, plot without giving all details

f <- ols(sqrt(distance) ~ rcs(x1,4) + scored(x2), x=TRUE)
could use d <- datadist(f); options(datadist="d") at this point,
but predictor summaries would not be stored in the fit object for
use with Predict, summary.rms. In that case, the original
dataset or d would need to be accessed later, or all variable values
would have to be specified to summary, plot
anova(f)
which.influence(f)
summary(f)
summary.lm(f) # will only work if penalty and penalty.matrix not used

Fit a complex model and approximate it with a simple one
x1 <- runif(200)
x2 <- runif(200)
x3 <- runif(200)
x4 <- runif(200)
y <- x1 + x2 + rnorm(200)
f <- ols(y ~ rcs(x1,4) + x2 + x3 + x4)
pred <- fitted(f) # or predict(f) or f$linear.predictors
f2 <- ols(pred ~ rcs(x1,4) + x2 + x3 + x4, sigma=1)
sigma=1 prevents numerical problems resulting from R2=1
fastbw(f2, aics=100000)
This will find the best 1-variable model, best 2-variable model, etc.
in predicting the predicted values from the original model
options(datadist=NULL)

ordESS ordESS

Description

Ordinal Model Effective Sample Size

Usage

ordESS(fit)

Arguments

fit a model fitted by orm with y=TRUE, lpe=TRUE

Details

For a standard ordinal model fitted with orm, returns the effective sample size (ESS) component
of the stats part of the fit object if there were no censored data. Otherwise ordESS assumes that
y=TRUE and lpe=TRUE were given to orm, and an analysis of the effective sample size per censored

ordParallel 131

observation is given, as a function of the censoring time, or in the case of interval censored data, o
function of the width of the interval.

Value

a ggplot2 object

Author(s)

Frank Harrell

Examples

Not run:
f <- orm(Ocens(y1, y2) ~ x, y=TRUE, lpe=TRUE)
ordESS(f)

End(Not run)

ordParallel Check Parallelism Assumption of Ordinal Semiparametric Models

Description

orm models are refitted as a series of binary models for a sequence of cutoffs on the dependent
variable. Regression coefficients from this sequence are plotted against cutoffs using ggplot2 with
one panel per regression coefficient. When censoring is present, whether or not Y is greater than or
equal to the current cutoff is not always possible, and such observations are ignored.

Usage

ordParallel(
fit,
which,
terms = onlydata,
m,
maxcuts = 75,
lp = FALSE,
onlydata = FALSE,
scale = c("iqr", "none"),
conf.int = 0.95,
alpha = 0.15

)

132 ordParallel

Arguments

fit a fit object from orm with x=TRUE, y=TRUE in effect

which specifies which columns of the design matrix are assessed. By default, all
columns are analyzed.

terms set to TRUE to collapse all components of each predictor into a single column
weighted by the original regression coefficients but scaled according to scale.
This means that each predictor will have a regression coefficient of 1.0 when
refitting the original model on this transformed X matrix, before any further
scaling. Plots will then show the relative effects over time, i.e., the slope of these
combined columns over cuts on Y, so that deviations indicate non-parallelism.
But since in this case only relative effects are shown, a weak predictor may be
interpreted as having an exagerrated y-dependency if scale='none'. terms
detauls to TRUE when onlydata=TRUE.

m the lowest cutoff is chosen as the first Y value having at meast m observations to
its left, and the highest cutoff is chosen so that there are at least m observations
tot he right of it. Cutoffs are equally spaced between these values. If omitted, m
is set to the minimum of 50 and one quarter of the sample size.

maxcuts the maximum number of cutoffs analyzed

lp plot the effect of the linear predictor across cutpoints instead of analyzing indi-
vidual predictors

onlydata set to TRUE to return a data frame suitable for modeling effects of cuts, instead of
constructing a graph. The returned data frame has variables Ycut, Yge_cut, obs,
and the original names of the predictors. Ycut has the cutpoint on the original
scale. Yge_cut is TRUE/FALSE dependent on whether the Y variable is greater
than or equal to Ycut, with NA if censoring prevented this determination. The
obs variable is useful for passing as the cluster argument to robcov() to ac-
count for the high correlations in regression coefficients across cuts. See the
example which computes Wald tests for parallelism where the Ycut dependence
involves a spline function. But since terms was used, each predictor is reduced
to a single degree of freedom.

scale applies to terms=TRUE; set to 'none' to leave the predictor terms scaled by
regression coefficient so the coefficient of each term in the overall fit is 1.0. The
default is to scale terms by the interquartile-range (Gini’s mean difference if
IQR is zero) of the term. This prevents changes in weak predictors over different
cutoffs from being impressive.

conf.int confidence level for computing Wald confidence intervals for regression coeffi-
cients. Set to 0 to suppress confidence bands.

alpha saturation for confidence bands

Details

Whenver a cut gives rise to extremely high standard error for a regression coefficient, the confidence
limits are set to NA. Unreasonable standard errors are determined from the confidence interval width
exceeding 7 times the standard error at the middle Y cut.

orm 133

Value

ggplot2 object or a data frame

Author(s)

Frank Harrell

Examples

Not run:
f <- orm(..., x=TRUE, y=TRUE)
ordParallel(f, which=1:5) # first 5 betas

getHdata(nhgh)
set.seed(1)
nhgh$ran <- runif(nrow(nhgh))
f <- orm(gh ~ rcs(age, 4) + ran, data=nhgh, x=TRUE, y=TRUE)
ordParallel(f) # one panel per parameter (multiple parameters per predictor)
dd <- datadist(nhgh); options(datadist='dd')
ordParallel(f, terms=TRUE)
d <- ordParallel(f, maxcuts=30, onlydata=TRUE)
dd2 <- datadist(d); options(datadist='dd2') # needed for plotting
g <- orm(Yge_cut ~ (age + ran) * rcs(Ycut, 4), data=d, x=TRUE, y=TRUE)
h <- robcov(g, d$obs)
anova(h)
qu <- quantile(d$age, c(1, 3)/4)
qu
cuts <- sort(unique(d$Ycut))
cuts
z <- contrast(h, list(age=qu[2], Ycut=cuts),

list(age=qu[1], Ycut=cuts))
z <- as.data.frame(z[.q(Ycut, Contrast, Lower, Upper)])
ggplot(z, aes(x=Ycut, y=Contrast)) + geom_line() +

geom_ribbon(aes(ymin=Lower, ymax=Upper), alpha=0.2)

End(Not run)

orm Ordinal Regression Model

Description

Fits ordinal cumulative probability models for continuous or ordinal response variables, efficiently
allowing for a large number of intercepts by capitalizing on the information matrix being sparse.
Five different distribution functions are implemented, with the default being the logistic (i.e., the
proportional odds model). The ordinal cumulative probability models are stated in terms of ex-
ceedance probabilities (Prob[Y ≥ y|X]) so that as with OLS larger predicted values are asso-
ciated with larger Y. This is important to note for the asymmetric distributions given by the log-
log and complementary log-log families, for which negating the linear predictor does not result in

134 orm

Prob[Y < y|X]. The family argument is defined in orm.fit. The model assumes that the inverse
of the assumed cumulative distribution function, when applied to one minus the true cumulative dis-
tribution function and plotted on the y-axis (with the original y on the x-axis) yields parallel curves
(though not necessarily linear). This can be checked by plotting the inverse cumulative probability
function of one minus the empirical distribution function, stratified by X, and assessing parallelism.
Note that parametric regression models make the much stronger assumption of linearity of such
inverse functions.

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html". When using html with Quarto or RMark-
down, results='asis' need not be written in the chunk header.

Quantile.orm creates an R function that computes an estimate of a given quantile for a given
value of the linear predictor (which was assumed to use thefirst intercept). It uses a linear in-
terpolation method by default, but you can override that to use a discrete method by specifying
method="discrete" when calling the function generated by Quantile. Optionally a normal ap-
proximation for a confidence interval for quantiles will be computed using the delta method, if
conf.int > 0 is specified to the function generated from calling Quantile and you specify X. In
that case, a "lims" attribute is included in the result computed by the derived quantile function.

Usage

orm(formula, data=environment(formula),
subset, na.action=na.delete, method="orm.fit",
family=c("logistic", "probit", "loglog", "cloglog", "cauchit"),
model=FALSE, x=FALSE, y=FALSE, lpe=FALSE,
linear.predictors=TRUE, se.fit=FALSE,
penalty=0, penalty.matrix,
var.penalty=c('simple','sandwich'), scale=FALSE,
maxit=30, weights, normwt=FALSE, ...)

S3 method for class 'orm'
print(x, digits=4, r2=c(0,2,4), coefs=TRUE, pg=FALSE,

intercepts=x$non.slopes < 10, title, ...)

S3 method for class 'orm'
Quantile(object, codes=FALSE, ...)

Arguments

formula a formula object. An offset term can be included. The offset causes fitting
of a model such as logit(Y = 1) = Xβ + W , where W is the offset variable
having no estimated coefficient. The response variable can be any data type;
orm converts it in alphabetic or numeric order to a factor variable and recodes it
1,2,. . . internally.

data data frame to use. Default is the current frame.
subset logical expression or vector of subscripts defining a subset of observations to

analyze
na.action function to handle NAs in the data. Default is na.delete, which deletes any

observation having response or predictor missing, while preserving the attributes

orm 135

of the predictors and maintaining frequencies of deletions due to each variable in
the model. This is usually specified using options(na.action="na.delete").

method name of fitting function. Only allowable choice at present is orm.fit.

family character value specifying the distribution family, which is one of the following:
"logistic", "probit", "loglog", "cloglog", "cauchit", corresponding to
logistic (the default), Gaussian, Cauchy, Gumbel maximum (exp(−exp(−x));
extreme value type I), and Gumbel minimum (1−exp(−exp(x))) distributions.
These are the cumulative distribution functions assumed for Prob[Y ≥ y|X].
The default is "logistic".

model causes the model frame to be returned in the fit object

x causes the expanded design matrix (with missings excluded) to be returned un-
der the name x. For print, an object created by orm.

y causes the response variable (with missings excluded) to be returned under the
name y.

lpe set lpe=TRUE to store the vector of likelihood probability elements in the fit
object in a list element named lpe. This will enable the ordESS function to
summarize the effective sample sizes of any censored observations.

linear.predictors

causes the predicted X beta (with missings excluded) to be returned under the
name linear.predictors. The first intercept is used.

se.fit causes the standard errors of the fitted values (on the linear predictor scale) to
be returned under the name se.fit. The middle intercept is used.

penalty see lrm

penalty.matrix see lrm

var.penalty see lrm

scale set to TRUE to subtract column means and divide by column standard deviations
of the design matrix before fitting, and to back-solve for the un-normalized co-
variance matrix and regression coefficients. This can sometimes make the model
converge for very large sample sizes where for example spline or polynomial
component variables create scaling problems leading to loss of precision when
accumulating sums of squares and crossproducts.

maxit maximum number of iterations to allow in orm.fit

weights a vector (same length as y) of possibly fractional case weights

normwt set to TRUE to scale weights so they sum to the length of y; useful for sample
surveys as opposed to the default of frequency weighting

... arguments that are passed to orm.fit, or from print, to prModFit. Ignored for
Quantile. One of the most important arguments is family.

digits number of significant digits to use

r2 vector of integers specifying which R^2 measures to print, with 0 for Nagelkerke
R^2 and 1:4 corresponding to the 4 measures computed by R2Measures. Default
is to print Nagelkerke (labeled R2) and second and fourth R2Measures which
are the measures adjusted for the number of predictors, first for the raw sample
size then for the effective sample size, which here is from the formula for the
approximate variance of a log odds ratio in a proportional odds model.

136 orm

pg set to TRUE to print g-indexes

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

intercepts By default, intercepts are only printed if there are fewer than 10 of them. Other-
wise this is controlled by specifying intercepts=FALSE or TRUE.

title a character string title to be passed to prModFit. Default is constructed from the
name of the distribution family.

object an object created by orm

codes if TRUE, uses the integer codes 1, 2, . . . , k for the k-level response in computing
the predicted quantile

Value

The returned fit object of orm contains the following components in addition to the ones mentioned
under the optional arguments.

call calling expression

freq table of frequencies for Y in order of increasing Y

stats vector with the following elements: number of observations used in the fit, effec-
tive sample size ESS, number of unique Y values, median Y from among the ob-
servations used int he fit, maximum absolute value of first derivative of log like-
lihood, model likelihood ratio χ2, d.f., P -value, score χ2 statistic (if no initial
values given), P -value, Spearman’s ρ rank correlation between the linear pre-
dictor and Y, the Nagelkerke R2 index, R2 indexes computed by R2Measures,
the g-index, gr (the g-index on the odds ratio scale), and pdm (the mean abso-
lute difference between 0.5 and the predicted probability that Y ≥ the marginal
median). In the case of penalized estimation, the "Model L.R." is computed
without the penalty factor, and "d.f." is the effective d.f. from Gray’s (1992)
Equation 2.9. The P -value uses this corrected model L.R. χ2 and corrected
d.f. The score chi-square statistic uses first derivatives which contain penalty
components.

fail set to TRUE if convergence failed (and maxiter>1) or if a singular information
matrix is encountered

coefficients estimated parameters

var estimated variance-covariance matrix (inverse of information matrix) for the
middle intercept and regression coefficients. See lrm for details if penalization
is used.

effective.df.diagonal

see lrm

family the character string for family.

famfunctions a vector of expressions containing functions for the cumulative probability, in-
verse cumulative probability, derivative, second derivative, and derivative as a
function of only x

orm 137

trans a list of functions for the choice of family, with elements cumprob (the cumu-
lative probability distribution function), inverse (inverse of cumprob), deriv
(first derivative of cumprob), and deriv2 (second derivative of cumprob)

deviance -2 log likelihoods (counting penalty components) When an offset variable is
present, three deviances are computed: for intercept(s) only, for intercepts+offset,
and for intercepts+offset+predictors. When there is no offset variable, the vec-
tor contains deviances for the intercept(s)-only model and the model with inter-
cept(s) and predictors.

non.slopes number of intercepts in model

interceptRef the index of the middle (median) intercept used in computing the linear predictor
and var

penalty see lrm

penalty.matrix the penalty matrix actually used in the estimation

info.matrix a sparse matrix representation of type matrix.csr from the SparseM pack-
age. This allows the full information matrix with all intercepts to be stored
efficiently, and matrix operations using the Cholesky decomposition to be fast.
link{vcov.orm} uses this information to compute the covariance matrix for
intercepts other than the middle one.

Note

When creating ordinal levels for non-integer numeric Y, this function does not use the unique func-
tion because it was found to be non-reproducible across hardware platforms. Instead, intercepts are
mapped to integers obtained from rounding original Y levels after multiplying by 1e7 (by default).
When using the ExProb or Survival functions to compute exceedance probabilities or survival
curves, when the user wishes to obtain probabilities at select non-integer y values, the only way to
guarantee the correct mapping to intercepts is to request estimates at the "official" levels of Y stored
in the yunique object found in the fit object. Users may opt instead to replace original data with
e.g. 1e-7 * round(Y * 1e7) before model fitting.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com
For the Quantile function:
Qi Liu and Shengxin Tu
Department of Biostatistics, Vanderbilt University

References

Sall J: A monotone regression smoother based on ordinal cumulative logistic regression, 1991.

Le Cessie S, Van Houwelingen JC: Ridge estimators in logistic regression. Applied Statistics
41:191–201, 1992.

Verweij PJM, Van Houwelingen JC: Penalized likelihood in Cox regression. Stat in Med 13:2427–
2436, 1994.

138 orm

Gray RJ: Flexible methods for analyzing survival data using splines, with applications to breast
cancer prognosis. JASA 87:942–951, 1992.

Shao J: Linear model selection by cross-validation. JASA 88:486–494, 1993.

Verweij PJM, Van Houwelingen JC: Crossvalidation in survival analysis. Stat in Med 12:2305–
2314, 1993.

Harrell FE: Model uncertainty, penalization, and parsimony. Available from https://hbiostat.
org/talks/iscb98.pdf.

See Also

orm.fit, predict.orm, solve, ordESS, rms.trans, rms, polr, latex.orm, vcov.orm, num.intercepts,
residuals.orm, na.delete, na.detail.response, pentrace, rmsMisc, vif, predab.resample,
validate.orm, calibrate, Mean.orm, gIndex, prModFit

Examples

require(ggplot2)
set.seed(1)
n <- 100
y <- round(runif(n), 2)
x1 <- sample(c(-1,0,1), n, TRUE)
x2 <- sample(c(-1,0,1), n, TRUE)
f <- lrm(y ~ x1 + x2, eps=1e-5)
g <- orm(y ~ x1 + x2, eps=1e-5)
max(abs(coef(g) - coef(f)))
w <- vcov(g, intercepts='all') / vcov(f) - 1
max(abs(w))

set.seed(1)
n <- 300
x1 <- c(rep(0,150), rep(1,150))
y <- rnorm(n) + 3*x1
g <- orm(y ~ x1)
g
k <- coef(g)
i <- num.intercepts(g)
h <- orm(y ~ x1, family='probit')
ll <- orm(y ~ x1, family='loglog')
cll <- orm(y ~ x1, family='cloglog')
cau <- orm(y ~ x1, family='cauchit')
x <- 1:i
z <- list(logistic=list(x=x, y=coef(g)[1:i]),

probit =list(x=x, y=coef(h)[1:i]),
loglog =list(x=x, y=coef(ll)[1:i]),
cloglog =list(x=x, y=coef(cll)[1:i]))

labcurve(z, pl=TRUE, col=1:4, ylab='Intercept')

tapply(y, x1, mean)
m <- Mean(g)
m(w <- k[1] + k['x1']*c(0,1))
mh <- Mean(h)

https://hbiostat.org/talks/iscb98.pdf
https://hbiostat.org/talks/iscb98.pdf

orm 139

wh <- coef(h)[1] + coef(h)['x1']*c(0,1)
mh(wh)

qu <- Quantile(g)
Compare model estimated and empirical quantiles
cq <- function(y) {

cat(qu(.1, w), tapply(y, x1, quantile, probs=.1), '\n')
cat(qu(.5, w), tapply(y, x1, quantile, probs=.5), '\n')
cat(qu(.9, w), tapply(y, x1, quantile, probs=.9), '\n')
}

cq(y)

Try on log-normal model
g <- orm(exp(y) ~ x1)
g
k <- coef(g)
plot(k[1:i])
m <- Mean(g)
m(w <- k[1] + k['x1']*c(0,1))
tapply(exp(y), x1, mean)

qu <- Quantile(g)
cq(exp(y))

Compare predicted mean with ols for a continuous x
set.seed(3)
n <- 200
x1 <- rnorm(n)
y <- x1 + rnorm(n)
dd <- datadist(x1); options(datadist='dd')
f <- ols(y ~ x1)
g <- orm(y ~ x1, family='probit')
h <- orm(y ~ x1, family='logistic')
w <- orm(y ~ x1, family='cloglog')
mg <- Mean(g); mh <- Mean(h); mw <- Mean(w)
r <- rbind(ols = Predict(f, conf.int=FALSE),

probit = Predict(g, conf.int=FALSE, fun=mg),
logistic = Predict(h, conf.int=FALSE, fun=mh),
cloglog = Predict(w, conf.int=FALSE, fun=mw))

plot(r, groups='.set.')

Compare predicted 0.8 quantile with quantile regression
qu <- Quantile(g)
qu80 <- function(lp) qu(.8, lp)
f <- Rq(y ~ x1, tau=.8)
r <- rbind(probit = Predict(g, conf.int=FALSE, fun=qu80),

quantreg = Predict(f, conf.int=FALSE))
plot(r, groups='.set.')

Verify transformation invariance of ordinal regression
ga <- orm(exp(y) ~ x1, family='probit')
qua <- Quantile(ga)
qua80 <- function(lp) log(qua(.8, lp))

140 orm

r <- rbind(logprobit = Predict(ga, conf.int=FALSE, fun=qua80),
probit = Predict(g, conf.int=FALSE, fun=qu80))

plot(r, groups='.set.')

Try the same with quantile regression. Need to transform x1
fa <- Rq(exp(y) ~ rcs(x1,5), tau=.8)
r <- rbind(qr = Predict(f, conf.int=FALSE),

logqr = Predict(fa, conf.int=FALSE, fun=log))
plot(r, groups='.set.')

Make a plot of Pr(Y >= y) vs. a continuous covariate for 3 levels
of y and also against a binary covariate
set.seed(1)
n <- 1000
age <- rnorm(n, 50, 15)
sex <- sample(c('m', 'f'), 1000, TRUE)
Y <- runif(n)
dd <- datadist(age, sex); options(datadist='dd')
f <- orm(Y ~ age + sex)
Use ExProb function to derive an R function to compute
P(Y >= y | X)
ex <- ExProb(f)
ex1 <- function(x) ex(x, y=0.25)
ex2 <- function(x) ex(x, y=0.5)
ex3 <- function(x) ex(x, y=0.75)
p1 <- Predict(f, age, sex, fun=ex1)
p2 <- Predict(f, age, sex, fun=ex2)
p3 <- Predict(f, age, sex, fun=ex3)
p <- rbind('P(Y >= 0.25)' = p1,

'P(Y >= 0.5)' = p2,
'P(Y >= 0.75)' = p3)

ggplot(p)

Make plot with two curves (by sex) with y on the x-axis, and
estimated P(Y >= y | sex, age=median) on the y-axis
ys <- seq(min(Y), max(Y), length=100)
g <- function(sx) as.vector(ex(y=ys, Predict(f, sex=sx)$yhat)$prob)

d <- rbind(data.frame(sex='m', y=ys, p=g('m')),
data.frame(sex='f', y=ys, p=g('f')))

ggplot(d, aes(x=y, y=p, color=sex)) + geom_line() +
ylab(expression(P(Y >= y))) +
guides(color=guide_legend(title='Sex')) +
theme(legend.position='bottom')

options(datadist=NULL)
Not run:
Simulate power and type I error for orm logistic and probit regression
for likelihood ratio, Wald, and score chi-square tests, and compare
with t-test
require(rms)
set.seed(5)
nsim <- 2000

orm.fit 141

r <- NULL
for(beta in c(0, .4)) {

for(n in c(10, 50, 300)) {
cat('beta=', beta, ' n=', n, '\n\n')
plogistic <- pprobit <- plogistics <- pprobits <- plogisticw <-

pprobitw <- ptt <- numeric(nsim)
x <- c(rep(0, n/2), rep(1, n/2))
pb <- setPb(nsim, every=25, label=paste('beta=', beta, ' n=', n))
for(j in 1:nsim) {

pb(j)
y <- beta*x + rnorm(n)
tt <- t.test(y ~ x)
ptt[j] <- tt$p.value
f <- orm(y ~ x)
plogistic[j] <- f$stats['P']
plogistics[j] <- f$stats['Score P']
plogisticw[j] <- 1 - pchisq(coef(f)['x']^2 / vcov(f)[2,2], 1)
f <- orm(y ~ x, family'='probit')
pprobit[j] <- f$stats['P']
pprobits[j] <- f$stats['Score P']
pprobitw[j] <- 1 - pchisq(coef(f)['x']^2 / vcov(f)[2,2], 1)

}
if(beta == 0) plot(ecdf(plogistic))
r <- rbind(r, data.frame(beta = beta, n=n,

ttest = mean(ptt < 0.05),
logisticlr = mean(plogistic < 0.05),
logisticscore= mean(plogistics < 0.05),
logisticwald = mean(plogisticw < 0.05),
probit = mean(pprobit < 0.05),
probitscore = mean(pprobits < 0.05),
probitwald = mean(pprobitw < 0.05)))

}
}
print(r)
beta n ttest logisticlr logisticscore logisticwald probit probitscore probitwald
#1 0.0 10 0.0435 0.1060 0.0655 0.043 0.0920 0.0920 0.0820
#2 0.0 50 0.0515 0.0635 0.0615 0.060 0.0620 0.0620 0.0620
#3 0.0 300 0.0595 0.0595 0.0590 0.059 0.0605 0.0605 0.0605
#4 0.4 10 0.0755 0.1595 0.1070 0.074 0.1430 0.1430 0.1285
#5 0.4 50 0.2950 0.2960 0.2935 0.288 0.3120 0.3120 0.3120
#6 0.4 300 0.9240 0.9215 0.9205 0.920 0.9230 0.9230 0.9230

End(Not run)

orm.fit Ordinal Regression Model Fitter

Description

Fits ordinal cumulative probability models for continuous or ordinal response variables, efficiently
allowing for a large number of intercepts by capitalizing on the information matrix being sparse.

142 orm.fit

Five different distribution functions are implemented, with the default being the logistic (yield-
ing the proportional odds model). Penalized estimation and weights are also implemented, as in
‘[lrm.fit()]‘. The optimization method is Newton-Raphson with step-halving, or the Levenberg-
Marquart method. The latter has been shown to converge better when there are large offsets. Exe-
cution time is is fast even for hundreds of thousands of intercepts. The limiting factor is the number
of intercepts times the number of columns of x.

Usage

orm.fit(x=NULL, y, family=c("logistic","probit","loglog","cloglog","cauchit"),
offset, initial, opt_method=c('NR', 'LM'),
maxit=30L, eps=5e-4, gradtol=0.001, abstol=1e10,
minstepsize=0.01, tol=.Machine$double.eps, trace=FALSE,

penalty.matrix=NULL, weights=NULL, normwt=FALSE, scale=FALSE, mscore=FALSE,
inclpen=TRUE, y.precision = 7, compstats=TRUE, onlydata=FALSE, ...)

Arguments

x design matrix with no column for an intercept

y response vector, numeric, factor, or character. The ordering of levels is assumed
from factor(y).

family a character value specifying the distribution family, corresponding to logistic
(the default), Gaussian, Cauchy, Gumbel maximum (exp(−exp(−x)); extreme
value type I), and Gumbel minimum (1 − exp(−exp(x))) distributions. These
are the cumulative distribution functions assumed for Prob[Y ≥ y|X]. The
family argument can be an unquoted or a quoted string, e.g. family=loglog or
family="loglog". To use a built-in family, the string must be one of the follow-
ing corresponding to the previous list: logistic, probit, loglog,cloglog,
cauchit.

offset optional numeric vector containing an offset on the logit scale

initial vector of initial parameter estimates, beginning with the intercepts. If initial
is not specified, the function computes the overall score χ2 test for the global
null hypothesis of no regression. initial is padded to the right with zeros for
the regression coefficients, if needed. When censoring is present, initial can
also be a list with elements time and surv from the npsurv attribute of the y
element of a previous fit. This is useful when bootstrapping, for example.

opt_method set to "LM" to use Levenberg-Marquardt instead of the default Newton-Raphson

maxit maximum no. iterations (default=30).

eps difference in −2log likelihood for declaring convergence. Default is .0005.
This handles the case where the initial estimates are MLEs, to prevent endless
step-halving.

gradtol maximum absolute gradient before convergence can be declared. gradtol is
automatically scaled by n / 1000 since the gradient is proportional to the sample
size.

abstol maximum absolute change in parameter estimates from one iteration to the next
before convergence can be declared; by default has no effect

orm.fit 143

minstepsize used to specify when to abandon step-halving

tol Singularity criterion. Default is typically 2e-16

trace set to TRUE to print -2 log likelihood, step-halving fraction, change in -2 log
likelihood, maximum absolute value of first derivative, and max absolute change
in parameter estimates at each iteration.

penalty.matrix a self-contained ready-to-use penalty matrix - seelrm

weights a vector (same length as y) of possibly fractional case weights

normwt set to TRUE to scale weights so they sum to n, the length of y; useful for sample
surveys as opposed to the default of frequency weighting

mscore set to TRUE to compute the sparse score matrix and store its elements as a list
mscore

scale set to TRUE to subtract column means and divide by column standard deviations
of x before fitting, and to back-solve for the un-normalized covariance matrix
and regression coefficients. This can sometimes make the model converge for
very large sample sizes where for example spline or polynomial component vari-
ables create scaling problems leading to loss of precision when accumulating
sums of squares and crossproducts.

inclpen set to FALSE to not include the penalty matrix in the Hessian when the Hes-
sian is being computed on transformed x, vs. adding the penalty after back-
transforming. This should not matter.

y.precision When ‘y’ is numeric, values may need to be rounded to avoid unpredictable
behavior with unique() with floating-point numbers. Default is to 7 decimal
places.

compstats set to FALSE to prevent the calculation of the vector of model statistics

onlydata set to TRUE to return the data used in model fitting as a list, without fitting the
model

... ignored

Value

a list with the following components, not counting all the components produced by ‘orm.fit‘:

call calling expression

freq table of frequencies for y in order of increasing y

yunique vector of sorted unique values of y

stats vector with the following elements: number of observations used in the fit, num-
ber of unique y values, median y from among the observations used in the fit,
maximum absolute value of first derivative of log likelihood, model likelihood
ratio chi-square, d.f., P-value, score chi-square and its P-value, Spearman’s
ρ rank correlation between linear predictor and y (if there is no censoring),
Somers’ Dxy rank correlation (if there is no censoring or only right censor-
ing),) the Nagelkerke R2 index, other R2 measures, the g-index, gr (the g-index
on the ratio scale), and pdm (the mean absolute difference between 0.5 and the
estimated probability that y ≥ the marginal median). When penalty.matrix is
present, the χ2, d.f., and P-value are not corrected for the effective d.f.

144 pentrace

fail set to TRUE if convergence failed (and maxit>1)

coefficients estimated parameters

family, famfunctions
see orm

deviance -2 log likelihoods. When an offset variable is present, three deviances are com-
puted: for intercept(s) only, for intercepts+offset, and for intercepts+offset+predictors.
When there is no offset variable, the vector contains deviances for the intercept(s)-
only model and the model with intercept(s) and predictors.

lpe vector of per-observation likelihood probability elements. An observation’s con-
tribution to the log likelihood is the log of lpe.

non.slopes number of intercepts in model

interceptRef the index of the middle (median) intercept used in computing the linear predictor
and var

linear.predictors

the linear predictor using the first intercept

penalty.matrix see above

info.matrix see orm

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

orm, lrm, glm, gIndex, solve, recode2integer

Examples

#Fit an additive logistic model containing numeric predictors age,
#blood.pressure, and sex, assumed to be already properly coded and
#transformed
#
fit <- orm.fit(cbind(age,blood.pressure,sex), death)

pentrace Trace AIC and BIC vs. Penalty

pentrace 145

Description

For an ordinary unpenalized fit from lrm, orm, or ols and for a vector or list of penalties, fits a series
of logistic or linear models using penalized maximum likelihood estimation, and saves the effective
degrees of freedom, Akaike Information Criterion (AIC), Schwarz Bayesian Information Criterion
(BIC), and Hurvich and Tsai’s corrected AIC (AICc). Optionally pentrace can use the nlminb
function to solve for the optimum penalty factor or combination of factors penalizing different
kinds of terms in the model. The effective.df function prints the original and effective degrees
of freedom for a penalized fit or for an unpenalized fit and the best penalization determined from
a previous invocation of pentrace if method="grid" (the default). The effective d.f. is computed
separately for each class of terms in the model (e.g., interaction, nonlinear). A plot method exists
to plot the results, and a print method exists to print the most pertinent components. Both AIC
and BIC may be plotted if there is only one penalty factor type specified in penalty. Otherwise,
the first two types of penalty factors are plotted, showing only the AIC.

Usage

pentrace(fit, penalty, penalty.matrix,
method=c('grid','optimize'),
which=c('aic.c','aic','bic'), target.df=NULL,
fitter, pr=FALSE, tol=.Machine$double.eps,
keep.coef=FALSE, complex.more=TRUE, verbose=FALSE, maxit=20,
subset, noaddzero=FALSE, ...)

effective.df(fit, object)

S3 method for class 'pentrace'
print(x, ...)

S3 method for class 'pentrace'
plot(x, method=c('points','image'),

which=c('effective.df','aic','aic.c','bic'), pch=2, add=FALSE,
ylim, ...)

Arguments

fit a result from lrm, orm, or ols with x=TRUE, y=TRUE and without using penalty
or penalty.matrix (or optionally using penalization in the case of effective.df)

penalty can be a vector or a list. If it is a vector, all types of terms in the model will be pe-
nalized by the same amount, specified by elements in penalty, with a penalty
of zero automatically added. penalty can also be a list in the format docu-
mented in the lrm function, except that elements of the list can be vectors. The
expand.grid function is invoked by pentrace to generate all possible com-
binations of penalties. For example, specifying penalty=list(simple=1:2,
nonlinear=1:3) will generate 6 combinations to try, so that the analyst can at-
tempt to determine whether penalizing more complex terms in the model more
than the linear or categorical variable terms will be beneficial. If complex.more=TRUE,
it is assumed that the variables given in penalty are listed in order from less

146 pentrace

complex to more complex. With method="optimize" penalty specifies an ini-
tial guess for the penalty or penalties. If all term types are to be equally penal-
ized, penalty should be a single number, otherwise it should be a list containing
single numbers as elements, e.g., penalty=list(simple=1, nonlinear=2).
Experience has shown that the optimization algorithm is more likely to find a
reasonable solution when the starting value specified in penalty is too large
rather than too small.

object an object returned by pentrace. For effective.df, object can be omitted if
the fit was penalized.

penalty.matrix see lrm

method The default is method="grid" to print various indexes for all combinations of
penalty parameters given by the user. Specify method="optimize" to have
pentrace use nlminb to solve for the combination of penalty parameters that
gives the maximum value of the objective named in which, or, if target.df
is given, to find the combination that yields target.df effective total degrees
of freedom for the model. When target.df is specified, method is set to
"optimize" automatically. For plot.pentrace this parameter applies only if
more than one penalty term-type was used. The default is to use open trian-
gles whose sizes are proportional to the ranks of the AICs, plotting the first two
penalty factors respectively on the x and y axes. Use method="image" to plot
an image plot.

which the objective to maximize for either method. Default is "aic.c" (corrected
AIC). For plot.pentrace, which is a vector of names of criteria to show; de-
fault is to plot all 4 types, with effective d.f. in its own separate plot

target.df applies only to method="optimize". See method. target.df makes sense
mainly when a single type of penalty factor is specified.

fitter a fitting function. Default is lrm.fit (lm.pfit is always used for ols).
pr set to TRUE to print intermediate results
tol tolerance for declaring a matrix singular (see lrm.fit, solvet)
keep.coef set to TRUE to store matrix of regression coefficients for all the fits (correspond-

ing to increasing values of penalty) in object Coefficients in the returned
list. Rows correspond to penalties, columns to regression parameters.

complex.more By default if penalty is a list, combinations of penalties for which complex
terms are penalized less than less complex terms will be dropped after expand.grid
is invoked. Set complex.more=FALSE to allow more complex terms to be penal-
ized less. Currently this option is ignored for method="optimize".

verbose set to TRUE to print number of intercepts and sum of effective degrees of freedom
maxit maximum number of iterations to allow in a model fit (default=12). This is

passed to the appropriate fitter function with the correct argument name. In-
crease maxit if you had to when fitting the original unpenalized model.

subset a logical or integer vector specifying rows of the design and response matrices
to subset in fitting models. This is most useful for bootstrapping pentrace to
see if the best penalty can be estimated with little error so that variation due to
selecting the optimal penalty can be safely ignored when bootstrapping standard
errors of regression coefficients and measures of predictive accuracy. See an
example below.

pentrace 147

noaddzero set to TRUE to not add an unpenalized model to the list of models to fit

x a result from pentrace

pch used for method="points"

add set to TRUE to add to an existing plot. In that case, the effective d.f. plot is not
re-drawn, but the AIC/BIC plot is added to.

ylim 2-vector of y-axis limits for plots other than effective d.f.

... other arguments passed to plot, lines, or image, or to the fitter

Value

a list of class "pentrace" with elements penalty, df, objective, fit, var.adj, diag, results.all,
and optionally Coefficients. The first 6 elements correspond to the fit that had the best objec-
tive as named in the which argument, from the sequence of fits tried. Here fit is the fit object
from fitter which was a penalized fit, diag is the diagonal of the matrix used to compute the
effective d.f., and var.adj is Gray (1992) Equation 2.9, which is an improved covariance matrix
for the penalized beta. results.all is a data frame whose first few variables are the components
of penalty and whose other columns are df, aic, bic, aic.c. results.all thus contains a
summary of results for all fits attempted. When method="optimize", only two components are
returned: penalty and objective, and the object does not have a class.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

References

Gray RJ: Flexible methods for analyzing survival data using splines, with applications to breast
cancer prognosis. JASA 87:942–951, 1992.

Hurvich CM, Tsai, CL: Regression and time series model selection in small samples. Biometrika
76:297–307, 1989.

See Also

lrm, orm, ols, solvet, rmsMisc, image

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

148 plot.contrast.rms

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

f <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

p <- pentrace(f, seq(.2,1,by=.05))
plot(p)
p$diag # may learn something about fractional effective d.f.

for each original parameter
pentrace(f, list(simple=c(0,.2,.4), nonlinear=c(0,.2,.4,.8,1)))

Bootstrap pentrace 5 times, making a plot of corrected AIC plot with 5 reps
n <- nrow(f$x)
plot(pentrace(f, seq(.2,1,by=.05)), which='aic.c',

col=1, ylim=c(30,120)) #original in black
for(j in 1:5)

plot(pentrace(f, seq(.2,1,by=.05), subset=sample(n,n,TRUE)),
which='aic.c', col=j+1, add=TRUE)

Find penalty giving optimum corrected AIC. Initial guess is 1.0
Not implemented yet
pentrace(f, 1, method='optimize')

Find penalty reducing total regression d.f. effectively to 5
pentrace(f, 1, target.df=5)

Re-fit with penalty giving best aic.c without differential penalization
f <- update(f, penalty=p$penalty)
effective.df(f)

plot.contrast.rms plot.contrast.rms

Description

Plot Bayesian Contrast Posterior Densities

Usage

S3 method for class 'contrast.rms'
plot(
x,
bivar = FALSE,
bivarmethod = c("ellipse", "kernel"),

plot.Predict 149

prob = 0.95,
which = c("both", "diff", "ind"),
nrow = NULL,
ncol = NULL,
...

)

Arguments

x the result of contrast.rms

bivar set to TRUE to plot 2-d posterior density contour

bivarmethod see rmsb::pdensityContour()

prob posterior coverage probability for HPD interval or 2-d contour

which applies when plotting the result of contrast(..., fun=), defaulting to show-
ing the posterior density of both estimates plus their difference. Set to "ind"
to only show the two individual densities or "diff" to only show the posterior
density for the differences.

nrow for ggplot2::facet_wrap()

ncol likewise

... unused

Details

If there are exactly two contrasts and bivar=TRUE plots an elliptical or kernal (based on bivarmethod
posterior density contour with probability prob). Otherwise plots a series of posterior densities of
contrasts along with HPD intervals, posterior means, and medians. When the result being plotted
comes from contrast with fun= specified, both the two individual estimates and their difference
are plotted.

Value

ggplot2 object

Author(s)

Frank Harrell

plot.Predict Plot Effects of Variables Estimated by a Regression Model Fit

150 plot.Predict

Description

Uses lattice graphics to plot the effect of one or two predictors on the linear predictor or X beta
scale, or on some transformation of that scale. The first argument specifies the result of the Predict
function. The predictor is always plotted in its original coding. plot.Predict uses the xYplot
function unless formula is omitted and the x-axis variable is a factor, in which case it reverses the
x- and y-axes and uses the Dotplot function.

If data is given, a rug plot is drawn showing the location/density of data values for the x-axis vari-
able. If there is a groups (superposition) variable that generated separate curves, the data density
specific to each class of points is shown. This assumes that the second variable was a factor variable.
The rug plots are drawn by scat1d. When the same predictor is used on all x-axes, and multiple
panels are drawn, you can use subdata to specify an expression to subset according to other criteria
in addition.

To plot effects instead of estimates (e.g., treatment differences as a function of interacting factors)
see contrast.rms and summary.rms.

pantext creates a lattice panel function for including text such as that produced by print.anova.rms
inside a panel or in a base graphic.

Usage

S3 method for class 'Predict'
plot(x, formula, groups=NULL,

cond=NULL, varypred=FALSE, subset,
xlim, ylim, xlab, ylab,
data=NULL, subdata, anova=NULL, pval=FALSE, cex.anova=.85,
col.fill=gray(seq(.825, .55, length=5)),
adj.subtitle, cex.adj, cex.axis, perim=NULL, digits=4, nlevels=3,
nlines=FALSE, addpanel, scat1d.opts=list(frac=0.025, lwd=0.3),
type=NULL, yscale=NULL, scaletrans=function(z) z, ...)

pantext(object, x, y, cex=.5, adj=0, fontfamily="Courier", lattice=TRUE)

Arguments

x a data frame created by Predict, or for pantext the x-coordinate for text

formula the right hand side of a lattice formula reference variables in data frame x.
You may not specify formula if you varied multiple predictors separately when
calling Predict. Otherwise, when formula is not given, plot.Predict con-
structs one from information in x.

groups an optional name of one of the variables in x that is to be used as a grouping
(superpositioning) variable. Note that groups does not contain the groups data
as is customary in lattice; it is only a single character string specifying the
name of the grouping variable.

cond when plotting effects of different predictors, cond is a character string that spec-
ifies a single variable name in x that can be used to form panels. Only applies if
using rbind to combine several Predict results.

plot.Predict 151

varypred set to TRUE if x is the result of passing multiple Predict results, that repre-
sent different predictors, to rbind.Predict. This will cause the .set. variable
created by rbind to be copied to the .predictor. variable.

subset a subsetting expression for restricting the rows of x that are used in plotting. For
example, predictions may have been requested for males and females but one
wants to plot only females.

xlim This parameter is seldom used, as limits are usually controlled with Predict.
One reason to use xlim is to plot a factor variable on the x-axis that was cre-
ated with the cut2 function with the levels.mean option, with val.lev=TRUE
specified to plot.Predict. In this case you may want the axis to have the range
of the original variable values given to cut2 rather than the range of the means
within quantile groups.

ylim Range for plotting on response variable axis. Computed by default.

xlab Label for x-axis. Default is one given to asis, rcs, etc., which may have been
the "label" attribute of the variable.

ylab Label for y-axis. If fun is not given, default is "log Odds" for lrm, "log
Relative Hazard" for cph, name of the response variable for ols, TRUE or
log(TRUE) for psm, or "X * Beta" otherwise.

data a data frame containing the original raw data on which the regression model
were based, or at least containing the x-axis and grouping variable. If data
is present and contains the needed variables, the original data are added to the
graph in the form of a rug plot using scat1d.

subdata if data is specified, an expression to be evaluated in the data environment that
evaluates to a logical vector specifying which observations in data to keep. This
will be intersected with the criterion for the groups variable. Example: if condi-
tioning on two paneling variables using |a*b you can specify subdata=b==levels(b)[which.packet()[2]],
where the 2 comes from the fact that b was listed second after the vertical bar
(this assumes b is a factor in data. Another example: subdata=sex==c('male','female')[current.row()].

anova an object returned by anova.rms. If anova is specified, the overall test of asso-
ciation for predictor plotted is added as text to each panel, located at the spot at
which the panel is most empty unless there is significant empty space at the top
or bottom of the panel; these areas are given preference.

pval specify pval=TRUE for anova to include not only the test statistic but also the
P-value

cex.anova character size for the test statistic printed on the panel

col.fill a vector of colors used to fill confidence bands for successive superposed groups.
Default is inceasingly dark gray scale.

adj.subtitle Set to FALSE to suppress subtitling the graph with the list of settings of non-
graphed adjustment values.

cex.adj cex parameter for size of adjustment settings in subtitles. Default is 0.75 times
par("cex").

cex.axis cex parameter for x-axis tick labels

perim perim specifies a function having two arguments. The first is the vector of val-
ues of the first variable that is about to be plotted on the x-axis. The second

152 plot.Predict

argument is the single value of the variable representing different curves, for the
current curve being plotted. The function’s returned value must be a logical vec-
tor whose length is the same as that of the first argument, with values TRUE if the
corresponding point should be plotted for the current curve, FALSE otherwise.
See one of the latter examples. If a predictor is not specified to plot, NULL is
passed as the second argument to perim, although it makes little sense to use
perim when the same perim is used for multiple predictors.

digits Controls how numeric variables used for panel labels are formatted. The default
is 4 significant digits.

nlevels when groups and formula are not specified, if any panel variable has nlevels
or fewer values, that variable is converted to a groups (superpositioning) vari-
able. Set nlevels=0 to prevent this behavior. For other situations, a numeric
x-axis variable with nlevels or fewer unique values will cause a dot plot to be
drawn instead of an x-y plot.

nlines If formula is given, you can set nlines to TRUE to convert the x-axis variable to
a factor and then to an integer. Points are plotted at integer values on the x-axis
but labeled with category levels. Points are connected by lines.

addpanel an additional panel function to call along with panel functions used for xYplot
and Dotplot displays

scat1d.opts a list containing named elements that specifies parameters to scat1d when data
is given. The col parameter is usually derived from other plotting information
and not specified by the user.

type a value ("l","p","b") to override default choices related to showing or con-
necting points. Especially useful for discrete x coordinate variables.

yscale a lattice scale list for the y-axis to be added to what is automatically gener-
ated for the x-axis. Example: yscale=list(at=c(.005,.01,.05),labels=format(c(.005,.01,.05))).
See xyplot

scaletrans a function that operates on the scale object created by plot.Predict to pro-
duce a modified scale object that is passed to the lattice graphics function. This
is useful for adding other scales options or for changing the x-axis limits for
one predictor.

... extra arguments to pass to xYplot or Dotplot. Some useful ones are label.curves
and abline. Set label.curves to FALSE to suppress labeling of separate curves.
Default is TRUE, which causes labcurve to be invoked to place labels at posi-
tions where the curves are most separated, labeling each curve with the full
curve label. Set label.curves to a list to specify options to labcurve,
e.g., label.curves= list(method="arrow",cex=.8). These option names
may be abbreviated in the usual way arguments are abbreviated. Use for ex-
ample label.curves=list(keys=letters[1:5]) to draw single lower case
letters on 5 curves where they are most separated, and automatically position
a legend in the most empty part of the plot. The col, lty, and lwd param-
eters are passed automatically to labcurve although they may be overridden
here. It is also useful to use . . . to pass lattice graphics parameters, e.g.
par.settings=list(axis.text=list(cex=1.2), par.ylab.text=list(col='blue',cex=.9),par.xlab.text=list(cex=1)).

object an object having a print method

plot.Predict 153

y y-coordinate for placing text in a lattice panel or on a base graphics plot

cex character expansion size for pantext

adj text justification. Default is left justified.

fontfamily font family for pantext. Default is "Courier" which will line up columns of a
table.

lattice set to FALSE to use text instead of ltext in the function generated by pantext,
to use base graphics

Details

When a groups (superpositioning) variable was used, you can issue the command Key(...) after
printing the result of plot.Predict, to draw a key for the groups.

Value

a lattice object ready to print for rendering.

Note

If plotting the effects of all predictors you can reorder the panels using for example p <- Predict(fit);
p$.predictor. <-factor(p$.predictor., v) where v is a vector of predictor names specified in
the desired order.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Fox J, Hong J (2009): Effect displays in R for multinomial and proportional-odds logit models:
Extensions to the effects package. J Stat Software 32 No. 1.

See Also

Predict, ggplot.Predict, link{plotp.Predict}, rbind.Predict, datadist, predictrms, anova.rms,
contrast.rms, summary.rms, rms, rmsMisc, labcurve, scat1d, xYplot, Overview

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'

154 plot.Predict

label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

an <- anova(fit)
Plot effects of all 4 predictors with test statistics from anova, and P
plot(Predict(fit), anova=an, pval=TRUE)
plot(Predict(fit), data=llist(blood.pressure,age))

rug plot for two of the predictors

p <- Predict(fit, name=c('age','cholesterol')) # Make 2 plots
plot(p)

p <- Predict(fit, age=seq(20,80,length=100), sex, conf.int=FALSE)
Plot relationship between age and log
odds, separate curve for each sex,

plot(p, subset=sex=='female' | age > 30)
No confidence interval, suppress estimates for males <= 30

p <- Predict(fit, age, sex)
plot(p, label.curves=FALSE, data=llist(age,sex))

use label.curves=list(keys=c('a','b'))'
to use 1-letter abbreviations
data= allows rug plots (1-dimensional scatterplots)
on each sex's curve, with sex-
specific density of age
If data were in data frame could have used that

p <- Predict(fit, age=seq(20,80,length=100), sex='male', fun=plogis)
works if datadist not used

plot(p, ylab=expression(hat(P)))
plot predicted probability in place of log odds

per <- function(x, y) x >= 30
plot(p, perim=per) # suppress output for age < 30 but leave scale alone

Take charge of the plot setup by specifying a lattice formula
p <- Predict(fit, age, blood.pressure=c(120,140,160),

cholesterol=c(180,200,215), sex)
plot(p, ~ age | blood.pressure*cholesterol, subset=sex=='male')
plot(p, ~ age | cholesterol*blood.pressure, subset=sex=='female')
plot(p, ~ blood.pressure|cholesterol*round(age,-1), subset=sex=='male')

plot.Predict 155

plot(p)

Plot the age effect as an odds ratio
comparing the age shown on the x-axis to age=30 years

ddist$limits$age[2] <- 30 # make 30 the reference value for age
Could also do: ddist$limits["Adjust to","age"] <- 30
fit <- update(fit) # make new reference value take effect
p <- Predict(fit, age, ref.zero=TRUE, fun=exp)
plot(p, ylab='Age=x:Age=30 Odds Ratio',

abline=list(list(h=1, lty=2, col=2), list(v=30, lty=2, col=2)))

Compute predictions for three predictors, with superpositioning or
conditioning on sex, combined into one graph

p1 <- Predict(fit, age, sex)
p2 <- Predict(fit, cholesterol, sex)
p3 <- Predict(fit, blood.pressure, sex)
p <- rbind(age=p1, cholesterol=p2, blood.pressure=p3)
plot(p, groups='sex', varypred=TRUE, adj.subtitle=FALSE)
plot(p, cond='sex', varypred=TRUE, adj.subtitle=FALSE)

Not run:
For males at the median blood pressure and cholesterol, plot 3 types
of confidence intervals for the probability on one plot, for varying age
ages <- seq(20, 80, length=100)
p1 <- Predict(fit, age=ages, sex='male', fun=plogis) # standard pointwise
p2 <- Predict(fit, age=ages, sex='male', fun=plogis,

conf.type='simultaneous') # simultaneous
p3 <- Predict(fit, age=c(60,65,70), sex='male', fun=plogis,

conf.type='simultaneous') # simultaneous 3 pts
The previous only adjusts for a multiplicity of 3 points instead of 100
f <- update(fit, x=TRUE, y=TRUE)
g <- bootcov(f, B=500, coef.reps=TRUE)
p4 <- Predict(g, age=ages, sex='male', fun=plogis) # bootstrap percentile
p <- rbind(Pointwise=p1, 'Simultaneous 100 ages'=p2,

'Simultaneous 3 ages'=p3, 'Bootstrap nonparametric'=p4)
xYplot(Cbind(yhat, lower, upper) ~ age, groups=.set.,

data=p, type='l', method='bands', label.curve=list(keys='lines'))

End(Not run)

Plots for a parametric survival model
require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n,

rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
t <- -log(runif(n))/h

156 plot.Predict

label(t) <- 'Follow-up Time'
e <- ifelse(t<=cens,1,0)
t <- pmin(t, cens)
units(t) <- "Year"
ddist <- datadist(age, sex)
Srv <- Surv(t,e)

Fit log-normal survival model and plot median survival time vs. age
f <- psm(Srv ~ rcs(age), dist='lognormal')
med <- Quantile(f) # Creates function to compute quantiles

(median by default)
p <- Predict(f, age, fun=function(x) med(lp=x))
plot(p, ylab="Median Survival Time")
Note: confidence intervals from this method are approximate since
they don't take into account estimation of scale parameter

Fit an ols model to log(y) and plot the relationship between x1
and the predicted mean(y) on the original scale without assuming
normality of residuals; use the smearing estimator
See help file for rbind.Predict for a method of showing two
types of confidence intervals simultaneously.
set.seed(1)
x1 <- runif(300)
x2 <- runif(300)
ddist <- datadist(x1,x2)
y <- exp(x1+x2-1+rnorm(300))
f <- ols(log(y) ~ pol(x1,2)+x2)
r <- resid(f)
smean <- function(yhat)smearingEst(yhat, exp, res, statistic='mean')
formals(smean) <- list(yhat=numeric(0), res=r[!is.na(r)])
#smean$res <- r[!is.na(r)] # define default res argument to function
plot(Predict(f, x1, fun=smean), ylab='Predicted Mean on y-scale')

Make an 'interaction plot', forcing the x-axis variable to be
plotted at integer values but labeled with category levels
n <- 100
set.seed(1)
gender <- c(rep('male', n), rep('female',n))
m <- sample(c('a','b'), 2*n, TRUE)
d <- datadist(gender, m); options(datadist='d')
anxiety <- runif(2*n) + .2*(gender=='female') + .4*(gender=='female' & m=='b')
tapply(anxiety, llist(gender,m), mean)
f <- ols(anxiety ~ gender*m)
p <- Predict(f, gender, m)
plot(p) # horizontal dot chart; usually preferred for categorical predictors
Key(.5, .5)
plot(p, ~gender, groups='m', nlines=TRUE)
plot(p, ~m, groups='gender', nlines=TRUE)
plot(p, ~gender|m, nlines=TRUE)

options(datadist=NULL)

plot.rexVar 157

Not run:
Example in which separate curves are shown for 4 income values
For each curve the estimated percentage of voters voting for
the democratic party is plotted against the percent of voters
who graduated from college. Data are county-level percents.

incomes <- seq(22900, 32800, length=4)
equally spaced to outer quintiles
p <- Predict(f, college, income=incomes, conf.int=FALSE)
plot(p, xlim=c(0,35), ylim=c(30,55))

Erase end portions of each curve where there are fewer than 10 counties having
percent of college graduates to the left of the x-coordinate being plotted,
for the subset of counties having median family income with 1650
of the target income for the curve

show.pts <- function(college.pts, income.pt) {
s <- abs(income - income.pt) < 1650 #assumes income known to top frame
x <- college[s]
x <- sort(x[!is.na(x)])
n <- length(x)
low <- x[10]; high <- x[n-9]
college.pts >= low & college.pts <= high

}

plot(p, xlim=c(0,35), ylim=c(30,55), perim=show.pts)

Rename variables for better plotting of a long list of predictors
f <- ...
p <- Predict(f)
re <- c(trt='treatment', diabet='diabetes', sbp='systolic blood pressure')

for(n in names(re)) {
names(p)[names(p)==n] <- re[n]
p$.predictor.[p$.predictor.==n] <- re[n]
}

plot(p)

End(Not run)

plot.rexVar plot.rexVar

Description

Plot rexVar Result

158 plot.rexVar

Usage

S3 method for class 'rexVar'
plot(
x,
xlab = "Relative Explained Variation",
xlim = NULL,
pch = 16,
sort = c("descending", "ascending", "none"),
margin = FALSE,
height = NULL,
width = NULL,
...

)

Arguments

x a vector or matrix created by rexVar

xlab x-axis label

xlim x-axis limits; defaults to range of all values (limits and point estimates)

pch plotting symbol for dot

sort defaults to sorted predictors in descending order of relative explained variable.
Can set to ascending or none.

margin set to TRUE to show the REV values in the right margin if using base graphics

height optional height in pixels for plotly graph

width likewise optional width

... arguments passed to dotchart2 or dotchartpl

Details

Makes a dot chart displaying the results of rexVar. Base graphics are used unless options(grType='plotly')
is in effect, in which case a plotly graphic is produced with hovertext

Value

plotly graphics object if using plotly

Author(s)

Frank Harrell

plot.xmean.ordinaly 159

plot.xmean.ordinaly Plot Mean X vs. Ordinal Y

Description

Separately for each predictor variable X in a formula, plots the mean of X vs. levels of Y . Then
under the proportional odds assumption, the expected value of the predictor for each Y value is
also plotted (as a dotted line). This plot is useful for assessing the ordinality assumption for Y
separately for each X , and for assessing the proportional odds assumption in a simple univariable
way. If several predictors do not distinguish adjacent categories of Y , those levels may need to be
pooled. This display assumes that each predictor is linearly related to the log odds of each event in
the proportional odds model. There is also an option to plot the expected means assuming a forward
continuation ratio model.

Usage

S3 method for class 'xmean.ordinaly'
plot(x, data, subset, na.action, subn=TRUE,

cr=FALSE, topcats=1, cex.points=.75, ...)

Arguments

x an S formula. Response variable is treated as ordinal. For categorical predictors,
a binary version of the variable is substituted, specifying whether or not the
variable equals the modal category. Interactions or non-linear effects are not
allowed.

data a data frame or frame number

subset vector of subscripts or logical vector describing subset of data to analyze

na.action defaults to na.keep so all NAs are initially retained. Then NAs are deleted only
for each predictor currently being plotted. Specify na.action=na.delete to
remove observations that are missing on any of the predictors (or the response).

subn set to FALSE to suppress a left bottom subtitle specifying the sample size used in
constructing each plot

cr set to TRUE to plot expected values by levels of the response, assuming a forward
continuation ratio model holds. The function is fairly slow when this option is
specified.

topcats When a predictor is categorical, by default only the proportion of observations
in the overall most frequent category will be plotted against response variable
strata. Specify a higher value of topcats to make separate plots for the pro-
portion in the k most frequent predictor categories, where k is min(ncat-1,
topcats) and ncat is the number of unique values of the predictor.

cex.points if cr is TRUE, specifies the size of the "C" that is plotted. Default is 0.75.

... other arguments passed to plot and lines

160 plot.xmean.ordinaly

Side Effects

plots

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

References

Harrell FE et al. (1998): Development of a clinical prediction model for an ordinal outcome. Stat
in Med 17:909–44.

See Also

lrm, residuals.lrm, cr.setup, summary.formula, biVar.

Examples

Simulate data from a population proportional odds model
set.seed(1)
n <- 400
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
region <- factor(sample(c('north','south','east','west'), n, replace=TRUE))
L <- .2*(age-50) + .1*(blood.pressure-120)
p12 <- plogis(L) # Pr(Y>=1)
p2 <- plogis(L-1) # Pr(Y=2)
p <- cbind(1-p12, p12-p2, p2) # individual class probabilites
Cumulative probabilities:
cp <- matrix(cumsum(t(p)) - rep(0:(n-1), rep(3,n)), byrow=TRUE, ncol=3)
y <- (cp < runif(n)) %*% rep(1,3)
Thanks to Dave Krantz <dhk@paradox.psych.columbia.edu> for this trick

par(mfrow=c(2,2))
plot.xmean.ordinaly(y ~ age + blood.pressure + region, cr=TRUE, topcats=2)
par(mfrow=c(1,1))
Note that for unimportant predictors we don't care very much about the
shapes of these plots. Use the Hmisc chiSquare function to compute
Pearson chi-square statistics to rank the variables by unadjusted
importance without assuming any ordering of the response:
chiSquare(y ~ age + blood.pressure + region, g=3)
chiSquare(y ~ age + blood.pressure + region, g=5)

plotIntercepts 161

plotIntercepts Plot Intercepts

Description

Plots the step function corresponding to the intercepts in a orm or lrm model. This can be thought
of as the link function of the covariate-adjusted empirical cumulative distribution function (actually
1 - ECDF). It is also related to q-q plots. For example, if a probit link function is an appropriate
choice, and the residuals actually had a normal distribution (not needed by the semiparametric
ordinal model), the step function of the intercepts would form a straight line.

Usage

plotIntercepts(fit, dots = FALSE, logt = FALSE)

Arguments

fit an orm or lrm fit object, usually with a numeric dependent variable having many
levels

dots set to TRUE to show solid dots at the intecept values

logt set to TRUE to use a log scale for the x-axis

Value

ggplot2 object

Author(s)

Frank Harrell

Examples

Not run:
f <- orm(y ~ x1 + x2 + x3)
plotIntercepts(f)

End(Not run)

162 plotp.Predict

plotp.Predict Plot Effects of Variables Estimated by a Regression Model Fit Using
plotly

Description

Uses plotly graphics (without using ggplot2) to plot the effect of one or two predictors on the
linear predictor or X beta scale, or on some transformation of that scale. The first argument specifies
the result of the Predict function. The predictor is always plotted in its original coding. Hover
text shows point estimates, confidence intervals, and on the leftmost x-point, adjustment variable
settings.

If Predict was run with no variable settings, so that each predictor is varied one at a time, the
result of plotp.Predict is a list with two elements. The first, named Continuous, is a plotly
object containing a single graphic with all the continuous predictors varying. The second, named
Categorical, is a plotly object containing a single graphic with all the categorical predictors
varying. If there are no categorical predictors, the value returned by by plotp.Predict is a single
plotly object and not a list of objects.

If rdata is given, a spike histogram is drawn showing the location/density of data values for the
x-axis variable. If there is a superposition variable that generated separate curves, the data density
specific to each class of points is shown. The histograms are drawn by histSpikeg.

To plot effects instead of estimates (e.g., treatment differences as a function of interacting factors)
see contrast.rms and summary.rms.

Unlike ggplot.Predict, plotp.Predict does not handle groups, anova, or perim arguments.

Usage

S3 method for class 'Predict'
plotp(data, subset, xlim, ylim, xlab, ylab,

rdata=NULL, nlevels=3, vnames=c('labels','names'),
histSpike.opts=list(frac=function(f) 0.01 +

0.02 * sqrt(f - 1)/sqrt(max(f, 2) - 1), side=1, nint=100),
ncols=3, width=800, ...)

Arguments

data a data frame created by Predict

subset a subsetting expression for restricting the rows of data that are used in plotting.
For example, predictions may have been requested for males and females but
one wants to plot only females.

xlim ignored unless predictors were specified to Predict. Specifies the x-axis limits
of the single plot produced.

ylim Range for plotting on response variable axis. Computed by default and includes
the confidence limits.

plotp.Predict 163

xlab Label for x-axis when a single plot is made, i.e., when a predictor is specified
to Predict. Default is one given to asis, rcs, etc., which may have been the
"label" attribute of the variable.

ylab Label for y-axis. If fun is not given, default is "log Odds" for lrm, "log
Relative Hazard" for cph, name of the response variable for ols, TRUE or
log(TRUE) for psm, or "X * Beta" otherwise. Specify ylab=NULL to omit y-axis
labels.

rdata a data frame containing the original raw data on which the regression model
were based, or at least containing the x-axis and grouping variable. If rdata
is present and contains the needed variables, the original data are added to the
graph in the form of a spike histogram using histSpikeg in the Hmisc package.

nlevels A non-numeric x-axis variable with nlevels or fewer unique values will cause
a horizontal dot plot to be drawn instead of an x-y plot.

vnames applies to the case where multiple plots are produced separately by predictor.
Set to 'names' to use variable names instead of labels for these small plots.

histSpike.opts a list containing named elements that specifies parameters to histSpikeg when
rdata is given. The col parameter is usually derived from other plotting infor-
mation and not specified by the user.

ncols number of columns of plots to use when plotting multiple continuous predictors

width width in pixels for plotly graphics

... ignored

Value

a plotly object or a list containing two elements, each one a plotly object

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Fox J, Hong J (2009): Effect displays in R for multinomial and proportional-odds logit models:
Extensions to the effects package. J Stat Software 32 No. 1.

See Also

Predict, rbind.Predict, datadist, predictrms, contrast.rms, summary.rms, rms, rmsMisc,
plot.Predict, ggplot.Predict, histSpikeg, Overview

Examples

Not run:
n <- 350 # define sample size
set.seed(17) # so can reproduce the results

164 plotp.Predict

age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) +
.01 * (blood.pressure - 120)

Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)),
x=TRUE, y=TRUE)

p <- plotp(Predict(fit))
p$Continuous
p$Categorical
When using Rmarkdown html notebook, best to use
prList(p) to render the two objects
plotp(Predict(fit), rdata=llist(blood.pressure, age))$Continuous
spike histogram plot for two of the predictors

p <- Predict(fit, name=c('age','cholesterol')) # Make 2 plots
plotp(p)

p <- Predict(fit, age, sex)
plotp(p, rdata=llist(age,sex))
rdata= allows rug plots (1-dimensional scatterplots)
on each sex's curve, with sex-
specific density of age
If data were in data frame could have used that
p <- Predict(fit, age=seq(20,80,length=100), sex='male', fun=plogis)
works if datadist not used
plotp(p, ylab='P')
plot predicted probability in place of log odds

Compute predictions for three predictors, with superpositioning or
conditioning on sex, combined into one graph

p1 <- Predict(fit, age, sex)
p2 <- Predict(fit, cholesterol, sex)
p3 <- Predict(fit, blood.pressure, sex)
p <- rbind(age=p1, cholesterol=p2, blood.pressure=p3)

poma 165

plotp(p, ncols=2, rdata=llist(age, cholesterol, sex))

End(Not run)

poma Examine proportional odds and parallelism assumptions of ‘orm‘ and
‘lrm‘ model fits.

Description

Based on codes and strategies from Frank Harrell’s canonical ‘Regression Modeling Strategies‘ text

Usage

poma(mod.orm, cutval, minfreq = 15, ...)

Arguments

mod.orm Model fit of class ‘orm‘ or ‘lrm‘. For ‘fit.mult.impute‘ objects, ‘poma‘ will refit
model on a singly-imputed data-set

cutval Numeric vector; sequence of observed values to cut outcome

minfreq Numeric vector; an ‘impactPO‘ argument which specifies the minimum sample
size to allow for the least frequent category of the dependent variable.

... parameters to pass to ‘impactPO‘ function such as ‘newdata‘, ‘nonpo‘, and ‘B‘.

Details

Strategy 1: Compare PO model fit with models that relax the PO assumption (for discrete response
variable)
Strategy 2: Apply different link functions to Prob of Binary Ys (defined by cutval). Regress trans-
formed outcome on combined X and assess constancy of slopes (betas) across cut-points
Strategy 3: Generate score residual plot for each predictor (for response variable with <10 unique
levels)
Strategy 4: Assess parallelism of link function transformed inverse CDFs curves for different XBeta
levels (for response variables with >=10 unique levels)

Author(s)

Yong Hao Pua <puayonghao@gmail.com>

See Also

Harrell FE. *Regression Modeling Strategies: with applications to linear models, logistic and ordi-
nal regression, and survival analysis.* New York: Springer Science, LLC, 2015.
Harrell FE. Statistical Thinking - Assessing the Proportional Odds Assumption and Its Impact.
https://www.fharrell.com/post/impactpo/. Published March 9, 2022. Accessed January 13, 2023.
[rms::impactPO()]

166 pphsm

Examples

Not run:
orm model (response variable has fewer than 10 unique levels)
mod.orm <- orm(carb ~ cyl + hp , x = TRUE, y = TRUE, data = mtcars)
poma(mod.orm)

runs rms::impactPO when its args are supplied
More examples: (https://yhpua.github.io/poma/)
d <- expand.grid(hp = c(90, 180), vs = c(0, 1))
mod.orm <- orm(cyl ~ vs + hp , x = TRUE, y = TRUE, data = mtcars)
poma(mod.orm, newdata = d)

orm model (response variable has >=10 unique levels)
mod.orm <- orm(mpg ~ cyl + hp , x=TRUE, y=TRUE, data = mtcars)
poma(mod.orm)

orm model using imputation
dat <- mtcars
introduce NAs
dat[sample(rownames(dat), 10), "cyl"] <- NA
im <- aregImpute(~ cyl + wt + mpg + am, data = dat)
aa <- fit.mult.impute(mpg ~ cyl + wt , xtrans = im, data = dat, fitter = orm)
poma(aa)

End(Not run)

pphsm Parametric Proportional Hazards form of AFT Models

Description

Translates an accelerated failure time (AFT) model fitted by psm to proportional hazards form, if
the fitted model was a Weibull or exponential model (extreme value distribution with "log" link).

Usage

pphsm(fit)
S3 method for class 'pphsm'
print(x, digits=max(options()$digits - 4, 3),
correlation=TRUE, ...)
S3 method for class 'pphsm'
vcov(object, ...)

predab.resample 167

Arguments

fit fit object created by psm

x result of psm

digits how many significant digits are to be used for the returned value

correlation set to FALSE to suppress printing of correlation matrix of parameter estimates

... ignored

object a pphsm object

Value

a new fit object with transformed parameter estimates

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

psm, summary.rms, print.pphsm

Examples

require(survival)
set.seed(1)
S <- Surv(runif(100))
x <- runif(100)
dd <- datadist(x); options(datadist='dd')
f <- psm(S ~ x, dist="exponential")
summary(f) # effects on log(T) scale
f.ph <- pphsm(f)
Not run: summary(f.ph) # effects on hazard ratio scale
options(datadist=NULL)

predab.resample Predictive Ability using Resampling

Description

predab.resample is a general-purpose function that is used by functions for specific models. It
computes estimates of optimism of, and bias-corrected estimates of a vector of indexes of predictive
accuracy, for a model with a specified design matrix, with or without fast backward step-down of
predictors. If bw=TRUE, the design matrix x must have been created by ols, lrm, or cph. If bw=TRUE,

168 predab.resample

predab.resample stores as the kept attribute a logical matrix encoding which factors were selected
at each repetition.

Unless conf.int is FALSE or 0, the function computes approximate bootstrap confidence intervals
for overfitting-corrected predictive performance measures using the method of Harrell (2025) de-
scribed and tested at https://www.fharrell.com/post/bootcal/ and inspired by Noma et al
(2021).

Usage

predab.resample(fit.orig, fit, measure,
method=c("boot","crossvalidation",".632","randomization"),
bw=FALSE, B=50, conf.int=0.95, pr=FALSE, prmodsel=TRUE,
rule="aic", type="residual", sls=.05, aics=0,
tol=.Machine$double.eps, force=NULL, estimates=TRUE,
non.slopes.in.x=TRUE, kint=1,
cluster, subset, group=NULL,
allow.varying.intercepts=FALSE, debug=FALSE, saveraw=FALSE, ...)

Arguments

fit.orig object containing the original full-sample fit, with the x=TRUE and y=TRUE op-
tions specified to the model fitting function. This model should be the FULL
model including all candidate variables ever excluded because of poor associa-
tions with the response.

fit a function to fit the model, either the original model fit, or a fit in a sample. fit has
as arguments x,y, iter, penalty, penalty.matrix, xcol, and other arguments
passed to predab.resample. If you don’t want iter as an argument inside the
definition of fit, add . . . to the end of its argument list. iter is passed to fit
to inform the function of the sampling repetition number (0=original sample).
If bw=TRUE, fit should allow for the possibility of selecting no predictors, i.e.,
it should fit an intercept-only model if the model has intercept(s). fit must
return objects coef and fail (fail=TRUE if fit failed due to singularity or
non-convergence - these cases are excluded from summary statistics). fit must
add design attributes to the returned object if bw=TRUE. The penalty.matrix
parameter is not used if penalty=0. The xcol vector is a vector of columns of
X to be used in the current model fit. For ols and psm it includes a 1 for the
intercept position. xcol is not defined if iter=0 unless the initial fit had been
from a backward step-down. xcol is used to select the correct rows and columns
of penalty.matrix for the current variables selected, for example.

measure a function to compute a vector of indexes of predictive accuracy for a given
fit. For method=".632" or method="crossval", it will make the most sense
for measure to compute only indexes that are independent of sample size. The
measure function should take the following arguments or use . . . : xbeta (X
beta for current fit), y, evalfit, fit, iter, and fit.orig. iter is as in fit.
evalfit is set to TRUE by predab.resample if the fit is being evaluated on
the sample used to make the fit, FALSE otherwise; fit.orig is the fit object
returned by the original fit on the whole sample. Using evalfit will sometimes
save computations. For example, in bootstrapping the area under an ROC curve

https://www.fharrell.com/post/bootcal/

predab.resample 169

for a logistic regression model, lrm already computes the area if the fit is on the
training sample. fit.orig is used to pass computed configuration parameters
from the original fit such as quantiles of predicted probabilities that are used
as cut points in other samples. The vector created by measure should have
names() associated with it if the model performance measures are indexes such
as the Brier score or calibration slope. The vector must not have names if it
corresponds to a nonparametric calibration curve.

method The default is "boot" for ordinary bootstrapping (Efron, 1983, Eq. 2.10). Use
".632" for Efron’s .632 method (Efron, 1983, Section 6 and Eq. 6.10), "crossvalidation"
for grouped cross–validation, "randomization" for the randomization method.
May be abbreviated down to any level, e.g. "b", ".", "cross", "rand".

bw Set to TRUE to do fast backward step-down for each training sample. Default is
FALSE.

B Number of repetitions, default=50, which is far too small. For method="crossvalidation",
this is also the number of groups the original sample is split into.

conf.int confidence level for approximate confidence limits for overfitting-corrected in-
dexes. Set to FALSE or 0 to not compute limits. For calibration,

pr TRUE to print results for each sample. Default is FALSE. Also controls printing
of number of divergent or singular samples.

prmodsel set to FALSE to suppress printing of model selection output such as that from
fastbw.

rule Stopping rule for fastbw, "aic" or "p". Default is "aic" to use Akaike’s infor-
mation criterion.

type Type of statistic to use in stopping rule for fastbw, "residual" (the default) or
"individual".

sls Significance level for stopping in fastbw if rule="p". Default is .05.

aics Stopping criteria for rule="aic". Stops deleting factors when chi-square - 2
times d.f. falls below aics. Default is 0.

tol Tolerance for singularity checking. Is passed to fit and fastbw.

force see fastbw

estimates see print.fastbw

non.slopes.in.x

set to FALSE if the design matrix x does not have columns for intercepts and
these columns are needed

kint For multiple intercept models such as the ordinal logistic model, you may spec-
ify which intercept to use as kint. This affects the linear predictor that is passed
to measure.

cluster Vector containing cluster identifiers. This can be specified only if method="boot".
If it is present, the bootstrap is done using sampling with replacement from the
clusters rather than from the original records. If this vector is not the same length
as the number of rows in the data matrix used in the fit, an attempt will be made
to use naresid on fit.orig to conform cluster to the data. See bootcov for
more about this.

170 predab.resample

subset specify a vector of positive or negative integers or a logical vector when you
want to have the measure function compute measures of accuracy on a subset
of the data. The whole dataset is still used for all model development. For
example, you may want to validate or calibrate a model by assessing the
predictions on females when the fit was based on males and females. When
you use cr.setup to build extra observations for fitting the continuation ratio
ordinal logistic model, you can use subset to specify which cohort or obser-
vations to use for deriving indexes of predictive accuracy. For example, specify
subset=cohort=="all" to validate the model for the first layer of the continu-
ation ratio model (Prob(Y=0)).

group a grouping variable used to stratify the sample upon bootstrapping. This allows
one to handle k-sample problems, i.e., each bootstrap sample will be forced
to selected the same number of observations from each level of group as the
number appearing in the original dataset.

allow.varying.intercepts

set to TRUE to not throw an error if the number of intercepts varies from fit to fit

debug set to TRUE to print subscripts of all training and test samples

saveraw set to TRUE to store a list named .predab_raw. in the global environment. The
list has the elements orig (original estimates of performance indexes), btrain
(a matrix with up to B bootstrap repetitions of indexes computed on training sam-
ples), and btest (a similar matrix but computing indexes on the test samples).
For bootstrapping, training samples are bootstrap samples and test samples are
the original data.

... The user may add other arguments here that are passed to fit and measure.

Details

For method=".632", the program stops with an error if every observation is not omitted at least once
from a bootstrap sample. Efron’s ".632" method was developed for measures that are formulated
in terms on per-observation contributions. In general, error measures (e.g., ROC areas) cannot be
written in this way, so this function uses a heuristic extension to Efron’s formulation in which it is
assumed that the average error measure omitting the ith observation is the same as the average error
measure omitting any other observation. Then weights are derived for each bootstrap repetition and
weighted averages over the B repetitions can easily be computed.

Value

a matrix of class "validate" with rows corresponding to indexes computed by measure, and the
following columns:

index.orig indexes in original overall fit

training average indexes in training samples

test average indexes in test samples

optimism average training-test except for method=".632" - is .632 times (index.orig
- test)

index.corrected

index.orig-optimism

Predict 171

n number of successful repetitions with the given index non-missing

. Also contains an attribute keepinfo if measure returned such an attribute when run on the original
fit.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Efron B, Tibshirani R (1997). Improvements on cross-validation: The .632+ bootstrap method.
JASA 92:548–560.

Noma H, et al (2021). Confidence intervals of prediction accuracy measures for multivariable pre-
diction models based on the bootstrap-based optimism correction methods. Statistics in Medicine
40:5691-5701.

Harrell FE (2025). Bootstrap confidence limits for bootstrap overfitting-corrected model perfor-
mance, https://www.fharrell.com/post/bootcal/

See Also

rms, validate, fastbw, lrm, ols, cph, bootcov, setPb

Examples

See the code for validate.ols for an example of the use of
predab.resample

Predict Compute Predicted Values and Confidence Limits

Description

Predict allows the user to easily specify which predictors are to vary. When the vector of values
over which a predictor should vary is not specified, the range will be all levels of a categorical pre-
dictor or equally-spaced points between the datadist "Low:prediction" and "High:prediction"
values for the variable (datadist by default uses the 10th smallest and 10th largest predictor values
in the dataset). Predicted values are the linear predictor (X beta), a user-specified transformation
of that scale, or estimated probability of surviving past a fixed single time point given the linear
predictor. Predict is usually used for plotting predicted values but there is also a print method.

When the first argument to Predict is a fit object created by bootcov with coef.reps=TRUE, con-
fidence limits come from the stored matrix of bootstrap repetitions of coefficients, using bootstrap
percentile nonparametric confidence limits, basic bootstrap, or BCa limits. Such confidence inter-
vals do not make distributional assumptions. You can force Predict to instead use the bootstrap

https://www.fharrell.com/post/bootcal/

172 Predict

covariance matrix by setting usebootcoef=FALSE. If coef.reps was FALSE, usebootcoef=FALSE
is the default.

There are ggplot, plotp, and plot methods for Predict objects that makes it easy to show pre-
dicted values and confidence bands.

The rbind method for Predict objects allows you to create separate sets of predictions under dif-
ferent situations and to combine them into one set for feeding to plot.Predict, ggplot.Predict,
or plotp.Predict. For example you might want to plot confidence intervals for means and for
individuals using ols, and have the two types of confidence bands be superposed onto one plot or
placed into two panels. Another use for rbind is to combine predictions from quantile regression
models that predicted three different quantiles.

If conf.type="simultaneous", simultaneous (over all requested predictions) confidence limits
are computed. See the predictrms function for details.

If fun is given, conf.int > 0, the model is not a Bayesian model, and the bootstrap was not used,
fun may return limits attribute when fun computed its own confidence limits. These confidence
limits will be functions of the design matrix, not just the linear predictor.

Usage

Predict(object, ..., fun=NULL, funint=TRUE,
type = c("predictions", "model.frame", "x"),
np = 200, conf.int = 0.95,
conf.type = c("mean", "individual","simultaneous"),
usebootcoef=TRUE, boot.type=c("percentile", "bca", "basic"),
posterior.summary=c('mean', 'median', 'mode'),
adj.zero = FALSE, ref.zero = FALSE,
kint=NULL, ycut=NULL, time = NULL, loglog = FALSE, digits=4, name,
factors=NULL, offset=NULL)

S3 method for class 'Predict'
print(x, ...)

S3 method for class 'Predict'
rbind(..., rename)

Arguments

object an rms fit object, or for print the result of Predict. options(datadist="d")
must have been specified (where d was created by datadist), or it must have
been in effect when the the model was fitted.

... One or more variables to vary, or single-valued adjustment values. Specify a
variable name without an equal sign to use the default display range, or any
range you choose (e.g. seq(0,100,by=2),c(2,3,7,14)). The default list of
values for which predictions are made is taken as the list of unique values of
the variable if they number fewer than 11. For variables with > 10 unique
values, np equally spaced values in the range are used for plotting if the range
is not specified. Variables not specified are set to the default adjustment value
limits[2], i.e. the median for continuous variables and a reference category for

Predict 173

non-continuous ones. Later variables define adjustment settings. For categorical
variables, specify the class labels in quotes when specifying variable values. If
the levels of a categorical variable are numeric, you may omit the quotes. For
variables not described using datadist, you must specify explicit ranges and
adjustment settings for predictors that were in the model. If no variables are
specified in . . . , predictions will be made by separately varying all predictors in
the model over their default range, holding the other predictors at their adjust-
ment values. This has the same effect as specifying name as a vector containing
all the predictors. For rbind, . . . represents a series of results from Predict. If
you name the results, these names will be taken as the values of the new .set.
variable added to the concatenated data frames. See an example below.

fun an optional transformation of the linear predictor. Specify fun='mean' if the
fit is a proportional odds model fit and you ran bootcov with coef.reps=TRUE.
This will let the mean function be re-estimated for each bootstrap rep to properly
account for all sources of uncertainty in estimating the mean response. fun can
be a general function and can compute confidence limits (stored as a list in the
limits attribute) of the transformed parameters such as means.

funint set to FALSE if fun is not a function such as the result of Mean, Quantile, or
ExProb that contains an intercepts argument

type defaults to providing predictions. Set to "model.frame" to return a data frame
of predictor settings used. Set to "x" to return the corresponding design matrix
constructed from the predictor settings.

np the number of equally-spaced points computed for continuous predictors that
vary, i.e., when the specified value is omitted (with the variable name appearing
without an equals sign) or is NA

conf.int confidence level (highest posterior density interval probability for Bayesian mod-
els). Default is 0.95. Specify FALSE to suppress.

conf.type type of confidence interval. Default is "mean" which applies to all models. For
models containing a residual variance (e.g, ols), you can specify conf.type="individual"
instead, to obtain limits on the predicted value for an individual subject. Spec-
ify conf.type="simultaneous" to obtain simultaneous confidence bands for
mean predictions with family-wise coverage of conf.int.

usebootcoef set to FALSE to force the use of the bootstrap covariance matrix estimator even
when bootstrap coefficient reps are present

boot.type set to 'bca' to compute BCa confidence limits or 'basic' to use the basic
bootstrap. The default is to compute percentile intervals

posterior.summary

defaults to using the posterior mean of the regression coefficients. Specify
'mode' or 'median' to instead use the other summaries.

adj.zero Set to TRUE to adjust all non-plotted variables to 0 (or reference cell for categor-
ical variables) and to omit intercept(s) from consideration. Default is FALSE.

ref.zero Set to TRUE to subtract a constant from Xβ before plotting so that the reference
value of the x-variable yields y=0. This is done before applying function fun.
This is especially useful for Cox models to make the hazard ratio be 1.0 at ref-
erence values, and the confidence interval have width zero. To set the reference

174 Predict

value, either (a) set the reference value by editing the datadist object prior to
fitting the model, or (b) if the model is already fit, edit the datadist object and
then run the update command.

kint This is only useful in a multiple intercept model such as the ordinal logistic
model. There to use to second of three intercepts, for example, specify kint=2.
The default is 1 for lrm and the middle intercept corresponding to the median y
for orm or blrm. You can specify ycut instead, and the intercept corresponding
to Y >= ycut will be used for kint.

ycut for an ordinal model specifies the Y cutoff to use in evaluating departures from
proportional odds, when the constrained partial proportional odds model is used.
When omitted, ycut is implied by kint. The only time it is absolutely manda-
tory to specify ycut is when computed an effect (e.g., odds ratio) at a level of
the response variable that did not occur in the data. This would only occur when
the cppo function given to blrm is a continuous function.

time Specify a single time u to cause function survest to be invoked to plot the
probability of surviving until time u when the fit is from cph or psm.

loglog Specify loglog=TRUE to plot log[-log(survival)] instead of survival, when
time is given.

digits Controls how “adjust-to” values are plotted. The default is 4 significant digits.

name Instead of specifying the variables to vary in the variables (. . .) list, you can
specify one or more variables by specifying a vector of character string variable
names in the name argument. Using this mode you cannot specify a list of vari-
able values to use; prediction is done as if you had said e.g. age without the
equal sign. Also, interacting factors can only be set to their reference values
using this notation.

factors an alternate way of specifying . . . , mainly for use by survplot or gendata.
This must be a list with one or more values for each variable listed, with NA
values for default ranges.

offset a list containing one value for one variable, which is mandatory if the model
included an offset term. The variable name must match the innermost variable
name in the offset term. The single offset is added to all predicted values.

x an object created by Predict

rename If you are concatenating predictor sets using rbind and one or more of the vari-
ables were renamed for one or more of the sets, but these new names represent
different versions of the same predictors (e.g., using or not using imputation),
you can specify a named character vector to rename predictors to a central name.
For example, specify rename=c(age.imputed='age', corrected.bp='bp')
to rename from old names age.imputed, corrected.bp to age, bp. This hap-
pens before concatenation of rows.

Details

When there are no intercepts in the fitted model, plot subtracts adjustment values from each factor
while computing variances for confidence limits.

Specifying time will not work for Cox models with time-dependent covariables. Use survest or
survfit for that purpose.

Predict 175

Value

a data frame containing all model predictors and the computed values yhat, lower, upper, the latter
two if confidence intervals were requested. The data frame has an additional class "Predict". If
name is specified or no predictors are specified in . . . , the resulting data frame has an additional
variable called .predictor. specifying which predictor is currently being varied. .predictor. is
handy for use as a paneling variable in lattice or ggplot2 graphics.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

plot.Predict, ggplot.Predict, plotp.Predict, datadist, predictrms, contrast.rms, summary.rms,
rms, rms.trans, survest, survplot, rmsMisc, transace, rbind, bootcov, bootBCa, boot.ci

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'
label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)))
Predict(fit, age, cholesterol, np=4)
Predict(fit, age=seq(20,80,by=10), sex, conf.int=FALSE)
Predict(fit, age=seq(20,80,by=10), sex='male') # works if datadist not used
Get simultaneous confidence limits accounting for making 7 estimates
Predict(fit, age=seq(20,80,by=10), sex='male', conf.type='simult')
(this needs the multcomp package)

ddist$limits$age[2] <- 30 # make 30 the reference value for age

176 Predict

Could also do: ddist$limits["Adjust to","age"] <- 30
fit <- update(fit) # make new reference value take effect
Predict(fit, age, ref.zero=TRUE, fun=exp)

Make two curves, and plot the predicted curves as two trellis panels
w <- Predict(fit, age, sex)
require(lattice)
xyplot(yhat ~ age | sex, data=w, type='l')
To add confidence bands we need to use the Hmisc xYplot function in
place of xyplot
xYplot(Cbind(yhat,lower,upper) ~ age | sex, data=w,

method='filled bands', type='l', col.fill=gray(.95))
If non-displayed variables were in the model, add a subtitle to show
their settings using title(sub=paste('Adjusted to',attr(w,'info')$adjust),adj=0)
Easier: feed w into plot.Predict, ggplot.Predict, plotp.Predict
Not run:
Predictions form a parametric survival model
require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n,

rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
t <- -log(runif(n))/h
label(t) <- 'Follow-up Time'
e <- ifelse(t<=cens,1,0)
t <- pmin(t, cens)
units(t) <- "Year"
ddist <- datadist(age, sex)
Srv <- Surv(t,e)

Fit log-normal survival model and plot median survival time vs. age
f <- psm(Srv ~ rcs(age), dist='lognormal')
med <- Quantile(f) # Creates function to compute quantiles

(median by default)
Predict(f, age, fun=function(x)med(lp=x))
Note: This works because med() expects the linear predictor (X*beta)
as an argument. Would not work if use
ref.zero=TRUE or adj.zero=TRUE.
Also, confidence intervals from this method are approximate since
they don't take into account estimation of scale parameter

Fit an ols model to log(y) and plot the relationship between x1
and the predicted mean(y) on the original scale without assuming
normality of residuals; use the smearing estimator. Before doing
that, show confidence intervals for mean and individual log(y),
and for the latter, also show bootstrap percentile nonparametric
pointwise confidence limits
set.seed(1)
x1 <- runif(300)

predict.lrm 177

x2 <- runif(300)
ddist <- datadist(x1,x2); options(datadist='ddist')
y <- exp(x1+ x2 - 1 + rnorm(300))
f <- ols(log(y) ~ pol(x1,2) + x2, x=TRUE, y=TRUE) # x y for bootcov
fb <- bootcov(f, B=100)
pb <- Predict(fb, x1, x2=c(.25,.75))
p1 <- Predict(f, x1, x2=c(.25,.75))
p <- rbind(normal=p1, boot=pb)
plot(p)

p1 <- Predict(f, x1, conf.type='mean')
p2 <- Predict(f, x1, conf.type='individual')
p <- rbind(mean=p1, individual=p2)
plot(p, label.curve=FALSE) # uses superposition
plot(p, ~x1 | .set.) # 2 panels

r <- resid(f)
smean <- function(yhat)smearingEst(yhat, exp, res, statistic='mean')
formals(smean) <- list(yhat=numeric(0), res=r[!is.na(r)])
#smean$res <- r[!is.na(r)] # define default res argument to function
Predict(f, x1, fun=smean)

Example using offset
g <- Glm(Y ~ offset(log(N)) + x1 + x2, family=poisson)
Predict(g, offset=list(N=100))

End(Not run)
options(datadist=NULL)

predict.lrm Predicted Values for Binary and Ordinal Logistic Models

Description

Computes a variety of types of predicted values for fits from lrm and orm, either from the original
dataset or for new observations. The Mean.lrm and Mean.orm functions produce an R function
to compute the predicted mean of a numeric ordered response variable given the linear predictor,
which is assumed to use the first intercept when it was computed. The returned function has two
optional arguments if confidence intervals are desired: conf.int and the design matrix X. When
this derived function is called with nonzero conf.int, an attribute named limits is attached to the
estimated mean. This is a list with elements lower and upper containing normal approximations
for confidence limits using the delta method.

For orm fits on censored data, the function created by Mean.orm has an argument tmax which
specifies the restriction time for mean restricted survival time.

Usage

S3 method for class 'lrm'
predict(object, ..., type=c("lp", "fitted",

178 predict.lrm

"fitted.ind", "mean", "x", "data.frame",
"terms", "cterms", "ccterms", "adjto","adjto.data.frame",
"model.frame"), se.fit=FALSE, codes=FALSE)

S3 method for class 'orm'
predict(object, ..., type=c("lp", "fitted",

"fitted.ind", "mean", "x", "data.frame",
"terms", "cterms", "ccterms", "adjto","adjto.data.frame",
"model.frame"), se.fit=FALSE, codes=FALSE)

S3 method for class 'lrm'
Mean(object, codes=FALSE, ...)
S3 method for class 'orm'
Mean(object, codes=FALSE, ...)

Arguments

object a object created by lrm or orm

... arguments passed to predictrms, such as kint and newdata (which is used if
you are predicting out of data). See predictrms to see how NAs are handled.
Ignored for other functions.

type See predict.rms for "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame" and "model.frame". type="lp" is used to
get linear predictors (using the first intercept by default; specify kint to use oth-
ers). type="fitted" is used to get all the probabilities Y ≥ j. type="fitted.ind"
gets all the individual probabilities Y = j (not recommended for orm fits). For
an ordinal response variable, type="mean" computes the estimated mean Y by
summing values of Y multiplied by the estimated Prob(Y = j). If Y was a
character or factor object, the levels are the character values or factor levels,
so these must be translatable to numeric, unless codes=TRUE. See the Hannah
and Quigley reference below for the method of estimating (and presenting) the
mean score. If you specify type="fitted","fitted.ind","mean" you may
not specify kint.

se.fit applies only to type="lp", to get standard errors.

codes if TRUE, type="mean", Mean.lrm, and Mean.orm use the integer codes 1, 2, . . . , k
for the k-level response in computing the predicted mean response.

Value

a vector (type="lp" with se.fit=FALSE, or type="mean" or only one observation being pre-
dicted), a list (with elements linear.predictors and se.fit if se.fit=TRUE), a matrix (type="fitted"
or type="fitted.ind"), a data frame, or a design matrix. For Mean.lrm and Mean.orm, the result
is an R function.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University

predict.lrm 179

fh@fharrell.com
For the Quantile function:
Qi Liu and Shengxin Tu
Department of Biostatistics, Vanderbilt University

References

Hannah M, Quigley P: Presentation of ordinal regression analysis on the original scale. Biometrics
52:771–5; 1996.

See Also

lrm, orm, predict.rms, naresid, contrast.rms

Examples

See help for predict.rms for several binary logistic
regression examples

Examples of predictions from ordinal models
set.seed(1)
y <- factor(sample(1:3, 400, TRUE), 1:3, c('good','better','best'))
x1 <- runif(400)
x2 <- runif(400)
f <- lrm(y ~ rcs(x1,4)*x2, x=TRUE) #x=TRUE needed for se.fit
Get 0.95 confidence limits for Prob[better or best]
L <- predict(f, se.fit=TRUE) #omitted kint= so use 1st intercept
plogis(with(L, linear.predictors + 1.96*cbind(-se.fit,se.fit)))
predict(f, type="fitted.ind")[1:10,] #gets Prob(better) and all others
d <- data.frame(x1=c(.1,.5),x2=c(.5,.15))
predict(f, d, type="fitted") # Prob(Y>=j) for new observation
predict(f, d, type="fitted.ind") # Prob(Y=j)
predict(f, d, type='mean', codes=TRUE) # predicts mean(y) using codes 1,2,3
m <- Mean(f, codes=TRUE)
lp <- predict(f, d)
m(lp)
Can use function m as an argument to Predict or nomogram to
get predicted means instead of log odds or probabilities
dd <- datadist(x1,x2); options(datadist='dd')
m
plot(Predict(f, x1, fun=m), ylab='Predicted Mean')
Note: Run f through bootcov with coef.reps=TRUE to get proper confidence
limits for predicted means from the prop. odds model
options(datadist=NULL)

180 predictrms

predictrms Predicted Values from Model Fit

Description

The predict function is used to obtain a variety of values or predicted values from either the data
used to fit the model (if type="adjto" or "adjto.data.frame" or if x=TRUE or linear.predictors=TRUE
were specified to the modeling function), or from a new dataset. Parameters such as knots and factor
levels used in creating the design matrix in the original fit are "remembered". See the Function
function for another method for computing the linear predictors. predictrms is an internal utility
function that is for the other functions.

Usage

predictrms(fit, newdata=NULL,
type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean', 'individual', 'simultaneous'),
kint=NULL, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ref.zero=FALSE,
posterior.summary=c('mean', 'median', 'mode'),
second=FALSE, ...)

S3 method for class 'bj'
predict(object, newdata,

type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1,
na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # for bj

S3 method for class 'cph'
predict(object, newdata=NULL,

type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # cph

S3 method for class 'Glm'
predict(object, newdata,

type= c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,

predictrms 181

conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # Glm

S3 method for class 'Gls'
predict(object, newdata,

type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # Gls

S3 method for class 'ols'
predict(object, newdata,

type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # ols

S3 method for class 'psm'
predict(object, newdata,

type=c("lp", "x", "data.frame", "terms", "cterms", "ccterms",
"adjto", "adjto.data.frame", "model.frame"),

se.fit=FALSE, conf.int=FALSE,
conf.type=c('mean','individual','simultaneous'),
kint=1, na.action=na.keep, expand.na=TRUE,
center.terms=type=="terms", ...) # psm

Arguments

object, fit a fit object with an rms fitting function

newdata An S data frame, list or a matrix specifying new data for which predictions
are desired. If newdata is a list, it is converted to a matrix first. A matrix is
converted to a data frame. For the matrix form, categorical variables (catg or
strat) must be coded as integer category numbers corresponding to the order in
which value labels were stored. For list or matrix forms, matrx factors must be
given a single value. If this single value is the S missing value NA, the adjustment
values of matrx (the column medians) will later replace this value. If the single
value is not NA, it is propagated throughout the columns of the matrx factor. For
factor variables having numeric levels, you can specify the numeric values in
newdata without first converting the variables to factors. These numeric values
are checked to make sure they match a level, then the variable is converted in-
ternally to a factor. It is most typical to use a data frame for newdata, and the
S function expand.grid is very handy here. For example, one may specify
newdata=expand.grid(age=c(10,20,30),

182 predictrms

race=c("black","white","other"),
chol=seq(100,300,by=25)).

type Type of output desired. The default is "lp" to get the linear predictors - pre-
dicted Xβ. For Cox models, these predictions are centered. You may specify
"x" to get an expanded design matrix at the desired combinations of values,
"data.frame" to get an S data frame of the combinations, "model.frame" to
get a data frame of the transformed predictors, "terms" to get a matrix with
each column being the linear combination of variables making up a factor (with
separate terms for interactions), "cterms" ("combined terms") to not create sep-
arate terms for interactions but to add all interaction terms involving each pre-
dictor to the main terms for each predictor, "ccterms" to combine all related
terms (related through interactions) and their interactions into a single column,
"adjto" to return a vector of limits[2] (see datadist) in coded form, and
"adjto.data.frame" to return a data frame version of these central adjustment
values. Use of type="cterms" does not make sense for a strat variable that
does not interact with another variable. If newdata is not given, predict will
attempt to return information stored with the fit object if the appropriate op-
tions were used with the modeling function (e.g., x, y, linear.predictors,
se.fit).

se.fit Defaults to FALSE. If type="linear.predictors", set se.fit=TRUE to return
a list with components linear.predictors and se.fit instead of just a vector
of fitted values. For Cox model fits, standard errors of linear predictors are com-
puted after subtracting the original column means from the new design matrix.

conf.int Specify conf.int as a positive fraction to obtain upper and lower confidence
intervals (e.g., conf.int=0.95). The t-distribution is used in the calculation
for ols fits. Otherwise, the normal critical value is used. For Bayesian models
conf.int is the highest posterior density interval probability.

conf.type specifies the type of confidence interval. Default is for the mean. For ols fits
there is the option of obtaining confidence limits for individual predicted values
by specifying conf.type="individual".

posterior.summary

when making predictions from a Bayesian model, specifies whether you want
the linear predictor to be computed from the posterior mean of parameters (de-
fault) or the posterior mode or median median

second set to TRUE to use the model’s second formula. At present this pertains only
to a partial proportional odds model fitted using the blrm function. When
second=TRUE and type='x' the Z design matrix is returned (that goes with the
tau parameters in the partial PO model). When type='lp' is specified Z*tau is
computed. In neither case is the result is multiplied by the by the cppo function.

kint a single integer specifying the number of the intercept to use in multiple-intercept
models. The default is 1 for lrm and the reference median intercept for orm and
blrm. For a partial PO model, kint should correspond to the response variable
value that will be used when dealing with second=TRUE.

na.action Function to handle missing values in newdata. For predictions "in data", the
same na.action that was used during model fitting is used to define an naresid
function to possibly restore rows of the data matrix that were deleted due to NAs.

predictrms 183

For predictions "out of data", the default na.action is na.keep, resulting in NA
predictions when a row of newdata has an NA. Whatever na.action is in effect
at the time for "out of data" predictions, the corresponding naresid is used also.

expand.na set to FALSE to keep the naresid from having any effect, i.e., to keep from
adding back observations removed because of NAs in the returned object. If
expand.na=FALSE, the na.action attribute will be added to the returned object.

center.terms set to FALSE to suppress subtracting adjust-to values from columns of the design
matrix before computing terms with type="terms".

ref.zero Set to TRUE to subtract a constant from Xβ before plotting so that the refer-
ence value of the x-variable yields y=0. This is done before applying function
fun. This is especially useful for Cox models to make the hazard ratio be 1.0 at
reference values, and the confidence interval have width zero.

... ignored

Details

datadist and options(datadist=) should be run before predictrms if using type="adjto",
type="adjto.data.frame", or type="terms", or if the fit is a Cox model fit and you are request-
ing se.fit=TRUE. For these cases, the adjustment values are needed (either for the returned result
or for the correct covariance matrix computation).

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

plot.Predict, ggplot.Predict, summary.rms, rms, rms.trans, predict.lrm, predict.orm,
residuals.cph, datadist, gendata, gIndex, Function.rms, reShape, xYplot, contrast.rms

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
treat <- factor(sample(c('a','b','c'), n,TRUE))

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male')) +
.3*sqrt(blood.pressure-60)-2.3 + 1*(treat=='b')

Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

184 predictrms

ddist <- datadist(age, blood.pressure, cholesterol, sex, treat)
options(datadist='ddist')

fit <- lrm(y ~ rcs(blood.pressure,4) +
sex * (age + rcs(cholesterol,4)) + sex*treat*age)

Use xYplot to display predictions in 9 panels, with error bars,
with superposition of two treatments

dat <- expand.grid(treat=levels(treat),sex=levels(sex),
age=c(20,40,60),blood.pressure=120,
cholesterol=seq(100,300,length=10))

Add variables linear.predictors and se.fit to dat
dat <- cbind(dat, predict(fit, dat, se.fit=TRUE))
This is much easier with Predict
xYplot in Hmisc extends xyplot to allow error bars

xYplot(Cbind(linear.predictors,linear.predictors-1.96*se.fit,
linear.predictors+1.96*se.fit) ~ cholesterol | sex*age,

groups=treat, data=dat, type='b')

Since blood.pressure doesn't interact with anything, we can quickly and
interactively try various transformations of blood.pressure, taking
the fitted spline function as the gold standard. We are seeking a
linearizing transformation even though this may lead to falsely
narrow confidence intervals if we use this data-dredging-based transformation

bp <- 70:160
logit <- predict(fit, expand.grid(treat="a", sex='male', age=median(age),

cholesterol=median(cholesterol),
blood.pressure=bp), type="terms")[,"blood.pressure"]

#Note: if age interacted with anything, this would be the age
"main effect" ignoring interaction terms
#Could also use Predict(f, age=ag)$yhat
#which allows evaluation of the shape for any level of interacting
#factors. When age does not interact with anything, the result from
#predict(f, \dots, type="terms") would equal the result from
#plot if all other terms were ignored

plot(bp^.5, logit) # try square root vs. spline transform.
plot(bp^1.5, logit) # try 1.5 power
plot(sqrt(bp-60), logit)

predictrms 185

#Some approaches to making a plot showing how predicted values
#vary with a continuous predictor on the x-axis, with two other
#predictors varying

combos <- gendata(fit, age=seq(10,100,by=10), cholesterol=c(170,200,230),
blood.pressure=c(80,120,160))

#treat, sex not specified -> set to mode
#can also used expand.grid

require(lattice)
combos$pred <- predict(fit, combos)
xyplot(pred ~ age | cholesterol*blood.pressure, data=combos, type='l')
xYplot(pred ~ age | cholesterol, groups=blood.pressure, data=combos, type='l')
Key() # Key created by xYplot
xYplot(pred ~ age, groups=interaction(cholesterol,blood.pressure),

data=combos, type='l', lty=1:9)
Key()

Add upper and lower 0.95 confidence limits for individuals
combos <- cbind(combos, predict(fit, combos, conf.int=.95))
xYplot(Cbind(linear.predictors, lower, upper) ~ age | cholesterol,

groups=blood.pressure, data=combos, type='b')
Key()

Plot effects of treatments (all pairwise comparisons) vs.
levels of interacting factors (age, sex)

d <- gendata(fit, treat=levels(treat), sex=levels(sex), age=seq(30,80,by=10))
x <- predict(fit, d, type="x")
betas <- fit$coef
cov <- vcov(fit, intercepts='none')

i <- d$treat=="a"; xa <- x[i,]; Sex <- d$sex[i]; Age <- d$age[i]
i <- d$treat=="b"; xb <- x[i,]
i <- d$treat=="c"; xc <- x[i,]

doit <- function(xd, lab) {
xb <- matxv(xd, betas)
se <- apply((xd %*% cov) * xd, 1, sum)^.5
q <- qnorm(1-.01/2) # 0.99 confidence limits
lower <- xb - q * se; upper <- xb + q * se
#Get odds ratios instead of linear effects
xb <- exp(xb); lower <- exp(lower); upper <- exp(upper)
#First elements of these agree with
#summary(fit, age=30, sex='female',conf.int=.99))
for(sx in levels(Sex)) {

186 predictrms

j <- Sex==sx
errbar(Age[j], xb[j], upper[j], lower[j], xlab="Age",

ylab=paste(lab, "Odds Ratio"), ylim=c(.1, 20), log='y')
title(paste("Sex:", sx))
abline(h=1, lty=2)

}
}

par(mfrow=c(3,2), oma=c(3,0,3,0))
doit(xb - xa, "b:a")
doit(xc - xa, "c:a")
doit(xb - xa, "c:b")

NOTE: This is much easier to do using contrast.rms

Demonstrate type="terms", "cterms", "ccterms"
set.seed(1)
n <- 40
x <- 1:n
w <- factor(sample(c('a', 'b'), n, TRUE))
u <- factor(sample(c('A', 'B'), n, TRUE))
y <- .01*x + .2*(w=='b') + .3*(u=='B') + .2*(w=='b' & u=='B') + rnorm(n)/5
ddist <- datadist(x, w, u)
f <- ols(y ~ x*w*u, x=TRUE, y=TRUE)
f
anova(f)
z <- predict(f, type='terms', center.terms=FALSE)
z[1:5,]
k <- coef(f)
Manually compute combined terms
wb <- w=='b'
uB <- u=='B'
h <- k['x * w=b * u=B']*x*wb*uB
tx <- k['x'] *x + k['x * w=b']*x*wb + k['x * u=B'] *x*uB + h
tw <- k['w=b']*wb + k['x * w=b']*x*wb + k['w=b * u=B']*wb*uB + h
tu <- k['u=B']*uB + k['x * u=B']*x*uB + k['w=b * u=B']*wb*uB + h
h <- z[,'x * w * u'] # highest order term is present in all cterms
tx2 <- z[,'x']+z[,'x * w']+z[,'x * u']+h
tw2 <- z[,'w']+z[,'x * w']+z[,'w * u']+h
tu2 <- z[,'u']+z[,'x * u']+z[,'w * u']+h
ae <- function(a, b) all.equal(a, b, check.attributes=FALSE)
ae(tx, tx2)
ae(tw, tw2)
ae(tu, tu2)

zc <- predict(f, type='cterms')
zc[1:5,]
ae(tx, zc[,'x'])
ae(tw, zc[,'w'])
ae(tu, zc[,'u'])

zc <- predict(f, type='ccterms')

print.cph 187

As all factors are indirectly related, ccterms gives overall linear
predictor except for the intercept
zc[1:5,]
ae(as.vector(zc + coef(f)[1]), f$linear.predictors)

Not run:
#A variable state.code has levels "1", "5","13"
#Get predictions with or without converting variable in newdata to factor
predict(fit, data.frame(state.code=c(5,13)))
predict(fit, data.frame(state.code=factor(c(5,13))))

#Use gendata function (gendata.rms) for interactive specification of
#predictor variable settings (for 10 observations)
df <- gendata(fit, nobs=10, viewvals=TRUE)
df$predicted <- predict(fit, df) # add variable to data frame
df

df <- gendata(fit, age=c(10,20,30)) # leave other variables at ref. vals.
predict(fit, df, type="fitted")

See reShape (in Hmisc) for an example where predictions corresponding to
values of one of the varying predictors are reformatted into multiple
columns of a matrix

End(Not run)
options(datadist=NULL)

print.cph Print cph Results

Description

Formatted printing of an object of class cph. Prints strata frequencies, parameter estimates, standard
errors, z-statistics, numbers of missing values, etc. Format of output is controlled by the user
previously running options(prType="lang") where lang is "plain" (the default), "latex", or
"html". This does not require results='asis' in knitr chunk headers.

Usage

S3 method for class 'cph'
print(x, digits=4, r2=c(0,2,4), table=TRUE, conf.int=FALSE,
coefs=TRUE, pg=FALSE, title='Cox Proportional Hazards Model', ...)

Arguments

x fit object

188 print.Glm

digits number of digits to right of decimal place to print

r2 vector of integers specifying which R^2 measures to print, with 0 for Nagelkerke
R^2 and 1:4 corresponding to the 4 measures computed by R2Measures. Default
is to print Nagelkerke (labeled R2) and second and fourth R2Measures which are
the measures adjusted for the number of predictors, first for the raw sample size
then for the effective sample size, which here is the number of non-censored
observations.

conf.int set to e.g. .95 to print 0.95 confidence intervals on simple hazard ratios (which
are usually meaningless as one-unit changes are seldom relevant and most mod-
els contain multiple terms per predictor)

table set to FALSE to suppress event frequency statistics

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

pg set to TRUE to print g-indexes

title a character string title to be passed to prModFit

... arguments passed to prModFit

See Also

coxph, prModFit

print.Glm print.glm

Description

Print a ‘Glm‘ Object

Usage

S3 method for class 'Glm'
print(x, digits = 4, coefs = TRUE, title = "General Linear Model", ...)

Arguments

x ‘Glm‘ object

digits number of significant digits to print

coefs specify ‘coefs=FALSE‘ to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify ‘coefs=n‘ to print only the first ‘n‘ regression coeffi-
cients in the model.

title a character string title to be passed to ‘prModFit‘

... ignored

print.impactPO 189

Details

Prints a ‘Glm‘ object, optionally in LaTeX or html

Author(s)

Frank Harrell

print.impactPO Print Result from impactPO

Description

Prints statistical summaries and optionally predicted values computed by impactPO, transposing
statistical summaries for easy reading

Usage

S3 method for class 'impactPO'
print(x, estimates = nrow(x$estimates) < 16, ...)

Arguments

x an object created by impactPO

estimates set to FALSE to suppess printing estimated category probabilities. Defaults to
TRUE when the number of rows < 16.

... ignored

Author(s)

Frank Harrell

print.Ocens print Method for Ocens Objects

Description

print Method for Ocens Objects

Usage

S3 method for class 'Ocens'
print(x, ivalues = FALSE, digits = 5, ...)

190 print.ols

Arguments

x an object created by Ocens

ivalues set to TRUE to print integer codes instead of character levels when original data
were factors or character variables

digits number of digits to the right of the decimal place used in rounding original levels
when ivalues=FALSE

... ignored

Value

nothing

Examples

Y <- Ocens(1:3, c(1, Inf, 3))
Y
print(Y, ivalues=TRUE) # doesn't change anything since were numeric

print.ols Print ols

Description

Formatted printing of an object of class ols using methods taken from print.lm and summary.lm.
Prints R-squared, adjusted R-squared, parameter estimates, standard errors, and t-statistics (Z statis-
tics if penalized estimation was used). For penalized estimation, prints the maximum penalized like-
lihood estimate of the residual standard deviation (Sigma) instead of the usual root mean squared er-
ror. Format of output is controlled by the user previously running options(prType="lang") where
lang is "plain" (the default), "latex", or "html". When using html with Quarto or RMarkdown,
results='asis' need not be written in the chunk header.

Usage

S3 method for class 'ols'
print(x, digits=4, long=FALSE, coefs=TRUE,
title="Linear Regression Model", ...)

Arguments

x fit object
digits number of significant digits to print
long set to TRUE to print the correlation matrix of parameter estimates
coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-

dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

title a character string title to be passed to prModFit

... other parameters to pass to print or format

print.rexVar 191

See Also

ols, lm,prModFit

print.rexVar print.rexVar

Description

Print rexVar Result

Usage

S3 method for class 'rexVar'
print(x, title = "Relative Explained Variation", digits = 3, ...)

Arguments

x a vector or matrix created by rexVar

title character string which can be set to NULL or '' to suppress

digits passed to round()

... unused

Details

Prints the results of an rexVar call

Value

invisible

Author(s)

Frank Harrell

192 prmiInfo

prmiInfo prmiInfo

Description

Print Information About Impact of Imputation

Usage

prmiInfo(x)

Arguments

x an object created by processMI(..., 'anova')

Details

For the results of processMI.fit.mult.impute prints or writes html (the latter if options(prType='html')
is in effect) summarizing various correction factors related to missing data multiple imputation.

Value

nothing

Author(s)

Frank Harrell

Examples

Not run:
a <- aregImpute(...)
f <- fit.mult.impute(...)
v <- processMI(f, 'anova')
prmiInfo(v)

End(Not run)

processMI 193

processMI processMI

Description

Process Special Multiple Imputation Output

Usage

processMI(object, ...)

Arguments

object a fit object created by Hmisc::fit.mult.impute()

... ignored

Details

Processes lists that have one element per imputation

Value

an object that resembles something created by a single fit without multiple imputation

Author(s)

Frank Harrell

See Also

processMI.fit.mult.impute()

processMI.fit.mult.impute

processMI.fit.mult.impute

Description

Process Special Multiple Imputation Output From fit.mult.impute

194 processMI.fit.mult.impute

Usage

S3 method for class 'fit.mult.impute'
processMI(
object,
which = c("validate", "calibrate", "anova"),
plotall = TRUE,
nind = 0,
prmi = TRUE,
...

)

Arguments

object a fit object created by fit.mult.impute

which specifies which component of the extra output should be processed

plotall set to FALSE when which='calibrate' to suppress having ggplot render a
graph showing calibration curves produced separately for all the imputations

nind set to a positive integer to use base graphics to plot a matrix of graphs, one each
for the first nind imputations, and the overall average calibration curve at the
end

prmi set to FALSE to not print imputation corrections for anova

... ignored

Details

Processes a funresults object stored in a fit object created by fit.mult.impute when its fun
argument was used. These objects are typically named validate or calibrate and represent
bootstrap or cross-validations run separately for each imputation. See this for a case study.

For which='anova' assumes that the fun given to fit.mult.impute runs anova(fit, test='LR')
to get likelihood ratio tests, and that method='stack' was specified also so that a final anova was
run on the stacked combination of all completed datasets. The method of Chan and Meng (2022) is
used to obtain overall likelihood ratio tests, with each line of the anova table getting a customized
adjustment based on the amount of missing information pertaining to the variables tested in that
line. The resulting statistics are chi-square and not F statistics as used by Chan and Meng. This
will matter when the estimated denominator degrees of freedom for a variable is small (e.g., less
than 50). These d.f. are reported so that user can take appropriate cautions such as increasing
n.impute for aregImpute.

Value

an object like a validate, calibrate, or anova result obtained when no multiple imputation was
done. This object is suitable for print and plot methods for these kinds of objects.

Author(s)

Frank Harrell

https://hbiostat.org/rmsc/validate.html#sec-val-mival
https://hbiostat.org/rmsc/missing.html#sec-missing-lrt

psm 195

See Also

Hmisc::fit.mult.impute()

psm Parametric Survival Model

Description

psm is a modification of Therneau’s survreg function for fitting the accelerated failure time family
of parametric survival models. psm uses the rms class for automatic anova, fastbw, calibrate,
validate, and other functions. Hazard.psm, Survival.psm, Quantile.psm, and Mean.psm cre-
ate S functions that evaluate the hazard, survival, quantile, and mean (expected value) functions
analytically, as functions of time or probabilities and the linear predictor values. The Nagelkerke
R^2 and and adjusted Maddala-Cox-Snell R^2 are computed. For the latter the notation is R2(p,m)
where p is the number of regression coefficients being adjusted for and m is the effective sample
size (number of uncensored observations). See R2Measures for more information.

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html".

The residuals.psm function exists mainly to compute normalized (standardized) residuals and
to censor them (i.e., return them as Surv objects) just as the original failure time variable was
censored. These residuals are useful for checking the underlying distributional assumption (see
the examples). To get these residuals, the fit must have specified y=TRUE. A lines method for
these residuals automatically draws a curve with the assumed standardized survival distribution. A
survplot method runs the standardized censored residuals through npsurv to get Kaplan-Meier
estimates, with optional stratification (automatically grouping a continuous variable into quantiles)
and then through survplot.npsurv to plot them. Then lines is invoked to show the theoretical
curve. Other types of residuals are computed by residuals using residuals.survreg.

Usage

psm(formula,
data=environment(formula), weights,
subset, na.action=na.delete, dist="weibull",
init=NULL, scale=0,
control=survreg.control(),
parms=NULL,
model=FALSE, x=FALSE, y=TRUE, time.inc, ...)

S3 method for class 'psm'
print(x, correlation=FALSE, digits=4, r2=c(0,2,4), coefs=TRUE,
pg=FALSE, title, ...)

Hazard(object, ...)
S3 method for class 'psm'
Hazard(object, ...) # for psm fit
E.g. lambda <- Hazard(fit)

196 psm

Survival(object, ...)
S3 method for class 'psm'
Survival(object, ...) # for psm
E.g. survival <- Survival(fit)

S3 method for class 'psm'
Quantile(object, ...) # for psm
E.g. quantsurv <- Quantile(fit)

S3 method for class 'psm'
Mean(object, ...) # for psm
E.g. meant <- Mean(fit)

lambda(times, lp) # get hazard function at t=times, xbeta=lp
survival(times, lp) # survival function at t=times, lp
quantsurv(q, lp) # quantiles of survival time
meant(lp) # mean survival time

S3 method for class 'psm'
residuals(object, type=c("censored.normalized",
"response", "deviance", "dfbeta",
"dfbetas", "working", "ldcase", "ldresp", "ldshape", "matrix", "score"), ...)

S3 method for class 'residuals.psm.censored.normalized'
survplot(fit, x, g=4, col, main, ...)

S3 method for class 'residuals.psm.censored.normalized'
lines(x, n=100, lty=1, xlim,
lwd=3, ...)
for type="censored.normalized"

Arguments

formula an S statistical model formula. Interactions up to third order are supported. The
left hand side must be a Surv object.

object a fit created by psm. For survplot with residuals from psm, object is the result
of residuals.psm.

fit a fit created by psm
data, subset, weights, dist, scale, init, na.action, control

see survreg.
parms a list of fixed parameters. For the t-distribution this is the degrees of freedom;

most of the distributions have no parameters.
model set to TRUE to include the model frame in the returned object
x set to TRUE to include the design matrix in the object produced by psm. For the

survplot method, x is an optional stratification variable (character, numeric,
or categorical). For lines.residuals.psm.censored.normalized, x is the
result of residuals.psm. For print it is the result of psm.

psm 197

y set to TRUE to include the Surv() matrix
time.inc setting for default time spacing. Used in constructing time axis in survplot, and

also in make confidence bars. Default is 30 if time variable has units="Day",
1 otherwise, unless maximum follow-up time < 1. Then max time/10 is used
as time.inc. If time.inc is not given and max time/default time.inc is > 25,
time.inc is increased.

correlation set to TRUE to print the correlation matrix for parameter estimates
digits number of places to print to the right of the decimal point
r2 vector of integers specifying which R^2 measures to print, with 0 for Nagelkerke

R^2 and 1:4 corresponding to the 4 measures computed by R2Measures. Default
is to print Nagelkerke (labeled R2) and second and fourth R2Measures which
are the measures adjusted for the number of predictors, first for the raw sample
size then for the effective sample size, which here is the number of uncensored
observations.

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

pg set to TRUE to print g-indexes
title a character string title to be passed to prModFit

... other arguments to fitting routines, or to pass to survplot from
survplot.residuals.psm.censored.normalized. Passed to the generic lines
function for lines.

times a scalar or vector of times for which to evaluate survival probability or hazard
lp a scalar or vector of linear predictor values at which to evaluate survival prob-

ability or hazard. If both times and lp are vectors, they must be of the same
length.

q a scalar or vector of probabilities. The default is .5, so just the median survival
time is returned. If q and lp are both vectors, a matrix of quantiles is returned,
with rows corresponding to lp and columns to q.

type type of residual desired. Default is censored normalized residuals, defined as
(link(Y) - linear.predictors)/scale parameter, where the link function was usually
the log function. See survreg for other types. type="score" returns the score
residual matrix.

n number of points to evaluate theoretical standardized survival function for
lines.residuals.psm.censored.normalized

lty line type for lines, default is 1
xlim range of times (or transformed times) for which to evaluate the standardized

survival function. Default is range in normalized residuals.
lwd line width for theoretical distribution, default is 3
g number of quantile groups to use for stratifying continuous variables having

more than 5 levels
col vector of colors for survplot method, corresponding to levels of x (must be a

scalar if there is no x)
main main plot title for survplot. If omitted, is the name or label of x if x is given.

Use main="" to suppress a title when you specify x.

198 psm

Details

The object survreg.distributions contains definitions of properties of the various survival dis-
tributions.
psm does not trap singularity errors due to the way survreg.fit does matrix inversion. It will trap
non-convergence (thus returning fit$fail=TRUE) if you give the argument failure=2 inside the
control list which is passed to survreg.fit. For example, use f <- psm(S ~ x, control=list(failure=2,
maxiter=20)) to allow up to 20 iterations and to set f$fail=TRUE in case of non-convergence. This
is especially useful in simulation work.

Value

psm returns a fit object with all the information survreg would store as well as what rms stores and
units and time.inc. Hazard, Survival, and Quantile return S-functions. residuals.psm with
type="censored.normalized" returns a Surv object which has a special attribute "theoretical"
which is used by the lines routine. This is the assumed standardized survival function as a function
of time or transformed time.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<fh@fharrell.com>

See Also

rms, survreg, residuals.survreg, survreg.object, survreg.distributions, pphsm, survplot,
survest, Surv, na.delete, na.detail.response, datadist, latex.psm, GiniMd, prModFit,
ggplot.Predict, plot.Predict, R2Measures

Examples

require(survival)
n <- 400
set.seed(1)
age <- rnorm(n, 50, 12)
sex <- factor(sample(c('Female','Male'),n,TRUE))
dd <- datadist(age,sex)
options(datadist='dd')
Population hazard function:
h <- .02*exp(.06*(age-50)+.8*(sex=='Female'))
d.time <- -log(runif(n))/h
cens <- 15*runif(n)
death <- ifelse(d.time <= cens,1,0)
d.time <- pmin(d.time, cens)

f <- psm(Surv(d.time,death) ~ sex*pol(age,2),
dist='lognormal')

Log-normal model is a bad fit for proportional hazards data
print(f, r2=0:4, pg=TRUE)

psm 199

anova(f)
fastbw(f) # if deletes sex while keeping age*sex ignore the result
f <- update(f, x=TRUE,y=TRUE) # so can validate, compute certain resids
validate(f, B=10) # ordinarily use B=300 or more
plot(Predict(f, age, sex)) # needs datadist since no explicit age, hosp.
Could have used ggplot(Predict(...))
survplot(f, age=c(20,60)) # needs datadist since hospital not set here
latex(f)

S <- Survival(f)
plot(f$linear.predictors, S(6, f$linear.predictors),

xlab=expression(X*hat(beta)),
ylab=expression(S(6,X*hat(beta))))

plots 6-month survival as a function of linear predictor (X*Beta hat)

times <- seq(0,24,by=.25)
plot(times, S(times,0), type='l') # plots survival curve at X*Beta hat=0
lam <- Hazard(f)
plot(times, lam(times,0), type='l') # similarly for hazard function

med <- Quantile(f) # new function defaults to computing median only
lp <- seq(-3, 5, by=.1)
plot(lp, med(lp=lp), ylab="Median Survival Time")
med(c(.25,.5), f$linear.predictors)

prints matrix with 2 columns

fit a model with no predictors
f <- psm(Surv(d.time,death) ~ 1, dist="weibull")
f
pphsm(f) # print proportional hazards form
g <- survest(f)
plot(g$time, g$surv, xlab='Time', type='l',

ylab=expression(S(t)))

f <- psm(Surv(d.time,death) ~ age,
dist="loglogistic", y=TRUE)

r <- resid(f, 'cens') # note abbreviation
survplot(npsurv(r ~ 1), conf='none')

plot Kaplan-Meier estimate of
survival function of standardized residuals

survplot(npsurv(r ~ cut2(age, g=2)), conf='none')
both strata should be n(0,1)

lines(r) # add theoretical survival function
#More simply:
survplot(r, age, g=2)

options(datadist=NULL)

200 Punits

Punits Prepare units for Printing and Plotting

Description

Takes a character variable containing units of measurement for a variable. If it has zero length, a
"" string is return. Otherwise, any trailing "s" is removed if the string is longer than one character,
and depending on the arguments, the string is changed to lower case, "s" is added, and the first
character is changed to upper case.

Usage

Punits(u, lower = TRUE, adds = TRUE, upfirst = FALSE, default = "")

Arguments

u a single string containing units of measurement

lower if TRUE set string to all lower case

adds if TRUE add trailing "s"

upfirst if TRUE set first character to upper case

default default units if u is empty

Value

a single character string

See Also

Hmisc::units()

Examples

Not run:
Punits('Years')

End(Not run)

recode2integer 201

recode2integer recode2integer

Description

Create Ordinal Variables With a Given Precision

Usage

recode2integer(y, precision = 7, ftable = TRUE)

Arguments

y a numeric, factor, or character vector with no NAs

precision number of places to the right of the decimal place to round y if y is numeric but
not integer, for the purpose of finding the distinct values. Real values rounding
to the same values under precision are mapped to the same integer output y

ftable set to FALSE to suppress creation of freq

Details

For a factor variable y, uses existing factor levels and codes the output y as integer. For a character
y, converts to factor and does the same. For a numeric y that is integer, leaves the levels intact and
codes y as consecutive positive integers corresponding to distinct values in the data. For numeric
y that contains any non-integer values, rounds y to precision decimal places to the right before
finding the distinct values.

This function is used to prepare ordinal variables for orm.fit() and lrm.fit(). It was written
because just using factor() creates slightly different distinct y levels on different hardware because
factor() uses unique() which functions slightly differently on different systems when there are
non-significant digits in floating point numbers. See this for more details.

Value

a list with the following elements:

• y: vector of integer-coded y

• ylevels: vector of corresponding original y values, possibly rounded to precision. This
vector is numeric unless y is factor or character, in which case it is a character vector.

• freq: frequency table of rounded or categorical y, with names attribute for the (possibly
rounded) y levels of the frequencies

• median: median y from original values if numeric, otherwise median of the new integer codes
for y

• whichmedian: the integer valued y that most closely corresponds to median; for an ordinal
regression model this represents one plus the index of the intercept vector corresponding to
median.

https://hbiostat.org/r/rms/unique-float/

202 residuals.cph

Author(s)

Cole Beck

Examples

w <- function(y, precision=7) {
v <- recode2integer(y, precision);
print(v)
print(table(y, ynew=v$y))

}
set.seed(1)
w(sample(1:3, 20, TRUE))
w(sample(letters[1:3], 20, TRUE))
y <- runif(20)
w(y)
w(y, precision=2)

residuals.cph Residuals for a cph Fit

Description

Calculates martingale, deviance, score or Schoenfeld residuals (scaled or unscaled) or influence
statistics for a Cox proportional hazards model. This is a slightly modified version of Therneau’s
residuals.coxph function. It assumes that x=TRUE and y=TRUE were specified to cph, except for
martingale residuals, which are stored with the fit by default.

Usage

S3 method for class 'cph'
residuals(object,

type=c("martingale", "deviance", "score", "schoenfeld",
"dfbeta", "dfbetas", "scaledsch", "partial"), ...)

Arguments

object a cph object

type character string indicating the type of residual desired; the default is martin-
gale. Only enough of the string to determine a unique match is required. Instead
of the usual residuals, type="dfbeta" may be specified to obtain approximate
leave-out-one ∆βs. Use type="dfbetas" to normalize the ∆βs for the stan-
dard errors of the regression coefficient estimates. Scaled Schoenfeld residuals
(type="scaledsch", Grambsch and Therneau, 1993) better reflect the log haz-
ard ratio function than ordinary Schoenfeld residuals, and they are on the re-
gression coefficient scale. The weights use Grambsch and Therneau’s "average
variance" method.

... see residuals.coxph

residuals.cph 203

Value

The object returned will be a vector for martingale and deviance residuals and matrices for score
and schoenfeld residuals, dfbeta, or dfbetas. There will be one row of residuals for each row in
the input data (without collapse). One column of score and Schoenfeld residuals will be returned
for each column in the model.matrix. The scaled Schoenfeld residuals are used in the cox.zph
function.

The score residuals are each individual’s contribution to the score vector. Two transformations
of this are often more useful: dfbeta is the approximate change in the coefficient vector if that
observation were dropped, and dfbetas is the approximate change in the coefficients, scaled by the
standard error for the coefficients.

References

T. Therneau, P. Grambsch, and T.Fleming. "Martingale based residuals for survival models",
Biometrika, March 1990.

P. Grambsch, T. Therneau. "Proportional hazards tests and diagnostics based on weighted residu-
als", unpublished manuscript, Feb 1993.

See Also

cph, coxph, residuals.coxph, cox.zph, naresid

Examples

fit <- cph(Surv(start, stop, event) ~ (age + surgery)* transplant,
data=jasa1)
mresid <- resid(fit, collapse=jasa1$id)

Get unadjusted relationships for several variables
Pick one variable that's not missing too much, for fit

require(survival)
n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
d.time <- -log(runif(n))/h
death <- ifelse(d.time <= cens,1,0)
d.time <- pmin(d.time, cens)

f <- cph(Surv(d.time, death) ~ age + blood.pressure + cholesterol, iter.max=0)
res <- resid(f) # This re-inserts rows for NAs, unlike f$resid
yl <- quantile(res, c(10/length(res),1-10/length(res)), na.rm=TRUE)
Scale all plots from 10th smallest to 10th largest residual

204 residuals.Glm

par(mfrow=c(2,2), oma=c(3,0,3,0))
p <- function(x) {

s <- !is.na(x+res)
plot(lowess(x[s], res[s], iter=0), xlab=label(x), ylab="Residual",

ylim=yl, type="l")
}
p(age); p(blood.pressure); p(cholesterol)
mtext("Smoothed Martingale Residuals", outer=TRUE)

Assess PH by estimating log relative hazard over time
f <- cph(Surv(d.time,death) ~ age + sex + blood.pressure, x=TRUE, y=TRUE)
r <- resid(f, "scaledsch")
tt <- as.numeric(dimnames(r)[[1]])
par(mfrow=c(3,2))
for(i in 1:3) {

g <- areg.boot(I(r[,i]) ~ tt, B=20)
plot(g, boot=FALSE) # shows bootstrap CIs

} # Focus on 3 graphs on right
Easier approach:
plot(cox.zph(f)) # invokes plot.cox.zph
par(mfrow=c(1,1))

residuals.Glm residuals.Glm

Description

Residuals for ‘Glm‘

Usage

S3 method for class 'Glm'
residuals(object, type, ...)

Arguments

object a fit object produced by ‘Glm‘

type either ‘’score’‘ or a ‘type‘ accepted by ‘residuals.glm‘

... ignored

Details

This function mainly passes through to ‘residuals.glm‘ but for ‘type=’score’‘ computes the matrix
of score residuals using code modified from ‘sandwich::estfun.glm‘.

Value

a vector or matrix

residuals.lrm 205

Author(s)

Frank Harrell

residuals.lrm Residuals from an lrm or orm Fit

Description

For a binary logistic model fit, computes the following residuals, letting P denote the predicted
probability of the higher category of Y , X denote the design matrix (with a column of 1s for
the intercept), and L denote the logit or linear predictors: ordinary or Li-Shepherd (Y − P), score
(X(Y −P)), pearson ((Y −P)/

√
P (1− P)), deviance (for Y = 0 is −

√
2| log(1− P)|, for Y = 1

is
√

2| log(P)|, pseudo dependent variable used in influence statistics (L+ (Y −P)/(P (1−P))),
and partial (Xiβi + (Y − P)/(P (1− P))).

Will compute all these residuals for an ordinal logistic model, using as temporary binary responses
dichotomizations of Y , along with the corresponding P , the probability that Y ≥ cutoff. For
type="partial", all possible dichotomizations are used, and for type="score", the actual compo-
nents of the first derivative of the log likelihood are used for an ordinal model. For type="li.shepherd"
the residual is Pr(W < Y) − Pr(W > Y) where Y is the observed response and W is a random
variable from the fitted distribution. Alternatively, specify type="score.binary" to use binary
model score residuals but for all cutpoints of Y (plotted only, not returned). The score.binary,
partial, and perhaps score residuals are useful for checking the proportional odds assumption
although many attempts to do so have failed. If the option pl=TRUE is used to plot the score or
score.binary residuals, a score residual plot is made for each column of the design (predictor)
matrix, with Y cutoffs on the x-axis and the mean +- 1.96 standard errors of the score residuals
on the y-axis. You can instead use a box plot to display these residuals, for both score.binary
and score. Proportional odds dictates a horizontal score.binary plot. Partial residual plots use
smooth nonparametric estimates, separately for each cutoff of Y . One examines that plot for par-
allelism of the curves to check the proportional odds assumption, as well as to see if the predictor
behaves linearly.

Also computes a variety of influence statistics and the le Cessie - van Houwelingen - Copas -
Hosmer unweighted sum of squares test for global goodness of fit, done separately for each cutoff
of Y in the case of an ordinal model.

The plot.lrm.partial function computes partial residuals for a series of binary logistic model
fits that all used the same predictors and that specified x=TRUE, y=TRUE. It then computes smoothed
partial residual relationships (using lowess with iter=0) and plots them separately for each pre-
dictor, with residual plots from all model fits shown on the same plot for that predictor.

Usage

S3 method for class 'lrm'
residuals(object, type=c("li.shepherd","ordinary",
"score", "score.binary", "pearson", "deviance", "pseudo.dep",
"partial", "dfbeta", "dfbetas", "dffit", "dffits", "hat", "gof", "lp1"),

pl=FALSE, xlim, ylim, kint, label.curves=TRUE, which, ...)

206 residuals.lrm

S3 method for class 'orm'
residuals(object, type=c("li.shepherd","ordinary",
"score", "score.binary", "pearson", "deviance", "pseudo.dep",
"partial", "dfbeta", "dfbetas", "dffit", "dffits", "hat", "gof", "lp1"),

pl=FALSE, xlim, ylim, kint, label.curves=TRUE, which, ...)

S3 method for class 'lrm.partial'
plot(..., labels, center=FALSE, ylim)

Arguments

object object created by lrm or orm
... for residuals, applies to type="partial" when pl is not FALSE. These are ex-

tra arguments passed to the smoothing function. Can also be used to pass extra
arguments to boxplot for type="score" or "score.binary". For plot.lrm.partial
this specifies a series of binary model fit objects.

type type of residual desired. Use type="lp1" to get approximate leave-out-1 linear
predictors, derived by subtracting the dffit from the original linear predictor
values.

pl applies only to type="partial", "score", and "score.binary". For score
residuals in an ordinal model, set pl=TRUE to get means and approximate 0.95
confidence bars vs. Y , separately for each X . Alternatively, specify pl="boxplot"
to use boxplot to draw the plot, with notches and with width proportional to the
square root of the cell sizes. For partial residuals, set pl=TRUE (which uses
lowess) or pl="supsmu" to get smoothed partial residual plots for all columns
of X using supsmu. Use pl="loess" to use loess and get confidence bands
("loess" is not implemented for ordinal responses). Under R, pl="loess"
uses lowess and does not provide confidence bands. If there is more than one
X , you should probably use par(mfrow=c(,)) before calling resid. Note that
pl="loess" results in plot.loess being called, which requires a large memory
allocation.

xlim plotting range for x-axis (default = whole range of predictor)
ylim plotting range for y-axis (default = whole range of residuals, range of all con-

fidence intervals for score or score.binary or range of all smoothed curves for
partial if pl=TRUE, or 0.1 and 0.9 quantiles of the residuals for pl="boxplot".)

kint for an ordinal model for residuals other than li.shepherd, partial, score,
or score.binary, specifies the intercept (and the cutoff of Y) to use for the
calculations. Specifying kint=2, for example, means to use Y ≥ 3rd level.

label.curves set to FALSE to suppress curve labels when type="partial". The default, TRUE,
causes labcurve to be invoked to label curves where they are most separated.
label.curves can be a list containing the opts parameter for labcurve, to
send options to labcurve, such as tilt. The default for tilt here is TRUE.

which a vector of integers specifying column numbers of the design matrix for which
to compute or plot residuals, for type="partial","score","score.binary".

labels for plot.lrm.partial this specifies a vector of character strings providing la-
bels for the list of binary fits. By default, the names of the fit objects are used as
labels. The labcurve function is used to label the curve with the labels.

residuals.lrm 207

center for plot.lrm.partial this causes partial residuals for every model to have a
mean of zero before smoothing and plotting

Details

For the goodness-of-fit test, the le Cessie-van Houwelingen normal test statistic for the unweighted
sum of squared errors (Brier score times n) is used. For an ordinal response variable, the test for
predicting the probability that Y ≥ j is done separately for all j (except the first). Note that the test
statistic can have strange behavior (i.e., it is far too large) if the model has no predictive value.

For most of the values of type, you must have specified x=TRUE, y=TRUE to lrm or orm.

There is yet no literature on interpreting score residual plots for the ordinal model. Simulations
when proportional odds is satisfied have still shown a U-shaped residual plot. The series of binary
model score residuals for all cutoffs of Y seems to better check the assumptions. See the examples.

The li.shepherd residual is a single value per observation on the probability scale and can be useful
for examining linearity, checking for outliers, and measuring residual correlation.

Value

a matrix (type="partial","dfbeta","dfbetas","score"), test statistic (type="gof"), or a vec-
tor otherwise. For partial residuals from an ordinal model, the returned object is a 3-way array (rows
of X by columns of X by cutoffs of Y), and NAs deleted during the fit are not re-inserted into the
residuals. For score.binary, nothing is returned.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

References

Landwehr, Pregibon, Shoemaker. JASA 79:61–83, 1984.

le Cessie S, van Houwelingen JC. Biometrics 47:1267–1282, 1991.

Hosmer DW, Hosmer T, Lemeshow S, le Cessie S, Lemeshow S. A comparison of goodness-of-fit
tests for the logistic regression model. Stat in Med 16:965–980, 1997.

Copas JB. Applied Statistics 38:71–80, 1989.

Li C, Shepherd BE. Biometrika 99:473-480, 2012.

See Also

lrm, orm, naresid, which.influence, loess, supsmu, lowess, boxplot, labcurve

208 residuals.lrm

Examples

set.seed(1)
x1 <- runif(200, -1, 1)
x2 <- runif(200, -1, 1)
L <- x1^2 - .5 + x2
y <- ifelse(runif(200) <= plogis(L), 1, 0)
f <- lrm(y ~ x1 + x2, x=TRUE, y=TRUE)
resid(f) #add rows for NAs back to data
resid(f, "score") #also adds back rows
r <- resid(f, "partial") #for checking transformations of X's
par(mfrow=c(1,2))
for(i in 1:2) {

xx <- if(i==1)x1 else x2
plot(xx, r[,i], xlab=c('x1','x2')[i])
lines(lowess(xx,r[,i]))

}
resid(f, "partial", pl="loess") #same as last 3 lines
resid(f, "partial", pl=TRUE) #plots for all columns of X using supsmu
resid(f, "gof") #global test of goodness of fit
lp1 <- resid(f, "lp1") #approx. leave-out-1 linear predictors
-2*sum(y*lp1 + log(1-plogis(lp1))) #approx leave-out-1 deviance

#formula assumes y is binary

Simulate data from a population proportional odds model
set.seed(1)
n <- 400
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
L <- .05*(age-50) + .03*(blood.pressure-120)
p12 <- plogis(L) # Pr(Y>=1)
p2 <- plogis(L-1) # Pr(Y=2)
p <- cbind(1-p12, p12-p2, p2) # individual class probabilites
Cumulative probabilities:
cp <- matrix(cumsum(t(p)) - rep(0:(n-1), rep(3,n)), byrow=TRUE, ncol=3)
simulate multinomial with varying probs:
y <- (cp < runif(n)) %*% rep(1,3)
y <- as.vector(y)
Thanks to Dave Krantz for this trick
f <- lrm(y ~ age + blood.pressure, x=TRUE, y=TRUE)
par(mfrow=c(2,2))
resid(f, 'score.binary', pl=TRUE) #plot score residuals
resid(f, 'partial', pl=TRUE) #plot partial residuals
resid(f, 'gof') #test GOF for each level separately

Show use of Li-Shepherd residuals
f.wrong <- lrm(y ~ blood.pressure, x=TRUE, y=TRUE)
par(mfrow=c(2,1))
li.shepherd residuals from model without age
plot(age, resid(f.wrong, type="li.shepherd"),

ylab="li.shepherd residual")

residuals.lrm 209

lines(lowess(age, resid(f.wrong, type="li.shepherd")))
li.shepherd residuals from model including age
plot(age, resid(f, type="li.shepherd"),

ylab="li.shepherd residual")
lines(lowess(age, resid(f, type="li.shepherd")))

Make a series of binary fits and draw 2 partial residual plots
#
f1 <- lrm(y>=1 ~ age + blood.pressure, x=TRUE, y=TRUE)
f2 <- update(f1, y==2 ~.)
par(mfrow=c(2,1))
plot.lrm.partial(f1, f2)

Simulate data from both a proportional odds and a non-proportional
odds population model. Check how 3 kinds of residuals detect
non-prop. odds
set.seed(71)
n <- 400
x <- rnorm(n)

par(mfrow=c(2,3))
for(j in 1:2) { # 1: prop.odds 2: non-prop. odds

if(j==1)
L <- matrix(c(1.4,.4,-.1,-.5,-.9),

nrow=n, ncol=5, byrow=TRUE) + x / 2
else {

Slopes and intercepts for cutoffs of 1:5 :
slopes <- c(.7,.5,.3,.3,0)
ints <- c(2.5,1.2,0,-1.2,-2.5)

L <- matrix(ints, nrow=n, ncol=5, byrow=TRUE) +
matrix(slopes, nrow=n, ncol=5, byrow=TRUE) * x

}
p <- plogis(L)
Cell probabilities
p <- cbind(1-p[,1],p[,1]-p[,2],p[,2]-p[,3],p[,3]-p[,4],p[,4]-p[,5],p[,5])
Cumulative probabilities from left to right
cp <- matrix(cumsum(t(p)) - rep(0:(n-1), rep(6,n)), byrow=TRUE, ncol=6)
y <- (cp < runif(n)) %*% rep(1,6)

f <- lrm(y ~ x, x=TRUE, y=TRUE)
for(cutoff in 1:5) print(lrm(y >= cutoff ~ x)$coef)

print(resid(f,'gof'))
resid(f, 'score', pl=TRUE)
Note that full ordinal model score residuals exhibit a
U-shaped pattern even under prop. odds
ti <- if(j==2) 'Non-Proportional Odds\nSlopes=.7 .5 .3 .3 0' else

'True Proportional Odds\nOrdinal Model Score Residuals'
title(ti)

210 residuals.ols

resid(f, 'score.binary', pl=TRUE)
if(j==1) ti <- 'True Proportional Odds\nBinary Score Residuals'
title(ti)
resid(f, 'partial', pl=TRUE)
if(j==1) ti <- 'True Proportional Odds\nPartial Residuals'
title(ti)

}
par(mfrow=c(1,1))

Shepherd-Li residuals from orm. Thanks: Qi Liu

set.seed(3)
n <- 100
x1 <- rnorm(n)
y <- x1 + rnorm(n)
g <- orm(y ~ x1, family='probit', x=TRUE, y=TRUE)
g.resid <- resid(g)
plot(x1, g.resid, cex=0.4); lines(lowess(x1, g.resid)); abline(h=0, col=2,lty=2)

set.seed(3)
n <- 100
x1 <- rnorm(n)
y <- x1 + x1^2 +rnorm(n)
model misspecification, the square term is left out in the model
g <- orm(y ~ x1, family='probit', x=TRUE, y=TRUE)
g.resid <- resid(g)
plot(x1, g.resid, cex=0.4); lines(lowess(x1, g.resid)); abline(h=0, col=2,lty=2)

Not run:
Get data used in Hosmer et al. paper and reproduce their calculations
v <- Cs(id, low, age, lwt, race, smoke, ptl, ht, ui, ftv, bwt)
d <- read.table("http://www.umass.edu/statdata/statdata/data/lowbwt.dat",

skip=6, col.names=v)
d <- upData(d, race=factor(race,1:3,c('white','black','other')))
f <- lrm(low ~ age + lwt + race + smoke, data=d, x=TRUE,y=TRUE)
f
resid(f, 'gof')
Their Table 7 Line 2 found sum of squared errors=36.91, expected
value under H0=36.45, variance=.065, P=.071
We got 36.90, 36.45, SD=.26055 (var=.068), P=.085
Note that two logistic regression coefficients differed a bit
from their Table 1

End(Not run)

residuals.ols Residuals for ols

Description

Computes various residuals and measures of influence for a fit from ols.

residuals.ols 211

Usage

S3 method for class 'ols'
residuals(object,

type=c("ordinary", "score", "dfbeta", "dfbetas",
"dffit", "dffits", "hat", "hscore", "influence.measures",
"studentized"), ...)

Arguments

object object created by ols. Depending on type, you may have had to specify x=TRUE
to ols.

type type of residual desired. "ordinary" refers to the usual residual. "score"
is the matrix of score residuals (contributions to first derivative of log likeli-
hood). dfbeta and dfbetas mean respectively the raw and normalized ma-
trix of changes in regression coefficients after deleting in turn each observa-
tion. The coefficients are normalized by their standard errors. hat contains
the leverages — diagonals of the “hat” matrix. dffit and dffits contain re-
spectively the difference and normalized difference in predicted values when
each observation is omitted. The S lm.influence function is used. When
type="hscore", the ordinary residuals are divided by one minus the corre-
sponding hat matrix diagonal element to make residuals have equal variance.
When type="influence.measures" the model is converted to an lm model and
influence.measures(object)$infmat is returned. This is a matrix with df-
betas for all predictors, dffit, cov.r, Cook’s d, and hat. For type="studentized"
studentized leave-out-one residuals are computed. See the help file for influence.measures
for more details.

... ignored

Value

a matrix or vector, with places for observations that were originally deleted by ols held by NAs

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

lm.influence, ols, which.influence

Examples

set.seed(1)
x1 <- rnorm(100)
x2 <- rnorm(100)
x1[1] <- 100

212 rexVar

y <- x1 + x2 + rnorm(100)
f <- ols(y ~ x1 + x2, x=TRUE, y=TRUE)
resid(f, "dfbetas")
which.influence(f)
i <- resid(f, 'influence.measures') # dfbeta, dffit, etc.

rexVar rexVar

Description

Relative Explained Variation

Usage

rexVar(object, data, ns = 500, cint = 0.95)

Arguments

object a fit from rms or rmsb
data a data frame, data table, or list providing the predictors used in the original fit
ns maximum number of bootstrap repetitions or posterior draws to use
cint confidence interval coverage probability for nonparametric bootstrap percentile

intervals, or probability for a Bayesian highest posterior density interval for the
relative explained variations.

Details

Computes measures of relative explained variation for each predictor in an rms or rmsb model fit
object. This is similar to plot(anova(fit), what='proportion R2'). For an ols model the
result is exactly that. Uncertainty intervals are computed if the model fit is from rmsb or was run
through bootcov() with coef.reps=TRUE. The results may be printed, and there is also a plot
method.

When object is not an ols fit, the linear predictor from the fit in object is predicted from the
original predictors, resulting in a linear model with R2 = 1.0. The partial R2 for each predictor
from a new ols fit is the relative explained variation. The process is repeated when bootstrap coef-
ficients repetitions or posterior draws are present, to get uncertainty intervals. So relative explained
variation is the proportion of variation in the initial model’s predicted values (on the linear predictor
scale) that is due to each predictor.

Nonlinear and interaction terms are pooled with main linear effect of predictors, so relative ex-
plained variation for a predictor measures its total impact on predicted values, either as main effects
or effect modifiers (interaction components).

Value

a vector (if bootstrapping or Bayesian posterior sampling was not done) or a matrix otherwise, with
rows corresponding to predictors and colums REV, Lower, Upper. The returned object is of class
rexVar.

rms 213

Author(s)

Frank Harrell

See Also

Hmisc::cutGn()

Examples

set.seed(1)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
x3 <- rnorm(n)
yo <- x1 + x2 + rnorm(n) / 2.
Minimally group y so that bootstrap samples are very unlikely to miss a
value of y
y <- ordGroupBoot(yo)
d <- data.frame(x1, x2, x3, y)
dd <- datadist(d); options(datadist='dd')
f <- ols(y ~ pol(x1, 2) * pol(x2, 2) + x3,

data=d, x=TRUE, y=TRUE)
plot(anova(f), what='proportion R2', pl=FALSE)
rexVar(f)
g <- bootcov(f, B=20, coef.reps=TRUE)
rexVar(g, data=d)
f <- orm(y ~ pol(x1,2) * pol(x2, 2) + x3,

data=d, x=TRUE, y=TRUE)
rexVar(f, data=d)
g <- bootcov(f, B=20, coef.reps=TRUE)
rexVar(g, data=d)
Not run:
require(rmsb)
h <- blrm(y ~ pol(x1,2) * pol(x2, 2) + x3, data=d)
rexVar(h, data=d)

End(Not run)
options(datadist=NULL)

rms rms Methods and Generic Functions

Description

This is a series of special transformation functions (asis, pol, lsp, rcs, catg, scored, strat,
matrx), fitting functions (e.g., lrm,cph, psm, or ols), and generic analysis functions (anova.rms,
summary.rms, Predict, plot.Predict, ggplot.Predict, survplot, fastbw, validate, calibrate,
specs.rms, which.influence, latexrms, nomogram, datadist, gendata) that help automate

214 rms

many analysis steps, e.g. fitting restricted interactions and multiple stratification variables, anal-
ysis of variance (with tests of linearity of each factor and pooled tests), plotting effects of variables
in the model, estimating and graphing effects of variables that appear non-linearly in the model
using e.g. inter-quartile-range hazard ratios, bootstrapping model fits, and constructing nomograms
for obtaining predictions manually. Behind the scene is the Design function which stores extra
attributes. Design() is not intended to be called by users. Design causes detailed design attributes
and descriptions of the distribution of predictors to be stored in an attribute of the terms component
called Design.

modelData is a replacement for model.frame.default that is much streamlined and prepares data
for Design(). If a second formula is present, modelData ensures that missing data deletions are the
same for both formulas, and produces a second model frame for formula2 as the data2 attribute of
the main returned data frame.

Usage

modelData(data=environment(formula), formula, formula2=NULL,
weights, subset, na.action=na.delete, dotexpand=TRUE,
callenv=parent.frame(n=2))

Design(mf, formula=NULL, specials=NULL, allow.offset=TRUE, intercept=1)
not to be called by the user; called by fitting routines
dist <- datadist(x1,x2,sex,age,race,bp)
or dist <- datadist(my.data.frame)
Can omit call to datadist if not using summary.rms, Predict,
survplot.rms, or if all variable settings are given to them
options(datadist="dist")
f <- fitting.function(formula = y ~ rcs(x1,4) + rcs(x2,5) + x1%ia%x2 +
rcs(x1,4)%ia%rcs(x2,5) +
strat(sex)*age + strat(race)*bp)
See rms.trans for rcs, strat, etc.
%ia% is restricted interaction - not doubly nonlinear
for x1 by x2 this uses the simple product only, but pools x1*x2
effect with nonlinear function for overall tests
specs(f)
anova(f)
summary(f)
fastbw(f)
pred <- predict(f, newdata=expand.grid(x1=1:10,x2=3,sex="male",
age=50,race="black"))
pred <- predict(f, newdata=gendata(f, x1=1:10, x2=3, sex="male"))
This leaves unspecified variables set to reference values from datadist
pred.combos <- gendata(f, nobs=10) # Use X-windows to edit predictor settings
predict(f, newdata=pred.combos)
plot(Predict(f, x1)) # or ggplot(...)
latex(f)
nomogram(f)

rms 215

Arguments

data a data frame or calling environment

formula model formula

formula2 an optional second model formula (see for example ppo in blrm)

weights a weight variable or expression

subset a subsetting expression evaluated in the calling frame or data

na.action NA handling function, ideally one such as na.delete that stores extra informa-
tion about data omissions

specials a character vector specifying which function evaluations appearing in formula
are "special" in the model.frame sense

dotexpand set to FALSE to prevent . on right hand side of model formula from expanding
into all variables in data; used for cph

callenv the parent frame that called the fitting function

mf a model frame

allow.offset set to TRUE if model fitter allows an offset term

intercept 1 if an ordinary intercept is present, 0 otherwise

Value

a data frame augmented with additional information about the predictors and model formulation

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

rms.trans, rmsMisc, cph, lrm, ols, specs.rms, anova.rms, summary.rms, Predict, gendata,
fastbw, predictrms. validate, calibrate, which.influence, latex, latexrms, model.frame.default,
datadist, describe, nomogram, vif, dataRep

Examples

Not run:
require(rms)
require(ggplot2)
require(survival)
dist <- datadist(data=2) # can omit if not using summary, (gg)plot, survplot,

or if specify all variable values to them. Can
also defer. data=2: get distribution summaries
for all variables in search position 2
run datadist once, for all candidate variables

dist <- datadist(age,race,bp,sex,height) # alternative
options(datadist="dist")

216 rms.trans

f <- cph(Surv(d.time, death) ~ rcs(age,4)*strat(race) +
bp*strat(sex)+lsp(height,60),x=TRUE,y=TRUE)

anova(f)
anova(f,age,height) # Joint test of 2 vars
fastbw(f)
summary(f, sex="female") # Adjust sex to "female" when testing

interacting factor bp
bplot(Predict(f, age, height)) # 3-D plot
ggplot(Predict(f, age=10:70, height=60))
latex(f) # LaTeX representation of fit

f <- lm(y ~ x) # Can use with any fitting function that
calls model.frame.default, e.g. lm, glm

specs.rms(f) # Use .rms since class(f)="lm"
anova(f) # Works since Varcov(f) (=Varcov.lm(f)) works
fastbw(f)
options(datadist=NULL)
f <- ols(y ~ x1*x2) # Saves enough information to do fastbw, anova
anova(f) # Will not do Predict since distributions
fastbw(f) # of predictors not saved
plot(f, x1=seq(100,300,by=.5), x2=.5)

all values defined - don't need datadist
dist <- datadist(x1,x2) # Equivalent to datadist(f)
options(datadist="dist")
plot(f, x1, x2=.5) # Now you can do plot, summary
plot(nomogram(f, interact=list(x2=c(.2,.7))))

End(Not run)

rms.trans rms Special Transformation Functions

Description

This is a series of functions (asis, pol, lsp, rcs, catg, scored, strat, matrx, gTrans, and %ia%)
that set up special attributes (such as knots and nonlinear term indicators) that are carried through
to fits (using for example lrm,cph, ols, psm). anova.rms, summary.rms, Predict, survplot,
fastbw, validate, specs, which.influence, nomogram and latex.rms use these attributes to au-
tomate certain analyses (e.g., automatic tests of linearity for each predictor are done by anova.rms).
Many of the functions are called implicitly. Some S functions such as ns derive data-dependent
transformations that are not always "remembered" when predicted values are later computed, so the
predictions may be incorrect. The functions listed here solve that problem when used in the rms
context.

asis is the identity transformation, pol is an ordinary (non-orthogonal) polynomial, rcs is a linear
tail-restricted cubic spline function (natural spline, for which the rcspline.eval function gen-
erates the design matrix, the presence of system option rcspc causes rcspline.eval to be in-
voked with pc=TRUE, and the presence of system option fractied causes this value to be passed
to rcspline.eval as the fractied argument), catg is for a categorical variable, scored is for

rms.trans 217

an ordered categorical variable, strat is for a stratification factor in a Cox model, matrx is for a
matrix predictor, and %ia% represents restricted interactions in which products involving nonlinear
effects on both variables are not included in the model. asis, catg, scored, matrx are seldom
invoked explicitly by the user (only to specify label or name, usually).

gTrans is a general multiple-parameter transformation function. It can be used to specify new
polynomial bases, smooth relationships with a discontinuity at one or more values of x, grouped
categorical variables, e.g., a categorical variable with 5 levels where you want to combine two of
the levels to spend only 3 degrees of freedom in all but see plots of predicted values where the
two combined categories are kept separate but will have equal effect estimates. The first argument
to gTrans is a regular numeric, character, or factor variable. The next argument is a function that
transforms a vector into a matrix. If the basis functions are to include a linear term it is up too the
user to include the original x as one of the columns. Column names are assigned automaticall, but
any column names specified by the user will override the default name. If you want to signal which
terms correspond to linear and which correspond to nonlinear effects for the purpose of running
anova.rms, add an integer vector attribute nonlinear to the resulting matrix. This vector specifies
the column numbers corresponding to nonlinear effects. The default is to assume a column is a
linear effect. The parms attribute stored with a gTrans result a character vector version of the
function, so as to not waste space carrying along any environment information. If you will be using
the latex method for typesetting the fitted model, you must include a tex attribute also in the
produced matrix. This must be a function of a single character string argument (that will ultimately
contain the name of the predictor in LaTeX notation) and must produce a vector of LaTeX character
strings. See https://hbiostat.org/R/examples/gTrans/gTrans.html for several examples of
the use of gTrans including the use of nonlinear and tex.

A makepredictcall method is defined so that usage of the transformation functions outside of rms
fitting functions will work for getting predicted values. Thanks to Therry Therneau for the code.

In the list below, functions asis through gTrans can have arguments x, parms, label, name ex-
cept that parms does not apply to asis, matrx, strat.

Usage

asis(...)
matrx(...)
pol(...)
lsp(...)
rcs(...)
catg(...)
scored(...)
strat(...)
gTrans(...)
x1 %ia% x2
S3 method for class 'rms'
makepredictcall(var, call)

Arguments

... The arguments . . . above contain the following.

x a predictor variable (or a function of one). If you specify e.g. pol(pmin(age,10),3),
a cubic polynomial will be fitted in pmin(age,10) (pmin is the S vector

https://hbiostat.org/R/examples/gTrans/gTrans.html

218 rms.trans

element–by–element function). The predictor will be labeled age in the
output, and plots with have age in its original units on the axes. If you use a
function such as pmin, the predictor is taken as the first argument, and other
arguments must be defined in the frame in effect when predicted values,
etc., are computed.

parms parameters of transformation (e.g. number or location of knots). For pol
the argument is the order of the polynomial, e.g. 2 for quadratic (the usual
default). For lsp it is a vector of knot locations (lsp will not estimate knot
locations). For rcs it is the number of knots (if scalar), or vector of knot
locations (if >2 elements). The default number is the nknots system option
if parms is not given. If the number of knots is given, locations are com-
puted for that number of knots. If system option rcspc is TRUE the parms
vector has an attribute defining the principal components transformation
parameters. For catg, parms is the category labels (not needed if variable
is an S category or factor variable). If omitted, catg will use unique(x),
or levels(x) if x is a category or a factor. For scored, parms is a vec-
tor of unique values of variable (uses unique(x) by default). This is not
needed if x is an S ordered variable. For strat, parms is the category
labels (not needed if variable is an S category variable). If omitted, will use
unique(x), or levels(x) if x is category or factor. parms is not used
for matrix.

label label of predictor for plotting (default = "label" attribute or variable
name)

name Name to use for predictor in model. Default is name of argument to func-
tion.

x1, x2 two continuous variables for which to form a non-doubly-nonlinear interaction

var a model term passed from a (usually non-rms) function

call call object for a model term

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

rcspline.eval, rcspline.restate, rms, cph, lrm, ols, datadist, makepredictcall

Examples

Not run:
options(knots=4, poly.degree=2)
To get the old behavior of rcspline.eval knot placement (which didnt' handle
clumping at the lowest or highest value of the predictor very well):
options(fractied = 1.0) # see rcspline.eval for details
country <- factor(country.codes)
blood.pressure <- cbind(sbp=systolic.bp, dbp=diastolic.bp)

rmsMisc 219

fit <- lrm(Y ~ sqrt(x1)*rcs(x2) + rcs(x3,c(5,10,15)) +
lsp(x4,c(10,20)) + country + blood.pressure + poly(age,2))

sqrt(x1) is an implicit asis variable, but limits of x1, not sqrt(x1)
are used for later plotting and effect estimation
x2 fitted with restricted cubic spline with 4 default knots
x3 fitted with r.c.s. with 3 specified knots
x4 fitted with linear spline with 2 specified knots
country is an implied catg variable
blood.pressure is an implied matrx variable
since poly is not an rms function (pol is), it creates a
matrx type variable with no automatic linearity testing
or plotting
f1 <- lrm(y ~ rcs(x1) + rcs(x2) + rcs(x1) %ia% rcs(x2))
%ia% restricts interactions. Here it removes terms nonlinear in
both x1 and x2
f2 <- lrm(y ~ rcs(x1) + rcs(x2) + x1 %ia% rcs(x2))
interaction linear in x1
f3 <- lrm(y ~ rcs(x1) + rcs(x2) + x1 %ia% x2)
simple product interaction (doubly linear)
Use x1 %ia% x2 instead of x1:x2 because x1 %ia% x2 triggers
anova to pool x1*x2 term into x1 terms to test total effect
of x1
#
Examples of gTrans
#
Linear relationship with a discontinuity at zero:
ldisc <- function(x) {z <- cbind(x == 0, x); attr(z, 'nonlinear') <- 1; z}
gTrans(x, ldisc)
Duplicate pol(x, 2):
pol2 <- function(x) {z <- cbind(x, x^2); attr(z, 'nonlinear') <- 2; z}
gTrans(x, pol2)
Linear spline with a knot at x=10 with the new slope taking effect
until x=20 and the spline turning flat at that point but with a
discontinuous vertical shift
tex is only needed if you will be using latex(fit)
dspl <- function(x) {

z <- cbind(x, pmax(pmin(x, 20) - 10, 0), x > 20)
attr(z, 'nonlinear') <- 2:3
attr(z, 'tex') <- function(x) sprintf(c('%s', '(\min(%s, 20) - 10)_{+}',

'[%s > 20]'), x)
z }

gTrans(x, dspl)

End(Not run)

rmsMisc Miscellaneous Design Attributes and Utility Functions

220 rmsMisc

Description

These functions are used internally to anova.rms, fastbw, etc., to retrieve various attributes of a
design. These functions allow some fitting functions not in the rms series (e.g„ lm, glm) to be used
with rms.Design, fastbw, and similar functions.

For vcov, there are several functions. The method for orm fits is a bit different because the co-
variance matrix stored in the fit object only deals with the middle intercept. See the intercepts
argument for more options. There is a method for lrm that also allows non-default intercept(s) to
be selected (default is first).

The oos.loglik function for each type of model implemented computes the -2 log likelihood
for out-of-sample data (i.e., data not necessarily used to fit the model) evaluated at the parameter
estimates from a model fit. Vectors for the model’s linear predictors and response variable must be
given. oos.loglik is used primarily by bootcov.

The Getlim function retrieves distribution summaries from the fit or from a datadist object. It
handles getting summaries from both sources to fill in characteristics for variables that were not
defined during the model fit. Getlimi returns the summary for an individual model variable.

Mean is a generic function that creates an R function that calculates the expected value of the re-
sponse variable given a fit from rms or rmsb.

The related.predictors function returns a list containing variable numbers that are directly or
indirectly related to each predictor. The interactions.containing function returns indexes of
interaction effects containing a given predictor. The param.order function returns a vector of
logical indicators for whether parameters are associated with certain types of effects (nonlinear,
interaction, nonlinear interaction). combineRelatedPredictors creates of list of inter-connected
main effects and interations for use with predictrms with type='ccterms' (useful for gIndex).

The Penalty.matrix function builds a default penalty matrix for non-intercept term(s) for use in
penalized maximum likelihood estimation. The Penalty.setup function takes a constant or list
describing penalty factors for each type of term in the model and generates the proper vector of
penalty multipliers for the current model.

logLik.rms returns the maximized log likelihood for the model, whereas AIC.rms returns the AIC.
The latter function has an optional argument for computing AIC on a "chi-square" scale (model
likelihood ratio chi-square minus twice the regression degrees of freedom. logLik.ols handles the
case for ols, just by invoking logLik.lm in the stats package. logLik.Gls is also defined.

nobs.rms returns the number of observations used in the fit.

The lrtest function does likelihood ratio tests for two nested models, from fits that have stats
components with "Model L.R." values. For models such as psm, survreg, ols, lm which have
scale parameters, it is assumed that scale parameter for the smaller model is fixed at the estimate
from the larger model (see the example). For non-rms fits it is assumed that the logLik function
will return the correct -2 log likelihood for a model fit.

univarLR takes a multivariable model fit object from rms and re-fits a sequence of models contain-
ing one predictor at a time. It prints a table of likelihood ratio chi2 statistics from these fits.

The Newlabels function is used to override the variable labels in a fit object. Likewise, Newlevels
can be used to create a new fit object with levels of categorical predictors changed. These two
functions are especially useful when constructing nomograms.

rmsArgs handles . . . arguments to functions such as Predict, summary.rms, nomogram so that vari-
ables to vary may be specified without values (after an equals sign).

rmsMisc 221

prModFit is the workhorse for the print methods for highest-level rms model fitting functions,
handling both regular, html, and LaTeX printing, the latter two resulting in html or LaTeX code
written to the console, automatically ready for knitr. The work of printing summary statistics is
done by prStats, which uses the Hmisc print.char.matrix function to print overall model statis-
tics if options(prType=) was not set to "latex" or "html". Otherwise it generates customized
LaTeX or html code. The LaTeX longtable and epic packages must be in effect to use LaTeX.

reListclean allows one to rename a subset of a named list, ignoring the previous names and not
concatenating them as R does. It also removes NULL elements and (by default) elements that are
NA, as when an optional named element is fetched that doesn’t exist. It has an argument dec whose
elements are correspondingly removed, then dec is appended to the result vector.

formatNP is a function to format a vector of numerics. If digits is specified, formatNP will make
sure that the formatted representation has digits positions to the right of the decimal place. If
lang="latex" it will translate any scientific notation to LaTeX math form. If lang="html" will
convert to html. If pvalue=TRUE, it will replace formatted values with "< 0.0001" (if digits=4).

latex.naprint.delete will, if appropriate, use LaTeX to draw a dot chart of frequency of variable
NAs related to model fits. html.naprint.delete does the same thing in the RStudio R markdown
context, using Hmisc:dotchartp (which uses plotly) for drawing any needed dot chart.

removeFormulaTerms removes one or more terms from a model formula, using strictly charac-
ter manipulation. This handles problems such as [.terms removing offset() if you subset on
anything. The function can also be used to remove the dependent variable(s) from the formula.

Usage

S3 method for class 'rms'
vcov(object, regcoef.only=TRUE, intercepts='all', ...)
S3 method for class 'cph'
vcov(object, regcoef.only=TRUE, ...)
S3 method for class 'Glm'
vcov(object, regcoef.only=TRUE, intercepts='all', ...)
S3 method for class 'Gls'
vcov(object, intercepts='all', ...)
S3 method for class 'lrm'
vcov(object, regcoef.only=TRUE, intercepts='all', ...)
S3 method for class 'ols'
vcov(object, regcoef.only=TRUE, ...)
S3 method for class 'orm'
vcov(object, regcoef.only=TRUE, intercepts='mid', ...)
S3 method for class 'psm'
vcov(object, regcoef.only=TRUE, ...)

Given Design attributes and number of intercepts creates R
format assign list. atr non.slopes Terms
DesignAssign(atr, non.slopes, Terms)

oos.loglik(fit, ...)

S3 method for class 'ols'

222 rmsMisc

oos.loglik(fit, lp, y, ...)
S3 method for class 'lrm'
oos.loglik(fit, lp, y, ...)
S3 method for class 'cph'
oos.loglik(fit, lp, y, ...)
S3 method for class 'psm'
oos.loglik(fit, lp, y, ...)
S3 method for class 'Glm'
oos.loglik(fit, lp, y, ...)

Getlim(at, allow.null=FALSE, need.all=TRUE)
Getlimi(name, Limval, need.all=TRUE)

related.predictors(at, type=c("all","direct"))
interactions.containing(at, pred)
combineRelatedPredictors(at)
param.order(at, term.order)

Penalty.matrix(at, X)
Penalty.setup(at, penalty)

S3 method for class 'Gls'
logLik(object, ...)
S3 method for class 'ols'
logLik(object, ...)
S3 method for class 'rms'
logLik(object, ...)
S3 method for class 'rms'
AIC(object, ..., k=2, type=c('loglik', 'chisq'))
S3 method for class 'rms'
nobs(object, ...)

lrtest(fit1, fit2)
S3 method for class 'lrtest'
print(x, ...)

univarLR(fit)

Newlabels(fit, ...)
Newlevels(fit, ...)
S3 method for class 'rms'
Newlabels(fit, labels, ...)
S3 method for class 'rms'
Newlevels(fit, levels, ...)

prModFit(x, title, w, digits=4, coefs=TRUE, footer=NULL,
lines.page=40, long=TRUE, needspace, subtitle=NULL, ...)

rmsMisc 223

prStats(labels, w, lang=c("plain", "latex", "html"))

reListclean(..., dec=NULL, na.rm=TRUE)

formatNP(x, digits=NULL, pvalue=FALSE,
lang=c("plain", "latex", "html"))

S3 method for class 'naprint.delete'
latex(object, file="", append=TRUE, ...)

S3 method for class 'naprint.delete'
html(object, ...)

removeFormulaTerms(form, which=NULL, delete.response=FALSE)

Arguments

fit result of a fitting function

object result of a fitting function

regcoef.only For fits such as parametric survival models which have a final row and column
of the covariance matrix for a non-regression parameter such as a log(scale)
parameter, setting regcoef.only=TRUE causes only the first p rows and columns
of the covariance matrix to be returned, where p is the length of object$coef.

intercepts set to "none" to omit any rows and columns related to intercepts. Set to an
integer scalar or vector to include particular intercept elements. Set to 'all' to
include all intercepts, or for orm to "mid" to use the default for orm. The default
is to use the first for lrm and the median intercept for orm.

at Design element of a fit

pred index of a predictor variable (main effect)

fit1, fit2 fit objects from lrm,ols,psm,cph etc. It doesn’t matter which fit object is the
sub-model.

lp linear predictor vector for oos.loglik. For proportional odds ordinal logistic
models, this should have used the first intercept only. If lp and y are omitted,
the -2 log likelihood for the original fit are returned.

y values of a new vector of responses passed to oos.loglik.

name the name of a variable in the model

Limval an object returned by Getlim

allow.null prevents Getlim from issuing an error message if no limits are found in the fit
or in the object pointed to by options(datadist=)

need.all set to FALSE to prevent Getlim or Getlimi from issuing an error message if data
for a variable are not found

type For related.predictors, set to "direct" to return lists of indexes of directly
related factors only (those in interactions with the predictor). For AIC.rms, type

224 rmsMisc

specifies the basis on which to return AIC. The default is minus twice the maxi-
mized log likelihood plus k times the degrees of freedom counting intercept(s).
Specify type='chisq' to get a penalized model likelihood ratio chi-square in-
stead.

term.order 1 for all parameters, 2 for all parameters associated with either nonlinear or
interaction effects, 3 for nonlinear effects (main or interaction), 4 for interaction
effects, 5 for nonlinear interaction effects.

X a design matrix, not including columns for intercepts

penalty a vector or list specifying penalty multipliers for types of model terms

k the multiplier of the degrees of freedom to be used in computing AIC. The de-
fault is 2.

x a result of lrtest, or the result of a high-level model fitting function (for
prModFit)

labels a character vector specifying new labels for variables in a fit. To give new
labels for all variables, you can specify labels of the form labels=c("Age
in Years","Cholesterol"), where the list of new labels is assumed to be
the length of all main effect-type variables in the fit and in their original or-
der in the model formula. You may specify a named vector to give new la-
bels in random order or for a subset of the variables, e.g., labels=c(age="Age
in Years",chol="Cholesterol"). For prStats, is a list with major column
headings, which can themselves be vectors that are then stacked vertically.

levels a list of named vectors specifying new level labels for categorical predictors.
This will override parms as well as datadist information (if available) that
were stored with the fit.

title a single character string used to specify an overall title for the regression fit,
which is printed first by prModFit. Set to "" to suppress the title.

w For prModFit, a special list of lists, which each list element specifying informa-
tion about a block of information to include in the print. output for a fit. For
prStats, w is a list of statistics to print, elements of which can be vectors that
are stacked vertically. Unnamed elements specify number of digits to the right
of the decimal place to which to round (NA means use format without rounding,
as with integers and floating point values). Negative values of digits indicate
that the value is a P-value to be formatted with formatNP. Digits are recycled as
needed.

digits number of digits to the right of the decimal point, for formatting numeric values
in printed output

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

footer a character string to appear at the bottom of the regression model output

file name of file to which to write model output

append specify append=FALSE when using file and you want to start over instead of
adding to an existing file.

lang specifies the typesetting language: plain text, LaTeX, or html

rmsMisc 225

lines.page see latex

long set to FALSE to suppress printing of formula and certain other model output

needspace optional character string to insert inside a LaTeX needspace macro call before
the statistics table and before the coefficient matrix, to avoid bad page splits.
This assumes the LaTeX needspace style is available. Example: needspace='6\baselineskip'
or needspace='1.5in'.

subtitle optional vector of character strings containing subtitles that will appear under
title but not bolded

dec vector of decimal places used for rounding

na.rm set to FALSE to keep NAs in the vector created by reListclean

pvalue set to TRUE if you want values below 10 to the minus digits to be formatted to
be less than that value

form a formula object

which a vector of one or more character strings specifying the names of functions that
are called from a formula, e.g., "cluster". By default no right-hand-side terms
are removed.

delete.response

set to TRUE to remove the dependent variable(s) from the formula
atr, non.slopes, Terms

Design function attributes, number of intercepts, and terms object

... other arguments. For reListclean this contains the elements being extracted.
For prModFit this information is passed to the Hmisc latexTabular function
when a block of output is a vector to be formatted in LaTeX.

Value

vcov returns a variance-covariance matrix oos.loglik returns a scalar -2 log likelihood value.
Getlim returns a list with components limits and values, either stored in fit or retrieved from
the object created by datadist and pointed to in options(datadist=). related.predictors
and combineRelatedPredictors return a list of vectors, and interactions.containing returns
a vector. param.order returns a logical vector corresponding to non-strata terms in the model.
Penalty.matrix returns a symmetric matrix with dimension equal to the number of slopes in the
model. For all but categorical predictor main effect elements, the matrix is diagonal with values
equal to the variances of the columns of X. For segments corresponding to c-1 dummy variables for
c-category predictors, puts a c-1 x c-1 sub-matrix in Penalty.matrix that is constructed so that
a quadratic form with Penalty.matrix in the middle computes the sum of squared differences in
parameter values about the mean, including a portion for the reference cell in which the parameter
is by definition zero. Newlabels returns a new fit object with the labels adjusted.

reListclean returns a vector of named (by its arguments) elements. formatNP returns a character
vector.

removeFormulaTerms returns a formula object.

See Also

rms, fastbw, anova.rms, summary.lm, summary.glm, datadist, vif, bootcov, latex, latexTabular,
latexSN, print.char.matrix,

226 rmsOverview

Examples

Not run:
f <- psm(S ~ x1 + x2 + sex + race, dist='gau')
g <- psm(S ~ x1 + sex + race, dist='gau',

fixed=list(scale=exp(f$parms)))
lrtest(f, g)

g <- Newlabels(f, c(x2='Label for x2'))
g <- Newlevels(g, list(sex=c('Male','Female'),race=c('B','W')))
nomogram(g)

End(Not run)

rmsOverview Overview of rms Package

Description

rms is the package that goes along with the book Regression Modeling Strategies. rms does re-
gression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing
enhanced model design attributes in the fit. rms is a re-written version of the Design package that
has improved graphics and duplicates very little code in the survival package.

The package is a collection of about 180 functions that assist and streamline modeling, especially
for biostatistical and epidemiologic applications. It also contains functions for binary and ordi-
nal logistic regression models and the Buckley-James multiple regression model for right-censored
responses, and implements penalized maximum likelihood estimation for logistic and ordinary lin-
ear models. rms works with almost any regression model, but it was especially written to work
with logistic regression, Cox regression, accelerated failure time models, ordinary linear models,
the Buckley-James model, generalized lease squares for longitudinal data (using the nlme pack-
age), generalized linear models, and quantile regression (using the quantreg package). rms requires
the Hmisc package to be installed. Note that Hmisc has several functions useful for data analysis
(especially data reduction and imputation).

Older references below pertaining to the Design package are relevant to rms.

Details

To make use of automatic typesetting features you must have LaTeX or one of its variants installed.

Some aspects of rms (e.g., latex) will not work correctly if options(contrasts=) other than
c("contr.treatment", "contr.poly") are used.

rms relies on a wealth of survival analysis functions written by Terry Therneau of Mayo Clinic.
Front-ends have been written for several of Therneau’s functions, and other functions have been
slightly modified.

rmsOverview 227

Statistical Methods Implemented

• Ordinary linear regression models

• Binary and ordinal logistic models (proportional odds and continuation ratio models, probit,
log-log, complementary log-log including ordinal cumulative probability models for continu-
ous Y, efficiently handling thousands of distinct Y values using full likelihood methods)

• Bayesian binary and ordinal regression models, partial proportional odds model, and random
effects

• Cox model

• Parametric survival models in the accelerated failure time class

• Buckley-James least-squares linear regression model with possibly right-censored responses

• Generalized linear model

• Quantile regression

• Generalized least squares

• Bootstrap model validation to obtain unbiased estimates of model performance without re-
quiring a separate validation sample

• Automatic Wald tests of all effects in the model that are not parameterization-dependent (e.g.,
tests of nonlinearity of main effects when the variable does not interact with other variables,
tests of nonlinearity of interaction effects, tests for whether a predictor is important, either as
a main effect or as an effect modifier)

• Graphical depictions of model estimates (effect plots, odds/hazard ratio plots, nomograms that
allow model predictions to be obtained manually even when there are nonlinear effects and
interactions in the model)

• Various smoothed residual plots, including some new residual plots for verifying ordinal lo-
gistic model assumptions

• Composing S functions to evaluate the linear predictor (X ˆbeta), hazard function, survival
function, quantile functions analytically from the fitted model

• Typesetting of fitted model using LaTeX

• Robust covariance matrix estimation (Huber or bootstrap)

• Cubic regression splines with linear tail restrictions (natural splines)

• Tensor splines

• Interactions restricted to not be doubly nonlinear

• Penalized maximum likelihood estimation for ordinary linear regression and logistic regres-
sion models. Different parts of the model may be penalized by different amounts, e.g., you
may want to penalize interaction or nonlinear effects more than main effects or linear effects

• Estimation of hazard or odds ratios in presence of nolinearity and interaction

• Sensitivity analysis for an unmeasured binary confounder in a binary logistic model

Motivation

rms was motivated by the following needs:

• need to automatically print interesting Wald tests that can be constructed from the design

228 rmsOverview

– tests of linearity with respect to each predictor
– tests of linearity of interactions
– pooled interaction tests (e.g., all interactions involving race)
– pooled tests of effects with higher order effects

* test of main effect not meaningful when effect in interaction

* pooled test of main effect + interaction effect is meaningful

* test of 2nd-order interaction + any 3rd-order interaction containing those factors is
meaningful

• need to store transformation parameters with the fit

– example: knot locations for spline functions
– these are "remembered" when getting predictions, unlike standard S or R
– for categorical predictors, save levels so that same dummy variables will be generated for

predictions; check that all levels in out-of-data predictions were present when model was
fitted

• need for uniform re-insertion of observations deleted because of NAs when using predict
without newdata or when using resid

• need to easily plot the regression effect of any predictor

– example: age is represented by a linear spline with knots at 40 and 60y plot effect of age
on log odds of disease, adjusting interacting factors to easily specified constants

– vary 2 predictors: plot x1 on x-axis, separate curves for discrete x2 or 3d perspective plot
for continuous x2

– if predictor is represented as a function in the model, plots should be with respect to the
original variable:
f <- lrm(y ~ log(cholesterol)+age)
plot(Predict(f, cholesterol)) # cholesterol on x-axis, default range
ggplot(Predict(f, cholesterol)) # same using ggplot2 plotp(Predict(f, cholesterol))
same directly using plotly

• need to store summary of distribution of predictors with the fit

– plotting limits (default: 10th smallest, 10th largest values or %-tiles)
– effect limits (default: .25 and .75 quantiles for continuous vars.)
– adjustment values for other predictors (default: median for continuous predictors, most

frequent level for categorical ones)
– discrete numeric predictors: list of possible values example: x=0,1,2,3,5 -> by default

don’t plot prediction at x=4
– values are on the inner-most variable, e.g. cholesterol, not log(chol.)
– allows estimation/plotting long after original dataset has been deleted
– for Cox models, underlying survival also stored with fit, so original data not needed to

obtain predicted survival curves

• need to automatically print estimates of effects in presence of non- linearity and interaction

– example: age is quadratic, interacting with sex default effect is inter-quartile-range hazard
ratio (for Cox model), for sex=reference level

– user-controlled effects: summary(fit, age=c(30,50), sex="female") -> odds ratios
for logistic model, relative survival time for accelerated failure time survival models

rmsOverview 229

– effects for all variables (e.g. odds ratios) may be plotted with multiple-confidence-level
bars

• need for prettier and more concise effect names in printouts, especially for expanded nonlinear
terms and interaction terms

– use inner-most variable name to identify predictors
– e.g. for pmin(x^2-3,10) refer to factor with legal S-name x

• need to recognize that an intercept is not always a simple concept

– some models (e.g., Cox) have no intercept
– some models (e.g., ordinal logistic) have multiple intercepts

• need for automatic high-quality printing of fitted mathematical model (with dummy variables
defined, regression spline terms simplified, interactions "factored"). Focus is on regression
splines instead of nonparametric smoothers or smoothing splines, so that explicit formulas for
fit may be obtained for use outside S. rms can also compose S functions to evaluate Xβ from
the fitted model analytically, as well as compose SAS code to do this.

• need for automatic drawing of nomogram to represent the fitted model

• need for automatic bootstrap validation of a fitted model, with only one S command (with
respect to calibration and discrimination)

• need for robust (Huber sandwich) estimator of covariance matrix, and be able to do all other
analysis (e.g., plots, C.L.) using the adjusted covariances

• need for robust (bootstrap) estimator of covariance matrix, easily used in other analyses with-
out change

• need for Huber sandwich and bootstrap covariance matrices adjusted for cluster sampling

• need for routine reporting of how many observations were deleted by missing values on each
predictor (see na.delete in Hmisc)

• need for optional reporting of descriptive statistics for Y stratified by missing status of each X
(see na.detail.response)

• need for pretty, annotated survival curves, using the same commands for parametric and Cox
models

• need for ordinal logistic model (proportional odds model, continuation ratio model)

• need for estimating and testing general contrasts without having to be conscious of variable
coding or parameter order

Fitting Functions Compatible with rms

rms will work with a wide variety of fitting functions, but it is meant especially for the following:

Function Purpose Related S
Functions

ols Ordinary least squares linear model lm
lrm Binary and ordinal logistic regression glm

model cr.setup
orm Ordinal regression model lrm
blrm Bayesian binary and ordinal regression \

230 rmsOverview

psm Accelerated failure time parametric survreg
survival model

cph Cox proportional hazards regression coxph
npsurv Nonparametric survival estimates survfit.formula
bj Buckley-James censored least squares survreg

linear model
Glm Version of glm for use with rms glm
Gls Version of gls for use with rms gls
Rq Version of rq for use with rms rq

Methods in rms

The following generic functions work with fits with rms in effect:

Function Purpose Related
Functions

print Print parameters and statistics of fit
coef Fitted regression coefficients
formula Formula used in the fit
specs Detailed specifications of fit
robcov Robust covariance matrix estimates
bootcov Bootstrap covariance matrix estimates
summary Summary of effects of predictors
plot.summary Plot continuously shaded confidence

bars for results of summary
anova Wald tests of most meaningful hypotheses
contrast General contrasts, C.L., tests
plot.anova Depict results of anova graphically dotchart
Predict Partial predictor effects predict
plot.Predict Plot predictor effects using lattice graphics predict
ggplot Similar to above but using ggplot2
plotp Similar to above but using plotly
bplot 3-D plot of effects of varying two

continuous predictors image, persp, contour
gendata Generate data frame with predictor expand.grid

combinations (optionally interactively)
predict Obtain predicted values or design matrix
fastbw Fast backward step-down variable step

selection
residuals Residuals, influence statistics from fit
(or resid)
which.influence Which observations are overly residuals

influential
sensuc Sensitivity of one binary predictor in

lrm and cph models to an unmeasured
binary confounder

latex LaTeX representation of fitted

rmsOverview 231

model or anova or summary table
Function S function analytic representation Function.transcan

of a fitted regression model (Xβ)
hazard S function analytic representation rcspline.restate

of a fitted hazard function (for psm)
Survival S function analytic representation of

fitted survival function (for psm,cph)
Quantile S function analytic representation of

fitted function for quantiles of
survival time (for psm, cph)

nomogram Draws a nomogram for the fitted model latex, plot, ggplot, plotp
survest Estimate survival probabilities survfit

(for psm, cph)
survplot Plot survival curves (psm, cph, npsurv) plot.survfit
validate Validate indexes of model fit using val.prob

resampling
calibrate Estimate calibration curve for model

using resampling
vif Variance inflation factors for a fit
naresid Bring elements corresponding to missing

data back into predictions and residuals
naprint Print summary of missing values
pentrace Find optimum penality for penalized MLE
effective.df Print effective d.f. for each type of

variable in model, for penalized fit or
pentrace result

rm.impute Impute repeated measures data with transcan,
non-random dropout fit.mult.impute
experimental, non-functional

Background for Examples

The following programs demonstrate how the pieces of the rms package work together. A (usually)
one-time call to the function datadist requires a pass at the entire data frame to store distribution
summaries for potential predictor variables. These summaries contain (by default) the .25 and .75
quantiles of continuous variables (for estimating effects such as odds ratios), the 10th smallest and
10th largest values (or .1 and .9 quantiles for small n) for plotting ranges for estimated curves, and
the total range. For discrete numeric variables (those having ≤ 10 unique values), the list of unique
values is also stored. Such summaries are used by the summary.rms, Predict, and nomogram.rms
functions. You may save time and defer running datadist. In that case, the distribution summary
is not stored with the fit object, but it can be gathered before running summary, plot, ggplot, or
plotp.

d <- datadist(my.data.frame) # or datadist(x1,x2)
options(datadist="d") # omit this or use options(datadist=NULL)
if not run datadist yet
cf <- ols(y ~ x1 * x2)
anova(f)
fastbw(f)

232 rmsOverview

Predict(f, x2) predict(f, newdata)

In the Examples section there are three detailed examples using a fitting function designed to be
used with rms, lrm (logistic regression model). In Detailed Example 1 we create 3 predictor
variables and a two binary response on 500 subjects. For the first binary response, dz, the true
model involves only sex and age, and there is a nonlinear interaction between the two because the
log odds is a truncated linear relationship in age for females and a quadratic function for males. For
the second binary outcome, dz.bp, the true population model also involves systolic blood pressure
(sys.bp) through a truncated linear relationship. First, nonparametric estimation of relationships is
done using the Hmisc package’s plsmo function which uses lowess with outlier detection turned
off for binary responses. Then parametric modeling is done using restricted cubic splines. This
modeling does not assume that we know the true transformations for age or sys.bp but that these
transformations are smooth (which is not actually the case in the population).

For Detailed Example 2, suppose that a categorical variable treat has values "a", "b", and "c", an
ordinal variable num.diseases has values 0,1,2,3,4, and that there are two continuous variables, age
and cholesterol. age is fitted with a restricted cubic spline, while cholesterol is transformed
using the transformation log(cholesterol - 10). Cholesterol is missing on three subjects, and we
impute these using the overall median cholesterol. We wish to allow for interaction between treat
and cholesterol. The following S program will fit a logistic model, test all effects in the design,
estimate effects, and plot estimated transformations. The fit for num.diseases really considers the
variable to be a 5-level categorical variable. The only difference is that a 3 d.f. test of linearity
is done to assess whether the variable can be re-modeled "asis". Here we also show statements to
attach the rms package and store predictor characteristics from datadist.

Detailed Example 3 shows some of the survival analysis capabilities of rms related to the Cox
proportional hazards model. We simulate data for 2000 subjects with 2 predictors, age and sex.
In the true population model, the log hazard function is linear in age and there is no age × sex
interaction. In the analysis below we do not make use of the linearity in age. rms makes use of
many of Terry Therneau’s survival functions that are builtin to S.

The following is a typical sequence of steps that would be used with rms in conjunction with the
Hmisc transcan function to do single imputation of all NAs in the predictors (multiple imputation
would be better but would be harder to do in the context of bootstrap model validation), fit a model,
do backward stepdown to reduce the number of predictors in the model (with all the severe problems
this can entail), and use the bootstrap to validate this stepwise model, repeating the variable selection
for each re-sample. Here we take a short cut as the imputation is not repeated within the bootstrap.

In what follows we (atypically) have only 3 candidate predictors. In practice be sure to have the
validate and calibrate functions operate on a model fit that contains all predictors that were involved
in previous analyses that used the response variable. Here the imputation is necessary because
backward stepdown would otherwise delete observations missing on any candidate variable.

Note that you would have to define x1, x2, x3, y to run the following code.

xt <- transcan(~ x1 + x2 + x3, imputed=TRUE)
impute(xt) # imputes any NAs in x1, x2, x3
Now fit original full model on filled-in data
f <- lrm(y ~ x1 + rcs(x2,4) + x3, x=TRUE, y=TRUE) #x,y allow boot.
fastbw(f)
derives stepdown model (using default stopping rule)
validate(f, B=100, bw=TRUE) # repeats fastbw 100 times
cal <- calibrate(f, B=100, bw=TRUE) # also repeats fastbw
plot(cal)

rmsOverview 233

Common Problems to Avoid

1. Don’t have a formula like y ~ age + age^2. In S you need to connect related variables using
a function which produces a matrix, such as pol or rcs. This allows effect estimates (e.g.,
hazard ratios) to be computed as well as multiple d.f. tests of association.

2. Don’t use poly or strata inside formulas used in rms. Use pol and strat instead.

3. Almost never code your own dummy variables or interaction variables in S. Let S do this
automatically. Otherwise, anova can’t do its job.

4. Almost never transform predictors outside of the model formula, as then plots of predicted
values vs. predictor values, and other displays, would not be made on the original scale. Use
instead something like y ~ log(cell.count+1), which will allow cell.count to appear on
x-axes. You can get fancier, e.g., y ~ rcs(log(cell.count+1),4) to fit a restricted cubic
spline with 4 knots in log(cell.count+1). For more complex transformations do something
like f <- function(x) {
... various 'if' statements, etc.
log(pmin(x,50000)+1)
}
fit1 <- lrm(death ~ f(cell.count))
fit2 <- lrm(death ~ rcs(f(cell.count),4))
}

5. Don’t put $ inside variable names used in formulas. Either attach data frames or use data=.

6. Don’t forget to use datadist. Try to use it at the top of your program so that all model fits
can automatically take advantage if its distributional summaries for the predictors.

7. Don’t validate or calibrate models which were reduced by dropping "insignificant" pre-
dictors. Proper bootstrap or cross-validation must repeat any variable selection steps for each
re-sample. Therefore, validate or calibrate models which contain all candidate predictors,
and if you must reduce models, specify the option bw=TRUE to validate or calibrate.

8. Dropping of "insignificant" predictors ruins much of the usual statistical inference for re-
gression models (confidence limits, standard errors, P -values, χ2, ordinary indexes of model
performance) and it also results in models which will have worse predictive discrimination.

Accessing the Package

Use require(rms).

Published Applications of rms and Regression Splines

• Spline fits

1. Spanos A, Harrell FE, Durack DT (1989): Differential diagnosis of acute meningitis: An
analysis of the predictive value of initial observations. JAMA 2700-2707.

2. Ohman EM, Armstrong PW, Christenson RH, et al. (1996): Cardiac troponin T levels for
risk stratification in acute myocardial ischemia. New Eng J Med 335:1333-1341.

• Bootstrap calibration curve for a parametric survival model:

1. Knaus WA, Harrell FE, Fisher CJ, Wagner DP, et al. (1993): The clinical evaluation
of new drugs for sepsis: A prospective study design based on survival analysis. JAMA
270:1233-1241.

234 rmsOverview

• Splines, interactions with splines, algebraic form of fitted model from latex.rms

1. Knaus WA, Harrell FE, Lynn J, et al. (1995): The SUPPORT prognostic model: Objective
estimates of survival for seriously ill hospitalized adults. Annals of Internal Medicine
122:191-203.

• Splines, odds ratio chart from fitted model with nonlinear and interaction terms, use of transcan
for imputation

1. Lee KL, Woodlief LH, Topol EJ, Weaver WD, Betriu A. Col J, Simoons M, Aylward
P, Van de Werf F, Califf RM. Predictors of 30-day mortality in the era of reperfusion
for acute myocardial infarction: results from an international trial of 41,021 patients.
Circulation 1995;91:1659-1668.

• Splines, external validation of logistic models, prediction rules using point tables

1. Steyerberg EW, Hargrove YV, et al (2001): Residual mass histology in testicular cancer:
development and validation of a clinical prediction rule. Stat in Med 2001;20:3847-3859.

2. van Gorp MJ, Steyerberg EW, et al (2003): Clinical prediction rule for 30-day mortality in
Bjork-Shiley convexo-concave valve replacement. J Clinical Epidemiology 2003;56:1006-
1012.

• Model fitting, bootstrap validation, missing value imputation

1. Krijnen P, van Jaarsveld BC, Steyerberg EW, Man in ’t Veld AJ, Schalekamp, MADH,
Habbema JDF (1998): A clinical prediction rule for renal artery stenosis. Annals of
Internal Medicine 129:705-711.

• Model fitting, splines, bootstrap validation, nomograms

1. Kattan MW, Eastham JA, Stapleton AMF, Wheeler TM, Scardino PT. A preoperative
nomogram for disease recurrence following radical prostatectomy for prostate cancer. J
Natl Ca Inst 1998; 90(10):766-771.

2. Kattan, MW, Wheeler TM, Scardino PT. A postoperative nomogram for disease recur-
rence following radical prostatectomy for prostate cancer. J Clin Oncol 1999; 17(5):1499-
1507

3. Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA. A pretreatment
nomogram for predicting the outcome of three-dimensional conformal radiotherapy in
prostate cancer. J Clin Oncol 2000; 18(19):3252-3259.

4. Eastham JA, May R, Robertson JL, Sartor O, Kattan MW. Development of a nomogram
which predicts the probability of a positive prostate biopsy in men with an abnormal
digital rectal examination and a prostate specific antigen between 0 and 4 ng/ml. Urology.
(In press).

5. Kattan MW, Heller G, Brennan MF. A competing-risk nomogram fir sarcoma-specific
death following local recurrence. Stat in Med 2003; 22; 3515-3525.

• Penalized maximum likelihood estimation, regression splines, web site to get predicted values

1. Smits M, Dippel DWJ, Steyerberg EW, et al. Predicting intracranial traumatic findings
on computed tomography in patients with minor head injury: The CHIP prediction rule.
Ann Int Med 2007; 146:397-405.

• Nomogram with 2- and 5-year survival probability and median survival time (but watch out
for the use of univariable screening)

1. Clark TG, Stewart ME, Altman DG, Smyth JF. A prognostic model for ovarian cancer.
Br J Cancer 2001; 85:944-52.

rmsOverview 235

• Comprehensive example of parametric survival modeling with an extensive nomogram, time
ratio chart, anova chart, survival curves generated using survplot, bootstrap calibration curve

1. Teno JM, Harrell FE, Knaus WA, et al. Prediction of survival for older hospitalized
patients: The HELP survival model. J Am Geriatrics Soc 2000; 48: S16-S24.

• Model fitting, imputation, and several nomograms expressed in tabular form

1. Hasdai D, Holmes DR, et al. Cardiogenic shock complicating acute myocardial infarc-
tion: Predictors of death. Am Heart J 1999; 138:21-31.

• Ordinal logistic model with bootstrap calibration plot

1. Wu AW, Yasui U, Alzola CF et al. Predicting functional status outcomes in hospitalized
patients aged 80 years and older. J Am Geriatric Society 2000; 48:S6-S15.

• Propensity modeling in evaluating medical diagnosis, anova dot chart

1. Weiss JP, Gruver C, et al. Ordering an echocardiogram for evaluation of left ventricular
function: Level of expertise necessary for efficient use. J Am Soc Echocardiography
2000; 13:124-130.

• Simulations using rms to study the properties of various modeling strategies

1. Steyerberg EW, Eijkemans MJC, Habbema JDF. Stepwise selection in small data sets: A
simulation study of bias in logistic regression analysis. J Clin Epi 1999; 52:935-942.

2. Steyerberg WE, Eijekans MJC, Harrell FE, Habbema JDF. Prognostic modeling with
logistic regression analysis: In search of a sensible strategy in small data sets. Med
Decision Making 2001; 21:45-56.

• Statistical methods and references related to rms, along with case studies which includes the
rms code which produced the analyses

1. Harrell FE, Lee KL, Mark DB (1996): Multivariable prognostic models: Issues in devel-
oping models, evaluating assumptions and adequacy, and measuring and reducing errors.
Stat in Med 15:361-387.

2. Harrell FE, Margolis PA, Gove S, Mason KE, Mulholland EK et al. (1998): Development
of a clinical prediction model for an ordinal outcome: The World Health Organization
ARI Multicentre Study of clinical signs and etiologic agents of pneumonia, sepsis, and
meningitis in young infants. Stat in Med 17:909-944.

3. Bender R, Benner, A (2000): Calculating ordinal regression models in SAS and S-Plus.
Biometrical J 42:677-699.

Bug Reports

The author is willing to help with problems. Send E-mail to <fh@fharrell.com>. To report bugs,
please do the following:

1. If the bug occurs when running a function on a fit object (e.g., anova), attach a dump’d text
version of the fit object to your note. If you used datadist but not until after the fit was cre-
ated, also send the object created by datadist. Example: save(myfit,"/tmp/myfit.rda")
will create an R binary save file that can be attached to the E-mail.

2. If the bug occurs during a model fit (e.g., with lrm, ols, psm, cph), send the statement caus-
ing the error with a save’d version of the data frame used in the fit. If this data frame is very
large, reduce it to a small subset which still causes the error.

236 robcov

Copyright Notice

GENERAL DISCLAIMER This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. In short: you may use this code
any way you like, as long as you don’t charge money for it, remove this notice, or hold anyone
liable for its results. Also, please acknowledge the source and communicate changes to the author.

If this software is used is work presented for publication, kindly reference it using for example:
Harrell FE (2009): rms: S functions for biostatistical/epidemiologic modeling, testing, estimation,
validation, graphics, and prediction. Programs available from https://hbiostat.org/R/rms/.
Be sure to reference other packages used as well as R itself.

Author(s)

Frank E Harrell Jr
Professor of Biostatistics
Vanderbilt University School of Medicine
Nashville, Tennessee
<fh@fharrell.com>

References

The primary resource for the rms package is Regression Modeling Strategies, second edition by FE
Harrell (Springer-Verlag, 2015) and the web page https://hbiostat.org/R/rms/. See also the
Statistics in Medicine articles by Harrell et al listed below for case studies of modeling and model
validation using rms.

Several datasets useful for multivariable modeling with rms are found at https://hbiostat.org/
data/.

Examples

To run several comprehensive examples, run the following command
Not run:
demo(all, 'rms')

End(Not run)

robcov Robust Covariance Matrix Estimates

https://hbiostat.org/R/rms/
https://hbiostat.org/R/rms/
https://hbiostat.org/data/
https://hbiostat.org/data/

robcov 237

Description

Uses the Huber-White method to adjust the variance-covariance matrix of a fit from maximum like-
lihood or least squares, to correct for heteroscedasticity and for correlated responses from cluster
samples. The method uses the ordinary estimates of regression coefficients and other parameters of
the model, but involves correcting the covariance matrix for model misspecification and sampling
design. Models currently implemented are models that have a residuals(fit,type="score")
function implemented, such as lrm, cph, coxph, and ordinary linear models (ols). The fit must
have specified the x=TRUE and y=TRUE options for certain models. Observations in different clusters
are assumed to be independent. For the special case where every cluster contains one observation,
the corrected covariance matrix returned is the "sandwich" estimator (see Lin and Wei). This is a
consistent estimate of the covariance matrix even if the model is misspecified (e.g. heteroscedastic-
ity, underdispersion, wrong covariate form).

For the special case of ols fits, robcov can compute the improved (especially for small samples)
Efron estimator that adjusts for natural heterogeneity of residuals (see Long and Ervin (2000) esti-
mator HC3).

Usage

robcov(fit, cluster, method=c('huber','efron'))

Arguments

fit a fit object from the rms series

cluster a variable indicating groupings. cluster may be any type of vector (factor,
character, integer). NAs are not allowed. Unique values of cluster indicate
possibly correlated groupings of observations. Note the data used in the fit and
stored in fit$x and fit$y may have had observations containing missing values
deleted. It is assumed that if any NAs were removed during the original model
fitting, an naresid function exists to restore NAs so that the rows of the score
matrix coincide with cluster. If cluster is omitted, it defaults to the integers
1,2,. . . ,n to obtain the "sandwich" robust covariance matrix estimate.

method can set to "efron" for ols fits (only). Default is Huber-White estimator of the
covariance matrix.

Value

a new fit object with the same class as the original fit, and with the element orig.var added.
orig.var is the covariance matrix of the original fit. Also, the original var component is replaced
with the new Huberized estimates. A component clusterInfo is added to contain elements name
and n holding the name of the cluster variable and the number of clusters.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

238 robcov

References

Huber, PJ. Proc Fifth Berkeley Symposium Math Stat 1:221–33, 1967.

White, H. Econometrica 50:1–25, 1982.

Lin, DY, Wei, LJ. JASA 84:1074–8, 1989.

Rogers, W. Stata Technical Bulletin STB-8, p. 15–17, 1992.

Rogers, W. Stata Release 3 Manual, deff, loneway, huber, hreg, hlogit functions.

Long, JS, Ervin, LH. The American Statistician 54:217–224, 2000.

See Also

bootcov, naresid, residuals.cph, http://gforge.se/gmisc interfaces rms to the sandwich
package

Examples

In OLS test against more manual approach
set.seed(1)
n <- 15
x1 <- 1:n
x2 <- sample(1:n)
y <- round(x1 + x2 + 8*rnorm(n))
f <- ols(y ~ x1 + x2, x=TRUE, y=TRUE)
vcov(f)
vcov(robcov(f))
X <- f$x
G <- diag(resid(f)^2)
solve(t(X) %*% X) %*% (t(X) %*% G %*% X) %*% solve(t(X) %*% X)

Duplicate data and adjust for intra-cluster correlation to see that
the cluster sandwich estimator completely ignored the duplicates
x1 <- c(x1,x1)
x2 <- c(x2,x2)
y <- c(y, y)
g <- ols(y ~ x1 + x2, x=TRUE, y=TRUE)
vcov(robcov(g, c(1:n, 1:n)))

A dataset contains a variable number of observations per subject,
and all observations are laid out in separate rows. The responses
represent whether or not a given segment of the coronary arteries
is occluded. Segments of arteries may not operate independently
in the same patient. We assume a "working independence model" to
get estimates of the coefficients, i.e., that estimates assuming
independence are reasonably efficient. The job is then to get
unbiased estimates of variances and covariances of these estimates.

n.subjects <- 30
ages <- rnorm(n.subjects, 50, 15)
sexes <- factor(sample(c('female','male'), n.subjects, TRUE))
logit <- (ages-50)/5
prob <- plogis(logit) # true prob not related to sex

Rq 239

id <- sample(1:n.subjects, 300, TRUE) # subjects sampled multiple times
table(table(id)) # frequencies of number of obs/subject
age <- ages[id]
sex <- sexes[id]
In truth, observations within subject are independent:
y <- ifelse(runif(300) <= prob[id], 1, 0)
f <- lrm(y ~ lsp(age,50)*sex, x=TRUE, y=TRUE)
g <- robcov(f, id)
diag(g$var)/diag(f$var)
add ,group=w to re-sample from within each level of w
anova(g) # cluster-adjusted Wald statistics
fastbw(g) # cluster-adjusted backward elimination
plot(Predict(g, age=30:70, sex='female')) # cluster-adjusted confidence bands
or use ggplot(...)

Get design effects based on inflation of the variances when compared
with bootstrap estimates which ignore clustering
g2 <- robcov(f)
diag(g$var)/diag(g2$var)

Get design effects based on pooled tests of factors in model
anova(g2)[,1] / anova(g)[,1]

A dataset contains one observation per subject, but there may be
heteroscedasticity or other model misspecification. Obtain
the robust sandwich estimator of the covariance matrix.

f <- ols(y ~ pol(age,3), x=TRUE, y=TRUE)
f.adj <- robcov(f)

Rq rms Package Interface to quantreg Package

Description

The Rq function is the rms front-end to the quantreg package’s rq function. print and latex
methods are also provided, and a fitting function RqFit is defined for use in bootstrapping, etc. Its
result is a function definition.

For the print method, format of output is controlled by the user previously running options(prType="lang")
where lang is "plain" (the default), "latex", or "html". For the latex method, html will
actually be used of options(prType='html'). When using html with Quarto or RMarkdown,
results='asis' need not be written in the chunk header.

240 Rq

Usage

Rq(formula, tau = 0.5, data=environment(formula),
subset, weights, na.action=na.delete,
method = "br", model = FALSE, contrasts = NULL,
se = "nid", hs = TRUE, x = FALSE, y = FALSE, ...)

S3 method for class 'Rq'
print(x, digits=4, coefs=TRUE, title, ...)

S3 method for class 'Rq'
latex(object,

file = '', append=FALSE,
which, varnames, columns=65, inline=FALSE, caption=NULL, ...)

S3 method for class 'Rq'
predict(object, ..., kint=1, se.fit=FALSE)

RqFit(fit, wallow=TRUE, passdots=FALSE)

Arguments

formula model formula

tau the single quantile to estimate. Unlike rq you cannot estimate more than one
quantile at one model fitting.

data, subset, weights, na.action, method, model, contrasts, se, hs
see rq

x set to TRUE to store the design matrix with the fit. For print is an Rq object.

y set to TRUE to store the response vector with the fit

... other arguments passed to one of the rq fitting routines. For latex.Rq these are
optional arguments passed to latexrms. Ignored for print.Rq. For predict.Rq
this is usually just a newdata argument.

digits number of significant digits used in formatting results in print.Rq.

coefs specify coefs=FALSE to suppress printing the table of model coefficients, stan-
dard errors, etc. Specify coefs=n to print only the first n regression coefficients
in the model.

title a character string title to be passed to prModFit

object an object created by Rq

file, append, which, varnames, columns, inline, caption
see latexrms

kint ignored

se.fit set to TRUE to obtain standard errors of predicted quantiles

fit an object created by Rq

wallow set to TRUE if weights are allowed in the current context.

passdots set to TRUE if . . . may be passed to the fitter

sensuc 241

Value

Rq returns a list of class "rms", "lassorq" or "scadrq","Rq", and "rq". RqFit returns a function
definition. latex.Rq returns an object of class "latex".

Note

The author and developer of methodology in the quantreg package is Roger Koenker.

Author(s)

Frank Harrell

See Also

rq, prModFit, orm

Examples

Not run:
set.seed(1)
n <- 100
x1 <- rnorm(n)
y <- exp(x1 + rnorm(n)/4)
dd <- datadist(x1); options(datadist='dd')
fq2 <- Rq(y ~ pol(x1,2))
anova(fq2)
fq3 <- Rq(y ~ pol(x1,2), tau=.75)
anova(fq3)
pq2 <- Predict(fq2, x1)
pq3 <- Predict(fq3, x1)
p <- rbind(Median=pq2, Q3=pq3)
plot(p, ~ x1 | .set.)
For superpositioning, with true curves superimposed
a <- function(x, y, ...) {
x <- unique(x)
col <- trellis.par.get('superpose.line')$col
llines(x, exp(x), col=col[1], lty=2)
llines(x, exp(x + qnorm(.75)/4), col=col[2], lty=2)

}
plot(p, addpanel=a)

End(Not run)

sensuc Sensitivity to Unmeasured Covariables

242 sensuc

Description

Performs an analysis of the sensitivity of a binary treatment (X) effect to an unmeasured binary
confounder (U) for a fitted binary logistic or an unstratified non-time-dependent Cox survival model
(the function works well for the former, not so well for the latter). This is done by fitting a sequence
of models with separately created U variables added to the original model. The sequence of models
is formed by simultaneously varying a and b, where a measures the association between U and X
and b measures the association between U and Y , where Y is the outcome of interest. For Cox
models, an approximate solution is used by letting Y represent some binary classification of the
event/censoring time and the event indicator. For example, Y could be just be the event indicator,
ignoring time of the event or censoring, or it could be 1 if a subject failed before one year and 0
otherwise. When for each combination of a and b the vector of binary values U is generated, one of
two methods is used to constrain the properties of U . With either method, the overall prevalence of
U is constrained to be prev.u. With the default method (or.method="x:u y:u"), U is sampled so
that the X : U odds ratio is a and the Y : U odds ratio is b. With the second method, U is sampled
according to the model logit(U = 1|X,Y) = α+β ∗Y +γ ∗X , where β = log(b) and γ = log(a)
and α is determined so that the prevalence of U = 1 is prev.u. This second method results in the
adjusted odds ratio for Y : U given X being b whereas the default method forces the unconditional
(marginal) Y : U odds ratio to be b. Rosenbaum uses the default method.

There is a plot method for plotting objects created by sensuc. Values of a are placed on the x-axis
and observed marginal odds or hazards ratios for U (unadjusted ratios) appear on the y-axis. For
Cox models, the hazard ratios will not agree exactly with X:event indicator odds ratios but they
sometimes be made close through judicious choice of the event function. The default plot uses
four symbols which differentiate whether for the a, b combination the effect of X adjusted for U
(and for any other covariables that were in the original model fit) is positive (usually meaning an
effect ratio greater than 1) and "significant", merely positive, not positive and non significant, or not
positive but significant. There is also an option to draw the numeric value of the X effect ratio at
the a,b combination along with its Z statistic underneath in smaller letters, and an option to draw
the effect ratio in one of four colors depending on the significance of the Z statistic.

Usage

fit <- lrm(formula=y ~ x + other.predictors, x=TRUE, y=TRUE) #or
fit <- cph(formula=Surv(event.time,event.indicator) ~ x + other.predictors,
x=TRUE, y=TRUE)

sensuc(fit,
or.xu=seq(1, 6, by = 0.5), or.u=or.xu,
prev.u=0.5, constrain.binary.sample=TRUE,
or.method=c("x:u y:u","u|x,y"),
event=function(y) if(is.matrix(y))y[,ncol(y)] else 1*y)

S3 method for class 'sensuc'
plot(x, ylim=c((1+trunc(min(x$effect.u)-.01))/

ifelse(type=='numbers',2,1),
1+trunc(max(x$effect.u)-.01)),

xlab='Odds Ratio for X:U',
ylab=if(x$type=='lrm')'Odds Ratio for Y:U' else

'Hazard Ratio for Y:U',

sensuc 243

digits=2, cex.effect=.75, cex.z=.6*cex.effect,
delta=diff(par('usr')[3:4])/40,
type=c('symbols','numbers','colors'),
pch=c(15,18,5,0), col=c(2,3,1,4), alpha=.05,
impressive.effect=function(x)x > 1,...)

Arguments

fit result of lrm or cph with x=TRUE, y=TRUE. The first variable in the right hand
side of the model formula must have been the binary X variable, and it may not
interact with other predictors.

x result of sensuc

or.xu vector of possible odds ratios measuring the X : U association.

or.u vector of possible odds ratios measuring the Y : U association. Default is
or.xu.

prev.u desired prevalence of U = 1. Default is 0.5, which is usually a "worst case" for
sensitivity analyses.

constrain.binary.sample

By default, the binary U values are sampled from the appropriate distributions
conditional on Y and X so that the proportions of U = 1 in each sample are
exactly the desired probabilities, to within the closeness of n×probability to an
integer. Specify constrain.binary.sample=FALSE to sample from ordinary
Bernoulli distributions, to allow proportions of U = 1 to reflect sampling fluc-
tuations.

or.method see above

event a function classifying the response variable into a binary event for the purposes
of constraining the association between U and Y . For binary logistic models,
event is left at its default value, which is the identify function, i.e, the original
Y values are taken as the events (no other choice makes any sense here). For
Cox models, the default event function takes the last column of the Surv object
stored with the fit. For rare events (high proportion of censored observations),
odds ratios approximate hazard ratios, so the default is OK. For other cases,
the survival times should be considered (probably in conjunction with the event
indicators), although it may not be possible to get a high enough hazard ratio
between U and Y by sampling U by temporarily making Y binary. See the last
example which is for a 2-column Surv object (first column of response vari-
able=event time, second=event indicator). When dichotomizing survival time at
a given point, it is advantageous to choose the cutpoint so that not many cen-
sored survival times preceed the cutpoint. Note that in fitting Cox models to
examine sensitivity to U , the original non-dichotomized failure times are used.

ylim y-axis limits for plot

xlab x-axis label

ylab y-axis label

digits number of digits to the right of the decimal point for drawing numbers on the
plot, for type="numbers" or type="colors".

244 sensuc

cex.effect character size for drawing effect ratios

cex.z character size for drawing Z statistics

delta decrement in y value used to draw Z values below effect ratios

type specify "symbols" (the default), "numbers", or "colors" (see above)

pch 4 plotting characters corresponding to positive and significant effects for X ,
positive and non-significant effects, not positive and not significant, not positive
but significant

col 4 colors as for pch

alpha significance level

impressive.effect

a function of the odds or hazard ratio for X returning TRUE for a positive effect.
By default, a positive effect is taken to mean a ratio exceeding one.

... optional arguments passed to plot

Value

sensuc returns an object of class "sensuc" with the following elements: OR.xu (vector of desired
X : U odds ratios or a values), OOR.xu (observed marginal X : U odds ratios), OR.u (desired Y : U
odds ratios or b values), effect.x (adjusted odds or hazards ratio for X in a model adjusted for U
and all of the other predictors), effect.u (unadjusted Y : U odds or hazards ratios), effect.u.adj
(adjusted Y : U odds or hazards ratios), Z (Z-statistics), prev.u (input to sensuc), cond.prev.u
(matrix with one row per a,b combination, specifying prevalences of U conditional on Y and X
combinations), and type ("lrm" or "cph").

Author(s)

Frank Harrell
Mark Conaway
Department of Biostatistics
Vanderbilt University School of Medicine
fh@fharrell.com, mconaway@virginia.edu

References

Rosenbaum, Paul R (1995): Observational Studies. New York: Springer-Verlag.

Rosenbaum P, Rubin D (1983): Assessing sensitivity to an unobserved binary covariate in an ob-
servational study with binary outcome. J Roy Statist Soc B 45:212–218.

Lee WC (2011): Bounding the bias of unmeasured factors with confounding and effect-modifying
potentials. Stat in Med 30:1007-1017.

See Also

lrm, cph, sample

setPb 245

Examples

set.seed(17)
x <- sample(0:1, 500,TRUE)
y <- sample(0:1, 500,TRUE)
y[1:100] <- x[1:100] # induce an association between x and y
x2 <- rnorm(500)

f <- lrm(y ~ x + x2, x=TRUE, y=TRUE)

#Note: in absence of U odds ratio for x is exp(2nd coefficient)

g <- sensuc(f, c(1,3))

Note: If the generated sample of U was typical, the odds ratio for
x dropped had U been known, where U had an odds ratio
with x of 3 and an odds ratio with y of 3

plot(g)

Fit a Cox model and check sensitivity to an unmeasured confounder

require(survival)
f <- cph(Surv(d.time,death) ~ treatment + pol(age,2)*sex, x=TRUE, y=TRUE)
sensuc(f, event=function(y) y[,2] & y[,1] < 365.25)
Event = failed, with event time before 1 year
Note: Analysis uses f$y which is a 2-column Surv object

setPb Progress Bar for Simulations

Description

Depending on prevailing options(showprogress=) and availability of the tcltk package, sets up
a progress bar and creates a function for simple updating of the bar as iterations progress. Set-
ting options(showprogressbar=FALSE) or options(showprogressbar='none') results in no
progress being shown. Setting the option to something other than "tk" or "none" results in the
console being used to show the current iteration number and intended number of iterations, the
same as if tcltk is not installed. It is not recommended that the "tk" be used for simulations
requiring fewer than 10 seconds for more than 100 iterations, as the time required to update the
pop-up window will be more than the time required to do the simulations. This problem can be
solved by specifying, for example, every=10 to setPb or to the function created by setPb, or by
using options(showevery=10) before setPb is called. If options(showprogress=) is not speci-
fied, progress is shown in the console with an iteration counter.

246 setPb

Usage

setPb(n, type = c("Monte Carlo Simulation", "Bootstrap",
"Cross-Validation"),

label, usetk = TRUE, onlytk=FALSE, every=1)

Arguments

n maximum number of iterations

type type of simulation. Used for the progress bar title if tcltk is being used.

label used to customize the bar label if present, overriding type

usetk set to FALSE to override, acting as though the tcltk package were not installed

onlytk set to TRUE to not write to the console even if tcltk is unavailable and showprogressbar
is not FALSE or "none"

every print a message for every every iterations

Value

a function that should be called by the user once per iteration, specifying the iteration number as
the sole argument

Author(s)

Frank Harrell

See Also

tkProgressBar, setTkProgressBar

Examples

Not run:
options(showprogress=TRUE) # same as ='tk'
pb <- setPb(1000)
for(i in 1:1000) {

pb(i) # pb(i, every=10) to only show for multiples of 10
your calculations
}

Force rms functions to do simulations to not report progress
options(showprogress='none')
For functions that do simulations to use the console instead of pop-up
Even with tcltk is installed
options(showprogress='console')
pb <- setPb(1000, label='Random Sampling')

End(Not run)

specs.rms 247

specs.rms rms Specifications for Models

Description

Prints the design specifications, e.g., number of parameters for each factor, levels of categorical
factors, knot locations in splines, pre-transformations, etc.

Usage

specs(fit, ...)
S3 method for class 'rms'
specs(fit, long=FALSE, ...)

S3 method for class 'specs.rms'
print(x, ...)

Arguments

fit a fit object created with the rms library in effect

x an object returned by specs

long if TRUE, causes the plotting and estimation limits to be printed for each factor

... ignored

Value

a list containing information about the fit and the predictors as elements

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

rms, rms.trans, latexrms, datadist

Examples

set.seed(1)
blood.pressure <- rnorm(200, 120, 15)
dd <- datadist(blood.pressure)
options(datadist='dd')
L <- .03*(blood.pressure-120)
sick <- ifelse(runif(200) <= plogis(L), 1, 0)
f <- lrm(sick ~ rcs(blood.pressure,5))

248 summary.rms

specs(f) # find out where 5 knots are placed
g <- Glm(sick ~ rcs(blood.pressure,5), family=binomial)
specs(g,long=TRUE)
options(datadist=NULL)

summary.rms Summary of Effects in Model

Description

summary.rms forms a summary of the effects of each factor. When summary is used to estimate
odds or hazard ratios for continuous variables, it allows the levels of interacting factors to be easily
set, as well as allowing the user to choose the interval for the effect. This method of estimating
effects allows for nonlinearity in the predictor. Factors requiring multiple parameters are handled,
as summary obtains predicted values at the needed points and takes differences. By default, inter-
quartile range effects (odds ratios, hazards ratios, etc.) are printed for continuous factors, and all
comparisons with the reference level are made for categorical factors. print.summary.rms prints
the results, latex.summary.rms and html.summary.rms typeset the results, and plot.summary.rms
plots shaded confidence bars to display the results graphically. The longest confidence bar on each
page is labeled with confidence levels (unless this bar has been ignored due to clip). By default,
the following confidence levels are all shown: .9, .95, and .99, using blue of different transparen-
cies. The plot method currently ignores bootstrap and Bayesian highest posterior density intervals
but approximates intervals based on standard errors. The html method is for use with R Markdown
using html.

The print method will call the latex or html method if options(prType=) is set to "latex" or
"html". For "latex" printing through print(), the LaTeX table environment is turned off. When
using html with Quarto or RMarkdown, results='asis' need not be written in the chunk header.

If usebootcoef=TRUE and the fit was run through bootcov, the confidence intervals are bootstrap
nonparametric percentile confidence intervals, basic bootstrap, or BCa intervals, obtained on con-
trasts evaluated on all bootstrap samples.

If options(grType='plotly') is in effect and the plotly package is installed, plot is used in-
stead of base graphics to draw the point estimates and confidence limits when the plot method for
summary is called. Colors and other graphical arguments to plot.summary are ignored in this case.
Various special effects are implemented such as only drawing 0.95 confidence limits by default but
including a legend that allows the other CLs to be activated. Hovering over point estimates shows
adjustment values if there are any. nbar is not implemented for plotly.

To get more accurate likelihood profile confidence limits, use the contrast.rms function. An
example in its help file shows how to get profile likelihood confidence intervals for coefficients or
for any contrast.

Usage

S3 method for class 'rms'
summary(object, ..., ycut=NULL, est.all=TRUE, antilog,
conf.int=.95, abbrev=FALSE, vnames=c("names","labels"),
conf.type=c('individual','simultaneous'),

summary.rms 249

usebootcoef=TRUE, boot.type=c("percentile","bca","basic"),
posterior.summary=c('mean', 'median', 'mode'), verbose=FALSE)

S3 method for class 'summary.rms'
print(x, ..., table.env=FALSE)

S3 method for class 'summary.rms'
latex(object, title, table.env=TRUE, ...)

S3 method for class 'summary.rms'
html(object, digits=4, dec=NULL, ...)

S3 method for class 'summary.rms'
plot(x, at, log=FALSE,

q=c(0.9, 0.95, 0.99), xlim, nbar, cex=1, nint=10,
cex.main=1, clip=c(-1e30,1e30), main,
col=rgb(red=.1,green=.1,blue=.8,alpha=c(.1,.4,.7)),
col.points=rgb(red=.1,green=.1,blue=.8,alpha=1), pch=17,
lwd=if(length(q) == 1) 3 else 2 : (length(q) + 1), digits=4,
declim=4, ...)

Arguments

object a rms fit object. Either options(datadist) should have been set before the fit,
or datadist() and options(datadist) run before summary. For latex is the
result of summary.

... For summary, omit list of variables to estimate effects for all predictors. Use a
list of variables of the form age, sex to estimate using default ranges. Spec-
ify age=50 for example to adjust age to 50 when testing other factors (this will
only matter for factors that interact with age). Specify e.g. age=c(40,60) to
estimate the effect of increasing age from 40 to 60. Specify age=c(40,50,60)
to let age range from 40 to 60 and be adjusted to 50 when testing other inter-
acting factors. For category factors, a single value specifies the reference cell
and the adjustment value. For example, if treat has levels "a", "b" and "c"
and treat="b" is given to summary, treatment a will be compared to b and c
will be compared to b. Treatment b will be used when estimating the effect of
other factors. Category variables can have category labels listed (in quotes), or
an unquoted number that is a legal level, if all levels are numeric. You need only
use the first few letters of each variable name - enough for unique identification.
For variables not defined with datadist, you must specify 3 values, none of
which are NA.
Also represents other arguments to pass to latex, is ignored for print and plot.

ycut must be specified if the fit is a partial proportional odds model. Specifies the
single value of the response variable used to estimate ycut-specific regression
effects, e.g., odds ratios

est.all Set to FALSE to only estimate effects of variables listed. Default is TRUE.

antilog Set to FALSE to suppress printing of anti-logged effects. Default is TRUE if the

250 summary.rms

model was fitted by lrm or cph. Antilogged effects will be odds ratios for logis-
tic models and hazard ratios for proportional hazards models.

conf.int Defaults to .95 for 95% confidence intervals of effects.
abbrev Set to TRUE to use the abbreviate function to shorten factor levels for categor-

ical variables in the model.
vnames Set to "labels" to use variable labels to label effects. Default is "names" to use

variable names.
conf.type The default type of confidence interval computed for a given individual (1 d.f.)

contrast is a pointwise confidence interval. Set conf.type="simultaneous"
to use the multcomp package’s glht and confint functions to compute con-
fidence intervals with simultaneous (family-wise) coverage, thus adjusting for
multiple comparisons. Contrasts are simultaneous only over groups of intervals
computed together.

usebootcoef If fit was the result of bootcov but you want to use the bootstrap covariance
matrix instead of the nonparametric percentile, basic, or BCa methods for confi-
dence intervals (which uses all the bootstrap coefficients), specify usebootcoef=FALSE.

boot.type set to 'bca' to compute BCa confidence limits or to 'basic' to use the basic
bootstrap. The default is to compute percentile intervals.

posterior.summary

set to 'mode' or 'median' to use the posterior mean/median instead of the mean
for point estimates of contrasts

verbose set to TRUE when conf.type='simultaneous' to get output describing scope
of simultaneous adjustments

x result of summary
title title to pass to latex. Default is name of fit object passed to summary prefixed

with "summary".
table.env see latex

digits, dec for html.summary.rms; digits is the number of significant digits for printing
for effects, standard errors, and confidence limits. It is ignored if dec is given.
The statistics are rounded to dec digits to the right of the decimal point of dec is
given. digits is also the number of significant digits to format numeric hover
text and labels for plotly.

declim number of digits to the right of the decimal point to which to round confidence
limits for labeling axes

at vector of coordinates at which to put tick mark labels on the main axis. If
log=TRUE, at should be in anti-log units.

log Set to TRUE to plot on Xβ scale but labeled with anti-logs.
q scalar or vector of confidence coefficients to depict
xlim X-axis limits for plot in units of the linear predictors (log scale if log=TRUE).

If at is specified and xlim is omitted, xlim is derived from the range of at.
nbar Sets up plot to leave room for nbar horizontal bars. Default is the number of

non-interaction factors in the model. Set nbar to a larger value to keep too much
surrounding space from appearing around horizontal bars. If nbar is smaller
than the number of bars, the plot is divided into multiple pages with up to nbar
bars on each page.

summary.rms 251

cex cex parameter for factor labels.

nint Number of tick mark numbers for pretty.

cex.main cex parameter for main title. Set to 0 to suppress the title.

clip confidence limits outside the interval c(clip[1], clip[2]) will be ignored,
and clip also be respected when computing xlim when xlim is not specified.
clip should be in the units of fun(x). If log=TRUE, clip should be in Xβ
units.

main main title. Default is inferred from the model and value of log, e.g., "log Odds
Ratio".

col vector of colors, one per value of q

col.points color for points estimates

pch symbol for point estimates. Default is solid triangle.

lwd line width for confidence intervals, corresponding to q

Value

For summary.rms, a matrix of class summary.rms with rows corresponding to factors in the model
and columns containing the low and high values for the effects, the range for the effects, the effect
point estimates (difference in predicted values for high and low factor values), the standard error of
this effect estimate, and the lower and upper confidence limits. If fit$scale.pred has a second
level, two rows appear for each factor, the second corresponding to anti–logged effects. Non–
categorical factors are stored first, and effects for any categorical factors are stored at the end of
the returned matrix. scale.pred and adjust. adjust is a character string containing levels of
adjustment variables, if there are any interactions. Otherwise it is "". latex.summary.rms returns
an object of class c("latex","file"). It requires the latex function in Hmisc.

Author(s)

Frank Harrell
Hui Nian
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

datadist, rms, rms.trans, rmsMisc, Misc, pretty, contrast.rms

Examples

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))
label(age) <- 'Age' # label is in Hmisc
label(cholesterol) <- 'Total Cholesterol'
label(blood.pressure) <- 'Systolic Blood Pressure'

252 survest.cph

label(sex) <- 'Sex'
units(cholesterol) <- 'mg/dl' # uses units.default in Hmisc
units(blood.pressure) <- 'mmHg'

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist='ddist')

fit <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol,4)))

s <- summary(fit) # Estimate effects using default ranges
Gets odds ratio for age=3rd quartile
compared to 1st quartile

Not run:
latex(s) # Use LaTeX to print nice version
latex(s, file="") # Just write LaTeX code to console
html(s) # html/LaTeX to console for knitr
Or:
options(prType='latex')
summary(fit) # prints with LaTeX, table.env=FALSE
options(prType='html')
summary(fit) # prints with html

End(Not run)
summary(fit, sex='male', age=60) # Specify ref. cell and adjustment val
summary(fit, age=c(50,70)) # Estimate effect of increasing age from

50 to 70
s <- summary(fit, age=c(50,60,70))

Increase age from 50 to 70, adjust to
60 when estimating effects of other factors

#Could have omitted datadist if specified 3 values for all non-categorical
#variables (1 value for categorical ones - adjustment level)
plot(s, log=TRUE, at=c(.1,.5,1,1.5,2,4,8))

options(datadist=NULL)

survest.cph Cox Survival Estimates

survest.cph 253

Description

Compute survival probabilities and optional confidence limits for Cox survival models. If x=TRUE,
y=TRUE were specified to cph, confidence limits use the correct formula for any combination of
predictors. Otherwise, if surv=TRUE was specified to cph, confidence limits are based only on
standard errors of log(S(t)) at the mean value of Xβ. If the model contained only stratification
factors, or if predictions are being requested near the mean of each covariable, this approximation
will be accurate. Unless times is given, at most one observation may be predicted.

Usage

survest(fit, ...)
S3 method for class 'cph'
survest(fit, newdata, linear.predictors, x, times,

fun, loglog=FALSE, conf.int=0.95, type, vartype,
conf.type=c("log", "log-log", "plain", "none"), se.fit=TRUE,
what=c('survival','parallel'),
individual=FALSE, ...)

Arguments

fit a model fit from cph

newdata a data frame containing predictor variable combinations for which predictions
are desired

linear.predictors

a vector of linear predictor values (centered) for which predictions are desired.
If the model is stratified, the "strata" attribute must be attached to this vector
(see example).

x a design matrix at which to compute estimates, with any strata attached as a
"strata" attribute. Only one of newdata, linear.predictors, or x may be
specified. If none is specified, but times is specified, you will get survival
predictions at all subjects’ linear predictor and strata values.

times a vector of times at which to get predictions. If omitted, predictions are made at
all unique failure times in the original input data.

loglog set to TRUE to make the log-log transformation of survival estimates and confi-
dence limits.

fun any function to transform the estimates and confidence limits (loglog is a spe-
cial case)

conf.int set to FALSE or 0 to suppress confidence limits, or e.g. .95 to cause 0.95 confi-
dence limits to be computed

type see survfit.coxph

vartype see survfit.coxph

conf.type specifies the basis for computing confidence limits. "log" is the default as in
the survival package.

se.fit set to TRUE to get standard errors of log predicted survival (no matter what
conf.type is). If FALSE, confidence limits are suppressed.

254 survest.cph

individual set to TRUE to have survfit interpret newdata as specifying a covariable path
for a single individual (represented by multiple records).

what Normally use what="survival" to estimate survival probabilities at times that
may not correspond to the subjects’ own times. what="parallel" assumes that
the length of times is the number of subjects (or one), and causes survest to
estimate the ith subject’s survival probability at the ith value of times (or at the
scalar value of times). what="parallel" is used by val.surv for example.

... unused

Details

The result is passed through naresid if newdata, linear.predictors, and x are not specified, to
restore placeholders for NAs.

Value

If times is omitted, returns a list with the elements time, n.risk, n.event, surv, call (calling
statement), and optionally std.err, upper, lower, conf.type, conf.int. The estimates in this
case correspond to one subject. If times is specified, the returned list has possible components
time, surv, std.err, lower, and upper. These will be matrices (except for time) if more than
one subject is being predicted, with rows representing subjects and columns representing times.
If times has only one time, these are reduced to vectors with the number of elements equal to the
number of subjects.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

cph, survfit.cph, survfit.coxph, predictrms, survplot

Examples

Simulate data from a population model in which the log hazard
function is linear in age and there is no age x sex interaction
Proportional hazards holds for both variables but we
unnecessarily stratify on sex to see what happens
require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n, TRUE))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
dt <- -log(runif(n))/h

survest.orm 255

label(dt) <- 'Follow-up Time'
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
dd <- datadist(age, sex)
options(datadist='dd')
Srv <- Surv(dt,e)

f <- cph(Srv ~ age*strat(sex), x=TRUE, y=TRUE) #or surv=T
survest(f, expand.grid(age=c(20,40,60),sex=c("Male","Female")),

times=c(2,4,6), conf.int=.9)
f <- update(f, surv=TRUE)
lp <- c(0, .5, 1)
f$strata # check strata names
attr(lp,'strata') <- rep(1,3) # or rep('sex=Female',3)
survest(f, linear.predictors=lp, times=c(2,4,6))

Test survest by comparing to survfit.coxph for a more complex model
f <- cph(Srv ~ pol(age,2)*strat(sex), x=TRUE, y=TRUE)
survest(f, data.frame(age=median(age), sex=levels(sex)), times=6)

age2 <- age^2
f2 <- coxph(Srv ~ (age + age2)*strata(sex))
new <- data.frame(age=median(age), age2=median(age)^2, sex='Male')
summary(survfit(f2, new), times=6)
new$sex <- 'Female'
summary(survfit(f2, new), times=6)

options(datadist=NULL)

survest.orm Title survest.orm

Description

Title survest.orm

Usage

S3 method for class 'orm'
survest(
fit,
newdata = NULL,
linear.predictors = NULL,
x = NULL,
times = NULL,
fun,
loglog = FALSE,
conf.int = 0.95,

256 survest.psm

what = c("survival", "parallel"),
...

)

Arguments

fit result of orm

newdata data frame defining covariate settings
linear.predictors

linear predictor vector using the reference intercept

x design matrix

times times for which estimates are desired; defaults to estimating probabilities of T >
t for all uncensored times

fun optional transformation of survival probabilities

loglog set to TRUE to use the log-log transformatino

conf.int a number between 0-1 with the default of 0.95; set to 0 to not compute CLs

what specify what='parallel' to compute the survival probability at the observed
linear predictor and time values, both varying; all possible combinations of these
are then not created

... ignored

Value

a data frame with variables time, surv. If conf.int > 0 the data also contains lower, upper.
The variable Xrow indicates the row of the design matrix or the linear predictor element used in
getting the current data frame row estimate.

Author(s)

Frank Harrell

Examples

See survest.psm

survest.psm Parametric Survival Estimates

Description

Computes predicted survival probabilities or hazards and optionally confidence limits (for survival
only) for parametric survival models fitted with psm. If getting predictions for more than one obser-
vation, times must be specified. For a model without predictors, no input data are specified.

survest.psm 257

Usage

S3 method for class 'psm'
survest(fit, newdata, linear.predictors, x, times, fun,

loglog=FALSE, conf.int=0.95,
what=c("survival","hazard","parallel"), ...)

S3 method for class 'survest.psm'
print(x, ...)

Arguments

fit fit from psm

newdata, linear.predictors, x, times, conf.int
see survest.cph. One of newdata, linear.predictors, x must be given.
linear.predictors includes the intercept. If times is omitted, predictions are
made at 200 equally spaced points between 0 and the maximum failure/censoring
time used to fit the model.
x can also be a result from survest.psm.

what The default is to compute survival probabilities. Set what="hazard" or some
abbreviation of "hazard" to compute hazard rates. what="parallel" assumes
that the length of times is the number of subjects (or one), and causes survest
to estimate the ith subject’s survival probability at the ith value of times (or at
the scalar value of times). what="parallel" is used by val.surv for example.

loglog set to TRUE to transform survival estimates and confidence limits using log-log

fun a function to transform estimates and optional confidence intervals

... unused

Details

Confidence intervals are based on asymptotic normality of the linear predictors. The intervals ac-
count for the fact that a scale parameter may have been estimated jointly with beta.

Value

see survest.cph. If the model has no predictors, predictions are made with respect to varying
time only, and the returned object is of class "npsurv" so the survival curve can be plotted with
survplot.npsurv. If times is omitted, the entire survival curve or hazard from t=0,...,fit$maxtime
is estimated, with increments computed to yield 200 points where fit$maxtime is the maximum
survival time in the data used in model fitting. Otherwise, the times vector controls the time points
used.

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

258 survfit.cph

See Also

psm, survreg, rms, survfit, predictrms, survplot, survreg.distributions

Examples

Simulate data from a proportional hazards population model
require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50))
dt <- -log(runif(n))/h
label(dt) <- 'Follow-up Time'
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
S <- Surv(dt,e)

f <- psm(S ~ lsp(age,c(40,70)))
survest(f, data.frame(age=seq(20,80,by=5)), times=2)

#Get predicted survival curve for 40 year old
survest(f, data.frame(age=40))

#Get hazard function for 40 year old
survest(f, data.frame(age=40), what="hazard")$surv #still called surv

survfit.cph Cox Predicted Survival

Description

This is a slightly modified version of Therneau’s survfit.coxph function. The difference is that
survfit.cph assumes that x=TRUE,y=TRUE were specified to the fit. This assures that the environ-
ment in effect at the time of the fit (e.g., automatic knot estimation for spline functions) is the same
one used for basing predictions.

Usage

S3 method for class 'cph'
survfit(formula, newdata, se.fit=TRUE, conf.int=0.95,

individual=FALSE, type=NULL, vartype=NULL,
conf.type=c('log', "log-log", "plain", "none"), censor=TRUE, id, ...)

survplot 259

Arguments

formula a fit object from cph or coxph see survfit.coxph

newdata, se.fit, conf.int, individual, type, vartype, conf.type, censor,
id

see survfit. If individual is TRUE, there must be exactly one Surv object
in newdata. This object is used to specify time intervals for time-dependent
covariate paths. To get predictions for multiple subjects with time-dependent
covariates, specify a vector id which specifies unique hypothetical subjects. The
length of id should equal the number of rows in newdata.

... Not used

Value

see survfit.coxph

See Also

survest.cph

survplot Plot Survival Curves and Hazard Functions

Description

Plot estimated survival curves, and for parametric survival models, plot hazard functions. There
is an option to print the number of subjects at risk at the start of each time interval for certain
models. Curves are automatically labeled at the points of maximum separation (using the labcurve
function), and there are many other options for labeling that can be specified with the label.curves
parameter. For example, different plotting symbols can be placed at constant x-increments and a
legend linking the symbols with category labels can automatically positioned on the most empty
portion of the plot.

If the fit is from psm and ggplot=TRUE is specified, a ggplot2 graphic will instead be produced
using the survplot.orm function.

For the case of a two stratum analysis by npsurv, survdiffplot plots the difference in two Kaplan-
Meier estimates along with approximate confidence bands for the differences, with a reference line
at zero. The number of subjects at risk is optionally plotted. This number is taken as the minimum of
the number of subjects at risk over the two strata. When conf='diffbands', survdiffplot instead
does not make a new plot but adds a shaded polygon to an existing plot, showing the midpoint of
two survival estimates plus or minus 1/2 the width of the confidence interval for the difference of
two Kaplan-Meier estimates.

survplotp creates an interactive plotly graphic with shaded confidence bands for fits other than
from orms. In the two strata case, it draws the 1/2 confidence bands for the difference in two
probabilities centered at the midpoint of the probability estimates, so that where the two curves
touch this band there is no significant difference (no multiplicity adjustment is made). For the two

260 survplot

strata case, the two individual confidence bands have entries in the legend but are not displayed
until the user clicks on the legend.

When code was from running npsurv on a multi-state/competing risk Surv object, survplot plots
cumulative incidence curves properly accounting for competing risks. You must specify exactly one
state/event cause to plot using the state argument. survplot will not plot multiple states on one
graph. This can be accomplished using multiple calls with different values of state and specifying
add=TRUE for all but the first call.

Usage

survplot(fit, ...)
survplotp(fit, ...)
S3 method for class 'rms'
survplot(fit, ..., xlim,

ylim=if(loglog) c(-5, 1.5) else if
(what == "survival" & missing(fun)) c(0, 1),

xlab, ylab, time.inc,
what=c("survival","hazard"),
type=c("tsiatis","kaplan-meier"),
conf.type=c("log","log-log","plain","none"),
conf.int=FALSE, conf=c("bands","bars"), mylim=NULL,
add=FALSE, label.curves=TRUE,
abbrev.label=FALSE, levels.only=FALSE,
lty, lwd=par("lwd"),
col=1, col.fill=gray(seq(.95, .75, length=5)),
adj.subtitle=TRUE, loglog=FALSE, fun,
n.risk=FALSE, logt=FALSE, dots=FALSE, dotsize=.003,
grid=NULL, srt.n.risk=0, sep.n.risk=0.056, adj.n.risk=1,
y.n.risk, cex.n.risk=.6, cex.xlab=par('cex.lab'),
cex.ylab=cex.xlab, pr=FALSE, ggplot=FALSE)

S3 method for class 'npsurv'
survplot(fit, xlim,

ylim, xlab, ylab, time.inc, state=NULL,
conf=c("bands","bars","diffbands","none"), mylim=NULL,
add=FALSE, label.curves=TRUE, abbrev.label=FALSE,
levels.only=FALSE, lty,lwd=par('lwd'),
col=1, col.fill=gray(seq(.95, .75, length=5)),
loglog=FALSE, fun, n.risk=FALSE, aehaz=FALSE, times=NULL,
logt=FALSE, dots=FALSE, dotsize=.003, grid=NULL,
srt.n.risk=0, sep.n.risk=.056, adj.n.risk=1,
y.n.risk, cex.n.risk=.6, cex.xlab=par('cex.lab'), cex.ylab=cex.xlab,
pr=FALSE, ...)

S3 method for class 'npsurv'
survplotp(fit, xlim, ylim, xlab, ylab, time.inc, state=NULL,

conf=c("bands", "none"), mylim=NULL, abbrev.label=FALSE,
col=colorspace::rainbow_hcl, levels.only=TRUE,
loglog=FALSE, fun=function(y) y, aehaz=FALSE, times=NULL,
logt=FALSE, pr=FALSE, ...)

survplot 261

survdiffplot(fit, order=1:2, fun=function(y) y,
xlim, ylim, xlab, ylab="Difference in Survival Probability",
time.inc, conf.int, conf=c("shaded", "bands","diffbands","none"),
add=FALSE, lty=1, lwd=par('lwd'), col=1,
n.risk=FALSE, grid=NULL,
srt.n.risk=0, adj.n.risk=1,
y.n.risk, cex.n.risk=.6, cex.xlab=par('cex.lab'),
cex.ylab=cex.xlab, convert=function(f) f)

Arguments

fit result of fit (cph, psm, npsurv, survest.psm). For survdiffplot, fit must be
the result of npsurv.

... list of factors with names used in model. For fits from npsurv these arguments
do not appear - all strata are plotted. Otherwise the first factor listed is the factor
used to determine different survival curves. Any other factors are used to specify
single constants to be adjusted to, when defaults given to fitting routine (through
limits) are not used. The value given to factors is the original coding of data
given to fit, except that for categorical or strata factors the text string levels may
be specified. The form of values given to the first factor are none (omit the equal
sign to use default range or list of all values if variable is discrete), "text" if
factor is categorical, c(value1, value2, ...), or a function which returns a
vector, such as seq(low,high,by=increment). Only the first factor may have
the values omitted. In this case the Low effect, Adjust to, and High effect
values will be used from datadist if the variable is continuous. For variables
not defined to datadist, you must specify non-missing constant settings (or
a vector of settings for the one displayed variable). Note that since npsurv
objects do not use the variable list in ..., you can specify any extra arguments
to labcurve by adding them at the end of the list of arguments. For survplotp
. . . (e.g., height, width) is passed to plotly::plot_ly.

xlim a vector of two numbers specifiying the x-axis range for follow-up time. Default
is (0,maxtime) where maxtime was the pretty()d version of the maximum
follow-up time in any stratum, stored in fit$maxtime. If logt=TRUE, default is
(1, log(maxtime)).

ylim y-axis limits. Default is c(0,1) for survival, and c(-5,1.5) if loglog=TRUE.
If fun or loglog=TRUE are given and ylim is not, the limits will be computed
from the data. For what="hazard", default limits are computed from the first
hazard function plotted.

xlab x-axis label. Default is units attribute of failure time variable given to Surv.

ylab y-axis label. Default is "Survival Probability" or "log(-log Survival Probability)".
If fun is given, the default is "". For what="hazard", the default is "Hazard
Function". For a multi-state/competing risk application the default is "Cumulative
Incidence".

time.inc time increment for labeling the x-axis and printing numbers at risk. If not spec-
ified, the value of time.inc stored with the model fit will be used.

state the state/event cause to use in plotting if the fit was for a multi-state/competing
risk Surv object

262 survplot

type specifies type of estimates, "tsiatis" (the default) or "kaplan-meier". "tsiatis"
here corresponds to the Breslow estimator. This is ignored if survival estimates
stored with surv=TRUE are being used. For fits from npsurv, this argument is
also ignored, since it is specified as an argument to npsurv.

conf.type specifies the basis for confidence limits. This argument is ignored for fits from
npsurv.

conf.int Default is FALSE. Specify e.g. .95 to plot 0.95 confidence bands. For fits from
parametric survival models, or Cox models with x=TRUE and y=TRUE specified
to the fit, the exact asymptotic formulas will be used to compute standard errors,
and confidence limits are based on log(-log S(t)) if loglog=TRUE. If x=TRUE
and y=TRUE were not specified to cph but surv=TRUE was, the standard errors
stored for the underlying survival curve(s) will be used. These agree with the
former if predictions are requested at the mean value of X beta or if there are only
stratification factors in the model. This argument is ignored for fits from npsurv,
which must have previously specified confidence interval specifications. For
survdiffplot if conf.int is not specified, the level used in the call to npsurv
will be used.

conf "bars" for confidence bars at each time.inc time point. If the fit was from
cph(..., surv=TRUE), the time.inc used will be that stored with the fit. Use
conf="bands" (the default) for bands using standard errors at each failure time.
For npsurv objects only, conf may also be "none", indicating that confidence
interval information stored with the npsurv result should be ignored. For npsurv
and survdiffplot, conf may be "diffbands" whereby a shaded region is
drawn for comparing two curves. The polygon is centered at the midpoint of
the two survival estimates and the height of the polygon is 1/2 the width of
the approximate conf.int pointwise confidence region. Survival curves not
overlapping the shaded area are approximately significantly different at the 1 -
conf.int level.

mylim used to curtail computed ylim. When ylim is not given by the user, the com-
puted limits are expanded to force inclusion of the values specified in mylim.

what defaults to "survival" to plot survival estimates. Set to "hazard" or an abbre-
viation to plot the hazard function (for psm fits only). Confidence intervals are
not available for what="hazard".

add set to TRUE to add curves to an existing plot.

label.curves default is TRUE to use labcurve to label curves where they are farthest apart. Set
label.curves to a list to specify options to labcurve, e.g., label.curves=list(method="arrow",
cex=.8). These option names may be abbreviated in the usual way arguments
are abbreviated. Use for example label.curves=list(keys=1:5) to draw
symbols (as in pch=1:5 - see points) on the curves and automatically posi-
tion a legend in the most empty part of the plot. Set label.curves=FALSE to
suppress drawing curve labels. The col, lty, lwd, and type parameters are
automatically passed to labcurve, although you can override them here. To
distinguish curves by line types and still have labcurve construct a legend, use
for example label.curves=list(keys="lines"). The negative value for the
plotting symbol will suppress a plotting symbol from being drawn either on the
curves or in the legend.

survplot 263

abbrev.label set to TRUE to abbreviate() curve labels that are plotted

levels.only set to TRUE to remove variablename= from the start of curve labels.

lty vector of line types to use for different factor levels. Default is c(1,3,4,5,6,7,...).

lwd vector of line widths to use for different factor levels. Default is current par
setting for lwd.

col color for curve, default is 1. Specify a vector to assign different colors to differ-
ent curves. For survplotp, col is a vector of colors corresponding to strata, or
a function that will be called to generate such colors.

col.fill a vector of colors to used in filling confidence bands

adj.subtitle set to FALSE to suppress plotting subtitle with levels of adjustment factors not
plotted. Defaults to TRUE. This argument is ignored for npsurv.

loglog set to TRUE to plot log(-log Survival) instead of Survival

fun specifies any function to translate estimates and confidence limits before plot-
ting. If the fit is a multi-state object the default for fun is function(y) 1 - y to
draw cumulative incidence curves.

logt set to TRUE to plot log(t) instead of t on the x-axis

n.risk set to TRUE to add number of subjects at risk for each curve, using the surv.summary
created by cph or using the failure times used in fitting the model if y=TRUE was
specified to the fit or if the fit was from npsurv. The numbers are placed at the
bottom of the graph unless y.n.risk is given. If the fit is from survest.psm,
n.risk does not apply.

srt.n.risk angle of rotation for leftmost number of subjects at risk (since this number may
run into the second or into the y-axis). Default is 0.

adj.n.risk justification for leftmost number at risk. Default is 1 for right justification. Use
0 for left justification, .5 for centered.

sep.n.risk multiple of upper y limit - lower y limit for separating lines of text containing
number of subjects at risk. Default is .056*(ylim[2]-ylim[1]).

y.n.risk When n.risk=TRUE, the default is to place numbers of patients at risk above the
x-axis. You can specify a y-coordinate for the bottom line of the numbers using
y.n.risk. Specify y.n.risk='auto' to place the numbers below the x-axis at
a distance of 1/3 of the range of ylim.

cex.n.risk character size for number of subjects at risk (when n.risk is TRUE)

cex.xlab cex for x-axis label

cex.ylab cex for y-axis label

dots set to TRUE to plot a grid of dots. Will be plotted at every time.inc (see cph)
and at survival increments of .1 (if d>.4), .05 (if .2 < d <= .4), or .025 (if d <=
.2), where d is the range of survival displayed.

dotsize size of dots in inches

grid defaults to NULL (not drawing grid lines). Set to TRUE to plot gray(.8) grid
lines, or specify any color.

pr set to TRUE to print survival curve coordinates used in the plots

ggplot set to TRUE to use survplot.orm to draw the curves instead, for a psm fit

264 survplot

aehaz set to TRUE to add number of events and exponential distribution hazard rate
estimates in curve labels. For competing risk data the number of events is for
the cause of interest, and the hazard rate is the number of events divided by the
sum of all failure and censoring times.

times a numeric vector of times at which to compute cumulative incidence probability
estimates to add to curve labels

order an integer vector of length two specifying the order of groups when computing
survival differences. The default of 1:2 indicates that the second group is sub-
tracted from the first. Specify order=2:1 to instead subtract the first from the
second. A subtitle indicates what was done.

convert a function to convert the output of summary.survfitms to pick off the data
needed for a single state

Details

survplot will not work for Cox models with time-dependent covariables. Use survest or survfit
for that purpose.

There is a set a system option mgp.axis.labels to allow x and y-axes to have differing mgp graph-
ical parameters (see par). This is important when labels for y-axis tick marks are to be written
horizontally (par(las=1)), as a larger gap between the labels and the tick marks are needed. You
can set the axis-specific 2nd component of mgp using mgp.axis.labels(c(xvalue,yvalue)).

Value

list with components adjust (text string specifying adjustment levels) and curve.labels (vector of
text strings corresponding to levels of factor used to distinguish curves). For npsurv, the returned
value is the vector of strata labels, or NULL if there are no strata.

Side Effects

plots. If par()$mar[4] < 4, issues par(mar=) to increment mar[4] by 2 if n.risk=TRUE and
add=FALSE. The user may want to reset par(mar) in this case to not leave such a wide right margin
for plots. You usually would issue par(mar=c(5,4,4,2)+.1).

References

Boers M (2004): Null bar and null zone are better than the error bar to compare group means in
graphs. J Clin Epi 57:712-715.

See Also

datadist, rms, cph, psm, survest, predictrms, plot.Predict, ggplot.Predict, units, errbar,
survfit, survreg.distributions, labcurve, mgp.axis, par,

Examples

Simulate data from a population model in which the log hazard
function is linear in age and there is no age x sex interaction
require(survival)

survplot 265

n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('male','female'), n, TRUE))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='female'))
dt <- -log(runif(n))/h
label(dt) <- 'Follow-up Time'
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
dd <- datadist(age, sex)
options(datadist='dd')
S <- Surv(dt,e)

When age is in the model by itself and we predict at the mean age,
approximate confidence intervals are ok

f <- cph(S ~ age, surv=TRUE)
survplot(f, age=mean(age), conf.int=.95)
g <- cph(S ~ age, x=TRUE, y=TRUE)
survplot(g, age=mean(age), conf.int=.95, add=TRUE, col='red', conf='bars')

Repeat for an age far from the mean; not ok
survplot(f, age=75, conf.int=.95)
survplot(g, age=75, conf.int=.95, add=TRUE, col='red', conf='bars')

#Plot stratified survival curves by sex, adj for quadratic age effect
with age x sex interaction (2 d.f. interaction)

f <- cph(S ~ pol(age,2)*strat(sex), x=TRUE, y=TRUE)
#or f <- psm(S ~ pol(age,2)*sex)
Predict(f, sex, age=c(30,50,70))
survplot(f, sex, n.risk=TRUE, levels.only=TRUE) #Adjust age to median
survplot(f, sex, logt=TRUE, loglog=TRUE) #Check for Weibull-ness (linearity)
survplot(f, sex=c("male","female"), age=50)

#Would have worked without datadist
#or with an incomplete datadist

survplot(f, sex, label.curves=list(keys=c(2,0), point.inc=2))
#Identify curves with symbols

survplot(f, sex, label.curves=list(keys=c('m','f')))
#Identify curves with single letters

#Plots by quintiles of age, adjusting sex to male
options(digits=3)
survplot(f, age=quantile(age,(1:4)/5), sex="male")

266 survplot.orm

#Plot survival Kaplan-Meier survival estimates for males
f <- npsurv(S ~ 1, subset=sex=="male")
survplot(f)

#Plot survival for both sexes and show exponential hazard estimates
f <- npsurv(S ~ sex)
survplot(f, aehaz=TRUE)
#Check for log-normal and log-logistic fits
survplot(f, fun=qnorm, ylab="Inverse Normal Transform")
survplot(f, fun=function(y)log(y/(1-y)), ylab="Logit S(t)")

#Plot the difference between sexes
survdiffplot(f)

#Similar but show half-width of confidence intervals centered
#at average of two survival estimates
#See Boers (2004)
survplot(f, conf='diffbands')

options(datadist=NULL)
Not run:
#
Time to progression/death for patients with monoclonal gammopathy
Competing risk curves (cumulative incidence)
status variable must be a factor with first level denoting right censoring
m <- upData(mgus1, stop = stop / 365.25, units=c(stop='years'),

labels=c(stop='Follow-up Time'), subset=start == 0)
f <- npsurv(Surv(stop, event) ~ 1, data=m)

Use survplot for enhanced displays of cumulative incidence curves for
competing risks

survplot(f, state='pcm', n.risk=TRUE, xlim=c(0, 20), ylim=c(0, .5), col=2)
survplot(f, state='death', aehaz=TRUE, col=3,

label.curves=list(keys='lines'))
f <- npsurv(Surv(stop, event) ~ sex, data=m)
survplot(f, state='death', aehaz=TRUE, n.risk=TRUE, conf='diffbands',

label.curves=list(keys='lines'))

Plot survival curves estimated from an ordinal semiparametric model
f <- orm(Ocens(y, ifelse(y <= cens, y, Inf)) ~ age)
survplot(f, age=c(30, 50))

End(Not run)

survplot.orm Title Survival Curve Plotting

survplot.orm 267

Description

Plots predicted survival curves with easy specification of predictor settings, with optional confi-
dence bands. For ‘orm‘ fits these are step functions, and for ‘psm‘ fits they are smooth curves.

Usage

S3 method for class 'orm'
survplot(
fit,
...,
xlab,
ylab = "Survival Probability",
conf.int = FALSE,
conf = c("bands", "bars"),
facet = FALSE,
nrow = NULL,
alpha = 0.15,
adj.subtitle = TRUE,
onlydata = FALSE

)

Arguments

fit a fit produced by [orm()]; also works for [psm()] fits

... list of factors with names used in model. The first factor listed is the factor used
to determine different survival curves. Any other factors are used to specify sin-
gle constants to be adjusted to, when defaults given to fitting routine (through
‘limits‘) are not used. The value given to factors is the original coding of data
given to fit, except that for categorical factors the text string levels may be spec-
ified. The form of values given to the first factor are none (omit the equal sign
to use default range or list of all values if variable is discrete), ‘"text"‘ if fac-
tor is categorical, ‘c(value1, value2, . . .)‘, or a function which returns a vector,
such as ‘seq(low,high,by=increment)‘. Only the first factor may have the val-
ues omitted. In this case the ‘Low effect‘, ‘Adjust to‘, and ‘High effect‘ values
will be used from ‘datadist‘ if the variable is continuous. For variables not de-
fined to ‘datadist‘, you must specify non-missing constant settings (or a vector
of settings for the one displayed variable).

xlab character string label for x-axis; uses the ‘plotmath‘-style ‘yplabel‘ for the ‘y‘
variable stored in the fit if ‘xlab‘ is absent

ylab y-axis label, defaulting to ‘"Survival Probability"‘

conf.int defaults to ‘FALSE‘ (same as specifying ‘0‘); specify a positive value less than
1 to get two-sided confidence intervals utilizing approximate normality of linear
predictors

conf not currently used

facet set to ‘TRUE‘ to have the first varying variable appear as a facet instead of as
different colored step functions

268 survplot.orm

nrow when faceting on one varying variable using ‘facet_wrap‘ specifies the number
of rows to create

alpha transparency for confidence bands

adj.subtitle set to ‘FALSE‘ to not show a caption with the values of non-varying values
(adjustment variables)

onlydata set to ‘TRUE‘ to return the data used in ‘ggplot2‘ plotting instead of the graphics
object

Value

if ‘onlydata‘ is left at its default value, a ‘ggplot2‘ graphics object for which additional layers may
later be added

Author(s)

Frank Harrell md

See Also

[Hmisc::geom_stepconfint()]

Examples

set.seed(1)
d <- expand.grid(x1=c('a', 'b', 'c'), x2=c('A','B'), x3=1:2, irep=1:20)
y <- sample(1:10, nrow(d), TRUE)
dd <- datadist(d); options(datadist='dd')
f <- orm(y ~ x1 + x2 + x3, data=d)

survplot(f, x1='a')
survplot(f, x1='a', conf.int=.95)
survplot(f, x1=c('a','b'), x2='A')
survplot(f, x1=c('a', 'b'), x2='A', conf.int=.95)
survplot(f, x1=c('a','b'), x2='A', facet=TRUE)
survplot(f, x1=c('a','b'), x2='A', facet=TRUE, conf.int=.95)

survplot(f, x1=c('a', 'b'), x2=c('A', 'B'))
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), conf.int=.95)
survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), facet=TRUE)

survplot(f, x1=c('a', 'b'), x2=c('A', 'B'), x3=1:2)

g <- psm(Surv(y) ~ x1 + x2 + x3, data=d)
survplot(g, x1=c('a','b'), x2=c('A', 'B'), ggplot=TRUE) # calls survplot.orm
See https://hbiostat.org/rmsc/parsurv#sec-parsurv-assess
where nonparametric and parametric estimates are combined into one ggplot
options(datadist=NULL)

val.prob 269

val.prob Validate Predicted Probabilities

Description

The val.prob function is useful for validating predicted probabilities against binary events.

Given a set of predicted probabilities p or predicted log odds logit, and a vector of binary outcomes
y that were not used in developing the predictions p or logit, val.prob computes the following
indexes and statistics: Somers’ Dxy rank correlation between p and y [2(C − .5), C=ROC area],
Nagelkerke-Cox-Snell-Maddala-Magee R-squared index, Discrimination index D [(Logistic model
L.R. χ2 - 1)/n], L.R. χ2, its P -value, Unreliability index U , χ2 with 2 d.f. for testing unrelia-
bility (H0: intercept=0, slope=1), its P -value, the quality index Q, Brier score (average squared
difference in p and y), Intercept, and Slope, Emax=maximum absolute difference in predicted
and loess-calibrated probabilities, Eavg, the average in same, E90, the 0.9 quantile of same, the
Spiegelhalter Z-test for calibration accuracy, and its two-tailed P -value. If pl=TRUE, plots fitted
logistic calibration curve and optionally a smooth nonparametric fit using lowess(p,y,iter=0)
and grouped proportions vs. mean predicted probability in group. If the predicted probabilities
or logits are constant, the statistics are returned and no plot is made. Eavg, Emax, E90 were from
linear logistic calibration before rms 4.5-1.

When group is present, different statistics are computed, different graphs are made, and the object
returned by val.prob is different. group specifies a stratification variable. Validations are done
separately by levels of group and overall. A print method prints summary statistics and several
quantiles of predicted probabilities, and a plot method plots calibration curves with summary statis-
tics superimposed, along with selected quantiles of the predicted probabilities (shown as tick marks
on calibration curves). Only the lowess calibration curve is estimated. The statistics computed are
the average predicted probability, the observed proportion of events, a 1 d.f. chi-square statistic
for testing for overall mis-calibration (i.e., a test of the observed vs. the overall average predicted
probability of the event) (ChiSq), and a 2 d.f. chi-square statistic for testing simultaneously that the
intercept of a linear logistic calibration curve is zero and the slope is one (ChiSq2), average absolute
calibration error (average absolute difference between the lowess-estimated calibration curve and
the line of identity, labeled Eavg), Eavg divided by the difference between the 0.95 and 0.05 quan-
tiles of predictive probabilities (Eavg/P90), a "median odds ratio", i.e., the anti-log of the median
absolute difference between predicted and calibrated predicted log odds of the event (Med OR), the
C-index (ROC area), the Brier quadratic error score (B), a chi-square test of goodness of fit based
on the Brier score (B ChiSq), and the Brier score computed on calibrated rather than raw predicted
probabilities (B cal). The first chi-square test is a test of overall calibration accuracy ("calibration
in the large"), and the second will also detect errors such as slope shrinkage caused by overfitting
or regression to the mean. See Cox (1970) for both of these score tests. The goodness of fit test
based on the (uncalibrated) Brier score is due to Hilden, Habbema, and Bjerregaard (1978) and is
discussed in Spiegelhalter (1986). When group is present you can also specify sampling weights
(usually frequencies), to obtained weighted calibration curves.

To get the behavior that results from a grouping variable being present without having a grouping
variable, use group=TRUE. In the plot method, calibration curves are drawn and labeled by default
where they are maximally separated using the labcurve function. The following parameters do
not apply when group is present: pl, smooth, logistic.cal, m, g, cuts, emax.lim, legendloc,

270 val.prob

riskdist, mkh, connect.group, connect.smooth. The following parameters apply to the plot
method but not to val.prob: xlab, ylab, lim, statloc, cex.

Usage

val.prob(p, y, logit, group, weights=rep(1,length(y)), normwt=FALSE,
pl=TRUE, smooth=TRUE, logistic.cal=TRUE,
xlab="Predicted Probability", ylab="Actual Probability",
lim=c(0, 1), m, g, cuts, emax.lim=c(0,1),
legendloc=lim[1] + c(0.55 * diff(lim), 0.27 * diff(lim)),
statloc=c(0,0.99), riskdist=c("predicted", "calibrated"),
cex=.7, mkh=.02,
connect.group=FALSE, connect.smooth=TRUE, g.group=4,
evaluate=100, nmin=0)

S3 method for class 'val.prob'
print(x, ...)

S3 method for class 'val.prob'
plot(x, xlab="Predicted Probability",

ylab="Actual Probability",
lim=c(0,1), statloc=lim, stats=1:12, cex=.5,
lwd.overall=4, quantiles=c(.05,.95), flag, ...)

Arguments

p predicted probability

y vector of binary outcomes

logit predicted log odds of outcome. Specify either p or logit.

group a grouping variable. If numeric this variable is grouped into g.group quantile
groups (default is quartiles). Set group=TRUE to use the group algorithm but
with a single stratum for val.prob.

weights an optional numeric vector of per-observation weights (usually frequencies),
used only if group is given.

normwt set to TRUE to make weights sum to the number of non-missing observations.

pl TRUE to plot calibration curves and optionally statistics

smooth plot smooth fit to (p,y) using lowess(p,y,iter=0)

logistic.cal plot linear logistic calibration fit to (p,y)

xlab x-axis label, default is "Predicted Probability" for val.prob.

ylab y-axis label, default is "Actual Probability" for val.prob.

lim limits for both x and y axes

m If grouped proportions are desired, minimum no. observations per group

g If grouped proportions are desired, number of quantile groups

cuts If grouped proportions are desired, actual cut points for constructing intervals,
e.g. c(0,.1,.8,.9,1) or seq(0,1,by=.2)

val.prob 271

emax.lim Vector containing lowest and highest predicted probability over which to com-
pute Emax.

legendloc If pl=TRUE, list with components x,y or vector c(x,y) for upper left corner
of legend for curves and points. Default is c(.55, .27) scaled to lim. Use
locator(1) to use the mouse, FALSE to suppress legend.

statloc Dxy , C, R2, D, U , Q, Brier score, Intercept, Slope, and Emax will be added
to plot, using statloc as the upper left corner of a box (default is c(0,.9)). You
can specify a list or a vector. Use locator(1) for the mouse, FALSE to suppress
statistics. This is plotted after the curve legends.

riskdist Use "calibrated" to plot the relative frequency distribution of calibrated prob-
abilities after dividing into 101 bins from lim[1] to lim[2]. Set to "predicted"
(the default as of rms 4.5-1) to use raw assigned risk, FALSE to omit risk distri-
bution. Values are scaled so that highest bar is 0.15*(lim[2]-lim[1]).

cex Character size for legend or for table of statistics when group is given
mkh Size of symbols for legend. Default is 0.02 (see par()).
connect.group Defaults to FALSE to only represent group fractions as triangles. Set to TRUE to

also connect with a solid line.
connect.smooth Defaults to TRUE to draw smoothed estimates using a dashed line. Set to FALSE

to instead use dots at individual estimates.
g.group number of quantile groups to use when group is given and variable is numeric.
evaluate number of points at which to store the lowess-calibration curve. Default is

100. If there are more than evaluate unique predicted probabilities, evaluate
equally-spaced quantiles of the unique predicted probabilities, with linearly in-
terpolated calibrated values, are retained for plotting (and stored in the object
returned by val.prob.

nmin applies when group is given. When nmin > 0, val.prob will not store coor-
dinates of smoothed calibration curves in the outer tails, where there are fewer
than nmin raw observations represented in those tails. If for example nmin=50,
the plot function will only plot the estimated calibration curve from a to b,
where there are 50 subjects with predicted probabilities < a and > b. nmin is
ignored when computing accuracy statistics.

x result of val.prob (with group in effect)
... optional arguments for labcurve (through plot). Commonly used options are

col (vector of colors for the strata plus overall) and lty. Ignored for print.
stats vector of column numbers of statistical indexes to write on plot
lwd.overall line width for plotting the overall calibration curve
quantiles a vector listing which quantiles should be indicated on each calibration curve

using tick marks. The values in quantiles can be any number of values from
the following: .01, .025, .05, .1, .25, .5, .75, .9, .95, .975, .99. By default the
0.05 and 0.95 quantiles are indicated.

flag a function of the matrix of statistics (rows representing groups) returning a vec-
tor of character strings (one value for each group, including "Overall"). plot.val.prob
will print this vector of character values to the left of the statistics. The flag
function can refer to columns of the matrix used as input to the function by their
names given in the description above. The default function returns "*" if either
ChiSq2 or B ChiSq is significant at the 0.01 level and " " otherwise.

272 val.prob

Details

The 2 d.f. χ2 test and Med OR exclude predicted or calibrated predicted probabilities ≤ 0 to zero or
≥ 1, adjusting the sample size as needed.

Value

val.prob without group returns a vector with the following named elements: Dxy, R2, D, D:Chi-sq,
D:p, U, U:Chi-sq, U:p, Q, Brier, Intercept, Slope, S:z, S:p, Emax. When group is present
val.prob returns an object of class val.prob containing a list with summary statistics and calibra-
tion curves for all the strata plus "Overall".

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Harrell FE, Lee KL, Mark DB (1996): Multivariable prognostic models: Issues in developing mod-
els, evaluating assumptions and adequacy, and measuring and reducing errors. Stat in Med 15:361–
387.

Harrell FE, Lee KL (1987): Using logistic calibration to assess the accuracy of probability predic-
tions (Technical Report).

Miller ME, Hui SL, Tierney WM (1991): Validation techniques for logistic regression models. Stat
in Med 10:1213–1226.

Stallard N (2009): Simple tests for the external validation of mortality prediction scores. Stat in
Med 28:377–388.

Harrell FE, Lee KL (1985): A comparison of the discrimination of discriminant analysis and logistic
regression under multivariate normality. In Biostatistics: Statistics in Biomedical, Public Health,
and Environmental Sciences. The Bernard G. Greenberg Volume, ed. PK Sen. New York: North-
Holland, p. 333–343.

Cox DR (1970): The Analysis of Binary Data, 1st edition, section 4.4. London: Methuen.

Spiegelhalter DJ (1986):Probabilistic prediction in patient management. Stat in Med 5:421–433.

Rufibach K (2010):Use of Brier score to assess binary predictions. J Clin Epi 63:938-939

Tjur T (2009):Coefficients of determination in logistic regression models-A new proposal:The co-
efficient of discrimination. Am Statist 63:366–372.

See Also

validate.lrm, lrm.fit, lrm, labcurve, wtd.stats, scat1d

val.surv 273

Examples

Fit logistic model on 100 observations simulated from the actual
model given by Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),
where X1 is a random uniform [0,1] variable. Hence X2 and X3 are
irrelevant. After fitting a linear additive model in X1, X2,
and X3, the coefficients are used to predict Prob(Y=1) on a
separate sample of 100 observations. Note that data splitting is
an inefficient validation method unless n > 20,000.

set.seed(1)
n <- 200
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
logit <- 2*(x1-.5)
P <- 1/(1+exp(-logit))
y <- ifelse(runif(n)<=P, 1, 0)
d <- data.frame(x1,x2,x3,y)
dd <- datadist(d); options(datadist='dd')
f <- lrm(y ~ x1 + x2 + x3, subset=1:100)
pred.logit <- predict(f, d[101:200,])
phat <- 1/(1+exp(-pred.logit))
val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20 obs.

Validate predictions more stringently by stratifying on whether
x1 is above or below the median

v <- val.prob(phat, y[101:200], group=x1[101:200], g.group=2)
v
plot(v)
plot(v, flag=function(stats) ifelse(

stats[,'ChiSq2'] > qchisq(.95,2) |
stats[,'B ChiSq'] > qchisq(.95,1), '*', ' '))

Stars rows of statistics in plot corresponding to significant
mis-calibration at the 0.05 level instead of the default, 0.01

plot(val.prob(phat, y[101:200], group=x1[101:200], g.group=2),
col=1:3) # 3 colors (1 for overall)

Weighted calibration curves
plot(val.prob(pred, y, group=age, weights=freqs))
options(datadist=NULL)

val.surv Validate Predicted Probabilities Against Observed Survival Times

274 val.surv

Description

The val.surv function is useful for validating predicted survival probabilities against right-censored
failure times. If u is specified, the hazard regression function hare in the polspline package is
used to relate predicted survival probability at time u to observed survival times (and censoring
indicators) to estimate the actual survival probability at time u as a function of the estimated sur-
vival probability at that time, est.surv. If est.surv is not given, fit must be specified and the
survest function is used to obtain the predicted values (using newdata if it is given, or using the
stored linear predictor values if not). hare or movStats (when method="smoothkm") is given the
sole predictor fun(est.surv) where fun is given by the user or is inferred from fit. fun is the
function of predicted survival probabilities that one expects to create a linear relationship with the
linear predictors.

hare uses an adaptive procedure to find a linear spline of fun(est.surv) in a model where the
log hazard is a linear spline in time t, and cross-products between the two splines are allowed so
as to not assume proportional hazards. Thus hare assumes that the covariate and time functions
are smooth but not much else, if the number of events in the dataset is large enough for obtaining a
reliable flexible fit. Or specify method="smoothkm" to use the Hmisc movStats function to compute
smoothed (by default using supsmu) moving window Kaplan-Meier estimates. This method is more
flexible than hare.

There are special print and plot methods when u is given. In this case, val.surv returns an object
of class "val.survh", otherwise it returns an object of class "val.surv".

If u is not specified, val.surv uses Cox-Snell (1968) residuals on the cumulative probability scale
to check on the calibration of a survival model against right-censored failure time data. If the
predicted survival probability at time t for a subject having predictors X is S(t|X), this method is
based on the fact that the predicted probability of failure before time t, 1−S(t|X), when evaluated
at the subject’s actual survival time T , has a uniform (0,1) distribution. The quantity 1 − S(T |X)
is right-censored when T is. By getting one minus the Kaplan-Meier estimate of the distribution of
1− S(T |X) and plotting against the 45 degree line we can check for calibration accuracy. A more
stringent assessment can be obtained by stratifying this analysis by an important predictor variable.
The theoretical uniform distribution is only an approximation when the survival probabilities are
estimates and not population values.

When censor is specified to val.surv, a different validation is done that is more stringent but that
only uses the uncensored failure times. This method is used for type I censoring when the theoretical
censoring times are known for subjects having uncensored failure times. Let T , C, and F denote
respectively the failure time, censoring time, and cumulative failure time distribution (1− S). The
expected value of F (T |X) is 0.5 when T represents the subject’s actual failure time. The expected
value for an uncensored time is the expected value of F (T |T ≤ C,X) = 0.5F (C|X). A smooth
plot of F (T |X)− 0.5F (C|X) for uncensored T should be a flat line through y = 0 if the model is
well calibrated. A smooth plot of 2F (T |X)/F (C|X) for uncensored T should be a flat line through
y = 1.0. The smooth plot is obtained by smoothing the (linear predictor, difference or ratio) pairs.

Note that the Cox-Snell residual plot is not very sensitive to model lack of fit.

Usage

val.surv(fit, newdata, S, est.surv,
method=c('hare', 'smoothkm'),
censor, u, fun, lim, evaluate=100, pred, maxdim=5, ...)

val.surv 275

S3 method for class 'val.survh'
print(x, ...)

S3 method for class 'val.survh'
plot(x, lim, xlab, ylab,

riskdist=TRUE, add=FALSE,
scat1d.opts=list(nhistSpike=200), ...)

S3 method for class 'val.surv'
plot(x, group, g.group=4,

what=c('difference','ratio'),
type=c('l','b','p'),
xlab, ylab, xlim, ylim, datadensity=TRUE, ...)

Arguments

fit a fit object created by cph or psm

newdata a data frame for which val.surv should obtain predicted survival probabilities.
If omitted, survival estimates are made for all of the subjects used in fit.

S an Surv object or an Ocens object

est.surv a vector of estimated survival probabilities corresponding to times in the first
column of S.

method applies if u is specified and defaults to hare

censor a vector of censoring times. Only the censoring times for uncensored observa-
tions are used.

u a single numeric follow-up time

fun a function that transforms survival probabilities into the scale of the linear pre-
dictor. If fit is given, and represents either a Cox, Weibull, or exponential fit,
fun is automatically set to log(-log(p)).

lim a 2-vector specifying limits of predicted survival probabilities for obtaining es-
timated actual probabilities at time u. Default for val.surv is the limits for
predictions from datadist, which for large n is the 10th smallest and 10th
largest predicted survival probability. For plot.val.survh, the default for lim
is the range of the combination of predicted probabilities and calibrated actual
probabilities. lim is used for both axes of the calibration plot.

evaluate the number of evenly spaced points over the range of predicted probabilities.
This defines the points at which calibrated predictions are obtained for plotting.

pred a vector of points at which to evaluate predicted probabilities, overriding lim

maxdim see hare

x result of val.surv

xlab x-axis label. For plot.survh, defaults for xlab and ylab come from u and the
units of measurement for the raw survival times.

ylab y-axis label

riskdist set to FALSE to not call scat1d to draw the distribution of predicted (uncali-
brated) probabilities

276 val.surv

add set to TRUE if adding to an existing plot

scat1d.opts a list of options to pass to scat1d. By default, the option nhistSpike=200 is
passed so that a spike histogram is used if the sample size exceeds 200.

... When u is given to val.surv, . . . represents optional arguments to hare or
movStats. It can represent arguments to pass to plot or lines for plot.val.survh.
Otherwise, . . . contains optional arguments for plsmo or plot. For print.val.survh,
. . . is ignored.

group a grouping variable. If numeric this variable is grouped into g.group quantile
groups (default is quartiles). group, g.group, what, and type apply when u is
not given.

g.group number of quantile groups to use when group is given and variable is numeric.

what the quantity to plot when censor was in effect. The default is to show the differ-
ence between cumulative probabilities and their expectation given the censoring
time. Set what="ratio" to show the ratio instead.

type Set to the default ("l") to plot the trend line only, "b" to plot both individual
subjects ratios and trend lines, or "p" to plot only points.

xlim, ylim axis limits for plot.val.surv when the censor variable was used.

datadensity By default, plot.val.surv will show the data density on each curve that is
created as a result of censor being present. Set datadensity=FALSE to suppress
these tick marks drawn by scat1d.

Value

a list of class "val.surv" or "val.survh". Some plot methods return a ggplot2 object.

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Cox DR, Snell EJ (1968):A general definition of residuals (with discussion). JRSSB 30:248–275.

Kooperberg C, Stone C, Truong Y (1995): Hazard regression. JASA 90:78–94.

May M, Royston P, Egger M, Justice AC, Sterne JAC (2004):Development and validation of a
prognostic model for survival time data: application to prognosis of HIV positive patients treated
with antiretroviral therapy. Stat in Med 23:2375–2398.

Stallard N (2009): Simple tests for th external validation of mortality prediction scores. Stat in Med
28:377–388.

See Also

validate, calibrate, hare, scat1d, cph, psm, groupkm

val.surv 277

Examples

Generate failure times from an exponential distribution
require(survival)
set.seed(123) # so can reproduce results
n <- 1000
age <- 50 + 12*rnorm(n)
sex <- factor(sample(c('Male','Female'), n, rep=TRUE, prob=c(.6, .4)))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
t <- -log(runif(n))/h
units(t) <- 'Year'
label(t) <- 'Time to Event'
ev <- ifelse(t <= cens, 1, 0)
t <- pmin(t, cens)
S <- Surv(t, ev)

First validate true model used to generate data

If hare is available, make a smooth calibration plot for 1-year
survival probability where we predict 1-year survival using the
known true population survival probability
In addition, use groupkm to show that grouping predictions into
intervals and computing Kaplan-Meier estimates is not as accurate.

s1 <- exp(-h*1)
w <- val.surv(est.surv=s1, S=S, u=1,

fun=function(p)log(-log(p)))
plot(w, lim=c(.85,1), scat1d.opts=list(nhistSpike=200, side=1))
groupkm(s1, S, m=100, u=1, pl=TRUE, add=TRUE)

Now validate the true model using residuals

w <- val.surv(est.surv=exp(-h*t), S=S)
plot(w)
plot(w, group=sex) # stratify by sex

Now fit an exponential model and validate
Note this is not really a validation as we're using the
training data here
f <- psm(S ~ age + sex, dist='exponential', y=TRUE)
w <- val.surv(f)
plot(w, group=sex)

We know the censoring time on every subject, so we can
compare the predicted Pr[T <= observed T | T>c, X] to
its expectation 0.5 Pr[T <= C | X] where C = censoring time
We plot a ratio that should equal one
w <- val.surv(f, censor=cens)
plot(w)
plot(w, group=age, g=3) # stratify by tertile of age

278 validate

validate Resampling Validation of a Fitted Model’s Indexes of Fit

Description

The validate function when used on an object created by one of the rms series does resampling
validation of a regression model, with or without backward step-down variable deletion. The print
method will call the latex or html method if options(prType=) is set to "latex" or "html". For
"latex" printing through print(), the LaTeX table environment is turned off. When using html
with Quarto or RMarkdown, results='asis' need not be written in the chunk header.

See predab.resample for information about confidence limits.

Usage

fit <- fitting.function(formula=response ~ terms, x=TRUE, y=TRUE)
validate(fit, method="boot", B=40,

bw=FALSE, rule="aic", type="residual", sls=0.05, aics=0,
force=NULL, estimates=TRUE, pr=FALSE, ...)

S3 method for class 'validate'
print(x, digits=4, B=Inf, ...)
S3 method for class 'validate'
latex(object, digits=4, B=Inf, file='', append=FALSE,

title=first.word(deparse(substitute(x))),
caption=NULL, table.env=FALSE,
size='normalsize', extracolsize=size, ...)

S3 method for class 'validate'
html(object, digits=4, B=Inf, caption=NULL, ...)

Arguments

fit a fit derived by e.g. lrm, cph, psm, ols. The options x=TRUE and y=TRUE must
have been specified.

method may be "crossvalidation", "boot" (the default), ".632", or "randomization".
See predab.resample for details. Can abbreviate, e.g. "cross", "b", ".6".

B number of repetitions. For method="crossvalidation", is the number of groups
of omitted observations. For print.validate, latex.validate, and html.validate,
B is an upper limit on the number of resamples for which information is printed
about which variables were selected in each model re-fit. Specify zero to sup-
press printing. Default is to print all re-samples.

bw TRUE to do fast step-down using the fastbw function, for both the overall model
and for each repetition. fastbw keeps parameters together that represent the
same factor.

rule Applies if bw=TRUE. "aic" to use Akaike’s information criterion as a stopping
rule (i.e., a factor is deleted if the χ2 falls below twice its degrees of freedom),
or "p" to use P -values.

validate 279

type "residual" or "individual" - stopping rule is for individual factors or for the
residual χ2 for all variables deleted

sls significance level for a factor to be kept in a model, or for judging the residual
χ2.

aics cutoff on AIC when rule="aic".

force see fastbw

estimates see print.fastbw

pr TRUE to print results of each repetition

... parameters for each specific validate function, and parameters to pass to predab.resample
(note especially the group, cluster, amd subset parameters). For latex, op-
tional arguments to latex.default. Ignored for html.validate.
For psm, you can pass the maxiter parameter here (passed to survreg.control,
default is 15 iterations) as well as a tol parameter for judging matrix singularity
in solvet (default is 1e-12) and a rel.tolerance parameter that is passed to
survreg.control (default is 1e-5).
For print.validate . . . is ignored.

x, object an object produced by one of the validate functions

digits number of decimal places to print

file file to write LaTeX output. Default is standard output.

append set to TRUE to append LaTeX output to an existing file
title, caption, table.env, extracolsize

see latex.default. If table.env is FALSE and caption is given, the character
string contained in caption will be placed before the table, centered.

size size of LaTeX output. Default is 'normalsize'. Must be a defined LaTeX size
when prepended by double slash.

Details

It provides bias-corrected indexes that are specific to each type of model. For validate.cph and
validate.psm, see validate.lrm, which is similar.
For validate.cph and validate.psm, there is an extra argument dxy, which if TRUE causes the
dxy.cens function to be invoked to compute the Somers’ Dxy rank correlation to be computed at
each resample. The values corresponding to the row Dxy are equal to 2 ∗ (C − 0.5) where C is the
C-index or concordance probability.

For validate.cph with dxy=TRUE, you must specify an argument u if the model is stratified, since
survival curves can then cross and Xβ is not 1-1 with predicted survival.
There is also validate method for tree, which only does cross-validation and which has a different
list of arguments.

Value

a matrix with rows corresponding to the statistical indexes and columns for columns for the original
index, resample estimates, indexes applied to the whole or omitted sample using the model derived
from the resample, average optimism, corrected index, and number of successful re-samples.

280 validate.cph

Side Effects

prints a summary, and optionally statistics for each re-fit

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

validate.ols, validate.cph, validate.lrm, validate.rpart, predab.resample, fastbw, rms,
rms.trans, calibrate, dxy.cens, concordancefit

Examples

See examples for validate.cph, validate.lrm, validate.ols
Example of validating a parametric survival model:

require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n, TRUE))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
dt <- -log(runif(n))/h
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
S <- Surv(dt,e)

f <- psm(S ~ age*sex, x=TRUE, y=TRUE) # Weibull model
Validate full model fit
validate(f, B=10) # usually B=150

Validate stepwise model with typical (not so good) stopping rule
bw=TRUE does not preserve hierarchy of terms at present
validate(f, B=10, bw=TRUE, rule="p", sls=.1, type="individual")

validate.cph Validation of a Fitted Cox or Parametric Survival Model’s Indexes of
Fit

validate.cph 281

Description

This is the version of the validate function specific to models fitted with cph or psm. Also included
is a small function dxy.cens that retrieves Dxy and its standard error from the survival package’s
concordancefit function. This allows for incredibly fast computation of Dxy or the c-index even
for hundreds of thousands of observations. dxy.cens negates Dxy if log relative hazard is being
predicted. If y is a left-censored Surv object, times are negated and a right-censored object is
created, then Dxy is negated.

See predab.resample for information about confidence limits.

Usage

fit <- cph(formula=Surv(ftime,event) ~ terms, x=TRUE, y=TRUE, \dots)
S3 method for class 'cph'
validate(fit, method="boot", B=40, bw=FALSE, rule="aic",
type="residual", sls=.05, aics=0, force=NULL, estimates=TRUE,
pr=FALSE, dxy=TRUE, u, tol=1e-9, ...)

S3 method for class 'psm'
validate(fit, method="boot",B=40,

bw=FALSE, rule="aic", type="residual", sls=.05, aics=0,
force=NULL, estimates=TRUE, pr=FALSE,
dxy=TRUE, tol=1e-12, rel.tolerance=1e-5, maxiter=15, ...)

dxy.cens(x, y, type=c('time','hazard'))

Arguments

fit a fit derived cph. The options x=TRUE and y=TRUE must have been specified. If
the model contains any stratification factors and dxy=TRUE, the options surv=TRUE
and time.inc=u must also have been given, where u is the same value of u given
to validate.

method see validate

B number of repetitions. For method="crossvalidation", is the number of groups
of omitted observations.

rel.tolerance, maxiter, bw
TRUE to do fast step-down using the fastbw function, for both the overall model
and for each repetition. fastbw keeps parameters together that represent the
same factor.

rule Applies if bw=TRUE. "aic" to use Akaike’s information criterion as a stopping
rule (i.e., a factor is deleted if the χ2 falls below twice its degrees of freedom),
or "p" to use P -values.

type "residual" or "individual" - stopping rule is for individual factors or for the
residual χ2 for all variables deleted. For dxy.cens, specify type="hazard" if
x is on the hazard or cumulative hazard (or their logs) scale, causing negation of
the correlation index.

sls significance level for a factor to be kept in a model, or for judging the residual
χ2.

282 validate.cph

aics cutoff on AIC when rule="aic".
force see fastbw

estimates see print.fastbw

pr TRUE to print results of each repetition
tol, ... see validate or predab.resample
dxy set to TRUE to validate Somers’ Dxy using dxy.cens, which is fast until n >

500,000. Uses the survival package’s concordancefit service function for
concordance.

u must be specified if the model has any stratification factors and dxy=TRUE. In
that case, strata are not included in Xβ and the survival curves may cross. Pre-
dictions at time t=u are correlated with observed survival times. Does not apply
to validate.psm.

x a numeric vector
y a Surv object that may be uncensored or right-censored

Details

Statistics validated include the Nagelkerke R2, Dxy , slope shrinkage, the discrimination index D
[(model L.R. χ2 - 1)/L], the unreliability index U = (difference in -2 log likelihood between uncal-
ibrated Xβ and Xβ with overall slope calibrated to test sample) / L, and the overall quality index
Q = D−U . g is the g-index on the log relative hazard (linear predictor) scale. L is -2 log likelihood
with beta=0. The "corrected" slope can be thought of as shrinkage factor that takes into account
overfitting. See predab.resample for the list of resampling methods.

Value

matrix with rows corresponding to Dxy , Slope, D, U , and Q, and columns for the original index,
resample estimates, indexes applied to whole or omitted sample using model derived from resam-
ple, average optimism, corrected index, and number of successful resamples.

The values corresponding to the row Dxy are equal to 2 ∗ (C − 0.5) where C is the C-index or
concordance probability. If the user is correlating the linear predictor (predicted log hazard) with
survival time, Dxy is automatically negated.

Side Effects

prints a summary, and optionally statistics for each re-fit (if pr=TRUE)

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

validate, predab.resample, fastbw, rms, rms.trans, calibrate, rcorr.cens, cph, survival-internal,
gIndex, concordancefit

validate.lrm 283

Examples

require(survival)
n <- 1000
set.seed(731)
age <- 50 + 12*rnorm(n)
label(age) <- "Age"
sex <- factor(sample(c('Male','Female'), n, TRUE))
cens <- 15*runif(n)
h <- .02*exp(.04*(age-50)+.8*(sex=='Female'))
dt <- -log(runif(n))/h
e <- ifelse(dt <= cens,1,0)
dt <- pmin(dt, cens)
units(dt) <- "Year"
S <- Surv(dt,e)

f <- cph(S ~ age*sex, x=TRUE, y=TRUE)
Validate full model fit
validate(f, B=10) # normally B=150

Validate a model with stratification. Dxy is the only
discrimination measure for such models, by Dxy requires
one to choose a single time at which to predict S(t|X)
f <- cph(S ~ rcs(age)*strat(sex),

x=TRUE, y=TRUE, surv=TRUE, time.inc=2)
validate(f, u=2, B=10) # normally B=150
Note u=time.inc

validate.lrm Resampling Validation of a Logistic or Ordinal Regression Model

Description

The validate function when used on an object created by lrm or orm does resampling validation
of a logistic regression model, with or without backward step-down variable deletion. It provides
bias-corrected Somers’ Dxy rank correlation, R-squared index, the intercept and slope of an overall
logistic calibration equation, the maximum absolute difference in predicted and calibrated proba-
bilities Emax, the discrimination index D (model L.R. (χ2 − 1)/n), the unreliability index U =
difference in -2 log likelihood between un-calibrated Xβ and Xβ with overall intercept and slope
calibrated to test sample / n, the overall quality index (logarithmic probability score) Q = D − U ,
and the Brier or quadratic probability score, B (the last 3 are not computed for ordinal models),
the g-index, and gp, the g-index on the probability scale. The corrected slope can be thought of as
shrinkage factor that takes into account overfitting. For orm fits, a subset of the above indexes is
provided, Spearman’s ρ is substituted for Dxy , and a new index is reported: pdm, the mean absolute
difference between 0.5 and the predicted probability that Y ≥ the marginal median of Y .

See predab.resample for information about confidence limits.

284 validate.lrm

Usage

fit <- lrm(formula=response ~ terms, x=TRUE, y=TRUE) or orm
S3 method for class 'lrm'
validate(fit, method="boot", B=40,

bw=FALSE, rule="aic", type="residual", sls=0.05, aics=0,
force=NULL, estimates=TRUE,
pr=FALSE, kint, Dxy.method,
emax.lim=c(0,1), ...)

S3 method for class 'orm'
validate(fit, method="boot", B=40, bw=FALSE, rule="aic",

type="residual",sls=.05, aics=0, force=NULL, estimates=TRUE,
pr=FALSE, ...)

Arguments

fit a fit derived by lrm or orm. The options x=TRUE and y=TRUE must have been
specified.

method, B, bw, rule, type, sls, aics, force, estimates, pr
see validate and predab.resample

kint In the case of an ordinal model, specify which intercept to validate. Default is
the middle intercept. For validate.orm, intercept-specific quantities are not
validated so this does not matter.

Dxy.method deprecated and ignored. lrm through lrm.fit computes exact rank correlation
coefficients as of version 6.9-0.

emax.lim range of predicted probabilities over which to compute the maximum error. De-
fault is entire range.

... other arguments to pass to lrm.fit and to predab.resample (note especially
the group, cluster, and subset parameters)

Details

If the original fit was created using penalized maximum likelihood estimation, the same penalty.matrix
used with the original fit are used during validation.

See https://www.fharrell.com/post/bootcal/ for simulations of the accuracy of approximate
bootstrap confidence intervals for overfitting-corrected Brier scores.

Value

a matrix with rows corresponding to Dxy , R2, Intercept, Slope, Emax, D, U , Q, B, g, gp, and
columns for the original index, resample estimates, indexes applied to the whole or omitted sample
using the model derived from the resample, average optimism, corrected index, and number of
successful re-samples. For validate.orm not all columns are provided, Spearman’s rho is returned
instead of Dxy , and pdm is reported.

Side Effects

prints a summary, and optionally statistics for each re-fit

https://www.fharrell.com/post/bootcal/

validate.lrm 285

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

References

Miller ME, Hui SL, Tierney WM (1991): Validation techniques for logistic regression models. Stat
in Med 10:1213–1226.

Harrell FE, Lee KL (1985): A comparison of the discrimination of discriminant analysis and logistic
regression under multivariate normality. In Biostatistics: Statistics in Biomedical, Public Health,
and Environmental Sciences. The Bernard G. Greenberg Volume, ed. PK Sen. New York: North-
Holland, p. 333–343.

See Also

predab.resample, fastbw, lrm, rms, rms.trans, calibrate, somers2, cr.setup, gIndex, orm

Examples

n <- 1000 # define sample size
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c('female','male'), n,TRUE))

Specify population model for log odds that Y=1
L <- .4*(sex=='male') + .045*(age-50) +

(log(cholesterol - 10)-5.2)*(-2*(sex=='female') + 2*(sex=='male'))
Simulate binary y to have Prob(y=1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)

f <- lrm(y ~ sex*rcs(cholesterol)+pol(age,2)+blood.pressure, x=TRUE, y=TRUE)
#Validate full model fit
validate(f, B=10) # normally B=300
validate(f, B=10, group=y)
two-sample validation: make resamples have same numbers of
successes and failures as original sample

#Validate stepwise model with typical (not so good) stopping rule
validate(f, B=10, bw=TRUE, rule="p", sls=.1, type="individual")

Not run:
#Fit a continuation ratio model and validate it for the predicted
#probability that y=0
u <- cr.setup(y)
Y <- u$y

286 validate.ols

cohort <- u$cohort
attach(mydataframe[u$subs,])
f <- lrm(Y ~ cohort+rcs(age,4)*sex, penalty=list(interaction=2))
validate(f, cluster=u$subs, subset=cohort=='all')
#see predab.resample for cluster and subset

End(Not run)

validate.ols Validation of an Ordinary Linear Model

Description

The validate function when used on an object created by ols does resampling validation of a
multiple linear regression model, with or without backward step-down variable deletion. Uses
resampling to estimate the optimism in various measures of predictive accuracy which include R2,
MSE (mean squared error with a denominator of n), the g-index, and the intercept and slope of an
overall calibration a + bŷ. The "corrected" slope can be thought of as shrinkage factor that takes
into account overfitting. validate.ols can also be used when a model for a continuous response is
going to be applied to a binary response. A Somers’ Dxy for this case is computed for each resample
by dichotomizing y. This can be used to obtain an ordinary receiver operating characteristic curve
area using the formula 0.5(Dxy + 1). The Nagelkerke-Maddala R2 index for the dichotomized
y is also given. See predab.resample for information about confidence limits and for the list of
resampling methods.

The LaTeX needspace package must be in effect to use the latex method.

Usage

fit <- fitting.function(formula=response ~ terms, x=TRUE, y=TRUE)
S3 method for class 'ols'
validate(fit, method="boot", B=40,

bw=FALSE, rule="aic", type="residual", sls=0.05, aics=0,
force=NULL, estimates=TRUE, pr=FALSE, u=NULL, rel=">",
tolerance=1e-7, ...)

Arguments

fit a fit derived by ols. The options x=TRUE and y=TRUE must have been specified.
See validate for a description of arguments method - pr.

method, B, bw, rule, type, sls, aics, force, estimates, pr
see validate and predab.resample and fastbw

u If specifed, y is also dichotomized at the cutoff u for the purpose of getting a
bias-corrected estimate of Dxy .

rel relationship for dichotomizing predicted y. Defaults to ">" to use y>u. rel can
also be "<", ">=", and "<=".

tolerance tolerance for singularity; passed to lm.fit.qr.
... other arguments to pass to predab.resample, such as group, cluster, and

subset

validate.rpart 287

Value

matrix with rows corresponding to R-square, MSE, g, intercept, slope, and optionally Dxy and R2,
and columns for the original index, resample estimates, indexes applied to whole or omitted sample
using model derived from resample, average optimism, corrected index, and number of successful
resamples.

Side Effects

prints a summary, and optionally statistics for each re-fit

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

ols, predab.resample, fastbw, rms, rms.trans, calibrate, gIndex

Examples

set.seed(1)
x1 <- runif(200)
x2 <- sample(0:3, 200, TRUE)
x3 <- rnorm(200)
distance <- (x1 + x2/3 + rnorm(200))^2

f <- ols(sqrt(distance) ~ rcs(x1,4) + scored(x2) + x3, x=TRUE, y=TRUE)

#Validate full model fit (from all observations) but for x1 < .75
validate(f, B=20, subset=x1 < .75) # normally B=300

#Validate stepwise model with typical (not so good) stopping rule
validate(f, B=20, bw=TRUE, rule="p", sls=.1, type="individual")

validate.rpart Dxy and Mean Squared Error by Cross-validating a Tree Sequence

Description

Uses xval-fold cross-validation of a sequence of trees to derive estimates of the mean squared
error and Somers’ Dxy rank correlation between predicted and observed responses. In the case of
a binary response variable, the mean squared error is the Brier accuracy score. For survival trees,
Dxy is negated so that larger is better. There are print and plot methods for objects created by
validate.rpart.

288 validate.rpart

Usage

f <- rpart(formula=y ~ x1 + x2 + \dots) # or rpart
S3 method for class 'rpart'
validate(fit, method, B, bw, rule, type, sls, aics,

force, estimates, pr=TRUE,
k, rand, xval=10, FUN, ...)

S3 method for class 'validate.rpart'
print(x, ...)
S3 method for class 'validate.rpart'
plot(x, what=c("mse","dxy"), legendloc=locator, ...)

Arguments

fit an object created by rpart. You must have specified the model=TRUE argument
to rpart.

method, B, bw, rule, type, sls, aics, force, estimates
are there only for consistency with the generic validate function; these are
ignored

x the result of validate.rpart

k a sequence of cost/complexity values. By default these are obtained from calling
FUN with no optional arguments or from the rpart cptable object in the original
fit object. You may also specify a scalar or vector.

rand a random sample (usually omitted)

xval number of splits

FUN the name of a function which produces a sequence of trees, such prune.

... additional arguments to FUN (ignored by print,plot).

pr set to FALSE to prevent intermediate results for each k to be printed

what a vector of things to plot. By default, 2 plots will be done, one for mse and one
for Dxy.

legendloc a function that is evaluated with a single argument equal to 1 to generate a list
with components x, y specifying coordinates of the upper left corner of a leg-
end, or a 2-vector. For the latter, legendloc specifies the relative fraction of the
plot at which to center the legend.

Value

a list of class "validate.rpart" with components named k, size, dxy.app, dxy.val, mse.app,
mse.val, binary, xval. size is the number of nodes, dxy refers to Somers’ D, mse refers to mean
squared error of prediction, app means apparent accuracy on training samples, val means validated
accuracy on test samples, binary is a logical variable indicating whether or not the response vari-
able was binary (a logical or 0/1 variable is binary). size will not be present if the user specifies
k.

Side Effects

prints if pr=TRUE

validate.Rq 289

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

See Also

rpart, somers2, dxy.cens, locator, legend

Examples

Not run:
n <- 100
set.seed(1)
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
y <- 1*(x1+x2+rnorm(n) > 1)
table(y)
require(rpart)
f <- rpart(y ~ x1 + x2 + x3, model=TRUE)
v <- validate(f)
v # note the poor validation
par(mfrow=c(1,2))
plot(v, legendloc=c(.2,.5))
par(mfrow=c(1,1))

End(Not run)

validate.Rq Validation of a Quantile Regression Model

Description

The validate function when used on an object created by Rq does resampling validation of a
quantile regression model, with or without backward step-down variable deletion. Uses resampling
to estimate the optimism in various measures of predictive accuracy which include mean absolute
prediction error (MAD), Spearman rho, the g-index, and the intercept and slope of an overall cali-
bration a+ bŷ. The "corrected" slope can be thought of as shrinkage factor that takes into account
overfitting. validate.Rq can also be used when a model for a continuous response is going to
be applied to a binary response. A Somers’ Dxy for this case is computed for each resample by
dichotomizing y. This can be used to obtain an ordinary receiver operating characteristic curve area
using the formula 0.5(Dxy + 1). See predab.resample for information about confidence limits
and for the list of resampling methods.

The LaTeX needspace package must be in effect to use the latex method.

290 validate.Rq

Usage

fit <- fitting.function(formula=response ~ terms, x=TRUE, y=TRUE)
S3 method for class 'Rq'
validate(fit, method="boot", B=40,

bw=FALSE, rule="aic", type="residual", sls=0.05, aics=0,
force=NULL, estimates=TRUE, pr=FALSE, u=NULL, rel=">",
tolerance=1e-7, ...)

Arguments

fit a fit derived by Rq. The options x=TRUE and y=TRUE must have been specified.
See validate for a description of arguments method - pr.

method, B, bw, rule, type, sls, aics, force, estimates, pr
see validate and predab.resample and fastbw

u If specifed, y is also dichotomized at the cutoff u for the purpose of getting a
bias-corrected estimate of Dxy .

rel relationship for dichotomizing predicted y. Defaults to ">" to use y>u. rel can
also be "<", ">=", and "<=".

tolerance ignored

... other arguments to pass to predab.resample, such as group, cluster, and
subset

Value

matrix with rows corresponding to various indexes, and optionally Dxy , and columns for the orig-
inal index, resample estimates, indexes applied to whole or omitted sample using model derived
from resample, average optimism, corrected index, and number of successful resamples.

Side Effects

prints a summary, and optionally statistics for each re-fit

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

See Also

Rq, predab.resample, fastbw, rms, rms.trans, gIndex

Examples

set.seed(1)
x1 <- runif(200)
x2 <- sample(0:3, 200, TRUE)
x3 <- rnorm(200)

vif 291

distance <- (x1 + x2/3 + rnorm(200))^2

f <- Rq(sqrt(distance) ~ rcs(x1,4) + scored(x2) + x3, x=TRUE, y=TRUE)

#Validate full model fit (from all observations) but for x1 < .75
validate(f, B=20, subset=x1 < .75) # normally B=300

#Validate stepwise model with typical (not so good) stopping rule
validate(f, B=20, bw=TRUE, rule="p", sls=.1, type="individual")

vif Variance Inflation Factors

Description

Computes variance inflation factors from the covariance matrix of parameter estimates, using the
method of Davis et al. (1986), which is based on the correlation matrix from the information matrix.

Usage

vif(fit)

Arguments

fit an object created by lrm, ols, psm, cph, Rq, Glm, glm

Value

vector of vifs

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com

References

Davis CE, Hyde JE, Bangdiwala SI, Nelson JJ: An example of dependencies among variables in a
conditional logistic regression. In Modern Statistical Methods in Chronic Disease Epidemiology,
Eds SH Moolgavkar and RL Prentice, pp. 140–147. New York: Wiley; 1986.

See Also

rmsMisc (for num.intercepts

292 which.influence

Examples

set.seed(1)
x1 <- rnorm(100)
x2 <- x1+.1*rnorm(100)
y <- sample(0:1, 100, TRUE)
f <- lrm(y ~ x1 + x2)
vif(f)

which.influence Which Observations are Influential

Description

Creates a list with a component for each factor in the model. The names of the components are
the factor names. Each component contains the observation identifiers of all observations that are
"overly influential" with respect to that factor, meaning that |dfbetas| > u for at least one βi

associated with that factor, for a given cutoff. The default cutoff is .2. The fit must come from
a function that has resid(fit, type="dfbetas") defined.

show.influence, written by Jens Oehlschlaegel-Akiyoshi, applies the result of which.influence
to a data frame, usually the one used to fit the model, to report the results.

Usage

which.influence(fit, cutoff=.2)

show.influence(object, dframe, report=NULL, sig=NULL, id=NULL)

Arguments

fit fit object

object the result of which.influence

dframe data frame containing observations pertinent to the model fit

cutoff cutoff value

report other columns of the data frame to report besides those corresponding to predic-
tors that are influential for some observations

sig runs results through signif with sig digits if sig is given

id a character vector that labels rows of dframe if row.names were not used

Value

show.influence returns a marked dataframe with the first column being a count of influence values

Xcontrast 293

Author(s)

Frank Harrell
Department of Biostatistics, Vanderbilt University
fh@fharrell.com

Jens Oehlschlaegel-Akiyoshi
Center for Psychotherapy Research
Christian-Belser-Strasse 79a
D-70597 Stuttgart Germany
oehl@psyres-stuttgart.de

See Also

residuals.lrm, residuals.cph, residuals.ols, rms, lrm, ols, cph

Examples

#print observations in data frame that are influential,
#separately for each factor in the model
x1 <- 1:20
x2 <- abs(x1-10)
x3 <- factor(rep(0:2,length.out=20))
y <- c(rep(0:1,8),1,1,1,1)
f <- lrm(y ~ rcs(x1,3) + x2 + x3, x=TRUE,y=TRUE)
w <- which.influence(f, .55)
nam <- names(w)
d <- data.frame(x1,x2,x3,y)
for(i in 1:length(nam)) {
print(paste("Influential observations for effect of ",nam[i]),quote=FALSE)
print(d[w[[i]],])

}

show.influence(w, d) # better way to show results

Xcontrast Xcontrast

Description

Produce Design Matrices for Contrasts

Usage

Xcontrast(
fit,
a,
b = NULL,
a2 = NULL,

294 [.Ocens

b2 = NULL,
ycut = NULL,
weights = "equal",
expand = TRUE,
Zmatrix = TRUE

)

Arguments

fit an ‘rms‘ or ‘rmsb‘ fit object, not necessarily complete

a see [rms::contrast.rms()]

b see [rms::contrast.rms()]

a2 see [rms::contrast.rms()]

b2 see [rms::contrast.rms()]

ycut see [rms::contrast.rms()]

weights see [rms::contrast.rms()]

expand see [rms::contrast.rms()]

Zmatrix set to ‘FALSE‘ for a partial PO model in which you do not want to include the
Z matrix in the returned contrast matrix

Details

This is a simpler version of ‘contrast.rms‘ that creates design matrices or differences of them and
does not require the fit object to be complete (i.e., to have coefficients). This is used for the ‘pcon-
trast‘ option in [rmsb::blrm()].

Value

numeric matrix

Author(s)

Frank Harrell

[.Ocens Ocens

Description

Subset Method for Ocens Objects

Usage

S3 method for class 'Ocens'
x[..., drop]

[.Ocens 295

Arguments

x an Ocens object

... the usual rows and columns specifiers

drop set to FALSE to not drop unneeded dimensions

Details

Subsets an Ocens object, preserving its special attributes. Attributes are not updated. In the future
such updating should be implemented.

Value

new Ocens object or by default an unclassed vector if only one column of x is being kept

Author(s)

Frank Harrell

Index

∗ aggregation
groupkm, 81

∗ aplot
anova.rms, 5

∗ array
matinv, 112

∗ bootstrap
anova.rms, 5
bootBCa, 17
bootcov, 18
calibrate, 30
predab.resample, 167
validate, 278
validate.cph, 280
validate.lrm, 283
validate.ols, 286
validate.Rq, 289

∗ calibration
calibrate, 30

∗ category
cr.setup, 50
impactPO, 86
lrm, 98
orm, 133
plot.xmean.ordinaly, 159
validate.rpart, 287

∗ character
latex.cph, 94
latexrms, 96

∗ cluster sampling
robcov, 236

∗ continuation ratio model
cr.setup, 50
lrm, 98

∗ grouping
groupkm, 81

∗ hplot
bootcov, 18
bplot, 27

calibrate, 30
ggplot.Predict, 65
nomogram, 114
plot.Predict, 149
plot.xmean.ordinaly, 159
plotp.Predict, 162
summary.rms, 248
survplot, 259

∗ htest
anova.rms, 5
bootcov, 18
bplot, 27
contrast.rms, 34
fastbw, 57
ggplot.Predict, 65
plot.Predict, 149
plotp.Predict, 162
sensuc, 241
summary.rms, 248
val.prob, 269

∗ interface
Function, 59
latex.cph, 94
latexrms, 96
summary.rms, 248

∗ intra-class correlation
robcov, 236

∗ logistic regression model
cr.setup, 50
Function, 59
lrm, 98
orm, 133
orm.fit, 141
pentrace, 144
plot.xmean.ordinaly, 159
predict.lrm, 177
residuals.lrm, 205
rms, 213
rms.trans, 216

296

INDEX 297

sensuc, 241
summary.rms, 248
val.prob, 269
validate.lrm, 283
which.influence, 292

∗ logistic
lrm.fit, 107

∗ manip
gendata, 61
rms, 213
rms.trans, 216

∗ math
Function, 59
rms, 213
rms.trans, 216

∗ methods
bootcov, 18
calibrate, 30
Function, 59
gendata, 61
latexrms, 96
rms, 213
rms.trans, 216
rmsMisc, 219
specs.rms, 247
validate, 278

∗ model reliability
calibrate, 30

∗ model validation
calibrate, 30
plot.xmean.ordinaly, 159
predab.resample, 167
residuals.cph, 202
residuals.lrm, 205
residuals.ols, 210
sensuc, 241
val.prob, 269
val.surv, 273
validate, 278
validate.cph, 280
validate.lrm, 283
validate.ols, 286
validate.rpart, 287
validate.Rq, 289

∗ models
anova.rms, 5
bj, 13
bootcov, 18

bplot, 27
calibrate, 30
contrast.rms, 34
cph, 43
cr.setup, 50
datadist, 52
fastbw, 57
Function, 59
gendata, 61
ggplot.Predict, 65
Glm, 77
Gls, 79
impactPO, 86
latex.cph, 94
latexrms, 96
lrm, 98
lrm.fit, 107
nomogram, 114
ols, 127
orm, 133
orm.fit, 141
pentrace, 144
plot.Predict, 149
plot.xmean.ordinaly, 159
plotp.Predict, 162
pphsm, 166
predab.resample, 167
Predict, 171
predict.lrm, 177
predictrms, 180
psm, 195
residuals.lrm, 205
residuals.ols, 210
rms, 213
rms.trans, 216
rmsMisc, 219
rmsOverview, 226
robcov, 236
Rq, 239
sensuc, 241
specs.rms, 247
summary.rms, 248
survest.cph, 252
survest.psm, 256
survplot, 259
val.prob, 269
val.surv, 273
validate, 278

298 INDEX

validate.cph, 280
validate.lrm, 283
validate.ols, 286
validate.rpart, 287
validate.Rq, 289
vif, 291
which.influence, 292

∗ nonparametric
cph, 43
datadist, 52
groupkm, 81
Rq, 239
survplot, 259

∗ ordinal logistic model
cr.setup, 50
lrm, 98
orm, 133

∗ ordinal response
cr.setup, 50
lrm, 98
orm, 133

∗ overview
rmsOverview, 226

∗ penalized MLE
pentrace, 144

∗ predictive accuracy
calibrate, 30
gIndex, 73
predab.resample, 167
val.prob, 269
val.surv, 273
validate, 278
validate.cph, 280
validate.lrm, 283
validate.ols, 286
validate.rpart, 287
validate.Rq, 289

∗ print
print.cph, 187
print.ols, 190

∗ proportional odds model
lrm, 98
orm, 133

∗ regression
anova.rms, 5
bootcov, 18
calibrate, 30
contrast.rms, 34

cr.setup, 50
datadist, 52
fastbw, 57
Function, 59
gendata, 61
Glm, 77
impactPO, 86
latex.cph, 94
latexrms, 96
lrm.fit, 107
nomogram, 114
ols, 127
orm.fit, 141
pentrace, 144
plot.xmean.ordinaly, 159
pphsm, 166
predict.lrm, 177
predictrms, 180
residuals.lrm, 205
residuals.ols, 210
rms, 213
rms.trans, 216
robcov, 236
sensuc, 241
specs.rms, 247
summary.rms, 248
survest.cph, 252
survest.psm, 256
val.prob, 269
val.surv, 273
validate, 278
validate.cph, 280
validate.lrm, 283
validate.ols, 286
validate.Rq, 289
vif, 291
which.influence, 292

∗ ridge regression
pentrace, 144

∗ robust
gIndex, 73
robcov, 236

∗ sampling
bootcov, 18
sensuc, 241
val.prob, 269

∗ sensitivity analysis
sensuc, 241

INDEX 299

∗ shrinkage
pentrace, 144

∗ smooth
rms.trans, 216
val.prob, 269
val.surv, 273

∗ stepwise
fastbw, 57

∗ stratification
groupkm, 81

∗ survival
bj, 13
calibrate, 30
cph, 43
Function, 59
groupkm, 81
hazard.ratio.plot, 83
ie.setup, 85
latex.cph, 94
pphsm, 166
psm, 195
residuals.cph, 202
rms, 213
rms.trans, 216
sensuc, 241
summary.rms, 248
survest.cph, 252
survest.psm, 256
survfit.cph, 258
survplot, 259
val.surv, 273
validate, 278
validate.cph, 280
which.influence, 292

∗ transformation
rms.trans, 216

∗ tree
validate.rpart, 287

∗ univar
gIndex, 73

∗ utilities
setPb, 245

∗ variable selection
fastbw, 57

[.Ocens, 294
%ia% (rms.trans), 216

abbreviate, 116
abs.error.pred, 129

adapt_orm, 4
AIC.rms (rmsMisc), 219
anova.lm, 9
anova.rms, 5, 38, 47, 67, 69, 129, 151, 153,

215, 225
approx, 119
as.data.frame.Ocens, 12
asis (rms.trans), 216
axis, 119

biVar, 160
bj, 13
bjplot (bj), 13
boot.ci, 18, 175
bootBCa, 17, 175
bootcov, 18, 38, 171, 175, 225, 238
bootcov(), 212
bootplot (bootcov), 18
boxplot, 207
bplot, 27

calibrate, 30, 47, 102, 129, 138, 215, 276,
280, 282, 285, 287

calibrate.rms (rmsMisc), 219
catg (rms.trans), 216
combineRelatedPredictors (rmsMisc), 219
concordance, 47
concordancefit, 280, 282
confplot (bootcov), 18
contourplot, 29
contrast (contrast.rms), 34
contrast.rms, 9, 22, 34, 69, 153, 163, 175,

179, 183, 251
corClasses, 81
cox.zph, 47, 84, 203
coxph, 47, 84, 86, 122, 188, 203
cph, 16, 33, 43, 59, 84, 86, 129, 171, 203, 215,

218, 244, 254, 264, 276, 282, 293
cr.setup, 50, 86, 102, 160, 285
cr.setup(), 111
cut2, 82

datadist, 16, 29, 47, 52, 69, 114, 118, 129,
153, 163, 171, 175, 183, 198, 215,
218, 225, 247, 251, 264

dataRep, 215
de, 63
describe, 54, 215
Design (rms), 213

300 INDEX

DesignAssign (rmsMisc), 219
dotchart2, 9, 74
dxy.cens, 16, 47, 280, 289
dxy.cens (validate.cph), 280

effective.df (pentrace), 144
errbar, 33, 82, 264
expand.grid, 63
ExProb, 55

factor(), 201
fastbw, 47, 57, 129, 169, 171, 215, 225, 279,

280, 282, 285–287, 290
fit.mult.impute, 33
formatNP (rmsMisc), 219
Function, 59
Function.rms, 183

gendata, 22, 38, 61, 183, 215
Getlim (rmsMisc), 219
Getlimi (rmsMisc), 219
ggplot, 69, 89, 90
ggplot (importedexported), 89
ggplot.npsurv, 63, 122
ggplot.Predict, 9, 47, 65, 119, 153, 163,

175, 183, 198, 264
ggplot2::facet_wrap(), 149
gIndex, 73, 102, 138, 144, 183, 282, 285, 287,

290
gIndex(), 111
GiniMd, 16, 47, 75, 81, 198
Glm, 77
glm, 51, 102, 144
Gls, 79
gls, 81
glsControl, 81
glsObject, 81
groupkm, 33, 81, 276
gTrans (rms.trans), 216

hare, 32, 275, 276
Hazard (psm), 195
hazard.ratio.plot, 83
histdensity (bootcov), 18
histSpikeg, 68, 69, 163
Hmisc::combine.levels(), 87, 88
Hmisc::cutGn(), 213
Hmisc::fit.mult.impute(), 193, 195
Hmisc::GiniMd(), 78

Hmisc::movStats(), 92, 93
Hmisc::propsPO(), 88
Hmisc::qrxcenter(), 111
Hmisc::R2Measures(), 88, 112
Hmisc::units(), 200
html.anova.rms (anova.rms), 5
html.naprint.delete (rmsMisc), 219
html.summary.rms (summary.rms), 248
html.validate (validate), 278

ie.setup, 47, 85
image, 147
impactPO, 86
importedexported, 89
infoMxop, 90
infoMxop(), 110, 111
intCalibration, 92
interactions.containing (rmsMisc), 219
is.na.Ocens, 94

labcurve, 69, 153, 207, 264, 272
latex, 8, 9, 96, 98, 215, 225, 250
latex.anova.rms (anova.rms), 5
latex.bj (latexrms), 96
latex.cph, 47, 94
latex.default, 95, 279
latex.Glm (latexrms), 96
latex.Gls (latexrms), 96
latex.lrm, 102
latex.lrm (latex.cph), 94
latex.naprint.delete (rmsMisc), 219
latex.ols, 129
latex.ols (latex.cph), 94
latex.orm, 138
latex.orm (latex.cph), 94
latex.pphsm (latex.cph), 94
latex.psm, 198
latex.psm (latex.cph), 94
latex.Rq (Rq), 239
latex.summary.rms (summary.rms), 248
latex.validate (validate), 278
latexrms, 61, 95, 96, 96, 119, 215, 240, 247
latexSN, 225
latexTabular, 225
legend, 289
legend.nomabbrev (nomogram), 114
levelplot, 29
lines, 122

INDEX 301

lines.residuals.psm.censored.normalized
(psm), 195

lm, 129, 191
lm.fit, 22, 129
lm.influence, 211
lm.wfit, 129
locator, 9, 289
loess, 207
logLik.Gls, 81
logLik.Gls (rmsMisc), 219
logLik.ols (rmsMisc), 219
logLik.rms (rmsMisc), 219
lowess, 33, 207
lrm, 47, 51, 59, 98, 113, 129, 135–137, 144,

147, 160, 171, 179, 207, 215, 218,
244, 272, 285, 293

lrm(), 88, 109, 111
lrm.fit, 22, 98, 102, 107, 272
lrm.fit(), 201
lrtest, 9
lrtest (rmsMisc), 219
LRupdate, 111
lsp (rms.trans), 216

makepredictcall, 218
makepredictcall.rms (rms.trans), 216
matinv, 112
matrx (rms.trans), 216
Mean.cph (cph), 43
Mean.lrm, 102
Mean.lrm (predict.lrm), 177
Mean.orm, 138
Mean.orm (predict.lrm), 177
Mean.psm (psm), 195
mgp.axis, 264
mgp.axis.labels, 264
Misc, 251
model.frame.default, 215
modelData (rms), 213
movStats, 33

na.delete, 16, 47, 80, 102, 129, 138, 198
na.detail.response, 16, 47, 102, 129, 138,

198
naresid, 179, 203, 207, 238
Newlabels (rmsMisc), 219
Newlevels (rmsMisc), 219
nnet::multinom(), 88
nobs.rms (rmsMisc), 219

nomogram, 55, 114, 215
npsurv, 121
num.intercepts, 138, 291

Ocens, 123, 275
Ocens2ord, 123
Ocens2Surv, 126
Olinks, 126
ols, 59, 127, 147, 171, 191, 211, 215, 218,

287, 293
oos.loglik (rmsMisc), 219
ordESS, 130, 138
ordGroupBoot, 22
ordParallel, 131
orm, 33, 57, 133, 144, 147, 179, 207, 241, 285
orm.fit, 22, 134, 138, 141
orm.fit(), 201
Overview, 69, 153, 163

page, 63
pantext, 9
pantext (plot.Predict), 149
par, 117, 264
param.order (rmsMisc), 219
Penalty.matrix (rmsMisc), 219
Penalty.setup (rmsMisc), 219
pentrace, 102, 129, 138, 144
perimeter (bplot), 27
perlcode (Function), 59
plot, 122
plot.anova.rms (anova.rms), 5
plot.calibrate (calibrate), 30
plot.contrast.rms, 148
plot.ExProb (ExProb), 55
plot.gIndex (gIndex), 73
plot.lrm.partial (residuals.lrm), 205
plot.nomogram (nomogram), 114
plot.pentrace (pentrace), 144
plot.Predict, 9, 47, 69, 119, 149, 163, 175,

183, 198, 264
plot.rexVar, 157
plot.sensuc (sensuc), 241
plot.summary.rms, 119
plot.summary.rms (summary.rms), 248
plot.val.prob (val.prob), 269
plot.val.surv (val.surv), 273
plot.val.survh (val.surv), 273
plot.validate.rpart (validate.rpart),

287

302 INDEX

plot.xmean.ordinaly, 159
plotIntercepts, 161
plotp.Predict, 162, 175
pol (rms.trans), 216
polr, 138
polspline::hare(), 92
poma, 165
pphsm, 166, 198
predab.resample, 15, 22, 30, 33, 51, 86, 102,

138, 167, 278, 280–287, 289, 290
Predict, 22, 29, 38, 47, 54, 63, 69, 129, 153,

163, 171, 215
predict.bj (predictrms), 180
predict.cph (predictrms), 180
predict.Glm (predictrms), 180
predict.Gls (predictrms), 180
predict.lrm, 102, 177, 183
predict.ols (predictrms), 180
predict.orm, 138, 183
predict.orm (predict.lrm), 177
predict.psm (predictrms), 180
predict.rms, 61, 63, 75, 129, 179
predict.rms (predictrms), 180
predict.Rq (Rq), 239
predictrms, 69, 153, 163, 172, 175, 180, 215,

254, 258, 264
pretty, 8, 116, 119, 251
pretty(), 64
print, 122
print.anova.rms (anova.rms), 5
print.bj (bj), 13
print.calibrate (calibrate), 30
print.char.matrix, 225
print.contrast.rms (contrast.rms), 34
print.cph, 47, 187
print.datadist, 63
print.datadist (datadist), 52
print.fastbw, 169, 279, 282
print.fastbw (fastbw), 57
print.gIndex (gIndex), 73
print.Glm, 188
print.Gls (Gls), 79
print.impactPO, 189
print.lrm (lrm), 98
print.lrtest (rmsMisc), 219
print.nomogram (nomogram), 114
print.Ocens, 189
print.ols, 129, 190

print.orm (orm), 133
print.pentrace (pentrace), 144
print.pphsm, 167
print.pphsm (pphsm), 166
print.Predict (Predict), 171
print.psm (psm), 195
print.rexVar, 191
print.rms (rmsMisc), 219
print.Rq (Rq), 239
print.specs.rms (specs.rms), 247
print.summary.rms (summary.rms), 248
print.survest.psm (survest.psm), 256
print.val.prob (val.prob), 269
print.val.survh (val.surv), 273
print.validate (validate), 278
print.validate.rpart (validate.rpart),

287
prmiInfo, 9, 192
prModFit, 16, 81, 100, 102, 135, 138, 188,

191, 198, 241
prModFit (rmsMisc), 219
prModFit(), 78
processMI, 33, 193
processMI.fit.mult.impute, 193
processMI.fit.mult.impute(), 112, 193
prStats (rmsMisc), 219
psm, 16, 33, 59, 167, 195, 258, 264, 276
Punits, 200

Quantile.cph (cph), 43
Quantile.orm, 57
Quantile.orm (orm), 133
Quantile.psm (psm), 195

R2Measures, 100, 135, 136, 188, 195, 197, 198
rbind.Predict, 69, 153, 163
rbind.Predict (Predict), 171
rcorr.cens, 16, 282
rcs (rms.trans), 216
rcspline.eval, 218
rcspline.restate, 96, 98, 218
recode2integer, 144, 201
recode2integer(), 111
related.predictors (rmsMisc), 219
reListclean (rmsMisc), 219
removeFormulaTerms (rmsMisc), 219
reShape, 183
residuals.bj (bj), 13
residuals.coxph, 202, 203

INDEX 303

residuals.cph, 47, 84, 183, 202, 238, 293
residuals.Glm, 204
residuals.lrm, 102, 160, 205, 293
residuals.ols, 129, 210, 293
residuals.orm, 138
residuals.orm (residuals.lrm), 205
residuals.psm (psm), 195
residuals.survreg, 198
rexVar, 212
rms, 9, 16, 22, 29, 47, 54, 59, 61, 69, 98, 102,

119, 129, 138, 153, 163, 171, 175,
183, 198, 213, 218, 225, 247, 251,
258, 264, 280, 282, 285, 287, 290,
293

rms.Overview (rmsOverview), 226
rms.trans, 9, 47, 54, 61, 102, 129, 138, 175,

183, 215, 216, 247, 251, 280, 282,
285, 287, 290

rmsArgs (rmsMisc), 219
rmsb::pdensityContour(), 149
rmsMisc, 9, 22, 29, 59, 63, 69, 102, 119, 138,

147, 153, 163, 175, 215, 219, 251,
291

rmsOverview, 226
robcov, 22, 236
robcov(), 132
round(), 191
rpart, 289
Rq, 239, 290
rq, 240, 241
RqFit (Rq), 239

sample, 22, 244
sascode (Function), 59
scales::breaks_pretty(), 64
scat1d, 33, 152, 153, 272, 276
scored (rms.trans), 216
sensuc, 241
setPb, 22, 171, 245
setTkProgressBar, 246
show.influence (which.influence), 292
solve, 113, 138, 144
solvet, 9, 59, 147
somers2, 285, 289
specs (specs.rms), 247
specs.rms, 47, 129, 215, 247
stats::glm(), 78, 111
stats::glm.fit(), 109, 111
stats::nlm(), 108, 111

stats::nlminb(), 108, 111
stats::optim(), 108, 111
stats::residuals.glm, 78
strat (rms.trans), 216
strata, 122
summary.formula, 160
summary.glm, 225
summary.lm, 129, 225
summary.rms, 9, 38, 47, 54, 69, 129, 153, 163,

167, 175, 183, 215, 248
supsmu, 207
Surv, 16, 47, 82, 84, 86, 89, 90, 198, 275
Surv (importedexported), 89
survdiffplot (survplot), 259
survest, 175, 198, 264
survest (survest.cph), 252
survest(), 92
survest.cph, 47, 63, 252, 259
survest.orm, 255
survest.psm, 63, 256
survest.rms (rmsMisc), 219
survfit, 82, 258, 259, 264
survfit.coxph, 47, 254, 259
survfit.cph, 47, 122, 254, 258
survfit.formula, 121
Survival (psm), 195
Survival.cph (cph), 43
Survival.orm (ExProb), 55
survplot, 47, 122, 175, 198, 254, 258, 259
survplot.orm, 266
survplot.residuals.psm.censored.normalized

(psm), 195
survplotp (survplot), 259
survreg, 16, 198, 258
survreg.control, 32
survreg.distributions, 198, 258, 264
survreg.object, 198

tkProgressBar, 246
transace, 175
transcan, 61

unique(), 201
units, 82, 264
univarLR (rmsMisc), 219

val.prob, 269
val.surv, 33, 273

304 INDEX

validate, 31, 33, 47, 59, 129, 171, 215, 276,
278, 281, 282, 284, 286, 290

validate.bj (bj), 13
validate.cph, 280, 280
validate.lrm, 102, 272, 280, 283
validate.ols, 280, 286
validate.orm, 138
validate.orm (validate.lrm), 283
validate.psm (validate.cph), 280
validate.rpart, 280, 287
validate.Rq, 289
varClasses, 81
varFunc, 81
vcov.cph (rmsMisc), 219
vcov.Glm (rmsMisc), 219
vcov.Gls (rmsMisc), 219
vcov.lrm (rmsMisc), 219
vcov.ols (rmsMisc), 219
vcov.orm, 138
vcov.orm (rmsMisc), 219
vcov.pphsm (pphsm), 166
vcov.psm (rmsMisc), 219
vcov.rms (rmsMisc), 219
VGAM::vglm(), 88
vif, 47, 102, 129, 138, 215, 225, 291

which.influence, 47, 129, 207, 211, 215, 292
wireframe, 28, 29
wtd.stats, 272

Xcontrast, 293
xYplot, 9, 153, 183
xyplot, 152

	adapt_orm
	anova.rms
	as.data.frame.Ocens
	bj
	bootBCa
	bootcov
	bplot
	calibrate
	contrast.rms
	cph
	cr.setup
	datadist
	ExProb
	fastbw
	Function
	gendata
	ggplot.npsurv
	ggplot.Predict
	gIndex
	Glm
	Gls
	groupkm
	hazard.ratio.plot
	ie.setup
	impactPO
	importedexported
	infoMxop
	intCalibration
	is.na.Ocens
	latex.cph
	latexrms
	lrm
	lrm.fit
	LRupdate
	matinv
	nomogram
	npsurv
	Ocens
	Ocens2ord
	Ocens2Surv
	Olinks
	ols
	ordESS
	ordParallel
	orm
	orm.fit
	pentrace
	plot.contrast.rms
	plot.Predict
	plot.rexVar
	plot.xmean.ordinaly
	plotIntercepts
	plotp.Predict
	poma
	pphsm
	predab.resample
	Predict
	predict.lrm
	predictrms
	print.cph
	print.Glm
	print.impactPO
	print.Ocens
	print.ols
	print.rexVar
	prmiInfo
	processMI
	processMI.fit.mult.impute
	psm
	Punits
	recode2integer
	residuals.cph
	residuals.Glm
	residuals.lrm
	residuals.ols
	rexVar
	rms
	rms.trans
	rmsMisc
	rmsOverview
	robcov
	Rq
	sensuc
	setPb
	specs.rms
	summary.rms
	survest.cph
	survest.orm
	survest.psm
	survfit.cph
	survplot
	survplot.orm
	val.prob
	val.surv
	validate
	validate.cph
	validate.lrm
	validate.ols
	validate.rpart
	validate.Rq
	vif
	which.influence
	Xcontrast
	[.Ocens
	Index

