
Package ‘igraph’
February 12, 2026

Title Network Analysis and Visualization

Version 2.2.2

Description Routines for simple graphs and network analysis. It can
handle large graphs very well and provides functions for generating
random and regular graphs, graph visualization, centrality methods and
much more.

License GPL (>= 2)

URL https://r.igraph.org/, https://igraph.org/,

https://igraph.discourse.group/

BugReports https://github.com/igraph/rigraph/issues

Depends methods, R (>= 3.5.0)

Imports cli, graphics, grDevices, lifecycle, magrittr, Matrix,
pkgconfig (>= 2.0.0), rlang (>= 1.1.0), stats, utils, vctrs

Suggests ape (>= 5.7-0.1), callr, decor, digest, igraphdata, knitr,
rgl (>= 1.3.14), rmarkdown, scales, stats4, tcltk, testthat,
vdiffr, withr

Enhances graph

LinkingTo cpp11 (>= 0.5.0)

VignetteBuilder knitr

Config/build/compilation-database false

Config/build/never-clean true

Config/comment/compilation-database Generate manually with
pkgload:::generate_db() for faster pkgload::load_all()

Config/Needs/build r-lib/roxygen2, devtools, irlba, pkgconfig,
igraph/igraph.r2cdocs, moodymudskipper/devtag

Config/Needs/coverage covr

Config/Needs/website here, readr, tibble, xmlparsedata, xml2

Config/testthat/edition 3

Config/testthat/parallel true

1

https://r.igraph.org/
https://igraph.org/
https://igraph.discourse.group/
https://github.com/igraph/rigraph/issues

2 Contents

Config/testthat/start-first aaa-auto, vs-es, scan, vs-operators,
weakref, watts.strogatz.game

Encoding UTF-8

RoxygenNote 7.3.3.9000

SystemRequirements libxml2 (optional), glpk (>= 4.57, optional)

NeedsCompilation yes

Author Gábor Csárdi [aut] (ORCID: <https://orcid.org/0000-0001-7098-9676>),
Tamás Nepusz [aut] (ORCID: <https://orcid.org/0000-0002-1451-338X>),
Vincent Traag [aut] (ORCID: <https://orcid.org/0000-0003-3170-3879>),
Szabolcs Horvát [aut] (ORCID: <https://orcid.org/0000-0002-3100-523X>),
Fabio Zanini [aut] (ORCID: <https://orcid.org/0000-0001-7097-8539>),
Daniel Noom [aut],
Kirill Müller [aut, cre] (ORCID:

<https://orcid.org/0000-0002-1416-3412>),
Michael Antonov [ctb],
Chan Zuckerberg Initiative [fnd] (ROR: <https://ror.org/02qenvm24>),
David Schoch [aut] (ORCID: <https://orcid.org/0000-0003-2952-4812>),
Maëlle Salmon [aut] (ORCID: <https://orcid.org/0000-0002-2815-0399>)

Maintainer Kirill Müller <kirill@cynkra.com>

Repository CRAN

Date/Publication 2026-02-12 14:00:12 UTC

Contents
+.igraph . 10
add_edges . 12
add_layout_ . 13
add_vertices . 14
adjacent_vertices . 15
align_layout . 16
all_simple_paths . 16
alpha_centrality . 18
are_adjacent . 20
arpack_defaults . 21
articulation_points . 25
as.igraph . 26
as.matrix.igraph . 27
assortativity . 28
as_adjacency_matrix . 30
as_adj_list . 32
as_biadjacency_matrix . 33
as_data_frame . 34
as_directed . 37
as_edgelist . 39
as_graphnel . 40

https://orcid.org/0000-0001-7098-9676
https://orcid.org/0000-0002-1451-338X
https://orcid.org/0000-0003-3170-3879
https://orcid.org/0000-0002-3100-523X
https://orcid.org/0000-0001-7097-8539
https://orcid.org/0000-0002-1416-3412
https://ror.org/02qenvm24
https://orcid.org/0000-0003-2952-4812
https://orcid.org/0000-0002-2815-0399

Contents 3

as_ids . 41
as_long_data_frame . 42
as_membership . 43
authority_score . 44
automorphism_group . 44
betweenness . 46
bfs . 48
biconnected_components . 51
bipartite_gnm . 53
bipartite_mapping . 54
bipartite_projection . 56
c.igraph.es . 58
c.igraph.vs . 58
canonical_permutation . 59
categorical_pal . 61
centralize . 62
centr_betw . 64
centr_betw_tmax . 65
centr_clo . 66
centr_clo_tmax . 67
centr_degree . 68
centr_degree_tmax . 69
centr_eigen . 70
centr_eigen_tmax . 71
cliques . 72
closeness . 75
cluster_edge_betweenness . 76
cluster_fast_greedy . 79
cluster_fluid_communities . 80
cluster_infomap . 82
cluster_label_prop . 83
cluster_leading_eigen . 85
cluster_leiden . 88
cluster_louvain . 90
cluster_optimal . 92
cluster_spinglass . 93
cluster_walktrap . 96
cocitation . 98
cohesive_blocks . 99
compare . 104
complementer . 105
component_distribution . 106
component_wise . 108
compose . 109
connect . 110
consensus_tree . 114
console . 115
constraint . 115

4 Contents

contract . 117
convex_hull . 118
coreness . 119
count_automorphisms . 120
count_isomorphisms . 122
count_motifs . 123
count_subgraph_isomorphisms . 124
curve_multiple . 125
decompose . 126
degree . 127
delete_edges . 129
delete_edge_attr . 130
delete_graph_attr . 130
delete_vertex_attr . 131
delete_vertices . 132
dfs . 133
diameter . 136
difference . 137
difference.igraph . 138
difference.igraph.es . 139
difference.igraph.vs . 140
dim_select . 141
disjoint_union . 142
distance_table . 144
diverging_pal . 149
diversity . 150
dominator_tree . 151
dot-data . 153
dyad_census . 153
E . 154
each_edge . 156
eccentricity . 157
edge . 158
edge_attr . 159
edge_attr<- . 160
edge_attr_names . 161
edge_connectivity . 162
edge_density . 164
eigen_centrality . 165
embed_adjacency_matrix . 167
embed_laplacian_matrix . 169
ends . 171
feedback_arc_set . 172
feedback_vertex_set . 173
find_cycle . 174
fit_hrg . 175
fit_power_law . 176
get_edge_ids . 179

Contents 5

girth . 180
global_efficiency . 181
gorder . 183
graphlet_basis . 184
graph_ . 186
graph_attr . 187
graph_attr<- . 187
graph_attr_names . 188
graph_center . 189
graph_from_adjacency_matrix . 190
graph_from_adj_list . 194
graph_from_atlas . 196
graph_from_biadjacency_matrix . 197
graph_from_edgelist . 198
graph_from_graphdb . 199
graph_from_graphnel . 201
graph_from_isomorphism_class . 202
graph_from_lcf . 203
graph_from_literal . 204
graph_id . 206
graph_version . 207
greedy_vertex_coloring . 208
groups . 209
gsize . 210
harmonic_centrality . 211
has_eulerian_path . 212
head_of . 213
head_print . 214
hits_scores . 215
hrg . 216
hrg-methods . 217
hrg_tree . 218
identical_graphs . 218
igraph-attribute-combination . 219
igraph-dollar . 221
igraph-es-attributes . 222
igraph-es-indexing . 223
igraph-es-indexing2 . 225
igraph-minus . 227
igraph-vs-attributes . 228
igraph-vs-indexing . 230
igraph-vs-indexing2 . 232
igraph_options . 233
incident . 235
incident_edges . 236
indent_print . 237
intersection . 237
intersection.igraph . 238

6 Contents

intersection.igraph.es . 239
intersection.igraph.vs . 240
isomorphic . 241
isomorphisms . 243
isomorphism_class . 244
is_acyclic . 245
is_biconnected . 246
is_bipartite . 247
is_chordal . 247
is_complete . 249
is_dag . 250
is_degseq . 251
is_directed . 252
is_forest . 253
is_graphical . 254
is_igraph . 255
is_matching . 256
is_min_separator . 258
is_named . 259
is_printer_callback . 260
is_separator . 261
is_tree . 262
is_weighted . 263
ivs . 264
keeping_degseq . 265
knn . 266
k_shortest_paths . 268
laplacian_matrix . 270
layout_ . 271
layout_as_bipartite . 272
layout_as_star . 274
layout_as_tree . 275
layout_in_circle . 277
layout_nicely . 278
layout_on_grid . 280
layout_on_sphere . 281
layout_randomly . 282
layout_with_dh . 283
layout_with_drl . 285
layout_with_fr . 288
layout_with_gem . 290
layout_with_graphopt . 292
layout_with_kk . 293
layout_with_lgl . 295
layout_with_mds . 297
layout_with_sugiyama . 298
local_scan . 302
make_ . 305

Contents 7

make_bipartite_graph . 306
make_chordal_ring . 307
make_clusters . 308
make_de_bruijn_graph . 309
make_empty_graph . 310
make_from_prufer . 311
make_full_bipartite_graph . 312
make_full_citation_graph . 313
make_full_graph . 314
make_graph . 314
make_kautz_graph . 318
make_lattice . 319
make_line_graph . 320
make_ring . 321
make_star . 322
make_tree . 323
match_vertices . 324
max_cardinality . 325
max_flow . 327
membership . 328
merge_coords . 332
min_cut . 334
min_separators . 335
min_st_separators . 337
modularity.igraph . 339
motifs . 341
mst . 342
neighbors . 343
normalize . 344
norm_coords . 345
page_rank . 346
path . 348
permute . 349
plot.common . 350
plot.igraph . 357
plot.sir . 359
plot_dendrogram . 361
plot_dendrogram.igraphHRG . 363
power_centrality . 365
predict_edges . 367
print.igraph . 369
print.igraph.es . 371
print.igraph.vs . 372
print.igraphHRG . 373
print.igraphHRGConsensus . 374
printer_callback . 375
radius . 376
random_walk . 377

8 Contents

read_graph . 379
realize_bipartite_degseq . 382
realize_degseq . 383
reciprocity . 385
rep.igraph . 386
rev.igraph.es . 387
rev.igraph.vs . 388
reverse_edges . 388
rewire . 389
rglplot . 390
running_mean . 391
r_pal . 392
sample_ . 392
sample_bipartite . 393
sample_chung_lu . 395
sample_correlated_gnp . 398
sample_correlated_gnp_pair . 399
sample_degseq . 401
sample_dirichlet . 404
sample_dot_product . 405
sample_fitness . 407
sample_fitness_pl . 408
sample_forestfire . 410
sample_gnm . 412
sample_gnp . 413
sample_grg . 415
sample_growing . 416
sample_hierarchical_sbm . 417
sample_hrg . 418
sample_islands . 419
sample_k_regular . 420
sample_last_cit . 421
sample_motifs . 423
sample_pa . 424
sample_pa_age . 426
sample_pref . 429
sample_sbm . 431
sample_seq . 432
sample_smallworld . 433
sample_spanning_tree . 435
sample_sphere_surface . 436
sample_sphere_volume . 437
sample_traits_callaway . 438
sample_tree . 439
scan_stat . 440
sequential_pal . 442
set_edge_attr . 443
set_graph_attr . 444

Contents 9

set_vertex_attr . 444
set_vertex_attrs . 445
shapes . 446
similarity . 449
simple_cycles . 451
simplified . 452
simplify . 452
spectrum . 454
split_join_distance . 456
stochastic_matrix . 457
strength . 458
st_cuts . 460
st_min_cuts . 461
subcomponent . 462
subgraph . 463
subgraph_centrality . 465
subgraph_isomorphic . 466
subgraph_isomorphisms . 468
tail_of . 469
time_bins . 470
tkplot . 472
topo_sort . 475
to_prufer . 476
transitivity . 477
triad_census . 479
triangles . 481
unfold_tree . 482
union . 483
union.igraph . 484
union.igraph.es . 485
union.igraph.vs . 486
unique.igraph.es . 487
unique.igraph.vs . 487
upgrade_graph . 488
V . 489
vertex . 490
vertex.shape.pie . 491
vertex_attr . 492
vertex_attr<- . 493
vertex_attr_names . 494
vertex_connectivity . 494
voronoi_cells . 496
weighted_cliques . 498
which_multiple . 499
which_mutual . 501
without_attr . 502
without_loops . 503
without_multiples . 503

10 +.igraph

with_edge_ . 504
with_graph_ . 504
with_igraph_opt . 505
with_vertex_ . 506
write_graph . 506
[.igraph . 509
[[.igraph . 512
%>% . 513

Index 515

+.igraph Add vertices, edges or another graph to a graph

Description

Add vertices, edges or another graph to a graph

Usage

S3 method for class 'igraph'
e1 + e2

Arguments

e1 First argument, probably an igraph graph, but see details below.

e2 Second argument, see details below.

Details

The plus operator can be used to add vertices or edges to graph. The actual operation that is per-
formed depends on the type of the right hand side argument.

• If is is another igraph graph object and they are both named graphs, then the union of the two
graphs are calculated, see union().

• If it is another igraph graph object, but either of the two are not named, then the disjoint union
of the two graphs is calculated, see disjoint_union().

• If it is a numeric scalar, then the specified number of vertices are added to the graph.

• If it is a character scalar or vector, then it is interpreted as the names of the vertices to add to
the graph.

• If it is an object created with the vertex() or vertices() function, then new vertices are
added to the graph. This form is appropriate when one wants to add some vertex attributes as
well. The operands of the vertices() function specifies the number of vertices to add and
their attributes as well.
The unnamed arguments of vertices() are concatenated and used as the ‘name’ vertex at-
tribute (i.e. vertex names), the named arguments will be added as additional vertex attributes.
Examples:

+.igraph 11

g <- g +
vertex(shape="circle", color= "red")

g <- g + vertex("foo", color="blue")
g <- g + vertex("bar", "foobar")
g <- g + vertices("bar2", "foobar2", color=1:2, shape="rectangle")

vertex() is just an alias to vertices(), and it is provided for readability. The user should
use it if a single vertex is added to the graph.

• If it is an object created with the edge() or edges() function, then new edges will be added
to the graph. The new edges and possibly their attributes can be specified as the arguments of
the edges() function.
The unnamed arguments of edges() are concatenated and used as vertex ids of the end points
of the new edges. The named arguments will be added as edge attributes.
Examples:

g <- make_empty_graph() +
vertices(letters[1:10]) +
vertices("foo", "bar", "bar2", "foobar2")

g <- g + edge("a", "b")
g <- g + edges("foo", "bar", "bar2", "foobar2")
g <- g + edges(c("bar", "foo", "foobar2", "bar2"), color="red", weight=1:2)

See more examples below.
edge() is just an alias to edges() and it is provided for readability. The user should use it if
a single edge is added to the graph.

• If it is an object created with the path() function, then new edges that form a path are added.
The edges and possibly their attributes are specified as the arguments to the path() function.
The non-named arguments are concatenated and interpreted as the vertex ids along the path.
The remaining arguments are added as edge attributes.
Examples:

g <- make_empty_graph() + vertices(letters[1:10])
g <- g + path("a", "b", "c", "d")
g <- g + path("e", "f", "g", weight=1:2, color="red")
g <- g + path(c("f", "c", "j", "d"), width=1:3, color="green")

It is important to note that, although the plus operator is commutative, i.e. is possible to write

graph <- "foo" + make_empty_graph()

it is not associative, e.g.

graph <- "foo" + "bar" + make_empty_graph()

results a syntax error, unless parentheses are used:

graph <- "foo" + ("bar" + make_empty_graph())

For clarity, we suggest to always put the graph object on the left hand side of the operator:

graph <- make_empty_graph() + "foo" + "bar"

12 add_edges

See Also

Other functions for manipulating graph structure: add_edges(), add_vertices(), complementer(),
compose(), connect(), contract(), delete_edges(), delete_vertices(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

Examples

10 vertices named a,b,c,... and no edges
g <- make_empty_graph() + vertices(letters[1:10])

Add edges to make it a ring
g <- g + path(letters[1:10], letters[1], color = "grey")

Add some extra random edges
g <- g + edges(sample(V(g), 10, replace = TRUE), color = "red")
g$layout <- layout_in_circle
plot(g)

add_edges Add edges to a graph

Description

The new edges are given as a vertex sequence, e.g. internal numeric vertex ids, or vertex names.
The first edge points from edges[1] to edges[2], the second from edges[3] to edges[4], etc.

Usage

add_edges(graph, edges, ..., attr = list())

Arguments

graph The input graph

edges The edges to add, a vertex sequence with even number of vertices.

... Additional arguments, they must be named, and they will be added as edge
attributes, for the newly added edges. See also details below.

attr A named list, its elements will be added as edge attributes, for the newly added
edges. See also details below.

Details

If attributes are supplied, and they are not present in the graph, their values for the original edges of
the graph are set to NA.

Value

The graph, with the edges (and attributes) added.

add_layout_ 13

See Also

Other functions for manipulating graph structure: +.igraph(), add_vertices(), complementer(),
compose(), connect(), contract(), delete_edges(), delete_vertices(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

Examples

g <- make_empty_graph(n = 5) %>%
add_edges(c(
1, 2,
2, 3,
3, 4,
4, 5

)) %>%
set_edge_attr("color", value = "red") %>%
add_edges(c(5, 1), color = "green")

E(g)[[]]
plot(g)

add_layout_ Add layout to graph

Description

Add layout to graph

Usage

add_layout_(graph, ..., overwrite = TRUE)

Arguments

graph The input graph.
... Additional arguments are passed to layout_().
overwrite Whether to overwrite the layout of the graph, if it already has one.

Value

The input graph, with the layout added.

See Also

layout_() for a description of the layout API.

Other graph layouts: component_wise(), layout_(), layout_as_bipartite(), layout_as_star(),
layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

14 add_vertices

Examples

(make_star(11) + make_star(11)) %>%
add_layout_(as_star(), component_wise()) %>%
plot()

add_vertices Add vertices to a graph

Description

If attributes are supplied, and they are not present in the graph, their values for the original vertices
of the graph are set to NA.

Usage

add_vertices(graph, nv, ..., attr = list())

Arguments

graph The input graph.

nv The number of vertices to add.

... Additional arguments, they must be named, and they will be added as vertex
attributes, for the newly added vertices. See also details below.

attr A named list, its elements will be added as vertex attributes, for the newly added
vertices. See also details below.

Value

The graph, with the vertices (and attributes) added.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), complementer(),
compose(), connect(), contract(), delete_edges(), delete_vertices(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

Examples

g <- make_empty_graph() %>%
add_vertices(3, color = "red") %>%
add_vertices(2, color = "green") %>%
add_edges(c(
1, 2,
2, 3,
3, 4,
4, 5

adjacent_vertices 15

))
g
V(g)[[]]
plot(g)

adjacent_vertices Adjacent vertices of multiple vertices in a graph

Description

This function is similar to neighbors(), but it queries the adjacent vertices for multiple vertices at
once.

Usage

adjacent_vertices(graph, v, mode = c("out", "in", "all", "total"))

Arguments

graph Input graph.

v The vertices to query.

mode Whether to query outgoing (‘out’), incoming (‘in’) edges, or both types (‘all’).
This is ignored for undirected graphs.

Value

A list of vertex sequences.

See Also

Other structural queries: [.igraph(), [[.igraph(), are_adjacent(), ends(), get_edge_ids(),
gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(), neighbors(),
tail_of()

Examples

g <- make_graph("Zachary")
adjacent_vertices(g, c(1, 34))

16 all_simple_paths

align_layout Align a vertex layout This function centers a vertex layout on the coor-
dinate system origin and rotates the layout to achieve a visually pleas-
ing alignment with the coordinate axes. Doing this is particularly use-
ful with force-directed layouts such as layout_with_fr().

Description

Align a vertex layout This function centers a vertex layout on the coordinate system origin and
rotates the layout to achieve a visually pleasing alignment with the coordinate axes. Doing this is
particularly useful with force-directed layouts such as layout_with_fr().

Usage

align_layout(graph, layout)

Arguments

graph The graph whose layout is to be aligned.

layout A matrix whose rows are the coordinates of vertices.

Value

modified layout matrix

Examples

g <- make_lattice(c(3, 3))
l1 <- layout_with_fr(g)
l2 <- align_layout(g,l1)
plot(g, layout = l1)
plot(g, layout = l2)

all_simple_paths List all simple paths from one source

Description

This function lists all simple paths from one source vertex to another vertex or vertices. A path is
simple if contains no repeated vertices.

all_simple_paths 17

Usage

all_simple_paths(
graph,
from,
to = V(graph),
mode = c("out", "in", "all", "total"),
cutoff = -1

)

Arguments

graph The input graph.

from The source vertex.

to The target vertex of vertices. Defaults to all vertices.

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the corre-
sponding undirected graph will be used, i.e. not directed paths are searched.
This argument is ignored for undirected graphs.

cutoff Maximum length of the paths that are considered. If negative, no cutoff is used.

Details

Note that potentially there are exponentially many paths between two vertices of a graph, and you
may run out of memory when using this function, if your graph is lattice-like.

This function ignores multiple and loop edges.

Value

A list of integer vectors, each integer vector is a path from the source vertex to one of the target
vertices. A path is given by its vertex ids.

See Also

Other paths: diameter(), distance_table(), eccentricity(), graph_center(), radius()

Examples

g <- make_ring(10)
all_simple_paths(g, 1, 5)
all_simple_paths(g, 1, c(3, 5))

18 alpha_centrality

alpha_centrality Find Bonacich alpha centrality scores of network positions

Description

alpha_centrality() calculates the alpha centrality of some (or all) vertices in a graph.

Usage

alpha_centrality(
graph,
nodes = V(graph),
alpha = 1,
loops = FALSE,
exo = 1,
weights = NULL,
tol = 1e-07,
sparse = TRUE

)

Arguments

graph The input graph, can be directed or undirected. In undirected graphs, edges are
treated as if they were reciprocal directed ones.

nodes Vertex sequence, the vertices for which the alpha centrality values are returned.
(For technical reasons they will be calculated for all vertices, anyway.)

alpha Parameter specifying the relative importance of endogenous versus exogenous
factors in the determination of centrality. See details below.

loops Whether to eliminate loop edges from the graph before the calculation.

exo The exogenous factors, in most cases this is either a constant – the same factor
for every node, or a vector giving the factor for every vertex. Note that too long
vectors will be truncated and too short vectors will be replicated to match the
number of vertices.

weights A character scalar that gives the name of the edge attribute to use in the adja-
cency matrix. If it is NULL, then the ‘weight’ edge attribute of the graph is used,
if there is one. Otherwise, or if it is NA, then the calculation uses the standard
adjacency matrix.

tol Tolerance for near-singularities during matrix inversion, see solve().

sparse Logical scalar, whether to use sparse matrices for the calculation. The ‘Matrix’
package is required for sparse matrix support

alpha_centrality 19

Details

The alpha centrality measure can be considered as a generalization of eigenvector centrality to
directed graphs. It was proposed by Bonacich in 2001 (see reference below).

The alpha centrality of the vertices in a graph is defined as the solution of the following matrix
equation:

x = αATx+ e,

where A is the (not necessarily symmetric) adjacency matrix of the graph, e is the vector of ex-
ogenous sources of status of the vertices and α is the relative importance of the endogenous versus
exogenous factors.

Value

A numeric vector contaning the centrality scores for the selected vertices.

Warning

Singular adjacency matrices cause problems for this algorithm, the routine may fail is certain cases.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Bonacich, P. and Lloyd, P. (2001). “Eigenvector-like measures of centrality for asymmetric rela-
tions” Social Networks, 23, 191-201.

See Also

eigen_centrality() and power_centrality()

Centrality measures authority_score(), betweenness(), closeness(), diversity(), eigen_centrality(),
harmonic_centrality(), hits_scores(), page_rank(), power_centrality(), spectrum(),
strength(), subgraph_centrality()

Examples

The examples from Bonacich's paper
g.1 <- make_graph(c(1, 3, 2, 3, 3, 4, 4, 5))
g.2 <- make_graph(c(2, 1, 3, 1, 4, 1, 5, 1))
g.3 <- make_graph(c(1, 2, 2, 3, 3, 4, 4, 1, 5, 1))
alpha_centrality(g.1)
alpha_centrality(g.2)
alpha_centrality(g.3, alpha = 0.5)

20 are_adjacent

are_adjacent Are two vertices adjacent?

Description

The order of the vertices only matters in directed graphs, where the existence of a directed (v1, v2)
edge is queried.

Usage

are_adjacent(graph, v1, v2)

Arguments

graph The graph.

v1 The first vertex, tail in directed graphs.

v2 The second vertex, head in directed graphs.

Value

A logical scalar, TRUE if edge (v1, v2) exists in the graph.

Related documentation in the C library

are_adjacent().

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), ends(), get_edge_ids(),
gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(), neighbors(),
tail_of()

Examples

ug <- make_ring(10)
ug
are_adjacent(ug, 1, 2)
are_adjacent(ug, 2, 1)

dg <- make_ring(10, directed = TRUE)
dg
are_adjacent(ug, 1, 2)
are_adjacent(ug, 2, 1)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_are_adjacent

arpack_defaults 21

arpack_defaults ARPACK eigenvector calculation

Description

Interface to the ARPACK library for calculating eigenvectors of sparse matrices

Usage

arpack_defaults()

arpack(
func,
extra = NULL,
sym = FALSE,
options = arpack_defaults(),
env = parent.frame(),
complex = !sym

)

Arguments

func The function to perform the matrix-vector multiplication. ARPACK requires to
perform these by the user. The function gets the vector x as the first argument,
and it should return Ax, where A is the “input matrix”. (The input matrix is
never given explicitly.) The second argument is extra.

extra Extra argument to supply to func.

sym Logical scalar, whether the input matrix is symmetric. Always supply TRUE here
if it is, since it can speed up the computation.

options Options to ARPACK, a named list to overwrite some of the default option values.
See details below.

env The environment in which func will be evaluated.

complex Whether to convert the eigenvectors returned by ARPACK into R complex vec-
tors. By default this is not done for symmetric problems (these only have
real eigenvectors/values), but only non-symmetric ones. If you have a non-
symmetric problem, but you’re sure that the results will be real, then supply
FALSE here.

Details

ARPACK is a library for solving large scale eigenvalue problems. The package is designed to
compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most
appropriate for large sparse or structured matrices A where structured means that a matrix-vector
product w <- Av requires order n rather than the usual order n2 floating point operations.

22 arpack_defaults

This function is an interface to ARPACK. igraph does not contain all ARPACK routines, only the
ones dealing with symmetric and non-symmetric eigenvalue problems using double precision real
numbers.

The eigenvalue calculation in ARPACK (in the simplest case) involves the calculation of the Av
product where A is the matrix we work with and v is an arbitrary vector. The function supplied in
the fun argument is expected to perform this product. If the product can be done efficiently, e.g. if
the matrix is sparse, then arpack() is usually able to calculate the eigenvalues very quickly.

The options argument specifies what kind of calculation to perform. It is a list with the following
members, they correspond directly to ARPACK parameters. On input it has the following fields:

bmat Character constant, possible values: ‘I’, standard eigenvalue problem, Ax = λx; and ‘G’,
generalized eigenvalue problem, Ax = λBx. Currently only ‘I’ is supported.

n Numeric scalar. The dimension of the eigenproblem. You only need to set this if you call
arpack() directly. (I.e. not needed for eigen_centrality(), page_rank(), etc.)

which Specify which eigenvalues/vectors to compute, character constant with exactly two charac-
ters. Possible values for symmetric input matrices:

"LA" Compute nev largest (algebraic) eigenvalues.
"SA" Compute nev smallest (algebraic) eigenvalues.
"LM" Compute nev largest (in magnitude) eigenvalues.
"SM" Compute nev smallest (in magnitude) eigenvalues.
"BE" Compute nev eigenvalues, half from each end of the spectrum. When nev is odd,

compute one more from the high end than from the low end.

Possible values for non-symmetric input matrices:

"LM" Compute nev eigenvalues of largest magnitude.
"SM" Compute nev eigenvalues of smallest magnitude.
"LR" Compute nev eigenvalues of largest real part.
"SR" Compute nev eigenvalues of smallest real part.
"LI" Compute nev eigenvalues of largest imaginary part.
"SI" Compute nev eigenvalues of smallest imaginary part.

This parameter is sometimes overwritten by the various functions, e.g. page_rank() always
sets ‘LM’.

nev Numeric scalar. The number of eigenvalues to be computed.

tol Numeric scalar. Stopping criterion: the relative accuracy of the Ritz value is considered accept-
able if its error is less than tol times its estimated value. If this is set to zero then machine
precision is used.

ncv Number of Lanczos vectors to be generated.

ldv Numberic scalar. It should be set to zero in the current implementation.

ishift Either zero or one. If zero then the shifts are provided by the user via reverse communication.
If one then exact shifts with respect to the reduced tridiagonal matrix T . Please always set this
to one.

maxiter Maximum number of Arnoldi update iterations allowed.

nb Blocksize to be used in the recurrence. Please always leave this on the default value, one.

mode The type of the eigenproblem to be solved. Possible values if the input matrix is symmetric:

arpack_defaults 23

1 Ax = λx, A is symmetric.
2 Ax = λMx, A is symmetric, M is symmetric positive definite.
3 Kx = λMx, K is symmetric, M is symmetric positive semi-definite.
4 Kx = λKGx, K is symmetric positive semi-definite, KG is symmetric indefinite.
5 Ax = λMx, A is symmetric, M is symmetric positive semi-definite. (Cayley transformed

mode.)

Please note that only mode==1 was tested and other values might not work properly. Possible
values if the input matrix is not symmetric:

1 Ax = λx.
2 Ax = λMx, M is symmetric positive definite.
3 Ax = λMx, M is symmetric semi-definite.
4 Ax = λMx, M is symmetric semi-definite.

Please note that only mode==1 was tested and other values might not work properly.

start Not used currently. Later it be used to set a starting vector.

sigma Not used currently.

sigmai Not use currently.

: On output the following additional fields are added:

info Error flag of ARPACK. Possible values:

0 Normal exit.
1 Maximum number of iterations taken.
3 No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration. One

possibility is to increase the size of ncv relative to nev.

ARPACK can return more error conditions than these, but they are converted to regular igraph
errors.

iter Number of Arnoldi iterations taken.

nconv Number of “converged” Ritz values. This represents the number of Ritz values that satisfy
the convergence critetion.

numop Total number of matrix-vector multiplications.

numopb Not used currently.

numreo Total number of steps of re-orthogonalization.

Please see the ARPACK documentation for additional details.

Value

A named list with the following members:

values Numeric vector, the desired eigenvalues.

vectors Numeric matrix, the desired eigenvectors as columns. If complex=TRUE (the default for
non-symmetric problems), then the matrix is complex.

options A named list with the supplied options and some information about the performed calcu-
lation, including an ARPACK exit code. See the details above.

24 arpack_defaults

Author(s)

Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, Chao Yang for ARPACK, Gabor Csardi <csardi.gabor@gmail.com>
for the R interface.

References

D.C. Sorensen, Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM J.
Matr. Anal. Apps., 13 (1992), pp 357-385.

R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration. Rice
University Technical Report TR95-13, Department of Computational and Applied Mathematics.

B.N. Parlett & Y. Saad, Complex Shift and Invert Strategies for Real Matrices. Linear Algebra and
its Applications, vol 88/89, pp 575-595, (1987).

See Also

eigen_centrality(), page_rank(), hub_score(), cluster_leading_eigen() are some of the
functions in igraph that use ARPACK.

Examples

Identity matrix
f <- function(x, extra = NULL) x
arpack(f, options = list(n = 10, nev = 2, ncv = 4), sym = TRUE)

Graph laplacian of a star graph (undirected), n>=2
Note that this is a linear operation
f <- function(x, extra = NULL) {

y <- x
y[1] <- (length(x) - 1) * x[1] - sum(x[-1])
for (i in 2:length(x)) {
y[i] <- x[i] - x[1]

}
y

}

arpack(f, options = list(n = 10, nev = 1, ncv = 3), sym = TRUE)

double check
eigen(laplacian_matrix(make_star(10, mode = "undirected")))

First three eigenvalues of the adjacency matrix of a graph
We need the 'Matrix' package for this

library("Matrix")
set.seed(42)
g <- sample_gnp(1000, 5 / 1000)
M <- as_adjacency_matrix(g, sparse = TRUE)
f2 <- function(x, extra = NULL) {

cat(".")
as.vector(M %*% x)

articulation_points 25

}
baev <- arpack(

f2,
sym = TRUE,
options = list(
n = vcount(g),
nev = 3,
ncv = 8,
which = "LM",
maxiter = 2000

)
)

articulation_points Articulation points and bridges of a graph

Description

articulation_points() finds the articulation points (or cut vertices)

Usage

articulation_points(graph)

bridges(graph)

Arguments

graph The input graph. It is treated as an undirected graph, even if it is directed.

Details

Articulation points or cut vertices are vertices whose removal increases the number of connected
components in a graph. Similarly, bridges or cut-edges are edges whose removal increases the
number of connected components in a graph. If the original graph was connected, then the removal
of a single articulation point or a single bridge makes it disconnected. If a graph contains no
articulation points, then its vertex connectivity is at least two.

Value

For articulation_points(), a numeric vector giving the vertex IDs of the articulation points of
the input graph. For bridges(), a numeric vector giving the edge IDs of the bridges of the input
graph.

Related documentation in the C library

articulation_points(), bridges().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_articulation_points
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_bridges

26 as.igraph

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

biconnected_components(), components(), is_connected(), vertex_connectivity(), edge_connectivity()

Connected components biconnected_components(), component_distribution(), decompose(),
is_biconnected()

Examples

g <- disjoint_union(make_full_graph(5), make_full_graph(5))
clu <- components(g)$membership
g <- add_edges(g, c(match(1, clu), match(2, clu)))
articulation_points(g)

g <- make_graph("krackhardt_kite")
bridges(g)

as.igraph Conversion to igraph

Description

These functions convert various objects to igraph graphs.

Usage

as.igraph(x, ...)

Arguments

x The object to convert.

... Additional arguments. None currently.

Details

You can use as.igraph() to convert various objects to igraph graphs. Right now the following
objects are supported:

• codeigraphHRG These objects are created by the fit_hrg() and consensus_tree() func-
tions.

Value

All these functions return an igraph graph.

as.matrix.igraph 27

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>.

Examples

g <- make_full_graph(5) + make_full_graph(5)
hrg <- fit_hrg(g)
as.igraph(hrg)

as.matrix.igraph Convert igraph objects to adjacency or edge list matrices

Description

Get adjacency or edgelist representation of the network stored as an igraph object.

Usage

S3 method for class 'igraph'
as.matrix(x, matrix.type = c("adjacency", "edgelist"), ...)

Arguments

x object of class igraph, the network

matrix.type character, type of matrix to return, currently "adjacency" or "edgelist" are sup-
ported

... other arguments to/from other methods

Details

If matrix.type is "edgelist", then a two-column numeric edge list matrix is returned. The value
of attrname is ignored.

If matrix.type is "adjacency", then a square adjacency matrix is returned. For adjacency ma-
trices, you can use the attr keyword argument to use the values of an edge attribute in the matrix
cells. See the documentation of as_adjacency_matrix for more details.

Other arguments passed through ... are passed to either as_adjacency_matrix() or as_edgelist()
depending on the value of matrix.type.

Value

Depending on the value of matrix.type either a square adjacency matrix or a two-column numeric
matrix representing the edgelist.

Author(s)

Michal Bojanowski, originally from the intergraph package

28 assortativity

See Also

Other conversion: as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(), as_data_frame(),
as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

Examples

g <- make_graph("zachary")
as.matrix(g, "adjacency")
as.matrix(g, "edgelist")
use edge attribute "weight"
E(g)$weight <- rep(1:10, length.out = ecount(g))
as.matrix(g, "adjacency", sparse = FALSE, attr = "weight")

assortativity Assortativity coefficient

Description

The assortativity coefficient is positive if similar vertices (based on some external property) tend to
connect to each, and negative otherwise.

Usage

assortativity(
graph,
values,
...,
values.in = NULL,
directed = TRUE,
normalized = TRUE,
types1 = NULL,
types2 = NULL

)

assortativity_nominal(graph, types, directed = TRUE, normalized = TRUE)

assortativity_degree(graph, directed = TRUE)

Arguments

graph The input graph, it can be directed or undirected.

values The vertex values, these can be arbitrary numeric values.

... These dots are for future extensions and must be empty.

assortativity 29

values.in A second value vector to use for the incoming edges when calculating assorta-
tivity for a directed graph. Supply NULL here if you want to use the same values
for outgoing and incoming edges. This argument is ignored (with a warning) if
it is not NULL and undirected assortativity coefficient is being calculated.

directed Logical scalar, whether to consider edge directions for directed graphs. This
argument is ignored for undirected graphs. Supply TRUE here to do the natu-
ral thing, i.e. use directed version of the measure for directed graphs and the
undirected version for undirected graphs.

normalized Boolean, whether to compute the normalized assortativity. The non-normalized
nominal assortativity is identical to modularity. The non-normalized value-
based assortativity is simply the covariance of the values at the two ends of
edges.

types1, types2 [Deprecated] Deprecated aliases for values and values.in, respectively.

types Vector giving the vertex types. They as assumed to be integer numbers, starting
with one. Non-integer values are converted to integers with as.integer().

Details

The assortativity coefficient measures the level of homophyly of the graph, based on some vertex
labeling or values assigned to vertices. If the coefficient is high, that means that connected vertices
tend to have the same labels or similar assigned values.

M.E.J. Newman defined two kinds of assortativity coefficients, the first one is for categorical labels
of vertices. assortativity_nominal() calculates this measure. It is defined as

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi

where eij is the fraction of edges connecting vertices of type i and j, ai =
∑

j eij and bj =
∑

i eij .

The second assortativity variant is based on values assigned to the vertices. assortativity()
calculates this measure. It is defined as

r =
1

σ2
q

∑
jk

jk(ejk − qjqk)

for undirected graphs (qi =
∑

j eij) and as

r =
1

σoσi

∑
jk

jk(ejk − qoj q
i
k)

for directed ones. Here qoi =
∑

j eij , qii =
∑

j eji, moreover, σq , σo and σi are the standard
deviations of q, qo and qi, respectively.

The reason of the difference is that in directed networks the relationship is not symmetric, so it is
possible to assign different values to the outgoing and the incoming end of the edges.

assortativity_degree() uses vertex degree as vertex values and calls assortativity().

Undirected graphs are effectively treated as directed ones with all-reciprocal edges. Thus, self-loops
are taken into account twice in undirected graphs.

30 as_adjacency_matrix

Value

A single real number.

Related documentation in the C library

assortativity(), assortativity_nominal(), assortativity_degree().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

M. E. J. Newman: Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003) https://arxiv.
org/abs/cond-mat/0209450

M. E. J. Newman: Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002) https:
//arxiv.org/abs/cond-mat/0205405

Examples

random network, close to zero
assortativity_degree(sample_gnp(10000, 3 / 10000))

BA model, tends to be dissortative
assortativity_degree(sample_pa(10000, m = 4))

as_adjacency_matrix Convert a graph to an adjacency matrix

Description

Sometimes it is useful to work with a standard representation of a graph, like an adjacency matrix.

Usage

as_adjacency_matrix(
graph,
type = c("both", "upper", "lower"),
attr = NULL,
edges = deprecated(),
names = TRUE,
sparse = igraph_opt("sparsematrices")

)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_assortativity
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_assortativity_nominal
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_assortativity_degree
https://arxiv.org/abs/cond-mat/0209450
https://arxiv.org/abs/cond-mat/0209450
https://arxiv.org/abs/cond-mat/0205405
https://arxiv.org/abs/cond-mat/0205405

as_adjacency_matrix 31

Arguments

graph The graph to convert.

type Gives how to create the adjacency matrix for undirected graphs. It is ignored for
directed graphs. Possible values: upper: the upper right triangle of the matrix
is used, lower: the lower left triangle of the matrix is used. both: the whole
matrix is used, a symmetric matrix is returned.

attr Either NULL or a character string giving an edge attribute name. If NULL a tra-
ditional adjacency matrix is returned. If not NULL then the values of the given
edge attribute are included in the adjacency matrix. If the graph has multiple
edges, the edge attribute of an arbitrarily chosen edge (for the multiple edges) is
included. This argument is ignored if edges is TRUE.
Note that this works only for certain attribute types. If the sparse argumen
is TRUE, then the attribute must be either logical or numeric. If the sparse
argument is FALSE, then character is also allowed. The reason for the difference
is that the Matrix package does not support character sparse matrices yet.

edges [Deprecated] Logical scalar, whether to return the edge ids in the matrix. For
non-existant edges zero is returned.

names Logical constant, whether to assign row and column names to the matrix. These
are only assigned if the name vertex attribute is present in the graph.

sparse Logical scalar, whether to create a sparse matrix. The ‘Matrix’ package must
be installed for creating sparse matrices.

Details

as_adjacency_matrix() returns the adjacency matrix of a graph, a regular matrix if sparse is
FALSE, or a sparse matrix, as defined in the ‘Matrix’ package, if sparse if TRUE.

Value

A vcount(graph) by vcount(graph) (usually) numeric matrix.

See Also

graph_from_adjacency_matrix(), read_graph()

Other conversion: as.matrix.igraph(), as_adj_list(), as_biadjacency_matrix(), as_data_frame(),
as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

Examples

g <- sample_gnp(10, 2 / 10)
as_adjacency_matrix(g)
V(g)$name <- letters[1:vcount(g)]
as_adjacency_matrix(g)
E(g)$weight <- runif(ecount(g))
as_adjacency_matrix(g, attr = "weight")

32 as_adj_list

as_adj_list Adjacency lists

Description

Create adjacency lists from a graph, either for adjacent edges or for neighboring vertices

Usage

as_adj_list(
graph,
mode = c("all", "out", "in", "total"),
loops = c("twice", "once", "ignore"),
multiple = TRUE

)

as_adj_edge_list(
graph,
mode = c("all", "out", "in", "total"),
loops = c("twice", "once", "ignore")

)

Arguments

graph The input graph.
mode Character scalar, it gives what kind of adjacent edges/vertices to include in the

lists. ‘out’ is for outgoing edges/vertices, ‘in’ is for incoming edges/vertices,
‘all’ is for both. This argument is ignored for undirected graphs.

loops Character scalar, one of "ignore" (to omit loops), "twice" (to include loop
edges twice) and "once" (to include them once). "twice" is not allowed for
directed graphs and will be replaced with "once".

multiple Logical scalar, set to FALSE to use only one representative of each set of parallel
edges.

Details

as_adj_list() returns a list of numeric vectors, which include the ids of neighbor vertices (ac-
cording to the mode argument) of all vertices.

as_adj_edge_list() returns a list of numeric vectors, which include the ids of adjacent edges
(according to the mode argument) of all vertices.

If igraph_opt("return.vs.es") is true (default), the numeric vectors of the adjacency lists are
coerced to igraph.vs, this can be a very expensive operation on large graphs.

Value

A list of igraph.vs or a list of numeric vectors depending on the value of igraph_opt("return.vs.es"),
see details for performance characteristics.

as_biadjacency_matrix 33

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

as_edgelist(), as_adjacency_matrix()

Other conversion: as.matrix.igraph(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(),
graph_from_adj_list(), graph_from_graphnel()

Examples

g <- make_ring(10)
as_adj_list(g)
as_adj_edge_list(g)

as_biadjacency_matrix Bipartite adjacency matrix of a bipartite graph

Description

This function can return a sparse or dense bipartite adjacency matrix of a bipartite network. The
bipartite adjacency matrix is an n times m matrix, n and m are the number of vertices of the two
kinds.

Usage

as_biadjacency_matrix(
graph,
types = NULL,
attr = NULL,
names = TRUE,
sparse = FALSE

)

Arguments

graph The input graph. The direction of the edges is ignored in directed graphs.

types An optional vertex type vector to use instead of the type vertex attribute. You
must supply this argument if the graph has no type vertex attribute.

attr Either NULL or a character string giving an edge attribute name. If NULL, then
a traditional bipartite adjacency matrix is returned. If not NULL then the values
of the given edge attribute are included in the bipartite adjacency matrix. If the
graph has multiple edges, the edge attribute of an arbitrarily chosen edge (for
the multiple edges) is included.

34 as_data_frame

names Logical scalar, if TRUE and the vertices in the graph are named (i.e. the graph
has a vertex attribute called name), then vertex names will be added to the result
as row and column names. Otherwise the ids of the vertices are used as row and
column names.

sparse Logical scalar, if it is TRUE then a sparse matrix is created, you will need the
Matrix package for this.

Details

Bipartite graphs have a type vertex attribute in igraph, this is boolean and FALSE for the vertices of
the first kind and TRUE for vertices of the second kind.

Some authors refer to the bipartite adjacency matrix as the "bipartite incidence matrix". igraph 1.6.0
and later does not use this naming to avoid confusion with the edge-vertex incidence matrix.

Value

A sparse or dense matrix.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

graph_from_biadjacency_matrix() for the opposite operation.

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_data_frame(),
as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

Examples

g <- make_bipartite_graph(c(0, 1, 0, 1, 0, 0), c(1, 2, 2, 3, 3, 4))
as_biadjacency_matrix(g)

as_data_frame Creating igraph graphs from data frames or vice-versa

Description

This function creates an igraph graph from one or two data frames containing the (symbolic) edge
list and edge/vertex attributes.

as_data_frame 35

Usage

as_data_frame(x, what = c("edges", "vertices", "both"))

graph_from_data_frame(d, directed = TRUE, vertices = NULL)

from_data_frame(...)

Arguments

x An igraph object.

what Character constant, whether to return info about vertices, edges, or both. The
default is ‘edges’.

d A data frame containing a symbolic edge list in the first two columns. Additional
columns are considered as edge attributes. Since version 0.7 this argument is
coerced to a data frame with as.data.frame.

directed Logical scalar, whether or not to create a directed graph.

vertices A data frame with vertex metadata, or NULL. See details below. Since version
0.7 this argument is coerced to a data frame with as.data.frame, if not NULL.

... Passed to graph_from_data_frame().

Details

graph_from_data_frame() creates igraph graphs from one or two data frames. It has two modes
of operation, depending whether the vertices argument is NULL or not.

If vertices is NULL, then the first two columns of d are used as a symbolic edge list and additional
columns as edge attributes. The names of the attributes are taken from the names of the columns.

If vertices is not NULL, then it must be a data frame giving vertex metadata. The first column
of vertices is assumed to contain symbolic vertex names, this will be added to the graphs as the
‘name’ vertex attribute. Other columns will be added as additional vertex attributes. If vertices
is not NULL then the symbolic edge list given in d is checked to contain only vertex names listed in
vertices.

Typically, the data frames are exported from some spreadsheet software like Excel and are imported
into R via read.table(), read.delim() or read.csv().

All edges in the data frame are included in the graph, which may include multiple parallel edges
and loops.

as_data_frame() converts the igraph graph into one or more data frames, depending on the what
argument.

If the what argument is edges (the default), then the edges of the graph and also the edge attributes
are returned. The edges will be in the first two columns, named from and to. (This also denotes
edge direction for directed graphs.) For named graphs, the vertex names will be included in these
columns, for other graphs, the numeric vertex ids. The edge attributes will be in the other columns.
It is not a good idea to have an edge attribute named from or to, because then the column named in
the data frame will not be unique. The edges are listed in the order of their numeric ids.

If the what argument is vertices, then vertex attributes are returned. Vertices are listed in the order
of their numeric vertex ids.

36 as_data_frame

If the what argument is both, then both vertex and edge data is returned, in a list with named entries
vertices and edges.

Value

An igraph graph object for graph_from_data_frame(), and either a data frame or a list of two data
frames named edges and vertices for as.data.frame.

Note

For graph_from_data_frame() NA elements in the first two columns ‘d’ are replaced by the string
“NA” before creating the graph. This means that all NAs will correspond to a single vertex.

NA elements in the first column of ‘vertices’ are also replaced by the string “NA”, but the rest of
‘vertices’ is not touched. In other words, vertex names (=the first column) cannot be NA, but other
vertex attributes can.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

graph_from_literal() for another way to create graphs, read.table() to read in tables from
files.

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

Other biadjacency: graph_from_biadjacency_matrix()

Examples

A simple example with a couple of actors
The typical case is that these tables are read in from files....
actors <- data.frame(

name = c(
"Alice", "Bob", "Cecil", "David",
"Esmeralda"

),
age = c(48, 33, 45, 34, 21),
gender = c("F", "M", "F", "M", "F")

)
relations <- data.frame(

from = c(
"Bob", "Cecil", "Cecil", "David",
"David", "Esmeralda"

),
to = c("Alice", "Bob", "Alice", "Alice", "Bob", "Alice"),
same.dept = c(FALSE, FALSE, TRUE, FALSE, FALSE, TRUE),
friendship = c(4, 5, 5, 2, 1, 1), advice = c(4, 5, 5, 4, 2, 3)

)

as_directed 37

g <- graph_from_data_frame(relations, directed = TRUE, vertices = actors)
print(g, e = TRUE, v = TRUE)

The opposite operation
as_data_frame(g, what = "vertices")
as_data_frame(g, what = "edges")

as_directed Convert between directed and undirected graphs

Description

as_directed() converts an undirected graph to directed, as_undirected() does the opposite, it
converts a directed graph to undirected.

Usage

as_directed(graph, mode = c("mutual", "arbitrary", "random", "acyclic"))

as_undirected(
graph,
mode = c("collapse", "each", "mutual"),
edge.attr.comb = igraph_opt("edge.attr.comb")

)

Arguments

graph The graph to convert.

mode Character constant, defines the conversion algorithm. For as_directed() it can
be mutual or arbitrary. For as_undirected() it can be each, collapse or
mutual. See details below.

edge.attr.comb Specifies what to do with edge attributes, if mode="collapse" or mode="mutual".
In these cases many edges might be mapped to a single one in the new graph,
and their attributes are combined. Please see attribute.combination() for
details on this.

Details

Conversion algorithms for as_directed():

"arbitrary" The number of edges in the graph stays the same, an arbitrarily directed edge is cre-
ated for each undirected edge, but the direction of the edge is deterministic (i.e. it always
points the same way if you call the function multiple times).

"mutual" Two directed edges are created for each undirected edge, one in each direction.

"random" The number of edges in the graph stays the same, and a randomly directed edge is
created for each undirected edge. You will get different results if you call the function multiple
times with the same graph.

38 as_directed

"acyclic" The number of edges in the graph stays the same, and a directed edge is created for each
undirected edge such that the resulting graph is guaranteed to be acyclic. This is achieved by
ensuring that edges always point from a lower index vertex to a higher index. Note that the
graph may include cycles of length 1 if the original graph contained loop edges.

Conversion algorithms for as_undirected():

"each" The number of edges remains constant, an undirected edge is created for each directed one,
this version might create graphs with multiple edges.

"collapse" One undirected edge will be created for each pair of vertices which are connected with
at least one directed edge, no multiple edges will be created.

"mutual" One undirected edge will be created for each pair of mutual edges. Non-mutual edges
are ignored. This mode might create multiple edges if there are more than one mutual edge
pairs between the same pair of vertices.

Value

A new graph object.

Related documentation in the C library

to_directed().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

simplify() for removing multiple and/or loop edges from a graph.

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_edgelist(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

Examples

g <- make_ring(10)
as_directed(g, "mutual")
g2 <- make_star(10)
as_undirected(g)

Combining edge attributes
g3 <- make_ring(10, directed = TRUE, mutual = TRUE)
E(g3)$weight <- seq_len(ecount(g3))
ug3 <- as_undirected(g3)
print(ug3, e = TRUE)

x11(width = 10, height = 5)
layout(rbind(1:2))
plot(g3, layout = layout_in_circle, edge.label = E(g3)$weight)
plot(ug3, layout = layout_in_circle, edge.label = E(ug3)$weight)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_to_directed

as_edgelist 39

g4 <- make_graph(c(
1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4,
6, 7, 7, 6, 7, 8, 7, 8, 8, 7, 8, 9, 8, 9,
9, 8, 9, 8, 9, 9, 10, 10, 10, 10

))
E(g4)$weight <- seq_len(ecount(g4))
ug4 <- as_undirected(g4,

mode = "mutual",
edge.attr.comb = list(weight = length)

)
print(ug4, e = TRUE)

as_edgelist Convert a graph to an edge list

Description

Sometimes it is useful to work with a standard representation of a graph, like an edge list.

Usage

as_edgelist(graph, names = TRUE)

Arguments

graph The graph to convert.

names Whether to return a character matrix containing vertex names (i.e. the name
vertex attribute) if they exist or numeric vertex ids.

Details

as_edgelist() returns the list of edges in a graph.

Value

A ecount(graph) by 2 numeric matrix.

See Also

graph_from_adjacency_matrix(), read_graph()

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_graphnel(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

40 as_graphnel

Examples

g <- sample_gnp(10, 2 / 10)
as_edgelist(g)

V(g)$name <- LETTERS[seq_len(gorder(g))]
as_edgelist(g)

as_graphnel Convert igraph graphs to graphNEL objects from the graph package

Description

The graphNEL class is defined in the graph package, it is another way to represent graphs. These
functions are provided to convert between the igraph and the graphNEL objects.

Usage

as_graphnel(graph)

Arguments

graph An igraph graph object.

Details

as_graphnel() converts an igraph graph to a graphNEL graph. It converts all graph/vertex/edge
attributes. If the igraph graph has a vertex attribute ‘name’, then it will be used to assign vertex
names in the graphNEL graph. Otherwise numeric igraph vertex ids will be used for this purpose.

Value

as_graphnel() returns a graphNEL graph object.

See Also

graph_from_graphnel() for the other direction, as_adjacency_matrix(), graph_from_adjacency_matrix(),
as_adj_list() and graph_from_adj_list() for other graph representations.

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_edgelist(), as_long_data_frame(), graph_from_adj_list(),
graph_from_graphnel()

as_ids 41

Examples

Undirected
g <- make_ring(10)
V(g)$name <- letters[1:10]
GNEL <- as_graphnel(g)
g2 <- graph_from_graphnel(GNEL)
g2

Directed
g3 <- make_star(10, mode = "in")
V(g3)$name <- letters[1:10]
GNEL2 <- as_graphnel(g3)
g4 <- graph_from_graphnel(GNEL2)
g4

as_ids Convert a vertex or edge sequence to an ordinary vector

Description

Convert a vertex or edge sequence to an ordinary vector

Usage

as_ids(seq)

S3 method for class 'igraph.vs'
as_ids(seq)

S3 method for class 'igraph.es'
as_ids(seq)

Arguments

seq The vertex or edge sequence.

Details

For graphs without names, a numeric vector is returned, containing the internal numeric vertex or
edge ids.

For graphs with names, and vertex sequences, the vertex names are returned in a character vector.

For graphs with names and edge sequences, a character vector is returned, with the ‘bar’ notation:
a|b means an edge from vertex a to vertex b.

Value

A character or numeric vector, see details below.

42 as_long_data_frame

See Also

Other vertex and edge sequences: E(), V(), igraph-es-attributes, igraph-es-indexing, igraph-es-indexing2,
igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2, print.igraph.es(), print.igraph.vs()

Examples

g <- make_ring(10)
as_ids(V(g))
as_ids(E(g))

V(g)$name <- letters[1:10]
as_ids(V(g))
as_ids(E(g))

as_long_data_frame Convert a graph to a long data frame

Description

A long data frame contains all metadata about both the vertices and edges of the graph. It contains
one row for each edge, and all metadata about that edge and its incident vertices are included in that
row. The names of the columns that contain the metadata of the incident vertices are prefixed with
from_ and to_. The first two columns are always named from and to and they contain the numeric
ids of the incident vertices. The rows are listed in the order of numeric vertex ids.

Usage

as_long_data_frame(graph)

Arguments

graph Input graph

Value

A long data frame.

See Also

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_edgelist(), as_graphnel(), graph_from_adj_list(),
graph_from_graphnel()

as_membership 43

Examples

g <- make_(
ring(10),
with_vertex_(name = letters[1:10], color = "red"),
with_edge_(weight = 1:10, color = "green")

)
as_long_data_frame(g)

as_membership Declare a numeric vector as a membership vector

Description

This is useful if you want to use functions defined on membership vectors, but your membership
vector does not come from an igraph clustering method.

Usage

as_membership(x)

Arguments

x The input vector.

Value

The input vector, with the membership class added.

See Also

Community detection cluster_edge_betweenness(), cluster_fast_greedy(), cluster_fluid_communities(),
cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

Compare to the correct clustering
g <- (make_full_graph(10) + make_full_graph(10)) %>%

rewire(each_edge(p = 0.2))
correct <- rep(1:2, each = 10) %>% as_membership()
fc <- cluster_fast_greedy(g)
compare(correct, fc)
compare(correct, membership(fc))

44 automorphism_group

authority_score Kleinberg’s authority centrality scores.

Description

Kleinberg’s authority centrality scores.

Kleinberg’s hub centrality scores.

Usage

authority_score(
graph,
scale = TRUE,
weights = NULL,
options = arpack_defaults()

)

hub_score(graph, scale = TRUE, weights = NULL, options = arpack_defaults())

Arguments

graph The input graph.

scale Logical scalar, whether to scale the result to have a maximum score of one. If
no scaling is used then the result vector has unit length in the Euclidean norm.

weights Optional positive weight vector for calculating weighted scores. If the graph
has a weight edge attribute, then this is used by default. This function interprets
edge weights as connection strengths. In the random surfer model, an edge with
a larger weight is more likely to be selected by the surfer.

options A named list, to override some ARPACK options. See arpack() for details.

See Also

Centrality measures alpha_centrality(), betweenness(), closeness(), diversity(), eigen_centrality(),
harmonic_centrality(), hits_scores(), page_rank(), power_centrality(), spectrum(),
strength(), subgraph_centrality()

automorphism_group Generating set of the automorphism group of a graph

Description

Compute the generating set of the automorphism group of a graph.

automorphism_group 45

Usage

automorphism_group(
graph,
colors = NULL,
sh = c("fm", "f", "fs", "fl", "flm", "fsm"),
details = FALSE

)

Arguments

graph The input graph, it is treated as undirected.

colors The colors of the individual vertices of the graph; only vertices having the same
color are allowed to match each other in an automorphism. When omitted,
igraph uses the color attribute of the vertices, or, if there is no such vertex
attribute, it simply assumes that all vertices have the same color. Pass NULL
explicitly if the graph has a color vertex attribute but you do not want to use it.

sh The splitting heuristics for the BLISS algorithm. Possible values are: ‘f’: first
non-singleton cell, ‘fl’: first largest non-singleton cell, ‘fs’: first smallest non-
singleton cell, ‘fm’: first maximally non-trivially connected non-singleton cell,
‘flm’: first largest maximally non-trivially connected non-singleton cell, ‘fsm’:
first smallest maximally non-trivially connected non-singleton cell.

details Specifies whether to provide additional details about the BLISS internals in the
result.

Details

An automorphism of a graph is a permutation of its vertices which brings the graph into itself.
The automorphisms of a graph form a group and there exists a subset of this group (i.e. a set
of permutations) such that every other permutation can be expressed as a combination of these
permutations. These permutations are called the generating set of the automorphism group.

This function calculates a possible generating set of the automorphism of a graph using the BLISS
algorithm. See also the BLISS homepage at http://www.tcs.hut.fi/Software/bliss/index.
html. The calculated generating set is not necessarily minimal, and it may depend on the splitting
heuristics used by BLISS.

Value

When details is FALSE, a list of vertex permutations that form a generating set of the automor-
phism group of the input graph. When details is TRUE, a named list with two members:

generators Returns the generators themselves

info Additional information about the BLISS internals. See count_automorphisms() for more
details.

Related documentation in the C library

automorphism_group().

http://www.tcs.hut.fi/Software/bliss/index.html
http://www.tcs.hut.fi/Software/bliss/index.html
https://igraph.org/c/html/0.10.17/igraph-Isomorphism.html#igraph_automorphism_group

46 betweenness

Author(s)

Tommi Junttila (https://users.ics.aalto.fi/tjunttil/) for BLISS, Gabor Csardi <csardi.gabor@gmail.com>
for the igraph glue code and Tamas Nepusz <ntamas@gmail.com> for this manual page.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

See Also

canonical_permutation(), permute(), count_automorphisms()

Other graph automorphism: count_automorphisms()

Examples

A ring has n*2 automorphisms, and a possible generating set is one that
"turns" the ring by one vertex to the left or right
g <- make_ring(10)
automorphism_group(g)

betweenness Vertex and edge betweenness centrality

Description

The vertex and edge betweenness are (roughly) defined by the number of geodesics (shortest paths)
going through a vertex or an edge.

Usage

betweenness(
graph,
v = V(graph),
directed = TRUE,
weights = NULL,
normalized = FALSE,
cutoff = -1

)

edge_betweenness(
graph,
e = E(graph),
directed = TRUE,
weights = NULL,
cutoff = -1

)

https://users.ics.aalto.fi/tjunttil/

betweenness 47

Arguments

graph The graph to analyze.

v The vertices for which the vertex betweenness will be calculated.

directed Logical, whether directed paths should be considered while determining the
shortest paths.

weights Optional positive weight vector for calculating weighted betweenness. If the
graph has a weight edge attribute, then this is used by default. Weights are used
to calculate weighted shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to normalize the betweenness scores. If TRUE, then the
results are normalized by the number of ordered or unordered vertex pairs in
directed and undirected graphs, respectively. In an undirected graph,

Bn =
2B

(n− 1)(n− 2)
,

where Bn is the normalized, B the raw betweenness, and n is the number of
vertices in the graph. Note that the same normalization factor is used even when
setting a cutoff on the considered shortest path lengths, even though the num-
ber of vertex pairs reachable from each other may be less than (n−1)(n−2)/2.

cutoff The maximum shortest path length to consider when calculating betweenness.
If negative, then there is no such limit.

e The edges for which the edge betweenness will be calculated.

Details

The vertex betweenness of vertex v is defined by

∑
i̸=j,i ̸=v,j ̸=v

givj/gij

The edge betweenness of edge e is defined by

∑
i ̸=j

giej/gij .

betweenness() calculates vertex betweenness, edge_betweenness() calculates edge between-
ness.

Here gij is the total number of shortest paths between vertices i and j while givj is the number of
those shortest paths which pass though vertex v.

Both functions allow you to consider only paths of length cutoff or smaller; this can be run for
larger graphs, as the running time is not quadratic (if cutoff is small). If cutoff is negative (the
default), then the function calculates the exact betweenness scores. Since igraph 1.6.0, a cutoff
value of zero is treated literally, i.e. paths of length larger than zero are ignored.

For calculating the betweenness a similar algorithm to the one proposed by Brandes (see Refer-
ences) is used.

48 bfs

Value

A numeric vector with the betweenness score for each vertex in v for betweenness().

A numeric vector with the edge betweenness score for each edge in e for edge_betweenness().

Note

edge_betweenness() might give false values for graphs with multiple edges.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks,
1, 215-239. doi:10.1016/03788733(78)900217

Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology
25(2):163-177, 2001. doi:10.1080/0022250X.2001.9990249

See Also

closeness(), degree(), harmonic_centrality()

Centrality measures alpha_centrality(), authority_score(), closeness(), diversity(),
eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

g <- sample_gnp(10, 3 / 10)
betweenness(g)
edge_betweenness(g)

bfs Breadth-first search

Description

Breadth-first search is an algorithm to traverse a graph. We start from a root vertex and spread along
every edge “simultaneously”.

https://doi.org/10.1016/0378-8733%2878%2990021-7
https://doi.org/10.1080/0022250X.2001.9990249

bfs 49

Usage

bfs(
graph,
root,
mode = c("out", "in", "all", "total"),
...,
unreachable = TRUE,
restricted = NULL,
order = TRUE,
rank = FALSE,
parent = FALSE,
pred = FALSE,
succ = FALSE,
dist = FALSE,
callback = NULL,
extra = NULL,
rho = parent.frame(),
neimode = deprecated(),
father = deprecated()

)

Arguments

graph The input graph.

root Numeric vector, usually of length one. The root vertex, or root vertices to start
the search from.

mode For directed graphs specifies the type of edges to follow. ‘out’ follows outgo-
ing, ‘in’ incoming edges. ‘all’ ignores edge directions completely. ‘total’ is a
synonym for ‘all’. This argument is ignored for undirected graphs.

... These dots are for future extensions and must be empty.

unreachable Logical scalar, whether the search should visit the vertices that are unreachable
from the given root vertex (or vertices). If TRUE, then additional searches are
performed until all vertices are visited.

restricted NULL (=no restriction), or a vector of vertices (ids or symbolic names). In the
latter case, the search is restricted to the given vertices.

order Logical scalar, whether to return the ordering of the vertices.

rank Logical scalar, whether to return the rank of the vertices.

parent Logical scalar, whether to return the parent of the vertices.

pred Logical scalar, whether to return the predecessors of the vertices.

succ Logical scalar, whether to return the successors of the vertices.

dist Logical scalar, whether to return the distance from the root of the search tree.

callback If not NULL, then it must be callback function. This is called whenever a vertex
is visited. See details below.

extra Additional argument to supply to the callback function.

50 bfs

rho The environment in which the callback function is evaluated.

neimode [Deprecated] This argument is deprecated from igraph 1.3.0; use mode instead.

father [Deprecated] Use parent instead.

Details

The callback function must have the following arguments:

graph The input graph is passed to the callback function here.

data A named numeric vector, with the following entries: ‘vid’, the vertex that was just visited,
‘pred’, its predecessor (zero if this is the first vertex), ‘succ’, its successor (zero if this is the
last vertex), ‘rank’, the rank of the current vertex, ‘dist’, its distance from the root of the search
tree.

extra The extra argument.

The callback must return FALSE to continue the search or TRUE to terminate it. See examples below
on how to use the callback function.

Value

A named list with the following entries:

root Numeric scalar. The root vertex that was used as the starting point of the search.

neimode Character scalar. The mode argument of the function call. Note that for undirected graphs
this is always ‘all’, irrespectively of the supplied value.

order Numeric vector. The vertex ids, in the order in which they were visited by the search.

rank Numeric vector. The rank for each vertex, zero for unreachable vertices.

parent Numeric vector. The parent of each vertex, i.e. the vertex it was discovered from.

father Like parent, kept for compatibility for now.

pred Numeric vector. The previously visited vertex for each vertex, or 0 if there was no such
vertex.

succ Numeric vector. The next vertex that was visited after the current one, or 0 if there was no
such vertex.

dist Numeric vector, for each vertex its distance from the root of the search tree. Unreachable
vertices have a negative distance as of igraph 1.6.0, this used to be NaN.

Note that order, rank, parent, pred, succ and dist might be NULL if their corresponding argument
is FALSE, i.e. if their calculation is not requested.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

biconnected_components 51

See Also

dfs() for depth-first search.

Other structural.properties: component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

Two rings
bfs(make_ring(10) %du% make_ring(10),

root = 1, "out",
order = TRUE, rank = TRUE, parent = TRUE, pred = TRUE,
succ = TRUE, dist = TRUE

)

How to use a callback
f <- function(graph, data, extra) {

print(data)
FALSE

}
tmp <- bfs(make_ring(10) %du% make_ring(10),

root = 1, "out",
callback = f

)

How to use a callback to stop the search
We stop after visiting all vertices in the initial component
f <- function(graph, data, extra) {

data["succ"] == -1
}
bfs(make_ring(10) %du% make_ring(10), root = 1, callback = f)

biconnected_components

Biconnected components

Description

Finding the biconnected components of a graph

Usage

biconnected_components(graph)

52 biconnected_components

Arguments

graph The input graph. It is treated as an undirected graph, even if it is directed.

Details

A graph is biconnected if the removal of any single vertex (and its adjacent edges) does not discon-
nect it.

A biconnected component of a graph is a maximal biconnected subgraph of it. The biconnected
components of a graph can be given by the partition of its edges: every edge is a member of exactly
one biconnected component. Note that this is not true for vertices: the same vertex can be part of
many biconnected components.

Value

A named list with three components:

no Numeric scalar, an integer giving the number of biconnected components in the graph.

tree_edges The components themselves, a list of numeric vectors. Each vector is a set of edge
ids giving the edges in a biconnected component. These edges define a spanning tree of the
component.

component_edges A list of numeric vectors. It gives all edges in the components.

components A list of numeric vectors, the vertices of the components.

articulation_points The articulation points of the graph. See articulation_points().

Related documentation in the C library

biconnected_components().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

articulation_points(), components(), is_connected(), vertex_connectivity()

Connected components articulation_points(), component_distribution(), decompose(),
is_biconnected()

Examples

g <- disjoint_union(make_full_graph(5), make_full_graph(5))
clu <- components(g)$membership
g <- add_edges(g, c(which(clu == 1), which(clu == 2)))
bc <- biconnected_components(g)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_biconnected_components

bipartite_gnm 53

bipartite_gnm Bipartite random graphs

Description

Generate bipartite graphs using the Erdős-Rényi model

Usage

bipartite_gnm(...)

bipartite_gnp(...)

sample_bipartite_gnm(
n1,
n2,
m,
...,
directed = FALSE,
mode = c("out", "in", "all")

)

sample_bipartite_gnp(
n1,
n2,
p,
...,
directed = FALSE,
mode = c("out", "in", "all")

)

Arguments

... Passed to sample_bipartite_gnp().

n1 Integer scalar, the number of bottom vertices.

n2 Integer scalar, the number of top vertices.

m Integer scalar, the number of edges for G(n,m) graphs.

directed Logical scalar, whether to create a directed graph. See also the mode argument.

mode Character scalar, specifies how to direct the edges in directed graphs. If it is
‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’,
edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate
mutual edges. If this argument is ‘all’, then each edge direction is considered
independently and mutual edges might be generated. This argument is ignored
for undirected graphs.

p Real scalar, connection probability for G(n, p) graphs.

54 bipartite_mapping

Details

Similarly to unipartite (one-mode) networks, we can define the G(n, p), and G(n,m) graph classes
for bipartite graphs, via their generating process. In G(n, p) every possible edge between top and
bottom vertices is realized with probability p, independently of the rest of the edges. In G(n,m),
we uniformly choose m edges to realize.

See Also

Random graph models (games) erdos.renyi.game(), sample_(), sample_bipartite(), sample_chung_lu(),
sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

empty graph
sample_bipartite_gnp(10, 5, p = 0)

full graph
sample_bipartite_gnp(10, 5, p = 1)

random bipartite graph
sample_bipartite_gnp(10, 5, p = .1)

directed bipartite graph, G(n,m)
sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")

bipartite_mapping Decide whether a graph is bipartite

Description

This function decides whether the vertices of a network can be mapped to two vertex types in a way
that no vertices of the same type are connected.

Usage

bipartite_mapping(graph)

Arguments

graph The input graph.

bipartite_mapping 55

Details

A bipartite graph in igraph has a ‘type’ vertex attribute giving the two vertex types.

This function simply checks whether a graph could be bipartite. It tries to find a mapping that gives
a possible division of the vertices into two classes, such that no two vertices of the same class are
connected by an edge.

The existence of such a mapping is equivalent of having no circuits of odd length in the graph. A
graph with loop edges cannot bipartite.

Note that the mapping is not necessarily unique, e.g. if the graph has at least two components, then
the vertices in the separate components can be mapped independently.

Value

A named list with two elements:

res A logical scalar, TRUE if the can be bipartite, FALSE otherwise.

type A possible vertex type mapping, a logical vector. If no such mapping exists, then an empty
vector.

Related documentation in the C library

is_bipartite().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Bipartite graphs bipartite_projection(), is_bipartite(), make_bipartite_graph()

Examples

Rings with an even number of vertices are bipartite
g <- make_ring(10)
bipartite_mapping(g)

All star graphs are bipartite
g2 <- make_star(10)
bipartite_mapping(g2)

A graph containing a triangle is not bipartite
g3 <- make_ring(10)
g3 <- add_edges(g3, c(1, 3))
bipartite_mapping(g3)

https://igraph.org/c/html/0.10.17/igraph-Bipartite.html#igraph_is_bipartite

56 bipartite_projection

bipartite_projection Project a bipartite graph

Description

A bipartite graph is projected into two one-mode networks

Usage

bipartite_projection(
graph,
types = NULL,
multiplicity = TRUE,
probe1 = NULL,
which = c("both", "true", "false"),
remove.type = TRUE

)

bipartite_projection_size(graph, types = NULL)

Arguments

graph The input graph. It can be directed, but edge directions are ignored during the
computation.

types An optional vertex type vector to use instead of the ‘type’ vertex attribute. You
must supply this argument if the graph has no ‘type’ vertex attribute.

multiplicity If TRUE, then igraph keeps the multiplicity of the edges as an edge attribute called
‘weight’. E.g. if there is an A-C-B and also an A-D-B triple in the bipartite graph
(but no more X, such that A-X-B is also in the graph), then the multiplicity of
the A-B edge in the projection will be 2.

probe1 This argument can be used to specify the order of the projections in the resulting
list. If given, then it is considered as a vertex id (or a symbolic vertex name);
the projection containing this vertex will be the first one in the result list. This
argument is ignored if only one projection is requested in argument which.

which A character scalar to specify which projection(s) to calculate. The default is to
calculate both.

remove.type Logical scalar, whether to remove the type vertex attribute from the projections.
This makes sense because these graphs are not bipartite any more. However if
you want to combine them with each other (or other bipartite graphs), then it is
worth keeping this attribute. By default it will be removed.

Details

Bipartite graphs have a type vertex attribute in igraph, this is boolean and FALSE for the vertices of
the first kind and TRUE for vertices of the second kind.

bipartite_projection 57

bipartite_projection_size() calculates the number of vertices and edges in the two projections
of the bipartite graphs, without calculating the projections themselves. This is useful to check how
much memory the projections would need if you have a large bipartite graph.

bipartite_projection() calculates the actual projections. You can use the probe1 argument to
specify the order of the projections in the result. By default vertex type FALSE is the first and TRUE
is the second.

bipartite_projection() keeps vertex attributes.

Value

A list of two undirected graphs. See details above.

Related documentation in the C library

bipartite_projection_size().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Bipartite graphs bipartite_mapping(), is_bipartite(), make_bipartite_graph()

Examples

Projection of a full bipartite graph is a full graph
g <- make_full_bipartite_graph(10, 5)
proj <- bipartite_projection(g)
isomorphic(proj[[1]], make_full_graph(10))
isomorphic(proj[[2]], make_full_graph(5))

The projection keeps the vertex attributes
M <- matrix(0, nrow = 5, ncol = 3)
rownames(M) <- c("Alice", "Bob", "Cecil", "Dan", "Ethel")
colnames(M) <- c("Party", "Skiing", "Badminton")
M[] <- sample(0:1, length(M), replace = TRUE)
M
g2 <- graph_from_biadjacency_matrix(M)
g2$name <- "Event network"
proj2 <- bipartite_projection(g2)
print(proj2[[1]], g = TRUE, e = TRUE)
print(proj2[[2]], g = TRUE, e = TRUE)

https://igraph.org/c/html/0.10.17/igraph-Bipartite.html#igraph_bipartite_projection_size

58 c.igraph.vs

c.igraph.es Concatenate edge sequences

Description

Concatenate edge sequences

Usage

S3 method for class 'igraph.es'
c(..., recursive = FALSE)

Arguments

... The edge sequences to concatenate. They must all refer to the same graph.

recursive Ignored, included for S3 compatibility with the base c function.

Value

An edge sequence, the input sequences concatenated.

See Also

Other vertex and edge sequence operations: c.igraph.vs(), difference.igraph.es(), difference.igraph.vs(),
igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2, intersection.igraph.es(),
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(), union.igraph.vs(),
unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
c(E(g)[1], E(g)["A|B"], E(g)[1:4])

c.igraph.vs Concatenate vertex sequences

Description

Concatenate vertex sequences

Usage

S3 method for class 'igraph.vs'
c(..., recursive = FALSE)

canonical_permutation 59

Arguments

... The vertex sequences to concatenate. They must refer to the same graph.

recursive Ignored, included for S3 compatibility with the base c function.

Value

A vertex sequence, the input sequences concatenated.

See Also

Other vertex and edge sequence operations: c.igraph.es(), difference.igraph.es(), difference.igraph.vs(),
igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2, intersection.igraph.es(),
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(), union.igraph.vs(),
unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
c(V(g)[1], V(g)["A"], V(g)[1:4])

canonical_permutation Canonical permutation of a graph

Description

The canonical permutation brings every isomorphic graphs into the same (labeled) graph.

Usage

canonical_permutation(
graph,
colors = NULL,
sh = c("fm", "f", "fs", "fl", "flm", "fsm")

)

Arguments

graph The input graph, treated as undirected.

colors The colors of the individual vertices of the graph; only vertices having the same
color are allowed to match each other in an automorphism. When omitted,
igraph uses the color attribute of the vertices, or, if there is no such vertex
attribute, it simply assumes that all vertices have the same color. Pass NULL
explicitly if the graph has a color vertex attribute but you do not want to use it.

sh Type of the heuristics to use for the BLISS algorithm. See details for possible
values.

60 canonical_permutation

Details

canonical_permutation() computes a permutation which brings the graph into canonical form,
as defined by the BLISS algorithm. All isomorphic graphs have the same canonical form.

See the paper below for the details about BLISS. This and more information is available at http:
//www.tcs.hut.fi/Software/bliss/index.html.

The possible values for the sh argument are:

"f" First non-singleton cell.

"fl" First largest non-singleton cell.

"fs" First smallest non-singleton cell.

"fm" First maximally non-trivially connectec non-singleton cell.

"flm" Largest maximally non-trivially connected non-singleton cell.

"fsm" Smallest maximally non-trivially connected non-singleton cell.

See the paper in references for details about these.

Value

A list with the following members:

labeling The canonical permutation which takes the input graph into canonical form. A numeric
vector, the first element is the new label of vertex 0, the second element for vertex 1, etc.

info Some information about the BLISS computation. A named list with the following members:

"nof_nodes" The number of nodes in the search tree.
"nof_leaf_nodes" The number of leaf nodes in the search tree.
"nof_bad_nodes" Number of bad nodes.
"nof_canupdates" Number of canrep updates.
"max_level" Maximum level.
"group_size" The size of the automorphism group of the input graph, as a string. The string

representation is necessary because the group size can easily exceed values that are ex-
actly representable in floating point.

Related documentation in the C library

canonical_permutation().

Author(s)

Tommi Junttila for BLISS, Gabor Csardi <csardi.gabor@gmail.com> for the igraph and R inter-
faces.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

http://www.tcs.hut.fi/Software/bliss/index.html
http://www.tcs.hut.fi/Software/bliss/index.html
https://igraph.org/c/html/0.10.17/igraph-Isomorphism.html#igraph_canonical_permutation

categorical_pal 61

See Also

permute() to apply a permutation to a graph, isomorphic() for deciding graph isomorphism,
possibly based on canonical labels.

Other graph isomorphism: count_isomorphisms(), count_subgraph_isomorphisms(), graph_from_isomorphism_class(),
isomorphic(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

Examples

Calculate the canonical form of a random graph
g1 <- sample_gnm(10, 20)
cp1 <- canonical_permutation(g1)
cf1 <- permute(g1, cp1$labeling)

Do the same with a random permutation of it
g2 <- permute(g1, sample(vcount(g1)))
cp2 <- canonical_permutation(g2)
cf2 <- permute(g2, cp2$labeling)

Check that they are the same
el1 <- as_edgelist(cf1)
el2 <- as_edgelist(cf2)
el1 <- el1[order(el1[, 1], el1[, 2]),]
el2 <- el2[order(el2[, 1], el2[, 2]),]
all(el1 == el2)

categorical_pal Palette for categories

Description

This is a color blind friendly palette from https://jfly.uni-koeln.de/color/. It has 8 colors.

Usage

categorical_pal(n)

Arguments

n The number of colors in the palette. We simply take the first n colors from the
total 8.

Details

This is the suggested palette for visualizations where vertex colors mark categories, e.g. community
membership.

Value

A character vector of RGB color codes.

https://jfly.uni-koeln.de/color/

62 centralize

Examples

library(igraphdata)
data(karate)
karate <- karate
add_layout_(with_fr())
set_vertex_attr("size", value = 10)

cl_k <- cluster_optimal(karate)

V(karate)$color <- membership(cl_k)
karate$palette <- categorical_pal(length(cl_k))
plot(karate)

See Also

Other palettes: diverging_pal(), r_pal(), sequential_pal()

centralize Centralization of a graph

Description

Centralization is a method for creating a graph level centralization measure from the centrality
scores of the vertices.

Usage

centralize(scores, theoretical.max = 0, normalized = TRUE)

Arguments

scores The vertex level centrality scores.
theoretical.max

Real scalar. The graph-level centralization measure of the most centralized
graph with the same number of vertices as the graph under study. This is only
used if the normalized argument is set to TRUE.

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the supplied theoretical maximum.

Details

Centralization is a general method for calculating a graph-level centrality score based on node-level
centrality measure. The formula for this is

C(G) =
∑
v

(max
w

cw − cv),

centralize 63

where cv is the centrality of vertex v.

The graph-level centralization measure can be normalized by dividing by the maximum theoretical
score for a graph with the same number of vertices, using the same parameters, e.g. directedness,
whether we consider loop edges, etc.

For degree, closeness and betweenness the most centralized structure is some version of the star
graph, in-star, out-star or undirected star.

For eigenvector centrality the most centralized structure is the graph with a single edge (and poten-
tially many isolates).

centralize() implements general centralization formula to calculate a graph-level score from
vertex-level scores.

Value

A real scalar, the centralization of the graph from which scores were derived.

Related documentation in the C library

centralization().

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks
1, 215–239.

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cam-
bridge University Press.

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_clo_tmax(),
centr_degree(), centr_degree_tmax(), centr_eigen(), centr_eigen_tmax()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_eigen(g, directed = FALSE)$centralization

Calculate centralization from pre-computed scores
deg <- degree(g)
tmax <- centr_degree_tmax(g, loops = FALSE)
centralize(deg, tmax)

The most centralized graph according to eigenvector centrality
g0 <- make_graph(c(2, 1), n = 10, dir = FALSE)
g1 <- make_star(10, mode = "undirected")
centr_eigen(g0)$centralization
centr_eigen(g1)$centralization

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization

64 centr_betw

centr_betw Centralize a graph according to the betweenness of vertices

Description

See centralize() for a summary of graph centralization.

Usage

centr_betw(graph, directed = TRUE, normalized = TRUE)

Arguments

graph The input graph.

directed logical scalar, whether to use directed shortest paths for calculating between-
ness.

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.

Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argument was TRUE,
then the result was divided by this number.

See Also

Other centralization related: centr_betw_tmax(), centr_clo(), centr_clo_tmax(), centr_degree(),
centr_degree_tmax(), centr_eigen(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

centr_betw_tmax 65

centr_betw_tmax Theoretical maximum for betweenness centralization

Description

See centralize() for a summary of graph centralization.

Usage

centr_betw_tmax(graph = NULL, nodes = 0, directed = TRUE)

Arguments

graph The input graph. It can also be NULL if nodes and directed are both given.

nodes The number of vertices. This is ignored if the graph is given.

directed Logical scalar, whether to use directed shortest paths for calculating between-
ness. Ignored if an undirected graph was given.

Value

Real scalar, the theoretical maximum (unnormalized) graph betweenness centrality score for graphs
with given order and other parameters.

Related documentation in the C library

centralization_betweenness_tmax().

See Also

Other centralization related: centr_betw(), centr_clo(), centr_clo_tmax(), centr_degree(),
centr_degree_tmax(), centr_eigen(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_betw(g, normalized = FALSE)$centralization %>%
`/`(centr_betw_tmax(g))

centr_betw(g, normalized = TRUE)$centralization

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_betweenness_tmax

66 centr_clo

centr_clo Centralize a graph according to the closeness of vertices

Description

See centralize() for a summary of graph centralization.

Usage

centr_clo(graph, mode = c("out", "in", "all", "total"), normalized = TRUE)

Arguments

graph The input graph.

mode This is the same as the mode argument of closeness().

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.

Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argument was TRUE,
then the result was divided by this number.

Related documentation in the C library

centralization_closeness().

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo_tmax(), centr_degree(),
centr_degree_tmax(), centr_eigen(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_closeness

centr_clo_tmax 67

centr_clo_tmax Theoretical maximum for closeness centralization

Description

See centralize() for a summary of graph centralization.

Usage

centr_clo_tmax(graph = NULL, nodes = 0, mode = c("out", "in", "all", "total"))

Arguments

graph The input graph. It can also be NULL if nodes is given.

nodes The number of vertices. This is ignored if the graph is given.

mode This is the same as the mode argument of closeness(). Ignored if an undirected
graph is given.

Value

Real scalar, the theoretical maximum (unnormalized) graph closeness centrality score for graphs
with given order and other parameters.

Related documentation in the C library

centralization_closeness_tmax().

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_degree(),
centr_degree_tmax(), centr_eigen(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_clo(g, normalized = FALSE)$centralization %>%
`/`(centr_clo_tmax(g))

centr_clo(g, normalized = TRUE)$centralization

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_closeness_tmax

68 centr_degree

centr_degree Centralize a graph according to the degrees of vertices

Description

See centralize() for a summary of graph centralization.

Usage

centr_degree(
graph,
mode = c("all", "out", "in", "total"),
loops = TRUE,
normalized = TRUE

)

Arguments

graph The input graph.

mode This is the same as the mode argument of degree().

loops Logical scalar, whether to consider loops edges when calculating the degree.

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.

Value

A named list with the following components:

res The node-level centrality scores.

centralization The graph level centrality index.

theoretical_max The maximum theoretical graph level centralization score for a graph with the
given number of vertices, using the same parameters. If the normalized argument was TRUE,
then the result was divided by this number.

Related documentation in the C library

centralization_degree().

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_clo_tmax(),
centr_degree_tmax(), centr_eigen(), centr_eigen_tmax(), centralize()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_degree

centr_degree_tmax 69

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

centr_degree_tmax Theoretical maximum for degree centralization

Description

See centralize() for a summary of graph centralization.

Usage

centr_degree_tmax(
graph = NULL,
nodes = 0,
mode = c("all", "out", "in", "total"),
loops

)

Arguments

graph The input graph. It can also be NULL if nodes is given.
nodes The number of vertices. This is ignored if the graph is given.
mode This is the same as the mode argument of degree(). Ignored if graph is given

and the graph is undirected.
loops Logical scalar, whether to consider loops edges when calculating the degree.

Value

Real scalar, the theoretical maximum (unnormalized) graph degree centrality score for graphs with
given order and other parameters.

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_clo_tmax(),
centr_degree(), centr_eigen(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g, normalized = FALSE)$centralization %>%
`/`(centr_degree_tmax(g, loops = FALSE))

centr_degree(g, normalized = TRUE)$centralization

70 centr_eigen

centr_eigen Centralize a graph according to the eigenvector centrality of vertices

Description

See centralize() for a summary of graph centralization.

Usage

centr_eigen(
graph,
directed = FALSE,
scale = deprecated(),
options = arpack_defaults(),
normalized = TRUE

)

Arguments

graph The input graph.

directed logical scalar, whether to use directed shortest paths for calculating eigenvector
centrality.

scale [Deprecated] Ignored. Computing eigenvector centralization requires normal-
ized eigenvector centrality scores.

options This is passed to eigen_centrality(), the options for the ARPACK eigen-
solver.

normalized Logical scalar. Whether to normalize the graph level centrality score by dividing
by the theoretical maximum.

Value

A named list with the following components:

vector The node-level centrality scores.

value The corresponding eigenvalue.

options ARPACK options, see the return value of eigen_centrality() for details.

centralization The graph level centrality index.

theoretical_max The same as above, the theoretical maximum centralization score for a graph
with the same number of vertices.

Related documentation in the C library

centralization_eigenvector_centrality().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_eigenvector_centrality

centr_eigen_tmax 71

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_clo_tmax(),
centr_degree(), centr_degree_tmax(), centr_eigen_tmax(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

The most centralized graph according to eigenvector centrality
g0 <- make_graph(c(2, 1), n = 10, dir = FALSE)
g1 <- make_star(10, mode = "undirected")
centr_eigen(g0)$centralization
centr_eigen(g1)$centralization

centr_eigen_tmax Theoretical maximum for eigenvector centralization

Description

See centralize() for a summary of graph centralization.

Usage

centr_eigen_tmax(
graph = NULL,
nodes = 0,
directed = FALSE,
scale = deprecated()

)

Arguments

graph The input graph. It can also be NULL, if nodes is given.

nodes The number of vertices. This is ignored if the graph is given.

directed logical scalar, whether to consider edge directions during the calculation. Ig-
nored in undirected graphs.

scale [Deprecated] Ignored. Computing eigenvector centralization requires normal-
ized eigenvector centrality scores.

Value

Real scalar, the theoretical maximum (unnormalized) graph eigenvector centrality score for graphs
with given vertex count and other parameters.

72 cliques

Related documentation in the C library

centralization_eigenvector_centrality_tmax().

See Also

Other centralization related: centr_betw(), centr_betw_tmax(), centr_clo(), centr_clo_tmax(),
centr_degree(), centr_degree_tmax(), centr_eigen(), centralize()

Examples

A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_eigen(g, normalized = FALSE)$centralization %>%
`/`(centr_eigen_tmax(g))

centr_eigen(g, normalized = TRUE)$centralization

cliques Functions to find cliques, i.e. complete subgraphs in a graph

Description

These functions find all, the largest or all the maximal cliques in an undirected graph. The size of
the largest clique can also be calculated.

Tests if all pairs within a set of vertices are adjacent, i.e. whether they form a clique. An empty set
and singleton set are considered to be a clique.

Usage

cliques(graph, min = 0, max = 0)

largest_cliques(graph)

max_cliques(graph, min = NULL, max = NULL, subset = NULL, file = NULL)

count_max_cliques(graph, min = NULL, max = NULL, subset = NULL)

clique_num(graph)

largest_weighted_cliques(graph, vertex.weights = NULL)

weighted_clique_num(graph, vertex.weights = NULL)

clique_size_counts(graph, min = 0, max = 0, maximal = FALSE)

is_clique(graph, candidate, directed = FALSE)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_centralization_eigenvector_centrality_tmax

cliques 73

Arguments

graph The input graph.

min Numeric constant, lower limit on the size of the cliques to find. NULL means no
limit, i.e. it is the same as 0.

max Numeric constant, upper limit on the size of the cliques to find. NULL means no
limit.

subset If not NULL, then it must be a vector of vertex ids, numeric or symbolic if the
graph is named. The algorithm is run from these vertices only, so only a subset
of all maximal cliques is returned. See the Eppstein paper for details. This
argument makes it possible to easily parallelize the finding of maximal cliques.

file If not NULL, then it must be a file name, i.e. a character scalar. The output of the
algorithm is written to this file. (If it exists, then it will be overwritten.) Each
clique will be a separate line in the file, given with the numeric ids of its vertices,
separated by whitespace.

vertex.weights Vertex weight vector. If the graph has a weight vertex attribute, then this is
used by default. If the graph does not have a weight vertex attribute and this
argument is NULL, then every vertex is assumed to have a weight of 1. Note
that the current implementation of the weighted clique finder supports positive
integer weights only.

maximal Specifies whether to look for all weighted cliques (FALSE) or only the maximal
ones (TRUE).

candidate The vertex set to test for being a clique.

directed Whether to consider edge directions.

Details

cliques() find all complete subgraphs in the input graph, obeying the size limitations given in the
min and max arguments.

largest_cliques() finds all largest cliques in the input graph. A clique is largest if there is no
other clique including more vertices.

max_cliques() finds all maximal cliques in the input graph. A clique is maximal if it cannot be
extended to a larger clique. The largest cliques are always maximal, but a maximal clique is not
necessarily the largest.

count_max_cliques() counts the maximal cliques.

clique_num() calculates the size of the largest clique(s).

clique_size_counts() returns a numeric vector representing a histogram of clique sizes, between
the given minimum and maximum clique size.

is_clique() tests whether all pairs within a vertex set are connected.

Value

cliques(), largest_cliques() and clique_num() return a list containing numeric vectors of
vertex ids. Each list element is a clique, i.e. a vertex sequence of class igraph.vs.

74 cliques

max_cliques() returns NULL, invisibly, if its file argument is not NULL. The output is written to
the specified file in this case.

clique_num() and count_max_cliques() return an integer scalar.

clique_size_counts() returns a numeric vector with the clique sizes such that the i-th item be-
longs to cliques of size i. Trailing zeros are currently truncated, but this might change in future
versions.

is_clique() returns TRUE if the candidate vertex set forms a clique.

Related documentation in the C library

cliques(), largest_cliques(), clique_number(), largest_weighted_cliques(), weighted_clique_number(),
maximal_cliques_hist(), clique_size_hist(), is_clique().

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

For maximal cliques the following algorithm is implemented: David Eppstein, Maarten Loffler,
Darren Strash: Listing All Maximal Cliques in Sparse Graphs in Near-optimal Time. https://
arxiv.org/abs/1006.5440

See Also

Other cliques: is_complete(), ivs(), weighted_cliques()

Examples

this usually contains cliques of size six
g <- sample_gnp(100, 0.3)
clique_num(g)
cliques(g, min = 6)
largest_cliques(g)

To have a bit less maximal cliques, about 100-200 usually
g <- sample_gnp(100, 0.03)
max_cliques(g)

Check that all returned vertex sets are indeed cliques
all(sapply(max_cliques(g), function (c) is_clique(g, c)))

https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_cliques
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_largest_cliques
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_clique_number
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_largest_weighted_cliques
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_weighted_clique_number
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_maximal_cliques_hist
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_clique_size_hist
https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_is_clique
https://arxiv.org/abs/1006.5440
https://arxiv.org/abs/1006.5440

closeness 75

closeness Closeness centrality of vertices

Description

Closeness centrality measures how many steps are required to access every other vertex from a
given vertex.

Usage

closeness(
graph,
vids = V(graph),
mode = c("out", "in", "all", "total"),
weights = NULL,
normalized = FALSE,
cutoff = -1

)

Arguments

graph The graph to analyze.

vids The vertices for which closeness will be calculated.

mode Character string, defined the types of the paths used for measuring the distance
in directed graphs. “in” measures the paths to a vertex, “out” measures paths
from a vertex, all uses undirected paths. This argument is ignored for undirected
graphs.

weights Optional positive weight vector for calculating weighted closeness. If the graph
has a weight edge attribute, then this is used by default. Weights are used for
calculating weighted shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to calculate the normalized closeness, i.e. the inverse
average distance to all reachable vertices. The non-normalized closeness is the
inverse of the sum of distances to all reachable vertices.

cutoff The maximum path length to consider when calculating the closeness. If zero or
negative then there is no such limit.

Details

The closeness centrality of a vertex is defined as the inverse of the sum of distances to all the other
vertices in the graph:

1∑
i̸=v dvi

If there is no (directed) path between vertex v and i, then i is omitted from the calculation. If no
other vertices are reachable from v, then its closeness is returned as NaN.

76 cluster_edge_betweenness

cutoff or smaller. This can be run for larger graphs, as the running time is not quadratic (if
cutoff is small). If cutoff is negative (which is the default), then the function calculates the exact
closeness scores. Since igraph 1.6.0, a cutoff value of zero is treated literally, i.e. path with a
length greater than zero are ignored.

Closeness centrality is meaningful only for connected graphs. In disconnected graphs, consider
using the harmonic centrality with harmonic_centrality()

Value

Numeric vector with the closeness values of all the vertices in v.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks,
1, 215-239.

See Also

Centrality measures alpha_centrality(), authority_score(), betweenness(), diversity(),
eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

g <- make_ring(10)
g2 <- make_star(10)
closeness(g)
closeness(g2, mode = "in")
closeness(g2, mode = "out")
closeness(g2, mode = "all")

cluster_edge_betweenness

Community structure detection based on edge betweenness

Description

Community structure detection based on the betweenness of the edges in the network. This method
is also known as the Girvan-Newman algorithm.

cluster_edge_betweenness 77

Usage

cluster_edge_betweenness(
graph,
weights = NULL,
directed = TRUE,
edge.betweenness = TRUE,
merges = TRUE,
bridges = TRUE,
modularity = TRUE,
membership = TRUE

)

Arguments

graph The graph to analyze.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you
don’t want to use it for community detection. Edge weights are used to calculate
weighted edge betweenness. This means that edges are interpreted as distances,
not as connection strengths.

directed Logical constant, whether to calculate directed edge betweenness for directed
graphs. It is ignored for undirected graphs.

edge.betweenness

Logical constant, whether to return the edge betweenness of the edges at the
time of their removal.

merges Logical constant, whether to return the merge matrix representing the hierarchi-
cal community structure of the network. This argument is called merges, even
if the community structure algorithm itself is divisive and not agglomerative: it
builds the tree from top to bottom. There is one line for each merge (i.e. split) in
matrix, the first line is the first merge (last split). The communities are identified
by integer number starting from one. Community ids smaller than or equal to
N , the number of vertices in the graph, belong to singleton communities, i.e.
individual vertices. Before the first merge we have N communities numbered
from one to N . The first merge, the first line of the matrix creates community
N + 1, the second merge creates community N + 2, etc.

bridges Logical constant, whether to return a list the edge removals which actually split-
ted a component of the graph.

modularity Logical constant, whether to calculate the maximum modularity score, consid-
ering all possibly community structures along the edge-betweenness based edge
removals.

membership Logical constant, whether to calculate the membership vector corresponding to
the highest possible modularity score.

78 cluster_edge_betweenness

Details

The idea behind this method is that the betweenness of the edges connecting two communities is
typically high, as many of the shortest paths between vertices in separate communities pass through
them. The algorithm successively removes edges with the highest betweenness, recalculating be-
tweenness values after each removal. This way eventually the network splits into two components,
then one of these components splits again, and so on, until all edges are removed. The resulting
hierarhical partitioning of the vertices can be encoded as a dendrogram.

cluster_edge_betweenness() returns various information collected through the run of the al-
gorithm. Specifically, removed.edges contains the edge IDs in order of the edges’ removal;
edge.betweenness contains the betweenness of each of these at the time of their removal; and
bridges contains the IDs of edges whose removal caused a split.

Value

cluster_edge_betweenness() returns a communities() object, please see the communities()
manual page for details.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

M Newman and M Girvan: Finding and evaluating community structure in networks, Physical
Review E 69, 026113 (2004)

See Also

edge_betweenness() for the definition and calculation of the edge betweenness, cluster_walktrap(),
cluster_fast_greedy(), cluster_leading_eigen() for other community detection methods.

See communities() for extracting the results of the community detection.

Community detection as_membership(), cluster_fast_greedy(), cluster_fluid_communities(),
cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- sample_pa(100, m = 2, directed = FALSE)
eb <- cluster_edge_betweenness(g)

g <- make_full_graph(10) %du% make_full_graph(10)
g <- add_edges(g, c(1, 11))
eb <- cluster_edge_betweenness(g)
eb

cluster_fast_greedy 79

cluster_fast_greedy Community structure via greedy optimization of modularity

Description

This function tries to find dense subgraph, also called communities in graphs via directly optimizing
a modularity score.

Usage

cluster_fast_greedy(
graph,
merges = TRUE,
modularity = TRUE,
membership = TRUE,
weights = NULL

)

Arguments

graph The input graph. It must be undirected and must not have multi-edges.

merges Logical scalar, whether to return the merge matrix.

modularity Logical scalar, whether to return a vector containing the modularity after each
merge.

membership Logical scalar, whether to calculate the membership vector corresponding to
the maximum modularity score, considering all possible community structures
along the merges.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

Details

This function implements the fast greedy modularity optimization algorithm for finding community
structure, see A Clauset, MEJ Newman, C Moore: Finding community structure in very large
networks, http://www.arxiv.org/abs/cond-mat/0408187 for the details.

Value

cluster_fast_greedy() returns a communities() object, please see the communities() manual
page for details.

80 cluster_fluid_communities

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com> for the R
interface.

References

A Clauset, MEJ Newman, C Moore: Finding community structure in very large networks, http://www.arxiv.org/abs/cond-
mat/0408187

See Also

communities() for extracting the results.

See also cluster_walktrap(), cluster_spinglass(), cluster_leading_eigen() and cluster_edge_betweenness(),
cluster_louvain() cluster_leiden() for other methods.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fluid_communities(),
cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
fc <- cluster_fast_greedy(g)
membership(fc)
sizes(fc)

cluster_fluid_communities

Community detection algorithm based on interacting fluids

Description

The algorithm detects communities based on the simple idea of several fluids interacting in a non-
homogeneous environment (the graph topology), expanding and contracting based on their interac-
tion and density.

Usage

cluster_fluid_communities(graph, no.of.communities)

cluster_fluid_communities 81

Arguments

graph The input graph. The graph must be simple and connected. Empty graphs are not
supported as well as single vertex graphs. Edge directions are ignored. Weights
are not considered.

no.of.communities

The number of communities to be found. Must be greater than 0 and fewer than
number of vertices in the graph.

Value

cluster_fluid_communities() returns a communities() object, please see the communities()
manual page for details.

Author(s)

Ferran Parés

References

Parés F, Gasulla DG, et. al. (2018) Fluid Communities: A Competitive, Scalable and Diverse
Community Detection Algorithm. In: Complex Networks & Their Applications VI: Proceedings
of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their
Applications), Springer, vol 689, p 229, doi: 10.1007/978-3-319-72150-7_19

See Also

See communities() for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap(), cluster_spinglass(), cluster_leading_eigen(),
cluster_edge_betweenness(), cluster_fast_greedy(), cluster_label_prop() cluster_louvain(),
cluster_leiden()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_graph("Zachary")
comms <- cluster_fluid_communities(g, 2)

82 cluster_infomap

cluster_infomap Infomap community finding

Description

Find community structure that minimizes the expected description length of a random walker tra-
jectory. If the graph is directed, edge directions will be taken into account.

Usage

cluster_infomap(
graph,
e.weights = NULL,
v.weights = NULL,
nb.trials = 10,
modularity = TRUE

)

Arguments

graph The input graph. Edge directions will be taken into account.

e.weights If not NULL, then a numeric vector of edge weights. The length must match the
number of edges in the graph. By default the ‘weight’ edge attribute is used
as weights. If it is not present, then all edges are considered to have the same
weight. Larger edge weights correspond to stronger connections.

v.weights If not NULL, then a numeric vector of vertex weights. The length must match the
number of vertices in the graph. By default the ‘weight’ vertex attribute is used
as weights. If it is not present, then all vertices are considered to have the same
weight. A larger vertex weight means a larger probability that the random surfer
jumps to that vertex.

nb.trials The number of attempts to partition the network (can be any integer value equal
or larger than 1).

modularity Logical scalar, whether to calculate the modularity score of the detected com-
munity structure.

Details

Please see the details of this method in the references given below.

Value

cluster_infomap() returns a communities() object, please see the communities() manual page
for details.

cluster_label_prop 83

Author(s)

Martin Rosvall wrote the original C++ code. This was ported to be more igraph-like by Emmanuel
Navarro. The R interface and some cosmetics was done by Gabor Csardi <csardi.gabor@gmail.com>.

References

The original paper: M. Rosvall and C. T. Bergstrom, Maps of information flow reveal community
structure in complex networks, PNAS 105, 1118 (2008) doi:10.1073/pnas.0706851105, https:
//arxiv.org/abs/0707.0609

A more detailed paper: M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map equation, Eur.
Phys. J. Special Topics 178, 13 (2009). doi:10.1140/epjst/e2010011791, https://arxiv.org/
abs/0906.1405.

See Also

Other community finding methods and communities().

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_label_prop(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

Zachary's karate club
g <- make_graph("Zachary")

imc <- cluster_infomap(g)
membership(imc)
communities(imc)

cluster_label_prop Finding communities based on propagating labels

Description

This is a fast, nearly linear time algorithm for detecting community structure in networks. In works
by labeling the vertices with unique labels and then updating the labels by majority voting in the
neighborhood of the vertex.

Usage

cluster_label_prop(
graph,
weights = NULL,
...,

https://doi.org/10.1073/pnas.0706851105
https://arxiv.org/abs/0707.0609
https://arxiv.org/abs/0707.0609
https://doi.org/10.1140/epjst/e2010-01179-1
https://arxiv.org/abs/0906.1405
https://arxiv.org/abs/0906.1405

84 cluster_label_prop

mode = c("out", "in", "all"),
initial = NULL,
fixed = NULL

)

Arguments

graph The input graph. Note that the algorithm was originally defined for undirected
graphs. You are advised to set ‘mode’ to all if you pass a directed graph here
to treat it as undirected.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

... These dots are for future extensions and must be empty.

mode Logical, whether to consider edge directions for the label propagation, and if so,
in which direction the labels should propagate. Ignored for undirected graphs.
"all" means to ignore edge directions (even in directed graphs). "out" means to
propagate labels along the natural direction of the edges. "in" means to propa-
gate labels backwards (i.e. from head to tail).

initial The initial state. If NULL, every vertex will have a different label at the beginning.
Otherwise it must be a vector with an entry for each vertex. Non-negative values
denote different labels, negative entries denote vertices without labels.

fixed Logical vector denoting which labels are fixed. Of course this makes sense only
if you provided an initial state, otherwise this element will be ignored. Also note
that vertices without labels cannot be fixed.

Details

This function implements the community detection method described in: Raghavan, U.N. and Al-
bert, R. and Kumara, S.: Near linear time algorithm to detect community structures in large-scale
networks. Phys Rev E 76, 036106. (2007). This version extends the original method by the ability
to take edge weights into consideration and also by allowing some labels to be fixed.

From the abstract of the paper: “In our algorithm every node is initialized with a unique label
and at every step each node adopts the label that most of its neighbors currently have. In this
iterative process densely connected groups of nodes form a consensus on a unique label to form
communities.”

Value

cluster_label_prop() returns a communities() object, please see the communities() manual
page for details.

cluster_leading_eigen 85

Author(s)

Tamas Nepusz <ntamas@gmail.com> for the C implementation, Gabor Csardi <csardi.gabor@gmail.com>
for this manual page.

References

Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to detect community
structures in large-scale networks. Phys Rev E 76, 036106. (2007)

See Also

communities() for extracting the actual results.

cluster_fast_greedy(), cluster_walktrap(), cluster_spinglass(), cluster_louvain()
and cluster_leiden() for other community detection methods.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_leading_eigen(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
g <- add_edges(g, c(1, 12))
cluster_label_prop(g)

cluster_leading_eigen Community structure detecting based on the leading eigenvector of the
community matrix

Description

This function tries to find densely connected subgraphs in a graph by calculating the leading non-
negative eigenvector of the modularity matrix of the graph.

Usage

cluster_leading_eigen(
graph,
steps = -1,
weights = NULL,
start = NULL,
options = arpack_defaults(),
callback = NULL,
extra = NULL,
env = parent.frame()

)

86 cluster_leading_eigen

Arguments

graph The input graph. Should be undirected as the method needs a symmetric matrix.

steps The number of steps to take, this is actually the number of tries to make a step.
It is not a particularly useful parameter.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

start NULL, or a numeric membership vector, giving the start configuration of the al-
gorithm.

options A named list to override some ARPACK options.

callback If not NULL, then it must be callback function. This is called after each iteration,
after calculating the leading eigenvector of the modularity matrix. See details
below.

extra Additional argument to supply to the callback function.

env The environment in which the callback function is evaluated.

Details

The function documented in these section implements the ‘leading eigenvector’ method developed
by Mark Newman, see the reference below.

The heart of the method is the definition of the modularity matrix, B, which is B=A-P, A being
the adjacency matrix of the (undirected) network, and P contains the probability that certain edges
are present according to the ‘configuration model’. In other words, a P[i,j] element of P is the
probability that there is an edge between vertices i and j in a random network in which the degrees
of all vertices are the same as in the input graph.

The leading eigenvector method works by calculating the eigenvector of the modularity matrix for
the largest positive eigenvalue and then separating vertices into two community based on the sign
of the corresponding element in the eigenvector. If all elements in the eigenvector are of the same
sign that means that the network has no underlying comuunity structure. Check Newman’s paper to
understand why this is a good method for detecting community structure.

Value

cluster_leading_eigen() returns a named list with the following members:

membership The membership vector at the end of the algorithm, when no more splits are possible.

merges The merges matrix starting from the state described by the membership member. This is
a two-column matrix and each line describes a merge of two communities, the first line is the
first merge and it creates community ‘N’, N is the number of initial communities in the graph,
the second line creates community N+1, etc.

options Information about the underlying ARPACK computation, see arpack() for details.

cluster_leading_eigen 87

Callback functions

The callback argument can be used to supply a function that is called after each eigenvector
calculation. The following arguments are supplied to this function:

membership The actual membership vector, with zero-based indexing.

community The community that the algorithm just tried to split, community numbering starts with
zero here.

value The eigenvalue belonging to the leading eigenvector the algorithm just found.

vector The leading eigenvector the algorithm just found.

multiplier An R function that can be used to multiple the actual modularity matrix with an arbitrary
vector. Supply the vector as an argument to perform this multiplication. This function can be
used with ARPACK.

extra The extra argument that was passed to cluster_leading_eigen().

The callback function should return a scalar number. If this number is non-zero, then the clustering
is terminated.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

MEJ Newman: Finding community structure using the eigenvectors of matrices, Physical Review
E 74 036104, 2006.

See Also

modularity(), cluster_walktrap(), cluster_edge_betweenness(), cluster_fast_greedy(),
as.dendrogram()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leiden(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
lec <- cluster_leading_eigen(g)
lec

cluster_leading_eigen(g, start = membership(lec))

88 cluster_leiden

cluster_leiden Finding community structure of a graph using the Leiden algorithm of
Traag, van Eck & Waltman.

Description

The Leiden algorithm is similar to the Louvain algorithm, cluster_louvain(), but it is faster
and yields higher quality solutions. It can optimize both modularity and the Constant Potts Model,
which does not suffer from the resolution-limit (see preprint https://arxiv.org/abs/1104.3083).

Usage

cluster_leiden(
graph,
objective_function = c("CPM", "modularity"),
...,
weights = NULL,
resolution = 1,
resolution_parameter = deprecated(),
beta = 0.01,
initial_membership = NULL,
n_iterations = 2,
vertex_weights = NULL

)

Arguments

graph The input graph. It must be undirected.
objective_function

Whether to use the Constant Potts Model (CPM) or modularity. Must be either
"CPM" or "modularity".

... These dots are for future extensions and must be empty.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

resolution The resolution parameter to use. Higher resolutions lead to more smaller com-
munities, while lower resolutions lead to fewer larger communities.

resolution_parameter

[Superseded] Use resolution instead.

beta Parameter affecting the randomness in the Leiden algorithm. This affects only
the refinement step of the algorithm.

https://arxiv.org/abs/1104.3083

cluster_leiden 89

initial_membership

If provided, the Leiden algorithm will try to improve this provided member-
ship. If no argument is provided, the aglorithm simply starts from the singleton
partition.

n_iterations the number of iterations to iterate the Leiden algorithm. Each iteration may
improve the partition further.

vertex_weights the vertex weights used in the Leiden algorithm. If this is not provided, it will
be automatically determined on the basis of the objective_function. Please
see the details of this function how to interpret the vertex weights.

Details

The Leiden algorithm consists of three phases: (1) local moving of nodes, (2) refinement of the
partition and (3) aggregation of the network based on the refined partition, using the non-refined
partition to create an initial partition for the aggregate network. In the local move procedure in
the Leiden algorithm, only nodes whose neighborhood has changed are visited. The refinement is
done by restarting from a singleton partition within each cluster and gradually merging the subclus-
ters. When aggregating, a single cluster may then be represented by several nodes (which are the
subclusters identified in the refinement).

The Leiden algorithm provides several guarantees. The Leiden algorithm is typically iterated: the
output of one iteration is used as the input for the next iteration. At each iteration all clusters are
guaranteed to be connected and well-separated. After an iteration in which nothing has changed, all
nodes and some parts are guaranteed to be locally optimally assigned. Finally, asymptotically, all
subsets of all clusters are guaranteed to be locally optimally assigned. For more details, please see
Traag, Waltman & van Eck (2019).

The objective function being optimized is

1

2m

∑
ij

(Aij − γninj)δ(σi, σj)

where m is the total edge weight, Aij is the weight of edge (i, j), γ is the so-called resolution
parameter, ni is the node weight of node i, σi is the cluster of node i and δ(x, y) = 1 if and only
if x = y and 0 otherwise. By setting ni = ki, the degree of node i, and dividing γ by 2m, you
effectively obtain an expression for modularity.

Hence, the standard modularity will be optimized when you supply the degrees as vertex_weights
and by supplying as a resolution parameter 1

2m , with m the number of edges. If you do not specify
any vertex_weights, the correct vertex weights and scaling of γ is determined automatically by
the objective_function argument.

Value

cluster_leiden() returns a communities() object, please see the communities() manual page
for details.

Author(s)

Vincent Traag

90 cluster_louvain

References

Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain to Leiden: guaranteeing
well-connected communities. Scientific reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z,
arXiv:1810.08473v3 [cs.SI]

See Also

See communities() for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap(), cluster_spinglass(), cluster_leading_eigen(),
cluster_edge_betweenness(), cluster_fast_greedy(), cluster_label_prop() cluster_louvain()
cluster_fluid_communities() cluster_infomap() cluster_optimal() cluster_walktrap()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_graph("Zachary")
By default CPM is used
r <- quantile(strength(g))[2] / (gorder(g) - 1)
Set seed for sake of reproducibility
set.seed(1)
ldc <- cluster_leiden(g, resolution = r)
print(ldc)
plot(ldc, g)

cluster_louvain Finding community structure by multi-level optimization of modularity

Description

This function implements the multi-level modularity optimization algorithm for finding community
structure, see references below. It is based on the modularity measure and a hierarchical approach.

Usage

cluster_louvain(graph, weights = NULL, resolution = 1)

Arguments

graph The input graph. It must be undirected.

cluster_louvain 91

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

resolution Optional resolution parameter that allows the user to adjust the resolution pa-
rameter of the modularity function that the algorithm uses internally. Lower
values typically yield fewer, larger clusters. The original definition of modular-
ity is recovered when the resolution parameter is set to 1.

Details

This function implements the multi-level modularity optimization algorithm for finding commu-
nity structure, see VD Blondel, J-L Guillaume, R Lambiotte and E Lefebvre: Fast unfolding of
community hierarchies in large networks, https://arxiv.org/abs/0803.0476 for the details.

It is based on the modularity measure and a hierarchical approach. Initially, each vertex is assigned
to a community on its own. In every step, vertices are re-assigned to communities in a local, greedy
way: each vertex is moved to the community with which it achieves the highest contribution to
modularity. When no vertices can be reassigned, each community is considered a vertex on its own,
and the process starts again with the merged communities. The process stops when there is only a
single vertex left or when the modularity cannot be increased any more in a step. Since igraph 1.3,
vertices are processed in a random order.

This function was contributed by Tom Gregorovic.

Value

cluster_louvain() returns a communities() object, please see the communities() manual page
for details.

Author(s)

Tom Gregorovic, Tamas Nepusz <ntamas@gmail.com>

References

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre: Fast unfolding of
communities in large networks. J. Stat. Mech. (2008) P10008

See Also

See communities() for extracting the membership, modularity scores, etc. from the results.

Other community detection algorithms: cluster_walktrap(), cluster_spinglass(), cluster_leading_eigen(),
cluster_edge_betweenness(), cluster_fast_greedy(), cluster_label_prop() cluster_leiden()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

https://arxiv.org/abs/0803.0476

92 cluster_optimal

Examples

This is so simple that we will have only one level
g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
cluster_louvain(g)

cluster_optimal Optimal community structure

Description

This function calculates the optimal community structure of a graph, by maximizing the modularity
measure over all possible partitions.

Usage

cluster_optimal(graph, weights = NULL)

Arguments

graph The input graph. It may be undirected or directed.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

Details

This function calculates the optimal community structure for a graph, in terms of maximal modu-
larity score.

The calculation is done by transforming the modularity maximization into an integer programming
problem, and then calling the GLPK library to solve that. Please the reference below for details.

Note that modularity optimization is an NP-complete problem, and all known algorithms for it have
exponential time complexity. This means that you probably don’t want to run this function on larger
graphs. Graphs with up to fifty vertices should be fine, graphs with a couple of hundred vertices
might be possible.

Value

cluster_optimal() returns a communities() object, please see the communities() manual page
for details.

cluster_spinglass 93

Examples

Zachary's karate club
g <- make_graph("Zachary")

We put everything into a big 'try' block, in case
igraph was compiled without GLPK support

The calculation only takes a couple of seconds
oc <- cluster_optimal(g)

Double check the result
print(modularity(oc))
print(modularity(g, membership(oc)))

Compare to the greedy optimizer
fc <- cluster_fast_greedy(g)
print(modularity(fc))

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
Dorothea Wagner: On Modularity Clustering, IEEE Transactions on Knowledge and Data Engi-
neering 20(2):172-188, 2008.

See Also

communities() for the documentation of the result, modularity(). See also cluster_fast_greedy()
for a fast greedy optimizer.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_spinglass(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

cluster_spinglass Finding communities in graphs based on statistical meachanics

Description

This function tries to find communities in graphs via a spin-glass model and simulated annealing.

94 cluster_spinglass

Usage

cluster_spinglass(
graph,
weights = NULL,
vertex = NULL,
spins = 25,
parupdate = FALSE,
start.temp = 1,
stop.temp = 0.01,
cool.fact = 0.99,
update.rule = c("config", "random", "simple"),
gamma = 1,
implementation = c("orig", "neg"),
gamma.minus = 1

)

Arguments

graph The input graph. Edge directions are ignored in directed graphs.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it
is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will
be used. If NULL and no such attribute is present, then the edges will have equal
weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t
want to use it for community detection. A larger edge weight means a stronger
connection for this function.

vertex This parameter can be used to calculate the community of a given vertex without
calculating all communities. Note that if this argument is present then some
other arguments are ignored.

spins Integer constant, the number of spins to use. This is the upper limit for the
number of communities. It is not a problem to supply a (reasonably) big number
here, in which case some spin states will be unpopulated.

parupdate Logical constant, whether to update the spins of the vertices in parallel (syn-
chronously) or not. This argument is ignored if the second form of the function
is used (i.e. the ‘vertex’ argument is present). It is also not implemented in the
“neg” implementation.

start.temp Real constant, the start temperature. This argument is ignored if the second form
of the function is used (i.e. the ‘vertex’ argument is present).

stop.temp Real constant, the stop temperature. The simulation terminates if the tempera-
ture lowers below this level. This argument is ignored if the second form of the
function is used (i.e. the ‘vertex’ argument is present).

cool.fact Cooling factor for the simulated annealing. This argument is ignored if the
second form of the function is used (i.e. the ‘vertex’ argument is present).

update.rule Character constant giving the ‘null-model’ of the simulation. Possible values:
“simple” and “config”. “simple” uses a random graph with the same number
of edges as the baseline probability and “config” uses a random graph with the
same vertex degrees as the input graph.

cluster_spinglass 95

gamma Real constant, the gamma argument of the algorithm. This specifies the bal-
ance between the importance of present and non-present edges in a community.
Roughly, a comunity is a set of vertices having many edges inside the commu-
nity and few edges outside the community. The default 1.0 value makes exist-
ing and non-existing links equally important. Smaller values make the existing
links, greater values the missing links more important.

implementation Character scalar. Currently igraph contains two implementations for the Spin-
glass community finding algorithm. The faster original implementation is the
default. The other implementation, that takes into account negative weights, can
be chosen by supplying ‘neg’ here.

gamma.minus Real constant, the gamma.minus parameter of the algorithm. This specifies the
balance between the importance of present and non-present negative weighted
edges in a community. Smaller values of gamma.minus, leads to communities
with lesser negative intra-connectivity. If this argument is set to zero, the al-
gorithm reduces to a graph coloring algorithm, using the number of spins as
the number of colors. This argument is ignored if the ‘orig’ implementation is
chosen.

Details

This function tries to find communities in a graph. A community is a set of nodes with many edges
inside the community and few edges between outside it (i.e. between the community itself and the
rest of the graph.)

This idea is reversed for edges having a negative weight, i.e. few negative edges inside a community
and many negative edges between communities. Note that only the ‘neg’ implementation supports
negative edge weights.

The spinglass.cummunity function can solve two problems related to community detection. If
the vertex argument is not given (or it is NULL), then the regular community detection problem is
solved (approximately), i.e. partitioning the vertices into communities, by optimizing the an energy
function.

If the vertex argument is given and it is not NULL, then it must be a vertex id, and the same energy
function is used to find the community of the the given vertex. See also the examples below.

Value

If the vertex argument is not given, i.e. the first form is used then a cluster_spinglass() returns
a communities() object.

If the vertex argument is present, i.e. the second form is used then a named list is returned with
the following components:

community Numeric vector giving the ids of the vertices in the same community as vertex.

cohesion The cohesion score of the result, see references.

adhesion The adhesion score of the result, see references.

inner.links The number of edges within the community of vertex.

outer.links The number of edges between the community of vertex and the rest of the graph.

96 cluster_walktrap

Author(s)

Jorg Reichardt for the original code and Gabor Csardi <csardi.gabor@gmail.com> for the igraph
glue code.

Changes to the original function for including the possibility of negative ties were implemented by
Vincent Traag (https://www.traag.net/).

References

J. Reichardt and S. Bornholdt: Statistical Mechanics of Community Detection, Phys. Rev. E, 74,
016110 (2006), https://arxiv.org/abs/cond-mat/0603718

M. E. J. Newman and M. Girvan: Finding and evaluating community structure in networks, Phys.
Rev. E 69, 026113 (2004)

V.A. Traag and Jeroen Bruggeman: Community detection in networks with positive and negative
links, https://arxiv.org/abs/0811.2329 (2008).

See Also

communities(), components()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_walktrap(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
g <- add_edges(g, c(1, 12))
g <- induced_subgraph(g, subcomponent(g, 1))
cluster_spinglass(g, spins = 2)
cluster_spinglass(g, vertex = 1)

cluster_walktrap Community structure via short random walks

Description

This function tries to find densely connected subgraphs, also called communities in a graph via
random walks. The idea is that short random walks tend to stay in the same community.

https://www.traag.net/
https://arxiv.org/abs/cond-mat/0603718
https://arxiv.org/abs/0811.2329

cluster_walktrap 97

Usage

cluster_walktrap(
graph,
weights = NULL,
steps = 4,
merges = TRUE,
modularity = TRUE,
membership = TRUE

)

Arguments

graph The input graph. Edge directions are ignored in directed graphs.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you
don’t want to use it for community detection. Larger edge weights increase the
probability that an edge is selected by the random walker. In other words, larger
edge weights correspond to stronger connections.

steps The length of the random walks to perform.

merges Logical scalar, whether to include the merge matrix in the result.

modularity Logical scalar, whether to include the vector of the modularity scores in the
result. If the membership argument is true, then it will always be calculated.

membership Logical scalar, whether to calculate the membership vector for the split corre-
sponding to the highest modularity value.

Details

This function is the implementation of the Walktrap community finding algorithm, see Pascal Pons,
Matthieu Latapy: Computing communities in large networks using random walks, https://arxiv.org/abs/physics/0512106

Value

cluster_walktrap() returns a communities() object, please see the communities() manual
page for details.

Author(s)

Pascal Pons (http://psl.pons.free.fr/) and Gabor Csardi <csardi.gabor@gmail.com> for
the R and igraph interface

References

Pascal Pons, Matthieu Latapy: Computing communities in large networks using random walks,
https://arxiv.org/abs/physics/0512106

http://psl.pons.free.fr/

98 cocitation

See Also

See communities() on getting the actual membership vector, merge matrix, modularity score, etc.

modularity() and cluster_fast_greedy(), cluster_spinglass(), cluster_leading_eigen(),
cluster_edge_betweenness(), cluster_louvain(), and cluster_leiden() for other commu-
nity detection methods.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), compare(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
cluster_walktrap(g)

cocitation Cocitation coupling

Description

Two vertices are cocited if there is another vertex citing both of them. cocitation() simply counts
how many types two vertices are cocited. The bibliographic coupling of two vertices is the number
of other vertices they both cite, bibcoupling() calculates this.

Usage

cocitation(graph, v = V(graph))

bibcoupling(graph, v = V(graph))

Arguments

graph The graph object to analyze

v Vertex sequence or numeric vector, the vertex ids for which the cocitation or
bibliographic coupling values we want to calculate. The default is all vertices.

Details

cocitation() calculates the cocitation counts for the vertices in the v argument and all vertices in
the graph.

bibcoupling() calculates the bibliographic coupling for vertices in v and all vertices in the graph.

Calculating the cocitation or bibliographic coupling for only one vertex costs the same amount of
computation as for all vertices. This might change in the future.

cohesive_blocks 99

Value

A numeric matrix with length(v) lines and vcount(graph) columns. Element (i,j) contains the
cocitation or bibliographic coupling for vertices v[i] and j.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other cocitation: similarity()

Examples

g <- make_kautz_graph(2, 3)
cocitation(g)
bibcoupling(g)

cohesive_blocks Calculate Cohesive Blocks

Description

Calculates cohesive blocks for objects of class igraph.

Usage

cohesive_blocks(graph, labels = TRUE)

S3 method for class 'cohesiveBlocks'
length(x)

blocks(blocks)

graphs_from_cohesive_blocks(blocks, graph)

S3 method for class 'cohesiveBlocks'
cohesion(x, ...)

hierarchy(blocks)

parent(blocks)

S3 method for class 'cohesiveBlocks'
print(x, ...)

100 cohesive_blocks

S3 method for class 'cohesiveBlocks'
summary(object, ...)

S3 method for class 'cohesiveBlocks'
plot(
x,
y,
colbar = rainbow(max(cohesion(x)) + 1),
col = colbar[max_cohesion(x) + 1],
mark.groups = blocks(x)[-1],
...

)

plot_hierarchy(
blocks,
layout = layout_as_tree(hierarchy(blocks), root = 1),
...

)

export_pajek(blocks, graph, file, project.file = TRUE)

max_cohesion(blocks)

Arguments

graph For cohesive_blocks() a graph object of class igraph. It must be undirected
and simple. (See is_simple().)
For graphs_from_cohesive_blocks() and export_pajek() the same graph
must be supplied whose cohesive block structure is given in the blocks() argu-
ment.

labels Logical scalar, whether to add the vertex labels to the result object. These labels
can be then used when reporting and plotting the cohesive blocks.

blocks, x, object
A cohesiveBlocks object, created with the cohesive_blocks() function.

... Additional arguments. plot_hierarchy() and plot() pass them to plot.igraph().
print() and summary() ignore them.

y The graph whose cohesive blocks are supplied in the x argument.

colbar Color bar for the vertex colors. Its length should be at least m + 1, where m is
the maximum cohesion in the graph. Alternatively, the vertex colors can also be
directly specified via the col argument.

col A vector of vertex colors, in any of the usual formats. (Symbolic color names
(e.g. ‘red’, ‘blue’, etc.) , RGB colors (e.g. ‘#FF9900FF’), integer numbers
referring to the current palette. By default the given colbar is used and vertices
with the same maximal cohesion will have the same color.

mark.groups A list of vertex sets to mark on the plot by circling them. By default all cohesive
blocks are marked, except the one corresponding to the all vertices.

cohesive_blocks 101

layout The layout of a plot, it is simply passed on to plot.igraph(), see the possible
formats there. By default the Reingold-Tilford layout generator is used.

file Defines the file (or connection) the Pajek file is written to.
If the project.file argument is TRUE, then it can be a filename (with exten-
sion), a file object, or in general any king of connection object. The file/connection
will be opened if it wasn’t already.
If the project.file argument is FALSE, then several files are created and file
must be a character scalar containing the base name of the files, without exten-
sion. (But it can contain the path to the files.)
See also details below.

project.file Logical scalar, whether to create a single Pajek project file containing all the
data, or to create separated files for each item. See details below.

Details

Cohesive blocking is a method of determining hierarchical subsets of graph vertices based on their
structural cohesion (or vertex connectivity). For a given graph G, a subset of its vertices S ⊂ V (G)
is said to be maximally k-cohesive if there is no superset of S with vertex connectivity greater than
or equal to k. Cohesive blocking is a process through which, given a k-cohesive set of vertices,
maximally l-cohesive subsets are recursively identified with l > k. Thus a hierarchy of vertex
subsets is found, with the entire graph G at its root.

The function cohesive_blocks() implements cohesive blocking. It returns a cohesiveBlocks
object. cohesiveBlocks should be handled as an opaque class, i.e. its internal structure should not
be accessed directly, but through the functions listed here.

The function length can be used on cohesiveBlocks objects and it gives the number of blocks.

The function blocks() returns the actual blocks stored in the cohesiveBlocks object. They are
returned in a list of numeric vectors, each containing vertex ids.

The function graphs_from_cohesive_blocks() is similar, but returns the blocks as (induced) sub-
graphs of the input graph. The various (graph, vertex and edge) attributes are kept in the subgraph.

The function cohesion() returns a numeric vector, the cohesion of the different blocks. The order
of the blocks is the same as for the blocks() and graphs_from_cohesive_blocks() functions.

The block hierarchy can be queried using the hierarchy() function. It returns an igraph graph, its
vertex ids are ordered according the order of the blocks in the blocks() and graphs_from_cohesive_blocks(),
cohesion(), etc. functions.

parent() gives the parent vertex of each block, in the block hierarchy, for the root vertex it gives
0.

plot_hierarchy() plots the hierarchy tree of the cohesive blocks on the active graphics device, by
calling igraph.plot.

The export_pajek() function can be used to export the graph and its cohesive blocks in Pajek
format. It can either export a single Pajek project file with all the information, or a set of files, de-
pending on its project.file argument. If project.file is TRUE, then the following information
is written to the file (or connection) given in the file argument: (1) the input graph, together with
its attributes, see write_graph() for details; (2) the hierarchy graph; and (3) one binary partition
for each cohesive block. If project.file is FALSE, then the file argument must be a character

102 cohesive_blocks

scalar and it is used as the base name for the generated files. If file is ‘basename’, then the fol-
lowing files are created: (1) ‘basename.net’ for the original graph; (2) ‘basename_hierarchy.net’ for
the hierarchy graph; (3) ‘basename_block_x.net’ for each cohesive block, where ‘x’ is the number
of the block, starting with one.

max_cohesion() returns the maximal cohesion of each vertex, i.e. the cohesion of the most cohe-
sive block of the vertex.

The generic function summary() works on cohesiveBlocks objects and it prints a one line sum-
mary to the terminal.

The generic function print() is also defined on cohesiveBlocks objects and it is invoked auto-
matically if the name of the cohesiveBlocks object is typed in. It produces an output like this:

Cohesive block structure:
B-1 c 1, n 23
'- B-2 c 2, n 14 oooooooo.. .o......oo ooo
'- B-4 c 5, n 7 ooooooo...
'- B-3 c 2, n 10o.oo o.oooooo.. ...
'- B-5 c 3, n 4o.oo o......... ...

The left part shows the block structure, in this case for five blocks. The first block always corre-
sponds to the whole graph, even if its cohesion is zero. Then cohesion of the block and the number
of vertices in the block are shown. The last part is only printed if the display is wide enough and
shows the vertices in the blocks, ordered by vertex ids. ‘o’ means that the vertex is included, a dot
means that it is not, and the vertices are shown in groups of ten.

The generic function plot() plots the graph, showing one or more cohesive blocks in it.

Value

cohesive_blocks() returns a cohesiveBlocks object.

blocks() returns a list of numeric vectors, containing vertex ids.

graphs_from_cohesive_blocks() returns a list of igraph graphs, corresponding to the cohesive
blocks.

cohesion() returns a numeric vector, the cohesion of each block.

hierarchy() returns an igraph graph, the representation of the cohesive block hierarchy.

parent() returns a numeric vector giving the parent block of each cohesive block, in the block
hierarchy. The block at the root of the hierarchy has no parent and 0 is returned for it.

plot_hierarchy(), plot() and export_pajek() return NULL, invisibly.

max_cohesion() returns a numeric vector with one entry for each vertex, giving the cohesion of its
most cohesive block.

print() and summary() return the cohesiveBlocks object itself, invisibly.

length returns a numeric scalar, the number of blocks.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com> for the current implementation, Peter McMahan (https:
//socialsciences.uchicago.edu/news/alumni-profile-peter-mcmahan-phd17-sociology)
wrote the first version in R.

https://socialsciences.uchicago.edu/news/alumni-profile-peter-mcmahan-phd17-sociology
https://socialsciences.uchicago.edu/news/alumni-profile-peter-mcmahan-phd17-sociology

cohesive_blocks 103

References

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social
groups. American Sociological Review, 68(1):103–127, Feb 2003, doi:10.2307/3088904.

See Also

cohesion()

Examples

The graph from the Moody-White paper
mw <- graph_from_literal(

1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
21 - 22:23, 22 - 23

)

mwBlocks <- cohesive_blocks(mw)

Inspect block membership and cohesion
mwBlocks
blocks(mwBlocks)
cohesion(mwBlocks)

Save results in a Pajek file
file <- tempfile(fileext = ".paj")
export_pajek(mwBlocks, mw, file = file)
if (!interactive()) {

unlink(file)
}

Plot the results
plot(mwBlocks, mw)

The science camp network
camp <- graph_from_literal(

Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,
Holly - Carol:Pat:Pam:Jennie:Bill,
Bill - Pauline:Michael:Lee:Holly,
Pauline - Bill:Jennie:Ann,
Jennie - Holly:Michael:Lee:Ann:Pauline,
Michael - Bill:Jennie:Ann:Lee:John,
Ann - Michael:Jennie:Pauline,
Lee - Michael:Bill:Jennie,
Gery - Pat:Steve:Russ:John,
Russ - Steve:Bert:Gery:John,
John - Gery:Russ:Michael

)
campBlocks <- cohesive_blocks(camp)

https://doi.org/10.2307/3088904

104 compare

campBlocks

plot(campBlocks, camp,
vertex.label = V(camp)$name, margin = -0.2,
vertex.shape = "rectangle", vertex.size = 24, vertex.size2 = 8,
mark.border = 1, colbar = c(NA, NA, "cyan", "orange")

)

compare Compares community structures using various metrics

Description

This function assesses the distance between two community structures.

Usage

compare(
comm1,
comm2,
method = c("vi", "nmi", "split.join", "rand", "adjusted.rand")

)

Arguments

comm1 A communities() object containing a community structure; or a numeric vec-
tor, the membership vector of the first community structure. The membership
vector should contain the community id of each vertex, the numbering of the
communities starts with one.

comm2 A communities() object containing a community structure; or a numeric vec-
tor, the membership vector of the second community structure, in the same for-
mat as for the previous argument.

method Character scalar, the comparison method to use. Possible values: ‘vi’ is the
variation of information (VI) metric of Meila (2003), ‘nmi’ is the normalized
mutual information measure proposed by Danon et al. (2005), ‘split.join’ is
the split-join distance of can Dongen (2000), ‘rand’ is the Rand index of Rand
(1971), ‘adjusted.rand’ is the adjusted Rand index by Hubert and Arabie (1985).

Value

A real number.

Author(s)

Tamas Nepusz <ntamas@gmail.com>

complementer 105

References

Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK
(eds.). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learn-
ing Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes
in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1.

Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat
Mech P09008, 2005.

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Techni-
cal Report INS-R0012, National Research Institute for Mathematics and Computer Science in the
Netherlands, Amsterdam, May 2000.

Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-
850, 1971.

Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985.

See Also

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_graph("Zachary")
sg <- cluster_spinglass(g)
le <- cluster_leading_eigen(g)
compare(sg, le, method = "rand")
compare(membership(sg), membership(le))

complementer Complementer of a graph

Description

A complementer graph contains all edges that were not present in the input graph.

Usage

complementer(graph, loops = FALSE)

Arguments

graph The input graph, can be directed or undirected.

loops Logical constant, whether to generate loop edges.

106 component_distribution

Details

complementer() creates the complementer of a graph. Only edges which are not present in the
original graph will be included in the new graph.

complementer() keeps graph and vertex attriubutes, edge attributes are lost.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
compose(), connect(), contract(), delete_edges(), delete_vertices(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

Examples

Complementer of a ring
g <- make_ring(10)
complementer(g)

A graph and its complementer give together the full graph
g <- make_ring(10)
gc <- complementer(g)
gu <- union(g, gc)
gu
isomorphic(gu, make_full_graph(vcount(g)))

component_distribution

Connected components of a graph

Description

Calculate the maximal (weakly or strongly) connected components of a graph

component_distribution 107

Usage

component_distribution(graph, cumulative = FALSE, mul.size = FALSE, ...)

largest_component(graph, mode = c("weak", "strong"))

components(graph, mode = c("weak", "strong"))

is_connected(graph, mode = c("weak", "strong"))

count_components(graph, mode = c("weak", "strong"))

Arguments

graph The graph to analyze.

cumulative Logical, if TRUE the cumulative distirubution (relative frequency) is calculated.

mul.size Logical. If TRUE the relative frequencies will be multiplied by the cluster sizes.

... Additional attributes to pass to cluster, right now only mode makes sense.

mode Character string, either “weak” or “strong”. For directed graphs “weak” implies
weakly, “strong” strongly connected components to search. It is ignored for
undirected graphs.

Details

is_connected() decides whether the graph is weakly or strongly connected. The null graph is
considered disconnected.

components() finds the maximal (weakly or strongly) connected components of a graph.

count_components() does almost the same as components() but returns only the number of clus-
ters found instead of returning the actual clusters.

component_distribution() creates a histogram for the maximal connected component sizes.

largest_component() returns the largest connected component of a graph. For directed graphs,
optionally the largest weakly or strongly connected component. In case of a tie, the first component
by vertex ID order is returned. Vertex IDs from the original graph are not retained in the returned
graph.

The weakly connected components are found by a simple breadth-first search. The strongly con-
nected components are implemented by two consecutive depth-first searches.

Value

For is_connected() a logical constant.

For components() a named list with three components:

membership numeric vector giving the cluster id to which each vertex belongs.

csize numeric vector giving the sizes of the clusters.

no numeric constant, the number of clusters.

108 component_wise

For count_components() an integer constant is returned.

For component_distribution() a numeric vector with the relative frequencies. The length of the
vector is the size of the largest component plus one. Note that (for currently unknown reasons) the
first element of the vector is the number of clusters of size zero, so this is always zero.

For largest_component() the largest connected component of the graph.

Related documentation in the C library

is_connected().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

decompose(), subcomponent(), groups()

Connected components articulation_points(), biconnected_components(), decompose(),
is_biconnected()

Other structural.properties: bfs(), connect(), constraint(), coreness(), degree(), dfs(),
distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(), girth(),
is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- sample_gnp(20, 1 / 20)
clu <- components(g)
groups(clu)
largest_component(g)

component_wise Component-wise layout

Description

This is a layout modifier function, and it can be used to calculate the layout separately for each
component of the graph.

Usage

component_wise(merge_method = "dla")

Arguments

merge_method Merging algorithm, the method argument of merge_coords().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_connected

compose 109

See Also

merge_coords(), layout_().

Other layout modifiers: normalize()

Other graph layouts: add_layout_(), layout_(), layout_as_bipartite(), layout_as_star(),
layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

g <- make_ring(10) + make_ring(10)
g %>%

add_layout_(in_circle(), component_wise()) %>%
plot()

compose Compose two graphs as binary relations

Description

Relational composition of two graph.

Usage

compose(g1, g2, byname = "auto")

Arguments

g1 The first input graph.

g2 The second input graph.

byname A logical scalar, or the character scalar auto. Whether to perform the operation
based on symbolic vertex names. If it is auto, that means TRUE if both graphs
are named and FALSE otherwise. A warning is generated if auto and one graph,
but not both graphs are named.

Details

compose() creates the relational composition of two graphs. The new graph will contain an (a,b)
edge only if there is a vertex c, such that edge (a,c) is included in the first graph and (c,b) is included
in the second graph. The corresponding operator is %c%.

The function gives an error if one of the input graphs is directed and the other is undirected.

If the byname argument is TRUE (or auto and the graphs are all named), then the operation is per-
formed based on symbolic vertex names. Otherwise numeric vertex ids are used.

110 connect

compose() keeps the attributes of both graphs. All graph, vertex and edge attributes are copied
to the result. If an attribute is present in multiple graphs and would result a name clash, then this
attribute is renamed by adding suffixes: _1, _2, etc.

The name vertex attribute is treated specially if the operation is performed based on symbolic vertex
names. In this case name must be present in both graphs, and it is not renamed in the result graph.

Note that an edge in the result graph corresponds to two edges in the input, one in the first graph,
one in the second. This mapping is not injective and several edges in the result might correspond
to the same edge in the first (and/or the second) graph. The edge attributes in the result graph are
updated accordingly.

Also note that the function may generate multigraphs, if there are more than one way to find edges
(a,b) in g1 and (b,c) in g2 for an edge (a,c) in the result. See simplify() if you want to get rid of
the multiple edges.

The function may create loop edges, if edges (a,b) and (b,a) are present in g1 and g2, respectively,
then (a,a) is included in the result. See simplify() if you want to get rid of the self-loops.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), connect(), contract(), delete_edges(), delete_vertices(), difference(),
difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

g1 <- make_ring(10)
g2 <- make_star(10, mode = "undirected")
gc <- compose(g1, g2)
print_all(gc)
print_all(simplify(gc))

connect Neighborhood of graph vertices

connect 111

Description

These functions find the vertices not farther than a given limit from another fixed vertex, these are
called the neighborhood of the vertex. Note that ego() and neighborhood(), ego_size() and
neighborhood_size(), make_ego_graph() and make_neighborhood()_graph(), are synonyms
(aliases).

Usage

connect(graph, order, mode = c("all", "out", "in", "total"))

ego_size(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

)

neighborhood_size(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

)

ego(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

)

neighborhood(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

)

make_ego_graph(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

112 connect

)

make_neighborhood_graph(
graph,
order = 1,
nodes = V(graph),
mode = c("all", "out", "in"),
mindist = 0

)

Arguments

graph The input graph.

order Integer giving the order of the neighborhood. Negative values indicate an infinite
order.

mode Character constant, it specifies how to use the direction of the edges if a directed
graph is analyzed. For ‘out’ only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps are counted. For ‘"in"’
all vertices from which the source vertex is reachable in at most order steps are
counted. ‘"all"’ ignores the direction of the edges. This argument is ignored for
undirected graphs.

nodes The vertices for which the calculation is performed.

mindist The minimum distance to include the vertex in the result.

Details

The neighborhood of a given order r of a vertex v includes all vertices which are closer to v than
the order. I.e. order 0 is always v itself, order 1 is v plus its immediate neighbors, order 2 is order 1
plus the immediate neighbors of the vertices in order 1, etc.

ego_size()/neighborhood_size() (synonyms) returns the size of the neighborhoods of the given
order, for each given vertex.

ego()/neighborhood() (synonyms) returns the vertices belonging to the neighborhoods of the
given order, for each given vertex.

make_ego_graph()/make_neighborhood()_graph() (synonyms) is creates (sub)graphs from all
neighborhoods of the given vertices with the given order parameter. This function preserves the
vertex, edge and graph attributes.

connect() creates a new graph by connecting each vertex to all other vertices in its neighborhood.

Value

• ego_size()/neighborhood_size() returns with an integer vector.

• ego()/neighborhood() (synonyms) returns A list of igraph.vs or a list of numeric vec-
tors depending on the value of igraph_opt("return.vs.es"), see details for performance
characteristics.

• make_ego_graph()/make_neighborhood_graph() returns with a list of graphs.

• connect() returns with a new graph object.

connect 113

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>, the first version was done by Vincent Matossian

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), contract(), delete_edges(), delete_vertices(), difference(),
difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Other structural.properties: bfs(), component_distribution(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

g <- make_ring(10)

ego_size(g, order = 0, 1:3)
ego_size(g, order = 1, 1:3)
ego_size(g, order = 2, 1:3)

neighborhood_size() is an alias of ego_size()
neighborhood_size(g, order = 0, 1:3)
neighborhood_size(g, order = 1, 1:3)
neighborhood_size(g, order = 2, 1:3)

ego(g, order = 0, 1:3)
ego(g, order = 1, 1:3)
ego(g, order = 2, 1:3)

neighborhood() is an alias of ego()
neighborhood(g, order = 0, 1:3)
neighborhood(g, order = 1, 1:3)
neighborhood(g, order = 2, 1:3)

attributes are preserved
V(g)$name <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")
make_ego_graph(g, order = 2, 1:3)
make_neighborhood_graph() is an alias of make_ego_graph()
make_neighborhood_graph(g, order = 2, 1:3)

connecting to the neighborhood
g <- make_ring(10)
g <- connect(g, 2)

114 consensus_tree

consensus_tree Create a consensus tree from several hierarchical random graph mod-
els

Description

consensus_tree() creates a consensus tree from several fitted hierarchical random graph mod-
els, using phylogeny methods. If the hrg() argument is given and start is set to TRUE, then it
starts sampling from the given HRG. Otherwise it optimizes the HRG log-likelihood first, and then
samples starting from the optimum.

Usage

consensus_tree(graph, hrg = NULL, start = FALSE, num.samples = 10000)

Arguments

graph The graph the models were fitted to.

hrg A hierarchical random graph model, in the form of an igraphHRG object. consensus_tree()
allows this to be NULL as well, then a HRG is fitted to the graph first, from a ran-
dom starting point.

start Logical, whether to start the fitting/sampling from the supplied igraphHRG ob-
ject, or from a random starting point.

num.samples Number of samples to use for consensus generation or missing edge prediction.

Value

consensus_tree() returns a list of two objects. The first is an igraphHRGConsensus object, the
second is an igraphHRG object. The igraphHRGConsensus object has the following members:

parents For each vertex, the id of its parent vertex is stored, or zero, if the vertex is the root vertex
in the tree. The first n vertex ids (from 0) refer to the original vertices of the graph, the other
ids refer to vertex groups.

weights Numeric vector, counts the number of times a given tree split occurred in the generated
network samples, for each internal vertices. The order is the same as in the parents vector.

Related documentation in the C library

hrg_consensus().

See Also

Other hierarchical random graph functions: fit_hrg(), hrg(), hrg-methods, hrg_tree(), predict_edges(),
print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

https://igraph.org/c/html/0.10.17/igraph-HRG.html#igraph_hrg_consensus

console 115

console The igraph console

Description

The igraph console is a GUI window that shows what the currently running igraph function is doing.

Usage

console()

Details

The console can be started by calling the console() function. Then it stays open, until the user
closes it.

Another way to start it to set the verbose igraph option to “tkconsole” via igraph_options().
Then the console (re)opens each time an igraph function supporting it starts; to close it, set the
verbose option to another value.

The console is written in Tcl/Tk and required the tcltk package.

Value

NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph_options() and the verbose option.

constraint Burt’s constraint

Description

Given a graph, constraint() calculates Burt’s constraint for each vertex.

Usage

constraint(graph, nodes = V(graph), weights = NULL)

116 constraint

Arguments

graph A graph object, the input graph.

nodes The vertices for which the constraint will be calculated. Defaults to all vertices.

weights The weights of the edges. If this is NULL and there is a weight edge attribute this
is used. If there is no such edge attribute all edges will have the same weight.

Details

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) con-
tacts. Burt’s measure of constraint, Ci, of vertex i’s ego network Vi, is defined for directed and
valued graphs,

Ci =
∑

j∈Vi\{i}

(pij +
∑

q∈Vi\{i,j}

piqpqj)
2

for a graph of order (i.e. number of vertices) N , where proportional tie strengths are defined as

pij =
aij + aji∑

k∈Vi\{i}(aik + aki)
,

aij are elements of A and the latter being the graph adjacency matrix. For isolated vertices, con-
straint is undefined.

Value

A numeric vector of constraint scores

Author(s)

Jeroen Bruggeman (https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science)
and Gabor Csardi <csardi.gabor@gmail.com>

References

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology 110, 349-399.

See Also

Other structural.properties: bfs(), component_distribution(), connect(), coreness(), degree(),
dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

g <- sample_gnp(20, 5 / 20)
constraint(g)

https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science

contract 117

contract Contract several vertices into a single one

Description

This function creates a new graph, by merging several vertices into one. The vertices in the new
graph correspond to sets of vertices in the input graph.

Usage

contract(graph, mapping, vertex.attr.comb = igraph_opt("vertex.attr.comb"))

Arguments

graph The input graph, it can be directed or undirected.

mapping A numeric vector that specifies the mapping. Its elements correspond to the
vertices, and for each element the id in the new graph is given.

vertex.attr.comb

Specifies how to combine the vertex attributes in the new graph. Please see
attribute.combination() for details.

Details

The attributes of the graph are kept. Graph and edge attributes are unchanged, vertex attributes are
combined, according to the vertex.attr.comb parameter.

Value

A new graph object.

Related documentation in the C library

contract_vertices().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), delete_edges(), delete_vertices(), difference(),
difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

https://igraph.org/c/html/0.10.17/igraph-Operators.html#igraph_contract_vertices

118 convex_hull

Examples

g <- make_ring(10)
g$name <- "Ring"
V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- runif(ecount(g))

g2 <- contract(g, rep(1:5, each = 2),
vertex.attr.comb = toString

)

graph and edge attributes are kept, vertex attributes are
combined using the 'toString' function.
print(g2, g = TRUE, v = TRUE, e = TRUE)

convex_hull Convex hull of a set of vertices

Description

Calculate the convex hull of a set of points, i.e. the covering polygon that has the smallest area.

Usage

convex_hull(data)

Arguments

data The data points, a numeric matrix with two columns.

Value

A named list with components:

resverts The indices of the input vertices that constritute the convex hull.
rescoords The coordinates of the corners of the convex hull.

Related documentation in the C library

convex_hull().

Author(s)

Tamas Nepusz <ntamas@gmail.com>

References

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0262032937. Pages 949-
955 of section 33.3: Finding the convex hull.

https://igraph.org/c/html/0.10.17/igraph-Nongraph.html#igraph_convex_hull

coreness 119

See Also

Other other: running_mean(), sample_seq()

Examples

M <- cbind(runif(100), runif(100))
convex_hull(M)

coreness K-core decomposition of graphs

Description

The k-core of graph is a maximal subgraph in which each vertex has at least degree k. The coreness
of a vertex is k if it belongs to the k-core but not to the (k+1)-core.

Usage

coreness(graph, mode = c("all", "out", "in"))

Arguments

graph The input graph, it can be directed or undirected

mode The type of the core in directed graphs. Character constant, possible values: in:
in-cores are computed, out: out-cores are computed, all: the corresponding
undirected graph is considered. This argument is ignored for undirected graphs.

Details

The k-core of a graph is the maximal subgraph in which every vertex has at least degree k. The
cores of a graph form layers: the (k+1)-core is always a subgraph of the k-core.

This function calculates the coreness for each vertex.

Value

Numeric vector of integer numbers giving the coreness of each vertex.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Vladimir Batagelj, Matjaz Zaversnik: An O(m) Algorithm for Cores Decomposition of Networks,
2002

Seidman S. B. (1983) Network structure and minimum degree, Social Networks, 5, 269–287.

120 count_automorphisms

See Also

degree()

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), degree(),
dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

g <- make_ring(10)
g <- add_edges(g, c(1, 2, 2, 3, 1, 3))
coreness(g) # small core triangle in a ring

count_automorphisms Number of automorphisms

Description

Calculate the number of automorphisms of a graph, i.e. the number of isomorphisms to itself.

Usage

count_automorphisms(
graph,
colors = NULL,
sh = c("fm", "f", "fs", "fl", "flm", "fsm")

)

Arguments

graph The input graph, it is treated as undirected.

colors The colors of the individual vertices of the graph; only vertices having the same
color are allowed to match each other in an automorphism. When omitted,
igraph uses the color attribute of the vertices, or, if there is no such vertex
attribute, it simply assumes that all vertices have the same color. Pass NULL
explicitly if the graph has a color vertex attribute but you do not want to use it.

sh The splitting heuristics for the BLISS algorithm. Possible values are: ‘f’: first
non-singleton cell, ‘fl’: first largest non-singleton cell, ‘fs’: first smallest non-
singleton cell, ‘fm’: first maximally non-trivially connected non-singleton cell,
‘flm’: first largest maximally non-trivially connected non-singleton cell, ‘fsm’:
first smallest maximally non-trivially connected non-singleton cell.

count_automorphisms 121

Details

An automorphism of a graph is a permutation of its vertices which brings the graph into itself.

This function calculates the number of automorphism of a graph using the BLISS algorithm. See
also the BLISS homepage at http://www.tcs.hut.fi/Software/bliss/index.html. If you
need the automorphisms themselves, use automorphism_group() to obtain a compact represen-
tation of the automorphism group.

Value

A named list with the following members:

group_size The size of the automorphism group of the input graph, as a string. This number is
exact if igraph was compiled with the GMP library, and approximate otherwise.

nof_nodes The number of nodes in the search tree.

nof_leaf_nodes The number of leaf nodes in the search tree.

nof_bad_nodes Number of bad nodes.

nof_canupdates Number of canrep updates.

max_level Maximum level.

Related documentation in the C library

count_automorphisms().

Author(s)

Tommi Junttila (https://users.ics.aalto.fi/tjunttil/) for BLISS and Gabor Csardi <csardi.gabor@gmail.com>
for the igraph glue code and this manual page.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

See Also

canonical_permutation(), permute(), and automorphism_group() for a compact representa-
tion of all automorphisms

Other graph automorphism: automorphism_group()

Examples

A ring has n*2 automorphisms, you can "turn" it by 0-9 vertices
and each of these graphs can be "flipped"
g <- make_ring(10)
count_automorphisms(g)

A full graph has n! automorphisms; however, we restrict the vertex

http://www.tcs.hut.fi/Software/bliss/index.html
https://igraph.org/c/html/0.10.17/igraph-Isomorphism.html#igraph_count_automorphisms
https://users.ics.aalto.fi/tjunttil/

122 count_isomorphisms

matching by colors, leading to only 4 automorphisms
g <- make_full_graph(4)
count_automorphisms(g, colors = c(1, 2, 1, 2))

count_isomorphisms Count the number of isomorphic mappings between two graphs

Description

Count the number of isomorphic mappings between two graphs

Usage

count_isomorphisms(graph1, graph2, method = "vf2", ...)

Arguments

graph1 The first graph.

graph2 The second graph.

method Currently only ‘vf2’ is supported, see isomorphic() for details about it and
extra arguments.

... Passed to the individual methods.

Value

Number of isomorphic mappings between the two graphs.

References

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149–159, 2001.

See Also

Other graph isomorphism: canonical_permutation(), count_subgraph_isomorphisms(), graph_from_isomorphism_class(),
isomorphic(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

Examples

colored graph isomorphism
g1 <- make_ring(10)
g2 <- make_ring(10)
isomorphic(g1, g2)

V(g1)$color <- rep(1:2, length = vcount(g1))
V(g2)$color <- rep(2:1, length = vcount(g2))
consider colors by default

count_motifs 123

count_isomorphisms(g1, g2)
ignore colors
count_isomorphisms(g1, g2,

vertex.color1 = NULL,
vertex.color2 = NULL

)

count_motifs Graph motifs

Description

Graph motifs are small connected induced subgraphs with a well-defined structure. These functions
search a graph for various motifs.

Usage

count_motifs(graph, size = 3, cut.prob = NULL)

Arguments

graph Graph object, the input graph.

size The size of the motif.

cut.prob Numeric vector giving the probabilities that the search graph is cut at a certain
level. Its length should be the same as the size of the motif (the size argument).
If NULL, the default, no cuts are made.

Details

count_motifs() calculates the total number of motifs of a given size in graph.

Value

count_motifs() returns a numeric scalar.

See Also

isomorphism_class()

Other graph motifs: dyad_census(), motifs(), sample_motifs()

Examples

g <- sample_pa(100)
motifs(g, 3)
count_motifs(g, 3)
sample_motifs(g, 3)

124 count_subgraph_isomorphisms

count_subgraph_isomorphisms

Count the isomorphic mappings between a graph and the subgraphs
of another graph

Description

Count the isomorphic mappings between a graph and the subgraphs of another graph

Usage

count_subgraph_isomorphisms(pattern, target, method = c("lad", "vf2"), ...)

Arguments

pattern The smaller graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

target The bigger graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

method The method to use. Possible values: ‘lad’, ‘vf2’. See their details below.

... Additional arguments, passed to the various methods.

Value

Logical scalar, TRUE if the pattern is isomorphic to a (possibly induced) subgraph of target.

‘lad’ method

This is the LAD algorithm by Solnon, see the reference below. It has the following extra arguments:

domains If not NULL, then it specifies matching restrictions. It must be a list of target vertex
sets, given as numeric vertex ids or symbolic vertex names. The length of the list must be
vcount(pattern) and for each vertex in pattern it gives the allowed matching vertices in
target. Defaults to NULL.

induced Logical scalar, whether to search for an induced subgraph. It is FALSE by default.

time.limit The processor time limit for the computation, in seconds. It defaults to Inf, which
means no limit.

‘vf2’ method

This method uses the VF2 algorithm by Cordella, Foggia et al., see references below. It supports
vertex and edge colors and have the following extra arguments:

vertex.color1, vertex.color2 Optional integer vectors giving the colors of the vertices for colored
graph isomorphism. If they are not given, but the graph has a “color” vertex attribute, then
it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments. See also examples below.

curve_multiple 125

edge.color1, edge.color2 Optional integer vectors giving the colors of the edges for edge-colored
(sub)graph isomorphism. If they are not given, but the graph has a “color” edge attribute,
then it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments.

References

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149–159, 2001.

C. Solnon: AllDifferent-based Filtering for Subgraph Isomorphism, Artificial Intelligence 174(12-
13):850–864, 2010.

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), graph_from_isomorphism_class(),
isomorphic(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

curve_multiple Optimal edge curvature when plotting graphs

Description

If graphs have multiple edges, then drawing them as straight lines does not show them when plotting
the graphs; they will be on top of each other. One solution is to bend the edges, with diffenent
curvature, so that all of them are visible.

Usage

curve_multiple(graph, start = 0.5)

Arguments

graph The input graph.

start The curvature at the two extreme edges. All edges will have a curvature between
-start and start, spaced equally.

Details

curve_multiple() calculates the optimal edge.curved vector for plotting a graph with multiple
edges, so that all edges are visible.

Value

A numeric vector, its length is the number of edges in the graph.

126 decompose

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph.plotting for all plotting parameters, plot.igraph(), tkplot() and rglplot() for plotting
functions.

Examples

g <- make_graph(c(
0, 1, 1, 0, 1, 2, 1, 3, 1, 3, 1, 3,
2, 3, 2, 3, 2, 3, 2, 3, 0, 1

) + 1)

curve_multiple(g)

set.seed(42)
plot(g)

decompose Decompose a graph into components

Description

Creates a separate graph for each connected component of a graph.

Usage

decompose(graph, mode = c("weak", "strong"), max.comps = NA, min.vertices = 0)

Arguments

graph The original graph.

mode Character constant giving the type of the components, wither weak for weakly
connected components or strong for strongly connected components.

max.comps The maximum number of components to return. The first max.comps compo-
nents will be returned (which hold at least min.vertices vertices, see the next
parameter), the others will be ignored. Supply NA here if you don’t want to limit
the number of components.

min.vertices The minimum number of vertices a component should contain in order to place
it in the result list. E.g. supply 2 here to ignore isolate vertices.

Value

A list of graph objects.

degree 127

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

is_connected() to decide whether a graph is connected, components() to calculate the connected
components of a graph.

Connected components articulation_points(), biconnected_components(), component_distribution(),
is_biconnected()

Examples

the diameter of each component in a random graph
g <- sample_gnp(1000, 1 / 1000)
components <- decompose(g, min.vertices = 2)
sapply(components, diameter)

degree Degree and degree distribution of the vertices

Description

The degree of a vertex is its most basic structural property, the number of its adjacent edges.

Usage

degree(
graph,
v = V(graph),
mode = c("all", "out", "in", "total"),
loops = TRUE,
normalized = FALSE

)

max_degree(
graph,
...,
v = V(graph),
mode = c("all", "out", "in", "total"),
loops = TRUE

)

degree_distribution(graph, cumulative = FALSE, ...)

128 degree

Arguments

graph The graph to analyze.

v The ids of vertices of which the degree will be calculated.

mode Character string, “out” for out-degree, “in” for in-degree or “total” for the sum
of the two. For undirected graphs this argument is ignored. “all” is a synonym
of “total”.

loops Logical; whether the loop edges are also counted.

normalized Logical scalar, whether to normalize the degree. If TRUE then the result is divided
by n− 1, where n is the number of vertices in the graph.

... These dots are for future extensions and must be empty.

cumulative Logical; whether the cumulative degree distribution is to be calculated.

Value

For degree() a numeric vector of the same length as argument v.

For degree_distribution() a numeric vector of the same length as the maximum degree plus
one. The first element is the relative frequency zero degree vertices, the second vertices with degree
one, etc.

For max_degree(), the largest degree in the graph. When no vertices are selected, or when the
input is the null graph, zero is returned as this is the smallest possible degree.

Related documentation in the C library

maxdegree().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

g <- make_ring(10)
degree(g)
g2 <- sample_gnp(1000, 10 / 1000)
max_degree(g2)
degree_distribution(g2)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_maxdegree

delete_edges 129

delete_edges Delete edges from a graph

Description

Delete edges from a graph

Usage

delete_edges(graph, edges)

Arguments

graph The input graph.

edges The edges to remove, specified as an edge sequence. Typically this is either a
numeric vector containing edge IDs, or a character vector containing the IDs or
names of the source and target vertices, separated by |

Value

The graph, with the edges removed.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_vertices(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

Examples

g <- make_ring(10) %>%
delete_edges(seq(1, 9, by = 2))

g

g <- make_ring(10) %>%
delete_edges("10|1")

g

g <- make_ring(5)
g <- delete_edges(g, get_edge_ids(g, c(1, 5, 4, 5)))
g

130 delete_graph_attr

delete_edge_attr Delete an edge attribute

Description

Delete an edge attribute

Usage

delete_edge_attr(graph, name)

Arguments

graph The graph

name The name of the edge attribute to delete.

Value

The graph, with the specified edge attribute removed.

See Also

Vertex, edge and graph attributes delete_graph_attr(), delete_vertex_attr(), edge_attr(),
edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(),
vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_edge_attr("name", value = LETTERS[1:10])

edge_attr_names(g)
g2 <- delete_edge_attr(g, "name")
edge_attr_names(g2)

delete_graph_attr Delete a graph attribute

Description

Delete a graph attribute

Usage

delete_graph_attr(graph, name)

delete_vertex_attr 131

Arguments

graph The graph.

name Name of the attribute to delete.

Value

The graph, with the specified attribute removed.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_vertex_attr(), edge_attr(),
edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(),
vertex_attr_names()

Examples

g <- make_ring(10)
graph_attr_names(g)
g2 <- delete_graph_attr(g, "name")
graph_attr_names(g2)

delete_vertex_attr Delete a vertex attribute

Description

Delete a vertex attribute

Usage

delete_vertex_attr(graph, name)

Arguments

graph The graph

name The name of the vertex attribute to delete.

Value

The graph, with the specified vertex attribute removed.

132 delete_vertices

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), edge_attr(),
edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(),
vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_vertex_attr("name", value = LETTERS[1:10])

vertex_attr_names(g)
g2 <- delete_vertex_attr(g, "name")
vertex_attr_names(g2)

delete_vertices Delete vertices from a graph

Description

Delete vertices from a graph

Usage

delete_vertices(graph, v)

Arguments

graph The input graph.

v The vertices to remove, a vertex sequence.

Value

The graph, with the vertices removed.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), difference(), difference.igraph(),
disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(), path(),
permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(), vertex()

dfs 133

Examples

g <- make_ring(10) %>%
set_vertex_attr("name", value = LETTERS[1:10])

g
V(g)

g2 <- delete_vertices(g, c(1, 5)) %>%
delete_vertices("B")

g2
V(g2)

dfs Depth-first search

Description

Depth-first search is an algorithm to traverse a graph. It starts from a root vertex and tries to go
quickly as far from as possible.

Usage

dfs(
graph,
root,
mode = c("out", "in", "all", "total"),
...,
unreachable = TRUE,
order = TRUE,
order.out = FALSE,
parent = FALSE,
dist = FALSE,
in.callback = NULL,
out.callback = NULL,
extra = NULL,
rho = parent.frame(),
neimode = deprecated(),
father = deprecated()

)

Arguments

graph The input graph.

root The single root vertex to start the search from.

mode For directed graphs specifies the type of edges to follow. ‘out’ follows outgo-
ing, ‘in’ incoming edges. ‘all’ ignores edge directions completely. ‘total’ is a
synonym for ‘all’. This argument is ignored for undirected graphs.

... These dots are for future extensions and must be empty.

134 dfs

unreachable Logical scalar, whether the search should visit the vertices that are unreachable
from the given root vertex (or vertices). If TRUE, then additional searches are
performed until all vertices are visited.

order Logical scalar, whether to return the DFS ordering of the vertices.

order.out Logical scalar, whether to return the ordering based on leaving the subtree of the
vertex.

parent Logical scalar, whether to return the parent of the vertices.

dist Logical scalar, whether to return the distance from the root of the search tree.

in.callback If not NULL, then it must be callback function. This is called whenever a vertex
is visited. See details below.

out.callback If not NULL, then it must be callback function. This is called whenever the sub-
tree of a vertex is completed by the algorithm. See details below.

extra Additional argument to supply to the callback function.

rho The environment in which the callback function is evaluated.

neimode [Deprecated] This argument is deprecated from igraph 1.3.0; use mode instead.

father [Deprecated], use parent instead.

Details

The callback functions must have the following arguments:

graph The input graph is passed to the callback function here.

data A named numeric vector, with the following entries: ‘vid’, the vertex that was just visited and
‘dist’, its distance from the root of the search tree.

extra The extra argument.

The callback must return FALSE to continue the search or TRUE to terminate it. See examples
below on how to use the callback functions.

Value

A named list with the following entries:

root Numeric scalar. The root vertex that was used as the starting point of the search.

neimode Character scalar. The mode argument of the function call. Note that for undirected graphs
this is always ‘all’, irrespectively of the supplied value.

order Numeric vector. The vertex ids, in the order in which they were visited by the search.

order.out Numeric vector, the vertex ids, in the order of the completion of their subtree.

parent Numeric vector. The parent of each vertex, i.e. the vertex it was discovered from.

father Like parent, kept for compatibility for now.

dist Numeric vector, for each vertex its distance from the root of the search tree.

Note that order, order.out, parent, and dist might be NULL if their corresponding argument is
FALSE, i.e. if their calculation is not requested.

dfs 135

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

bfs() for breadth-first search.

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(),
which_mutual()

Examples

A graph with two separate trees
dfs(

graph = make_tree(10) %du% make_tree(10),
root = 1, mode = "out",
unreachable = TRUE,
order = TRUE,
order.out = TRUE,
parent = TRUE

)

How to use a callback
f.in <- function(graph, data, extra) {

cat("in:", paste(collapse = ", ", data), "\n")
FALSE

}
f.out <- function(graph, data, extra) {

cat("out:", paste(collapse = ", ", data), "\n")
FALSE

}
tmp <- dfs(

graph = make_tree(10),
root = 1, mode = "out",
in.callback = f.in, out.callback = f.out

)

Terminate after the first component, using a callback
f.out <- function(graph, data, extra) {

data["vid"] == 1
}
tmp <- dfs(

graph = make_tree(10) %du% make_tree(10),
root = 1,
out.callback = f.out

)

136 diameter

diameter Diameter of a graph

Description

The diameter of a graph is the length of the longest geodesic.

Usage

diameter(graph, directed = TRUE, unconnected = TRUE, weights = NULL)

get_diameter(graph, directed = TRUE, unconnected = TRUE, weights = NULL)

farthest_vertices(graph, directed = TRUE, unconnected = TRUE, weights = NULL)

Arguments

graph The graph to analyze.

directed Logical, whether directed or undirected paths are to be considered. This is ig-
nored for undirected graphs.

unconnected Logical, what to do if the graph is unconnected. If FALSE, the function will
return a number that is one larger the largest possible diameter, which is always
the number of vertices. If TRUE, the diameters of the connected components
will be calculated and the largest one will be returned.

weights Optional positive weight vector for calculating weighted distances. If the graph
has a weight edge attribute, then this is used by default.

Details

The diameter is calculated by using a breadth-first search like method.

get_diameter() returns a path with the actual diameter. If there are many shortest paths of the
length of the diameter, then it returns the first one found.

farthest_vertices() returns two vertex ids, the vertices which are connected by the diameter
path.

Value

A numeric constant for diameter(), a numeric vector for get_diameter(). farthest_vertices()
returns a list with two entries:

vertices The two vertices that are the farthest.

distance Their distance.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

difference 137

See Also

distances()

Other paths: all_simple_paths(), distance_table(), eccentricity(), graph_center(), radius()

Examples

g <- make_ring(10)
g2 <- delete_edges(g, c(1, 2, 1, 10))
diameter(g2, unconnected = TRUE)
diameter(g2, unconnected = FALSE)

Weighted diameter
set.seed(1)
g <- make_ring(10)
E(g)$weight <- sample(seq_len(ecount(g)))
diameter(g)
get_diameter(g)
diameter(g, weights = NA)
get_diameter(g, weights = NA)

difference Difference of two sets

Description

This is an S3 generic function. See methods("difference") for the actual implementations for
various S3 classes. Initially it is implemented for igraph graphs (difference of edges in two graphs),
and igraph vertex and edge sequences. See difference.igraph(), and difference.igraph.vs().

Usage

difference(...)

Arguments

... Arguments, their number and interpretation depends on the function that imple-
ments difference().

Value

Depends on the function that implements this method.

138 difference.igraph

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

difference.igraph Difference of graphs

Description

The difference of two graphs are created.

Usage

S3 method for class 'igraph'
difference(big, small, byname = "auto", ...)

Arguments

big The left hand side argument of the minus operator. A directed or undirected
graph.

small The right hand side argument of the minus operator. A directed ot undirected
graph.

byname A logical scalar, or the character scalar auto. Whether to perform the operation
based on symbolic vertex names. If it is auto, that means TRUE if both graphs
are named and FALSE otherwise. A warning is generated if auto and one graph,
but not both graphs are named.

... Ignored, included for S3 compatibility.

Details

difference() creates the difference of two graphs. Only edges present in the first graph but not in
the second will be be included in the new graph. The corresponding operator is %m%.

If the byname argument is TRUE (or auto and the graphs are all named), then the operation is per-
formed based on symbolic vertex names. Otherwise numeric vertex ids are used.

difference() keeps all attributes (graph, vertex and edge) of the first graph.

Note that big and small must both be directed or both be undirected, otherwise an error message
is given.

Value

A new graph object.

difference.igraph.es 139

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), disjoint_union(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

Create a wheel graph
wheel <- union(

make_ring(10),
make_star(11, center = 11, mode = "undirected")

)
V(wheel)$name <- letters[seq_len(vcount(wheel))]

Subtract a star graph from it
sstar <- make_star(6, center = 6, mode = "undirected")
V(sstar)$name <- letters[c(1, 3, 5, 7, 9, 11)]
G <- wheel %m% sstar
print_all(G)
plot(G, layout = layout_nicely(wheel))

difference.igraph.es Difference of edge sequences

Description

Difference of edge sequences

Usage

S3 method for class 'igraph.es'
difference(big, small, ...)

Arguments

big The ‘big’ edge sequence.
small The ‘small’ edge sequence.
... Ignored, included for S3 signature compatibility.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of edges is lost in the result.

140 difference.igraph.vs

Value

An edge sequence that contains only edges that are part of big, but not part of small.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.vs(),
igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2, intersection.igraph.es(),
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(), union.igraph.vs(),
unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
difference(V(g), V(g)[6:10])

difference.igraph.vs Difference of vertex sequences

Description

Difference of vertex sequences

Usage

S3 method for class 'igraph.vs'
difference(big, small, ...)

Arguments

big The ‘big’ vertex sequence.

small The ‘small’ vertex sequence.

... Ignored, included for S3 signature compatibility.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of vertices is lost in the result.

Value

A vertex sequence that contains only vertices that are part of big, but not part of small.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2, intersection.igraph.es(),
intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(), union.igraph.vs(),
unique.igraph.es(), unique.igraph.vs()

dim_select 141

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
difference(V(g), V(g)[6:10])

dim_select Dimensionality selection for singular values using profile likelihood.

Description

Select the number of significant singular values, by finding the ‘elbow’ of the scree plot, in a prin-
cipled way.

Usage

dim_select(sv)

Arguments

sv A numeric vector, the ordered singular values.

Details

The input of the function is a numeric vector which contains the measure of ‘importance’ for each
dimension.

For spectral embedding, these are the singular values of the adjacency matrix. The singular values
are assumed to be generated from a Gaussian mixture distribution with two components that have
different means and same variance. The dimensionality d is chosen to maximize the likelihood
when the d largest singular values are assigned to one component of the mixture and the rest of the
singular values assigned to the other component.

This function can also be used for the general separation problem, where we assume that the left
and the right of the vector are coming from two Normal distributions, with different means, and we
want to know their border. See examples below.

Value

A numeric scalar, the estimate of d.

Related documentation in the C library

dim_select().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Embedding.html#igraph_dim_select

142 disjoint_union

References

M. Zhu, and A. Ghodsi (2006). Automatic dimensionality selection from the scree plot via the use
of profile likelihood. Computational Statistics and Data Analysis, Vol. 51, 918–930.

See Also

embed_adjacency_matrix()

Other embedding: embed_adjacency_matrix(), embed_laplacian_matrix()

Examples

Generate the two groups of singular values with
Gaussian mixture of two components that have different means
sing.vals <- c(rnorm(10, mean = 1, sd = 1), rnorm(10, mean = 3, sd = 1))
dim.chosen <- dim_select(sing.vals)
dim.chosen

Sample random vectors with multivariate normal distribution
and normalize to unit length
lpvs <- matrix(rnorm(200), 10, 20)
lpvs <- apply(lpvs, 2, function(x) {

(abs(x) / sqrt(sum(x^2)))
})
RDP.graph <- sample_dot_product(lpvs)
dim_select(embed_adjacency_matrix(RDP.graph, 10)$D)

Sample random vectors with the Dirichlet distribution
lpvs.dir <- sample_dirichlet(n = 20, rep(1, 10))
RDP.graph.2 <- sample_dot_product(lpvs.dir)
dim_select(embed_adjacency_matrix(RDP.graph.2, 10)$D)

Sample random vectors from hypersphere with radius 1.
lpvs.sph <- sample_sphere_surface(dim = 10, n = 20, radius = 1)
RDP.graph.3 <- sample_dot_product(lpvs.sph)
dim_select(embed_adjacency_matrix(RDP.graph.3, 10)$D)

disjoint_union Disjoint union of graphs

Description

The union of two or more graphs are created. The graphs are assumed to have disjoint vertex sets.

Usage

disjoint_union(...)

x %du% y

disjoint_union 143

Arguments

... Graph objects or lists of graph objects.

x, y Graph objects.

Details

disjoint_union() creates a union of two or more disjoint graphs. Thus first the vertices in the
second, third, etc. graphs are relabeled to have completely disjoint graphs. Then a simple union is
created. This function can also be used via the %du% operator.

disjoint_union() handles graph, vertex and edge attributes. In particular, it merges vertex and
edge attributes using the vctrs::vec_c() function. For graphs that lack some vertex/edge attribute,
the corresponding values in the new graph are set to a missing value (NA for scalar attributes, NULL
for list attributes). Graph attributes are simply copied to the result. If this would result a name clash,
then they are renamed by adding suffixes: _1, _2, etc.

Note that if both graphs have vertex names (i.e. a name vertex attribute), then the concatenated
vertex names might be non-unique in the result. A warning is given if this happens.

An error is generated if some input graphs are directed and others are undirected.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), edge(), igraph-minus, intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

A star and a ring
g1 <- make_star(10, mode = "undirected")
V(g1)$name <- letters[1:10]
g2 <- make_ring(10)
V(g2)$name <- letters[11:20]
print_all(g1 %du% g2)

144 distance_table

distance_table Shortest (directed or undirected) paths between vertices

Description

distances() calculates the length of all the shortest paths from or to the vertices in the network.
shortest_paths() calculates one shortest path (the path itself, and not just its length) from or to
the given vertex.

Usage

distance_table(graph, directed = TRUE)

mean_distance(
graph,
weights = NULL,
directed = TRUE,
unconnected = TRUE,
details = FALSE

)

distances(
graph,
v = V(graph),
to = V(graph),
mode = c("all", "out", "in"),
weights = NULL,
algorithm = c("automatic", "unweighted", "dijkstra", "bellman-ford", "johnson",

"floyd-warshall")
)

shortest_paths(
graph,
from,
to = V(graph),
mode = c("out", "all", "in"),
weights = NULL,
output = c("vpath", "epath", "both"),
predecessors = FALSE,
inbound.edges = FALSE,
algorithm = c("automatic", "unweighted", "dijkstra", "bellman-ford")

)

all_shortest_paths(
graph,
from,
to = V(graph),

distance_table 145

mode = c("out", "all", "in"),
weights = NULL

)

Arguments

graph The graph to work on.

directed Whether to consider directed paths in directed graphs, this argument is ignored
for undirected graphs.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

unconnected What to do if the graph is unconnected (not strongly connected if directed paths
are considered). If TRUE, only the lengths of the existing paths are considered
and averaged; if FALSE, the length of the missing paths are considered as having
infinite length, making the mean distance infinite as well.

details Whether to provide additional details in the result. Functions accepting this ar-
gument (like mean_distance()) return additional information like the number
of disconnected vertex pairs in the result when this parameter is set to TRUE.

v Numeric vector, the vertices from which the shortest paths will be calculated.

to Numeric vector, the vertices to which the shortest paths will be calculated. By
default it includes all vertices. Note that for distances() every vertex must be
included here at most once. (This is not required for shortest_paths().

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the graph
is treated as undirected, i.e. edge directions are not taken into account. This
argument is ignored for undirected graphs.

algorithm Which algorithm to use for the calculation. By default igraph tries to select the
fastest suitable algorithm. If there are no weights, then an unweighted breadth-
first search is used, otherwise if all weights are positive, then Dijkstra’s algo-
rithm is used. If there are negative weights and we do the calculation for more
than 100 sources, then Johnson’s algorithm is used. Otherwise the Bellman-
Ford algorithm is used. You can override igraph’s choice by explicitly giving
this parameter. Note that the igraph C core might still override your choice in
obvious cases, i.e. if there are no edge weights, then the unweighted algorithm
will be used, regardless of this argument.

from Numeric constant, the vertex from or to the shortest paths will be calculated.
Note that right now this is not a vector of vertex ids, but only a single vertex.

output Character scalar, defines how to report the shortest paths. “vpath” means that
the vertices along the paths are reported, this form was used prior to igraph
version 0.6. “epath” means that the edges along the paths are reported. “both”
means that both forms are returned, in a named list with components “vpath”
and “epath”.

146 distance_table

predecessors Logical scalar, whether to return the predecessor vertex for each vertex. The
predecessor of vertex i in the tree is the vertex from which vertex i was reached.
The predecessor of the start vertex (in the from argument) is itself by definition.
If the predecessor is zero, it means that the given vertex was not reached from
the source during the search. Note that the search terminates if all the vertices
in to are reached.

inbound.edges Logical scalar, whether to return the inbound edge for each vertex. The inbound
edge of vertex i in the tree is the edge via which vertex i was reached. The
start vertex and vertices that were not reached during the search will have zero
in the corresponding entry of the vector. Note that the search terminates if all
the vertices in to are reached.

Details

The shortest path, or geodesic between two pair of vertices is a path with the minimal number of
vertices. The functions documented in this manual page all calculate shortest paths between vertex
pairs.

distances() calculates the lengths of pairwise shortest paths from a set of vertices (from) to an-
other set of vertices (to). It uses different algorithms, depending on the algorithm argument
and the weight edge attribute of the graph. The implemented algorithms are breadth-first search
(‘unweighted’), this only works for unweighted graphs; the Dijkstra algorithm (‘dijkstra’), this
works for graphs with non-negative edge weights; the Bellman-Ford algorithm (‘bellman-ford’);
Johnson’s algorithm (‘johnson’); and a faster version of the Floyd-Warshall algorithm with ex-
pected quadratic running time (‘floyd-warshall’). The latter three algorithms work with arbitrary
edge weights, but (naturally) only for graphs that don’t have a negative cycle. Note that a negative-
weight edge in an undirected graph implies such a cycle. Johnson’s algorithm performs better than
the Bellman-Ford one when many source (and target) vertices are given, with all-pairs shortest path
length calculations being the typical use case.

igraph can choose automatically between algorithms, and chooses the most efficient one that is ap-
propriate for the supplied weights (if any). For automatic algorithm selection, supply ‘automatic’
as the algorithm argument. (This is also the default.)

shortest_paths() calculates a single shortest path (i.e. the path itself, not just its length) between
the source vertex given in from, to the target vertices given in to. shortest_paths() uses breadth-
first search for unweighted graphs and Dijkstra’s algorithm for weighted graphs. The latter only
works if the edge weights are non-negative.

all_shortest_paths() calculates all shortest paths between pairs of vertices, including several
shortest paths of the same length. More precisely, it computerd all shortest path starting at from, and
ending at any vertex given in to. It uses a breadth-first search for unweighted graphs and Dijkstra’s
algorithm for weighted ones. The latter only supports non-negative edge weights. Caution: in
multigraphs, the result size is exponentially large in the number of vertex pairs with multiple edges
between them.

mean_distance() calculates the average path length in a graph, by calculating the shortest paths
between all pairs of vertices (both ways for directed graphs). It uses a breadth-first search for un-
weighted graphs and Dijkstra’s algorithm for weighted ones. The latter only supports non-negative
edge weights.

distance_table() calculates a histogram, by calculating the shortest path length between each
pair of vertices. For directed graphs both directions are considered, so every pair of vertices appears

distance_table 147

twice in the histogram.

Value

For distances() a numeric matrix with length(to) columns and length(v) rows. The shortest
path length from a vertex to itself is always zero. For unreachable vertices Inf is included.

For shortest_paths() a named list with four entries is returned:

vpath This itself is a list, of length length(to); list element i contains the vertex
ids on the path from vertex from to vertex to[i] (or the other way for directed
graphs depending on the mode argument). The vector also contains from and i
as the first and last elements. If from is the same as i then it is only included
once. If there is no path between two vertices then a numeric vector of length
zero is returned as the list element. If this output is not requested in the output
argument, then it will be NULL.

epath This is a list similar to vpath, but the vectors of the list contain the edge ids
along the shortest paths, instead of the vertex ids. This entry is set to NULL if it
is not requested in the output argument.

predecessors Numeric vector, the predecessor of each vertex in the to argument, or NULL if it
was not requested.

inbound_edges Numeric vector, the inbound edge for each vertex, or NULL, if it was not re-
quested.

For all_shortest_paths() a list is returned:

vpaths This is a list. Each list element contains the vertices of a shortest path from from to a vertex
in to. The shortest paths to the same vertex are collected into consecutive elements of the list.

epaths This is a list similar to vpaths, but the vectors of the list contain the edge ids along the
shortest paths, instead of the vertex ids.

nrgeo A vector in which each element is the number of shortest paths (geodesics) from from to the
corresponding vertex in to.

res Deprecated

For mean_distance() a single number is returned if details=FALSE, or a named list with two
entries:

res the mean distance as a numeric scalar
unconnected the number of unconnected vertex pairs, also as a numeric scalar.

distance_table() returns a named list with two entries:

res a numeric vector, the histogram of distances
unconnected a numeric scalar, the number of pairs for which the first vertex is not reachable from

the second. In undirected and directed graphs, unorderde and ordered pairs are considered,
respectively. Therefore the sum of the two entries is always n(n− 1) for directed graphs and
n(n− 1)/2 for undirected graphs.

Related documentation in the C library

path_length_hist(), average_path_length_dijkstra().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_path_length_hist
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_average_path_length_dijkstra

148 distance_table

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

West, D.B. (1996). Introduction to Graph Theory. Upper Saddle River, N.J.: Prentice Hall.

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), edge_density(), feedback_arc_set(), feedback_vertex_set(), girth(),
is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Other paths: all_simple_paths(), diameter(), eccentricity(), graph_center(), radius()

Examples

g <- make_ring(10)
distances(g)
shortest_paths(g, 5)
all_shortest_paths(g, 1, 6:8)
mean_distance(g)
Weighted shortest paths
el <- matrix(

ncol = 3, byrow = TRUE,
c(
1, 2, 0,
1, 3, 2,
1, 4, 1,
2, 3, 0,
2, 5, 5,
2, 6, 2,
3, 2, 1,
3, 4, 1,
3, 7, 1,
4, 3, 0,
4, 7, 2,
5, 6, 2,
5, 8, 8,
6, 3, 2,
6, 7, 1,
6, 9, 1,
6, 10, 3,
8, 6, 1,
8, 9, 1,
9, 10, 4

)
)
g2 <- add_edges(make_empty_graph(10), t(el[, 1:2]), weight = el[, 3])
distances(g2, mode = "out")

diverging_pal 149

diverging_pal Diverging palette

Description

This is the ‘PuOr’ palette from https://colorbrewer2.org/. It has at most eleven colors.

Usage

diverging_pal(n)

Arguments

n The number of colors in the palette. The maximum is eleven currently.

Details

This is similar to sequential_pal(), but it also puts emphasis on the mid-range values, plus the
the two extreme ends. Use this palette, if you have such a quantity to mark with vertex colors.

Value

A character vector of RGB color codes.

See Also

Other palettes: categorical_pal(), r_pal(), sequential_pal()

Examples

library(igraphdata)
data(foodwebs)
fw <- foodwebs[[1]] %>%

induced_subgraph(V(.)[ECO == 1]) %>%
add_layout_(with_fr()) %>%
set_vertex_attr("label", value = seq_len(gorder(.))) %>%
set_vertex_attr("size", value = 10) %>%
set_edge_attr("arrow.size", value = 0.3)

V(fw)$color <- scales::dscale(V(fw)$Biomass %>% cut(10), diverging_pal)
plot(fw)

data(karate)
karate <- karate %>%

add_layout_(with_kk()) %>%
set_vertex_attr("size", value = 10)

V(karate)$color <- scales::dscale(degree(karate) %>% cut(5), diverging_pal)
plot(karate)

https://colorbrewer2.org/

150 diversity

diversity Graph diversity

Description

Calculates a measure of diversity for all vertices.

Usage

diversity(graph, weights = NULL, vids = V(graph))

Arguments

graph The input graph. Edge directions are ignored.

weights NULL, or the vector of edge weights to use for the computation. If NULL, then the
‘weight’ attibute is used. Note that this measure is not defined for unweighted
graphs.

vids The vertex ids for which to calculate the measure.

Details

The diversity of a vertex is defined as the (scaled) Shannon entropy of the weights of its incident
edges:

D(i) =
H(i)

log ki

and

H(i) = −
ki∑
j=1

pij log pij ,

where
pij =

wij∑ki

l=1

Vil,

and ki is the (total) degree of vertex i, wij is the weight of the edge(s) between vertices i and j.

For vertices with degree less than two the function returns NaN.

Value

A numeric vector, its length is the number of vertices.

Related documentation in the C library

diversity().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_diversity

dominator_tree 151

References

Nathan Eagle, Michael Macy and Rob Claxton: Network Diversity and Economic Development,
Science 328, 1029–1031, 2010.

See Also

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

g1 <- sample_gnp(20, 2 / 20)
g2 <- sample_gnp(20, 2 / 20)
g3 <- sample_gnp(20, 5 / 20)
E(g1)$weight <- 1
E(g2)$weight <- runif(ecount(g2))
E(g3)$weight <- runif(ecount(g3))
diversity(g1)
diversity(g2)
diversity(g3)

dominator_tree Dominator tree

Description

Dominator tree of a directed graph.

Usage

dominator_tree(graph, root, mode = c("out", "in", "all", "total"))

Arguments

graph A directed graph. If it is not a flowgraph, and it contains some vertices not
reachable from the root vertex, then these vertices will be collected and returned
as part of the result.

root The id of the root (or source) vertex, this will be the root of the tree.

mode Constant, must be ‘in’ or ‘out’. If it is ‘in’, then all directions are considered
as opposite to the original one in the input graph.

152 dominator_tree

Details

A flowgraph is a directed graph with a distinguished start (or root) vertex r, such that for any vertex
v, there is a path from r to v. A vertex v dominates another vertex w (not equal to v), if every path
from r to w contains v. Vertex v is the immediate dominator or w, v = idom(w), if v dominates w
and every other dominator of w dominates v. The edges (idom(w), w)|w ̸= r form a directed tree,
rooted at r, called the dominator tree of the graph. Vertex v dominates vertex w if and only if v is
an ancestor of w in the dominator tree.

This function implements the Lengauer-Tarjan algorithm to construct the dominator tree of a di-
rected graph. For details see the reference below.

Value

A list with components:

dom A numeric vector giving the immediate dominators for each vertex. For vertices that are
unreachable from the root, it contains NaN. For the root vertex itself it contains minus one.

domtree A graph object, the dominator tree. Its vertex ids are the as the vertex ids of the input
graph. Isolate vertices are the ones that are unreachable from the root.

leftout A numeric vector containing the vertex ids that are unreachable from the root.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for finding dominators in a flowgraph,
ACM Transactions on Programming Languages and Systems (TOPLAS) I/1, 121–141, 1979.

See Also

Other flow: edge_connectivity(), is_min_separator(), is_separator(), max_flow(), min_cut(),
min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

The example from the paper
g <- graph_from_literal(

R -+ A:B:C, A -+ D, B -+ A:D:E, C -+ F:G, D -+ L,
E -+ H, F -+ I, G -+ I:J, H -+ E:K, I -+ K, J -+ I,
K -+ I:R, L -+ H

)
dtree <- dominator_tree(g, root = "R")
layout <- layout_as_tree(dtree$domtree, root = "R")
layout[, 2] <- -layout[, 2]
plot(dtree$domtree, layout = layout, vertex.label = V(dtree$domtree)$name)

dot-data 153

dot-data .data and .env pronouns

Description

The .data and .env pronouns make it explicit where to look up attribute names when indexing
V(g) or E(g), i.e. the vertex or edge sequence of a graph. These pronouns are inspired by .data
and .env in rlang - thanks to Michał Bojanowski for bringing these to our attention.

The rules are simple:

• .data retrieves attributes from the graph whose vertex or edge sequence is being evaluated.

• .env retrieves variables from the calling environment.

Note that .data and .env are injected dynamically into the environment where the indexing ex-
pressions are evaluated; you cannot get access to these objects outside the context of an indexing
expression. To avoid warnings printed by R CMD check when code containing .data and .env is
checked, you can import .data and .env from igraph if needed. Alternatively, you can declare
them explicitly with utils::globalVariables() to silence the warnings.

dyad_census Dyad census of a graph

Description

Classify dyads in a directed graphs. The relationship between each pair of vertices is measured. It
can be in three states: mutual, asymmetric or non-existent.

Usage

dyad_census(graph)

Arguments

graph The input graph. A warning is given if it is not directed.

Value

A named numeric vector with three elements:

mut The number of pairs with mutual connections.

asym The number of pairs with non-mutual connections.

null The number of pairs with no connection between them.

Related documentation in the C library

dyad_census().

https://igraph.org/c/html/0.10.17/igraph-Motifs.html#igraph_dyad_census

154 E

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Holland, P.W. and Leinhardt, S. A Method for Detecting Structure in Sociometric Data. American
Journal of Sociology, 76, 492–513. 1970.

Wasserman, S., and Faust, K. Social Network Analysis: Methods and Applications. Cambridge:
Cambridge University Press. 1994.

See Also

triad_census() for the same classification, but with triples.

Other graph motifs: count_motifs(), motifs(), sample_motifs()

Examples

g <- sample_pa(100)
dyad_census(g)

E Edges of a graph

Description

An edge sequence is a vector containing numeric edge ids, with a special class attribute that allows
custom operations: selecting subsets of edges based on attributes, or graph structure, creating the
intersection, union of edges, etc.

Usage

E(graph, P = NULL, path = NULL, directed = TRUE)

Arguments

graph The graph.

P A list of vertices to select edges via pairs of vertices. The first and second
vertices select the first edge, the third and fourth the second, etc.

path A list of vertices, to select edges along a path. Note that this only works reliable
for simple graphs. If the graph has multiple edges, one of them will be chosen
arbitrarily to be included in the edge sequence.

directed Whether to consider edge directions in the P argument, for directed graphs.

E 155

Details

Edge sequences are usually used as igraph function arguments that refer to edges of a graph.

An edge sequence is tied to the graph it refers to: it really denoted the specific edges of that graph,
and cannot be used together with another graph.

An edge sequence is most often created by the E() function. The result includes edges in increasing
edge id order by default (if. none of the P and path arguments are used). An edge sequence can
be indexed by a numeric vector, just like a regular R vector. See links to other edge sequence
operations below.

Value

An edge sequence of the graph.

Indexing edge sequences

Edge sequences mostly behave like regular vectors, but there are some additional indexing oper-
ations that are specific for them; e.g. selecting edges based on graph structure, or based on edge
attributes. See [.igraph.es for details.

Querying or setting attributes

Edge sequences can be used to query or set attributes for the edges in the sequence. See $.igraph.es()
for details.

See Also

Other vertex and edge sequences: V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2,
print.igraph.es(), print.igraph.vs()

Examples

Edges of an unnamed graph
g <- make_ring(10)
E(g)

Edges of a named graph
g2 <- make_ring(10) %>%

set_vertex_attr("name", value = letters[1:10])
E(g2)

156 each_edge

each_edge Rewires the endpoints of the edges of a graph to a random vertex

Description

This function can be used together with rewire(). This method rewires the endpoints of the edges
with a constant probability uniformly randomly to a new vertex in a graph.

Usage

each_edge(
prob,
loops = FALSE,
multiple = FALSE,
mode = c("all", "out", "in", "total")

)

Arguments

prob The rewiring probability, a real number between zero and one.

loops Logical scalar, whether loop edges are allowed in the rewired graph.

multiple Logical scalar, whether multiple edges are allowed in the generated graph.

mode Character string, specifies which endpoint of the edges to rewire in directed
graphs. ‘all’ rewires both endpoints, ‘in’ rewires the start (tail) of each directed
edge, ‘out’ rewires the end (head) of each directed edge. Ignored for undirected
graphs.

Details

Note that this method might create graphs with multiple and/or loop edges.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other rewiring functions: keeping_degseq(), rewire()

Examples

Some random shortcuts shorten the distances on a lattice
g <- make_lattice(length = 100, dim = 1, nei = 5)
mean_distance(g)
g <- rewire(g, each_edge(prob = 0.05))
mean_distance(g)

eccentricity 157

Rewiring the start of each directed edge preserves the in-degree distribution
but not the out-degree distribution
g <- sample_pa(1000)
g2 <- g %>% rewire(each_edge(mode = "in", multiple = TRUE, prob = 0.2))
degree(g, mode = "in") == degree(g2, mode = "in")

eccentricity Eccentricity of the vertices in a graph

Description

The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph.

Usage

eccentricity(
graph,
vids = V(graph),
...,
weights = NULL,
mode = c("all", "out", "in", "total")

)

Arguments

graph The input graph, it can be directed or undirected.

vids The vertices for which the eccentricity is calculated.

... These dots are for future extensions and must be empty.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the graph
is treated as undirected, i.e. edge directions are not taken into account. This
argument is ignored for undirected graphs.

Details

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolate vertices have
eccentricity zero.

158 edge

Value

eccentricity() returns a numeric vector, containing the eccentricity score of each given vertex.

Related documentation in the C library

eccentricity_dijkstra().

References

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 35, 1994.

See Also

radius() for a related concept, distances() for general shortest path calculations.

Other paths: all_simple_paths(), diameter(), distance_table(), graph_center(), radius()

Examples

g <- make_star(10, mode = "undirected")
eccentricity(g)

edge Helper function for adding and deleting edges

Description

This is a helper function that simplifies adding and deleting edges to/from graphs.

Usage

edge(...)

edges(...)

Arguments

... See details below.

Details

edges() is an alias for edge().

When adding edges via +, all unnamed arguments of edge() (or edges()) are concatenated, and
then passed to add_edges(). They are interpreted as pairs of vertex ids, and an edge will added
between each pair. Named arguments will be used as edge attributes for the new edges.

When deleting edges via -, all arguments of edge() (or edges()) are concatenated via c() and
passed to delete_edges().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_eccentricity_dijkstra

edge_attr 159

Value

A special object that can be used with together with igraph graphs and the plus and minus operators.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), reverse_edges(), simplify(),
union(), union.igraph(), vertex()

Examples

g <- make_ring(10) %>%
set_edge_attr("color", value = "red")

g <- g + edge(1, 5, color = "green") +
edge(2, 6, color = "blue") -
edge("8|9")

E(g)[[]]

g %>%
add_layout_(in_circle()) %>%
plot()

g <- make_ring(10) + edges(1:10)
plot(g)

edge_attr Query edge attributes of a graph

Description

Query edge attributes of a graph

Usage

edge_attr(graph, name, index = E(graph))

Arguments

graph The graph

name The name of the attribute to query. If missing, then all edge attributes are re-
turned in a list.

index An optional edge sequence to query edge attributes for a subset of edges.

160 edge_attr<-

Value

The value of the edge attribute, or the list of all edge attributes if name is missing.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(),
vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_edge_attr("weight", value = 1:10) %>%
set_edge_attr("color", value = "red")

g
plot(g, edge.width = E(g)$weight)

edge_attr<- Set one or more edge attributes

Description

Set one or more edge attributes

Usage

edge_attr(graph, name, index = E(graph)) <- value

Arguments

graph The graph.

name The name of the edge attribute to set. If missing, then value must be a named
list, and its entries are set as edge attributes.

index An optional edge sequence to set the attributes of a subset of edges.

value The new value of the attribute(s) for all (or index) edges.

Value

The graph, with the edge attribute(s) added or set.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(), igraph-attribute-combination,
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

edge_attr_names 161

Examples

g <- make_ring(10)
edge_attr(g) <- list(

name = LETTERS[1:10],
color = rep("green", gsize(g))

)
edge_attr(g, "label") <- E(g)$name
g
plot(g)

edge_attr_names List names of edge attributes

Description

List names of edge attributes

Usage

edge_attr_names(graph)

Arguments

graph The graph.

Value

Character vector, the names of the edge attributes.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), graph_attr(), graph_attr<-(), graph_attr_names(), igraph-attribute-combination,
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_edge_attr("label", value = letters[1:10])

edge_attr_names(g)
plot(g)

162 edge_connectivity

edge_connectivity Edge connectivity

Description

The edge connectivity of a graph or two vertices, this is recently also called group adhesion.

Usage

edge_connectivity(graph, source = NULL, target = NULL, checks = TRUE)

edge_disjoint_paths(graph, source = NULL, target = NULL)

adhesion(graph, checks = TRUE)

Arguments

graph The input graph.

source The id of the source vertex, for edge_connectivity() it can be NULL, see de-
tails below.

target The id of the target vertex, for edge_connectivity() it can be NULL, see details
below.

checks Logical constant. Whether to check that the graph is connected and also the
degree of the vertices. If the graph is not (strongly) connected then the con-
nectivity is obviously zero. Otherwise if the minimum degree is one then the
edge connectivity is also one. It is a good idea to perform these checks, as they
can be done quickly compared to the connectivity calculation itself. They were
suggested by Peter McMahan, thanks Peter.

Value

A scalar real value.

edge_connectivity() Edge connectivity

The edge connectivity of a pair of vertices (source and target) is the minimum number of edges
needed to remove to eliminate all (directed) paths from source to target. edge_connectivity()
calculates this quantity if both the source and target arguments are given (and not NULL).

The edge connectivity of a graph is the minimum of the edge connectivity of every (ordered) pair
of vertices in the graph. edge_connectivity() calculates this quantity if neither the source nor
the target arguments are given (i.e. they are both NULL).

edge_connectivity 163

edge_disjoint_paths() The maximum number of edge-disjoint paths between two vertices

A set of paths between two vertices is called edge-disjoint if they do not share any edges. The maxi-
mum number of edge-disjoint paths are calculated by this function using maximum flow techniques.
Directed paths are considered in directed graphs.

A set of edge disjoint paths between two vertices is a set of paths between them containing no
common edges. The maximum number of edge disjoint paths between two vertices is the same as
their edge connectivity.

When there are no direct edges between the source and the target, the number of vertex-disjoint
paths is the same as the vertex connectivity of the two vertices. When some edges are present, each
one of them contributes one extra path.

adhesion() Adhesion of a graph

The adhesion of a graph is the minimum number of edges needed to remove to obtain a graph which
is not strongly connected. This is the same as the edge connectivity of the graph.

All three functions

The three functions documented on this page calculate similar properties, more precisely the most
general is edge_connectivity(), the others are included only for having more descriptive function
names.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Douglas R. White and Frank Harary (2001): The cohesiveness of blocks in social networks: node
connectivity and conditional density, Sociological Methodology, vol. 31, 2001, pp. 305–59.

See Also

Other flow: dominator_tree(), is_min_separator(), is_separator(), max_flow(), min_cut(),
min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

g <- sample_pa(100, m = 1)
g2 <- sample_pa(100, m = 5)
edge_connectivity(g, 100, 1)
edge_connectivity(g2, 100, 1)
edge_disjoint_paths(g2, 100, 1)

g <- sample_gnp(50, 5 / 50)
g <- as_directed(g)
g <- induced_subgraph(g, subcomponent(g, 1))
adhesion(g)

164 edge_density

edge_density Graph density

Description

The density of a graph is the ratio of the actual number of edges and the largest possible number of
edges in the graph, assuming that no multi-edges are present.

Usage

edge_density(graph, loops = FALSE)

Arguments

graph The input graph.
loops Logical constant, whether loop edges may exist in the graph. This affects the

calculation of the largest possible number of edges in the graph. If this param-
eter is set to FALSE yet the graph contains self-loops, the result will not be
meaningful.

Details

The concept of density is ill-defined for multigraphs. Note that this function does not check whether
the graph has multi-edges and will return meaningless results for such graphs.

Value

A real constant. This function returns NaN (=0.0/0.0) for an empty graph with zero vertices.

Related documentation in the C library

density().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

See Also

vcount(), ecount(), simplify() to get rid of the multiple and/or loop edges.

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), feedback_arc_set(), feedback_vertex_set(), girth(),
is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_density

eigen_centrality 165

Examples

edge_density(make_empty_graph(n = 10)) # empty graphs have density 0
edge_density(make_full_graph(n = 10)) # complete graphs have density 1
edge_density(sample_gnp(n = 100, p = 0.4)) # density will be close to p

loop edges
g <- make_graph(c(1, 2, 2, 2, 2, 3)) # graph with a self-loop
edge_density(g, loops = FALSE) # this is wrong!!!
edge_density(g, loops = TRUE) # this is right!!!
edge_density(simplify(g), loops = FALSE) # this is also right, but different

eigen_centrality Eigenvector centrality of vertices

Description

eigen_centrality() takes a graph (graph) and returns the eigenvector centralities of the vertices
v within it.

Usage

eigen_centrality(
graph,
directed = FALSE,
scale = deprecated(),
weights = NULL,
options = arpack_defaults()

)

Arguments

graph Graph to be analyzed.

directed Logical scalar, whether to consider direction of the edges in directed graphs. It
is ignored for undirected graphs.

scale [Deprecated] Normalization will always take place.

weights A numerical vector or NULL. This argument can be used to give edge weights
for calculating the weighted eigenvector centrality of vertices. If this is NULL
and the graph has a weight edge attribute then that is used. If weights is a
numerical vector then it is used, even if the graph has a weight edge attribute.
If this is NA, then no edge weights are used (even if the graph has a weight edge
attribute). Note that if there are negative edge weights and the direction of the
edges is considered, then the eigenvector might be complex. In this case only
the real part is reported. This function interprets weights as connection strength.
Higher weights spread the centrality better.

options A named list, to override some ARPACK options. See arpack() for details.

166 eigen_centrality

Details

Eigenvector centrality scores correspond to the values of the principal eigenvector of the graph’s
adjacency matrix; these scores may, in turn, be interpreted as arising from a reciprocal process in
which the centrality of each actor is proportional to the sum of the centralities of those actors to
whom he or she is connected. In general, vertices with high eigenvector centralities are those which
are connected to many other vertices which are, in turn, connected to many others (and so on). The
perceptive may realize that this implies that the largest values will be obtained by individuals in large
cliques (or high-density substructures). This is also intelligible from an algebraic point of view, with
the first eigenvector being closely related to the best rank-1 approximation of the adjacency matrix
(a relationship which is easy to see in the special case of a diagonalizable symmetric real matrix via
the SLS−1 decomposition).

The adjacency matrix used in the eigenvector centrality calculation assumes that loop edges are
counted twice in undirected graphs; this is because each loop edge has two endpoints that are both
connected to the same vertex, and you could traverse the loop edge via either endpoint.

In the directed case, the left eigenvector of the adjacency matrix is calculated. In other words, the
centrality of a vertex is proportional to the sum of centralities of vertices pointing to it.

Eigenvector centrality is meaningful only for (strongly) connected graphs. Undirected graphs that
are not connected should be decomposed into connected components, and the eigenvector centrality
calculated for each separately. This function does not verify that the graph is connected. If it is not,
in the undirected case the scores of all but one component will be zeros.

Also note that the adjacency matrix of a directed acyclic graph or the adjacency matrix of an empty
graph does not possess positive eigenvalues, therefore the eigenvector centrality is not defined for
these graphs. igraph will return an eigenvalue of zero in such cases. The eigenvector centralities will
all be equal for an empty graph and will all be zeros for a directed acyclic graph. Such pathological
cases can be detected by checking whether the eigenvalue is very close to zero.

From igraph version 0.5 this function uses ARPACK for the underlying computation, see arpack()
for more about ARPACK in igraph.

Value

A named list with components:

vector A vector containing the centrality scores.

value The eigenvalue corresponding to the calculated eigenvector, i.e. the centrality scores.

options A named list, information about the underlying ARPACK computation. See arpack() for
the details.

Related documentation in the C library

eigenvector_centrality().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com> and Carter T. Butts (https://www.faculty.uci.edu/
profile.cfm?faculty_id=5057) for the manual page.

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_eigenvector_centrality
https://www.faculty.uci.edu/profile.cfm?faculty_id=5057
https://www.faculty.uci.edu/profile.cfm?faculty_id=5057

embed_adjacency_matrix 167

References

Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology,
92, 1170-1182.

See Also

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), harmonic_centrality(), hits_scores(), page_rank(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

Generate some test data
g <- make_ring(10, directed = FALSE)
Compute eigenvector centrality scores
eigen_centrality(g)

embed_adjacency_matrix

Spectral Embedding of Adjacency Matrices

Description

Spectral decomposition of the adjacency matrices of graphs.

Usage

embed_adjacency_matrix(
graph,
no,
weights = NULL,
which = c("lm", "la", "sa"),
scaled = TRUE,
cvec = strength(graph, weights = weights)/(vcount(graph) - 1),
options = arpack_defaults()

)

Arguments

graph The input graph, directed or undirected.

no An integer scalar. This value is the embedding dimension of the spectral embed-
ding. Should be smaller than the number of vertices. The largest no-dimensional
non-zero singular values are used for the spectral embedding.

weights Optional positive weight vector for calculating a weighted embedding. If the
graph has a weight edge attribute, then this is used by default. In a weighted
embedding, the edge weights are used instead of the binary adjacencny matrix.

168 embed_adjacency_matrix

which Which eigenvalues (or singular values, for directed graphs) to use. ‘lm’ means
the ones with the largest magnitude, ‘la’ is the ones (algebraic) largest, and ‘sa’
is the (algebraic) smallest eigenvalues. The default is ‘lm’. Note that for directed
graphs ‘la’ and ‘lm’ are the equivalent, because the singular values are used for
the ordering.

scaled Logical scalar, if FALSE, then U and V are returned instead of X and Y .

cvec A numeric vector, its length is the number vertices in the graph. This vector is
added to the diagonal of the adjacency matrix.

options A named list containing the parameters for the SVD computation algorithm in
ARPACK. By default, the list of values is assigned the values given by arpack_defaults().

Details

This function computes a no-dimensional Euclidean representation of the graph based on its ad-
jacency matrix, A. This representation is computed via the singular value decomposition of the
adjacency matrix, A = UDV T .In the case, where the graph is a random dot product graph gener-
ated using latent position vectors in Rno for each vertex, the embedding will provide an estimate of
these latent vectors.

For undirected graphs the latent positions are calculated as X = UnoD1/2, where Uno equals to
the first no columns of U , and D1/2 is a diagonal matrix containing the top no singular values on
the diagonal.

For directed graphs the embedding is defined as the pair X = UnoD1/2 and Y = V noD1/2. (For
undirected graphs U = V , so it is enough to keep one of them.)

Value

A list containing with entries:

X Estimated latent positions, an n times no matrix, n is the number of vertices.

Y NULL for undirected graphs, the second half of the latent positions for directed graphs, an n times
no matrix, n is the number of vertices.

D The eigenvalues (for undirected graphs) or the singular values (for directed graphs) calculated
by the algorithm.

options A named list, information about the underlying ARPACK computation. See arpack() for
the details.

Related documentation in the C library

adjacency_spectral_embedding().

References

Sussman, D.L., Tang, M., Fishkind, D.E., Priebe, C.E. A Consistent Adjacency Spectral Embedding
for Stochastic Blockmodel Graphs, Journal of the American Statistical Association, Vol. 107(499),
2012

https://igraph.org/c/html/0.10.17/igraph-Embedding.html#igraph_adjacency_spectral_embedding

embed_laplacian_matrix 169

See Also

sample_dot_product()

Other embedding: dim_select(), embed_laplacian_matrix()

Examples

A small graph
lpvs <- matrix(rnorm(200), 20, 10)
lpvs <- apply(lpvs, 2, function(x) {

return(abs(x) / sqrt(sum(x^2)))
})
RDP <- sample_dot_product(lpvs)
embed <- embed_adjacency_matrix(RDP, 5)

embed_laplacian_matrix

Spectral Embedding of the Laplacian of a Graph

Description

Spectral decomposition of Laplacian matrices of graphs.

Usage

embed_laplacian_matrix(
graph,
no,
weights = NULL,
which = c("lm", "la", "sa"),
type = c("default", "D-A", "DAD", "I-DAD", "OAP"),
scaled = TRUE,
options = arpack_defaults()

)

Arguments

graph The input graph, directed or undirected.

no An integer scalar. This value is the embedding dimension of the spectral embed-
ding. Should be smaller than the number of vertices. The largest no-dimensional
non-zero singular values are used for the spectral embedding.

weights Optional positive weight vector for calculating a weighted embedding. If the
graph has a weight edge attribute, then this is used by default. For weighted
embedding, edge weights are used instead of the binary adjacency matrix, and
vertex strength (see strength()) is used instead of the degrees.

170 embed_laplacian_matrix

which Which eigenvalues (or singular values, for directed graphs) to use. ‘lm’ means
the ones with the largest magnitude, ‘la’ is the ones (algebraic) largest, and ‘sa’
is the (algebraic) smallest eigenvalues. The default is ‘lm’. Note that for directed
graphs ‘la’ and ‘lm’ are the equivalent, because the singular values are used for
the ordering.

type The type of the Laplacian to use. Various definitions exist for the Laplacian of a
graph, and one can choose between them with this argument.
Possible values: D-A means D − A where D is the degree matrix and A is
the adjacency matrix; DAD means D1/2 times A times D1/2D1/2, D1/2 is the
inverse of the square root of the degree matrix; I-DAD means I −D1/2, where I
is the identity matrix. OAP is O1/2AP 1/2, where O1/2 is the inverse of the square
root of the out-degree matrix and P 1/2 is the same for the in-degree matrix.
OAP is not defined for undirected graphs, and is the only defined type for directed
graphs.
The default (i.e. type default) is to use D-A for undirected graphs and OAP for
directed graphs.

scaled Logical scalar, if FALSE, then U and V are returned instead of X and Y .

options A named list containing the parameters for the SVD computation algorithm in
ARPACK. By default, the list of values is assigned the values given by arpack_defaults().

Details

This function computes a no-dimensional Euclidean representation of the graph based on its Lapla-
cian matrix, L. This representation is computed via the singular value decomposition of the Lapla-
cian matrix.

They are essentially doing the same as embed_adjacency_matrix(), but work on the Laplacian
matrix, instead of the adjacency matrix.

Value

A list containing with entries:

X Estimated latent positions, an n times no matrix, n is the number of vertices.

Y NULL for undirected graphs, the second half of the latent positions for directed graphs, an n times
no matrix, n is the number of vertices.

D The eigenvalues (for undirected graphs) or the singular values (for directed graphs) calculated
by the algorithm.

options A named list, information about the underlying ARPACK computation. See arpack() for
the details.

Related documentation in the C library

laplacian_spectral_embedding().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Embedding.html#igraph_laplacian_spectral_embedding

ends 171

References

Sussman, D.L., Tang, M., Fishkind, D.E., Priebe, C.E. A Consistent Adjacency Spectral Embedding
for Stochastic Blockmodel Graphs, Journal of the American Statistical Association, Vol. 107(499),
2012

See Also

embed_adjacency_matrix(), sample_dot_product()

Other embedding: dim_select(), embed_adjacency_matrix()

Examples

A small graph
lpvs <- matrix(rnorm(200), 20, 10)
lpvs <- apply(lpvs, 2, function(x) {

return(abs(x) / sqrt(sum(x^2)))
})
RDP <- sample_dot_product(lpvs)
embed <- embed_laplacian_matrix(RDP, 5)

ends Incident vertices of some graph edges

Description

Incident vertices of some graph edges

Usage

ends(graph, es, names = TRUE)

Arguments

graph The input graph

es The sequence of edges to query

names Whether to return vertex names or numeric vertex ids. By default vertex names
are used.

Value

A two column matrix of vertex names or vertex ids.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
get_edge_ids(), gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(),
neighbors(), tail_of()

172 feedback_arc_set

Examples

g <- make_ring(5)
ends(g, E(g))

feedback_arc_set Finding a feedback arc set in a graph

Description

A feedback arc set of a graph is a subset of edges whose removal breaks all cycles in the graph.

Usage

feedback_arc_set(graph, weights = NULL, algo = c("approx_eades", "exact_ip"))

Arguments

graph The input graph

weights Potential edge weights. If the graph has an edge attribute called ‘weight’, and
this argument is NULL, then the edge attribute is used automatically. The goal of
the feedback arc set problem is to find a feedback arc set with the smallest total
weight.

algo Specifies the algorithm to use. “exact_ip” solves the feedback arc set prob-
lem with an exact integer programming algorithm that guarantees that the total
weight of the removed edges is as small as possible. “approx_eades” uses a fast
(linear-time) approximation algorithm from Eades, Lin and Smyth. “exact” is
an alias to “exact_ip” while “approx” is an alias to “approx_eades”.

Details

Feedback arc sets are typically used in directed graphs. The removal of a feedback arc set of a
directed graph ensures that the remaining graph is a directed acyclic graph (DAG). For undirected
graphs, the removal of a feedback arc set ensures that the remaining graph is a forest (i.e. every
connected component is a tree).

Value

An edge sequence (by default, but see the return.vs.es option of igraph_options()) containing
the feedback arc set.

Related documentation in the C library

feedback_arc_set().

References

Peter Eades, Xuemin Lin and W.F.Smyth: A fast and effective heuristic for the feedback arc set
problem. Information Processing Letters 47:6, pp. 319-323, 1993

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_feedback_arc_set

feedback_vertex_set 173

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_vertex_set(), girth(), is_acyclic(),
is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(), subgraph(),
topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Graph cycles feedback_vertex_set(), find_cycle(), girth(), has_eulerian_path(), is_acyclic(),
is_dag(), simple_cycles()

Examples

g <- sample_gnm(20, 40, directed = TRUE)
feedback_arc_set(g)
feedback_arc_set(g, algo = "approx_eades")

feedback_vertex_set Finding a feedback vertex set in a graph

Description

[Experimental]
A feedback vertex set of a graph is a subset of vertices whose removal breaks all cycles in the graph.
Finding a minimum feedback vertex set is an NP-complete problem, both on directed and undirected
graphs.

Usage

feedback_vertex_set(graph, weights = NULL, algo = c("exact_ip"))

Arguments

graph The input graph

weights Potential vertex weights. If the graph has a vertex attribute called ‘weight’,
and this argument is NULL, then the vertex attribute is used automatically. The
goal of the feedback vertex set problem is to find a feedback vertex set with the
smallest total weight.

algo Specifies the algorithm to use. Currently, “exact_ip”, which solves the feed-
back vertex set problem with an exact integer programming approach, is the
only option.

Value

A vertex sequence (by default, but see the return.vs.es option of igraph_options()) containing
the feedback vertex set.

Related documentation in the C library

feedback_vertex_set().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_feedback_vertex_set

174 find_cycle

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), girth(), is_acyclic(),
is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(), subgraph(),
topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Graph cycles feedback_arc_set(), find_cycle(), girth(), has_eulerian_path(), is_acyclic(),
is_dag(), simple_cycles()

Examples

g <- make_lattice(c(3,3))
feedback_vertex_set(g)

find_cycle Finds a cycle in a graph, if there is one

Description

[Experimental]
This function returns a cycle of the graph, in terms of both its vertices and edges. If the graph is
acyclic, it returns empty vertex and edge sequences.

Use is_acyclic() to determine if a graph has cycles, without returning a specific cycle.

Usage

find_cycle(graph, mode = c("out", "in", "all", "total"))

Arguments

graph The input graph.

mode Character constant specifying how to handle directed graphs. out follows edge
directions, in follows edges in the reverse direction, and all ignores edge di-
rections. Ignored in undirected graphs.

Value

A list of integer vectors, each integer vector is a path from the source vertex to one of the target
vertices. A path is given by its vertex ids.

Related documentation in the C library

find_cycle().

See Also

Graph cycles feedback_arc_set(), feedback_vertex_set(), girth(), has_eulerian_path(),
is_acyclic(), is_dag(), simple_cycles()

https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_find_cycle

fit_hrg 175

Examples

g <- make_lattice(c(3, 3))
find_cycle(g)

Empty results are returned for acyclic graphs
find_cycle(sample_tree(5))

fit_hrg Fit a hierarchical random graph model

Description

fit_hrg() fits a HRG to a given graph. It takes the specified steps number of MCMC steps to
perform the fitting, or a convergence criteria if the specified number of steps is zero. fit_hrg()
can start from a given HRG, if this is given in the hrg() argument and the start argument is TRUE.
It can be converted to the hclust class using as.hclust() provided in this package.

Usage

fit_hrg(graph, hrg = NULL, start = FALSE, steps = 0)

Arguments

graph The graph to fit the model to. Edge directions are ignored in directed graphs.
hrg A hierarchical random graph model, in the form of an igraphHRG object. fit_hrg()

allows this to be NULL, in which case a random starting point is used for the fit-
ting.

start Logical, whether to start the fitting/sampling from the supplied igraphHRG ob-
ject, or from a random starting point.

steps The number of MCMC steps to make. If this is zero, then the MCMC procedure
is performed until convergence.

Value

fit_hrg() returns an igraphHRG object. This is a list with the following members:

left Vector that contains the left children of the internal tree vertices. The first vertex is always
the root vertex, so the first element of the vector is the left child of the root vertex. Internal
vertices are denoted with negative numbers, starting from -1 and going down, i.e. the root
vertex is -1. Leaf vertices are denoted by non-negative number, starting from zero and up.

right Vector that contains the right children of the vertices, with the same encoding as the left
vector.

prob The connection probabilities attached to the internal vertices, the first number belongs to the
root vertex (i.e. internal vertex -1), the second to internal vertex -2, etc.

edges The number of edges in the subtree below the given internal vertex.
vertices The number of vertices in the subtree below the given internal vertex, including itself.

176 fit_power_law

References

A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing
links in networks. Nature 453, 98–101 (2008);

A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in Networks. In E.
M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1–13. Springer-
Verlag, Berlin Heidelberg (2007).

See Also

Other hierarchical random graph functions: consensus_tree(), hrg(), hrg-methods, hrg_tree(),
predict_edges(), print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

Examples

A graph with two dense groups
g <- sample_gnp(10, p = 1 / 2) + sample_gnp(10, p = 1 / 2)
hrg <- fit_hrg(g)
hrg
summary(as.hclust(hrg))

The consensus tree for it
consensus_tree(g, hrg = hrg, start = TRUE)

Prediction of missing edges
g2 <- make_full_graph(4) + (make_full_graph(4) - path(1, 2))
predict_edges(g2)

fit_power_law Fitting a power-law distribution function to discrete data

Description

fit_power_law() fits a power-law distribution to a data set.

Usage

fit_power_law(
x,
xmin = NULL,
start = 2,
force.continuous = FALSE,
implementation = c("plfit", "R.mle"),
p.value = FALSE,
p.precision = NULL,
...

)

fit_power_law 177

Arguments

x The data to fit, a numeric vector. For implementation ‘R.mle’ the data must
be integer values. For the ‘plfit’ implementation non-integer values might be
present and then a continuous power-law distribution is fitted.

xmin Numeric scalar, or NULL. The lower bound for fitting the power-law. If NULL,
the smallest value in x will be used for the ‘R.mle’ implementation, and its
value will be automatically determined for the ‘plfit’ implementation. This
argument makes it possible to fit only the tail of the distribution.

start Numeric scalar. The initial value of the exponent for the minimizing function,
for the ‘R.mle’ implementation. Usually it is safe to leave this untouched.

force.continuous

Logical scalar. Whether to force a continuous distribution for the ‘plfit’ imple-
mentation, even if the sample vector contains integer values only (by chance).
If this argument is false, igraph will assume a continuous distribution if at least
one sample is non-integer and assume a discrete distribution otherwise.

implementation Character scalar. Which implementation to use. See details below.

p.value [Experimental]
Set to TRUE to compute the p-value with implementation = "plfit".

p.precision [Experimental]
The desired precision of the p-value calculation. The precision ultimately de-
pends on the number of resampling attempts. The number of resampling trials
is determined by 0.25 divided by the square of the required precision. For in-
stance, a required precision of 0.01 means that 2500 samples will be drawn.

... Additional arguments, passed to the maximum likelihood optimizing function,
stats4::mle(), if the ‘R.mle’ implementation is chosen. It is ignored by the
‘plfit’ implementation.

Details

This function fits a power-law distribution to a vector containing samples from a distribution (that is
assumed to follow a power-law of course). In a power-law distribution, it is generally assumed that
P (X = x) is proportional to x−α, where x is a positive number and α is greater than 1. In many
real-world cases, the power-law behaviour kicks in only above a threshold value xmin. The goal of
this function is to determine α if xmin is given, or to determine xmin and the corresponding value of
α.

fit_power_law() provides two maximum likelihood implementations. If the implementation
argument is ‘R.mle’, then the BFGS optimization (see stats4::mle()) algorithm is applied. The
additional arguments are passed to the mle function, so it is possible to change the optimization
method and/or its parameters. This implementation can not to fit the xmin argument, so use the
‘plfit’ implementation if you want to do that.

The ‘plfit’ implementation also uses the maximum likelihood principle to determine α for a given
xmin; When xmin is not given in advance, the algorithm will attempt to find its optimal value for
which the p-value of a Kolmogorov-Smirnov test between the fitted distribution and the original
sample is the largest. The function uses the method of Clauset, Shalizi and Newman to calculate
the parameters of the fitted distribution. See references below for the details.

178 fit_power_law

[Experimental]
Pass p.value = TRUE to include the p-value in the output. This is not returned by default because
the computation may be slow.

Value

Depends on the implementation argument. If it is ‘R.mle’, then an object with class ‘mle’. It
can be used to calculate confidence intervals and log-likelihood. See stats4::mle-class() for
details.

If implementation is ‘plfit’, then the result is a named list with entries:

continuous Logical scalar, whether the fitted power-law distribution was continuous or discrete.

alpha Numeric scalar, the exponent of the fitted power-law distribution.

xmin Numeric scalar, the minimum value from which the power-law distribution was fitted. In
other words, only the values larger than xmin were used from the input vector.

logLik Numeric scalar, the log-likelihood of the fitted parameters.

KS.stat Numeric scalar, the test statistic of a Kolmogorov-Smirnov test that compares the fitted
distribution with the input vector. Smaller scores denote better fit.

KS.p Only for p.value = TRUE. Numeric scalar, the p-value of the Kolmogorov-Smirnov test.
Small p-values (less than 0.05) indicate that the test rejected the hypothesis that the original
data could have been drawn from the fitted power-law distribution.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

Power laws, Pareto distributions and Zipf’s law, M. E. J. Newman, Contemporary Physics, 46,
323-351, 2005.

Aaron Clauset, Cosma R .Shalizi and Mark E.J. Newman: Power-law distributions in empirical
data. SIAM Review 51(4):661-703, 2009.

See Also

stats4::mle()

Examples

This should approximately yield the correct exponent 3
g <- sample_pa(1000) # increase this number to have a better estimate
d <- degree(g, mode = "in")
fit1 <- fit_power_law(d + 1, 10)
fit2 <- fit_power_law(d + 1, 10, implementation = "R.mle")

fit1$alpha
stats4::coef(fit2)
fit1$logLik

get_edge_ids 179

stats4::logLik(fit2)

get_edge_ids Find the edge ids based on the incident vertices of the edges

Description

Find the edges in an igraph graph that have the specified end points. This function handles multi-
graph (graphs with multiple edges) and can consider or ignore the edge directions in directed graphs.

Usage

get_edge_ids(graph, vp, directed = TRUE, error = FALSE)

Arguments

graph The input graph.

vp The incident vertices, given as a two-column data frame, two-column matrix,
or vector of vertex ids or symbolic vertex names. For a vector, the values are
interpreted pairwise, i.e. the first and second are used for the first edge, the third
and fourth for the second, etc.

directed Logical scalar, whether to consider edge directions in directed graphs. This
argument is ignored for undirected graphs.

error Logical scalar, whether to report an error if an edge is not found in the graph.
If FALSE, then no error is reported, and zero is returned for the non-existant
edge(s).

Details

igraph vertex ids are natural numbers, starting from one, up to the number of vertices in the graph.
Similarly, edges are also numbered from one, up to the number of edges.

This function allows finding the edges of the graph, via their incident vertices.

Value

A numeric vector of edge ids, one for each pair of input vertices. If there is no edge in the input
graph for a given pair of vertices, then zero is reported. (If the error argument is FALSE.)

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(), neighbors(),
tail_of()

180 girth

Examples

g <- make_ring(10)
ei <- get_edge_ids(g, c(1, 2, 4, 5))
E(g)[ei]

non-existant edge
get_edge_ids(g, c(2, 1, 1, 4, 5, 4))

For multiple edges, a single edge id is returned,
as many times as corresponding pairs in the vertex series.
g <- make_graph(rep(c(1, 2), 5))
eis <- get_edge_ids(g, c(1, 2, 1, 2))
eis
E(g)[eis]

girth Girth of a graph

Description

The girth of a graph is the length of the shortest circle in it.

Usage

girth(graph, circle = TRUE)

Arguments

graph The input graph. It may be directed, but the algorithm searches for undirected
circles anyway.

circle Logical scalar, whether to return the shortest circle itself.

Details

The current implementation works for undirected graphs only, directed graphs are treated as undi-
rected graphs. Loop edges and multiple edges are ignored. If the graph is a forest (i.e. acyclic),
then Inf is returned.

This implementation is based on Alon Itai and Michael Rodeh: Finding a minimum circuit in a
graph Proceedings of the ninth annual ACM symposium on Theory of computing, 1-10, 1977. The
first implementation of this function was done by Keith Briggs, thanks Keith.

Value

A named list with two components:

girth Integer constant, the girth of the graph, or Inf if the graph is acyclic.

circle Numeric vector with the vertex ids in the shortest circle.

global_efficiency 181

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Alon Itai and Michael Rodeh: Finding a minimum circuit in a graph Proceedings of the ninth annual
ACM symposium on Theory of computing, 1-10, 1977

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Graph cycles feedback_arc_set(), feedback_vertex_set(), find_cycle(), has_eulerian_path(),
is_acyclic(), is_dag(), simple_cycles()

Examples

No circle in a tree
g <- make_tree(1000, 3)
girth(g)

The worst case running time is for a ring
g <- make_ring(100)
girth(g)

What about a random graph?
g <- sample_gnp(1000, 1 / 1000)
girth(g)

global_efficiency Efficiency of a graph

Description

These functions calculate the global or average local efficiency of a network, or the local efficiency
of every vertex in the network. See below for definitions.

Usage

global_efficiency(graph, weights = NULL, directed = TRUE)

local_efficiency(
graph,
vids = V(graph),
weights = NULL,

182 global_efficiency

directed = TRUE,
mode = c("all", "out", "in", "total")

)

average_local_efficiency(
graph,
weights = NULL,
directed = TRUE,
mode = c("all", "out", "in", "total")

)

Arguments

graph The graph to analyze.

weights The edge weights. All edge weights must be non-negative; additionally, no edge
weight may be NaN. If it is NULL (the default) and the graph has a weight edge
attribute, then it is used automatically.

directed Logical scalar, whether to consider directed paths. Ignored for undirected graphs.

vids The vertex ids of the vertices for which the calculation will be done. Applies to
the local efficiency calculation only.

mode Specifies how to define the local neighborhood of a vertex in directed graphs.
“out” considers out-neighbors only, “in” considers in-neighbors only, “all” con-
siders both.

Value

For global_efficiency(), the global efficiency of the graph as a single number. For average_local_efficiency(),
the average local efficiency of the graph as a single number. For local_efficiency(), the local
efficiency of each vertex in a vector.

Global efficiency

The global efficiency of a network is defined as the average of inverse distances between all pairs
of vertices.

More precisely:

Eg =
1

n(n− 1)

∑
i ̸=j

1

dij

where n is the number of vertices.

The inverse distance between pairs that are not reachable from each other is considered to be zero.
For graphs with fewer than 2 vertices, NaN is returned.

gorder 183

Local efficiency

The local efficiency of a network around a vertex is defined as follows: We remove the vertex and
compute the distances (shortest path lengths) between its neighbours through the rest of the network.
The local efficiency around the removed vertex is the average of the inverse of these distances.

The inverse distance between two vertices which are not reachable from each other is considered to
be zero. The local efficiency around a vertex with fewer than two neighbours is taken to be zero by
convention.

Average local efficiency

The average local efficiency of a network is simply the arithmetic mean of the local efficiencies of
all the vertices; see the definition for local efficiency above.

Related documentation in the C library

global_efficiency(), local_efficiency(), average_local_efficiency().

References

V. Latora and M. Marchiori: Efficient Behavior of Small-World Networks, Phys. Rev. Lett. 87,
198701 (2001).

I. Vragović, E. Louis, and A. Díaz-Guilera, Efficiency of informational transfer in regular and
complex networks, Phys. Rev. E 71, 1 (2005).

Examples

g <- make_graph("zachary")
global_efficiency(g)
average_local_efficiency(g)

gorder Order (number of vertices) of a graph

Description

vcount() and gorder() are aliases.

Usage

vcount(graph)

gorder(graph)

Arguments

graph The graph

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_global_efficiency
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_local_efficiency
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_average_local_efficiency

184 graphlet_basis

Value

Number of vertices, numeric scalar.

Related documentation in the C library

vcount().

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gsize(), head_of(), incident(), incident_edges(), is_directed(),
neighbors(), tail_of()

Examples

g <- make_ring(10)
gorder(g)
vcount(g)

graphlet_basis Graphlet decomposition of a graph

Description

Graphlet decomposition models a weighted undirected graph via the union of potentially overlap-
ping dense social groups. This is done by a two-step algorithm. In the first step a candidate set of
groups (a candidate basis) is created by finding cliques if the thresholded input graph. In the second
step these the graph is projected on the candidate basis, resulting a weight coefficient for each clique
in the candidate basis.

Usage

graphlet_basis(graph, weights = NULL)

graphlet_proj(
graph,
weights = NULL,
cliques,
niter = 1000,
Mu = rep(1, length(cliques))

)

graphlets(graph, weights = NULL, niter = 1000)

https://igraph.org/c/html/0.10.17/igraph-Basic.html#igraph_vcount

graphlet_basis 185

Arguments

graph The input graph, edge directions are ignored. Only simple graph (i.e. graphs
without self-loops and multiple edges) are supported.

weights Edge weights. If the graph has a weight edge attribute and this argument is
NULL (the default), then the weight edge attribute is used.

cliques A list of vertex ids, the graphlet basis to use for the projection.

niter Integer scalar, the number of iterations to perform.

Mu Starting weights for the projection.

Details

igraph contains three functions for performing the graph decomponsition of a graph. The first is
graphlets(), which performed both steps on the method and returns a list of subgraphs, with their
corresponding weights. The second and third functions correspond to the first and second steps of
the algorithm, and they are useful if the user wishes to perform them individually: graphlet_basis()
and graphlet_proj().

Value

graphlets() returns a list with two members:

cliques A list of subgraphs, the candidate graphlet basis. Each subgraph is give by a vector of
vertex ids.

Mu The weights of the subgraphs in graphlet basis.

graphlet_basis() returns a list of two elements:

cliques A list of subgraphs, the candidate graphlet basis. Each subgraph is give by a vector of
vertex ids.

thresholds The weight thresholds used for finding the subgraphs.

graphlet_proj() return a numeric vector, the weights of the graphlet basis subgraphs.

Related documentation in the C library

graphlets().

Examples

Create an example graph first
D1 <- matrix(0, 5, 5)
D2 <- matrix(0, 5, 5)
D3 <- matrix(0, 5, 5)
D1[1:3, 1:3] <- 2
D2[3:5, 3:5] <- 3
D3[2:5, 2:5] <- 1

g <- simplify(graph_from_adjacency_matrix(D1 + D2 + D3,
mode = "undirected", weighted = TRUE

https://igraph.org/c/html/0.10.17/igraph-Graphlets.html#igraph_graphlets

186 graph_

))
V(g)$color <- "white"
E(g)$label <- E(g)$weight
E(g)$label.cex <- 2
E(g)$color <- "black"
layout(matrix(1:6, nrow = 2, byrow = TRUE))
co <- layout_with_kk(g)
par(mar = c(1, 1, 1, 1))
plot(g, layout = co)

Calculate graphlets
gl <- graphlets(g, niter = 1000)

Plot graphlets
for (i in 1:length(gl$cliques)) {

sel <- gl$cliques[[i]]
V(g)$color <- "white"
V(g)[sel]$color <- "#E495A5"
E(g)$width <- 1
E(g)[V(g)[sel] %--% V(g)[sel]]$width <- 2
E(g)$label <- ""
E(g)[width == 2]$label <- round(gl$Mu[i], 2)
E(g)$color <- "black"
E(g)[width == 2]$color <- "#E495A5"
plot(g, layout = co)

}

graph_ Convert object to a graph

Description

This is a generic function to convert R objects to igraph graphs.

Usage

graph_(...)

Arguments

... Parameters, see details below.

Details

TODO

Examples

These are equivalent
graph_(cbind(1:5, 2:6), from_edgelist(directed = FALSE))
graph_(cbind(1:5, 2:6), from_edgelist(), directed = FALSE)

graph_attr 187

graph_attr Graph attributes of a graph

Description

Graph attributes of a graph

Usage

graph_attr(graph, name)

Arguments

graph Input graph.

name The name of attribute to query. If missing, then all attributes are returned in a
list.

Value

A list of graph attributes, or a single graph attribute.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(),
vertex_attr_names()

Examples

g <- make_ring(10)
graph_attr(g)
graph_attr(g, "name")

graph_attr<- Set all or some graph attributes

Description

Set all or some graph attributes

Usage

graph_attr(graph, name) <- value

188 graph_attr_names

Arguments

graph The graph.

name The name of the attribute to set. If missing, then value should be a named list,
and all list members are set as attributes.

value The value of the attribute to set

Value

The graph, with the attribute(s) added.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr_names(), igraph-attribute-combination,
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_graph(~ A - B:C:D)
graph_attr(g, "name") <- "4-star"
g

graph_attr(g) <- list(
layout = layout_with_fr(g),
name = "4-star layed out"

)
plot(g)

graph_attr_names List names of graph attributes

Description

List names of graph attributes

Usage

graph_attr_names(graph)

Arguments

graph The graph.

Value

Character vector, the names of the graph attributes.

graph_center 189

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), igraph-attribute-combination,
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10)
graph_attr_names(g)

graph_center Central vertices of a graph

Description

[Experimental]

The center of a graph is the set of its vertices with minimal eccentricity.

Usage

graph_center(graph, ..., weights = NULL, mode = c("all", "out", "in", "total"))

Arguments

graph The input graph, it can be directed or undirected.

... These dots are for future extensions and must be empty.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the graph
is treated as undirected, i.e. edge directions are not taken into account. This
argument is ignored for undirected graphs.

Value

The vertex IDs of the central vertices.

Related documentation in the C library

graph_center_dijkstra().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_graph_center_dijkstra

190 graph_from_adjacency_matrix

See Also

eccentricity(), radius()

Other paths: all_simple_paths(), diameter(), distance_table(), eccentricity(), radius()

Examples

tree <- make_tree(100, 7)
graph_center(tree)
graph_center(tree, mode = "in")
graph_center(tree, mode = "out")

Without and with weights
ring <- make_ring(10)
graph_center(ring)
Add weights
E(ring)$weight <- seq_len(ecount(ring))
graph_center(ring)

graph_from_adjacency_matrix

Create graphs from adjacency matrices

Description

graph_from_adjacency_matrix() is a flexible function for creating igraph graphs from adja-
cency matrices.

Usage

graph_from_adjacency_matrix(
adjmatrix,
mode = c("directed", "undirected", "max", "min", "upper", "lower", "plus"),
weighted = NULL,
diag = TRUE,
add.colnames = NULL,
add.rownames = NA

)

from_adjacency(...)

Arguments

adjmatrix A square adjacency matrix. From igraph version 0.5.1 this can be a sparse matrix
created with the Matrix package.

graph_from_adjacency_matrix 191

mode Character scalar, specifies how igraph should interpret the supplied matrix. See
also the weighted argument, the interpretation depends on that too. Possible
values are: directed, undirected, upper, lower, max, min, plus. See details
below.

weighted This argument specifies whether to create a weighted graph from an adjacency
matrix. If it is NULL then an unweighted graph is created and the elements of
the adjacency matrix gives the number of edges between the vertices. If it is a
character constant then for every non-zero matrix entry an edge is created and
the value of the entry is added as an edge attribute named by the weighted
argument. If it is TRUE then a weighted graph is created and the name of the
edge attribute will be weight. See also details below.

diag Logical scalar, whether to include the diagonal of the matrix in the calculation.
If this is FALSE then the diagonal is zerod out first.

add.colnames Character scalar, whether to add the column names as vertex attributes. If it is
NULL (the default) then, if present, column names are added as vertex attribute
‘name’. If NA or FALSE then they will not be added. If a character constant, then
it gives the name of the vertex attribute to add.

add.rownames Character scalar, whether to add the row names as vertex attributes. Possible
values the same as the previous argument. By default row names are not added.
If ‘add.rownames’ and ‘add.colnames’ specify the same vertex attribute, then
the former is ignored.

... Passed to graph_from_adjacency_matrix().

Details

The order of the vertices are preserved, i.e. the vertex corresponding to the first row will be vertex
0 in the graph, etc.

graph_from_adjacency_matrix() operates in two main modes, depending on the weighted ar-
gument.

If this argument is NULL then an unweighted graph is created and an element of the adjacency matrix
gives the number of edges to create between the two corresponding vertices. The details depend on
the value of the mode argument:

"directed" The graph will be directed and a matrix element gives the number of edges between
two vertices.

"undirected" This is exactly the same as max, for convenience. Note that it is not checked whether
the matrix is symmetric.

"max" An undirected graph will be created and max(A(i,j), A(j,i)) gives the number of edges.

"upper" An undirected graph will be created, only the upper right triangle (including the diagonal)
is used for the number of edges.

"lower" An undirected graph will be created, only the lower left triangle (including the diagonal)
is used for creating the edges.

"min" An undirected graph will be created with min(A(i,j), A(j,i)) edges between vertex i
and j.

"plus" An undirected graph will be created with A(i,j)+A(j,i) edges between vertex i and j.

192 graph_from_adjacency_matrix

If the weighted argument is not NULL then the elements of the matrix give the weights of the edges
(if they are not zero). The details depend on the value of the mode argument:

"directed" The graph will be directed and a matrix element gives the edge weights.

"undirected" First we check that the matrix is symmetric. It is an error if not. Then only the upper
triangle is used to create a weighted undirected graph.

"max" An undirected graph will be created and max(A(i,j), A(j,i)) gives the edge weights.

"upper" An undirected graph will be created, only the upper right triangle (including the diagonal)
is used (for the edge weights).

"lower" An undirected graph will be created, only the lower left triangle (including the diagonal)
is used for creating the edges.

"min" An undirected graph will be created, min(A(i,j), A(j,i)) gives the edge weights.

"plus" An undirected graph will be created, A(i,j)+A(j,i) gives the edge weights.

Value

An igraph graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

make_graph() and graph_from_literal() for other ways to create graphs.

Examples

g1 <- sample(
x = 0:1, size = 100, replace = TRUE,
prob = c(0.9, 0.1)

) %>%
matrix(ncol = 10) %>%
graph_from_adjacency_matrix()

g2 <- sample(
x = 0:5, size = 100, replace = TRUE,
prob = c(0.9, 0.02, 0.02, 0.02, 0.02, 0.02)

) %>%
matrix(ncol = 10) %>%
graph_from_adjacency_matrix(weighted = TRUE)

E(g2)$weight

various modes for weighted graphs, with some tests
non_zero_sort <- function(x) sort(x[x != 0])
adj_matrix <- matrix(runif(100), 10)
adj_matrix[adj_matrix < 0.5] <- 0
g3 <- graph_from_adjacency_matrix(

(adj_matrix + t(adj_matrix)) / 2,
weighted = TRUE,

graph_from_adjacency_matrix 193

mode = "undirected"
)

g4 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "max"

)
expected_g4_weights <- non_zero_sort(

pmax(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
)
actual_g4_weights <- sort(E(g4)$weight)
all(expected_g4_weights == actual_g4_weights)

g5 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "min"

)
expected_g5_weights <- non_zero_sort(

pmin(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
)
actual_g5_weights <- sort(E(g5)$weight)
all(expected_g5_weights == actual_g5_weights)

g6 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "upper"

)
expected_g6_weights <- non_zero_sort(adj_matrix[upper.tri(adj_matrix, diag = TRUE)])
actual_g6_weights <- sort(E(g6)$weight)
all(expected_g6_weights == actual_g6_weights)

g7 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "lower"

)
expected_g7_weights <- non_zero_sort(adj_matrix[lower.tri(adj_matrix, diag = TRUE)])
actual_g7_weights <- sort(E(g7)$weight)
all(expected_g7_weights == actual_g7_weights)

g8 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "plus"

)
halve_diag <- function(x) {

diag(x) <- diag(x) / 2
x

}
expected_g8_weights <- non_zero_sort(

194 graph_from_adj_list

halve_diag(adj_matrix + t(adj_matrix))[lower.tri(adj_matrix, diag = TRUE)]
)
actual_g8_weights <- sort(E(g8)$weight)
all(expected_g8_weights == actual_g8_weights)

g9 <- graph_from_adjacency_matrix(
adj_matrix,
weighted = TRUE,
mode = "plus",
diag = FALSE

)
zero_diag <- function(x) {

diag(x) <- 0
}
expected_g9_weights <- non_zero_sort((zero_diag(adj_matrix + t(adj_matrix)))[lower.tri(adj_matrix)])
actual_g9_weights <- sort(E(g9)$weight)
all(expected_g9_weights == actual_g9_weights)

row/column names
rownames(adj_matrix) <- sample(letters, nrow(adj_matrix))
colnames(adj_matrix) <- seq(ncol(adj_matrix))
g10 <- graph_from_adjacency_matrix(

adj_matrix,
weighted = TRUE,
add.rownames = "code"

)
summary(g10)

graph_from_adj_list Create graphs from adjacency lists

Description

An adjacency list is a list of numeric vectors, containing the neighbor vertices for each vertex. This
function creates an igraph graph object from such a list.

Usage

graph_from_adj_list(
adjlist,
mode = c("out", "in", "all", "total"),
duplicate = TRUE

)

Arguments

adjlist The adjacency list. It should be consistent, i.e. the maximum throughout all
vectors in the list must be less than the number of vectors (=the number of
vertices in the graph).

graph_from_adj_list 195

mode Character scalar, it specifies whether the graph to create is undirected (‘all’ or
‘total’) or directed; and in the latter case, whether it contains the outgoing (‘out’)
or the incoming (‘in’) neighbors of the vertices.

duplicate Logical scalar. For undirected graphs it gives whether edges are included in the
list twice. E.g. if it is TRUE then for an undirected {A,B} edge graph_from_adj_list()
expects A included in the neighbors of B and B to be included in the neighbors of
A.
This argument is ignored if mode is out or in.

Details

Adjacency lists are handy if you intend to do many (small) modifications to a graph. In this case
adjacency lists are more efficient than igraph graphs.

The idea is that you convert your graph to an adjacency list by as_adj_list(), do your modifica-
tions to the graphs and finally create again an igraph graph by calling graph_from_adj_list().

Value

An igraph graph object.

Related documentation in the C library

adjlist().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

as_edgelist()

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(),
graph_from_graphnel()

Examples

Directed
g <- make_ring(10, directed = TRUE)
al <- as_adj_list(g, mode = "out")
g2 <- graph_from_adj_list(al)
isomorphic(g, g2)

Undirected
g <- make_ring(10)
al <- as_adj_list(g)
g2 <- graph_from_adj_list(al, mode = "all")
isomorphic(g, g2)
ecount(g2)
g3 <- graph_from_adj_list(al, mode = "all", duplicate = FALSE)

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_adjlist

196 graph_from_atlas

ecount(g3)
which_multiple(g3)

graph_from_atlas Create a graph from the Graph Atlas

Description

graph_from_atlas() creates graphs from the book ‘An Atlas of Graphs’ by Roland C. Read and
Robin J. Wilson. The atlas contains all undirected graphs with up to seven vertices, numbered from
0 up to 1252. The graphs are listed:

1. in increasing order of number of nodes;

2. for a fixed number of nodes, in increasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example
111223 < 112222;

4. for fixed degree sequence, in increasing number of automorphisms.

Usage

graph_from_atlas(n)

atlas(...)

Arguments

n The id of the graph to create.

... Passed to graph_from_atlas().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_edgelist(), graph_from_literal(), make_(),
make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_lattice(), make_ring(), make_star(), make_tree()

Examples

Some randomly picked graphs from the atlas
graph_from_atlas(sample(0:1252, 1))
graph_from_atlas(sample(0:1252, 1))

graph_from_biadjacency_matrix 197

graph_from_biadjacency_matrix

Create graphs from a bipartite adjacency matrix

Description

graph_from_biadjacency_matrix() creates a bipartite igraph graph from an incidence matrix.

Usage

graph_from_biadjacency_matrix(
incidence,
directed = FALSE,
mode = c("all", "out", "in", "total"),
multiple = FALSE,
weighted = NULL,
add.names = NULL

)

Arguments

incidence The input bipartite adjacency matrix. It can also be a sparse matrix from the
Matrix package.

directed Logical scalar, whether to create a directed graph.

mode A character constant, defines the direction of the edges in directed graphs, ig-
nored for undirected graphs. If ‘out’, then edges go from vertices of the first
kind (corresponding to rows in the bipartite adjacency matrix) to vertices of the
second kind (columns in the incidence matrix). If ‘in’, then the opposite direc-
tion is used. If ‘all’ or ‘total’, then mutual edges are created.

multiple Logical scalar, specifies how to interpret the matrix elements. See details below.

weighted This argument specifies whether to create a weighted graph from the bipartite
adjacency matrix. If it is NULL then an unweighted graph is created and the
multiple argument is used to determine the edges of the graph. If it is a charac-
ter constant then for every non-zero matrix entry an edge is created and the value
of the entry is added as an edge attribute named by the weighted argument. If it
is TRUE then a weighted graph is created and the name of the edge attribute will
be ‘weight’.

add.names A character constant, NA or NULL. graph_from_biadjacency_matrix() can
add the row and column names of the incidence matrix as vertex attributes. If
this argument is NULL (the default) and the bipartite adjacency matrix has both
row and column names, then these are added as the ‘name’ vertex attribute. If
you want a different vertex attribute for this, then give the name of the attributes
as a character string. If this argument is NA, then no vertex attributes (other than
type) will be added.

198 graph_from_edgelist

Details

Bipartite graphs have a ‘type’ vertex attribute in igraph, this is boolean and FALSE for the vertices
of the first kind and TRUE for vertices of the second kind.

graph_from_biadjacency_matrix() can operate in two modes, depending on the multiple ar-
gument. If it is FALSE then a single edge is created for every non-zero element in the bipartite
adjacency matrix. If multiple is TRUE, then the matrix elements are rounded up to the closest
non-negative integer to get the number of edges to create between a pair of vertices.

Some authors refer to the bipartite adjacency matrix as the "bipartite incidence matrix". igraph 1.6.0
and later does not use this naming to avoid confusion with the edge-vertex incidence matrix.

Value

A bipartite igraph graph. In other words, an igraph graph that has a vertex attribute type.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

make_bipartite_graph() for another way to create bipartite graphs

Other biadjacency: as_data_frame()

Examples

inc <- matrix(sample(0:1, 15, repl = TRUE), 3, 5)
colnames(inc) <- letters[1:5]
rownames(inc) <- LETTERS[1:3]
graph_from_biadjacency_matrix(inc)

graph_from_edgelist Create a graph from an edge list matrix

Description

graph_from_edgelist() creates a graph from an edge list. Its argument is a two-column matrix,
each row defines one edge. If it is a numeric matrix then its elements are interpreted as vertex ids.
If it is a character matrix then it is interpreted as symbolic vertex names and a vertex id will be
assigned to each name, and also a name vertex attribute will be added.

Usage

graph_from_edgelist(el, directed = TRUE)

from_edgelist(...)

graph_from_graphdb 199

Arguments

el The edge list, a two column matrix, character or numeric.

directed Whether to create a directed graph.

... Passed to graph_from_edgelist().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_literal(), make_(), make_chordal_ring(),
make_empty_graph(), make_full_citation_graph(), make_full_graph(), make_graph(), make_lattice(),
make_ring(), make_star(), make_tree()

Examples

el <- matrix(c("foo", "bar", "bar", "foobar"), nc = 2, byrow = TRUE)
graph_from_edgelist(el)

Create a ring by hand
graph_from_edgelist(cbind(1:10, c(2:10, 1)))

graph_from_graphdb Load a graph from the graph database for testing graph isomorphism.

Description

This function downloads a graph from a database created for the evaluation of graph isomorphism
testing algorithms.

Usage

graph_from_graphdb(
url = NULL,
prefix = "iso",
type = "r001",
nodes = NULL,
pair = "A",
which = 0,
base = "https://github.com/igraph/graphsdb/raw/refs/heads/main",
compressed = TRUE,
directed = TRUE

)

200 graph_from_graphdb

Arguments

url If not NULL it is a complete URL with the file to import.
prefix Gives the prefix. See details below. Possible values: iso, i2, si4, si6, mcs10,

mcs30, mcs50, mcs70, mcs90.
type Gives the graph type identifier. See details below. Possible values: r001, r005,

r01, r02, m2D, m2Dr2, m2Dr4, m2Dr6 m3D, m3Dr2, m3Dr4, m3Dr6, m4D, m4Dr2,
m4Dr4, m4Dr6, b03, b03m, b06, b06m, b09, b09m.

nodes The number of vertices in the graph.
pair Specifies which graph of the pair to read. Possible values: A and B.
which Gives the number of the graph to read. For every graph type there are a number

of actual graphs in the database. This argument specifies which one to read.
base The base address of the database. See details below.
compressed Logical constant, if TRUE than the file is expected to be compressed by gzip. If

url is NULL then a ‘.gz’ suffix is added to the filename.
directed Logical constant, whether to create a directed graph.

Details

graph_from_graphdb() reads a graph from the graph database from an FTP or HTTP server or
from a local copy. It has two modes of operation:

If the url argument is specified then it should the complete path to a local or remote graph database
file. In this case we simply call read_graph() with the proper arguments to read the file.

If url is NULL, and this is the default, then the filename is assembled from the base, prefix, type,
nodes, pair and which arguments.

Unfortunately the original graph database homepage is now defunct, but see its old version at
https://web.archive.org/web/20090215182331/http://amalfi.dis.unina.it/graph/db/doc/
graphdbat.html for the actual format of a graph database file and other information.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

M. De Santo, P. Foggia, C. Sansone, M. Vento: A large database of graphs and its use for bench-
marking graph isomorphism algorithms, Pattern Recognition Letters, Volume 24, Issue 8 (May
2003)

See Also

read_graph(), isomorphic()

Foreign format readers read_graph(), write_graph()

https://web.archive.org/web/20090215182331/http://amalfi.dis.unina.it/graph/db/doc/graphdbat.html
https://web.archive.org/web/20090215182331/http://amalfi.dis.unina.it/graph/db/doc/graphdbat.html

graph_from_graphnel 201

graph_from_graphnel Convert graphNEL objects from the graph package to igraph

Description

The graphNEL class is defined in the graph package, it is another way to represent graphs. graph_from_graphnel()
takes a graphNEL graph and converts it to an igraph graph. It handles all graph/vertex/edge at-
tributes. If the graphNEL graph has a vertex attribute called ‘name’ it will be used as igraph vertex
attribute ‘name’ and the graphNEL vertex names will be ignored.

Usage

graph_from_graphnel(graphNEL, name = TRUE, weight = TRUE, unlist.attrs = TRUE)

Arguments

graphNEL The graphNEL graph.

name Logical scalar, whether to add graphNEL vertex names as an igraph vertex at-
tribute called ‘name’.

weight Logical scalar, whether to add graphNEL edge weights as an igraph edge at-
tribute called ‘weight’. (graphNEL graphs are always weighted.)

unlist.attrs Logical scalar. graphNEL attribute query functions return the values of the at-
tributes in R lists, if this argument is TRUE (the default) these will be converted
to atomic vectors, whenever possible, before adding them to the igraph graph.

Details

Because graphNEL graphs poorly support multiple edges, the edge attributes of the multiple edges
are lost: they are all replaced by the attributes of the first of the multiple edges.

Value

graph_from_graphnel() returns an igraph graph object.

See Also

as_graphnel() for the other direction, as_adjacency_matrix(), graph_from_adjacency_matrix(),
as_adj_list() and graph_from_adj_list() for other graph representations.

Other conversion: as.matrix.igraph(), as_adj_list(), as_adjacency_matrix(), as_biadjacency_matrix(),
as_data_frame(), as_directed(), as_edgelist(), as_graphnel(), as_long_data_frame(),
graph_from_adj_list()

202 graph_from_isomorphism_class

Examples

Undirected
g <- make_ring(10)
V(g)$name <- letters[1:10]
GNEL <- as_graphnel(g)
g2 <- graph_from_graphnel(GNEL)
g2

Directed
g3 <- make_star(10, mode = "in")
V(g3)$name <- letters[1:10]
GNEL2 <- as_graphnel(g3)
g4 <- graph_from_graphnel(GNEL2)
g4

graph_from_isomorphism_class

Create a graph from an isomorphism class

Description

The isomorphism class is a non-negative integer number. Graphs (with the same number of vertices)
having the same isomorphism class are isomorphic and isomorphic graphs always have the same
isomorphism class. Currently it can handle directed graphs with 3 or 4 vertices and undirected
graphd with 3 to 6 vertices.

Usage

graph_from_isomorphism_class(size, number, directed = TRUE)

Arguments

size The number of vertices in the graph.
number The isomorphism class.
directed Whether to create a directed graph (the default).

Value

An igraph object, the graph of the given size, directedness and isomorphism class.

Related documentation in the C library

isoclass_create().

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
isomorphic(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(), subgraph_isomorphisms()

https://igraph.org/c/html/0.10.17/igraph-Isomorphism.html#igraph_isoclass_create

graph_from_lcf 203

graph_from_lcf Creating a graph from LCF notation

Description

LCF is short for Lederberg-Coxeter-Frucht, it is a concise notation for 3-regular Hamiltonian graphs.
It constists of three parameters, the number of vertices in the graph, a list of shifts giving additional
edges to a cycle backbone and another integer giving how many times the shifts should be per-
formed. See https://mathworld.wolfram.com/LCFNotation.html for details.

Usage

graph_from_lcf(shifts, ..., n = NULL, repeats = 1L)

Arguments

shifts Integer vector, the shifts.

... These dots are for future extensions and must be empty.

n Integer, the number of vertices in the graph. If NULL (default), it is set to
len(shifts) * repeats.

repeats Integer constant, how many times to repeat the shifts.

Value

A graph object.

Related documentation in the C library

lcf_vector().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

make_graph() can create arbitrary graphs, see also the other functions on the its manual page for
creating special graphs.

Examples

This is the Franklin graph:
g1 <- graph_from_lcf(shifts = c(5L, -5L), n = 12L, repeats = 6L)
g2 <- make_graph("Franklin")
isomorphic(g1, g2)

https://mathworld.wolfram.com/LCFNotation.html
https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_lcf_vector

204 graph_from_literal

graph_from_literal Creating (small) graphs via a simple interface

Description

This function is useful if you want to create a small (named) graph quickly, it works for both directed
and undirected graphs.

Usage

graph_from_literal(..., simplify = TRUE)

from_literal(...)

Arguments

... For graph_from_literal() the formulae giving the structure of the graph, see
details below. For from_literal() all arguments are passed to graph_from_literal().

simplify Logical scalar, whether to call simplify() on the created graph. By default the
graph is simplified, loop and multiple edges are removed.

Details

graph_from_literal() is very handy for creating small graphs quickly. You need to supply one
or more R expressions giving the structure of the graph. The expressions consist of vertex names
and edge operators. An edge operator is a sequence of ‘-’ and ‘+’ characters, the former is for the
edges and the latter is used for arrow heads. The edges can be arbitrarily long, i.e. you may use as
many ‘-’ characters to “draw” them as you like.

If all edge operators consist of only ‘-’ characters then the graph will be undirected, whereas a
single ‘+’ character implies a directed graph.

Let us see some simple examples. Without arguments the function creates an empty graph:

graph_from_literal()

A simple undirected graph with two vertices called ‘A’ and ‘B’ and one edge only:

graph_from_literal(A-B)

Remember that the length of the edges does not matter, so we could have written the following, this
creates the same graph:

graph_from_literal(A-----B)

If you have many disconnected components in the graph, separate them with commas. You can also
give isolate vertices.

graph_from_literal(A--B, C--D, E--F, G--H, I, J, K)

graph_from_literal 205

The ‘:’ operator can be used to define vertex sets. If an edge operator connects two vertex sets then
every vertex from the first set will be connected to every vertex in the second set. The following
form creates a full graph, including loop edges:

graph_from_literal(A:B:C:D -- A:B:C:D)

In directed graphs, edges will be created only if the edge operator includes a arrow head (‘+’) at the
end of the edge:

graph_from_literal(A -+ B -+ C)
graph_from_literal(A +- B -+ C)
graph_from_literal(A +- B -- C)

Thus in the third example no edge is created between vertices B and C.

Mutual edges can be also created with a simple edge operator:

graph_from_literal(A +-+ B +---+ C ++ D + E)

Note again that the length of the edge operators is arbitrary, ‘+’, ‘++’ and ‘+-----+’ have exactly
the same meaning.

If the vertex names include spaces or other special characters then you need to quote them:

graph_from_literal("this is" +- "a silly" -+ "graph here")

You can include any character in the vertex names this way, even ‘+’ and ‘-’ characters.

See more examples below.

Value

An igraph graph

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), make_(), make_chordal_ring(),
make_empty_graph(), make_full_citation_graph(), make_full_graph(), make_graph(), make_lattice(),
make_ring(), make_star(), make_tree()

Examples

A simple undirected graph
g <- graph_from_literal(

Alice - Bob - Cecil - Alice,
Daniel - Cecil - Eugene,
Cecil - Gordon

)
g

Another undirected graph, ":" notation
g2 <- graph_from_literal(Alice - Bob:Cecil:Daniel, Cecil:Daniel - Eugene:Gordon)
g2

206 graph_id

A directed graph
g3 <- graph_from_literal(

Alice +-+ Bob --+ Cecil +-- Daniel,
Eugene --+ Gordon:Helen

)
g3

A graph with isolate vertices
g4 <- graph_from_literal(Alice -- Bob -- Daniel, Cecil:Gordon, Helen)
g4
V(g4)$name

"Arrows" can be arbitrarily long
g5 <- graph_from_literal(Alice +---------+ Bob)
g5

Special vertex names
g6 <- graph_from_literal("+" -- "-", "*" -- "/", "%%" -- "%/%")
g6

graph_id Get the id of a graph

Description

Graph ids are used to check that a vertex or edge sequence belongs to a graph. If you create a
new graph by changing the structure of a graph, the new graph will have a new id. Changing the
attributes will not change the id.

Usage

graph_id(x, ...)

Arguments

x A graph or a vertex sequence or an edge sequence.

... Not used currently.

Value

The id of the graph, a character scalar. For vertex and edge sequences the id of the graph they were
created from.

graph_version 207

Examples

g <- make_ring(10)
graph_id(g)
graph_id(V(g))
graph_id(E(g))

g2 <- g + 1
graph_id(g2)

graph_version igraph data structure versions

Description

igraph’s internal data representation changes sometimes between versions. This means that it is not
always possible to use igraph objects that were created (and possibly saved to a file) with an older
igraph version.

Usage

graph_version(graph)

Arguments

graph The input graph. If it is missing, then the version number of the current data
format is returned.

Details

graph_version() queries the current data format, or the data format of a possibly older igraph
graph.

upgrade_graph() can convert an older data format to the current one.

Value

An integer scalar.

See Also

upgrade_graph to convert the data format of a graph.

Other versions: upgrade_graph()

208 greedy_vertex_coloring

greedy_vertex_coloring

Greedy vertex coloring

Description

greedy_vertex_coloring() finds a coloring for the vertices of a graph based on a simple greedy
algorithm.

Usage

greedy_vertex_coloring(graph, heuristic = c("colored_neighbors", "dsatur"))

Arguments

graph The graph object to color.

heuristic The selection heuristic for the next vertex to consider. Possible values are: “col-
ored_neighbors” selects the vertex with the largest number of already colored
neighbors. “dsatur” selects the vertex with the largest number of unique colors
in its neighborhood, i.e. its "saturation degree"; when there are several maxi-
mum saturation degree vertices, the one with the most uncolored neighbors will
be selected.

Details

The goal of vertex coloring is to assign a "color" (represented as a positive integer) to each vertex of
the graph such that neighboring vertices never have the same color. This function solves the problem
by considering the vertices one by one according to a heuristic, always choosing the smallest color
that differs from that of already colored neighbors. The coloring obtained this way is not necessarily
minimum but it can be calculated in linear time.

Value

A numeric vector where item i contains the color index associated to vertex i.

Related documentation in the C library

vertex_coloring_greedy().

Examples

g <- make_graph("petersen")
col <- greedy_vertex_coloring(g)
plot(g, vertex.color = col)

https://igraph.org/c/html/0.10.17/igraph-Coloring.html#igraph_vertex_coloring_greedy

groups 209

groups Groups of a vertex partitioning

Description

Create a list of vertex groups from some graph clustering or community structure.

Usage

groups(x)

Arguments

x Some object that represents a grouping of the vertices. See details below.

Details

Currently two methods are defined for this function. The default method works on the output of
components(). (In fact it works on any object that is a list with an entry called membership.)

The second method works on communities() objects.

Value

A named list of numeric or character vectors. The names are just numbers that refer to the groups.
The vectors themselves are numeric or symbolic vertex ids.

See Also

components() and the various community finding functions.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_graph("Zachary")
fgc <- cluster_fast_greedy(g)
groups(fgc)

g2 <- make_ring(10) + make_full_graph(5)
groups(components(g2))

210 gsize

gsize The size of the graph (number of edges)

Description

ecount() and gsize() are aliases.

Usage

gsize(graph)

ecount(graph)

Arguments

graph The graph.

Value

Numeric scalar, the number of edges.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), head_of(), incident(), incident_edges(), is_directed(),
neighbors(), tail_of()

Examples

g <- sample_gnp(100, 2 / 100)
gsize(g)
ecount(g)

Number of edges in a G(n,p) graph
replicate(100, sample_gnp(10, 1 / 2), simplify = FALSE) %>%

vapply(gsize, 0) %>%
hist()

harmonic_centrality 211

harmonic_centrality Harmonic centrality of vertices

Description

The harmonic centrality of a vertex is the mean inverse distance to all other vertices. The inverse
distance to an unreachable vertex is considered to be zero.

Usage

harmonic_centrality(
graph,
vids = V(graph),
mode = c("out", "in", "all", "total"),
weights = NULL,
normalized = FALSE,
cutoff = -1

)

Arguments

graph The graph to analyze.
vids The vertices for which harmonic centrality will be calculated.
mode Character string, defining the types of the paths used for measuring the distance

in directed graphs. “out” follows paths along the edge directions only, “in”
traverses the edges in reverse, while “all” ignores edge directions. This argument
is ignored for undirected graphs.

weights Optional positive weight vector for calculating weighted harmonic centrality. If
the graph has a weight edge attribute, then this is used by default. Weights are
used for calculating weighted shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to calculate the normalized harmonic centrality. If true,
the result is the mean inverse path length to other vertices, i.e. it is normalized
by the number of vertices minus one. If false, the result is the sum of inverse
path lengths to other vertices.

cutoff The maximum path length to consider when calculating the harmonic centrality.
There is no such limit when the cutoff is negative. Note that zero cutoff means
that only paths of at most length 0 are considered.

Details

The cutoff argument can be used to restrict the calculation to paths of length cutoff or smaller
only; this can be used for larger graphs to speed up the calculation. If cutoff is negative (which is
the default), then the function calculates the exact harmonic centrality scores.

Value

Numeric vector with the harmonic centrality scores of all the vertices in v.

212 has_eulerian_path

Related documentation in the C library

harmonic_centrality_cutoff().

References

M. Marchiori and V. Latora, Harmony in the small-world, Physica A 285, pp. 539-546 (2000).

See Also

betweenness(), closeness()

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), hits_scores(), page_rank(), power_centrality(), spectrum(),
strength(), subgraph_centrality()

Examples

g <- make_ring(10)
g2 <- make_star(10)
harmonic_centrality(g)
harmonic_centrality(g2, mode = "in")
harmonic_centrality(g2, mode = "out")
harmonic_centrality(g %du% make_full_graph(5), mode = "all")

has_eulerian_path Find Eulerian paths or cycles in a graph

Description

has_eulerian_path() and has_eulerian_cycle() checks whether there is an Eulerian path or
cycle in the input graph. eulerian_path() and eulerian_cycle() return such a path or cycle if
it exists, and throws an error otherwise.

Usage

has_eulerian_path(graph)

has_eulerian_cycle(graph)

eulerian_path(graph)

eulerian_cycle(graph)

Arguments

graph An igraph graph object

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_harmonic_centrality_cutoff

head_of 213

Details

has_eulerian_path() decides whether the input graph has an Eulerian path, i.e. a path that passes
through every edge of the graph exactly once, and returns a logical value as a result. eulerian_path()
returns a possible Eulerian path, described with its edge and vertex sequence, or throws an error if
no such path exists.

has_eulerian_cycle() decides whether the input graph has an Eulerian cycle, i.e. a path that
passes through every edge of the graph exactly once and that returns to its starting point, and returns
a logical value as a result. eulerian_cycle() returns a possible Eulerian cycle, described with its
edge and vertex sequence, or throws an error if no such cycle exists.

Value

For has_eulerian_path() and has_eulerian_cycle(), a logical value that indicates whether the
graph contains an Eulerian path or cycle. For eulerian_path() and eulerian_cycle(), a named
list with two entries:

epath A vector containing the edge ids along the Eulerian path or cycle.

vpath A vector containing the vertex ids along the Eulerian path or cycle.

Related documentation in the C library

is_eulerian(), eulerian_path(), eulerian_cycle().

See Also

Graph cycles feedback_arc_set(), feedback_vertex_set(), find_cycle(), girth(), is_acyclic(),
is_dag(), simple_cycles()

Examples

g <- make_graph(~ A - B - C - D - E - A - F - D - B - F - E)

has_eulerian_path(g)
eulerian_path(g)

has_eulerian_cycle(g)
try(eulerian_cycle(g))

head_of Head of the edge(s) in a graph

Description

For undirected graphs, head and tail is not defined. In this case head_of() returns vertices incident
to the supplied edges, and tail_of() returns the other end(s) of the edge(s).

https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_is_eulerian
https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_eulerian_path
https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_eulerian_cycle

214 head_print

Usage

head_of(graph, es)

Arguments

graph The input graph.

es The edges to query.

Value

A vertex sequence with the head(s) of the edge(s).

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), incident(), incident_edges(), is_directed(),
neighbors(), tail_of()

head_print Print the only the head of an R object

Description

Print the only the head of an R object

Usage

head_print(
x,
max_lines = 20,
header = "",
footer = "",
omitted_footer = "",
...

)

Arguments

x The object to print, or a callback function. See printer_callback() for details.

max_lines Maximum number of lines to print, not including the header and the footer.

header The header, if a function, then it will be called, otherwise printed using cat.

footer The footer, if a function, then it will be called, otherwise printed using cat.

omitted_footer Footer that is only printed if anything is omitted from the printout. If a function,
then it will be called, otherwise printed using cat.

... Extra arguments to pass to print().

hits_scores 215

Value

x, invisibly.

hits_scores Kleinberg’s hub and authority centrality scores.

Description

The hub scores of the vertices are defined as the principal eigenvector of AAT , where A is the
adjacency matrix of the graph.

Usage

hits_scores(
graph,
...,
scale = TRUE,
weights = NULL,
options = arpack_defaults()

)

Arguments

graph The input graph.

... These dots are for future extensions and must be empty.

scale Logical scalar, whether to scale the result to have a maximum score of one. If
no scaling is used then the result vector has unit length in the Euclidean norm.

weights Optional positive weight vector for calculating weighted scores. If the graph
has a weight edge attribute, then this is used by default. Pass NA to ignore the
weight attribute. This function interprets edge weights as connection strengths.
The weights of parallel edges are effectively added up.

options A named list, to override some ARPACK options. See arpack() for details.

Details

Similarly, the authority scores of the vertices are defined as the principal eigenvector of ATA, where
A is the adjacency matrix of the graph.

For undirected matrices the adjacency matrix is symmetric and the hub scores are the same as
authority scores.

216 hrg

Value

A named list with members:

hub The hub score of the vertices.

authority The authority score of the vertices.

value The corresponding eigenvalue of the calculated principal eigenvector.

options Some information about the ARPACK computation, it has the same members as the options
member returned by arpack(), see that for documentation.

Related documentation in the C library

hub_and_authority_scores().

References

J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium
on Discrete Algorithms, 1998. Extended version in Journal of the ACM 46(1999). Also appears as
IBM Research Report RJ 10076, May 1997.

See Also

eigen_centrality() for eigenvector centrality, page_rank() for the Page Rank scores. arpack()
for the underlining machinery of the computation.

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), page_rank(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

An in-star
g <- make_star(10)
hits_scores(g)

A ring
g2 <- make_ring(10)
hits_scores(g2)

hrg Create a hierarchical random graph from an igraph graph

Description

hrg() creates a HRG from an igraph graph. The igraph graph must be a directed binary tree, with
n− 1 internal and n leaf vertices. The prob argument contains the HRG probability labels for each
vertex; these are ignored for leaf vertices.

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_hub_and_authority_scores

hrg-methods 217

Usage

hrg(graph, prob)

Arguments

graph The igraph graph to create the HRG from.
prob A vector of probabilities, one for each vertex, in the order of vertex ids.

Value

hrg() returns an igraphHRG object.

Related documentation in the C library

hrg_create().

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg-methods, hrg_tree(),
predict_edges(), print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

hrg-methods Hierarchical random graphs

Description

Fitting and sampling hierarchical random graph models.

Details

A hierarchical random graph is an ensemble of undirected graphs with n vertices. It is defined via
a binary tree with n leaf and n − 1 internal vertices, where the internal vertices are labeled with
probabilities. The probability that two vertices are connected in the random graph is given by the
probability label at their closest common ancestor.

Please see references below for more about hierarchical random graphs.

igraph contains functions for fitting HRG models to a given network (fit_hrg(), for generating
networks from a given HRG ensemble (sample_hrg()), converting an igraph graph to a HRG
and back (hrg(), hrg_tree()), for calculating a consensus tree from a set of sampled HRGs
(consensus_tree()) and for predicting missing edges in a network based on its HRG models
(predict_edges()).

The igraph HRG implementation is heavily based on the code published by Aaron Clauset, at his
website (not functional any more).

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg_tree(),
predict_edges(), print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

https://igraph.org/c/html/0.10.17/igraph-HRG.html#igraph_hrg_create

218 identical_graphs

hrg_tree Create an igraph graph from a hierarchical random graph model

Description

hrg_tree() creates the corresponsing igraph tree of a hierarchical random graph model.

Usage

hrg_tree(hrg)

Arguments

hrg A hierarchical random graph model.

Value

An igraph graph with a vertex attribute called "probability".

Related documentation in the C library

from_hrg_dendrogram().

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg-methods,
predict_edges(), print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

identical_graphs Decide if two graphs are identical

Description

Two graphs are considered identical by this function if and only if they are represented in exactly
the same way in the internal R representation. This means that the two graphs must have the same
list of vertices and edges, in exactly the same order, with same directedness, and the two graphs
must also have identical graph, vertex and edge attributes.

Usage

identical_graphs(g1, g2, attrs = TRUE)

Arguments

g1, g2 The two graphs

attrs Whether to compare the attributes of the graphs

https://igraph.org/c/html/0.10.17/igraph-HRG.html#igraph_from_hrg_dendrogram

igraph-attribute-combination 219

Details

This is similar to identical in the base package, but it ignores the mutable piece of igraph objects;
those might be different even if the two graphs are identical.

Attribute comparison can be turned off with the attrs parameter if the attributes of the two graphs
are allowed to be different.

Value

Logical scalar

igraph-attribute-combination

How igraph functions handle attributes when the graph changes

Description

Many times, when the structure of a graph is modified, vertices/edges map of the original graph
map to vertices/edges in the newly created (modified) graph. For example simplify() maps mul-
tiple edges to single edges. igraph provides a flexible mechanism to specify what to do with the
vertex/edge attributes in these cases.

Details

The functions that support the combination of attributes have one or two extra arguments called
vertex.attr.comb and/or edge.attr.comb that specify how to perform the mapping of the at-
tributes. E.g. contract() contracts many vertices into a single one, the attributes of the vertices
can be combined and stores as the vertex attributes of the new graph.

The specification of the combination of (vertex or edge) attributes can be given as

1. a character scalar,

2. a function object or

3. a list of character scalars and/or function objects.

If it is a character scalar, then it refers to one of the predefined combinations, see their list below.

If it is a function, then the given function is expected to perform the combination. It will be called
once for each new vertex/edge in the graph, with a single argument: the attribute values of the
vertices that map to that single vertex.

The third option, a list can be used to specify different combination methods for different attributes.
A named entry of the list corresponds to the attribute with the same name. An unnamed entry (i.e.
if the name is the empty string) of the list specifies the default combination method. I.e.

list(weight="sum", "ignore")

specifies that the weight of the new edge should be sum of the weights of the corresponding edges
in the old graph; and that the rest of the attributes should be ignored (=dropped).

220 igraph-attribute-combination

Predefined combination functions

The following combination behaviors are predefined:

"ignore" The attribute is ignored and dropped.

"sum" The sum of the attributes is calculated. This does not work for character attributes and
works for complex attributes only if they have a sum generic defined. (E.g. it works for sparse
matrices from the Matrix package, because they have a sum method.)

"prod" The product of the attributes is calculated. This does not work for character attributes and
works for complex attributes only if they have a prod function defined.

"min" The minimum of the attributes is calculated and returned. For character and complex at-
tributes the standard R min function is used.

"max" The maximum of the attributes is calculated and returned. For character and complex
attributes the standard R max function is used.

"random" Chooses one of the supplied attribute values, uniformly randomly. For character and
complex attributes this is implemented by calling sample.

"first" Always chooses the first attribute value. It is implemented by calling the head() function.

"last" Always chooses the last attribute value. It is implemented by calling the tail() function.

"mean" The mean of the attributes is calculated and returned. For character and complex attributes
this simply calls the mean() function.

"median" The median of the attributes is selected. Calls the R median() function for all attribute
types.

"concat" Concatenate the attributes, using the c() function. This results almost always a complex
attribute.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

graph_attr(), vertex_attr(), edge_attr() on how to use graph/vertex/edge attributes in gen-
eral. igraph_options() on igraph parameters.

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-dollar, igraph-vs-attributes, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_graph(c(1, 2, 1, 2, 1, 2, 2, 3, 3, 4))
E(g)$weight <- 1:5

print attribute values with the graph
igraph_options(print.graph.attributes = TRUE)
igraph_options(print.vertex.attributes = TRUE)
igraph_options(print.edge.attributes = TRUE)

igraph-dollar 221

new attribute is the sum of the old ones
simplify(g, edge.attr.comb = "sum")

collect attributes into a string
simplify(g, edge.attr.comb = toString)

concatenate them into a vector, this creates a complex
attribute
simplify(g, edge.attr.comb = "concat")

E(g)$name <- letters[seq_len(ecount(g))]

both attributes are collected into strings
simplify(g, edge.attr.comb = toString)

harmonic average of weights, names are dropped
simplify(g, edge.attr.comb = list(

weight = function(x) length(x) / sum(1 / x),
name = "ignore"

))

igraph-dollar Getting and setting graph attributes, shortcut

Description

The $ operator is a shortcut to get and and set graph attributes. It is shorter and just as readable as
graph_attr() and set_graph_attr().

Usage

S3 method for class 'igraph'
x$name

S3 replacement method for class 'igraph'
x$name <- value

Arguments

x An igraph graph
name Name of the attribute to get/set.
value New value of the graph attribute.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-vs-attributes, set_edge_attr(), set_graph_attr(),
set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

222 igraph-es-attributes

Examples

g <- make_ring(10)
g$name
g$name <- "10-ring"
g$name

igraph-es-attributes Query or set attributes of the edges in an edge sequence

Description

The $ operator is a syntactic sugar to query and set edge attributes, for edges in an edge sequence.

Usage

S3 replacement method for class 'igraph.es'
x[[i]] <- value

S3 replacement method for class 'igraph.es'
x[i] <- value

S3 method for class 'igraph.es'
x$name

S3 replacement method for class 'igraph.es'
x$name <- value

E(x, path = NULL, P = NULL, directed = NULL) <- value

Arguments

x An edge sequence. For E<- it is a graph.

i Index.

value New value of the attribute, for the edges in the edge sequence.

name Name of the edge attribute to query or set.

path Select edges along a path, given by a vertex sequence See E().

P Select edges via pairs of vertices. See E().

directed Whether to use edge directions for the path or P arguments.

Details

The query form of $ is a shortcut for edge_attr(), e.g. E(g)[idx]$attr is equivalent to edge_attr(g,
attr, E(g)[idx]).

The assignment form of $ is a shortcut for set_edge_attr(), e.g. E(g)[idx]$attr <- value is
equivalent to g <- set_edge_attr(g, attr, E(g)[idx], value).

igraph-es-indexing 223

Value

A vector or list, containing the values of the attribute name for the edges in the sequence. For
numeric, character or logical attributes, it is a vector of the appropriate type, otherwise it is a list.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-indexing, igraph-es-indexing2,
igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2, print.igraph.es(), print.igraph.vs()

Examples

color edges of the largest component
largest_comp <- function(graph) {

cl <- components(graph)
V(graph)[which.max(cl$csize) == cl$membership]

}
g <- sample_(

gnp(100, 1 / 100),
with_vertex_(size = 3, label = ""),
with_graph_(layout = layout_with_fr)

)
giant_v <- largest_comp(g)
E(g)$color <- "orange"
E(g)[giant_v %--% giant_v]$color <- "blue"
plot(g)

igraph-es-indexing Indexing edge sequences

Description

Edge sequences can be indexed very much like a plain numeric R vector, with some extras.

Usage

S3 method for class 'igraph.es'
x[...]

Arguments

x An edge sequence

... Indices, see details below.

Value

Another edge sequence, referring to the same graph.

224 igraph-es-indexing

Multiple indices

When using multiple indices within the bracket, all of them are evaluated independently, and then
the results are concatenated using the c() function. E.g. E(g)[1, 2, .inc(1)] is equivalent to
c(E(g)[1], E(g)[2], E(g)[.inc(1)]).

Index types

Edge sequences can be indexed with positive numeric vectors, negative numeric vectors, logical
vectors, character vectors:

• When indexed with positive numeric vectors, the edges at the given positions in the sequence
are selected. This is the same as indexing a regular R atomic vector with positive numeric
vectors.

• When indexed with negative numeric vectors, the edges at the given positions in the sequence
are omitted. Again, this is the same as indexing a regular R atomic vector.

• When indexed with a logical vector, the lengths of the edge sequence and the index must
match, and the edges for which the index is TRUE are selected.

• Named graphs can be indexed with character vectors, to select edges with the given names.
Note that a graph may have edge names and vertex names, and both can be used to select
edges. Edge names are simply used as names of the numeric edge id vector. Vertex names
effectively only work in graphs without multiple edges, and must be separated with a | bar
character to select an edges that incident to the two given vertices. See examples below.

Edge attributes

When indexing edge sequences, edge attributes can be referred to simply by using their names.
E.g. if a graph has a weight edge attribute, then E(G)[weight > 1] selects all edges with a weight
larger than one. See more examples below. Note that attribute names mask the names of variables
present in the calling environment; if you need to look up a variable and you do not want a similarly
named edge attribute to mask it, use the .env pronoun to perform the name lookup in the calling
environment. In other words, use E(g)[.env$weight > 1] to make sure that weight is looked up
from the calling environment even if there is an edge attribute with the same name. Similarly, you
can use .data to match attribute names only.

Special functions

There are some special igraph functions that can be used only in expressions indexing edge se-
quences:

.inc takes a vertex sequence, and selects all edges that have at least one incident vertex in the
vertex sequence.

.from similar to .inc(), but only the tails of the edges are considered.

.to is similar to .inc(), but only the heads of the edges are considered.

\%–\% a special operator that can be used to select all edges between two sets of vertices. It ignores
the edge directions in directed graphs.

\%->\% similar to \%--\%, but edges from the left hand side argument, pointing to the right hand
side argument, are selected, in directed graphs.

igraph-es-indexing2 225

\%<-\% similar to \%--\%, but edges to the left hand side argument, pointing from the right hand
side argument, are selected, in directed graphs.

Note that multiple special functions can be used together, or with regular indices, and then their
results are concatenated. See more examples below.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing2,
igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2, print.igraph.es(), print.igraph.vs()

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2,
intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

Special operators for indexing based on graph structure
g <- sample_pa(100, power = 0.3)
E(g)[1:3 %--% 2:6]
E(g)[1:5 %->% 1:6]
E(g)[1:3 %<-% 2:6]

The edges along the diameter
g <- sample_pa(100, directed = FALSE)
d <- get_diameter(g)
E(g, path = d)

Select edges based on attributes
g <- sample_gnp(20, 3 / 20) %>%

set_edge_attr("weight", value = rnorm(gsize(.)))
E(g)[[weight < 0]]

Indexing with a variable whose name matches the name of an attribute
may fail; use .env to force the name lookup in the parent environment
E(g)$x <- E(g)$weight
x <- 2
E(g)[.env$x]

igraph-es-indexing2 Select edges and show their metadata

Description

The double bracket operator can be used on edge sequences, to print the meta-data (edge attributes)
of the edges in the sequence.

226 igraph-es-indexing2

Usage

S3 method for class 'igraph.es'
x[[...]]

Arguments

x An edge sequence.

... Additional arguments, passed to [.

Details

Technically, when used with edge sequences, the double bracket operator does exactly the same as
the single bracket operator, but the resulting edge sequence is printed differently: all attributes of
the edges in the sequence are printed as well.

See [.igraph.es for more about indexing edge sequences.

Value

Another edge sequence, with metadata printing turned on. See details below.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2, print.igraph.es(), print.igraph.vs()

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-vs-indexing, igraph-vs-indexing2,
intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(
ring(10),
with_vertex_(name = LETTERS[1:10]),
with_edge_(weight = 1:10, color = "green")

)
E(g)
E(g)[[]]
E(g)[[.inc("A")]]

igraph-minus 227

igraph-minus Delete vertices or edges from a graph

Description

Delete vertices or edges from a graph

Usage

S3 method for class 'igraph'
e1 - e2

Arguments

e1 Left argument, see details below.

e2 Right argument, see details below.

Details

The minus operator (‘-’) can be used to remove vertices or edges from the graph. The operation
performed is selected based on the type of the right hand side argument:

• If it is an igraph graph object, then the difference of the two graphs is calculated, see difference().

• If it is a numeric or character vector, then it is interpreted as a vector of vertex ids and the
specified vertices will be deleted from the graph. Example:

g <- make_ring(10)
V(g)$name <- letters[1:10]
g <- g - c("a", "b")

• If e2 is a vertex sequence (e.g. created by the V() function), then these vertices will be deleted
from the graph.

• If it is an edge sequence (e.g. created by the E() function), then these edges will be deleted
from the graph.

• If it is an object created with the vertex() (or the vertices()) function, then all arguments
of vertices() are concatenated and the result is interpreted as a vector of vertex ids. These
vertices will be removed from the graph.

• If it is an object created with the edge() (or the edges()) function, then all arguments of
edges() are concatenated and then interpreted as edges to be removed from the graph. Ex-
ample:

g <- make_ring(10)
V(g)$name <- letters[1:10]
E(g)$name <- LETTERS[1:10]
g <- g - edge("e|f")
g <- g - edge("H")

228 igraph-vs-attributes

• If it is an object created with the path() function, then all path() arguments are concatenated
and then interpreted as a path along which edges will be removed from the graph. Example:

g <- make_ring(10)
V(g)$name <- letters[1:10]
g <- g - path("a", "b", "c", "d")

Value

An igraph graph.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), intersection(), intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

igraph-vs-attributes Query or set attributes of the vertices in a vertex sequence

Description

The $ operator is a syntactic sugar to query and set the attributes of the vertices in a vertex sequence.

Usage

S3 replacement method for class 'igraph.vs'
x[[i]] <- value

S3 replacement method for class 'igraph.vs'
x[i] <- value

S3 method for class 'igraph.vs'
x$name

S3 replacement method for class 'igraph.vs'
x$name <- value

V(x) <- value

Arguments

x A vertex sequence. For V<- it is a graph.

i Index.

value New value of the attribute, for the vertices in the vertex sequence.

name Name of the vertex attribute to query or set.

igraph-vs-attributes 229

Details

The query form of $ is a shortcut for vertex_attr(), e.g. V(g)[idx]$attr is equivalent to
vertex_attr(g, attr, V(g)[idx]).

The assignment form of $ is a shortcut for set_vertex_attr(), e.g. V(g)[idx]$attr <- value is
equivalent to g <- set_vertex_attr(g, attr, V(g)[idx], value).

Value

A vector or list, containing the values of attribute name for the vertices in the vertex sequence. For
numeric, character or logical attributes, it is a vector of the appropriate type, otherwise it is a list.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-indexing, igraph-vs-indexing2, print.igraph.es(), print.igraph.vs()

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, set_edge_attr(), set_graph_attr(), set_vertex_attr(),
set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_(
ring(10),
with_vertex_(
name = LETTERS[1:10],
color = sample(1:2, 10, replace = TRUE)

)
)
V(g)$name
V(g)$color
V(g)$frame.color <- V(g)$color

color vertices of the largest component
largest_comp <- function(graph) {

cl <- components(graph)
V(graph)[which.max(cl$csize) == cl$membership]

}
g <- sample_(

gnp(100, 2 / 100),
with_vertex_(size = 3, label = ""),
with_graph_(layout = layout_with_fr)

)
giant_v <- largest_comp(g)
V(g)$color <- "blue"
V(g)[giant_v]$color <- "orange"
plot(g)

230 igraph-vs-indexing

igraph-vs-indexing Indexing vertex sequences

Description

Vertex sequences can be indexed very much like a plain numeric R vector, with some extras.

Usage

S3 method for class 'igraph.vs'
x[..., na_ok = FALSE]

Arguments

x A vertex sequence.
... Indices, see details below.
na_ok Whether it is OK to have NAs in the vertex sequence.

Details

Vertex sequences can be indexed using both the single bracket and the double bracket operators, and
they both work the same way. The only difference between them is that the double bracket operator
marks the result for printing vertex attributes.

Value

Another vertex sequence, referring to the same graph.

Multiple indices

When using multiple indices within the bracket, all of them are evaluated independently, and
then the results are concatenated using the c() function (except for the na_ok argument, which
is special an must be named. E.g. V(g)[1, 2, .nei(1)] is equivalent to c(V(g)[1], V(g)[2],
V(g)[.nei(1)]).

Index types

Vertex sequences can be indexed with positive numeric vectors, negative numeric vectors, logical
vectors, character vectors:

• When indexed with positive numeric vectors, the vertices at the given positions in the sequence
are selected. This is the same as indexing a regular R atomic vector with positive numeric
vectors.

• When indexed with negative numeric vectors, the vertices at the given positions in the se-
quence are omitted. Again, this is the same as indexing a regular R atomic vector.

• When indexed with a logical vector, the lengths of the vertex sequence and the index must
match, and the vertices for which the index is TRUE are selected.

• Named graphs can be indexed with character vectors, to select vertices with the given names.

igraph-vs-indexing 231

Vertex attributes

When indexing vertex sequences, vertex attributes can be referred to simply by using their names.
E.g. if a graph has a name vertex attribute, then V(g)[name == "foo"] is equivalent to V(g)[V(g)$name
== "foo"]. See more examples below. Note that attribute names mask the names of variables
present in the calling environment; if you need to look up a variable and you do not want a similarly
named vertex attribute to mask it, use the .env pronoun to perform the name lookup in the calling
environment. In other words, use V(g)[.env$name == "foo"] to make sure that name is looked up
from the calling environment even if there is a vertex attribute with the same name. Similarly, you
can use .data to match attribute names only.

Special functions

There are some special igraph functions that can be used only in expressions indexing vertex se-
quences:

.nei takes a vertex sequence as its argument and selects neighbors of these vertices. An optional
mode argument can be used to select successors (mode="out"), or predecessors (mode="in")
in directed graphs.

.inc Takes an edge sequence as an argument, and selects vertices that have at least one incident
edge in this edge sequence.

.from Similar to .inc, but only considers the tails of the edges.

.to Similar to .inc, but only considers the heads of the edges.

.innei, .outnei .innei(v) is a shorthand for .nei(v, mode = "in"), and .outnei(v) is a short-
hand for .nei(v, mode = "out").

Note that multiple special functions can be used together, or with regular indices, and then their
results are concatenated. See more examples below.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing2, print.igraph.es(),
print.igraph.vs()

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing2,
intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

Setting attributes for subsets of vertices
largest_comp <- function(graph) {

cl <- components(graph)
V(graph)[which.max(cl$csize) == cl$membership]

}
g <- sample_(

gnp(100, 2 / 100),
with_vertex_(size = 3, label = ""),

232 igraph-vs-indexing2

with_graph_(layout = layout_with_fr)
)
giant_v <- largest_comp(g)
V(g)$color <- "green"
V(g)[giant_v]$color <- "red"
plot(g)

nei() special function
g <- make_graph(c(1, 2, 2, 3, 2, 4, 4, 2))
V(g)[.nei(c(2, 4))]
V(g)[.nei(c(2, 4), "in")]
V(g)[.nei(c(2, 4), "out")]

The same with vertex names
g <- make_graph(~ A -+ B, B -+ C:D, D -+ B)
V(g)[.nei(c("B", "D"))]
V(g)[.nei(c("B", "D"), "in")]
V(g)[.nei(c("B", "D"), "out")]

Resolving attributes
g <- make_graph(~ A -+ B, B -+ C:D, D -+ B)
V(g)$color <- c("red", "red", "green", "green")
V(g)[color == "red"]

Indexing with a variable whose name matches the name of an attribute
may fail; use .env to force the name lookup in the parent environment
V(g)$x <- 10:13
x <- 2
V(g)[.env$x]

igraph-vs-indexing2 Select vertices and show their metadata

Description

The double bracket operator can be used on vertex sequences, to print the meta-data (vertex at-
tributes) of the vertices in the sequence.

Usage

S3 method for class 'igraph.vs'
x[[...]]

Arguments

x A vertex sequence.
... Additional arguments, passed to [.

igraph_options 233

Details

Technically, when used with vertex sequences, the double bracket operator does exactly the same
as the single bracket operator, but the resulting vertex sequence is printed differently: all attributes
of the vertices in the sequence are printed as well.

See [.igraph.vs for more about indexing vertex sequences.

Value

The double bracket operator returns another vertex sequence, with meta-data (attribute) printing
turned on. See details below.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing, print.igraph.es(), print.igraph.vs()

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_ring(10) %>%
set_vertex_attr("color", value = "red") %>%
set_vertex_attr("name", value = LETTERS[1:10])

V(g)
V(g)[[]]
V(g)[1:5]
V(g)[[1:5]]

igraph_options Parameters for the igraph package

Description

igraph has some parameters which (usually) affect the behavior of many functions. These can be
set for the whole session via igraph_options().

Usage

igraph_options(...)

igraph_opt(x, default = NULL)

234 igraph_options

Arguments

... A list may be given as the only argument, or any number of arguments may be
in the name=value form, or no argument at all may be given. See the Value and
Details sections for explanation.

x A character string holding an option name.

default If the specified option is not set in the options list, this value is returned. This
facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.

Details

The parameter values set via a call to the igraph_options() function will remain in effect for the
rest of the session, affecting the subsequent behaviour of the other functions of the igraph package
for which the given parameters are relevant.

This offers the possibility of customizing the functioning of the igraph package, for instance by
insertions of appropriate calls to igraph_options() in a load hook for package igraph.

The currently used parameters in alphabetical order:

add.params Logical scalar, whether to add model parameter to the graphs that are created by the
various graph constructors. By default it is TRUE.

add.vertex.names Logical scalar, whether to add vertex names to node level indices, like degree,
betweenness scores, etc. By default it is TRUE.

annotate.plot Logical scalar, whether to annotate igraph plots with the graph’s name (name graph
attribute, if present) as main, and with the number of vertices and edges as xlab. Defaults to
FALSE.

dend.plot.type The plotting function to use when plotting community structure dendrograms via
plot_dendrogram(). Possible values are ‘auto’ (the default), ‘phylo’, ‘hclust’ and ‘dendro-
gram’. See plot_dendrogram() for details.

edge.attr.comb Specifies what to do with the edge attributes if the graph is modified. The default
value is list(weight="sum", name="concat", "ignore"). See attribute.combination()
for details on this.

print.edge.attributes Logical constant, whether to print edge attributes when printing graphs. De-
faults to FALSE.

print.full Logical scalar, whether print.igraph() should show the graph structure as well, or
only a summary of the graph.

print.graph.attributes Logical constant, whether to print graph attributes when printing graphs.
Defaults to FALSE.

print.vertex.attributes Logical constant, whether to print vertex attributes when printing graphs.
Defaults to FALSE.

return.vs.es Whether functions that return a set or sequence of vertices/edges should return formal
vertex/edge sequence objects. This option was introduced in igraph version 1.0.0 and defaults
to TRUE. If your package requires the old behavior, you can set it to FALSE in the .onLoad
function of your package, without affecting other packages.

sparsematrices Whether to use the Matrix package for (sparse) matrices. It is recommended, if
the user works with larger graphs.

incident 235

verbose Logical constant, whether igraph functions should talk more than minimal. E.g. if TRUE
then some functions will use progress bars while computing. Defaults to FALSE.

vertex.attr.comb Specifies what to do with the vertex attributes if the graph is modified. The de-
fault value is list(name="concat", "ignore"). See attribute.combination() for details
on this.

Value

igraph_options() returns a list with the old values of the updated parameters, invisibly. Without
any arguments, it returns the values of all options.

For igraph_opt(), the current value set for option x, or NULL if the option is unset.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph_options() is similar to options() and igraph_opt() is similar to getOption().

Other igraph options: with_igraph_opt()

Examples

oldval <- igraph_opt("verbose")
igraph_options(verbose = TRUE)
layout_with_kk(make_ring(10))
igraph_options(verbose = oldval)

oldval <- igraph_options(verbose = TRUE, sparsematrices = FALSE)
make_ring(10)[]
igraph_options(oldval)
igraph_opt("verbose")

incident Incident edges of a vertex in a graph

Description

Incident edges of a vertex in a graph

Usage

incident(graph, v, mode = c("all", "out", "in", "total"))

236 incident_edges

Arguments

graph The input graph.

v The vertex of which the incident edges are queried.

mode Whether to query outgoing (‘out’), incoming (‘in’) edges, or both types (‘all’).
This is ignored for undirected graphs.

Value

An edge sequence containing the incident edges of the input vertex.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), head_of(), incident_edges(), is_directed(),
neighbors(), tail_of()

Examples

g <- make_graph("Zachary")
incident(g, 1)
incident(g, 34)

incident_edges Incident edges of multiple vertices in a graph

Description

This function is similar to incident(), but it queries multiple vertices at once.

Usage

incident_edges(graph, v, mode = c("out", "in", "all", "total"))

Arguments

graph Input graph.

v The vertices to query

mode Whether to query outgoing (‘out’), incoming (‘in’) edges, or both types (‘all’).
This is ignored for undirected graphs.

Value

A list of edge sequences.

indent_print 237

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), head_of(), incident(), is_directed(), neighbors(),
tail_of()

Examples

g <- make_graph("Zachary")
incident_edges(g, c(1, 34))

indent_print Indent a printout

Description

Indent a printout

Usage

indent_print(..., .indent = " ", .printer = print)

Arguments

... Passed to the printing function.

.indent Character scalar, indent the printout with this.

.printer The printing function, defaults to print.

Value

The first element in ..., invisibly.

intersection Intersection of two or more sets

Description

This is an S3 generic function. See methods("intersection") for the actual implementations
for various S3 classes. Initially it is implemented for igraph graphs and igraph vertex and edge
sequences. See intersection.igraph(), and intersection.igraph.vs().

Usage

intersection(...)

238 intersection.igraph

Arguments

... Arguments, their number and interpretation depends on the function that imple-
ments intersection().

Value

Depends on the function that implements this method.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection.igraph(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

intersection.igraph Intersection of graphs

Description

The intersection of two or more graphs are created. The graphs may have identical or overlapping
vertex sets.

Usage

S3 method for class 'igraph'
intersection(..., byname = "auto", keep.all.vertices = TRUE)

Arguments

... Graph objects or lists of graph objects.

byname A logical scalar, or the character scalar auto. Whether to perform the operation
based on symbolic vertex names. If it is auto, that means TRUE if all graphs are
named and FALSE otherwise. A warning is generated if auto and some (but not
all) graphs are named.

keep.all.vertices

Logical scalar, whether to keep vertices that only appear in a subset of the input
graphs.

Details

intersection() creates the intersection of two or more graphs: only edges present in all graphs
will be included. The corresponding operator is %s%.

If the byname argument is TRUE (or auto and all graphs are named), then the operation is performed
on symbolic vertex names instead of the internal numeric vertex ids.

intersection.igraph.es 239

intersection() keeps the attributes of all graphs. All graph, vertex and edge attributes are copied
to the result. If an attribute is present in multiple graphs and would result a name clash, then this
attribute is renamed by adding suffixes: _1, _2, etc.

The name vertex attribute is treated specially if the operation is performed based on symbolic vertex
names. In this case name must be present in all graphs, and it is not renamed in the result graph.

An error is generated if some input graphs are directed and others are undirected.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
path(), permute(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

Common part of two social networks
net1 <- graph_from_literal(

D - A:B:F:G, A - C - F - A, B - E - G - B, A - B, F - G,
H - F:G, H - I - J

)
net2 <- graph_from_literal(D - A:F:Y, B - A - X - F - H - Z, F - Y)
print_all(net1 %s% net2)

intersection.igraph.es

Intersection of edge sequences

Description

Intersection of edge sequences

Usage

S3 method for class 'igraph.es'
intersection(...)

Arguments

... The edge sequences to take the intersection of.

240 intersection.igraph.vs

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of edges is lost in the result.

Value

An edge sequence that contains edges that appear in all given sequences, each edge exactly once.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.vs(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(),
union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
intersection(E(g)[1:6], E(g)[5:9])

intersection.igraph.vs

Intersection of vertex sequences

Description

Intersection of vertex sequences

Usage

S3 method for class 'igraph.vs'
intersection(...)

Arguments

... The vertex sequences to take the intersection of.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of vertices is lost in the result.

Value

A vertex sequence that contains vertices that appear in all given sequences, each vertex exactly
once.

isomorphic 241

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), rev.igraph.es(), rev.igraph.vs(), union.igraph.es(),
union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
intersection(E(g)[1:6], E(g)[5:9])

isomorphic Decide if two graphs are isomorphic

Description

Decide if two graphs are isomorphic

Usage

isomorphic(graph1, graph2, method = c("auto", "direct", "vf2", "bliss"), ...)

is_isomorphic_to(
graph1,
graph2,
method = c("auto", "direct", "vf2", "bliss"),
...

)

Arguments

graph1 The first graph.

graph2 The second graph.

method The method to use. Possible values: ‘auto’, ‘direct’, ‘vf2’, ‘bliss’. See their
details below.

... Additional arguments, passed to the various methods.

Value

Logical scalar, TRUE if the graphs are isomorphic.

242 isomorphic

‘auto’ method

It tries to select the appropriate method based on the two graphs. This is the algorithm it uses:

1. If the two graphs do not agree on their order and size (i.e. number of vertices and edges), then
return FALSE.

2. If the graphs have three or four vertices, then the ‘direct’ method is used.

3. If the graphs are directed, then the ‘vf2’ method is used.

4. Otherwise the ‘bliss’ method is used.

‘direct’ method

This method only works on graphs with three or four vertices, and it is based on a pre-calculated
and stored table. It does not have any extra arguments.

‘vf2’ method

This method uses the VF2 algorithm by Cordella, Foggia et al., see references below. It supports
vertex and edge colors and have the following extra arguments:

vertex.color1, vertex.color2 Optional integer vectors giving the colors of the vertices for colored
graph isomorphism. If they are not given, but the graph has a “color” vertex attribute, then
it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments. See also examples below.

edge.color1, edge.color2 Optional integer vectors giving the colors of the edges for edge-colored
(sub)graph isomorphism. If they are not given, but the graph has a “color” edge attribute,
then it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments.

‘bliss’ method

Uses the BLISS algorithm by Junttila and Kaski, and it works for undirected graphs. For both
graphs the canonical_permutation() and then the permute() function is called to transfer them
into canonical form; finally the canonical forms are compared. Extra arguments:

sh Character constant, the heuristics to use in the BLISS algorithm for graph1 and graph2. See
the sh argument of canonical_permutation() for possible values.

sh defaults to ‘fm’.

References

Tommi Junttila and Petteri Kaski: Engineering an Efficient Canonical Labeling Tool for Large and
Sparse Graphs, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and
the Fourth Workshop on Analytic Algorithms and Combinatorics. 2007.

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149–159, 2001.

isomorphisms 243

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
graph_from_isomorphism_class(), isomorphism_class(), isomorphisms(), subgraph_isomorphic(),
subgraph_isomorphisms()

Examples

create some non-isomorphic graphs
g1 <- graph_from_isomorphism_class(3, 10)
g2 <- graph_from_isomorphism_class(3, 11)
isomorphic(g1, g2)

create two isomorphic graphs, by permuting the vertices of the first
g1 <- sample_pa(30, m = 2, directed = FALSE)
g2 <- permute(g1, sample(vcount(g1)))
should be TRUE
isomorphic(g1, g2)
isomorphic(g1, g2, method = "bliss")
isomorphic(g1, g2, method = "vf2")

colored graph isomorphism
g1 <- make_ring(10)
g2 <- make_ring(10)
isomorphic(g1, g2)

V(g1)$color <- rep(1:2, length = vcount(g1))
V(g2)$color <- rep(2:1, length = vcount(g2))
consider colors by default
count_isomorphisms(g1, g2)
ignore colors
count_isomorphisms(g1, g2,

vertex.color1 = NULL,
vertex.color2 = NULL

)

isomorphisms Calculate all isomorphic mappings between the vertices of two graphs

Description

Calculate all isomorphic mappings between the vertices of two graphs

Usage

isomorphisms(graph1, graph2, method = "vf2", ...)

244 isomorphism_class

Arguments

graph1 The first graph.

graph2 The second graph.

method Currently only ‘vf2’ is supported, see isomorphic() for details about it and
extra arguments.

... Extra arguments, passed to the various methods.

Value

A list of vertex sequences, corresponding to all mappings from the first graph to the second.

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
graph_from_isomorphism_class(), isomorphic(), isomorphism_class(), subgraph_isomorphic(),
subgraph_isomorphisms()

isomorphism_class Isomorphism class of a graph

Description

The isomorphism class is a non-negative integer number. Graphs (with the same number of vertices)
having the same isomorphism class are isomorphic and isomorphic graphs always have the same
isomorphism class. Currently it can handle directed graphs with 3 or 4 vertices and undirected
graphs with 3 to 6 vertices.

Usage

isomorphism_class(graph, v)

Arguments

graph The input graph.

v Optionally a vertex sequence. If not missing, then an induced subgraph of the
input graph, consisting of this vertices, is used.

Value

An integer number.

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
graph_from_isomorphism_class(), isomorphic(), isomorphisms(), subgraph_isomorphic(),
subgraph_isomorphisms()

is_acyclic 245

Examples

create some non-isomorphic graphs
g1 <- graph_from_isomorphism_class(3, 10)
g2 <- graph_from_isomorphism_class(3, 11)
isomorphism_class(g1)
isomorphism_class(g2)
isomorphic(g1, g2)

is_acyclic Acyclic graphs

Description

This function tests whether the given graph is free of cycles.

Usage

is_acyclic(graph)

Arguments

graph The input graph.

Details

This function looks for directed cycles in directed graphs and undirected cycles in undirected
graphs. Use find_cycle() to return a specific cycle.

Value

A logical vector of length one.

Related documentation in the C library

is_acyclic().

See Also

is_forest() and is_dag() for functions specific to undirected and directed graphs.

Graph cycles feedback_arc_set(), feedback_vertex_set(), find_cycle(), girth(), has_eulerian_path(),
is_dag(), simple_cycles()

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_is_acyclic

246 is_biconnected

Examples

g <- make_graph(c(1, 2, 1, 3, 2, 4, 3, 4), directed = TRUE)
is_acyclic(g)
is_acyclic(as_undirected(g))

is_biconnected Check biconnectedness

Description

[Experimental]
Tests whether a graph is biconnected.

Usage

is_biconnected(graph)

Arguments

graph The input graph. Edge directions are ignored.

Details

A graph is biconnected if the removal of any single vertex (and its adjacent edges) does not discon-
nect it.
igraph does not consider single-vertex graphs biconnected.
Note that some authors do not consider the graph consisting of two connected vertices as bicon-
nected, however, igraph does.

Value

Logical, TRUE if the graph is biconnected.

Related documentation in the C library

is_biconnected().

See Also

articulation_points(), biconnected_components(), is_connected(), vertex_connectivity()
Connected components articulation_points(), biconnected_components(), component_distribution(),
decompose()

Examples

is_biconnected(make_graph("bull"))
is_biconnected(make_graph("dodecahedron"))
is_biconnected(make_full_graph(1))
is_biconnected(make_full_graph(2))

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_biconnected

is_bipartite 247

is_bipartite Checks whether the graph has a vertex attribute called type.

Description

It does not check whether the graph is bipartite in the mathematical sense. Use bipartite_mapping()
for that.

Usage

is_bipartite(graph)

Arguments

graph The input graph

See Also

Bipartite graphs bipartite_mapping(), bipartite_projection(), make_bipartite_graph()

is_chordal Chordality of a graph

Description

A graph is chordal (or triangulated) if each of its cycles of four or more nodes has a chord, which
is an edge joining two nodes that are not adjacent in the cycle. An equivalent definition is that any
chordless cycles have at most three nodes.

Usage

is_chordal(
graph,
alpha = NULL,
alpham1 = NULL,
fillin = FALSE,
newgraph = FALSE

)

248 is_chordal

Arguments

graph The input graph. It may be directed, but edge directions are ignored, as the
algorithm is defined for undirected graphs.

alpha Numeric vector, the maximal chardinality ordering of the vertices. If it is NULL,
then it is automatically calculated by calling max_cardinality(), or from alpham1
if that is given..

alpham1 Numeric vector, the inverse of alpha. If it is NULL, then it is automatically
calculated by calling max_cardinality(), or from alpha.

fillin Logical scalar, whether to calculate the fill-in edges.

newgraph Logical scalar, whether to calculate the triangulated graph.

Details

The chordality of the graph is decided by first performing maximum cardinality search on it (if the
alpha and alpham1 arguments are NULL), and then calculating the set of fill-in edges.

The set of fill-in edges is empty if and only if the graph is chordal.

It is also true that adding the fill-in edges to the graph makes it chordal.

Value

A list with three members:

chordal Logical scalar, it is TRUE iff the input graph is chordal.

fillin If requested, then a numeric vector giving the fill-in edges. NULL otherwise.

newgraph If requested, then the triangulated graph, an igraph object. NULL otherwise.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Robert E Tarjan and Mihalis Yannakakis. (1984). Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal
of Computation 13, 566–579.

See Also

max_cardinality()

Other chordal: max_cardinality()

is_complete 249

Examples

The examples from the Tarjan-Yannakakis paper
g1 <- graph_from_literal(

A - B:C:I, B - A:C:D, C - A:B:E:H, D - B:E:F,
E - C:D:F:H, F - D:E:G, G - F:H, H - C:E:G:I,
I - A:H

)
max_cardinality(g1)
is_chordal(g1, fillin = TRUE)

g2 <- graph_from_literal(
A - B:E, B - A:E:F:D, C - E:D:G, D - B:F:E:C:G,
E - A:B:C:D:F, F - B:D:E, G - C:D:H:I, H - G:I:J,
I - G:H:J, J - H:I

)
max_cardinality(g2)
is_chordal(g2, fillin = TRUE)

is_complete Is this a complete graph?

Description

A graph is considered complete if there is an edge between all distinct directed pairs of vertices.
igraph considers both the singleton graph and the null graph complete.

Usage

is_complete(graph)

Arguments

graph The input graph.

Value

True if the graph is complete.

Related documentation in the C library

is_complete().

See Also

make_full_graph()

Other cliques: cliques(), ivs(), weighted_cliques()

https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_is_complete

250 is_dag

Examples

g <- make_full_graph(6, directed = TRUE)
is_complete(g)
g <- delete_edges(g, 1)
is_complete(g)
g <- as_undirected(g)
is_complete(g)

is_dag Directed acyclic graphs

Description

This function tests whether the given graph is a DAG, a directed acyclic graph.

Usage

is_dag(graph)

Arguments

graph The input graph. It may be undirected, in which case FALSE is reported.

Details

is_dag() checks whether there is a directed cycle in the graph. If not, the graph is a DAG.

Value

A logical vector of length one.

Related documentation in the C library

is_dag().

Author(s)

Tamas Nepusz <ntamas@gmail.com> for the C code, Gabor Csardi <csardi.gabor@gmail.com>
for the R interface.

See Also

Graph cycles feedback_arc_set(), feedback_vertex_set(), find_cycle(), girth(), has_eulerian_path(),
is_acyclic(), simple_cycles()

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_matching(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_dag

is_degseq 251

Examples

g <- make_tree(10)
is_dag(g)
g2 <- g + edge(5, 1)
is_dag(g2)

is_degseq Check if a degree sequence is valid for a multi-graph

Description

is_degseq() checks whether the given vertex degrees (in- and out-degrees for directed graphs)
can be realized by a graph. Note that the graph does not have to be simple, it may contain loop
and multiple edges. For undirected graphs, it also checks whether the sum of degrees is even. For
directed graphs, the function checks whether the lengths of the two degree vectors are equal and
whether their sums are also equal. These are known sufficient and necessary conditions for a degree
sequence to be valid.

Usage

is_degseq(out.deg, in.deg = NULL)

Arguments

out.deg Integer vector, the degree sequence for undirected graphs, or the out-degree se-
quence for directed graphs.

in.deg NULL or an integer vector. For undirected graphs, it should be NULL. For directed
graphs it specifies the in-degrees.

Value

A logical scalar.

Author(s)

Tamás Nepusz <ntamas@gmail.com> and Szabolcs Horvát <szhorvat@gmail.com>

References

Z Király, Recognizing graphic degree sequences and generating all realizations. TR-2011-11,
Egerváry Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012).

B. Cloteaux, Is This for Real? Fast Graphicality Testing, Comput. Sci. Eng. 17, 91 (2015).

A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014).

G. Cairns and S. Mendan, Degree Sequence for Graphs with Loops (2013).

252 is_directed

See Also

Other graphical degree sequences: is_graphical()

Examples

g <- sample_gnp(100, 2 / 100)
is_degseq(degree(g))
is_graphical(degree(g))

is_directed Check whether a graph is directed

Description

Check whether a graph is directed

Usage

is_directed(graph)

Arguments

graph The input graph

Value

Logical scalar, whether the graph is directed.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), head_of(), incident(), incident_edges(),
neighbors(), tail_of()

Examples

g <- make_ring(10)
is_directed(g)

g2 <- make_ring(10, directed = TRUE)
is_directed(g2)

is_forest 253

is_forest Decide whether a graph is a forest.

Description

is_forest() decides whether a graph is a forest, and optionally returns a set of possible root
vertices for its components.

Usage

is_forest(graph, mode = c("out", "in", "all", "total"), details = FALSE)

Arguments

graph An igraph graph object

mode Whether to consider edge directions in a directed graph. ‘all’ ignores edge di-
rections; ‘out’ requires edges to be oriented outwards from the root, ‘in’ requires
edges to be oriented towards the root.

details Whether to return only whether the graph is a tree (FALSE) or also a possible
root (TRUE)

Details

An undirected graph is a forest if it has no cycles. In the directed case, a possible additional re-
quirement is that edges in each tree are oriented away from the root (out-trees or arborescences) or
all edges are oriented towards the root (in-trees or anti-arborescences). This test can be controlled
using the mode parameter.

By convention, the null graph (i.e. the graph with no vertices) is considered to be a forest.

Value

When details is FALSE, a logical value that indicates whether the graph is a tree. When details
is TRUE, a named list with two entries:

res Logical value that indicates whether the graph is a tree.

root The root vertex of the tree; undefined if the graph is not a tree.

Related documentation in the C library

is_forest().

See Also

Other trees: is_tree(), make_from_prufer(), sample_spanning_tree(), to_prufer()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_forest

254 is_graphical

Examples

g <- make_tree(3) + make_tree(5, 3)
is_forest(g)
is_forest(g, details = TRUE)

is_graphical Is a degree sequence graphical?

Description

Determine whether the given vertex degrees (in- and out-degrees for directed graphs) can be realized
by a graph.

Usage

is_graphical(
out.deg,
in.deg = NULL,
allowed.edge.types = c("simple", "loops", "multi", "all")

)

Arguments

out.deg Integer vector, the degree sequence for undirected graphs, or the out-degree se-
quence for directed graphs.

in.deg NULL or an integer vector. For undirected graphs, it should be NULL. For directed
graphs it specifies the in-degrees.

allowed.edge.types

The allowed edge types in the graph. ‘simple’ means that neither loop nor mul-
tiple edges are allowed (i.e. the graph must be simple). ‘loops’ means that loop
edges are allowed but mutiple edges are not. ‘multi’ means that multiple edges
are allowed but loop edges are not. ‘all’ means that both loop edges and multiple
edges are allowed.

Details

The classical concept of graphicality assumes simple graphs. This function can perform the check
also when self-loops, multi-edges, or both are allowed in the graph.

Value

A logical scalar.

Related documentation in the C library

is_graphical().

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_graphical

is_igraph 255

Author(s)

Tamás Nepusz <ntamas@gmail.com>

References

Hakimi SL: On the realizability of a set of integers as degrees of the vertices of a simple graph. J
SIAM Appl Math 10:496-506, 1962.

PL Erdős, I Miklós and Z Toroczkai: A simple Havel-Hakimi type algorithm to realize graphical
degree sequences of directed graphs. The Electronic Journal of Combinatorics 17(1):R66, 2010.

See Also

Other graphical degree sequences: is_degseq()

Examples

g <- sample_gnp(100, 2 / 100)
is_degseq(degree(g))
is_graphical(degree(g))

is_igraph Is this object an igraph graph?

Description

Is this object an igraph graph?

Usage

is_igraph(graph)

Arguments

graph An R object.

Value

A logical constant, TRUE if argument graph is a graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)
is_igraph(g)
is_igraph(numeric(10))

256 is_matching

is_matching Matching

Description

A matching in a graph means the selection of a set of edges that are pairwise non-adjacent, i.e. they
have no common incident vertices. A matching is maximal if it is not a proper subset of any other
matching.

Usage

is_matching(graph, matching, types = NULL)

is_max_matching(graph, matching, types = NULL)

max_bipartite_match(
graph,
types = NULL,
weights = NULL,
eps = .Machine$double.eps

)

Arguments

graph The input graph. It might be directed, but edge directions will be ignored.

matching A potential matching. An integer vector that gives the pair in the matching for
each vertex. For vertices without a pair, supply NA here.

types Vertex types, if the graph is bipartite. By default they are taken from the ‘type’
vertex attribute, if present.

weights Potential edge weights. If the graph has an edge attribute called ‘weight’, and
this argument is NULL, then the edge attribute is used automatically. In weighted
matching, the weights of the edges must match as much as possible.

eps A small real number used in equality tests in the weighted bipartite matching
algorithm. Two real numbers are considered equal in the algorithm if their dif-
ference is smaller than eps. This is required to avoid the accumulation of nu-
merical errors. By default it is set to the smallest x, such that 1 + x ̸= 1 holds.
If you are running the algorithm with no weights, this argument is ignored.

Details

is_matching() checks a matching vector and verifies whether its length matches the number of
vertices in the given graph, its values are between zero (inclusive) and the number of vertices (in-
clusive), and whether there exists a corresponding edge in the graph for every matched vertex pair.
For bipartite graphs, it also verifies whether the matched vertices are in different parts of the graph.

is_max_matching() checks whether a matching is maximal. A matching is maximal if and only if
there exists no unmatched vertex in a graph such that one of its neighbors is also unmatched.

is_matching 257

max_bipartite_match() calculates a maximum matching in a bipartite graph. A matching in a
bipartite graph is a partial assignment of vertices of the first kind to vertices of the second kind
such that each vertex of the first kind is matched to at most one vertex of the second kind and vice
versa, and matched vertices must be connected by an edge in the graph. The size (or cardinality)
of a matching is the number of edges. A matching is a maximum matching if there exists no other
matching with larger cardinality. For weighted graphs, a maximum matching is a matching whose
edges have the largest possible total weight among all possible matchings.

Maximum matchings in bipartite graphs are found by the push-relabel algorithm with greedy ini-
tialization and a global relabeling after every n/2 steps where n is the number of vertices in the
graph.

Value

is_matching() and is_max_matching() return a logical scalar.

max_bipartite_match() returns a list with components:

matching_size The size of the matching, i.e. the number of edges connecting the matched vertices.

matching_weight The weights of the matching, if the graph was weighted. For unweighted graphs
this is the same as the size of the matching.

matching The matching itself. Numeric vertex id, or vertex names if the graph was named. Non-
matched vertices are denoted by NA.

Author(s)

Tamas Nepusz <ntamas@gmail.com>

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), k_shortest_paths(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- graph_from_literal(a - b - c - d - e - f)
m1 <- c("b", "a", "d", "c", "f", "e") # maximal matching
m2 <- c("b", "a", "d", "c", NA, NA) # non-maximal matching
m3 <- c("b", "c", "d", "c", NA, NA) # not a matching
is_matching(g, m1)
is_matching(g, m2)
is_matching(g, m3)
is_max_matching(g, m1)
is_max_matching(g, m2)
is_max_matching(g, m3)

V(g)$type <- rep(c(FALSE, TRUE), 3)
print_all(g, v = TRUE)
max_bipartite_match(g)

258 is_min_separator

g2 <- graph_from_literal(a - b - c - d - e - f - g)
V(g2)$type <- rep(c(FALSE, TRUE), length.out = vcount(g2))
print_all(g2, v = TRUE)
max_bipartite_match(g2)
#' @keywords graphs

is_min_separator Minimal vertex separators

Description

Check whether a given set of vertices is a minimal vertex separator.

Usage

is_min_separator(graph, candidate)

Arguments

graph The input graph. It may be directed, but edge directions are ignored.

candidate A numeric vector giving the vertex ids of the candidate separator.

Details

is_min_separator() decides whether the supplied vertex set is a minimal vertex separator. A
minimal vertex separator is a vertex separator, such that none of its proper subsets are a vertex
separator.

Value

A logical scalar, whether the supplied vertex set is a (minimal) vertex separator or not.

Related documentation in the C library

is_minimal_separator().

See Also

Other flow: dominator_tree(), edge_connectivity(), is_separator(), max_flow(), min_cut(),
min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

https://igraph.org/c/html/0.10.17/igraph-Separators.html#igraph_is_minimal_separator

is_named 259

Examples

The graph from the Moody-White paper
mw <- graph_from_literal(

1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
21 - 22:23, 22 - 23

)

Cohesive subgraphs
mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
mw2 <- induced_subgraph(mw, as.character(7:16))
mw3 <- induced_subgraph(mw, as.character(17:23))
mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
mw5 <- induced_subgraph(mw, as.character(1:7))

check.sep <- function(G) {
sep <- min_separators(G)
sapply(sep, is_min_separator, graph = G)

}

check.sep(mw)
check.sep(mw1)
check.sep(mw2)
check.sep(mw3)
check.sep(mw4)
check.sep(mw5)

is_named Named graphs

Description

An igraph graph is named, if there is a symbolic name associated with its vertices.

Usage

is_named(graph)

Arguments

graph The input graph.

260 is_printer_callback

Details

In igraph vertices can always be identified and specified via their numeric vertex ids. This is,
however, not always convenient, and in many cases there exist symbolic ids that correspond to the
vertices. To allow this more flexible identification of vertices, one can assign a vertex attribute
called ‘name’ to an igraph graph. After doing this, the symbolic vertex names can be used in all
igraph functions, instead of the numeric ids.

Note that the uniqueness of vertex names are currently not enforced in igraph, you have to check
that for yourself, when assigning the vertex names.

Value

A logical scalar.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)
is_named(g)
V(g)$name <- letters[1:10]
is_named(g)
neighbors(g, "a")

is_printer_callback Is this a printer callback?

Description

Is this a printer callback?

Usage

is_printer_callback(x)

Arguments

x An R object.

See Also

Other printer callbacks: printer_callback()

is_separator 261

is_separator Check whether removing this set of vertices would disconnect the
graph.

Description

is_separator() determines whether the supplied vertex set is a vertex separator: A vertex set S
is a separator if there are vertices u and v in the graph such that all paths between u and v pass
through some vertices in S.

Usage

is_separator(graph, candidate)

Arguments

graph The input graph. It may be directed, but edge directions are ignored.

candidate A numeric vector giving the vertex ids of the candidate separator.

Value

A logical scalar, whether the supplied vertex set is a (minimal) vertex separator or not. lists all
vertex separator of minimum size.

Related documentation in the C library

is_separator().

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), max_flow(), min_cut(),
min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

ring <- make_ring(4)
min_st_separators(ring)
is_separator(ring, 1)
is_separator(ring, c(1, 3))
is_separator(ring, c(2, 4))
is_separator(ring, c(2, 3))

https://igraph.org/c/html/0.10.17/igraph-Separators.html#igraph_is_separator

262 is_tree

is_tree Decide whether a graph is a tree.

Description

is_tree() decides whether a graph is a tree, and optionally returns a possible root vertex if the
graph is a tree.

Usage

is_tree(graph, mode = c("out", "in", "all", "total"), details = FALSE)

Arguments

graph An igraph graph object

mode Whether to consider edge directions in a directed graph. ‘all’ ignores edge di-
rections; ‘out’ requires edges to be oriented outwards from the root, ‘in’ requires
edges to be oriented towards the root.

details Whether to return only whether the graph is a tree (FALSE) or also a possible
root (TRUE)

Details

An undirected graph is a tree if it is connected and has no cycles. In the directed case, a possible
additional requirement is that all edges are oriented away from a root (out-tree or arborescence) or
all edges are oriented towards a root (in-tree or anti-arborescence). This test can be controlled using
the mode parameter.

By convention, the null graph (i.e. the graph with no vertices) is considered not to be a tree.

Value

When details is FALSE, a logical value that indicates whether the graph is a tree. When details
is TRUE, a named list with two entries:

res Logical value that indicates whether the graph is a tree.

root The root vertex of the tree; undefined if the graph is not a tree.

Related documentation in the C library

is_tree().

See Also

Other trees: is_forest(), make_from_prufer(), sample_spanning_tree(), to_prufer()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_tree

is_weighted 263

Examples

g <- make_tree(7, 2)
is_tree(g)
is_tree(g, details = TRUE)

is_weighted Weighted graphs

Description

In weighted graphs, a real number is assigned to each (directed or undirected) edge.

Usage

is_weighted(graph)

Arguments

graph The input graph.

Details

In igraph edge weights are represented via an edge attribute, called ‘weight’. The is_weighted()
function only checks that such an attribute exists. (It does not even checks that it is a numeric edge
attribute.)

Edge weights are used for different purposes by the different functions. E.g. shortest path functions
use it as the cost of the path; community finding methods use it as the strength of the relationship
between two vertices, etc. Check the manual pages of the functions working with weighted graphs
for details.

Value

A logical scalar.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)
shortest_paths(g, 8, 2)
E(g)$weight <- seq_len(ecount(g))
shortest_paths(g, 8, 2)

264 ivs

ivs Independent vertex sets

Description

A vertex set is called independent if there no edges between any two vertices in it. These functions
find independent vertex sets in undirected graphs

Usage

ivs(graph, min = NULL, max = NULL)

largest_ivs(graph)

max_ivs(graph)

ivs_size(graph)

independence_number(graph)

is_ivs(graph, candidate)

Arguments

graph The input graph.

min Numeric constant, limit for the minimum size of the independent vertex sets to
find. NULL means no limit.

max Numeric constant, limit for the maximum size of the independent vertex sets to
find. NULL means no limit.

candidate The vertex set to test for being an independent set.

Details

ivs() finds all independent vertex sets in the network, obeying the size limitations given in the min
and max arguments.

largest_ivs() finds the largest independent vertex sets in the graph. An independent vertex set is
largest if there is no independent vertex set with more vertices.

max_ivs() finds the maximal independent vertex sets in the graph. An independent vertex set is
maximal if it cannot be extended to a larger independent vertex set. The largest independent vertex
sets are maximal, but the opposite is not always true.

ivs_size() calculate the size of the largest independent vertex set(s).

independence_number() is an alias for ivs_size().

These functions use the algorithm described by Tsukiyama et al., see reference below.

is_ivs() tests if no pairs within a vertex set are connected.

keeping_degseq 265

Value

ivs(), largest_ivs() and max_ivs() return a list containing numeric vertex ids, each list element
is an independent vertex set.

ivs_size() returns an integer constant.

is_ivs() returns TRUE if the candidate vertex set forms an independent set.

Related documentation in the C library

is_independent_vertex_set().

Author(s)

Tamas Nepusz <ntamas@gmail.com> ported it from the Very Nauty Graph Library by Keith Briggs
(https://keithbriggs.info/) and Gabor Csardi <csardi.gabor@gmail.com> wrote the R in-
terface and this manual page.

References

S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new algorithm for generating all the maxi-
mal independent sets. SIAM J Computing, 6:505–517, 1977.

See Also

Other cliques: cliques(), is_complete(), weighted_cliques()

Examples

Do not run, takes a couple of seconds

A quite dense graph
set.seed(42)
g <- sample_gnp(100, 0.9)
ivs_size(g)
ivs(g, min = ivs_size(g))
largest_ivs(g)
Empty graph
induced_subgraph(g, largest_ivs(g)[[1]])

length(max_ivs(g))

keeping_degseq Graph rewiring while preserving the degree distribution

Description

This function can be used together with rewire() to randomly rewire the edges while preserving
the original graph’s degree distribution.

https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_is_independent_vertex_set
https://keithbriggs.info/

266 knn

Usage

keeping_degseq(loops = FALSE, niter = 100)

Arguments

loops Whether to allow destroying and creating loop edges.

niter Number of rewiring trials to perform.

Details

The rewiring algorithm chooses two arbitrary edges in each step ((a,b) and (c,d)) and substitutes
them with (a,d) and (c,b), if they not already exists in the graph. The algorithm does not create
multiple edges.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

See Also

sample_degseq()

Other rewiring functions: each_edge(), rewire()

Examples

g <- make_ring(10)
g %>%

rewire(keeping_degseq(niter = 20)) %>%
degree()

print_all(rewire(g, with = keeping_degseq(niter = vcount(g) * 10)))

knn Average nearest neighbor degree

Description

Calculate the average nearest neighbor degree of the given vertices and the same quantity in the
function of vertex degree

Usage

knn(
graph,
vids = V(graph),
mode = c("all", "out", "in", "total"),
neighbor.degree.mode = c("all", "out", "in", "total"),
weights = NULL

)

knn 267

Arguments

graph The input graph. It may be directed.

vids The vertices for which the calculation is performed. Normally it includes all
vertices. Note, that if not all vertices are given here, then both ‘knn’ and ‘knnk’
will be calculated based on the given vertices only.

mode Character constant to indicate the type of neighbors to consider in directed
graphs. out considers out-neighbors, in considers in-neighbors and all ignores
edge directions.

neighbor.degree.mode

The type of degree to average in directed graphs. out averages out-degrees, in
averages in-degrees and all ignores edge directions for the degree calculation.

weights Weight vector. If the graph has a weight edge attribute, then this is used by
default. If this argument is given, then vertex strength (see strength()) is used
instead of vertex degree. But note that knnk is still given in the function of the
normal vertex degree. Weights are are used to calculate a weighted degree (also
called strength()) instead of the degree.

Details

Note that for zero degree vertices the answer in ‘knn’ is NaN (zero divided by zero), the same is true
for ‘knnk’ if a given degree never appears in the network.

The weighted version computes a weighted average of the neighbor degrees as

knn,u =
1

su

∑
v

wuvkv,

where su =
∑

v wuv is the sum of the incident edge weights of vertex u, i.e. its strength. The sum
runs over the neighbors v of vertex u as indicated by mode. wuv denotes the weighted adjacency
matrix and kv is the neighbors’ degree, specified by neighbor_degree_mode.

Value

A list with two members:

knn A numeric vector giving the average nearest neighbor degree for all vertices in vids.

knnk A numeric vector, its length is the maximum (total) vertex degree in the graph. The first
element is the average nearest neighbor degree of vertices with degree one, etc.

Related documentation in the C library

avg_nearest_neighbor_degree().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_avg_nearest_neighbor_degree

268 k_shortest_paths

References

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, Alessandro Vespignani: The architec-
ture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

Some trivial ones
g <- make_ring(10)
knn(g)
g2 <- make_star(10)
knn(g2)

A scale-free one, try to plot 'knnk'
g3 <- sample_pa(1000, m = 5)
knn(g3)

A random graph
g4 <- sample_gnp(1000, p = 5 / 1000)
knn(g4)

A weighted graph
g5 <- make_star(10)
E(g5)$weight <- seq(ecount(g5))
knn(g5)

k_shortest_paths Find the k shortest paths between two vertices

Description

Finds the k shortest paths between the given source and target vertex in order of increasing length.
Currently this function uses Yen’s algorithm.

Usage

k_shortest_paths(
graph,
from,
to,
...,
k,

k_shortest_paths 269

weights = NULL,
mode = c("out", "in", "all", "total")

)

Arguments

graph The input graph.

from The source vertex of the shortest paths.

to The target vertex of the shortest paths.

... These dots are for future extensions and must be empty.

k The number of paths to find. They will be returned in order of increasing length.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the graph
is treated as undirected, i.e. edge directions are not taken into account. This
argument is ignored for undirected graphs.

Value

A named list with two components is returned:

vpaths The list of k shortest paths in terms of vertices

epaths The list of k shortest paths in terms of edges

Related documentation in the C library

get_k_shortest_paths().

References

Yen, Jin Y.: An algorithm for finding shortest routes from all source nodes to a given destination in
general networks. Quarterly of Applied Mathematics. 27 (4): 526–530. (1970) doi:10.1090/qam/
253822

See Also

shortest_paths(), all_shortest_paths()

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), knn(), reciprocity(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_get_k_shortest_paths
https://doi.org/10.1090/qam/253822
https://doi.org/10.1090/qam/253822

270 laplacian_matrix

laplacian_matrix Graph Laplacian

Description

The Laplacian of a graph.

Usage

laplacian_matrix(
graph,
weights = NULL,
sparse = igraph_opt("sparsematrices"),
normalization = c("unnormalized", "symmetric", "left", "right"),
normalized

)

Arguments

graph The input graph.

weights An optional vector giving edge weights for weighted Laplacian matrix. If this
is NULL and the graph has an edge attribute called weight, then it will be used
automatically. Set this to NA if you want the unweighted Laplacian on a graph
that has a weight edge attribute.

sparse Logical scalar, whether to return the result as a sparse matrix. The Matrix
package is required for sparse matrices.

normalization The normalization method to use when calculating the Laplacian matrix. See
the "Normalization methods" section on this page.

normalized Deprecated, use normalization instead.

Details

The Laplacian Matrix of a graph is a symmetric matrix having the same number of rows and
columns as the number of vertices in the graph and element (i,j) is d[i], the degree of vertex i if
if i==j, -1 if i!=j and there is an edge between vertices i and j and 0 otherwise.

The Laplacian matrix can also be normalized, with several conventional normalization methods.
See the "Normalization methods" section on this page.

The weighted version of the Laplacian simply works with the weighted degree instead of the plain
degree. I.e. (i,j) is d[i], the weighted degree of vertex i if if i==j, -w if i!=j and there is an edge
between vertices i and j with weight w, and 0 otherwise. The weighted degree of a vertex is the sum
of the weights of its adjacent edges.

Value

A numeric matrix.

layout_ 271

Normalization methods

The Laplacian matrix L is defined in terms of the adjacency matrix A and a diagonal matrix D
containing the degrees as follows:

• "unnormalized": Unnormalized Laplacian, L = D −A.
• "symmetric": Symmetrically normalized Laplacian, L = I −D− 1

2AD− 1
2 .

• "left": Left-stochastic normalized Laplacian, L = I −D−1A.
• "right": Right-stochastic normalized Laplacian, L = I −AD−1.

Related documentation in the C library

get_laplacian(), get_laplacian_sparse().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)
laplacian_matrix(g)
laplacian_matrix(g, normalization = "unnormalized")
laplacian_matrix(g, normalization = "unnormalized", sparse = FALSE)

layout_ Graph layouts

Description

This is a generic function to apply a layout function to a graph.

Usage

layout_(graph, layout, ...)

S3 method for class 'igraph_layout_spec'
print(x, ...)

S3 method for class 'igraph_layout_modifier'
print(x, ...)

Arguments

graph The input graph.
layout The layout specification. It must be a call to a layout specification function.
... Further modifiers, see a complete list below. For the print() methods, it is

ignored.
x The layout specification

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_get_laplacian
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_get_laplacian_sparse

272 layout_as_bipartite

Details

There are two ways to calculate graph layouts in igraph. The first way is to call a layout function
(they all have prefix layout_() on a graph, to get the vertex coordinates.

The second way (new in igraph 0.8.0), has two steps, and it is more flexible. First you call
a layout specification function (the one without the layout_() prefix, and then layout_() (or
add_layout_()) to perform the layouting.

The second way is preferred, as it is more flexible. It allows operations before and after the layout-
ing. E.g. using the component_wise() argument, the layout can be calculated separately for each
component, and then merged to get the final results.

Value

The return value of the layout function, usually a two column matrix. For 3D layouts a three column
matrix.

Modifiers

Modifiers modify how a layout calculation is performed. Currently implemented modifiers:

• component_wise() calculates the layout separately for each component of the graph, and
then merges them.

• normalize() scales the layout to a square.

See Also

add_layout_() to add the layout to the graph as an attribute.

Other graph layouts: add_layout_(), component_wise(), layout_as_bipartite(), layout_as_star(),
layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

g <- make_ring(10) + make_full_graph(5)
coords <- layout_(g, as_star())
plot(g, layout = coords)

layout_as_bipartite Simple two-row layout for bipartite graphs

Description

Minimize edge-crossings in a simple two-row (or column) layout for bipartite graphs.

layout_as_bipartite 273

Usage

layout_as_bipartite(graph, types = NULL, hgap = 1, vgap = 1, maxiter = 100)

as_bipartite(...)

Arguments

graph The bipartite input graph. It should have a logical ‘type’ vertex attribute, or the
types argument must be given.

types A logical vector, the vertex types. If this argument is NULL (the default), then the
‘type’ vertex attribute is used.

hgap Real scalar, the minimum horizontal gap between vertices in the same layer.

vgap Real scalar, the distance between the two layers.

maxiter Integer scalar, the maximum number of iterations in the crossing minimization
stage. 100 is a reasonable default; if you feel that you have too many edge
crossings, increase this.

... Arguments to pass to layout_as_bipartite().

Details

The layout is created by first placing the vertices in two rows, according to their types. Then the
positions within the rows are optimized to minimize edge crossings, using the Sugiyama algorithm
(see layout_with_sugiyama()).

Value

A matrix with two columns and as many rows as the number of vertices in the input graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

layout_with_sugiyama()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_star(), layout_as_tree(),
layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(), layout_randomly(),
layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(), layout_with_kk(),
layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(), norm_coords(),
normalize()

Examples

Random bipartite graph
inc <- matrix(sample(0:1, 50, replace = TRUE, prob = c(2, 1)), 10, 5)
g <- graph_from_biadjacency_matrix(inc)
plot(g,

layout = layout_as_bipartite,

274 layout_as_star

vertex.color = c("green", "cyan")[V(g)$type + 1]
)

Two columns
g %>%

add_layout_(as_bipartite()) %>%
plot()

layout_as_star Generate coordinates to place the vertices of a graph in a star-shape

Description

A simple layout generator, that places one vertex in the center of a circle and the rest of the vertices
equidistantly on the perimeter.

Usage

layout_as_star(graph, center = V(graph)[1], order = NULL)

as_star(...)

Arguments

graph The graph to layout.

center The id of the vertex to put in the center. By default it is the first vertex.

order Numeric vector, the order of the vertices along the perimeter. The default order-
ing is given by the vertex ids.

... Arguments to pass to layout_as_star().

Details

It is possible to choose the vertex that will be in the center, and the order of the vertices can be also
given.

Value

A matrix with two columns and as many rows as the number of vertices in the input graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

layout_as_tree 275

See Also

layout() and layout_with_drl() for other layout algorithms, plot.igraph() and tkplot() on
how to plot graphs and star() on how to create ring graphs.

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

g <- make_star(10)
layout_as_star(g)

Alternative form
layout_(g, as_star())

layout_as_tree The Reingold-Tilford graph layout algorithm

Description

A tree-like layout, it is perfect for trees, acceptable for graphs with not too many cycles.

Usage

layout_as_tree(
graph,
root = numeric(),
circular = FALSE,
rootlevel = numeric(),
mode = c("out", "in", "all"),
flip.y = TRUE

)

as_tree(...)

Arguments

graph The input graph.

root The index of the root vertex or root vertices. If this is a non-empty vector then
the supplied vertex ids are used as the roots of the trees (or a single tree if the
graph is connected). If it is an empty vector, then the root vertices are automati-
cally calculated based on topological sorting, performed with the opposite mode
than the mode argument. After the vertices have been sorted, one is selected
from each component.

276 layout_as_tree

circular Logical scalar, whether to plot the tree in a circular fashion. Defaults to FALSE,
so the tree branches are going bottom-up (or top-down, see the flip.y argu-
ment.

rootlevel This argument can be useful when drawing forests which are not trees (i.e. they
are unconnected and have tree components). It specifies the level of the root
vertices for every tree in the forest. It is only considered if the roots argument
is not an empty vector.

mode Specifies which edges to consider when building the tree. If it is ‘out’, then only
the outgoing, if it is ‘in’, then only the incoming edges of a parent are considered.
If it is ‘all’ then all edges are used (this was the behavior in igraph 0.5 and
before). This parameter also influences how the root vertices are calculated, if
they are not given. See the roots parameter.

flip.y Logical scalar, whether to flip the ‘y’ coordinates. The default is flipping be-
cause that puts the root vertex on the top.

... Passed to layout_as_tree().

Details

Arranges the nodes in a tree where the given node is used as the root. The tree is directed downwards
and the parents are centered above its children. For the exact algorithm, the reference below.

If the given graph is not a tree, a breadth-first search is executed first to obtain a possible spanning
tree.

Value

A numeric matrix with two columns, and one row for each vertex.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

Reingold, E and Tilford, J (1981). Tidier drawing of trees. IEEE Trans. on Softw. Eng., SE-
7(2):223–228.

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_in_circle(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

layout_in_circle 277

Examples

tree <- make_tree(20, 3)
plot(tree, layout = layout_as_tree)
plot(tree, layout = layout_as_tree(tree, flip.y = FALSE))
plot(tree, layout = layout_as_tree(tree, circular = TRUE))

tree2 <- make_tree(10, 3) + make_tree(10, 2)
plot(tree2, layout = layout_as_tree)
plot(tree2, layout = layout_as_tree(tree2,

root = c(1, 11),
rootlevel = c(2, 1)

))

layout_in_circle Graph layout with vertices on a circle.

Description

Place vertices on a circle, in the order of their vertex ids.

Usage

layout_in_circle(graph, order = V(graph))

in_circle(...)

Arguments

graph The input graph.

order The vertices to place on the circle, in the order of their desired placement. Ver-
tices that are not included here will be placed at (0,0).

... Passed to layout_in_circle().

Details

If you want to order the vertices differently, then permute them using the permute() function.

Value

A numeric matrix with two columns, and one row for each vertex.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

278 layout_nicely

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_nicely(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

Place vertices on a circle, order them according to their
community
library(igraphdata)
data(karate)
karate_groups <- cluster_optimal(karate)
coords <- layout_in_circle(karate,

order =
order(membership(karate_groups))

)
V(karate)$label <- sub("Actor ", "", V(karate)$name)
V(karate)$label.color <- membership(karate_groups)
V(karate)$shape <- "none"
plot(karate, layout = coords)

layout_nicely Choose an appropriate graph layout algorithm automatically

Description

This function tries to choose an appropriate graph layout algorithm for the graph, automatically,
based on a simple algorithm. See details below.

Usage

layout_nicely(graph, dim = 2, ...)

nicely(...)

Arguments

graph The input graph

dim Dimensions, should be 2 or 3.

... For layout_nicely() the extra arguments are passed to the real layout function.
For nicely() all argument are passed to layout_nicely().

layout_nicely 279

Details

layout_nicely() tries to choose an appropriate layout function for the supplied graph, and uses
that to generate the layout. The current implementation works like this:

1. If the graph has a graph attribute called ‘layout’, then this is used. If this attribute is an R
function, then it is called, with the graph and any other extra arguments.

2. Otherwise, if the graph has vertex attributes called ‘x’ and ‘y’, then these are used as coordi-
nates. If the graph has an additional ‘z’ vertex attribute, that is also used.

3. Otherwise, if the graph is a forest and has less than 30 vertices, layout_as_tree() is used.

4. Otherwise, if the graph is connected and has less than 1000 vertices, the Fruchterman-Reingold
layout is used, by calling layout_with_fr().

5. Otherwise the DrL layout is used, layout_with_drl() is called.

In layout algorithm implementations, an argument named ‘weights’ is typically used to specify the
weights of the edges if the layout algorithm supports them. In this case, omitting ‘weights’ or setting
it to NULL will make igraph use the ’weight’ edge attribute from the graph if it is present. However,
most layout algorithms do not support non-positive weights, so layout_nicely() would fail if you
simply called it on your graph without specifying explicit weights and the weights happened to
include non-positive numbers. We strive to ensure that layout_nicely() works out-of-the-box for
most graphs, so the rule is that if you omit ‘weights’ or set it to NULL and layout_nicely() would
end up calling layout_with_fr() or layout_with_drl(), we do not forward the weights to these
functions and issue a warning about this. You can use weights = NA to silence the warning.

Value

A numeric matrix with two or three columns.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

plot.igraph()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_on_grid(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

280 layout_on_grid

layout_on_grid Simple grid layout

Description

This layout places vertices on a rectangular grid, in two or three dimensions.

Usage

layout_on_grid(graph, width = 0, height = 0, dim = 2)

on_grid(...)

Arguments

graph The input graph.

width The number of vertices in a single row of the grid. If this is zero or negative,
then for 2d layouts the width of the grid will be the square root of the number
of vertices in the graph, rounded up to the next integer. Similarly, it will be the
cube root for 3d layouts.

height The number of vertices in a single column of the grid, for three dimensional
layouts. If this is zero or negative, then it is determinted automatically.

dim Two or three. Whether to make 2d or a 3d layout.

... Passed to layout_on_grid().

Details

The function places the vertices on a simple rectangular grid, one after the other. If you want to
change the order of the vertices, then see the permute() function.

Value

A two-column or three-column matrix.

Author(s)

Tamas Nepusz <ntamas@gmail.com>

See Also

layout() for other layout generators

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_sphere(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

layout_on_sphere 281

Examples

g <- make_lattice(c(3, 3))
layout_on_grid(g)

g2 <- make_lattice(c(3, 3, 3))
layout_on_grid(g2, dim = 3)

plot(g, layout = layout_on_grid)
if (interactive() && requireNamespace("rgl", quietly = TRUE)) {

rglplot(g, layout = layout_on_grid(g, dim = 3))
}

layout_on_sphere Graph layout with vertices on the surface of a sphere

Description

Place vertices on a sphere, approximately uniformly, in the order of their vertex ids.

Usage

layout_on_sphere(graph)

on_sphere(...)

Arguments

graph The input graph.

... Passed to layout_on_sphere().

Details

layout_on_sphere() places the vertices (approximately) uniformly on the surface of a sphere, this
is thus a 3d layout. It is not clear however what “uniformly on a sphere” means.

If you want to order the vertices differently, then permute them using the permute() function.

Value

A numeric matrix with three columns, and one row for each vertex.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

282 layout_randomly

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

layout_randomly Randomly place vertices on a plane or in 3d space

Description

This function uniformly randomly places the vertices of the graph in two or three dimensions.

Usage

layout_randomly(graph, dim = c(2, 3))

randomly(...)

Arguments

graph The input graph.

dim Integer scalar, the dimension of the space to use. It must be 2 or 3.

... Parameters to pass to layout_randomly().

Details

Randomly places vertices on a [-1,1] square (in 2d) or in a cube (in 3d). It is probably a useless
layout, but it can use as a starting point for other layout generators.

Value

A numeric matrix with two or three columns.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_with_dh(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

layout_with_dh 283

layout_with_dh The Davidson-Harel layout algorithm

Description

Place vertices of a graph on the plane, according to the simulated annealing algorithm by Davidson
and Harel.

Usage

layout_with_dh(
graph,
coords = NULL,
maxiter = 10,
fineiter = max(10, log2(vcount(graph))),
cool.fact = 0.75,
weight.node.dist = 1,
weight.border = 0,
weight.edge.lengths = edge_density(graph)/10,
weight.edge.crossings = 1 - sqrt(edge_density(graph)),
weight.node.edge.dist = 0.2 * (1 - edge_density(graph))

)

with_dh(...)

Arguments

graph The graph to lay out. Edge directions are ignored.

coords Optional starting positions for the vertices. If this argument is not NULL then it
should be an appropriate matrix of starting coordinates.

maxiter Number of iterations to perform in the first phase.

fineiter Number of iterations in the fine tuning phase.

cool.fact Cooling factor.
weight.node.dist

Weight for the node-node distances component of the energy function.

weight.border Weight for the distance from the border component of the energy function. It
can be set to zero, if vertices are allowed to sit on the border.

weight.edge.lengths

Weight for the edge length component of the energy function.
weight.edge.crossings

Weight for the edge crossing component of the energy function.
weight.node.edge.dist

Weight for the node-edge distance component of the energy function.

... Passed to layout_with_dh().

284 layout_with_dh

Details

This function implements the algorithm by Davidson and Harel, see Ron Davidson, David Harel:
Drawing Graphs Nicely Using Simulated Annealing. ACM Transactions on Graphics 15(4), pp.
301-331, 1996.

The algorithm uses simulated annealing and a sophisticated energy function, which is unfortunately
hard to parameterize for different graphs. The original publication did not disclose any parameter
values, and the ones below were determined by experimentation.

The algorithm consists of two phases, an annealing phase, and a fine-tuning phase. There is no
simulated annealing in the second phase.

Our implementation tries to follow the original publication, as much as possible. The only major
difference is that coordinates are explicitly kept within the bounds of the rectangle of the layout.

Value

A matrix with two columns, containing the x and y coordinates of the vertices:

x The x-coordinate of the vertex.

y The y-coordinate of the vertex.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Ron Davidson, David Harel: Drawing Graphs Nicely Using Simulated Annealing. ACM Transac-
tions on Graphics 15(4), pp. 301-331, 1996.

See Also

layout_with_fr(), layout_with_kk() for other layout algorithms.

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_fr(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

set.seed(42)
Figures from the paper
g_1b <- make_star(19, mode = "undirected") + path(c(2:19, 2)) +

path(c(seq(2, 18, by = 2), 2))
plot(g_1b, layout = layout_with_dh)

g_2 <- make_lattice(c(8, 3)) + edges(1, 8, 9, 16, 17, 24)
plot(g_2, layout = layout_with_dh)

g_3 <- make_empty_graph(n = 70)

layout_with_drl 285

plot(g_3, layout = layout_with_dh)

g_4 <- make_empty_graph(n = 70, directed = FALSE) + edges(1:70)
plot(g_4, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_5a <- make_ring(24)
plot(g_5a, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_5b <- make_ring(40)
plot(g_5b, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_6 <- make_lattice(c(2, 2, 2))
plot(g_6, layout = layout_with_dh)

g_7 <- graph_from_literal(1:3:5 - -2:4:6)
plot(g_7, layout = layout_with_dh, vertex.label = V(g_7)$name)

g_8 <- make_ring(5) + make_ring(10) + make_ring(5) +
edges(
1, 6, 2, 8, 3, 10, 4, 12, 5, 14,
7, 16, 9, 17, 11, 18, 13, 19, 15, 20

)
plot(g_8, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_9 <- make_lattice(c(3, 2, 2))
plot(g_9, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_10 <- make_lattice(c(6, 6))
plot(g_10, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_11a <- make_tree(31, 2, mode = "undirected")
plot(g_11a, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_11b <- make_tree(21, 4, mode = "undirected")
plot(g_11b, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

g_12 <- make_empty_graph(n = 37, directed = FALSE) +
path(1:5, 10, 22, 31, 37:33, 27, 16, 6, 1) + path(6, 7, 11, 9, 10) + path(16:22) +
path(27:31) + path(2, 7, 18, 28, 34) + path(3, 8, 11, 19, 29, 32, 35) +
path(4, 9, 20, 30, 36) + path(1, 7, 12, 14, 19, 24, 26, 30, 37) +
path(5, 9, 13, 15, 19, 23, 25, 28, 33) + path(3, 12, 16, 25, 35, 26, 22, 13, 3)

plot(g_12, layout = layout_with_dh, vertex.size = 5, vertex.label = NA)

layout_with_drl The DrL graph layout generator

Description

DrL is a force-directed graph layout toolbox focused on real-world large-scale graphs, developed
by Shawn Martin and colleagues at Sandia National Laboratories.

286 layout_with_drl

Usage

layout_with_drl(
graph,
use.seed = FALSE,
seed = matrix(runif(vcount(graph) * 2), ncol = 2),
options = drl_defaults$default,
weights = NULL,
dim = c(2, 3)

)

with_drl(...)

Arguments

graph The input graph, in can be directed or undirected.

use.seed Logical scalar, whether to use the coordinates given in the seed argument as a
starting point.

seed A matrix with two columns, the starting coordinates for the vertices is use.seed
is TRUE. It is ignored otherwise.

options Options for the layout generator, a named list. See details below.

weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If
it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute
will be used. If NULL and no such attribute is present, then the edges will have
equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you
don’t want to use it for the layout. Larger edge weights correspond to stronger
connections.

dim Either ‘2’ or ‘3’, it specifies whether we want a two dimensional or a three
dimensional layout. Note that because of the nature of the DrL algorithm, the
three dimensional layout takes significantly longer to compute.

... Passed to layout_with_drl().

Details

This function implements the force-directed DrL layout generator.

The generator has the following parameters:

edge.cut Edge cutting is done in the late stages of the algorithm in order to achieve less dense
layouts. Edges are cut if there is a lot of stress on them (a large value in the objective function
sum). The edge cutting parameter is a value between 0 and 1 with 0 representing no edge
cutting and 1 representing maximal edge cutting.

init.iterations Number of iterations in the first phase.

init.temperature Start temperature, first phase.

init.attraction Attraction, first phase.

init.damping.mult Damping, first phase.

liquid.iterations Number of iterations, liquid phase.

layout_with_drl 287

liquid.temperature Start temperature, liquid phase.
liquid.attraction Attraction, liquid phase.
liquid.damping.mult Damping, liquid phase.
expansion.iterations Number of iterations, expansion phase.
expansion.temperature Start temperature, expansion phase.
expansion.attraction Attraction, expansion phase.
expansion.damping.mult Damping, expansion phase.
cooldown.iterations Number of iterations, cooldown phase.
cooldown.temperature Start temperature, cooldown phase.
cooldown.attraction Attraction, cooldown phase.
cooldown.damping.mult Damping, cooldown phase.
crunch.iterations Number of iterations, crunch phase.
crunch.temperature Start temperature, crunch phase.
crunch.attraction Attraction, crunch phase.
crunch.damping.mult Damping, crunch phase.
simmer.iterations Number of iterations, simmer phase.
simmer.temperature Start temperature, simmer phase.
simmer.attraction Attraction, simmer phase.
simmer.damping.mult Damping, simmer phase.

There are five pre-defined parameter settings as well, these are called drl_defaults$default,
drl_defaults$coarsen, drl_defaults$coarsest, drl_defaults$refine and drl_defaults$final.

Value

A numeric matrix with two columns.

Author(s)

Shawn Martin (https://www.cs.otago.ac.nz/homepages/smartin/) and Gabor Csardi <csardi.gabor@gmail.com>
for the R/igraph interface and the three dimensional version.

References

See the following technical report: Martin, S., Brown, W.M., Klavans, R., Boyack, K.W., DrL:
Distributed Recursive (Graph) Layout. SAND Reports, 2008. 2936: p. 1-10.

See Also

layout() for other layout generators.

Examples

g <- as_undirected(sample_pa(100, m = 1))
l <- layout_with_drl(g, options = list(simmer.attraction = 0))
plot(g, layout = l, vertex.size = 3, vertex.label = NA)

https://www.cs.otago.ac.nz/homepages/smartin/

288 layout_with_fr

layout_with_fr The Fruchterman-Reingold layout algorithm

Description

Place vertices on the plane using the force-directed layout algorithm by Fruchterman and Reingold.

Usage

layout_with_fr(
graph,
coords = NULL,
dim = c(2, 3),
niter = 500,
start.temp = sqrt(vcount(graph)),
grid = c("auto", "grid", "nogrid"),
weights = NULL,
minx = NULL,
maxx = NULL,
miny = NULL,
maxy = NULL,
minz = NULL,
maxz = NULL,
coolexp = deprecated(),
maxdelta = deprecated(),
area = deprecated(),
repulserad = deprecated(),
maxiter = deprecated()

)

with_fr(...)

Arguments

graph The graph to lay out. Edge directions are ignored.

coords Optional starting positions for the vertices. If this argument is not NULL then it
should be an appropriate matrix of starting coordinates.

dim Integer scalar, 2 or 3, the dimension of the layout. Two dimensional layouts are
places on a plane, three dimensional ones in the 3d space.

niter Integer scalar, the number of iterations to perform.

start.temp Real scalar, the start temperature. This is the maximum amount of movement
alloved along one axis, within one step, for a vertex. Currently it is decreased
linearly to zero during the iteration.

grid Character scalar, whether to use the faster, but less accurate grid based imple-
mentation of the algorithm. By default (“auto”), the grid-based implementation
is used if the graph has more than one thousand vertices.

layout_with_fr 289

weights A vector giving edge weights. The weight edge attribute is used by default, if
present. If weights are given, then the attraction along the edges will be multi-
plied by the given edge weights. This places vertices connected with a highly
weighted edge closer to each other. Weights must be positive.

minx If not NULL, then it must be a numeric vector that gives lower boundaries for the
‘x’ coordinates of the vertices. The length of the vector must match the number
of vertices in the graph.

maxx Similar to minx, but gives the upper boundaries.

miny Similar to minx, but gives the lower boundaries of the ‘y’ coordinates.

maxy Similar to minx, but gives the upper boundaries of the ‘y’ coordinates.

minz Similar to minx, but gives the lower boundaries of the ‘z’ coordinates.

maxz Similar to minx, but gives the upper boundaries of the ‘z’ coordinates.
coolexp, maxdelta, area, repulserad

[Deprecated] These arguments are not supported from igraph version 0.8.0 and
are ignored (with a warning).

maxiter A deprecated synonym of niter, for compatibility.

... Passed to layout_with_fr().

Details

See the referenced paper below for the details of the algorithm.

This function was rewritten from scratch in igraph version 0.8.0.

Value

A two- or three-column matrix, each row giving the coordinates of a vertex, according to the ids of
the vertex ids.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Fruchterman, T.M.J. and Reingold, E.M. (1991). Graph Drawing by Force-directed Placement.
Software - Practice and Experience, 21(11):1129-1164.

See Also

layout_with_drl(), layout_with_kk() for other layout algorithms.

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_gem(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

290 layout_with_gem

Examples

Fixing ego
g <- sample_pa(20, m = 2)
minC <- rep(-Inf, vcount(g))
maxC <- rep(Inf, vcount(g))
minC[1] <- maxC[1] <- 0
co <- layout_with_fr(g,

minx = minC, maxx = maxC,
miny = minC, maxy = maxC

)
co[1,]
plot(g,

layout = co, vertex.size = 30, edge.arrow.size = 0.2,
vertex.label = c("ego", rep("", vcount(g) - 1)), rescale = FALSE,
xlim = range(co[, 1]), ylim = range(co[, 2]), vertex.label.dist = 0,
vertex.label.color = "red"

)
axis(1)
axis(2)

layout_with_gem The GEM layout algorithm

Description

Place vertices on the plane using the GEM force-directed layout algorithm.

Usage

layout_with_gem(
graph,
coords = NULL,
maxiter = 40 * vcount(graph)^2,
temp.max = max(vcount(graph), 1),
temp.min = 1/10,
temp.init = sqrt(max(vcount(graph), 1))

)

with_gem(...)

Arguments

graph The input graph. Edge directions are ignored.

coords If not NULL, then the starting coordinates should be given here, in a two or three
column matrix, depending on the dim argument.

layout_with_gem 291

maxiter The maximum number of iterations to perform. Updating a single vertex counts
as an iteration. A reasonable default is 40 * n * n, where n is the number of
vertices. The original paper suggests 4 * n * n, but this usually only works if the
other parameters are set up carefully.

temp.max The maximum allowed local temperature. A reasonable default is the number of
vertices.

temp.min The global temperature at which the algorithm terminates (even before reaching
maxiter iterations). A reasonable default is 1/10.

temp.init Initial local temperature of all vertices. A reasonable default is the square root
of the number of vertices.

... Passed to layout_with_gem().

Details

See the referenced paper below for the details of the algorithm.

Value

A numeric matrix with two columns, and as many rows as the number of vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Arne Frick, Andreas Ludwig, Heiko Mehldau: A Fast Adaptive Layout Algorithm for Undirected
Graphs, Proc. Graph Drawing 1994, LNCS 894, pp. 388-403, 1995.

See Also

layout_with_fr(), plot.igraph(), tkplot()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_graphopt(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

Examples

set.seed(42)
g <- make_ring(10)
plot(g, layout = layout_with_gem)

292 layout_with_graphopt

layout_with_graphopt The graphopt layout algorithm

Description

A force-directed layout algorithm, that scales relatively well to large graphs.

Usage

layout_with_graphopt(
graph,
start = NULL,
niter = 500,
charge = 0.001,
mass = 30,
spring.length = 0,
spring.constant = 1,
max.sa.movement = 5

)

with_graphopt(...)

Arguments

graph The input graph.

start If given, then it should be a matrix with two columns and one line for each
vertex. This matrix will be used as starting positions for the algorithm. If not
given, then a random starting matrix is used.

niter Integer scalar, the number of iterations to perform. Should be a couple of hun-
dred in general. If you have a large graph then you might want to only do a few
iterations and then check the result. If it is not good enough you can feed it in
again in the start argument. The default value is 500.

charge The charge of the vertices, used to calculate electric repulsion. The default is
0.001.

mass The mass of the vertices, used for the spring forces. The default is 30.

spring.length The length of the springs, an integer number. The default value is zero.

spring.constant

The spring constant, the default value is one.
max.sa.movement

Real constant, it gives the maximum amount of movement allowed in a single
step along a single axis. The default value is 5.

... Passed to layout_with_graphopt().

layout_with_kk 293

Details

layout_with_graphopt() is a port of the graphopt layout algorithm by Michael Schmuhl. graphopt
version 0.4.1 was rewritten in C and the support for layers was removed (might be added later) and
a code was a bit reorganized to avoid some unnecessary steps is the node charge (see below) is zero.

graphopt uses physical analogies for defining attracting and repelling forces among the vertices
and then the physical system is simulated until it reaches an equilibrium. (There is no simulated
annealing or anything like that, so a stable fixed point is not guaranteed.)

Value

A numeric matrix with two columns, and a row for each vertex.

Author(s)

Michael Schmuhl for the original graphopt code, rewritten and wrapped by Gabor Csardi <csardi.gabor@gmail.com>.

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(), merge_coords(),
norm_coords(), normalize()

layout_with_kk The Kamada-Kawai layout algorithm

Description

Place the vertices on the plane, or in 3D space, based on a physical model of springs.

Usage

layout_with_kk(
graph,
coords = NULL,
dim = c(2, 3),
maxiter = 50 * vcount(graph),
epsilon = 0,
kkconst = max(vcount(graph), 1),
weights = NULL,
minx = NULL,
maxx = NULL,
miny = NULL,
maxy = NULL,
minz = NULL,
maxz = NULL,

294 layout_with_kk

niter = deprecated(),
sigma = deprecated(),
initemp = deprecated(),
coolexp = deprecated(),
start = deprecated()

)

with_kk(...)

Arguments

graph The input graph. Edge directions are ignored.

coords If not NULL, then the starting coordinates should be given here, in a two or three
column matrix, depending on the dim argument.

dim Integer scalar, 2 or 3, the dimension of the layout. Two dimensional layouts are
places on a plane, three dimensional ones in the 3d space.

maxiter The maximum number of iterations to perform. The algorithm might terminate
earlier, see the epsilon argument.

epsilon Numeric scalar, the algorithm terminates, if the maximal delta is less than this.
(See the reference below for what delta means.) If you set this to zero, then the
function always performs maxiter iterations.

kkconst Numeric scalar, the Kamada-Kawai vertex attraction constant. Typical (and de-
fault) value is the number of vertices.

weights Edge weights, larger values will result in longer edges. Note that this is the op-
posite of layout_with_fr(), which produces shorter edges for larger weights.
Weights must be positive.

minx If not NULL, then it must be a numeric vector that gives lower boundaries for the
‘x’ coordinates of the vertices. The length of the vector must match the number
of vertices in the graph.

maxx Similar to minx, but gives the upper boundaries.

miny Similar to minx, but gives the lower boundaries of the ‘y’ coordinates.

maxy Similar to minx, but gives the upper boundaries of the ‘y’ coordinates.

minz Similar to minx, but gives the lower boundaries of the ‘z’ coordinates.

maxz Similar to minx, but gives the upper boundaries of the ‘z’ coordinates.
niter, sigma, initemp, coolexp

[Deprecated] These arguments are not supported from igraph version 0.8.0 and
are ignored (with a warning).

start Deprecated synonym for coords, for compatibility.

... Passed to layout_with_kk().

Details

See the referenced paper below for the details of the algorithm.

This function was rewritten from scratch in igraph version 0.8.0 and it follows truthfully the original
publication by Kamada and Kawai now.

layout_with_lgl 295

Value

A numeric matrix with two (dim=2) or three (dim=3) columns, and as many rows as the number of
vertices, the x, y and potentially z coordinates of the vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Kamada, T. and Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information
Processing Letters, 31/1, 7–15, 1989.

See Also

layout_with_drl(), plot.igraph(), tkplot()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(),
merge_coords(), norm_coords(), normalize()

Examples

g <- make_ring(10)
E(g)$weight <- rep(1:2, length.out = ecount(g))
plot(g, layout = layout_with_kk, edge.label = E(g)$weight)

layout_with_lgl Large Graph Layout

Description

A layout generator for larger graphs.

Usage

layout_with_lgl(
graph,
maxiter = 150,
maxdelta = vcount(graph),
area = vcount(graph)^2,
coolexp = 1.5,
repulserad = area * vcount(graph),
cellsize = sqrt(sqrt(area)),
root = NULL

296 layout_with_lgl

)

with_lgl(...)

Arguments

graph The input graph

maxiter The maximum number of iterations to perform (150).

maxdelta The maximum change for a vertex during an iteration (the number of vertices).

area The area of the surface on which the vertices are placed (square of the number
of vertices).

coolexp The cooling exponent of the simulated annealing (1.5).

repulserad Cancellation radius for the repulsion (the area times the number of vertices).

cellsize The size of the cells for the grid. When calculating the repulsion forces between
vertices only vertices in the same or neighboring grid cells are taken into account
(the fourth root of the number of area.

root The id of the vertex to place at the middle of the layout. The default value is -1
which means that a random vertex is selected.

... Passed to layout_with_lgl().

Details

layout_with_lgl() is for large connected graphs, it is similar to the layout generator of the Large
Graph Layout software (https://lgl.sourceforge.net/).

Value

A numeric matrix with two columns and as many rows as vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_mds(), layout_with_sugiyama(),
merge_coords(), norm_coords(), normalize()

https://lgl.sourceforge.net/

layout_with_mds 297

layout_with_mds Graph layout by multidimensional scaling

Description

Multidimensional scaling of some distance matrix defined on the vertices of a graph.

Usage

layout_with_mds(graph, dist = NULL, dim = 2, options = arpack_defaults())

with_mds(...)

Arguments

graph The input graph.

dist The distance matrix for the multidimensional scaling. If NULL (the default), then
the unweighted shortest path matrix is used.

dim layout_with_mds() supports dimensions up to the number of nodes minus one,
but only if the graph is connected; for unconnected graphs, the only possible
value is 2. This is because merge_coords() only works in 2D.

options This is currently ignored, as ARPACK is not used any more for solving the
eigenproblem

... Passed to layout_with_mds().

Details

layout_with_mds() uses classical multidimensional scaling (Torgerson scaling) for generating the
coordinates. Multidimensional scaling aims to place points from a higher dimensional space in a
(typically) 2 dimensional plane, so that the distances between the points are kept as much as this is
possible.

By default igraph uses the shortest path matrix as the distances between the nodes, but the user can
override this via the dist argument.

Warning: If the graph is symmetric to the exchange of two vertices (as is the case with leaves
of a tree connecting to the same parent), classical multidimensional scaling may assign the same
coordinates to these vertices.

This function generates the layout separately for each graph component and then merges them via
merge_coords().

Value

A numeric matrix with dim columns.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

298 layout_with_sugiyama

References

Cox, T. F. and Cox, M. A. A. (2001) Multidimensional Scaling. Second edition. Chapman and Hall.

See Also

layout(), plot.igraph()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_sugiyama(),
merge_coords(), norm_coords(), normalize()

Examples

g <- sample_gnp(100, 2 / 100)
l <- layout_with_mds(g)
plot(g, layout = l, vertex.label = NA, vertex.size = 3)

layout_with_sugiyama The Sugiyama graph layout generator

Description

Sugiyama layout algorithm for layered directed acyclic graphs. The algorithm minimized edge
crossings.

Usage

layout_with_sugiyama(
graph,
layers = NULL,
hgap = 1,
vgap = 1,
maxiter = 100,
weights = NULL,
attributes = c("default", "all", "none")

)

with_sugiyama(...)

Arguments

graph The input graph.

layers A numeric vector or NULL. If not NULL, then it should specify the layer index of
the vertices. Layers are numbered from one. If NULL, then igraph calculates the
layers automatically.

layout_with_sugiyama 299

hgap Real scalar, the minimum horizontal gap between vertices in the same layer.

vgap Real scalar, the distance between layers.

maxiter Integer scalar, the maximum number of iterations in the crossing minimization
stage. 100 is a reasonable default; if you feel that you have too many edge
crossings, increase this.

weights Optional edge weight vector. If NULL, then the ’weight’ edge attribute is used,
if there is one. Supply NA here and igraph ignores the edge weights. These are
used only if the graph contains cycles; igraph will tend to reverse edges with
smaller weights when breaking the cycles.

attributes Which graph/vertex/edge attributes to keep in the extended graph. ‘default’
keeps the ‘size’, ‘size2’, ‘shape’, ‘label’ and ‘color’ vertex attributes and the
‘arrow.mode’ and ‘arrow.size’ edge attributes. ‘all’ keep all graph, vertex and
edge attributes, ‘none’ keeps none of them.

... Passed to layout_with_sugiyama().

Details

This layout algorithm is designed for directed acyclic graphs where each vertex is assigned to a
layer. Layers are indexed from zero, and vertices of the same layer will be placed on the same hor-
izontal line. The X coordinates of vertices within each layer are decided by the heuristic proposed
by Sugiyama et al. to minimize edge crossings.

You can also try to lay out undirected graphs, graphs containing cycles, or graphs without an a priori
layered assignment with this algorithm. igraph will try to eliminate cycles and assign vertices to
layers, but there is no guarantee on the quality of the layout in such cases.

The Sugiyama layout may introduce “bends” on the edges in order to obtain a visually more pleasing
layout. This is achieved by adding dummy nodes to edges spanning more than one layer. The
resulting layout assigns coordinates not only to the nodes of the original graph but also to the
dummy nodes. The layout algorithm will also return the extended graph with the dummy nodes.

For more details, see the reference below.

Value

A list with the components:

layout The layout, a two-column matrix, for the original graph vertices.

layout.dummy The layout for the dummy vertices, a two column matrix.

extd_graph The original graph, extended with dummy vertices. The ‘dummy’ vertex attribute is
set on this graph, it is a logical attributes, and it tells you whether the vertex is a dummy vertex.
The ‘layout’ graph attribute is also set, and it is the layout matrix for all (original and dummy)
vertices.

Author(s)

Tamas Nepusz <ntamas@gmail.com>

300 layout_with_sugiyama

References

K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of Hierarchical Sys-
tems". IEEE Transactions on Systems, Man and Cybernetics 11(2):109-125, 1981.

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_mds(), merge_coords(),
norm_coords(), normalize()

Examples

Data taken from http://tehnick-8.narod.ru/dc_clients/
DC <- graph_from_literal(

"DC++" -+ "LinuxDC++":"BCDC++":"EiskaltDC++":"StrongDC++":"DiCe!++",
"LinuxDC++" -+ "FreeDC++", "BCDC++" -+ "StrongDC++",
"FreeDC++" -+ "BMDC++":"EiskaltDC++",
"StrongDC++" -+ "AirDC++":"zK++":"ApexDC++":"TkDC++",
"StrongDC++" -+ "StrongDC++ SQLite":"RSX++",
"ApexDC++" -+ "FlylinkDC++ ver <= 4xx",
"ApexDC++" -+ "ApexDC++ Speed-Mod":"DiCe!++",
"StrongDC++ SQLite" -+ "FlylinkDC++ ver >= 5xx",
"ApexDC++ Speed-Mod" -+ "FlylinkDC++ ver <= 4xx",
"ApexDC++ Speed-Mod" -+ "GreylinkDC++",
"FlylinkDC++ ver <= 4xx" -+ "FlylinkDC++ ver >= 5xx",
"FlylinkDC++ ver <= 4xx" -+ AvaLink,
"GreylinkDC++" -+ AvaLink:"RayLinkDC++":"SparkDC++":PeLink

)

Use edge types
E(DC)$lty <- 1
E(DC)["BCDC++" %->% "StrongDC++"]$lty <- 2
E(DC)["FreeDC++" %->% "EiskaltDC++"]$lty <- 2
E(DC)["ApexDC++" %->% "FlylinkDC++ ver <= 4xx"]$lty <- 2
E(DC)["ApexDC++" %->% "DiCe!++"]$lty <- 2
E(DC)["StrongDC++ SQLite" %->% "FlylinkDC++ ver >= 5xx"]$lty <- 2
E(DC)["GreylinkDC++" %->% "AvaLink"]$lty <- 2

Layers, as on the plot
layers <- list(

c("DC++"),
c("LinuxDC++", "BCDC++"),
c("FreeDC++", "StrongDC++"),
c(
"BMDC++", "EiskaltDC++", "AirDC++", "zK++", "ApexDC++",
"TkDC++", "RSX++"

),
c("StrongDC++ SQLite", "ApexDC++ Speed-Mod", "DiCe!++"),
c("FlylinkDC++ ver <= 4xx", "GreylinkDC++"),

layout_with_sugiyama 301

c(
"FlylinkDC++ ver >= 5xx", "AvaLink", "RayLinkDC++",
"SparkDC++", "PeLink"

)
)

Check that we have all nodes
all(sort(unlist(layers)) == sort(V(DC)$name))

Add some graphical parameters
V(DC)$color <- "white"
V(DC)$shape <- "rectangle"
V(DC)$size <- 20
V(DC)$size2 <- 10
V(DC)$label <- lapply(V(DC)$name, function(x) {

paste(strwrap(x, 12), collapse = "\n")
})
E(DC)$arrow.size <- 0.5

Create a similar layout using the predefined layers
lay1 <- layout_with_sugiyama(DC, layers = apply(sapply(

layers,
function(x) V(DC)$name %in% x

), 1, which))

Simple plot, not very nice
par(mar = rep(.1, 4))
plot(DC, layout = lay1$layout, vertex.label.cex = 0.5)

Sugiyama plot
plot(lay1$extd_graph, vertex.label.cex = 0.5)

The same with automatic layer calculation
Keep vertex/edge attributes in the extended graph
lay2 <- layout_with_sugiyama(DC, attributes = "all")
plot(lay2$extd_graph, vertex.label.cex = 0.5)

Another example, from the following paper:
Markus Eiglsperger, Martin Siebenhaller, Michael Kaufmann:
An Efficient Implementation of Sugiyama's Algorithm for
Layered Graph Drawing, Journal of Graph Algorithms and
Applications 9, 305--325 (2005).

ex <- graph_from_literal(
0 -+ 29:6:5:20:4,
1 -+ 12,
2 -+ 23:8,
3 -+ 4,
4,
5 -+ 2:10:14:26:4:3,
6 -+ 9:29:25:21:13,
7,
8 -+ 20:16,

302 local_scan

9 -+ 28:4,
10 -+ 27,
11 -+ 9:16,
12 -+ 9:19,
13 -+ 20,
14 -+ 10,
15 -+ 16:27,
16 -+ 27,
17 -+ 3,
18 -+ 13,
19 -+ 9,
20 -+ 4,
21 -+ 22,
22 -+ 8:9,
23 -+ 9:24,
24 -+ 12:15:28,
25 -+ 11,
26 -+ 18,
27 -+ 13:19,
28 -+ 7,
29 -+ 25

)

layers <- list(
0, c(5, 17), c(2, 14, 26, 3), c(23, 10, 18), c(1, 24),
12, 6, c(29, 21), c(25, 22), c(11, 8, 15), 16, 27, c(13, 19),
c(9, 20), c(4, 28), 7

)

layex <- layout_with_sugiyama(ex, layers = apply(
sapply(

layers,
function(x) V(ex)$name %in% as.character(x)

),
1, which

))

origvert <- c(rep(TRUE, vcount(ex)), rep(FALSE, nrow(layex$layout.dummy)))
realedge <- as_edgelist(layex$extd_graph)[, 2] <= vcount(ex)
plot(layex$extd_graph,

vertex.label.cex = 0.5,
edge.arrow.size = .5,
vertex.size = ifelse(origvert, 5, 0),
vertex.shape = ifelse(origvert, "square", "none"),
vertex.label = ifelse(origvert, V(ex)$name, ""),
edge.arrow.mode = ifelse(realedge, 2, 0)

)

local_scan Compute local scan statistics on graphs

local_scan 303

Description

The scan statistic is a summary of the locality statistics that is computed from the local neighbor-
hood of each vertex. The local_scan() function computes the local statistics for each vertex for a
given neighborhood size and the statistic function.

Usage

local_scan(
graph.us,
graph.them = NULL,
k = 1,
FUN = NULL,
weighted = FALSE,
mode = c("out", "in", "all"),
neighborhoods = NULL,
weights = NULL,
...

)

Arguments

graph.us, graph An igraph object, the graph for which the scan statistics will be computed

graph.them An igraph object or NULL, if not NULL, then the ‘them’ statistics is computed, i.e.
the neighborhoods calculated from graph.us are evaluated on graph.them.

k An integer scalar, the size of the local neighborhood for each vertex. Should be
non-negative.

FUN Character, a function name, or a function object itself, for computing the local
statistic in each neighborhood. If NULL(the default value), ecount() is used for
unweighted graphs (if weighted=FALSE) and a function that computes the sum
of edge weights is used for weighted graphs (if weighted=TRUE). This argument
is ignored if k is zero.

weighted Logical scalar, TRUE if the edge weights should be used for computation of the
scan statistic. If TRUE, the graph should be weighted. Note that this argument
is ignored if FUN is not NULL, "ecount" and "sumweights".

mode Character scalar, the kind of neighborhoods to use for the calculation. One of
‘out’, ‘in’, ‘all’ or ‘total’. This argument is ignored for undirected graphs.

neighborhoods A list of neighborhoods, one for each vertex, or NULL. If it is not NULL, then
the function is evaluated on the induced subgraphs specified by these neighbor-
hoods.
In theory this could be useful if the same graph.us graph is used for mul-
tiple graph.them arguments. Then the neighborhoods can be calculated on
graph.us and used with multiple graphs. In practice, this is currently slower
than simply using graph.them multiple times.

weights Numeric vector, edge weights to use for the scan instead of the edge attribute
weight. If NULL (the default) the edge weight attribute is used.

... Arguments passed to FUN, the function that computes the local statistics.

304 local_scan

Details

See the given reference below for the details on the local scan statistics.

local_scan() calculates exact local scan statistics.

If graph.them is NULL, then local_scan() computes the ‘us’ variant of the scan statistics. Other-
wise, graph.them should be an igraph object and the ‘them’ variant is computed using graph.us
to extract the neighborhood information, and applying FUN on these neighborhoods in graph.them.

Value

For local_scan() typically a numeric vector containing the computed local statistics for each
vertex. In general a list or vector of objects, as returned by FUN.

References

Priebe, C. E., Conroy, J. M., Marchette, D. J., Park, Y. (2005). Scan Statistics on Enron Graphs.
Computational and Mathematical Organization Theory.

See Also

Other scan statistics: scan_stat()

Examples

pair <- sample_correlated_gnp_pair(n = 10^3, corr = 0.8, p = 0.1)
local_0_us <- local_scan(graph.us = pair$graph1, k = 0)
local_1_us <- local_scan(graph.us = pair$graph1, k = 1)

local_0_them <- local_scan(
graph.us = pair$graph1,
graph.them = pair$graph2, k = 0

)
local_1_them <- local_scan(

graph.us = pair$graph1,
graph.them = pair$graph2, k = 1

)

Neigh_1 <- neighborhood(pair$graph1, order = 1)
local_1_them_nhood <- local_scan(

graph.us = pair$graph1,
graph.them = pair$graph2,
neighborhoods = Neigh_1

)

make_ 305

make_ Make a new graph

Description

This is a generic function for creating graphs.

Usage

make_(...)

Arguments

... Parameters, see details below.

Details

make_() is a generic function for creating graphs. For every graph constructor in igraph that has a
make_ prefix, there is a corresponding function without the prefix: e.g. for make_ring() there is
also ring(), etc.

The same is true for the random graph samplers, i.e. for each constructor with a sample_ prefix,
there is a corresponding function without that prefix.

These shorter forms can be used together with make_(). The advantage of this form is that the
user can specify constructor modifiers which work with all constructors. E.g. the with_vertex_()
modifier adds vertex attributes to the newly created graphs.

See the examples and the various constructor modifiers below.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_lattice(), make_ring(), make_star(), make_tree()

Constructor modifiers (and related functions) sample_(), simplified(), with_edge_(), with_graph_(),
with_vertex_(), without_attr(), without_loops(), without_multiples()

Examples

r <- make_(ring(10))
l <- make_(lattice(c(3, 3, 3)))

r2 <- make_(ring(10), with_vertex_(color = "red", name = LETTERS[1:10]))
l2 <- make_(lattice(c(3, 3, 3)), with_edge_(weight = 2))

ran <- sample_(degseq(c(3, 3, 3, 3, 3, 3), method = "configuration"), simplified())
degree(ran)
is_simple(ran)

306 make_bipartite_graph

make_bipartite_graph Create a bipartite graph

Description

A bipartite graph has two kinds of vertices and connections are only allowed between different
kinds.

Usage

make_bipartite_graph(types, edges, directed = FALSE)

bipartite_graph(...)

Arguments

types A vector giving the vertex types. It will be coerced into boolean. The length of
the vector gives the number of vertices in the graph. When the vector is a named
vector, the names will be attached to the graph as the name vertex attribute.

edges A vector giving the edges of the graph, the same way as for the regular make_graph()
function. It is checked that the edges indeed connect vertices of different kind,
according to the supplied types vector. The vector may be a string vector if
types is a named vector.

directed Whether to create a directed graph, boolean constant. Note that by default undi-
rected graphs are created, as this is more common for bipartite graphs.

... Passed to make_bipartite_graph().

Details

Bipartite graphs have a type vertex attribute in igraph, this is boolean and FALSE for the vertices of
the first kind and TRUE for vertices of the second kind.

make_bipartite_graph() basically does three things. First it checks the edges vector against the
vertex types. Then it creates a graph using the edges vector and finally it adds the types vector as
a vertex attribute called type. edges may contain strings as vertex names; in this case, types must
be a named vector that specifies the type for each vertex name that occurs in edges.

Value

make_bipartite_graph() returns a bipartite igraph graph. In other words, an igraph graph that
has a vertex attribute named type.

is_bipartite() returns a logical scalar.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

make_chordal_ring 307

See Also

make_graph() to create one-mode networks

Bipartite graphs bipartite_mapping(), bipartite_projection(), is_bipartite()

Examples

g <- make_bipartite_graph(rep(0:1, length.out = 10), c(1:10))
print(g, v = TRUE)

make_chordal_ring Create an extended chordal ring graph

Description

make_chordal_ring() creates an extended chordal ring. An extended chordal ring is regular graph,
each node has the same degree. It can be obtained from a simple ring by adding some extra edges
specified by a matrix. Let p denote the number of columns in the ‘W’ matrix. The extra edges of
vertex i are added according to column i mod p in ‘W’. The number of extra edges is the number
of rows in ‘W’: for each row j an edge i->i+w[ij] is added if i+w[ij] is less than the number of
total nodes. See also Kotsis, G: Interconnection Topologies for Parallel Processing Systems, PARS
Mitteilungen 11, 1-6, 1993.

Usage

make_chordal_ring(n, w, directed = FALSE)

chordal_ring(...)

Arguments

n The number of vertices.

w A matrix which specifies the extended chordal ring. See details below.

directed Logical scalar, whether or not to create a directed graph.

... Passed to make_chordal_ring().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_empty_graph(), make_full_citation_graph(), make_full_graph(), make_graph(),
make_lattice(), make_ring(), make_star(), make_tree()

308 make_clusters

Examples

chord <- make_chordal_ring(
15,
matrix(c(3, 12, 4, 7, 8, 11), nr = 2)

)

make_clusters Creates a communities object.

Description

This is useful to integrate the results of community finding algorithms that are not included in
igraph.

Usage

make_clusters(
graph,
membership = NULL,
algorithm = NULL,
merges = NULL,
modularity = TRUE

)

Arguments

graph The graph of the community structure.

membership The membership vector of the community structure, a numeric vector denot-
ing the id of the community for each vertex. It might be NULL for hierarchical
community structures.

algorithm Character string, the algorithm that generated the community structure, it can be
arbitrary.

merges A merge matrix, for hierarchical community structures (or NULL otherwise.

modularity Modularity value of the community structure. If this is TRUE and the membership
vector is available, then it the modularity values is calculated automatically.

Value

A communities object.

membership A numeric vector giving the community id for each vertex.

modularity The modularity score of the partition.

algorithm If known, the algorithm used to obtain the communities.

vcount Number of vertices in the graph.

make_de_bruijn_graph 309

See Also

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), membership(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

make_de_bruijn_graph De Bruijn graphs

Description

De Bruijn graphs are labeled graphs representing the overlap of strings.

Usage

make_de_bruijn_graph(m, n)

de_bruijn_graph(...)

Arguments

m Integer scalar, the size of the alphabet. See details below.

n Integer scalar, the length of the labels. See details below.

... Passed to make_de_bruijn_graph().

Details

A de Bruijn graph represents relationships between strings. An alphabet of m letters are used and
strings of length n are considered. A vertex corresponds to every possible string and there is a
directed edge from vertex v to vertex w if the string of v can be transformed into the string of w by
removing its first letter and appending a letter to it.

Please note that the graph will have m to the power n vertices and even more edges, so probably you
don’t want to supply too big numbers for m and n.

De Bruijn graphs have some interesting properties, please see another source, e.g. Wikipedia for
details.

Value

A graph object.

Author(s)

Gabor Csardi csardi.gabor@gmail.com

mailto:csardi.gabor@gmail.com

310 make_empty_graph

See Also

make_kautz_graph(), make_line_graph()

Examples

de Bruijn graphs can be created recursively by line graphs as well
g <- make_de_bruijn_graph(2, 1)
make_de_bruijn_graph(2, 2)
make_line_graph(g)

make_empty_graph A graph with no edges

Description

A graph with no edges

Usage

make_empty_graph(n = 0, directed = TRUE)

empty_graph(...)

Arguments

n Number of vertices.

directed Whether to create a directed graph.

... Passed to make_graph_empty.

Value

An igraph graph.

Related documentation in the C library

empty().

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_full_citation_graph(), make_full_graph(), make_graph(),
make_lattice(), make_ring(), make_star(), make_tree()

Examples

make_empty_graph(n = 10)
make_empty_graph(n = 5, directed = FALSE)

https://igraph.org/c/html/0.10.17/igraph-Basic.html#igraph_empty

make_from_prufer 311

make_from_prufer Create an undirected tree graph from its Prüfer sequence

Description

make_from_prufer() creates an undirected tree graph from its Prüfer sequence.

Usage

make_from_prufer(prufer)

from_prufer(...)

Arguments

prufer The Prüfer sequence to convert into a graph

... Passed to make_from_prufer()

Details

The Prüfer sequence of a tree graph with n labeled vertices is a sequence of n-2 numbers, constructed
as follows. If the graph has more than two vertices, find a vertex with degree one, remove it from
the tree and add the label of the vertex that it was connected to to the sequence. Repeat until there
are only two vertices in the remaining graph.

Value

A graph object.

Related documentation in the C library

from_prufer().

See Also

to_prufer() to convert a graph into its Prüfer sequence

Other trees: is_forest(), is_tree(), sample_spanning_tree(), to_prufer()

Examples

g <- make_tree(13, 3)
to_prufer(g)

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_from_prufer

312 make_full_bipartite_graph

make_full_bipartite_graph

Create a full bipartite graph

Description

Bipartite graphs are also called two-mode by some. This function creates a bipartite graph in which
every possible edge is present.

Usage

make_full_bipartite_graph(
n1,
n2,
directed = FALSE,
mode = c("all", "out", "in")

)

full_bipartite_graph(...)

Arguments

n1 The number of vertices of the first kind.

n2 The number of vertices of the second kind.

directed Logical scalar, whether the graphs is directed.

mode Scalar giving the kind of edges to create for directed graphs. If this is ‘out’
then all vertices of the first kind are connected to the others; ‘in’ specifies the
opposite direction; ‘all’ creates mutual edges. This argument is ignored for
undirected graphs.x

... Passed to make_full_bipartite_graph().

Details

Bipartite graphs have a ‘type’ vertex attribute in igraph, this is boolean and FALSE for the vertices
of the first kind and TRUE for vertices of the second kind.

Value

An igraph graph, with the ‘type’ vertex attribute set.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

make_full_graph() for creating one-mode full graphs

make_full_citation_graph 313

Examples

g <- make_full_bipartite_graph(2, 3)
g2 <- make_full_bipartite_graph(2, 3, directed = TRUE)
g3 <- make_full_bipartite_graph(2, 3, directed = TRUE, mode = "in")
g4 <- make_full_bipartite_graph(2, 3, directed = TRUE, mode = "all")

make_full_citation_graph

Create a complete (full) citation graph

Description

make_full_citation_graph() creates a full citation graph. This is a directed graph, where every
i->j edge is present if and only if j < i. If directed=FALSE then the graph is just a full graph.

Usage

make_full_citation_graph(n, directed = TRUE)

full_citation_graph(...)

Arguments

n The number of vertices.

directed Whether to create a directed graph.

... Passed to make_full_citation_graph().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_graph(), make_graph(),
make_lattice(), make_ring(), make_star(), make_tree()

Examples

print_all(make_full_citation_graph(10))

314 make_graph

make_full_graph Create a full graph

Description

Create a full graph

Usage

make_full_graph(n, directed = FALSE, loops = FALSE)

full_graph(...)

Arguments

n Number of vertices.

directed Whether to create a directed graph.

loops Whether to add self-loops to the graph.

... Passed to make_full_graph().

Value

An igraph graph

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_graph(),
make_lattice(), make_ring(), make_star(), make_tree()

Examples

make_full_graph(5)
print_all(make_full_graph(4, directed = TRUE))

make_graph Create an igraph graph from a list of edges, or a notable graph

Description

Create an igraph graph from a list of edges, or a notable graph

make_graph 315

Usage

make_graph(
edges,
...,
n = max(edges),
isolates = NULL,
directed = TRUE,
dir = directed,
simplify = TRUE

)

make_directed_graph(edges, n = max(edges))

make_undirected_graph(edges, n = max(edges))

directed_graph(...)

undirected_graph(...)

Arguments

edges A vector defining the edges, the first edge points from the first element to the
second, the second edge from the third to the fourth, etc. For a numeric vec-
tor, these are interpreted as internal vertex ids. For character vectors, they are
interpreted as vertex names.
Alternatively, this can be a character scalar, the name of a notable graph. See
Notable graphs below. The name is case insensitive.
Starting from igraph 0.8.0, you can also include literals here, via igraph’s for-
mula notation (see graph_from_literal()). In this case, the first term of the
formula has to start with a ‘~’ character, just like regular formulae in R. See
examples below.

... For make_graph(): extra arguments for the case when the graph is given via a
literal, see graph_from_literal(). For directed_graph() and undirected_graph():
Passed to make_directed_graph() or make_undirected_graph().

n The number of vertices in the graph. This argument is ignored (with a warning)
if edges are symbolic vertex names. It is also ignored if there is a bigger vertex
id in edges. This means that for this function it is safe to supply zero here if the
vertex with the largest id is not an isolate.

isolates Character vector, names of isolate vertices, for symbolic edge lists. It is ignored
for numeric edge lists.

directed Whether to create a directed graph.

dir It is the same as directed, for compatibility. Do not give both of them.

simplify For graph literals, whether to simplify the graph.

Value

An igraph graph.

316 make_graph

Notable graphs

make_graph() can create some notable graphs. The name of the graph (case insensitive), a charac-
ter scalar must be supplied as the edges argument, and other arguments are ignored. (A warning is
given is they are specified.)

make_graph() knows the following graphs:

Bull The bull graph, 5 vertices, 5 edges, resembles to the head of a bull if drawn properly.

Chvatal This is the smallest triangle-free graph that is both 4-chromatic and 4-regular. According
to the Grunbaum conjecture there exists an m-regular, m-chromatic graph with n vertices for
every m>1 and n>2. The Chvatal graph is an example for m=4 and n=12. It has 24 edges.

Coxeter A non-Hamiltonian cubic symmetric graph with 28 vertices and 42 edges.

Cubical The Platonic graph of the cube. A convex regular polyhedron with 8 vertices and 12 edges.

Diamond A graph with 4 vertices and 5 edges, resembles to a schematic diamond if drawn prop-
erly.

Dodecahedral, Dodecahedron Another Platonic solid with 20 vertices and 30 edges.

Folkman The semisymmetric graph with minimum number of vertices, 20 and 40 edges. A
semisymmetric graph is regular, edge transitive and not vertex transitive.

Franklin This is a graph whose embedding to the Klein bottle can be colored with six colors, it
is a counterexample to the necessity of the Heawood conjecture on a Klein bottle. It has 12
vertices and 18 edges.

Frucht The Frucht Graph is the smallest cubical graph whose automorphism group consists only
of the identity element. It has 12 vertices and 18 edges.

Grotzsch, Groetzsch The Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, and
chromatic number 4. It is named after German mathematician Herbert Grötzsch, and its ex-
istence demonstrates that the assumption of planarity is necessary in Grötzsch’s theorem that
every triangle-free planar graph is 3-colorable.

Heawood The Heawood graph is an undirected graph with 14 vertices and 21 edges. The graph
is cubic, and all cycles in the graph have six or more edges. Every smaller cubic graph has
shorter cycles, so this graph is the 6-cage, the smallest cubic graph of girth 6.

Herschel The Herschel graph is the smallest nonhamiltonian polyhedral graph. It is the unique
such graph on 11 nodes, and has 18 edges.

House The house graph is a 5-vertex, 6-edge graph, the schematic draw of a house if drawn prop-
erly, basically a triangle of the top of a square.

HouseX The same as the house graph with an X in the square. 5 vertices and 8 edges.

Icosahedral, Icosahedron A Platonic solid with 12 vertices and 30 edges.

Krackhardt kite A social network with 10 vertices and 18 edges. Krackhardt, D. Assessing the
Political Landscape: Structure, Cognition, and Power in Organizations. Admin. Sci. Quart.
35, 342-369, 1990.

Levi The graph is a 4-arc transitive cubic graph, it has 30 vertices and 45 edges.

McGee The McGee graph is the unique 3-regular 7-cage graph, it has 24 vertices and 36 edges.

Meredith The Meredith graph is a quartic graph on 70 nodes and 140 edges that is a counterexam-
ple to the conjecture that every 4-regular 4-connected graph is Hamiltonian.

make_graph 317

Noperfectmatching A connected graph with 16 vertices and 27 edges containing no perfect match-
ing. A matching in a graph is a set of pairwise non-adjacent edges; that is, no two edges share
a common vertex. A perfect matching is a matching which covers all vertices of the graph.

Nonline A graph whose connected components are the 9 graphs whose presence as a vertex-
induced subgraph in a graph makes a nonline graph. It has 50 vertices and 72 edges.

Octahedral, Octahedron Platonic solid with 6 vertices and 12 edges.

Petersen A 3-regular graph with 10 vertices and 15 edges. It is the smallest hypohamiltonian
graph, i.e. it is non-hamiltonian but removing any single vertex from it makes it Hamiltonian.

Robertson The unique (4,5)-cage graph, i.e. a 4-regular graph of girth 5. It has 19 vertices and 38
edges.

Smallestcyclicgroup A smallest nontrivial graph whose automorphism group is cyclic. It has 9
vertices and 15 edges.

Tetrahedral, Tetrahedron Platonic solid with 4 vertices and 6 edges.

Thomassen The smallest hypotraceable graph, on 34 vertices and 52 edges. A hypotraceable graph
does not contain a Hamiltonian path but after removing any single vertex from it the remain-
der always contains a Hamiltonian path. A graph containing a Hamiltonian path is called
traceable.

Tutte Tait’s Hamiltonian graph conjecture states that every 3-connected 3-regular planar graph is
Hamiltonian. This graph is a counterexample. It has 46 vertices and 69 edges.

Uniquely3colorable Returns a 12-vertex, triangle-free graph with chromatic number 3 that is
uniquely 3-colorable.

Walther An identity graph with 25 vertices and 31 edges. An identity graph has a single graph
automorphism, the trivial one.

Zachary Social network of friendships between 34 members of a karate club at a US university in
the 1970s. See W. W. Zachary, An information flow model for conflict and fission in small
groups, Journal of Anthropological Research 33, 452-473 (1977).

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_lattice(), make_ring(), make_star(), make_tree()

Examples

make_graph(c(1, 2, 2, 3, 3, 4, 5, 6), directed = FALSE)
make_graph(c("A", "B", "B", "C", "C", "D"), directed = FALSE)

solids <- list(
make_graph("Tetrahedron"),
make_graph("Cubical"),
make_graph("Octahedron"),
make_graph("Dodecahedron"),
make_graph("Icosahedron")

)

graph <- make_graph(

318 make_kautz_graph

~ A - B - C - D - A, E - A:B:C:D,
F - G - H - I - F, J - F:G:H:I,
K - L - M - N - K, O - K:L:M:N,
P - Q - R - S - P, T - P:Q:R:S,
B - F, E - J, C - I, L - T, O - T, M - S,
C - P, C - L, I - L, I - P

)

make_kautz_graph Kautz graphs

Description

Kautz graphs are labeled graphs representing the overlap of strings.

Usage

make_kautz_graph(m, n)

kautz_graph(...)

Arguments

m Integer scalar, the size of the alphabet. See details below.

n Integer scalar, the length of the labels. See details below.

... Passed to make_kautz_graph().

Details

A Kautz graph is a labeled graph, vertices are labeled by strings of length n+1 above an alphabet
with m+1 letters, with the restriction that every two consecutive letters in the string must be different.
There is a directed edge from a vertex v to another vertex w if it is possible to transform the string
of v into the string of w by removing the first letter and appending a letter to it.

Kautz graphs have some interesting properties, see e.g. Wikipedia for details.

Value

A graph object.

Author(s)

Gabor Csardi csardi.gabor@gmail.com, the first version in R was written by Vincent Matossian.

See Also

make_de_bruijn_graph(), make_line_graph()

mailto:csardi.gabor@gmail.com

make_lattice 319

Examples

make_line_graph(make_kautz_graph(2, 1))
make_kautz_graph(2, 2)

make_lattice Create a lattice graph

Description

make_lattice() is a flexible function, it can create lattices of arbitrary dimensions, periodic or
aperiodic ones. It has two forms. In the first form you only supply dimvector, but not length and
dim. In the second form you omit dimvector and supply length and dim.

Usage

make_lattice(
dimvector = NULL,
length = NULL,
dim = NULL,
nei = 1,
directed = FALSE,
mutual = FALSE,
periodic = FALSE,
circular = deprecated()

)

lattice(...)

Arguments

dimvector A vector giving the size of the lattice in each dimension.

length Integer constant, for regular lattices, the size of the lattice in each dimension.

dim Integer constant, the dimension of the lattice.

nei The distance within which (inclusive) the neighbors on the lattice will be con-
nected. This parameter is not used right now.

directed Whether to create a directed lattice.

mutual Logical, if TRUE directed lattices will be mutually connected.

periodic Logical vector, Boolean vector, defines whether the generated lattice is periodic
along each dimension. This parameter may also be scalar boolen value which
will be extended to boolean vector with dimvector length.

circular Deprecated, use periodic instead.

... Passed to make_lattice().

320 make_line_graph

Value

An igraph graph.

Related documentation in the C library

square_lattice().

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_ring(), make_star(), make_tree()

Examples

make_lattice(c(5, 5, 5))
make_lattice(length = 5, dim = 3)

make_line_graph Line graph of a graph

Description

This function calculates the line graph of another graph.

Usage

make_line_graph(graph)

line_graph(...)

Arguments

graph The input graph, it can be directed or undirected.

... Passed to make_line_graph().

Details

The line graph L(G) of a G undirected graph is defined as follows. L(G) has one vertex for each
edge in G and two vertices in L(G) are connected by an edge if their corresponding edges share an
end point.

The line graph L(G) of a G directed graph is slightly different, L(G) has one vertex for each edge
in G and two vertices in L(G) are connected by a directed edge if the target of the first vertex’s
corresponding edge is the same as the source of the second vertex’s corresponding edge.

Value

A new graph object.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_square_lattice

make_ring 321

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>, the first version of the C code was written by Vincent
Matossian.

Examples

generate the first De-Bruijn graphs
g <- make_full_graph(2, directed = TRUE, loops = TRUE)
make_line_graph(g)
make_line_graph(make_line_graph(g))
make_line_graph(make_line_graph(make_line_graph(g)))

make_ring Create a ring graph

Description

A ring is a one-dimensional lattice and this function is a special case of make_lattice().

Usage

make_ring(n, directed = FALSE, mutual = FALSE, circular = TRUE)

ring(...)

Arguments

n Number of vertices.
directed Whether the graph is directed.
mutual Whether directed edges are mutual. It is ignored in undirected graphs.
circular Whether to create a circular ring. A non-circular ring is essentially a “line”: a

tree where every non-leaf vertex has one child.
... Passed to make_ring().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_lattice(), make_star(), make_tree()

Examples

print_all(make_ring(10))
print_all(make_ring(10, directed = TRUE, mutual = TRUE))

322 make_star

make_star Create a star graph, a tree with n vertices and n - 1 leaves

Description

star() creates a star graph, in this every single vertex is connected to the center vertex and nobody
else.

Usage

make_star(n, mode = c("in", "out", "mutual", "undirected"), center = 1)

star(...)

Arguments

n Number of vertices.

mode It defines the direction of the edges, in: the edges point to the center, out: the
edges point from the center, mutual: a directed star is created with mutual edges,
undirected: the edges are undirected.

center ID of the center vertex.

... Passed to make_star().

Value

An igraph graph.

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_lattice(), make_ring(), make_tree()

Examples

make_star(10, mode = "out")
make_star(5, mode = "undirected")

make_tree 323

make_tree Create tree graphs

Description

Create a k-ary tree graph, where almost all vertices other than the leaves have the same number of
children.

Usage

make_tree(n, children = 2, mode = c("out", "in", "undirected"))

tree(...)

Arguments

n Number of vertices.

children Integer scalar, the number of children of a vertex (except for leafs)

mode Defines the direction of the edges. out indicates that the edges point from the
parent to the children, in indicates that they point from the children to their
parents, while undirected creates an undirected graph.

... Passed to make_tree() or sample_tree().

Value

An igraph graph

See Also

Other deterministic constructors: graph_from_atlas(), graph_from_edgelist(), graph_from_literal(),
make_(), make_chordal_ring(), make_empty_graph(), make_full_citation_graph(), make_full_graph(),
make_graph(), make_lattice(), make_ring(), make_star()

Examples

make_tree(10, 2)
make_tree(10, 3, mode = "undirected")

324 match_vertices

match_vertices Match Graphs given a seeding of vertex correspondences

Description

Given two adjacency matrices A and B of the same size, match the two graphs with the help of m
seed vertex pairs which correspond to the first m rows (and columns) of the adjacency matrices.

Usage

match_vertices(A, B, m, start, iteration)

Arguments

A a numeric matrix, the adjacency matrix of the first graph

B a numeric matrix, the adjacency matrix of the second graph

m The number of seeds. The first m vertices of both graphs are matched.

start a numeric matrix, the permutation matrix estimate is initialized with start

iteration The number of iterations for the Frank-Wolfe algorithm

Details

The approximate graph matching problem is to find a bijection between the vertices of two graphs
, such that the number of edge disagreements between the corresponding vertex pairs is minimized.
For seeded graph matching, part of the bijection that consist of known correspondences (the seeds)
is known and the problem task is to complete the bijection by estimating the permutation matrix
that permutes the rows and columns of the adjacency matrix of the second graph.

It is assumed that for the two supplied adjacency matrices A and B, both of size n × n, the first m
rows(and columns) of A and B correspond to the same vertices in both graphs. That is, the n × n
permutation matrix that defines the bijection is Im

⊕
P for a (n−m)×(n−m) permutation matrix

P and m times m identity matrix Im. The function match_vertices() estimates the permutation
matrix P via an optimization algorithm based on the Frank-Wolfe algorithm.

See references for further details.

Value

A numeric matrix which is the permutation matrix that determines the bijection between the graphs
of A and B

Author(s)

Vince Lyzinski https://www.ams.jhu.edu/~lyzinski/

https://www.ams.jhu.edu/~lyzinski/

max_cardinality 325

References

Vogelstein, J. T., Conroy, J. M., Podrazik, L. J., Kratzer, S. G., Harley, E. T., Fishkind, D. E.,Vogelstein,
R. J., Priebe, C. E. (2011). Fast Approximate Quadratic Programming for Large (Brain) Graph
Matching. Online: https://arxiv.org/abs/1112.5507

Fishkind, D. E., Adali, S., Priebe, C. E. (2012). Seeded Graph Matching Online: https://arxiv.
org/abs/1209.0367

See Also

sample_correlated_gnp(),sample_correlated_gnp_pair()

Examples

require(Matrix)
g1 <- sample_gnp(10, 0.1)
randperm <- c(1:3, 3 + sample(7))
g2 <- sample_correlated_gnp(g1, corr = 1, p = g1$p, permutation = randperm)
A <- as_adjacency_matrix(g1)
B <- as_adjacency_matrix(g2)
P <- match_vertices(A, B, m = 3, start = diag(rep(1, nrow(A) - 3)), 20)
P

max_cardinality Maximum cardinality search

Description

Maximum cardinality search is a simple ordering a vertices that is useful in determining the chordal-
ity of a graph.

Usage

max_cardinality(graph)

Arguments

graph The input graph. It may be directed, but edge directions are ignored, as the
algorithm is defined for undirected graphs.

Details

Maximum cardinality search visits the vertices in such an order that every time the vertex with the
most already visited neighbors is visited. Ties are broken randomly.

The algorithm provides a simple basis for deciding whether a graph is chordal, see References
below, and also is_chordal().

https://arxiv.org/abs/1112.5507
https://arxiv.org/abs/1209.0367
https://arxiv.org/abs/1209.0367

326 max_cardinality

Value

A list with two components:

alpha Numeric vector. The 1-based rank of each vertex in the graph such that the vertex with rank
1 is visited first, the vertex with rank 2 is visited second and so on.

alpham1 Numeric vector. The inverse of alpha. In other words, the elements of this vector are the
vertices in reverse maximum cardinality search order.

Related documentation in the C library

maximum_cardinality_search().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Robert E Tarjan and Mihalis Yannakakis. (1984). Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal
of Computation 13, 566–579.

See Also

is_chordal()

Other chordal: is_chordal()

Examples

The examples from the Tarjan-Yannakakis paper
g1 <- graph_from_literal(

A - B:C:I, B - A:C:D, C - A:B:E:H, D - B:E:F,
E - C:D:F:H, F - D:E:G, G - F:H, H - C:E:G:I,
I - A:H

)
max_cardinality(g1)
is_chordal(g1, fillin = TRUE)

g2 <- graph_from_literal(
A - B:E, B - A:E:F:D, C - E:D:G, D - B:F:E:C:G,
E - A:B:C:D:F, F - B:D:E, G - C:D:H:I, H - G:I:J,
I - G:H:J, J - H:I

)
max_cardinality(g2)
is_chordal(g2, fillin = TRUE)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_maximum_cardinality_search

max_flow 327

max_flow Maximum flow in a graph

Description

In a graph where each edge has a given flow capacity the maximal flow between two vertices is
calculated.

Usage

max_flow(graph, source, target, capacity = NULL)

Arguments

graph The input graph.

source The id of the source vertex.

target The id of the target vertex (sometimes also called sink).

capacity Vector giving the capacity of the edges. If this is NULL (the default) then the
capacity edge attribute is used. Note that the weight edge attribute is not used
by this function.

Details

max_flow() calculates the maximum flow between two vertices in a weighted (i.e. valued) graph.
A flow from source to target is an assignment of non-negative real numbers to the edges of the
graph, satisfying two properties: (1) for each edge the flow (i.e. the assigned number) is not more
than the capacity of the edge (the capacity parameter or edge attribute), (2) for every vertex, except
the source and the target the incoming flow is the same as the outgoing flow. The value of the flow
is the incoming flow of the target vertex. The maximum flow is the flow of maximum value.

Value

A named list with components:

value A numeric scalar, the value of the maximum flow.

flow A numeric vector, the flow itself, one entry for each edge. For undirected graphs this entry
is bit trickier, since for these the flow direction is not predetermined by the edge direction.
For these graphs the elements of the this vector can be negative, this means that the flow goes
from the bigger vertex id to the smaller one. Positive values mean that the flow goes from the
smaller vertex id to the bigger one.

cut A numeric vector of edge ids, the minimum cut corresponding to the maximum flow.

partition1 A numeric vector of vertex ids, the vertices in the first partition of the minimum cut
corresponding to the maximum flow.

partition2 A numeric vector of vertex ids, the vertices in the second partition of the minimum cut
corresponding to the maximum flow.

328 membership

stats A list with some statistics from the push-relabel algorithm. Five integer values currently:
nopush is the number of push operations, norelabel the number of relabelings, nogap is the
number of times the gap heuristics was used, nogapnodes is the total number of gap nodes
omitted because of the gap heuristics and nobfs is the number of times a global breadth-first-
search update was performed to assign better height (=distance) values to the vertices.

Related documentation in the C library

maxflow().

References

A. V. Goldberg and R. E. Tarjan: A New Approach to the Maximum Flow Problem Journal of the
ACM 35:921-940, 1988.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
min_cut(), min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

E <- rbind(c(1, 3, 3), c(3, 4, 1), c(4, 2, 2), c(1, 5, 1), c(5, 6, 2), c(6, 2, 10))
colnames(E) <- c("from", "to", "capacity")
g1 <- graph_from_data_frame(as.data.frame(E))
max_flow(g1, source = V(g1)["1"], target = V(g1)["2"])

membership Functions to deal with the result of network community detection

Description

igraph community detection functions return their results as an object from the communities class.
This manual page describes the operations of this class.

Usage

membership(communities)

S3 method for class 'communities'
print(x, ...)

S3 method for class 'communities'
modularity(x, ...)

S3 method for class 'communities'
length(x)

https://igraph.org/c/html/0.10.17/igraph-Flows.html#igraph_maxflow

membership 329

sizes(communities)

algorithm(communities)

merges(communities)

crossing(communities, graph)

code_len(communities)

is_hierarchical(communities)

S3 method for class 'communities'
as.dendrogram(object, hang = -1, use.modularity = FALSE, ...)

S3 method for class 'communities'
as.hclust(x, hang = -1, use.modularity = FALSE, ...)

cut_at(communities, no, steps)

show_trace(communities)

S3 method for class 'communities'
plot(
x,
y,
col = membership(x),
mark.groups = communities(x),
edge.color = c("black", "red")[crossing(x, y) + 1],
...

)

communities(x)

Arguments

communities, x, object
A communities object, the result of an igraph community detection function.

... Additional arguments. plot.communities passes these to plot.igraph().
The other functions silently ignore them.

graph An igraph graph object, corresponding to communities.

hang Numeric scalar indicating how the height of leaves should be computed from
the heights of their parents; see plot.hclust().

use.modularity Logical scalar, whether to use the modularity values to define the height of the
branches.

no Integer scalar, the desired number of communities. If too low or two high, then
an error message is given. Exactly one of no and steps must be supplied.

330 membership

steps The number of merge operations to perform to produce the communities. Ex-
actly one of no and steps must be supplied.

y An igraph graph object, corresponding to the communities in x.

col A vector of colors, in any format that is accepted by the regular R plotting meth-
ods. This vector gives the colors of the vertices explicitly.

mark.groups A list of numeric vectors. The communities can be highlighted using colored
polygons. The groups for which the polygons are drawn are given here. The
default is to use the groups given by the communities. Supply NULL here if you
do not want to highlight any groups.

edge.color The colors of the edges. By default the edges within communities are colored
green and other edges are red.

membership Numeric vector, one value for each vertex, the membership vector of the com-
munity structure. Might also be NULL if the community structure is given in
another way, e.g. by a merge matrix.

algorithm If not NULL (meaning an unknown algorithm), then a character scalar, the name
of the algorithm that produced the community structure.

merges If not NULL, then the merge matrix of the hierarchical community structure. See
merges() below for more information on its format.

modularity Numeric scalar or vector, the modularity value of the community structure. It
can also be NULL, if the modularity of the (best) split is not available.

Details

Community structure detection algorithms try to find dense subgraphs in directed or undirected
graphs, by optimizing some criteria, and usually using heuristics.

igraph implements a number of community detection methods (see them below), all of which return
an object of the class communities. Because the community structure detection algorithms are
different, communities objects do not always have the same structure. Nevertheless, they have
some common operations, these are documented here.

The print() generic function is defined for communities, it prints a short summary.

The length generic function call be called on communities and returns the number of communities.

The sizes() function returns the community sizes, in the order of their ids.

membership() gives the division of the vertices, into communities. It returns a numeric vector,
one value for each vertex, the id of its community. Community ids start from one. Note that some
algorithms calculate the complete (or incomplete) hierarchical structure of the communities, and not
just a single partitioning. For these algorithms typically the membership for the highest modularity
value is returned, but see also the manual pages of the individual algorithms.

communities() is also the name of a function, that returns a list of communities, each identified
by their vertices. The vertices will have symbolic names if the add.vertex.names igraph option is
set, and the graph itself was named. Otherwise numeric vertex ids are used.

modularity() gives the modularity score of the partitioning. (See modularity.igraph() for
details. For algorithms that do not result a single partitioning, the highest modularity value is
returned.

algorithm() gives the name of the algorithm that was used to calculate the community structure.

membership 331

crossing() returns a logical vector, with one value for each edge, ordered according to the edge
ids. The value is TRUE iff the edge connects two different communities, according to the (best)
membership vector, as returned by membership().

is_hierarchical() checks whether a hierarchical algorithm was used to find the community
structure. Some functions only make sense for hierarchical methods (e.g. merges(), cut_at()
and as.dendrogram()).

merges() returns the merge matrix for hierarchical methods. An error message is given, if a
non-hierarchical method was used to find the community structure. You can check this by call-
ing is_hierarchical() on the communities object.

cut_at() cuts the merge tree of a hierarchical community finding method, at the desired place
and returns a membership vector. The desired place can be expressed as the desired number of
communities or as the number of merge steps to make. The function gives an error message, if
called with a non-hierarchical method.

as.dendrogram() converts a hierarchical community structure to a dendrogram object. It only
works for hierarchical methods, and gives an error message to others. See stats::dendrogram()
for details.

stats::as.hclust() is similar to as.dendrogram(), but converts a hierarchical community struc-
ture to a hclust object.

ape::as.phylo() converts a hierarchical community structure to a phylo object, you will need the
ape package for this.

show_trace() works (currently) only for communities found by the leading eigenvector method
(cluster_leading_eigen()), and returns a character vector that gives the steps performed by the
algorithm while finding the communities.

code_len() is defined for the InfoMAP method (cluster_infomap() and returns the code length
of the partition.

It is possibly to call the plot() function on communities objects. This will plot the graph (and
uses plot.igraph() internally), with the communities shown. By default it colores the vertices
according to their communities, and also marks the vertex groups corresponding to the communities.
It passes additional arguments to plot.igraph(), please see that and also igraph.plotting on how
to change the plot.

Value

print() returns the communities object itself, invisibly.

length returns an integer scalar.

sizes() returns a numeric vector.

membership() returns a numeric vector, one number for each vertex in the graph that was the input
of the community detection.

modularity() returns a numeric scalar.

algorithm() returns a character scalar.

crossing() returns a logical vector.

is_hierarchical() returns a logical scalar.

merges() returns a two-column numeric matrix.

332 merge_coords

cut_at() returns a numeric vector, the membership vector of the vertices.

as.dendrogram() returns a dendrogram object.

show_trace() returns a character vector.

code_len() returns a numeric scalar for communities found with the InfoMAP method and NULL
for other methods.

plot() for communities objects returns NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

See plot_dendrogram() for plotting community structure dendrograms.

See compare() for comparing two community structures on the same graph.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), make_clusters(), modularity.igraph(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

karate <- make_graph("Zachary")
wc <- cluster_walktrap(karate)
modularity(wc)
membership(wc)
plot(wc, karate)

merge_coords Merging graph layouts

Description

Place several graphs on the same layout

Usage

merge_coords(graphs, layouts, method = "dla")

layout_components(graph, layout = layout_with_kk, ...)

merge_coords 333

Arguments

graphs A list of graph objects.

layouts A list of two-column matrices.

method Character constant giving the method to use. Right now only dla is imple-
mented.

graph The input graph.

layout A function object, the layout function to use.

... Additional arguments to pass to the layout layout function.

Details

merge_coords() takes a list of graphs and a list of coordinates and places the graphs in a common
layout. The method to use is chosen via the method parameter, although right now only the dla
method is implemented.

The dla method covers the graph with circles. Then it sorts the graphs based on the number of
vertices first and places the largest graph at the center of the layout. Then the other graphs are
placed in decreasing order via a DLA (diffision limited aggregation) algorithm: the graph is placed
randomly on a circle far away from the center and a random walk is conducted until the graph walks
into the larger graphs already placed or walks too far from the center of the layout.

The layout_components() function disassembles the graph first into maximal connected compo-
nents and calls the supplied layout function for each component separately. Finally it merges the
layouts via calling merge_coords().

Value

A matrix with two columns and as many lines as the total number of vertices in the graphs.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

plot.igraph(), tkplot(), layout(), disjoint_union()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(),
norm_coords(), normalize()

Examples

create 20 scale-free graphs and place them in a common layout
graphs <- lapply(sample(5:20, 20, replace = TRUE),

barabasi.game,
directed = FALSE

)

334 min_cut

layouts <- lapply(graphs, layout_with_kk)
lay <- merge_coords(graphs, layouts)
g <- disjoint_union(graphs)
plot(g, layout = lay, vertex.size = 3, labels = NA, edge.color = "black")

min_cut Minimum cut in a graph

Description

min_cut() calculates the minimum st-cut between two vertices in a graph (if the source and
target arguments are given) or the minimum cut of the graph (if both source and target are
NULL).

Usage

min_cut(
graph,
source = NULL,
target = NULL,
capacity = NULL,
value.only = TRUE

)

Arguments

graph The input graph.
source The id of the source vertex.
target The id of the target vertex (sometimes also called sink).
capacity Vector giving the capacity of the edges. If this is NULL (the default) then the

capacity edge attribute is used.
value.only Logical scalar, if TRUE only the minimum cut value is returned, if FALSE the

edges in the cut and a the two (or more) partitions are also returned.

Details

The minimum st-cut between source and target is the minimum total weight of edges needed to
remove to eliminate all paths from source to target.

The minimum cut of a graph is the minimum total weight of the edges needed to remove to separate
the graph into (at least) two components. (Which is to make the graph not strongly connected in the
directed case.)

The maximum flow between two vertices in a graph is the same as the minimum st-cut, so max_flow()
and min_cut() essentially calculate the same quantity, the only difference is that min_cut() can
be invoked without giving the source and target arguments and then minimum of all possible
minimum cuts is calculated.

For undirected graphs the Stoer-Wagner algorithm (see reference below) is used to calculate the
minimum cut.

min_separators 335

Value

For min_cut() a nuieric constant, the value of the minimum cut, except if value.only = FALSE. In
this case a named list with components:

value Numeric scalar, the cut value.

cut Numeric vector, the edges in the cut.

partition1 The vertices in the first partition after the cut edges are removed. Note that these vertices
might be actually in different components (after the cut edges are removed), as the graph may
fall apart into more than two components.

partition2 The vertices in the second partition after the cut edges are removed. Note that these
vertices might be actually in different components (after the cut edges are removed), as the
graph may fall apart into more than two components.

References

M. Stoer and F. Wagner: A simple min-cut algorithm, Journal of the ACM, 44 585-591, 1997.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_separators(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

g <- make_ring(100)
min_cut(g, capacity = rep(1, vcount(g)))
min_cut(g, value.only = FALSE, capacity = rep(1, vcount(g)))

g2 <- make_graph(c(1, 2, 2, 3, 3, 4, 1, 6, 6, 5, 5, 4, 4, 1))
E(g2)$capacity <- c(3, 1, 2, 10, 1, 3, 2)
min_cut(g2, value.only = FALSE)

min_separators Minimum size vertex separators

Description

Find all vertex sets of minimal size whose removal separates the graph into more components

Usage

min_separators(graph)

Arguments

graph The input graph. It may be directed, but edge directions are ignored.

336 min_separators

Details

This function implements the Kanevsky algorithm for finding all minimal-size vertex separators in
an undirected graph. See the reference below for the details.

In the special case of a fully connected input graph with n vertices, all subsets of size n − 1 are
listed as the result.

Value

A list of numeric vectors. Each numeric vector is a vertex separator.

Related documentation in the C library

minimum_size_separators().

References

Arkady Kanevsky: Finding all minimum-size separating vertex sets in a graph. Networks 23 533–
541, 1993.

JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351–372,
1996.

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social
groups. American Sociological Review, 68 103–127, Feb 2003.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_cut(), min_st_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

The graph from the Moody-White paper
mw <- graph_from_literal(

1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
21 - 22:23, 22 - 23

)

Cohesive subgraphs
mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
mw2 <- induced_subgraph(mw, as.character(7:16))
mw3 <- induced_subgraph(mw, as.character(17:23))
mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
mw5 <- induced_subgraph(mw, as.character(1:7))

min_separators(mw)
min_separators(mw1)
min_separators(mw2)
min_separators(mw3)

https://igraph.org/c/html/0.10.17/igraph-Separators.html#igraph_minimum_size_separators

min_st_separators 337

min_separators(mw4)
min_separators(mw5)

Another example, the science camp network
camp <- graph_from_literal(

Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,
Holly - Carol:Pat:Pam:Jennie:Bill,
Bill - Pauline:Michael:Lee:Holly,
Pauline - Bill:Jennie:Ann,
Jennie - Holly:Michael:Lee:Ann:Pauline,
Michael - Bill:Jennie:Ann:Lee:John,
Ann - Michael:Jennie:Pauline,
Lee - Michael:Bill:Jennie,
Gery - Pat:Steve:Russ:John,
Russ - Steve:Bert:Gery:John,
John - Gery:Russ:Michael

)
min_separators(camp)

min_st_separators Minimum size vertex separators

Description

List all vertex sets that are minimal (s, t) separators for some s and t, in an undirected graph.

Usage

min_st_separators(graph)

Arguments

graph The input graph. It may be directed, but edge directions are ignored.

Details

A (s, t) vertex separator is a set of vertices, such that after their removal from the graph, there is no
path between s and t in the graph.

A (s, t) vertex separator is minimal if none of its proper subsets is an (s, t) vertex separator for the
same s and t.

Value

A list of numeric vectors. Each vector contains a vertex set (defined by vertex ids), each vector is
an (s,t) separator of the input graph, for some s and t.

338 min_st_separators

Note

Note that the code below returns {1, 3} despite its subset {1} being a separator as well. This is
because {1, 3} is minimal with respect to separating vertices 2 and 4.

g <- make_graph(~ 0-1-2-3-4-1)
min_st_separators(g)

#> [[1]]
#> + 1/5 vertex, named:
#> [1] 1
#>
#> [[2]]
#> + 2/5 vertices, named:
#> [1] 2 4
#>
#> [[3]]
#> + 2/5 vertices, named:
#> [1] 1 3

Related documentation in the C library

all_minimal_st_separators().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Anne Berry, Jean-Paul Bordat and Olivier Cogis: Generating All the Minimal Separators of a Graph,
In: Peter Widmayer, Gabriele Neyer and Stephan Eidenbenz (editors): Graph-theoretic concepts in
computer science, 1665, 167–172, 1999. Springer.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_cut(), min_separators(), st_cuts(), st_min_cuts(), vertex_connectivity()

Examples

ring <- make_ring(4)
min_st_separators(ring)

chvatal <- make_graph("chvatal")
min_st_separators(chvatal)
https://github.com/r-lib/roxygen2/issues/1092

https://igraph.org/c/html/0.10.17/igraph-Separators.html#igraph_all_minimal_st_separators

modularity.igraph 339

modularity.igraph Modularity of a community structure of a graph

Description

This function calculates how modular is a given division of a graph into subgraphs.

Usage

S3 method for class 'igraph'
modularity(x, membership, weights = NULL, resolution = 1, directed = TRUE, ...)

modularity_matrix(
graph,
membership = lifecycle::deprecated(),
weights = NULL,
resolution = 1,
directed = TRUE

)

Arguments

x, graph The input graph.

membership Numeric vector, one value for each vertex, the membership vector of the com-
munity structure.

weights If not NULL then a numeric vector giving edge weights.

resolution The resolution parameter. Must be greater than or equal to 0. Set it to 1 to use
the classical definition of modularity.

directed Whether to use the directed or undirected version of modularity. Ignored for
undirected graphs.

... Additional arguments, none currently.

Details

modularity() calculates the modularity of a graph with respect to the given membership vector.

The modularity of a graph with respect to some division (or vertex types) measures how good the
division is, or how separated are the different vertex types from each other. It defined as

Q =
1

2m

∑
i,j

(Aij − γ
kikj
2m

)δ(ci, cj),

here m is the number of edges, Aij is the element of the A adjacency matrix in row i and column
j, ki is the degree of i, kj is the degree of j, ci is the type (or component) of i, cj that of j, the

340 modularity.igraph

sum goes over all i and j pairs of vertices, and δ(x, y) is 1 if x = y and 0 otherwise. For directed
graphs, it is defined as

Q =
1

m

∑
i,j

(Aij − γ
kouti kinj

m
)δ(ci, cj).

The resolution parameter γ allows weighting the random null model, which might be useful when
finding partitions with a high modularity. Maximizing modularity with higher values of the res-
olution parameter typically results in more, smaller clusters when finding partitions with a high
modularity. Lower values typically results in fewer, larger clusters. The original definition of mod-
ularity is retrieved when setting γ to 1.

If edge weights are given, then these are considered as the element of the A adjacency matrix, and
ki is the sum of weights of adjacent edges for vertex i.

modularity_matrix() calculates the modularity matrix. This is a dense matrix, and it is defined
as the difference of the adjacency matrix and the configuration model null model matrix. In other
words element Mij is given as Aij − didj/(2m), where Aij is the (possibly weighted) adjacency
matrix, di is the degree of vertex i, and m is the number of edges (or the total weights in the graph,
if it is weighed).

Value

For modularity() a numeric scalar, the modularity score of the given configuration.

For modularity_matrix() a numeric square matrix, its order is the number of vertices in the graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Clauset, A.; Newman, M. E. J. & Moore, C. Finding community structure in very large networks,
Physical Review E 2004, 70, 066111

See Also

cluster_walktrap(), cluster_edge_betweenness(), cluster_fast_greedy(), cluster_spinglass(),
cluster_louvain() and cluster_leiden() for various community detection methods.

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), make_clusters(), membership(), plot_dendrogram(), split_join_distance(),
voronoi_cells()

Examples

g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
wtc <- cluster_walktrap(g)
modularity(wtc)

motifs 341

modularity(g, membership(wtc))

motifs Graph motifs

Description

Graph motifs are small connected induced subgraphs with a well-defined structure. These functions
search a graph for various motifs.

Usage

motifs(graph, size = 3, cut.prob = NULL)

Arguments

graph Graph object, the input graph.

size The size of the motif, currently sizes 3 and 4 are supported in directed graphs
and sizes 3-6 in undirected graphs.

cut.prob Numeric vector giving the probabilities that the search graph is cut at a certain
level. Its length should be the same as the size of the motif (the size argument).
If NULL, the default, no cuts are made.

Details

motifs() searches a graph for motifs of a given size and returns a numeric vector containing the
number of different motifs. The order of the motifs is defined by their isomorphism class, see
isomorphism_class().

Value

motifs() returns a numeric vector, the number of occurrences of each motif in the graph. The
motifs are ordered by their isomorphism classes. Note that for unconnected subgraphs, which are
not considered to be motifs, the result will be NA.

See Also

isomorphism_class()

Other graph motifs: count_motifs(), dyad_census(), sample_motifs()

Examples

g <- sample_pa(100)
motifs(g, 3)
count_motifs(g, 3)
sample_motifs(g, 3)

342 mst

mst Minimum spanning tree

Description

A spanning tree of a connected graph is a connected subgraph with the smallest number of edges
that includes all vertices of the graph. A graph will have many spanning trees. Among these, the
minimum spanning tree will have the smallest sum of edge weights.

Usage

mst(graph, weights = NULL, algorithm = NULL, ...)

Arguments

graph The graph object to analyze.

weights Numeric vector giving the weights of the edges in the graph. The order is deter-
mined by the edge ids. This is ignored if the unweighted algorithm is chosen.
Edge weights are interpreted as distances.

algorithm The algorithm to use for calculation. unweighted can be used for unweighted
graphs, and prim runs Prim’s algorithm for weighted graphs. If this is NULL then
igraph will select the algorithm automatically: if the graph has an edge attribute
called weight or the weights argument is not NULL then Prim’s algorithm is
chosen, otherwise the unweighted algorithm is used.

... Additional arguments, unused.

Details

The minimum spanning forest of a disconnected graph is the collection of minimum spanning trees
of all of its components.

If the graph is not connected a minimum spanning forest is returned.

Value

A graph object with the minimum spanning forest. To check whether it is a tree, check that the
number of its edges is vcount(graph)-1. The edge and vertex attributes of the original graph are
preserved in the result.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Prim, R.C. 1957. Shortest connection networks and some generalizations Bell System Technical
Journal, 37 1389–1401.

neighbors 343

See Also

components()

Examples

g <- sample_gnp(100, 3 / 100)
g_mst <- mst(g)

neighbors Neighboring (adjacent) vertices in a graph

Description

A vertex is a neighbor of another one (in other words, the two vertices are adjacent), if they are
incident to the same edge.

Usage

neighbors(graph, v, mode = c("out", "in", "all", "total"))

Arguments

graph The input graph.

v The vertex of which the adjacent vertices are queried.

mode Whether to query outgoing (‘out’), incoming (‘in’) edges, or both types (‘all’).
This is ignored for undirected graphs.

Value

A vertex sequence containing the neighbors of the input vertex.

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), head_of(), incident(), incident_edges(),
is_directed(), tail_of()

Examples

g <- make_graph("Zachary")
n1 <- neighbors(g, 1)
n34 <- neighbors(g, 34)
intersection(n1, n34)

344 normalize

normalize Normalize layout

Description

Scale coordinates of a layout.

Usage

normalize(
xmin = -1,
xmax = 1,
ymin = xmin,
ymax = xmax,
zmin = xmin,
zmax = xmax

)

Arguments

xmin, xmax Minimum and maximum for x coordinates.

ymin, ymax Minimum and maximum for y coordinates.

zmin, zmax Minimum and maximum for z coordinates.

See Also

merge_coords(), layout_().

Other layout modifiers: component_wise()

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(),
merge_coords(), norm_coords()

Examples

layout_(make_ring(10), with_fr(), normalize())

norm_coords 345

norm_coords Normalize coordinates for plotting graphs

Description

Rescale coordinates linearly to be within given bounds.

Usage

norm_coords(
layout,
xmin = -1,
xmax = 1,
ymin = -1,
ymax = 1,
zmin = -1,
zmax = 1

)

Arguments

layout A matrix with two or three columns, the layout to normalize.

xmin, xmax The limits for the first coordinate, if one of them or both are NULL then no nor-
malization is performed along this direction.

ymin, ymax The limits for the second coordinate, if one of them or both are NULL then no
normalization is performed along this direction.

zmin, zmax The limits for the third coordinate, if one of them or both are NULL then no
normalization is performed along this direction.

Details

norm_coords() normalizes a layout, it linearly transforms each coordinate separately to fit into the
given limits.

Value

A numeric matrix with at the same dimension as layout.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

346 page_rank

See Also

Other graph layouts: add_layout_(), component_wise(), layout_(), layout_as_bipartite(),
layout_as_star(), layout_as_tree(), layout_in_circle(), layout_nicely(), layout_on_grid(),
layout_on_sphere(), layout_randomly(), layout_with_dh(), layout_with_fr(), layout_with_gem(),
layout_with_graphopt(), layout_with_kk(), layout_with_lgl(), layout_with_mds(), layout_with_sugiyama(),
merge_coords(), normalize()

page_rank The Page Rank algorithm

Description

Calculates the Google PageRank for the specified vertices.

Usage

page_rank(
graph,
algo = c("prpack", "arpack"),
vids = V(graph),
directed = TRUE,
damping = 0.85,
personalized = NULL,
weights = NULL,
options = NULL

)

Arguments

graph The graph object.

algo Character scalar, which implementation to use to carry out the calculation. The
default is "prpack", which uses the PRPACK library (https://github.com/
dgleich/prpack) to calculate PageRank scores by solving a set of linear equa-
tions. This is a new implementation in igraph version 0.7, and the suggested one,
as it is the most stable and the fastest for all but small graphs. "arpack" uses
the ARPACK library, the default implementation from igraph version 0.5 until
version 0.7. It computes PageRank scores by solving an eingevalue problem.

vids The vertices of interest.

directed Logical, if true directed paths will be considered for directed graphs. It is ig-
nored for undirected graphs.

damping The damping factor (‘d’ in the original paper).

personalized Optional vector giving a probability distribution to calculate personalized PageR-
ank. For personalized PageRank, the probability of jumping to a node when
abandoning the random walk is not uniform, but it is given by this vector. The
vector should contains an entry for each vertex and it will be rescaled to sum up
to one.

https://github.com/dgleich/prpack
https://github.com/dgleich/prpack

page_rank 347

weights A numerical vector or NULL. This argument can be used to give edge weights for
calculating the weighted PageRank of vertices. If this is NULL and the graph has
a weight edge attribute then that is used. If weights is a numerical vector then
it used, even if the graph has a weights edge attribute. If this is NA, then no edge
weights are used (even if the graph has a weight edge attribute. This function
interprets edge weights as connection strengths. In the random surfer model, an
edge with a larger weight is more likely to be selected by the surfer.

options A named list, to override some ARPACK options. See arpack() for details.
This argument is ignored if the PRPACK implementation is used.

Details

For the explanation of the PageRank algorithm, see the following webpage: http://infolab.
stanford.edu/~backrub/google.html, or the following reference:

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proceedings of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998.

The page_rank() function can use either the PRPACK library or ARPACK (see arpack()) to
perform the calculation.

Please note that the PageRank of a given vertex depends on the PageRank of all other vertices, so
even if you want to calculate the PageRank for only some of the vertices, all of them must be cal-
culated. Requesting the PageRank for only some of the vertices does not result in any performance
increase at all.

Value

A named list with entries:

vector A numeric vector with the PageRank scores.

value When using the ARPACK method, the eigenvalue corresponding to the eigenvector with
the PageRank scores is returned here. It is expected to be exactly one, and can be used to
check that ARPACK has successfully converged to the expected eingevector. When using the
PRPACK method, it is always set to 1.0.

options Some information about the underlying ARPACK calculation. See arpack() for details.
This entry is NULL if not the ARPACK implementation was used.

Related documentation in the C library

personalized_pagerank().

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

References

Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proceedings of the 7th World-Wide Web Conference, Brisbane, Australia, April 1998.

http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_personalized_pagerank

348 path

See Also

Other centrality scores: closeness(), betweenness(), degree()

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), hits_scores(), power_centrality(),
spectrum(), strength(), subgraph_centrality()

Examples

g <- sample_gnp(20, 5 / 20, directed = TRUE)
page_rank(g)$vector

g2 <- make_star(10)
page_rank(g2)$vector

Personalized PageRank
g3 <- make_ring(10)
page_rank(g3)$vector
reset <- seq(vcount(g3))
page_rank(g3, personalized = reset)$vector

path Helper function to add or delete edges along a path

Description

This function can be used to add or delete edges that form a path.

Usage

path(...)

Arguments

... See details below.

Details

When adding edges via +, all unnamed arguments are concatenated, and each element of a final
vector is interpreted as a vertex in the graph. For a vector of length n+ 1, n edges are then added,
from vertex 1 to vertex 2, from vertex 2 to vertex 3, etc. Named arguments will be used as edge
attributes for the new edges.

When deleting edges, all attributes are concatenated and then passed to delete_edges().

Value

A special object that can be used together with igraph graphs and the plus and minus operators.

permute 349

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), permute(), rep.igraph(), reverse_edges(), simplify(), union(),
union.igraph(), vertex()

Examples

Create a (directed) wheel
g <- make_star(11, center = 1) + path(2:11, 2)
plot(g)

g <- make_empty_graph(directed = FALSE, n = 10) %>%
set_vertex_attr("name", value = letters[1:10])

g2 <- g + path("a", "b", "c", "d")
plot(g2)

g3 <- g2 + path("e", "f", "g", weight = 1:2, color = "red")
E(g3)[[]]

g4 <- g3 + path(c("f", "c", "j", "d"), width = 1:3, color = "green")
E(g4)[[]]

permute Permute the vertices of a graph

Description

Create a new graph, by permuting vertex ids.

Usage

permute(graph, permutation)

Arguments

graph The input graph, it can directed or undirected.
permutation A numeric vector giving the permutation to apply. The first element is the new

id of vertex 1, etc. Every number between one and vcount(graph) must appear
exactly once.

Details

This function creates a new graph from the input graph by permuting its vertices according to the
specified mapping. Call this function with the output of canonical_permutation() to create the
canonical form of a graph.

permute() keeps all graph, vertex and edge attributes of the graph.

350 plot.common

Value

A new graph object.

Related documentation in the C library

permute_vertices().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

canonical_permutation()

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), rep.igraph(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

Random permutation of a random graph
g <- sample_gnm(20, 50)
g2 <- permute(g, sample(vcount(g)))
isomorphic(g, g2)

Permutation keeps all attributes
g$name <- "Random graph, Gnm, 20, 50"
V(g)$name <- letters[1:vcount(g)]
E(g)$weight <- sample(1:5, ecount(g), replace = TRUE)
g2 <- permute(g, sample(vcount(g)))
isomorphic(g, g2)
g2$name
V(g2)$name
E(g2)$weight
all(sort(E(g2)$weight) == sort(E(g)$weight))

plot.common Drawing graphs

Description

The common bits of the three plotting functions plot.igraph, tkplot and rglplot are discussed
in this manual page.

https://igraph.org/c/html/0.10.17/igraph-Isomorphism.html#igraph_permute_vertices

plot.common 351

Details

There are currently three different functions in the igraph package which can draw graph in various
ways:

plot.igraph does simple non-interactive 2D plotting to R devices. Actually it is an implementation
of the graphics::plot() generic function, so you can write plot(graph) instead of plot.igraph(graph).
As it used the standard R devices it supports every output format for which R has an output device.
The list is quite impressing: PostScript, PDF files, XFig files, SVG files, JPG, PNG and of course
you can plot to the screen as well using the default devices, or the good-looking anti-aliased Cairo
device. See plot.igraph() for some more information.

tkplot() does interactive 2D plotting using the tcltk package. It can only handle graphs of
moderate size, a thousand vertices is probably already too many. Some parameters of the plotted
graph can be changed interactively after issuing the tkplot command: the position, color and size
of the vertices and the color and width of the edges. See tkplot() for details.

rglplot() is an experimental function to draw graphs in 3D using OpenGL. See rglplot() for
some more information.

Please also check the examples below.

How to specify graphical parameters

There are three ways to give values to the parameters described below, in section ’Parameters’. We
give these three ways here in the order of their precedence.

The first method is to supply named arguments to the plotting commands: plot.igraph(), tkplot()
or rglplot()]. Parameters for vertices start with prefix ‘vertex.’, parameters for edges have prefix
‘edge.’, and global parameters have no prefix. Eg. the color of the vertices can be given via argu-
ment vertex.color, whereas edge.color sets the color of the edges. layout gives the layout of
the graphs.

The second way is to assign vertex, edge and graph attributes to the graph. These attributes have
no prefix, ie. the color of the vertices is taken from the color vertex attribute and the color of the
edges from the color edge attribute. The layout of the graph is given by the layout graph attribute.
(Always assuming that the corresponding command argument is not present.) Setting vertex and
edge attributes are handy if you want to assign a given ‘look’ to a graph, attributes are saved with
the graph is you save it with base::save() or in GraphML format with write_graph(), so the
graph will have the same look after loading it again.

If a parameter is not given in the command line, and the corresponding vertex/edge/graph attribute
is also missing then the general igraph parameters handled by igraph_options() are also checked.
Vertex parameters have prefix ‘vertex.’, edge parameters are prefixed with ‘edge.’, general pa-
rameters like layout are prefixed with ‘plot’. These parameters are useful if you want all or most
of your graphs to have the same look, vertex size, vertex color, etc. Then you don’t need to set these
at every plotting, and you also don’t need to assign vertex/edge attributes to every graph.

If the value of a parameter is not specified by any of the three ways described here, its default valued
is used, as given in the source code.

Different parameters can have different type, eg. vertex colors can be given as a character vector
with color names, or as an integer vector with the color numbers from the current palette. Different
types are valid for different parameters, this is discussed in detail in the next section. It is however
always true that the parameter can always be a function object in which it will be called with the

352 plot.common

graph as its single argument to get the “proper” value of the parameter. (If the function returns
another function object that will not be called again. . .)

The list of parameters

Vertex parameters first, note that the ‘vertex.’ prefix needs to be added if they are used as an
argument or when setting via igraph_options(). The value of the parameter may be scalar valid
for every vertex or a vector with a separate value for each vertex. (Shorter vectors are recycled.)

size The size of the vertex, a numeric scalar or vector, in the latter case each vertex sizes may differ.
This vertex sizes are scaled in order have about the same size of vertices for a given value for
all three plotting commands. It does not need to be an integer number. The default value is 15.
This is big enough to place short labels on vertices. If size.scaling is TRUE, relative.size
is used to scale the size appropriately.

size2 The “other” size of the vertex, for some vertex shapes. For the various rectangle shapes this
gives the height of the vertices, whereas size gives the width. It is ignored by shapes for
which the size can be specified with a single number.
The default is 15.

color The fill color of the vertex. If it is numeric then the current palette is used, see grDevices::palette().
If it is a character vector then it may either contain integer values, named colors or RGB spec-
ified colors with three or four bytes. All strings starting with ‘#’ are assumed to be RGB color
specifications. It is possible to mix named color and RGB colors. Note that tkplot() ignores
the fourth byte (alpha channel) in the RGB color specification.
For plot.igraph and integer values, the default igraph palette is used (see the ‘palette’ pa-
rameter below. Note that this is different from the R palette.
If you don’t want (some) vertices to have any color, supply NA as the color name.
The default value is “SkyBlue2”.

frame.color The color of the frame of the vertices, the same formats are allowed as for the fill
color.
If you don’t want vertices to have a frame, supply NA as the color name.
By default it is “black”.

frame.width The width of the frame of the vertices. The default value is 1.

shape The shape of the vertex, currently “circle”, “square”, “csquare”, “rectangle”, “crectangle”,
“vrectangle”, “pie” (see vertex.shape.pie()), ‘sphere’, and “none” are supported, and
only by the plot.igraph() command. “none” does not draw the vertices at all, although ver-
tex label are plotted (if given). See shapes() for details about vertex shapes and vertex.shape.pie()
for using pie charts as vertices.
The “sphere” vertex shape plots vertices as 3D ray-traced spheres, in the given color and
size. This produces a raster image and it is only supported with some graphics devices. On
some devices raster transparency is not supported and the spheres do not have a transparent
background. See dev.capabilities and the ‘rasterImage’ capability to check that your device
is supported.
By default vertices are drawn as circles.

label The vertex labels. They will be converted to character. Specify NA to omit vertex labels. The
default vertex labels are the vertex ids.

plot.common 353

label.family The font family to be used for vertex labels. As different plotting commands can used
different fonts, they interpret this parameter different ways. The basic notation is, however,
understood by both plot.igraph() and tkplot(). rglplot() does not support fonts at all
right now, it ignores this parameter completely.
For plot.igraph() this parameter is simply passed to graphics::text() as argument family.
For tkplot() some conversion is performed. If this parameter is the name of an existing
Tk font, then that font is used and the label.font and label.cex parameters are ignored
completely. If it is one of the base families (serif, sans, mono) then Times, Helvetica or
Courier fonts are used, there are guaranteed to exist on all systems. For the ‘symbol’ base
family we used the symbol font is available, otherwise the first font which has ‘symbol’ in its
name. If the parameter is not a name of the base families and it is also not a named Tk font
then we pass it to tcltk::tkfont.create() and hope the user knows what she is doing. The
label.font and label.cex parameters are also passed to tcltk::tkfont.create() in this
case.
The default value is ‘serif’.

label.font The font within the font family to use for the vertex labels. It is interpreted the same
way as the the font graphical parameter: 1 is plain text, 2 is bold face, 3 is italic, 4 is bold
and italic and 5 specifies the symbol font.
For plot.igraph() this parameter is simply passed to graphics::text().
For tkplot(), if the label.family parameter is not the name of a Tk font then this parameter
is used to set whether the newly created font should be italic and/or boldface. Otherwise it is
ignored.
For rglplot() it is ignored.
The default value is 1.

label.cex The font size for vertex labels. It is interpreted as a multiplication factor of some device-
dependent base font size.
For plot.igraph() it is simply passed to graphics::text() as argument cex.
For tkplot() it is multiplied by 12 and then used as the size argument for tcltk::tkfont.create().
The base font is thus 12 for tkplot.
For rglplot() it is ignored.
The default value is 1.

label.dist The distance of the label from the center of the vertex. If it is 0 then the label is centered
on the vertex. If it is 1 then the label is displayed beside the vertex.
The default value is 0.

label.degree It defines the position of the vertex labels, relative to the center of the vertices. It is
interpreted as an angle in radians, zero means ‘to the right’, and ‘pi’ means to the left, up is
-pi/2 and down is pi/2.
The default value is -pi/4.

label.color The color of the labels, see the color vertex parameter discussed earlier for the possible
values.
The default value is black.

label.angle The rotation of the vertex labels, in degrees. Corresponds to the srt parameter of
graphics::text().

label.adj one or two numeric values, giving the horizontal and vertical adjustment of the vertex
labels. See also adj in graphics::text().

354 plot.common

size.scaling Switches between absolute vertex sizing (FALSE,default) and relative (TRUE). If
FALSE, vertex.size and vertex.size2 are used as is. If TRUE, relative.size is used to
scale both appropriately with relative.size.

relative.size The relative size of the smallest and largest vertices as percentage of the plotting
region. When all vertices have the same size, then by default the relative size observed in the
plot will be equal to relative.size[2]. The default value is c(.01,.025) (1\
Only used if size.scaling is TRUE‘.

Edge parameters require to add the ‘edge.’ prefix when used as arguments or set by igraph_options().
The edge parameters:

color The color of the edges, see the color vertex parameter for the possible values. By default
this parameter is darkgrey.

width The width of the edges. The default value is 1.
arrow.size The size of the arrows. The default value is 1.
arrow.width The width of the arrows. The default value is 1.
lty The line type for the edges. Almost the same format is accepted as for the standard graphics

graphics::par(), 0 and “blank” mean no edges, 1 and “solid” are for solid lines, the other
possible values are: 2 (“dashed”), 3 (“dotted”), 4 (“dotdash”), 5 (“longdash”), 6 (“twodash”).
tkplot() also accepts standard Tk line type strings, it does not however support “blank” lines,
instead of type ‘0’ type ‘1’, ie. solid lines will be drawn.
This argument is ignored for rglplot().
The default value is type 1, a solid line.

label The edge labels. They will be converted to character. Specify NA to omit edge labels.
Edge labels are omitted by default.

label.family Font family of the edge labels. See the vertex parameter with the same name for the
details.

label.font The font for the edge labels. See the corresponding vertex parameter discussed earlier
for details.

label.cex The font size for the edge labels, see the corresponding vertex parameter for details.
label.color The color of the edge labels, see the color vertex parameters on how to specify colors.
label.x The horizontal NA elements will be replaced by automatically calculated coordinates. If

NULL, then all edge horizontal coordinates are calculated automatically. This parameter is
only supported by plot.igraph.

label.y The same as label.x, but for vertical coordinates.
curved Specifies whether to draw curved edges, or not. This can be a logical or a numeric vector

or scalar.
First the vector is replicated to have the same length as the number of edges in the graph.
Then it is interpreted for each edge separately. A numeric value specifies the curvature of the
edge; zero curvature means straight edges, negative values means the edge bends clockwise,
positive values the opposite. TRUE means curvature 0.5, FALSE means curvature zero.
By default the vector specifying the curvature is calculated via a call to the curve_multiple()
function. This function makes sure that multiple edges are curved and are all visible. This
parameter is ignored for loop edges.
The default value is FALSE.
This parameter is currently ignored by rglplot().

plot.common 355

arrow.mode This parameter can be used to specify for which edges should arrows be drawn. If this
parameter is given by the user (in either of the three ways) then it specifies which edges will
have forward, backward arrows, or both, or no arrows at all. As usual, this parameter can be a
vector or a scalar value. It can be an integer or character type. If it is integer then 0 means no
arrows, 1 means backward arrows, 2 is for forward arrows and 3 for both. If it is a character
vector then “<” and “<-” specify backward, “>” and “->” forward arrows and “<>” and “<->”
stands for both arrows. All other values mean no arrows, perhaps you should use “-” or “–” to
specify no arrows.
Hint: this parameter can be used as a ‘cheap’ solution for drawing “mixed” graphs: graphs in
which some edges are directed some are not. If you want do this, then please create a directed
graph, because as of version 0.4 the vertex pairs in the edge lists can be swapped in undirected
graphs.
By default, no arrows will be drawn for undirected graphs, and for directed graphs, an arrow
will be drawn for each edge, according to its direction. This is not very surprising, it is the
expected behavior.

loop.angle Gives the angle in radians for plotting loop edges. See the label.dist vertex parameter
to see how this is interpreted.
The default value is NULL. This means that the loop edges will be drawn automatically in the
largest gap possible.

loop.angle2 Gives the second angle in radians for plotting loop edges. This is only used in 3D,
loop.angle is enough in 2D.
The default value is 0.

Other parameters:

layout Either a function or a numeric matrix. It specifies how the vertices will be placed on the
plot.
If it is a numeric matrix, then the matrix has to have one line for each vertex, specifying its
coordinates. The matrix should have at least two columns, for the x and y coordinates, and it
can also have third column, this will be the z coordinate for 3D plots and it is ignored for 2D
plots.
If a two column matrix is given for the 3D plotting function rglplot() then the third column
is assumed to be 1 for each vertex.
If layout is a function, this function will be called with the graph as the single parameter
to determine the actual coordinates. The function should return a matrix with two or three
columns. For the 2D plots the third column is ignored. The default value is layout_nicely,
a smart function that chooses a layout based on the graph.

margin The amount of empty space below, over, at the left and right of the plot, it is a numeric
vector of length four. Usually values between 0 and 0.5 are meaningful, but negative values
are also possible, that will make the plot zoom in to a part of the graph. If it is shorter than
four then it is recycled. rglplot() does not support this parameter, as it can zoom in and out
the graph in a more flexible way. Its default value is 0.

palette The color palette to use for vertex color. The default is categorical_pal, which is a
color-blind friendly categorical palette. See its manual page for details and other palettes.
This parameters is only supported by plot, and not by tkplot and rglplot.

rescale Logical constant, whether to rescale the coordinates to the [-1,1]x[-1,1](x[-1,1]) in-
terval. This parameter is not implemented for tkplot. Defaults to TRUE, the layout will be
rescaled.

356 plot.common

asp A numeric constant, it gives the asp parameter for plot(), the aspect ratio. Supply 0 here if
you don’t want to give an aspect ratio. It is ignored by tkplot and rglplot. Defaults to 1.

frame Boolean, whether to plot a frame around the graph. It is ignored by tkplot and rglplot.
Defaults to FALSE.

main Overall title for the main plot. The default is empty if the annotate.plot igraph option
is FALSE, and the graph’s name attribute otherwise. See the same argument of the base plot
function. Only supported by plot.

sub Subtitle of the main plot, the default is empty. Only supported by plot.

xlab Title for the x axis, the default is empty if the annotate.plot igraph option is FALSE, and the
number of vertices and edges, if it is TRUE. Only supported by plot.

ylab Title for the y axis, the default is empty. Only supported by plot.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

plot.igraph(), tkplot(), rglplot(), igraph_options()

Examples

Not run:

plotting a simple ring graph, all default parameters, except the layout
g <- make_ring(10)
g$layout <- layout_in_circle
plot(g)
tkplot(g)
rglplot(g)

plotting a random graph, set the parameters in the command arguments
g <- barabasi.game(100)
plot(g,

layout = layout_with_fr, vertex.size = 4,
vertex.label.dist = 0.5, vertex.color = "red", edge.arrow.size = 0.5

)

plot a random graph, different color for each component
g <- sample_gnp(100, 1 / 100)
comps <- components(g)$membership
colbar <- rainbow(max(comps) + 1)
V(g)$color <- colbar[comps + 1]
plot(g, layout = layout_with_fr, vertex.size = 5, vertex.label = NA)

plot communities in a graph
g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
com <- cluster_spinglass(g, spins = 5)
V(g)$color <- com$membership + 1

plot.igraph 357

g <- set_graph_attr(g, "layout", layout_with_kk(g))
plot(g, vertex.label.dist = 1.5)

draw a bunch of trees, fix layout
igraph_options(plot.layout = layout_as_tree)
plot(make_tree(20, 2))
plot(make_tree(50, 3), vertex.size = 3, vertex.label = NA)
tkplot(make_tree(50, 2, mode = "undirected"),

vertex.size = 10,
vertex.color = "green"

)

use relative scaling instead of absolute
g <- make_famous_graph("Zachary")
igraph_options(plot.layout = layout_nicely)
plot(g, vertex.size = degree(g))
plot(g, vertex.size = degree(g), size.scaling = TRUE)
plot(g, vertex.size = degree(g), size.scaling = TRUE, relative.size = c(0.05, 0.1))

End(Not run)

plot.igraph Plotting of graphs

Description

plot.igraph() is able to plot graphs to any R device. It is the non-interactive companion of the
tkplot() function.

Usage

S3 method for class 'igraph'
plot(
x,
axes = FALSE,
add = FALSE,
xlim = NULL,
ylim = NULL,
mark.groups = list(),
mark.shape = 1/2,
mark.col = rainbow(length(mark.groups), alpha = 0.3),
mark.border = rainbow(length(mark.groups), alpha = 1),
mark.expand = 15,
mark.lwd = 1,
loop.size = 1,
...

)

358 plot.igraph

Arguments

x The graph to plot.

axes Logical, whether to plot axes, defaults to FALSE.

add Logical scalar, whether to add the plot to the current device, or delete the de-
vice’s current contents first.

xlim The limits for the horizontal axis, it is unlikely that you want to modify this.

ylim The limits for the vertical axis, it is unlikely that you want to modify this.

mark.groups A list of vertex id vectors. It is interpreted as a set of vertex groups. Each
vertex group is highlighted, by plotting a colored smoothed polygon around and
“under” it. See the arguments below to control the look of the polygons.

mark.shape A numeric scalar or vector. Controls the smoothness of the vertex group marking
polygons. This is basically the ‘shape’ parameter of the graphics::xspline()
function, its possible values are between -1 and 1. If it is a vector, then a different
value is used for the different vertex groups.

mark.col A scalar or vector giving the colors of marking the polygons, in any format
accepted by graphics::xspline(); e.g. numeric color ids, symbolic color
names, or colors in RGB.

mark.border A scalar or vector giving the colors of the borders of the vertex group marking
polygons. If it is NA, then no border is drawn.

mark.expand A numeric scalar or vector, the size of the border around the marked vertex
groups. It is in the same units as the vertex sizes. If a vector is given, then
different values are used for the different vertex groups.

mark.lwd A numeric scalar or vector, the linewidth of the border around the marked vertex
groups. If a vector is given, then different values are used for the different vertex
groups.

loop.size A numeric scalar that allows the user to scale the loop edges of the network. The
default loop size is 1. Larger values will produce larger loops.

... Additional plotting parameters. See igraph.plotting for the complete list.

Details

One convenient way to plot graphs is to plot with tkplot() first, handtune the placement of the
vertices, query the coordinates by the tk_coords() function and use them with plot() to plot the
graph to any R device.

Value

Returns NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

plot.sir 359

See Also

layout() for different layouts, igraph.plotting for the detailed description of the plotting parameters
and tkplot() and rglplot() for other graph plotting functions.

Other plot: rglplot()

Examples

g <- make_ring(10)
plot(g, layout = layout_with_kk, vertex.color = "green")

plot.sir Plotting the results on multiple SIR model runs

Description

This function can conveniently plot the results of multiple SIR model simulations.

Usage

S3 method for class 'sir'
plot(
x,
comp = c("NI", "NS", "NR"),
median = TRUE,
quantiles = c(0.1, 0.9),
color = NULL,
median_color = NULL,
quantile_color = NULL,
lwd.median = 2,
lwd.quantile = 2,
lty.quantile = 3,
xlim = NULL,
ylim = NULL,
xlab = "Time",
ylab = NULL,
...

)

Arguments

x The output of the SIR simulation, coming from the sir() function.

comp Character scalar, which component to plot. Either ‘NI’ (infected, default), ‘NS’
(susceptible) or ‘NR’ (recovered).

median Logical scalar, whether to plot the (binned) median.

quantiles A vector of (binned) quantiles to plot.

360 plot.sir

color Color of the individual simulation curves.

median_color Color of the median curve.

quantile_color Color(s) of the quantile curves. (It is recycled if needed and non-needed entries
are ignored if too long.)

lwd.median Line width of the median.

lwd.quantile Line width of the quantile curves.

lty.quantile Line type of the quantile curves.

xlim The x limits, a two-element numeric vector. If NULL, then it is calculated from
the data.

ylim The y limits, a two-element numeric vector. If NULL, then it is calculated from
the data.

xlab The x label.

ylab The y label. If NULL then it is automatically added based on the comp argument.

... Additional arguments are passed to plot(), that is run before any of the curves
are added, to create the figure.

Details

The number of susceptible/infected/recovered individuals is plotted over time, for multiple simula-
tions.

Value

Nothing.

Author(s)

Eric Kolaczyk (https://kolaczyk.github.io/) and Gabor Csardi <csardi.gabor@gmail.com>.

References

Bailey, Norman T. J. (1975). The mathematical theory of infectious diseases and its applications
(2nd ed.). London: Griffin.

See Also

sir() for running the actual simulation.

Processes on graphs time_bins()

Examples

g <- sample_gnm(100, 100)
sm <- sir(g, beta = 5, gamma = 1)
plot(sm)

https://kolaczyk.github.io/

plot_dendrogram 361

plot_dendrogram Community structure dendrogram plots

Description

Plot a hierarchical community structure as a dendrogram.

Usage

plot_dendrogram(x, mode = igraph_opt("dend.plot.type"), ...)

S3 method for class 'communities'
plot_dendrogram(
x,
mode = igraph_opt("dend.plot.type"),
...,
use.modularity = FALSE,
palette = categorical_pal(8)

)

Arguments

x An object containing the community structure of a graph. See communities()
for details.

mode Which dendrogram plotting function to use. See details below.

... Additional arguments to supply to the dendrogram plotting function.

use.modularity Logical scalar, whether to use the modularity values to define the height of the
branches.

palette The color palette to use for colored plots.

Details

plot_dendrogram() supports three different plotting functions, selected via the mode argument.
By default the plotting function is taken from the dend.plot.type igraph option, and it has for
possible values:

• auto Choose automatically between the plotting functions. As plot.phylo is the most so-
phisticated, that is choosen, whenever the ape package is available. Otherwise plot.hclust
is used.

• phylo Use plot.phylo from the ape package.

• hclust Use plot.hclust from the stats package.

• dendrogram Use plot.dendrogram from the stats package.

The different plotting functions take different sets of arguments. When using plot.phylo (mode="phylo"),
we have the following syntax:

362 plot_dendrogram

plot_dendrogram(x, mode="phylo", colbar = palette(),
edge.color = NULL, use.edge.length = FALSE, \dots)

The extra arguments not documented above:

• colbar Color bar for the edges.

• edge.color Edge colors. If NULL, then the colbar argument is used.

• use.edge.length Passed to plot.phylo.

• dots Attitional arguments to pass to plot.phylo.

The syntax for plot.hclust (mode="hclust"):

plot_dendrogram(x, mode="hclust", rect = 0, colbar = palette(),
hang = 0.01, ann = FALSE, main = "", sub = "", xlab = "",
ylab = "", \dots)

The extra arguments not documented above:

• rect A numeric scalar, the number of groups to mark on the dendrogram. The dendrogram is
cut into exactly rect groups and they are marked via the rect.hclust command. Set this to
zero if you don’t want to mark any groups.

• colbar The colors of the rectangles that mark the vertex groups via the rect argument.

• hang Where to put the leaf nodes, this corresponds to the hang argument of plot.hclust.

• ann Whether to annotate the plot, the ann argument of plot.hclust.

• main The main title of the plot, the main argument of plot.hclust.

• sub The sub-title of the plot, the sub argument of plot.hclust.

• xlab The label on the horizontal axis, passed to plot.hclust.

• ylab The label on the vertical axis, passed to plot.hclust.

• dots Attitional arguments to pass to plot.hclust.

The syntax for plot.dendrogram (mode="dendrogram"):

plot_dendrogram(x, \dots)

The extra arguments are simply passed to as.dendrogram().

Value

Returns whatever the return value was from the plotting function, plot.phylo, plot.dendrogram
or plot.hclust.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

plot_dendrogram.igraphHRG 363

See Also

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), make_clusters(), membership(), modularity.igraph(), split_join_distance(),
voronoi_cells()

Examples

karate <- make_graph("Zachary")
fc <- cluster_fast_greedy(karate)
plot_dendrogram(fc)

plot_dendrogram.igraphHRG

HRG dendrogram plot

Description

Plot a hierarchical random graph as a dendrogram.

Usage

S3 method for class 'igraphHRG'
plot_dendrogram(x, mode = igraph_opt("dend.plot.type"), ...)

Arguments

x An igraphHRG, a hierarchical random graph, as returned by the fit_hrg()
function.

mode Which dendrogram plotting function to use. See details below.

... Additional arguments to supply to the dendrogram plotting function.

Details

plot_dendrogram() supports three different plotting functions, selected via the mode argument.
By default the plotting function is taken from the dend.plot.type igraph option, and it has for
possible values:

• auto Choose automatically between the plotting functions. As plot.phylo is the most so-
phisticated, that is choosen, whenever the ape package is available. Otherwise plot.hclust
is used.

• phylo Use plot.phylo from the ape package.

• hclust Use plot.hclust from the stats package.

• dendrogram Use plot.dendrogram from the stats package.

364 plot_dendrogram.igraphHRG

The different plotting functions take different sets of arguments. When using plot.phylo (mode="phylo"),
we have the following syntax:

plot_dendrogram(x, mode="phylo", colbar = rainbow(11, start=0.7,
end=0.1), edge.color = NULL, use.edge.length = FALSE, \dots)

The extra arguments not documented above:

• colbar Color bar for the edges.

• edge.color Edge colors. If NULL, then the colbar argument is used.

• use.edge.length Passed to plot.phylo.

• dots Attitional arguments to pass to plot.phylo.

The syntax for plot.hclust (mode="hclust"):

plot_dendrogram(x, mode="hclust", rect = 0, colbar = rainbow(rect),
hang = 0.01, ann = FALSE, main = "", sub = "", xlab = "",
ylab = "", \dots)

The extra arguments not documented above:

• rect A numeric scalar, the number of groups to mark on the dendrogram. The dendrogram is
cut into exactly rect groups and they are marked via the rect.hclust command. Set this to
zero if you don’t want to mark any groups.

• colbar The colors of the rectangles that mark the vertex groups via the rect argument.

• hang Where to put the leaf nodes, this corresponds to the hang argument of plot.hclust.

• ann Whether to annotate the plot, the ann argument of plot.hclust.

• main The main title of the plot, the main argument of plot.hclust.

• sub The sub-title of the plot, the sub argument of plot.hclust.

• xlab The label on the horizontal axis, passed to plot.hclust.

• ylab The label on the vertical axis, passed to plot.hclust.

• dots Attitional arguments to pass to plot.hclust.

The syntax for plot.dendrogram (mode="dendrogram"):

plot_dendrogram(x, \dots)

The extra arguments are simply passed to as.dendrogram().

Value

Returns whatever the return value was from the plotting function, plot.phylo, plot.dendrogram
or plot.hclust.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

power_centrality 365

Examples

g <- make_full_graph(5) + make_full_graph(5)
hrg <- fit_hrg(g)
plot_dendrogram(hrg)

power_centrality Find Bonacich Power Centrality Scores of Network Positions

Description

power_centrality() takes a graph (dat) and returns the Boncich power centralities of positions
(selected by nodes). The decay rate for power contributions is specified by exponent (1 by default).

Usage

power_centrality(
graph,
nodes = V(graph),
loops = FALSE,
exponent = 1,
rescale = FALSE,
tol = 1e-07,
sparse = TRUE

)

Arguments

graph the input graph.

nodes vertex sequence indicating which vertices are to be included in the calculation.
By default, all vertices are included.

loops boolean indicating whether or not the diagonal should be treated as valid data.
Set this true if and only if the data can contain loops. loops is FALSE by default.

exponent exponent (decay rate) for the Bonacich power centrality score; can be negative

rescale if true, centrality scores are rescaled such that they sum to 1.

tol tolerance for near-singularities during matrix inversion (see solve())

sparse Logical scalar, whether to use sparse matrices for the calculation. The ‘Matrix’
package is required for sparse matrix support

Details

Bonacich’s power centrality measure is defined by CBP (α, β) = α (I− βA)
−1

A1, where β
is an attenuation parameter (set here by exponent) and A is the graph adjacency matrix. (The
coefficient α acts as a scaling parameter, and is set here (following Bonacich (1987)) such that the
sum of squared scores is equal to the number of vertices. This allows 1 to be used as a reference

366 power_centrality

value for the “middle” of the centrality range.) When β →1/λA1 (the reciprocal of the largest
eigenvalue of A), this is to within a constant multiple of the familiar eigenvector centrality score;
for other values of β, the behavior of the measure is quite different. In particular, β gives positive
and negative weight to even and odd walks, respectively, as can be seen from the series expansion
CBP (α, β) = α

∑∞
k=0 β

kAk+11 which converges so long as |β|< 1/λA1. The magnitude of β
controls the influence of distant actors on ego’s centrality score, with larger magnitudes indicating
slower rates of decay. (High rates, hence, imply a greater sensitivity to edge effects.)

Interpretively, the Bonacich power measure corresponds to the notion that the power of a vertex is
recursively defined by the sum of the power of its alters. The nature of the recursion involved is
then controlled by the power exponent: positive values imply that vertices become more powerful as
their alters become more powerful (as occurs in cooperative relations), while negative values imply
that vertices become more powerful only as their alters become weaker (as occurs in competitive or
antagonistic relations). The magnitude of the exponent indicates the tendency of the effect to decay
across long walks; higher magnitudes imply slower decay. One interesting feature of this measure
is its relative instability to changes in exponent magnitude (particularly in the negative case). If
your theory motivates use of this measure, you should be very careful to choose a decay parameter
on a non-ad hoc basis.

For directed networks, the Bonacich power measure can be understood as similar to status in the
network where higher status nodes have more edges that point from them to others with status. Node
A’s centrality depends on the centrality of all the nodes that A points toward, and their centrality
depends on the nodes they point toward, etc. Note, this means that a node with an out-degree of 0
will have a Bonacich power centrality of 0 as they do not point towards anyone. When using this
with directed network it is important to think about the edge direction and what it represents.

Value

A vector, containing the centrality scores.

Warning

Singular adjacency matrices cause no end of headaches for this algorithm; thus, the routine may fail
in certain cases. This will be fixed when we get a better algorithm.

Note

This function was ported (i.e. copied) from the SNA package.

Author(s)

Carter T. Butts (https://www.faculty.uci.edu/profile.cfm?faculty_id=5057), ported to igraph
by Gabor Csardi <csardi.gabor@gmail.com>

References

Bonacich, P. (1972). “Factoring and Weighting Approaches to Status Scores and Clique Identifica-
tion.” Journal of Mathematical Sociology, 2, 113-120.

Bonacich, P. (1987). “Power and Centrality: A Family of Measures.” American Journal of Sociol-
ogy, 92, 1170-1182.

https://www.faculty.uci.edu/profile.cfm?faculty_id=5057

predict_edges 367

See Also

eigen_centrality() and alpha_centrality()

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(),
spectrum(), strength(), subgraph_centrality()

Examples

Generate some test data from Bonacich, 1987:
g.c <- make_graph(c(1, 2, 1, 3, 2, 4, 3, 5), dir = FALSE)
g.d <- make_graph(c(1, 2, 1, 3, 1, 4, 2, 5, 3, 6, 4, 7), dir = FALSE)
g.e <- make_graph(c(1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 3, 7, 3, 8, 4, 9, 4, 10), dir = FALSE)
g.f <- make_graph(

c(1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 2, 7, 3, 8, 3, 9, 3, 10, 4, 11, 4, 12, 4, 13),
dir = FALSE

)
Compute power centrality scores
for (e in seq(-0.5, .5, by = 0.1)) {

print(round(power_centrality(g.c, exp = e)[c(1, 2, 4)], 2))
}

for (e in seq(-0.4, .4, by = 0.1)) {
print(round(power_centrality(g.d, exp = e)[c(1, 2, 5)], 2))

}

for (e in seq(-0.4, .4, by = 0.1)) {
print(round(power_centrality(g.e, exp = e)[c(1, 2, 5)], 2))

}

for (e in seq(-0.4, .4, by = 0.1)) {
print(round(power_centrality(g.f, exp = e)[c(1, 2, 5)], 2))

}

predict_edges Predict edges based on a hierarchical random graph model

Description

predict_edges() uses a hierarchical random graph model to predict missing edges from a net-
work. This is done by sampling hierarchical models around the optimum model, proportionally to
their likelihood. The MCMC sampling is stated from hrg(), if it is given and the start argument
is set to TRUE. Otherwise a HRG is fitted to the graph first.

Usage

predict_edges(
graph,

368 predict_edges

hrg = NULL,
start = FALSE,
num.samples = 10000,
num.bins = 25

)

Arguments

graph The graph to fit the model to. Edge directions are ignored in directed graphs.

hrg A hierarchical random graph model, in the form of an igraphHRG object. predict_edges()
allow this to be NULL as well, then a HRG is fitted to the graph first, from a ran-
dom starting point.

start Logical, whether to start the fitting/sampling from the supplied igraphHRG ob-
ject, or from a random starting point.

num.samples Number of samples to use for consensus generation or missing edge prediction.

num.bins Number of bins for the edge probabilities. Give a higher number for a more
accurate prediction.

Value

A list with entries:

edges The predicted edges, in a two-column matrix of vertex ids.

prob Probabilities of these edges, according to the fitted model.

hrg The (supplied or fitted) hierarchical random graph model.

References

A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure and the prediction of missing
links in networks. Nature 453, 98–101 (2008);

A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies in Networks. In E.
M. Airoldi et al. (Eds.): ICML 2006 Ws, Lecture Notes in Computer Science 4503, 1–13. Springer-
Verlag, Berlin Heidelberg (2007).

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg-methods,
hrg_tree(), print.igraphHRG(), print.igraphHRGConsensus(), sample_hrg()

Examples

A graph with two dense groups
g <- sample_gnp(10, p = 1 / 2) + sample_gnp(10, p = 1 / 2)
hrg <- fit_hrg(g)
hrg

The consensus tree for it

print.igraph 369

consensus_tree(g, hrg = hrg, start = TRUE)

Prediction of missing edges
g2 <- make_full_graph(4) + (make_full_graph(4) - path(1, 2))
predict_edges(g2)

print.igraph Print graphs to the terminal

Description

These functions attempt to print a graph to the terminal in a human readable form.

Usage

S3 method for class 'igraph'
print(
x,
full = igraph_opt("print.full"),
graph.attributes = igraph_opt("print.graph.attributes"),
vertex.attributes = igraph_opt("print.vertex.attributes"),
edge.attributes = igraph_opt("print.edge.attributes"),
names = TRUE,
max.lines = igraph_opt("auto.print.lines"),
id = igraph_opt("print.id"),
...

)

S3 method for class 'igraph'
summary(object, ...)

Arguments

x The graph to print.
full Logical scalar, whether to print the graph structure itself as well.
graph.attributes

Logical constant, whether to print graph attributes.
vertex.attributes

Logical constant, whether to print vertex attributes.
edge.attributes

Logical constant, whether to print edge attributes.
names Logical constant, whether to print symbolic vertex names (i.e. the name vertex

attribute) or vertex ids.
max.lines The maximum number of lines to use. The rest of the output will be truncated.
id Whether to print the graph ID.
... Additional agruments.
object The graph of which the summary will be printed.

370 print.igraph

Details

summary.igraph prints the number of vertices, edges and whether the graph is directed.

print_all() prints the same information, and also lists the edges, and optionally graph, vertex
and/or edge attributes.

print.igraph() behaves either as summary.igraph or print_all() depending on the full ar-
gument. See also the ‘print.full’ igraph option and igraph_opt().

The graph summary printed by summary.igraph (and print.igraph() and print_all()) consists
of one or more lines. The first line contains the basic properties of the graph, and the rest contains its
attributes. Here is an example, a small star graph with weighted directed edges and named vertices:

IGRAPH badcafe DNW- 10 9 -- In-star
+ attr: name (g/c), mode (g/c), center (g/n), name (v/c),
weight (e/n)

The first line always starts with IGRAPH, showing you that the object is an igraph graph. Then a
seven character code is printed, this the first seven characters of the unique id of the graph. See
graph_id() for more. Then a four letter long code string is printed. The first letter distinguishes
between directed (‘D’) and undirected (‘U’) graphs. The second letter is ‘N’ for named graphs, i.e.
graphs with the name vertex attribute set. The third letter is ‘W’ for weighted graphs, i.e. graphs with
the weight edge attribute set. The fourth letter is ‘B’ for bipartite graphs, i.e. for graphs with the
type vertex attribute set.

This is followed by the number of vertices and edges, then two dashes.

Finally, after two dashes, the name of the graph is printed, if it has one, i.e. if the name graph
attribute is set.

From the second line, the attributes of the graph are listed, separated by a comma. After the attribute
names, the kind of the attribute – graph (‘g’), vertex (‘v’) or edge (‘e’) – is denoted, and the type of
the attribute as well, character (‘c’), numeric (‘n’), logical (‘l’), or other (‘x’).

As of igraph 0.4 print_all() and print.igraph() use the max.print option, see base::options()
for details.

As of igraph 1.1.1, the str.igraph function is defunct, use print_all().

Value

All these functions return the graph invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

Examples

g <- make_ring(10)
g
summary(g)

print.igraph.es 371

print.igraph.es Print an edge sequence to the screen

Description

For long edge sequences, the printing is truncated to fit to the screen. Use print() explicitly and
the full argument to see the full sequence.

Usage

S3 method for class 'igraph.es'
print(x, full = igraph_opt("print.full"), id = igraph_opt("print.id"), ...)

Arguments

x An edge sequence.

full Whether to show the full sequence, or truncate the output to the screen size.

id Whether to print the graph ID.

... Currently ignored.

Details

Edge sequences created with the double bracket operator are printed differently, together with all
attributes of the edges in the sequence, as a table.

Value

The edge sequence, invisibly.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2,
print.igraph.vs()

Examples

Unnamed graphs
g <- make_ring(10)
E(g)

Named graphs
g2 <- make_ring(10) %>%

set_vertex_attr("name", value = LETTERS[1:10])
E(g2)

All edges in a long sequence
g3 <- make_ring(200)

372 print.igraph.vs

E(g3)
E(g3) %>% print(full = TRUE)

Metadata
g4 <- make_ring(10) %>%

set_vertex_attr("name", value = LETTERS[1:10]) %>%
set_edge_attr("weight", value = 1:10) %>%
set_edge_attr("color", value = "green")

E(g4)
E(g4)[[]]
E(g4)[[1:5]]

print.igraph.vs Show a vertex sequence on the screen

Description

For long vertex sequences, the printing is truncated to fit to the screen. Use print() explicitly and
the full argument to see the full sequence.

Usage

S3 method for class 'igraph.vs'
print(x, full = igraph_opt("print.full"), id = igraph_opt("print.id"), ...)

Arguments

x A vertex sequence.

full Whether to show the full sequence, or truncate the output to the screen size.

id Whether to print the graph ID.

... These arguments are currently ignored.

Details

Vertex sequence created with the double bracket operator are printed differently, together with all
attributes of the vertices in the sequence, as a table.

Value

The vertex sequence, invisibly.

See Also

Other vertex and edge sequences: E(), V(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2,
print.igraph.es()

print.igraphHRG 373

Examples

Unnamed graphs
g <- make_ring(10)
V(g)

Named graphs
g2 <- make_ring(10) %>%

set_vertex_attr("name", value = LETTERS[1:10])
V(g2)

All vertices in the sequence
g3 <- make_ring(1000)
V(g3)
print(V(g3), full = TRUE)

Metadata
g4 <- make_ring(10) %>%

set_vertex_attr("name", value = LETTERS[1:10]) %>%
set_vertex_attr("color", value = "red")

V(g4)[[]]
V(g4)[[2:5, 7:8]]

print.igraphHRG Print a hierarchical random graph model to the screen

Description

igraphHRG objects can be printed to the screen in two forms: as a tree or as a list, depending on the
type argument of the print function. By default the auto type is used, which selects tree for small
graphs and simple (=list) for bigger ones. The tree format looks like this:

Hierarchical random graph, at level 3:
g1 p= 0
'- g15 p=0.33 1

'- g13 p=0.88 6 3 9 4 2 10 7 5 8
'- g8 p= 0.5

'- g16 p= 0.2 20 14 17 19 11 15 16 13
'- g5 p= 0 12 18

This is a graph with 20 vertices, and the top three levels of the fitted hierarchical random graph are
printed. The root node of the HRG is always vertex group #1 (‘g1’ in the the printout). Vertex pairs
in the left subtree of g1 connect to vertices in the right subtree with probability zero, according to
the fitted model. g1 has two subgroups, g15 and g8. g15 has a subgroup of a single vertex (vertex
1), and another larger subgroup that contains vertices 6, 3, etc. on lower levels, etc. The plain
printing is simpler and faster to produce, but less visual:

Hierarchical random graph:
g1 p=0.0 -> g12 g10 g2 p=1.0 -> 7 10 g3 p=1.0 -> g18 14

374 print.igraphHRGConsensus

g4 p=1.0 -> g17 15 g5 p=0.4 -> g15 17 g6 p=0.0 -> 1 4
g7 p=1.0 -> 11 16 g8 p=0.1 -> g9 3 g9 p=0.3 -> g11 g16
g10 p=0.2 -> g4 g5 g11 p=1.0 -> g6 5 g12 p=0.8 -> g8 8
g13 p=0.0 -> g14 9 g14 p=1.0 -> 2 6 g15 p=0.2 -> g19 18
g16 p=1.0 -> g13 g2 g17 p=0.5 -> g7 13 g18 p=1.0 -> 12 19
g19 p=0.7 -> g3 20

It lists the two subgroups of each internal node, in as many columns as the screen width allows.

Usage

S3 method for class 'igraphHRG'
print(x, type = c("auto", "tree", "plain"), level = 3, ...)

Arguments

x igraphHRG object to print.

type How to print the dendrogram, see details below.

level The number of top levels to print from the dendrogram.

... Additional arguments, not used currently.

Value

The hierarchical random graph model itself, invisibly.

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg-methods,
hrg_tree(), predict_edges(), print.igraphHRGConsensus(), sample_hrg()

print.igraphHRGConsensus

Print a hierarchical random graph consensus tree to the screen

Description

Consensus dendrograms (igraphHRGConsensus objects) are printed simply by listing the children
of each internal node of the dendrogram:

HRG consensus tree:
g1 -> 11 12 13 14 15 16 17 18 19 20
g2 -> 1 2 3 4 5 6 7 8 9 10
g3 -> g1 g2

The root of the dendrogram is g3 (because it has no incoming edges), and it has two subgroups, g1
and g2.

printer_callback 375

Usage

S3 method for class 'igraphHRGConsensus'
print(x, ...)

Arguments

x igraphHRGConsensus object to print.
... Ignored.

Value

The input object, invisibly, to allow method chaining.

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg-methods,
hrg_tree(), predict_edges(), print.igraphHRG(), sample_hrg()

printer_callback Create a printer callback function

Description

A printer callback function is a function can performs the actual printing. It has a number of
subcommands, that are called by the printer package, in a form

printer_callback("subcommand", argument1, argument2, ...)

See the examples below.

Usage

printer_callback(fun)

Arguments

fun The function to use as a printer callback function.

Details

The subcommands:

length The length of the data to print, the number of items, in natural units. E.g. for a list of
objects, it is the number of objects.

min_width TODO
width Width of one item, if no items will be printed. TODO
print Argument: no. Do the actual printing, print no items.
done TODO

376 radius

See Also

Other printer callbacks: is_printer_callback()

radius Radius of a graph

Description

The eccentricity of a vertex is its distance from the farthest other node in the graph. The smallest
eccentricity in a graph is called its radius.

Usage

radius(graph, ..., weights = NULL, mode = c("all", "out", "in", "total"))

Arguments

graph The input graph, it can be directed or undirected.

... These dots are for future extensions and must be empty.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

mode Character constant, gives whether the shortest paths to or from the given vertices
should be calculated for directed graphs. If out then the shortest paths from the
vertex, if in then to it will be considered. If all, the default, then the graph
is treated as undirected, i.e. edge directions are not taken into account. This
argument is ignored for undirected graphs.

Details

The eccentricity of a vertex is calculated by measuring the shortest distance from (or to) the vertex,
to (or from) all vertices in the graph, and taking the maximum.

This implementation ignores vertex pairs that are in different components. Isolated vertices have
eccentricity zero.

Value

A numeric scalar, the radius of the graph.

Related documentation in the C library

radius_dijkstra().

References

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 35, 1994.

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_radius_dijkstra

random_walk 377

See Also

eccentricity() for the underlying calculations, distances for general shortest path calculations.

Other paths: all_simple_paths(), diameter(), distance_table(), eccentricity(), graph_center()

Examples

g <- make_star(10, mode = "undirected")
eccentricity(g)
radius(g)

random_walk Random walk on a graph

Description

random_walk() performs a random walk on the graph and returns the vertices that the random
walk passed through. random_edge_walk() is the same but returns the edges that that random
walk passed through.

Usage

random_walk(
graph,
start,
steps,
weights = NULL,
mode = c("out", "in", "all", "total"),
stuck = c("return", "error")

)

random_edge_walk(
graph,
start,
steps,
weights = NULL,
mode = c("out", "in", "all", "total"),
stuck = c("return", "error")

)

Arguments

graph The input graph, might be undirected or directed.

start The start vertex.

steps The number of steps to make.

378 random_walk

weights The edge weights. Larger edge weights increase the probability that an edge is
selected by the random walker. In other words, larger edge weights correspond
to stronger connections. The ‘weight’ edge attribute is used if present. Supply
‘NA’ here if you want to ignore the ‘weight’ edge attribute.

mode How to follow directed edges. "out" steps along the edge direction, "in" is
opposite to that. "all" ignores edge directions. This argument is ignored for
undirected graphs.

stuck What to do if the random walk gets stuck. "return" returns the partial walk,
"error" raises an error.

Details

Do a random walk. From the given start vertex, take the given number of steps, choosing an edge
from the actual vertex uniformly randomly. Edge directions are observed in directed graphs (see
the mode argument as well). Multiple and loop edges are also observed.

For igraph < 1.6.0, random_walk() counted steps differently, and returned a sequence of length
steps instead of steps + 1. This has changed to improve consistency with the underlying C library.

Value

For random_walk(), a vertex sequence of length steps + 1 containing the vertices along the walk,
starting with start. For random_edge_walk(), an edge sequence of length steps containing the
edges along the walk.

Related documentation in the C library

random_walk().

Examples

Stationary distribution of a Markov chain
g <- make_ring(10, directed = TRUE) %u%

make_star(11, center = 11) + edge(11, 1)

ec <- eigen_centrality(g, directed = TRUE)$vector
pg <- page_rank(g, damping = 0.999)$vector
w <- random_walk(g, start = 1, steps = 10000)

These are similar, but not exactly the same
cor(table(w), ec)

But these are (almost) the same
cor(table(w), pg)

https://igraph.org/c/html/0.10.17/igraph-Visitors.html#igraph_random_walk

read_graph 379

read_graph Reading foreign file formats

Description

The read_graph() function is able to read graphs in various representations from a file, or from a
http connection. Various formats are supported.

Usage

read_graph(
file,
format = c("edgelist", "pajek", "ncol", "lgl", "graphml", "dimacs", "graphdb", "gml",

"dl"),
...

)

Arguments

file The connection to read from. This can be a local file, or a http or ftp connec-
tion. It can also be a character string with the file name or URI.

format Character constant giving the file format. Right now edgelist, pajek, ncol,
lgl, graphml, dimacs, graphdb, gml and dl are supported, the default is edgelist.
As of igraph 0.4 this argument is case insensitive.

... Additional arguments, see below.

Details

The read_graph() function may have additional arguments depending on the file format (the
format argument). See the details separately for each file format, below.

Value

A graph object.

Edge list format

This format is a simple text file with numeric vertex IDs defining the edges. There is no need to
have newline characters between the edges, a simple space will also do. Vertex IDs contained in the
file are assumed to start at zero.

Additional arguments:

n The number of vertices in the graph. If it is smaller than or equal to the largest integer in the file,
then it is ignored; so it is safe to set it to zero (the default).

directed Logical scalar, whether to create a directed graph. The default value is TRUE.

380 read_graph

Pajek format

Currently igraph only supports Pajek network files, with a .net extension, but not Pajek project
files with a .paj extension. Only network data is supported; permutations, hierarchies, clusters and
vectors are not.

NCOL format

Additional arguments:

predef Names of the vertices in the file. If character(0) (the default) is given here then vertex
IDs will be assigned to vertex names in the order of their appearance in the .ncol file. If it
is not character(0) and some unknown vertex names are found in the .ncol file then new
vertex ids will be assigned to them.

names Logical value, if TRUE (the default) the symbolic names of the vertices will be added to the
graph as a vertex attribute called “name”.

weights Whether to add the weights of the edges to the graph as an edge attribute called “weight”.
"yes" adds the weights (even if they are not present in the file, in this case they are assumed
to be zero). "no" does not add any edge attribute. "auto" (the default) adds the attribute if
and only if there is at least one explicit edge weight in the input file.

directed Whether to create a directed graph (default: FALSE). As this format was originally used
only for undirected graphs there is no information in the file about the directedness of the
graph.

GraphML format

GraphML is an XML-based file format for representing various types of graphs. Currently only the
most basic import functionality is implemented in igraph: it can read GraphML files without nested
graphs and hyperedges.

index Integer, specifies which graph to read from a GraphML file containing multiple graphs. De-
faults to 0 for the first graph.

LGL format

The .lgl format is used by the Large Graph Layout visualization software (https://lgl.sourceforge.
net), it can describe undirected optionally weighted graphs

names Logical, whether to add vertex names as a vertex attribute called "name". Default is TRUE.

weights Whether to add the weights of the edges to the graph as an edge attribute called “weight”.
"yes" adds the weights (even if they are not present in the file, in this case they are assumed
to be zero). "no" does not add any edge attribute. "auto" (the default) adds the attribute if
and only if there is at least one explicit edge weight in the input file.

directed Logical, whether to create a directed graph. Default is FALSE.

https://lgl.sourceforge.net
https://lgl.sourceforge.net

read_graph 381

DIMACS format

This is a line-oriented text file (ASCII) format. The first character of each line defines the type of the
line. If the first character is c the line is a comment line and it is ignored. There is one problem line
(p in the file), it must appear before any node and arc descriptor lines. The problem line has three
fields separated by spaces: the problem type (max or edge), the number of vertices, and number of
edges in the graph. In MAX problems, exactly two node identification lines are expected (n), one
for the source, and one for the target vertex. These have two fields: the ID of the vertex and the
type of the vertex, either s (= source) or t (= target). Arc lines start with a and have three fields:
the source vertex, the target vertex and the edge capacity. In EDGE problems, there may be a node
line (n) for each node. It specifies the node index and an integer node label. Nodes for which no
explicit label was specified will use their index as label. In EDGE problems, each edge is specified
as an edge line (e).

directed Logical, whether to create a directed graph. Default is TRUE.

DL format

This is a simple textual file format used by UCINET. See http://www.analytictech.com/networks/
dataentry.htm for examples. All the forms described here are supported by igraph. Vertex names
and edge weights are also supported and they are added as attributes. (If an attribute handler is
attached.) Note the specification does not mention whether the format is case sensitive or not. For
igraph DL files are case sensitive, i.e. Larry and larry are not the same.

directed Logical, whether to create a directed graph. Default is TRUE.

GML format

GML is a quite general textual format. For the specifics of the implementation, see the linked
documentation of the cClibrary.

GraphDB format

This is a binary format, used in the ARG Graph Database for isomorphism testing. For more
information, see https://mivia.unisa.it/datasets/graph-database/arg-database/

directed Logical, whether to create a directed graph. Default is TRUE.

Related documentation in the C library

read_graph_dimacs_flow(), read_graph_dl(), read_graph_edgelist(), read_graph_gml(),
read_graph_graphdb(), read_graph_graphml(), read_graph_lgl(), read_graph_ncol(), read_graph_pajek().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

write_graph()

Foreign format readers graph_from_graphdb(), write_graph()

http://www.analytictech.com/networks/dataentry.htm
http://www.analytictech.com/networks/dataentry.htm
https://mivia.unisa.it/datasets/graph-database/arg-database/
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_dimacs_flow
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_dl
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_edgelist
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_gml
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_graphdb
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_graphml
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_lgl
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_ncol
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_read_graph_pajek

382 realize_bipartite_degseq

realize_bipartite_degseq

Creating a bipartite graph from two degree sequences, deterministi-
cally

Description

[Experimental]
Constructs a bipartite graph from the degree sequences of its partitions, if one exists. This function
uses a Havel-Hakimi style construction algorithm.

Usage

realize_bipartite_degseq(
degrees1,
degrees2,
...,
allowed.edge.types = c("simple", "multiple"),
method = c("smallest", "largest", "index")

)

Arguments

degrees1 The degrees of the first partition.
degrees2 The degrees of the second partition.
... These dots are for future extensions and must be empty.
allowed.edge.types

Character, specifies the types of allowed edges. “simple” allows simple graphs
only (no multiple edges). “multiple” allows multiple edges.

method Character, the method for generating the graph; see below.

Details

The ‘method’ argument controls in which order the vertices are selected during the course of the
algorithm.

The “smallest” method selects the vertex with the smallest remaining degree, from either partition.
The result is usually a graph with high negative degree assortativity. In the undirected case, this
method is guaranteed to generate a connected graph, regardless of whether multi-edges are allowed,
provided that a connected realization exists. This is the default method.

The “largest” method selects the vertex with the largest remaining degree. The result is usually a
graph with high positive degree assortativity, and is often disconnected.

The “index” method selects the vertices in order of their index.

Value

The new graph object.

realize_degseq 383

Related documentation in the C library

realize_bipartite_degree_sequence().

See Also

realize_degseq() to create a not necessarily bipartite graph.

Examples

g <- realize_bipartite_degseq(c(3, 3, 2, 1, 1), c(2, 2, 2, 2, 2))
degree(g)

realize_degseq Creating a graph from a given degree sequence, deterministically

Description

It is often useful to create a graph with given vertex degrees. This function creates such a graph in
a deterministic manner.

Usage

realize_degseq(
out.deg,
in.deg = NULL,
allowed.edge.types = c("simple", "loops", "multi", "all"),
method = c("smallest", "largest", "index")

)

Arguments

out.deg Numeric vector, the sequence of degrees (for undirected graphs) or out-degrees
(for directed graphs). For undirected graphs its sum should be even. For directed
graphs its sum should be the same as the sum of in.deg.

in.deg For directed graph, the in-degree sequence. By default this is NULL and an undi-
rected graph is created.

allowed.edge.types

Character, specifies the types of allowed edges. “simple” allows simple graphs
only (no loops, no multiple edges). “multiple” allows multiple edges but dis-
allows loop. “loops” allows loop edges but disallows multiple edges (currently
unimplemented). “all” allows all types of edges. The default is “simple”.

method Character, the method for generating the graph; see below.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_realize_bipartite_degree_sequence

384 realize_degseq

Details

Simple undirected graphs are constructed using the Havel-Hakimi algorithm (undirected case), or
the analogous Kleitman-Wang algorithm (directed case). These algorithms work by choosing an
arbitrary vertex and connecting all its stubs to other vertices. This step is repeated until all degrees
have been connected up.

The ‘method’ argument controls in which order the vertices are selected during the course of the
algorithm.

The “smallest” method selects the vertex with the smallest remaining degree. The result is usually
a graph with high negative degree assortativity. In the undirected case, this method is guaranteed
to generate a connected graph, regardless of whether multi-edges are allowed, provided that a con-
nected realization exists. See Horvát and Modes (2021) for details. In the directed case it tends to
generate weakly connected graphs, but this is not guaranteed. This is the default method.

The “largest” method selects the vertex with the largest remaining degree. The result is usually a
graph with high positive degree assortativity, and is often disconnected.

The “index” method selects the vertices in order of their index.

Value

The new graph object.

Related documentation in the C library

realize_degree_sequence().

References

V. Havel, Poznámka o existenci konečných grafů (A remark on the existence of finite graphs),
Časopis pro pěstování matematiky 80, 477-480 (1955). https://eudml.org/doc/19050

S. L. Hakimi, On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph,
Journal of the SIAM 10, 3 (1962). doi:10.1137/0111010

D. J. Kleitman and D. L. Wang, Algorithms for Constructing Graphs and Digraphs with Given
Valences and Factors, Discrete Mathematics 6, 1 (1973). doi:10.1016/0012365X(73)90037X

Sz. Horvát and C. D. Modes, Connectedness matters: construction and exact random sampling of
connected networks (2021). doi:10.1088/2632072X/abced5

See Also

sample_degseq() for a randomized variant that samples from graphs with the given degree se-
quence.

Examples

g <- realize_degseq(rep(2, 100))
degree(g)
is_simple(g)

Exponential degree distribution, with high positive assortativity.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_realize_degree_sequence
https://doi.org/10.1137/0111010
https://doi.org/10.1016/0012-365X%2873%2990037-X
https://doi.org/10.1088/2632-072X/abced5

reciprocity 385

Loop and multiple edges are explicitly allowed.
Note that we correct the degree sequence if its sum is odd.
degs <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
if (sum(degs) %% 2 != 0) {

degs[1] <- degs[1] + 1
}
g4 <- realize_degseq(degs, method = "largest", allowed.edge.types = "all")
all(degree(g4) == degs)

Power-law degree distribution, no loops allowed but multiple edges
are okay.
Note that we correct the degree sequence if its sum is odd.
degs <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
if (sum(degs) %% 2 != 0) {

degs[1] <- degs[1] + 1
}
g5 <- realize_degseq(degs, allowed.edge.types = "multi")
all(degree(g5) == degs)

reciprocity Reciprocity of graphs

Description

Calculates the reciprocity of a directed graph.

Usage

reciprocity(graph, ignore.loops = TRUE, mode = c("default", "ratio"))

Arguments

graph The graph object.

ignore.loops Logical constant, whether to ignore loop edges.

mode See below.

Details

The measure of reciprocity defines the proportion of mutual connections, in a directed graph. It is
most commonly defined as the probability that the opposite counterpart of a directed edge is also
included in the graph. Or in adjacency matrix notation: 1 −

(∑
i,j |Aij −Aji|

)
/
(
2
∑

i,j Aij

)
.

This measure is calculated if the mode argument is default.

Prior to igraph version 0.6, another measure was implemented, defined as the probability of mutual
connection between a vertex pair, if we know that there is a (possibly non-mutual) connection
between them. In other words, (unordered) vertex pairs are classified into three groups: (1) not-
connected, (2) non-reciprocally connected, (3) reciprocally connected. The result is the size of
group (3), divided by the sum of group sizes (2)+(3). This measure is calculated if mode is ratio.

386 rep.igraph

Value

A numeric scalar between zero and one.

Related documentation in the C library

reciprocity().

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), subcomponent(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- sample_gnp(20, 5 / 20, directed = TRUE)
reciprocity(g)

rep.igraph Replicate a graph multiple times

Description

The new graph will contain the input graph the given number of times, as unconnected components.

Usage

S3 method for class 'igraph'
rep(x, n, mark = TRUE, ...)

S3 method for class 'igraph'
x * n

Arguments

x The input graph.

n Number of times to replicate it.

mark Whether to mark the vertices with a which attribute, an integer number denoting
which replication the vertex is coming from.

... Additional arguments to satisfy S3 requirements, currently ignored.

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_reciprocity

rev.igraph.es 387

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), reverse_edges(), simplify(), union(), union.igraph(),
vertex()

Examples

rings <- make_ring(5) * 5

rev.igraph.es Reverse the order in an edge sequence

Description

Reverse the order in an edge sequence

Usage

S3 method for class 'igraph.es'
rev(x)

Arguments

x The edge sequence to reverse.

Value

The reversed edge sequence.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.vs(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
E(g)
E(g) %>% rev()

388 reverse_edges

rev.igraph.vs Reverse the order in a vertex sequence

Description

Reverse the order in a vertex sequence

Usage

S3 method for class 'igraph.vs'
rev(x)

Arguments

x The vertex sequence to reverse.

Value

The reversed vertex sequence.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(),
union.igraph.es(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
V(g) %>% rev()

reverse_edges Reverse edges in a graph

Description

The new graph will contain the same vertices, edges and attributes as the original graph, except that
the direction of the edges selected by their edge IDs in the eids argument will be reversed. When
reversing all edges, this operation is also known as graph transpose.

Usage

reverse_edges(graph, eids = E(graph))

S3 method for class 'igraph'
t(x)

rewire 389

Arguments

graph The input graph.

eids The edge IDs of the edges to reverse.

x The input graph.

Value

The result graph where the direction of the edges with the given IDs are reversed

Related documentation in the C library

reverse_edges().

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), simplify(), union(), union.igraph(),
vertex()

Examples

g <- make_graph(~ 1 -+ 2, 2 -+ 3, 3 -+ 4)
reverse_edges(g, 2)

rewire Rewiring edges of a graph

Description

See the links below for the implemented rewiring methods.

Usage

rewire(graph, with)

Arguments

graph The graph to rewire

with A function call to one of the rewiring methods, see details below.

Value

The rewired graph.

https://igraph.org/c/html/0.10.17/igraph-Operators.html#igraph_reverse_edges

390 rglplot

See Also

Other rewiring functions: each_edge(), keeping_degseq()

Examples

g <- make_ring(10)
g %>%

rewire(each_edge(p = .1, loops = FALSE)) %>%
plot(layout = layout_in_circle)

print_all(rewire(g, with = keeping_degseq(niter = vcount(g) * 10)))

rglplot 3D plotting of graphs with OpenGL

Description

Using the rgl package, rglplot() plots a graph in 3D. The plot can be zoomed, rotated, shifted,
etc. but the coordinates of the vertices is fixed.

Usage

rglplot(x, ...)

Arguments

x The graph to plot.

... Additional arguments, see igraph.plotting for the details

Details

Note that rglplot() is considered to be highly experimental. It is not very useful either. See
igraph.plotting for the possible arguments.

Value

NULL, invisibly.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph.plotting, plot.igraph() for the 2D version, tkplot() for interactive graph drawing in 2D.

Other plot: plot.igraph()

running_mean 391

Examples

g <- make_lattice(c(5, 5, 5))
coords <- layout_with_fr(g, dim = 3)

rglplot(g, layout = coords)

running_mean Running mean of a time series

Description

running_mean() calculates the running mean in a vector with the given bin width.

Usage

running_mean(v, binwidth)

Arguments

v The numeric vector.

binwidth Numeric constant, the size of the bin, should be meaningful, i.e. smaller than
the length of v.

Details

The running mean of v is a w vector of length length(v)-binwidth+1. The first element of w id
the average of the first binwidth elements of v, the second element of w is the average of elements
2:(binwidth+1), etc.

Value

A numeric vector of length length(v)-binwidth+1

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other other: convex_hull(), sample_seq()

Examples

running_mean(1:100, 10)

392 sample_

r_pal The default R palette

Description

This is the default R palette, to be able to reproduce the colors of older igraph versions. Its colors
are appropriate for categories, but they are not very attractive.

Usage

r_pal(n)

Arguments

n The number of colors to use, the maximum is eight.

Value

A character vector of color names.

See Also

Other palettes: categorical_pal(), diverging_pal(), sequential_pal()

sample_ Sample from a random graph model

Description

Generic function for sampling from network models.

Usage

sample_(...)

Arguments

... Parameters, see details below.

sample_bipartite 393

Details

sample_() is a generic function for creating graphs. For every graph constructor in igraph that has
a sample_ prefix, there is a corresponding function without the prefix: e.g. for sample_pa() there
is also pa(), etc.

The same is true for the deterministic graph samplers, i.e. for each constructor with a make_ prefix,
there is a corresponding function without that prefix.

These shorter forms can be used together with sample_(). The advantage of this form is that the
user can specify constructor modifiers which work with all constructors. E.g. the with_vertex_()
modifier adds vertex attributes to the newly created graphs.

See the examples and the various constructor modifiers below.

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(),
sample_sbm(), sample_smallworld(), sample_traits_callaway(), sample_tree()

Constructor modifiers (and related functions) make_(), simplified(), with_edge_(), with_graph_(),
with_vertex_(), without_attr(), without_loops(), without_multiples()

Examples

pref_matrix <- cbind(c(0.8, 0.1), c(0.1, 0.7))
blocky <- sample_(sbm(

n = 20, pref.matrix = pref_matrix,
block.sizes = c(10, 10)

))

blocky2 <- pref_matrix %>%
sample_sbm(n = 20, block.sizes = c(10, 10))

Arguments are passed on from sample_ to sample_sbm
blocky3 <- pref_matrix %>%

sample_(sbm(), n = 20, block.sizes = c(10, 10))

sample_bipartite Bipartite random graphs

Description

[Deprecated] Generate bipartite graphs using the Erdős-Rényi model. Use sample_bipartite_gnm()
and sample_bipartite_gnp() instead.

394 sample_bipartite

Usage

sample_bipartite(
n1,
n2,
type = c("gnp", "gnm"),
p,
m,
directed = FALSE,
mode = c("out", "in", "all")

)

bipartite(..., type = NULL)

Arguments

n1 Integer scalar, the number of bottom vertices.
n2 Integer scalar, the number of top vertices.
type Character scalar, the type of the graph, ‘gnp’ creates a G(n, p) graph, ‘gnm’

creates a G(n,m) graph. See details below.
p Real scalar, connection probability for G(n, p) graphs. Should not be given for

G(n,m) graphs.
m Integer scalar, the number of edges for G(n,m) graphs. Should not be given for

G(n, p) graphs.
directed Logical scalar, whether to create a directed graph. See also the mode argument.
mode Character scalar, specifies how to direct the edges in directed graphs. If it is

‘out’, then directed edges point from bottom vertices to top vertices. If it is ‘in’,
edges point from top vertices to bottom vertices. ‘out’ and ‘in’ do not generate
mutual edges. If this argument is ‘all’, then each edge direction is considered
independently and mutual edges might be generated. This argument is ignored
for undirected graphs.

... Passed to sample_bipartite().

Value

A bipartite igraph graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_chung_lu(),
sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

sample_chung_lu 395

Examples

empty graph
sample_bipartite(10, 5, p = 0)

full graph
sample_bipartite(10, 5, p = 1)

random bipartite graph
sample_bipartite(10, 5, p = .1)

directed bipartite graph, G(n,m)
sample_bipartite(10, 5, type = "Gnm", m = 20, directed = TRUE, mode = "all")

sample_chung_lu Random graph with given expected degrees

Description

[Experimental]

The Chung-Lu model is useful for generating random graphs with fixed expected degrees. This
function implements both the original model of Chung and Lu, as well as some additional variants
with useful properties.

Usage

sample_chung_lu(
out.weights,
in.weights = NULL,
...,
loops = TRUE,
variant = c("original", "maxent", "nr")

)

chung_lu(
out.weights,
in.weights = NULL,
...,
loops = TRUE,
variant = c("original", "maxent", "nr")

)

Arguments

out.weights A vector of non-negative vertex weights (or out-weights). In sparse graphs, these
will be approximately equal to the expected (out-)degrees.

396 sample_chung_lu

in.weights A vector of non-negative in-weights, approximately equal to the expected in-
degrees in sparse graphs. May be set to NULL, in which case undirected graphs
are generated.

... These dots are for future extensions and must be empty.

loops Logical, whether to allow the creation of self-loops. Since vertex pairs are con-
nected independently, setting this to FALSE is equivalent to simply discarding
self-loops from an existing loopy Chung-Lu graph.

variant The model variant to sample from, with different definitions of the connection
probability between vertices i and j. Given qij =

wiwj

S , the following formula-
tions are available:

“original” the original Chung-Lu model, pij = min(qij , 1).
“maxent” maximum entropy model with fixed expected degrees, pij =

qij
1+qij

.

“nr” Norros and Reittu’s model, pij = 1− exp(−qij).

Details

In the original Chung-Lu model, each pair of vertices i and j is connected with independent proba-
bility

pij =
wiwj

S
,

where wi is a weight associated with vertex i and

S =
∑
k

wk

is the sum of weights. In the directed variant, vertices have both out-weights, wout, and in-weights,
win, with equal sums,

S =
∑
k

wout
k =

∑
k

win
k .

The connection probability between i and j is

pij =
wout

i win
j .

S

This model is commonly used to create random graphs with a fixed expected degree sequence. The
expected degree of vertex i is approximately equal to the weight wi. Specifically, if the graph is
directed and self-loops are allowed, then the expected out- and in-degrees are precisely wout and win.
If self-loops are disallowed, then the expected out- and in-degrees are wout(S−win)

S and win(S−wout)
S ,

respectively. If the graph is undirected, then the expected degrees with and without self-loops are
w(S+w)

S and w(S−w)
S , respectively.

A limitation of the original Chung-Lu model is that when some of the weights are large, the formula
for pij yields values larger than 1. Chung and Lu’s original paper excludes the use of such weights.
When pij > 1, this function simply issues a warning and creates a connection between i and j.
However, in this case the expected degrees will no longer relate to the weights in the manner stated
above. Thus, the original Chung-Lu model cannot produce certain (large) expected degrees.

To overcome this limitation, this function implements additional variants of the model, with mod-
ified expressions for the connection probability pij between vertices i and j. Let qij =

wiwj

S , or

sample_chung_lu 397

qij =
wout

i win
j

S in the directed case. All model variants become equivalent in the limit of sparse
graphs where qij approaches zero. In the original Chung-Lu model, selectable by setting variant
to “original”, pij = min(qij , 1). The “maxent” variant, sometimes referred to as the generalized
random graph, uses pij =

qij
1+qij

, and is equivalent to a maximum entropy model (i.e., exponential
random graph model) with a constraint on expected degrees; see Park and Newman (2004), Section
B, setting exp(−Θij) =

wiwj

S . This model is also discussed by Britton, Deijfen, and Martin-Löf
(2006). By virtue of being a degree-constrained maximum entropy model, it generates graphs with
the same degree sequence with the same probability. A third variant can be requested with “nr”, and
uses pij = 1 − exp(−qij). This is the underlying simple graph of a multigraph model introduced
by Norros and Reittu (2006). For a discussion of these three model variants, see Section 16.4 of
Bollobás, Janson, Riordan (2007), as well as Van Der Hofstad (2013).

Value

An igraph graph.

Related documentation in the C library

chung_lu_game().

References

Chung, F., and Lu, L. (2002). Connected components in a random graph with given degree se-
quences. Annals of Combinatorics, 6, 125-145. doi:10.1007/PL00012580

Miller, J. C., and Hagberg, A. (2011). Efficient Generation of Networks with Given Expected
Degrees. doi:10.1007/9783642212864_10

Park, J., and Newman, M. E. J. (2004). Statistical mechanics of networks. Physical Review E, 70,
066117. doi:10.1103/PhysRevE.70.066117

Britton, T., Deijfen, M., and Martin-Löf, A. (2006). Generating Simple Random Graphs with Pre-
scribed Degree Distribution. Journal of Statistical Physics, 124, 1377-1397. doi:10.1007/s10955-
0069168x

Norros, I., and Reittu, H. (2006). On a conditionally Poissonian graph process. Advances in Applied
Probability, 38, 59-75. doi:10.1239/aap/1143936140

Bollobás, B., Janson, S., and Riordan, O. (2007). The phase transition in inhomogeneous random
graphs. Random Structures & Algorithms, 31, 3-122. doi:10.1002/rsa.20168

Van Der Hofstad, R. (2013). Critical behavior in inhomogeneous random graphs. Random Struc-
tures & Algorithms, 42, 480-508. doi:10.1002/rsa.20450

See Also

sample_fitness() implements a similar model with a sharp constraint on the number of edges.
sample_degseq() samples random graphs with sharply specified degrees. sample_gnp() creates
random graphs with a fixed connection probability p between all vertex pairs.

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_chung_lu_game
https://doi.org/10.1007/PL00012580
https://doi.org/10.1007/978-3-642-21286-4_10
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1007/s10955-006-9168-x
https://doi.org/10.1007/s10955-006-9168-x
https://doi.org/10.1239/aap/1143936140
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1002/rsa.20450

398 sample_correlated_gnp

sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

g <- sample_chung_lu(c(3, 3, 2, 2, 2, 1, 1))

rowMeans(replicate(
100,
degree(sample_chung_lu(c(1, 3, 2, 1), c(2, 1, 2, 2)), mode = "out")

))

rowMeans(replicate(
100,
degree(sample_chung_lu(c(1, 3, 2, 1), c(2, 1, 2, 2), variant = "maxent"), mode = "out")

))

sample_correlated_gnp Generate a new random graph from a given graph by randomly
adding/removing edges

Description

Sample a new graph by perturbing the adjacency matrix of a given graph and shuffling its vertices.

Usage

sample_correlated_gnp(
old.graph,
corr,
p = edge_density(old.graph),
permutation = NULL

)

Arguments

old.graph The original graph.

corr A scalar in the unit interval, the target Pearson correlation between the adjacency
matrices of the original and the generated graph (the adjacency matrix being
used as a vector).

p A numeric scalar, the probability of an edge between two vertices, it must in
the open (0,1) interval. The default is the empirical edge density of the graph.
If you are resampling an Erdős-Rényi graph and you know the original edge
probability of the Erdős-Rényi model, you should supply that explicitly.

permutation A numeric vector, a permutation vector that is applied on the vertices of the first
graph, to get the second graph. If NULL, the vertices are not permuted.

sample_correlated_gnp_pair 399

Details

Please see the reference given below.

Value

An unweighted graph of the same size as old.graph such that the correlation coefficient between
the entries of the two adjacency matrices is corr. Note each pair of corresponding matrix entries is
a pair of correlated Bernoulli random variables.

Related documentation in the C library

correlated_game().

References

Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded graph matching for correlated Erdős-
Rényi graphs. https://arxiv.org/abs/1304.7844

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp_pair(), sample_degseq(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

g <- sample_gnp(1000, .1)
g2 <- sample_correlated_gnp(g, corr = 0.5)
cor(as.vector(g[]), as.vector(g2[]))
g
g2

sample_correlated_gnp_pair

Sample a pair of correlated G(n, p) random graphs

Description

Sample a new graph by perturbing the adjacency matrix of a given graph and shuffling its vertices.

Usage

sample_correlated_gnp_pair(n, corr, p, directed = FALSE, permutation = NULL)

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_correlated_game
https://arxiv.org/abs/1304.7844

400 sample_correlated_gnp_pair

Arguments

n Numeric scalar, the number of vertices for the sampled graphs.

corr A scalar in the unit interval, the target Pearson correlation between the adjacency
matrices of the original the generated graph (the adjacency matrix being used as
a vector).

p A numeric scalar, the probability of an edge between two vertices, it must in the
open (0,1) interval.

directed Logical scalar, whether to generate directed graphs.

permutation A numeric vector, a permutation vector that is applied on the vertices of the first
graph, to get the second graph. If NULL, the vertices are not permuted.

Details

Please see the reference given below.

Value

A list of two igraph objects, named graph1 and graph2, which are two graphs whose adjacency
matrix entries are correlated with corr.

Related documentation in the C library

correlated_pair_game().

References

Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013). Seeded graph matching for correlated Erdős-
Rényi graphs. https://arxiv.org/abs/1304.7844

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_degseq(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

gg <- sample_correlated_gnp_pair(
n = 10, corr = .8, p = .5,
directed = FALSE

)
gg
cor(as.vector(gg[[1]][]), as.vector(gg[[2]][]))

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_correlated_pair_game
https://arxiv.org/abs/1304.7844

sample_degseq 401

sample_degseq Generate random graphs with a given degree sequence

Description

It is often useful to create a graph with given vertex degrees. This function creates such a graph in
a randomized manner.

Usage

sample_degseq(
out.deg,
in.deg = NULL,
method = c("configuration", "vl", "fast.heur.simple", "configuration.simple",
"edge.switching.simple")

)

degseq(..., deterministic = FALSE)

Arguments

out.deg Numeric vector, the sequence of degrees (for undirected graphs) or out-degrees
(for directed graphs). For undirected graphs its sum should be even. For directed
graphs its sum should be the same as the sum of in.deg.

in.deg For directed graph, the in-degree sequence. By default this is NULL and an undi-
rected graph is created.

method Character, the method for generating the graph. See Details.

... Passed to realize_degseq() if ‘deterministic’ is true, or to sample_degseq()
otherwise.

deterministic Whether the construction should be deterministic

Details

The “configuration” method (formerly called "simple") implements the configuration model. For
undirected graphs, it puts all vertex IDs in a bag such that the multiplicity of a vertex in the bag is
the same as its degree. Then it draws pairs from the bag until the bag becomes empty. This method
may generate both loop (self) edges and multiple edges. For directed graphs, the algorithm is
basically the same, but two separate bags are used for the in- and out-degrees. Undirected graphs are
generated with probability proportional to (

∏
i<j Aij !

∏
i Aii!!)

−1, where A denotes the adjacency
matrix and !! denotes the double factorial. Here A is assumed to have twice the number of self-
loops on its diagonal. The corresponding expression for directed graphs is (

∏
i,j Aij !)

−1. Thus the
probability of all simple graphs (which only have 0s and 1s in the adjacency matrix) is the same,
while that of non-simple ones depends on their edge and self-loop multiplicities.

The “fast.heur.simple” method (formerly called "simple.no.multiple") generates simple graphs. It
is similar to “configuration” but tries to avoid multiple and loop edges and restarts the generation
from scratch if it gets stuck. It can generate all simple realizations of a degree sequence, but it is not

402 sample_degseq

guaranteed to sample them uniformly. This method is relatively fast and it will eventually succeed if
the provided degree sequence is graphical, but there is no upper bound on the number of iterations.

The “configuration.simple” method (formerly called "simple.no.multiple.uniform") is identical to
“configuration”, but if the generated graph is not simple, it rejects it and re-starts the generation. It
generates all simple graphs with the same probability.

The “vl” method samples undirected connected graphs approximately uniformly. It is a Monte Carlo
method based on degree-preserving edge switches. This generator should be favoured if undirected
and connected graphs are to be generated and execution time is not a concern. igraph uses the
original implementation of Fabien Viger; for the algorithm, see https://web.archive.org/web/
20250428012457/https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html and
the paper https://arxiv.org/abs/cs/0502085.

The “edge.switching.simple” is an MCMC sampler based on degree-preserving edge switches. It
generates simple undirected or directed graphs.

Value

The new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

simplify() to get rid of the multiple and/or loops edges, realize_degseq() for a deterministic
variant.

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_dot_product(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

The simple generator
undirected_graph <- sample_degseq(rep(2, 100))
degree(undirected_graph)
is_simple(undirected_graph) # sometimes TRUE, but can be FALSE

directed_graph <- sample_degseq(1:10, 10:1)
degree(directed_graph, mode = "out")
degree(directed_graph, mode = "in")

The vl generator
vl_graph <- sample_degseq(rep(2, 100), method = "vl")
degree(vl_graph)
is_simple(vl_graph) # always TRUE

https://web.archive.org/web/20250428012457/https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://web.archive.org/web/20250428012457/https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://arxiv.org/abs/cs/0502085

sample_degseq 403

Exponential degree distribution
We fix the seed as there's no guarantee
that randomly picked integers will form a graphical degree sequence
(i.e. that there's a graph with these degrees)
withr::with_seed(42, {
exponential_degrees <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
})
exponential_degrees <- c(

5L, 6L, 1L, 4L, 3L, 2L, 3L, 1L, 3L, 3L, 2L, 3L, 6L, 1L, 2L,
6L, 8L, 1L, 2L, 2L, 5L, 1L, 10L, 6L, 1L, 2L, 1L, 5L, 2L, 4L,
3L, 4L, 1L, 3L, 1L, 4L, 1L, 1L, 5L, 2L, 1L, 2L, 1L, 8L, 2L, 7L,
5L, 3L, 8L, 2L, 1L, 1L, 2L, 4L, 1L, 3L, 3L, 1L, 1L, 2L, 3L, 9L,
3L, 2L, 4L, 1L, 1L, 4L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 6L,
6L, 3L, 1L, 2L, 3L, 2L

)
Note, that we'd have to correct the degree sequence if its sum is odd
is_exponential_degrees_sum_odd <- (sum(exponential_degrees) %% 2 != 0)
if (is_exponential_degrees_sum_odd) {

exponential_degrees[1] <- exponential_degrees[1] + 1
}
exp_vl_graph <- sample_degseq(exponential_degrees, method = "vl")
all(degree(exp_vl_graph) == exponential_degrees)

An example that does not work

withr::with_seed(11, {
exponential_degrees <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
})
exponential_degrees <- c(

1L, 1L, 2L, 1L, 1L, 7L, 1L, 1L, 5L, 1L, 1L, 2L, 5L, 4L, 3L,
2L, 2L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
1L, 2L, 1L, 4L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 4L, 3L,
1L, 2L, 4L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 4L, 1L, 2L, 1L, 3L, 1L,
2L, 3L, 1L, 1L, 2L, 1L, 2L, 3L, 2L, 2L, 1L, 6L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 1L, 4L, 2L, 1L, 3L, 4L, 1L, 1L, 3L, 1L, 2L, 4L,
1L, 3L, 1L, 2L, 1L

)
Note, that we'd have to correct the degree sequence if its sum is odd
is_exponential_degrees_sum_odd <- (sum(exponential_degrees) %% 2 != 0)
if (is_exponential_degrees_sum_odd) {

exponential_degrees[1] <- exponential_degrees[1] + 1
}
exp_vl_graph <- sample_degseq(exponential_degrees, method = "vl")

Power-law degree distribution
We fix the seed as there's no guarantee
that randomly picked integers will form a graphical degree sequence
(i.e. that there's a graph with these degrees)
withr::with_seed(1, {
powerlaw_degrees <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
})

404 sample_dirichlet

powerlaw_degrees <- c(
1L, 1L, 1L, 6L, 1L, 6L, 10L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 3L,
1L, 2L, 43L, 1L, 3L, 9L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 4L, 1L,
1L, 1L, 1L, 1L, 3L, 2L, 3L, 1L, 2L, 1L, 3L, 2L, 3L, 1L, 1L, 3L,
1L, 1L, 2L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 7L, 1L,
1L, 1L, 2L, 1L, 1L, 3L, 1L, 5L, 1L, 4L, 1L, 1L, 1L, 5L, 4L, 1L,
3L, 13L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L,
5L, 3L, 3L, 1L, 1L, 3L, 1L

)
Note, that we correct the degree sequence if its sum is odd
is_exponential_degrees_sum_odd <- (sum(powerlaw_degrees) %% 2 != 0)
if (is_exponential_degrees_sum_odd) {

powerlaw_degrees[1] <- powerlaw_degrees[1] + 1
}
powerlaw_vl_graph <- sample_degseq(powerlaw_degrees, method = "vl")
all(degree(powerlaw_vl_graph) == powerlaw_degrees)

An example that does not work

withr::with_seed(2, {
powerlaw_degrees <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
})
powerlaw_degrees <- c(

1L, 2L, 1L, 1L, 10L, 10L, 1L, 4L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
4L, 21L, 1L, 1L, 1L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 14L, 1L,
1L, 1L, 3L, 4L, 1L, 2L, 4L, 1L, 2L, 1L, 25L, 1L, 1L, 1L, 10L,
3L, 19L, 1L, 1L, 3L, 1L, 1L, 2L, 8L, 1L, 3L, 3L, 36L, 2L, 2L,
3L, 5L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 4L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 4L, 18L, 1L, 2L, 1L, 21L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L

)
Note, that we correct the degree sequence if its sum is odd
is_exponential_degrees_sum_odd <- (sum(powerlaw_degrees) %% 2 != 0)
if (is_exponential_degrees_sum_odd) {

powerlaw_degrees[1] <- powerlaw_degrees[1] + 1
}
powerlaw_vl_graph <- sample_degseq(powerlaw_degrees, method = "vl")
all(degree(powerlaw_vl_graph) == powerlaw_degrees)

sample_dirichlet Sample from a Dirichlet distribution

Description

Sample finite-dimensional vectors to use as latent position vectors in random dot product graphs

Usage

sample_dirichlet(n, alpha)

sample_dot_product 405

Arguments

n Integer scalar, the sample size.

alpha Numeric vector, the vector of α parameter for the Dirichlet distribution.

Details

sample_dirichlet() generates samples from the Dirichlet distribution with given α parameter.
The sample is drawn from length(alpha)-1-simplex.

Value

A dim (length of the alpha vector for sample_dirichlet()) times n matrix, whose columns are
the sample vectors.

See Also

Other latent position vector samplers: sample_sphere_surface(), sample_sphere_volume()

Examples

lpvs.dir <- sample_dirichlet(n = 20, alpha = rep(1, 10))
RDP.graph.2 <- sample_dot_product(lpvs.dir)
colSums(lpvs.dir)

sample_dot_product Generate random graphs according to the random dot product graph
model

Description

In this model, each vertex is represented by a latent position vector. Probability of an edge between
two vertices are given by the dot product of their latent position vectors.

Usage

sample_dot_product(vecs, directed = FALSE)

dot_product(...)

Arguments

vecs A numeric matrix in which each latent position vector is a column.

directed A logical scalar, TRUE if the generated graph should be directed.

... Passed to sample_dot_product().

406 sample_dot_product

Details

The dot product of the latent position vectors should be in the [0,1] interval, otherwise a warning is
given. For negative dot products, no edges are added; dot products that are larger than one always
add an edge.

Value

An igraph graph object which is the generated random dot product graph.

Related documentation in the C library

dot_product_game().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Christine Leigh Myers Nickel: Random dot product graphs, a model for social networks. Disserta-
tion, Johns Hopkins University, Maryland, USA, 2006.

See Also

sample_dirichlet(), sample_sphere_surface() and sample_sphere_volume() for sampling
position vectors.

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

A randomly generated graph
lpvs <- matrix(rnorm(200), 20, 10)
lpvs <- apply(lpvs, 2, function(x) {

return(abs(x) / sqrt(sum(x^2)))
})
g <- sample_dot_product(lpvs)
g

Sample latent vectors from the surface of the unit sphere
lpvs2 <- sample_sphere_surface(dim = 5, n = 20)
g2 <- sample_dot_product(lpvs2)
g2

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_dot_product_game

sample_fitness 407

sample_fitness Random graphs from vertex fitness scores

Description

This function generates a non-growing random graph with edge probabilities proportional to node
fitness scores.

Usage

sample_fitness(
no.of.edges,
fitness.out,
fitness.in = NULL,
loops = FALSE,
multiple = FALSE

)

Arguments

no.of.edges The number of edges in the generated graph.

fitness.out A numeric vector containing the fitness of each vertex. For directed graphs, this
specifies the out-fitness of each vertex.

fitness.in If NULL (the default), the generated graph will be undirected. If not NULL, then it
should be a numeric vector and it specifies the in-fitness of each vertex.
If this argument is not NULL, then a directed graph is generated, otherwise an
undirected one.

loops Logical scalar, whether to allow loop edges in the graph.

multiple Logical scalar, whether to allow multiple edges in the graph.

Details

This game generates a directed or undirected random graph where the probability of an edge be-
tween vertices i and j depends on the fitness scores of the two vertices involved. For undirected
graphs, each vertex has a single fitness score. For directed graphs, each vertex has an out- and an
in-fitness, and the probability of an edge from i to j depends on the out-fitness of vertex i and the
in-fitness of vertex j.

The generation process goes as follows. We start from N disconnected nodes (where N is given by
the length of the fitness vector). Then we randomly select two vertices i and j, with probabilities
proportional to their fitnesses. (When the generated graph is directed, i is selected according to the
out-fitnesses and j is selected according to the in-fitnesses). If the vertices are not connected yet (or
if multiple edges are allowed), we connect them; otherwise we select a new pair. This is repeated
until the desired number of links are created.

It can be shown that the expected degree of each vertex will be proportional to its fitness, although
the actual, observed degree will not be. If you need to generate a graph with an exact degree
sequence, consider sample_degseq() instead.

408 sample_fitness_pl

This model is commonly used to generate static scale-free networks. To achieve this, you have
to draw the fitness scores from the desired power-law distribution. Alternatively, you may use
sample_fitness_pl() which generates the fitnesses for you with a given exponent.

Value

An igraph graph, directed or undirected.

Related documentation in the C library

static_fitness_game().

Author(s)

Tamas Nepusz <ntamas@gmail.com>

References

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys
Rev Lett 87(27):278701, 2001.

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness_pl(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

N <- 10000
g <- sample_fitness(5 * N, sample((1:50)^-2, N, replace = TRUE))
degree_distribution(g)
plot(degree_distribution(g, cumulative = TRUE), log = "xy")

sample_fitness_pl Scale-free random graphs, from vertex fitness scores

Description

This function generates a non-growing random graph with expected power-law degree distributions.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_static_fitness_game

sample_fitness_pl 409

Usage

sample_fitness_pl(
no.of.nodes,
no.of.edges,
exponent.out,
exponent.in = -1,
loops = FALSE,
multiple = FALSE,
finite.size.correction = TRUE

)

Arguments

no.of.nodes The number of vertices in the generated graph.
no.of.edges The number of edges in the generated graph.
exponent.out Numeric scalar, the power law exponent of the degree distribution. For directed

graphs, this specifies the exponent of the out-degree distribution. It must be
greater than or equal to 2. If you pass Inf here, you will get back an Erdős-
Rényi random network.

exponent.in Numeric scalar. If negative, the generated graph will be undirected. If greater
than or equal to 2, this argument specifies the exponent of the in-degree distri-
bution. If non-negative but less than 2, an error will be generated.

loops Logical scalar, whether to allow loop edges in the generated graph.
multiple Logical scalar, whether to allow multiple edges in the generated graph.
finite.size.correction

Logical scalar, whether to use the proposed finite size correction of Cho et al.,
see references below.

Details

This game generates a directed or undirected random graph where the degrees of vertices follow
power-law distributions with prescribed exponents. For directed graphs, the exponents of the in-
and out-degree distributions may be specified separately.

The game simply uses sample_fitness() with appropriately constructed fitness vectors. In par-
ticular, the fitness of vertex i is i−α, where α = 1/(γ − 1) and γ is the exponent given in the
arguments.

To remove correlations between in- and out-degrees in case of directed graphs, the in-fitness vector
will be shuffled after it has been set up and before sample_fitness() is called.

Note that significant finite size effects may be observed for exponents smaller than 3 in the original
formulation of the game. This function provides an argument that lets you remove the finite size
effects by assuming that the fitness of vertex i is (i + i0 − 1)−α where i0 is a constant chosen
appropriately to ensure that the maximum degree is less than the square root of the number of edges
times the average degree; see the paper of Chung and Lu, and Cho et al for more details.

Value

An igraph graph, directed or undirected.

410 sample_forestfire

Related documentation in the C library

static_power_law_game().

Author(s)

Tamas Nepusz <ntamas@gmail.com>

References

Goh K-I, Kahng B, Kim D: Universal behaviour of load distribution in scale-free networks. Phys
Rev Lett 87(27):278701, 2001.

Chung F and Lu L: Connected components in a random graph with given degree sequences. Annals
of Combinatorics 6, 125-145, 2002.

Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in scale-free networks under the
Achlioptas process. Phys Rev Lett 103:135702, 2009.

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_forestfire(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

g <- sample_fitness_pl(10000, 30000, 2.2, 2.3)
plot(degree_distribution(g, cumulative = TRUE, mode = "out"), log = "xy")

sample_forestfire Forest Fire Network Model

Description

This is a growing network model, which resembles of how the forest fire spreads by igniting trees
close by.

Usage

sample_forestfire(nodes, fw.prob, bw.factor = 1, ambs = 1, directed = TRUE)

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_static_power_law_game

sample_forestfire 411

Arguments

nodes The number of vertices in the graph.

fw.prob The forward burning probability, see details below.

bw.factor The backward burning ratio. The backward burning probability is calculated as
bw.factor*fw.prob.

ambs The number of ambassador vertices.

directed Logical scalar, whether to create a directed graph.

Details

The forest fire model intends to reproduce the following network characteristics, observed in real
networks:

• Heavy-tailed in-degree distribution.

• Heavy-tailed out-degree distribution.

• Communities.

• Densification power-law. The network is densifying in time, according to a power-law rule.

• Shrinking diameter. The diameter of the network decreases in time.

The network is generated in the following way. One vertex is added at a time. This vertex connects
to (cites) ambs vertices already present in the network, chosen uniformly random. Now, for each
cited vertex v we do the following procedure:

1. We generate two random number, x and y, that are geometrically distributed with means
p/(1 − p) and rp(1 − rp). (p is fw.prob, r is bw.factor.) The new vertex cites x outgoing
neighbors and y incoming neighbors of v, from those which are not yet cited by the new
vertex. If there are less than x or y such vertices available then we cite all of them.

2. The same procedure is applied to all the newly cited vertices.

Value

A simple graph, possibly directed if the directed argument is TRUE.

Related documentation in the C library

forest_fire_game().

Note

The version of the model in the published paper is incorrect in the sense that it cannot generate
the kind of graphs the authors claim. A corrected version is available from https://www.cs.cmu.
edu/~jure/pubs/powergrowth-tkdd.pdf, our implementation is based on this.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_forest_fire_game
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf

412 sample_gnm

References

Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. KDD ’05: Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, 177–187, 2005.

See Also

sample_pa() for the basic preferential attachment model.
Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_gnm(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

fire <- sample_forestfire(50, fw.prob = 0.37, bw.factor = 0.32 / 0.37)
plot(fire)

g <- sample_forestfire(10000, fw.prob = 0.37, bw.factor = 0.32 / 0.37)
dd1 <- degree_distribution(g, mode = "in")
dd2 <- degree_distribution(g, mode = "out")
The forest fire model produces graphs with a heavy tail degree distribution.
Note that some in- or out-degrees are zero which will be excluded from the logarithmic plot.
plot(seq(along.with = dd1) - 1, dd1, log = "xy")
points(seq(along.with = dd2) - 1, dd2, col = 2, pch = 2)

sample_gnm Generate random graphs according to the G(n,m) Erdős-Rényi
model

Description

Random graph with a fixed number of edges and vertices.

Usage

sample_gnm(n, m, directed = FALSE, loops = FALSE)

gnm(...)

Arguments

n The number of vertices in the graph.
m The number of edges in the graph.
directed Logical, whether the graph will be directed, defaults to FALSE.
loops Logical, whether to add loop edges, defaults to FALSE.
... Passed to sample_gnm().

sample_gnp 413

Details

The graph has n vertices and m edges. The edges are chosen uniformly at random from the set of all
vertex pairs. This set includes potential self-connections as well if the loops parameter is TRUE.

Value

A graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Erdős, P. and Rényi, A., On random graphs, Publicationes Mathematicae 6, 290–297 (1959).

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnp(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

g <- sample_gnm(1000, 1000)
degree_distribution(g)

sample_gnp Generate random graphs according to the G(n, p) Erdős-Rényi model

Description

Every possible edge is created independently with the same probability p. This model is also re-
ferred to as a Bernoulli random graph since the connectivity status of vertex pairs follows a Bernoulli
distribution.

Usage

sample_gnp(n, p, directed = FALSE, loops = FALSE)

gnp(...)

414 sample_gnp

Arguments

n The number of vertices in the graph.

p The probability for drawing an edge between two arbitrary vertices (G(n, p)
graph).

directed Logical, whether the graph will be directed, defaults to FALSE.

loops Logical, whether to add loop edges, defaults to FALSE.

... Passed to sample_gnp().

Details

The graph has n vertices and each pair of vertices is connected with the same probability p. The
loops parameter controls whether self-connections are also considered. This model effectively
constrains the average number of edges, pmmax, where mmax is the largest possible number of
edges, which depends on whether the graph is directed or undirected and whether self-loops are
allowed.

Value

A graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Erdős, P. and Rényi, A., On random graphs, Publicationes Mathematicae 6, 290–297 (1959).

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

Random graph with expected mean degree of 2
g <- sample_gnp(1000, 2 / 1000)
mean(degree(g))
degree_distribution(g)

Pick a simple graph on 6 vertices uniformly at random
plot(sample_gnp(6, 0.5))

sample_grg 415

sample_grg Geometric random graphs

Description

Generate a random graph based on the distance of random point on a unit square

Usage

sample_grg(nodes, radius, torus = FALSE, coords = FALSE)

grg(...)

Arguments

nodes The number of vertices in the graph.

radius The radius within which the vertices will be connected by an edge.

torus Logical constant, whether to use a torus instead of a square.

coords Logical scalar, whether to add the positions of the vertices as vertex attributes
called ‘x’ and ‘y’.

... Passed to sample_grg().

Details

First a number of points are dropped on a unit square, these points correspond to the vertices of the
graph to create. Two points will be connected with an undirected edge if they are closer to each
other in Euclidean norm than a given radius. If the torus argument is TRUE then a unit area torus is
used instead of a square.

Value

A graph object. If coords is TRUE then with vertex attributes ‘x’ and ‘y’.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>, first version was written by Keith Briggs (https://
keithbriggs.info/).

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_growing(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

https://keithbriggs.info/
https://keithbriggs.info/

416 sample_growing

Examples

g <- sample_grg(1000, 0.05, torus = FALSE)
g2 <- sample_grg(1000, 0.05, torus = TRUE)

sample_growing Growing random graph generation

Description

This function creates a random graph by simulating its stochastic evolution.

Usage

sample_growing(n, m = 1, ..., directed = TRUE, citation = FALSE)

growing(...)

Arguments

n Numeric constant, number of vertices in the graph.

m Numeric constant, number of edges added in each time step.

... Passed to sample_growing().

directed Logical, whether to create a directed graph.

citation Logical. If TRUE a citation graph is created, i.e. in each time step the added
edges are originating from the new vertex.

Details

This is discrete time step model, in each time step a new vertex is added to the graph and m new
edges are created. If citation is FALSE these edges are connecting two uniformly randomly chosen
vertices, otherwise the edges are connecting new vertex to uniformly randomly chosen old vertices.

Value

A new graph object.

Related documentation in the C library

growing_random_game().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_growing_random_game

sample_hierarchical_sbm 417

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_hierarchical_sbm(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

g <- sample_growing(500, citation = FALSE)
g2 <- sample_growing(500, citation = TRUE)

sample_hierarchical_sbm

Sample the hierarchical stochastic block model

Description

Sampling from a hierarchical stochastic block model of networks.

Usage

sample_hierarchical_sbm(n, m, rho, C, p)

hierarchical_sbm(...)

Arguments

n Integer scalar, the number of vertices.

m Integer scalar, the number of vertices per block. n / m must be integer. Alterna-
tively, an integer vector of block sizes, if not all the blocks have equal sizes.

rho Numeric vector, the fraction of vertices per cluster, within a block. Must sum
up to 1, and rho * m must be integer for all elements of rho. Alternatively a list
of rho vectors, one for each block, if they are not the same for all blocks.

C A square, symmetric numeric matrix, the Bernoulli rates for the clusters within
a block. Its size must mach the size of the rho vector. Alternatively, a list of
square matrices, if the Bernoulli rates differ in different blocks.

p Numeric scalar, the Bernoulli rate of connections between vertices in different
blocks.

... Passed to sample_hierarchical_sbm().

Details

The function generates a random graph according to the hierarchical stochastic block model.

418 sample_hrg

Value

An igraph graph.

Related documentation in the C library

hsbm_game(), hsbm_list_game().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_islands(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

Ten blocks with three clusters each
C <- matrix(c(

1, 3 / 4, 0,
3 / 4, 0, 3 / 4,
0, 3 / 4, 3 / 4

), nrow = 3)
g <- sample_hierarchical_sbm(100, 10, rho = c(3, 3, 4) / 10, C = C, p = 1 / 20)
g

library("Matrix")
image(g[])

sample_hrg Sample from a hierarchical random graph model

Description

sample_hrg() samples a graph from a given hierarchical random graph model.

Usage

sample_hrg(hrg)

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_hsbm_game
https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_hsbm_list_game

sample_islands 419

Arguments

hrg A hierarchical random graph model.

Value

An igraph graph.

Related documentation in the C library

hrg_game().

See Also

Other hierarchical random graph functions: consensus_tree(), fit_hrg(), hrg(), hrg-methods,
hrg_tree(), predict_edges(), print.igraphHRG(), print.igraphHRGConsensus()

sample_islands A graph with subgraphs that are each a random graph.

Description

Create a number of Erdős-Rényi random graphs with identical parameters, and connect them with
the specified number of edges.

Usage

sample_islands(islands.n, islands.size, islands.pin, n.inter)

Arguments

islands.n The number of islands in the graph.

islands.size The size of islands in the graph.

islands.pin The probability to create each possible edge into each island.

n.inter The number of edges to create between two islands.

Value

An igraph graph.

Examples

g <- sample_islands(3, 10, 5/10, 1)
oc <- cluster_optimal(g)
oc

Related documentation in the C library

simple_interconnected_islands_game().

https://igraph.org/c/html/0.10.17/igraph-HRG.html#igraph_hrg_game
https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_simple_interconnected_islands_game

420 sample_k_regular

Author(s)

Samuel Thiriot

See Also

sample_gnp()

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_k_regular(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

sample_k_regular Create a random regular graph

Description

Generate a random graph where each vertex has the same degree.

Usage

sample_k_regular(no.of.nodes, k, directed = FALSE, multiple = FALSE)

Arguments

no.of.nodes Integer scalar, the number of vertices in the generated graph.

k Integer scalar, the degree of each vertex in the graph, or the out-degree and in-
degree in a directed graph.

directed Logical scalar, whether to create a directed graph.

multiple Logical scalar, whether multiple edges are allowed.

Details

This game generates a directed or undirected random graph where the degrees of vertices are equal
to a predefined constant k. For undirected graphs, at least one of k and the number of vertices must
be even.

The game simply uses sample_degseq() with appropriately constructed degree sequences.

Value

An igraph graph.

Related documentation in the C library

k_regular_game().

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_k_regular_game

sample_last_cit 421

Author(s)

Tamas Nepusz <ntamas@gmail.com>

See Also

sample_degseq() for a generator with prescribed degree sequence.

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

A simple ring
ring <- sample_k_regular(10, 2)
plot(ring)

k-regular graphs on 10 vertices, with k=1:9
k10 <- lapply(1:9, sample_k_regular, no.of.nodes = 10)

layout(matrix(1:9, nrow = 3, byrow = TRUE))
sapply(k10, plot, vertex.label = NA)

sample_last_cit Random citation graphs

Description

sample_last_cit() creates a graph, where vertices age, and gain new connections based on how
long ago their last citation happened.

Usage

sample_last_cit(
n,
edges = 1,
agebins = n/7100,
pref = (1:(agebins + 1))^-3,
directed = TRUE

)

last_cit(...)

sample_cit_types(
n,

422 sample_last_cit

edges = 1,
types = rep(0, n),
pref = rep(1, length(types)),
directed = TRUE,
attr = TRUE

)

cit_types(...)

sample_cit_cit_types(
n,
edges = 1,
types = rep(0, n),
pref = matrix(1, nrow = length(types), ncol = length(types)),
directed = TRUE,
attr = TRUE

)

cit_cit_types(...)

Arguments

n Number of vertices.

edges Number of edges per step.

agebins Number of aging bins.

pref Vector (sample_last_cit() and sample_cit_types() or matrix (sample_cit_cit_types())
giving the (unnormalized) citation probabilities for the different vertex types.

directed Logical scalar, whether to generate directed networks.

... Passed to the actual constructor.

types Vector of length ‘n’, the types of the vertices. Types are numbered from zero.

attr Logical scalar, whether to add the vertex types to the generated graph as a vertex
attribute called ‘type’.

Details

sample_cit_cit_types() is a stochastic block model where the graph is growing.

sample_cit_types() is similarly a growing stochastic block model, but the probability of an edge
depends on the (potentially) cited vertex only.

Value

A new graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

sample_motifs 423

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_pa(), sample_pa_age(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

sample_motifs Graph motifs

Description

Graph motifs are small connected induced subgraphs with a well-defined structure. These functions
search a graph for various motifs.

Usage

sample_motifs(
graph,
size = 3,
cut.prob = rep(0, size),
sample.size = NULL,
sample = NULL

)

Arguments

graph Graph object, the input graph.

size The size of the motif, currently size 3 and 4 are supported in directed graphs and
sizes 3-6 in undirected graphs.

cut.prob Numeric vector giving the probabilities that the search graph is cut at a certain
level. Its length should be the same as the size of the motif (the size argument).
If NULL, the default, no cuts are made.

sample.size The number of vertices to use as a starting point for finding motifs. Only used if
the sample argument is NULL. The default is ceiling(vcount(graph) / 10) .

sample If not NULL then it specifies the vertices to use as a starting point for finding
motifs.

Details

sample_motifs() estimates the total number of motifs of a given size in a graph based on a sample.

Value

A numeric scalar, an estimate for the total number of motifs in the graph.

424 sample_pa

See Also

isomorphism_class()

Other graph motifs: count_motifs(), dyad_census(), motifs()

Examples

g <- sample_pa(100)
motifs(g, 3)
count_motifs(g, 3)
sample_motifs(g, 3)

sample_pa Generate random graphs using preferential attachment

Description

Preferential attachment is a family of simple stochastic algorithms for building a graph. Variants
include the Barabási-Abert model and the Price model.

Usage

sample_pa(
n,
power = 1,
m = NULL,
out.dist = NULL,
out.seq = NULL,
out.pref = FALSE,
zero.appeal = 1,
directed = TRUE,
algorithm = c("psumtree", "psumtree-multiple", "bag"),
start.graph = NULL

)

pa(...)

Arguments

n Number of vertices.

power The power of the preferential attachment, the default is one, i.e. linear preferen-
tial attachment.

m Numeric constant, the number of edges to add in each time step This argument
is only used if both out.dist and out.seq are omitted or NULL.

out.dist Numeric vector, the distribution of the number of edges to add in each time step.
This argument is only used if the out.seq argument is omitted or NULL.

sample_pa 425

out.seq Numeric vector giving the number of edges to add in each time step. Its first
element is ignored as no edges are added in the first time step.

out.pref Logical, if true the total degree is used for calculating the citation probability,
otherwise the in-degree is used.

zero.appeal The ‘attractiveness’ of the vertices with no adjacent edges. See details below.

directed Whether to create a directed graph.

algorithm The algorithm to use for the graph generation. psumtree uses a partial prefix-
sum tree to generate the graph, this algorithm can handle any power and zero.appeal
values and never generates multiple edges. psumtree-multiple also uses a par-
tial prefix-sum tree, but the generation of multiple edges is allowed. Before the
0.6 version igraph used this algorithm if power was not one, or zero.appeal
was not one. bag is the algorithm that was previously (before version 0.6) used
if power was one and zero.appeal was one as well. It works by putting the ids
of the vertices into a bag (multiset, really), exactly as many times as their (in-
)degree, plus once more. Then the required number of cited vertices are drawn
from the bag, with replacement. This method might generate multiple edges. It
only works if power and zero.appeal are equal one.

start.graph NULL or an igraph graph. If a graph, then the supplied graph is used as a starting
graph for the preferential attachment algorithm. The graph should have at least
one vertex. If a graph is supplied here and the out.seq argument is not NULL,
then it should contain the out degrees of the new vertices only, not the ones in
the start.graph.

... Passed to sample_pa().

Details

This is a simple stochastic algorithm to generate a graph. It is a discrete time step model and in
each time step a single vertex is added.

We start with a single vertex and no edges in the first time step. Then we add one vertex in each
time step and the new vertex initiates some edges to old vertices. The probability that an old vertex
is chosen is given by

P [i] ∼ kαi + a

where ki is the in-degree of vertex i in the current time step (more precisely the number of adjacent
edges of i which were not initiated by i itself) and α and a are parameters given by the power and
zero.appeal arguments.

The number of edges initiated in a time step is given by the m, out.dist and out.seq arguments.
If out.seq is given and not NULL then it gives the number of edges to add in a vector, the first
element is ignored, the second is the number of edges to add in the second time step and so on.
If out.seq is not given or null and out.dist is given and not NULL then it is used as a discrete
distribution to generate the number of edges in each time step. Its first element is the probability that
no edges will be added, the second is the probability that one edge is added, etc. (out.dist does
not need to sum up to one, it normalized automatically.) out.dist should contain non-negative
numbers and at east one element should be positive.

If both out.seq and out.dist are omitted or NULL then m will be used, it should be a positive
integer constant and m edges will be added in each time step.

426 sample_pa_age

sample_pa() generates a directed graph by default, set directed to FALSE to generate an undi-
rected graph. Note that even if an undirected graph is generated ki denotes the number of adjacent
edges not initiated by the vertex itself and not the total (in- + out-) degree of the vertex, unless the
out.pref argument is set to TRUE.

Value

A graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Barabási, A.-L. and Albert R. 1999. Emergence of scaling in random networks Science, 286 509–
512.

de Solla Price, D. J. 1965. Networks of Scientific Papers Science, 149 510–515.

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa_age(), sample_pref(), sample_sbm(),
sample_smallworld(), sample_traits_callaway(), sample_tree()

Examples

g <- sample_pa(10000)
degree_distribution(g)

sample_pa_age Generate an evolving random graph with preferential attachment and
aging

Description

This function creates a random graph by simulating its evolution. Each time a new vertex is added
it creates a number of links to old vertices and the probability that an old vertex is cited depends on
its in-degree (preferential attachment) and age.

sample_pa_age 427

Usage

sample_pa_age(
n,
pa.exp,
aging.exp,
m = NULL,
aging.bin = 300,
out.dist = NULL,
out.seq = NULL,
out.pref = FALSE,
directed = TRUE,
zero.deg.appeal = 1,
zero.age.appeal = 0,
deg.coef = 1,
age.coef = 1,
time.window = NULL

)

pa_age(...)

Arguments

n The number of vertices in the graph.

pa.exp The preferential attachment exponent, see the details below.

aging.exp The exponent of the aging, usually a non-positive number, see details below.

m The number of edges each new vertex creates (except the very first vertex). This
argument is used only if both the out.dist and out.seq arguments are NULL.

aging.bin The number of bins to use for measuring the age of vertices, see details below.

out.dist The discrete distribution to generate the number of edges to add in each time
step if out.seq is NULL. See details below.

out.seq The number of edges to add in each time step, a vector containing as many
elements as the number of vertices. See details below.

out.pref Logical constant, whether to include edges not initiated by the vertex as a basis
of preferential attachment. See details below.

directed Logical constant, whether to generate a directed graph. See details below.
zero.deg.appeal

The degree-dependent part of the ‘attractiveness’ of the vertices with no adjacent
edges. See also details below.

zero.age.appeal

The age-dependent part of the ‘attrativeness’ of the vertices with age zero. It is
usually zero, see details below.

deg.coef The coefficient of the degree-dependent ‘attractiveness’. See details below.

age.coef The coefficient of the age-dependent part of the ‘attractiveness’. See details
below.

428 sample_pa_age

time.window Integer constant, if NULL only adjacent added in the last time.windows time
steps are counted as a basis of the preferential attachment. See also details
below.

... Passed to sample_pa_age().

Details

This is a discrete time step model of a growing graph. We start with a network containing a single
vertex (and no edges) in the first time step. Then in each time step (starting with the second) a new
vertex is added and it initiates a number of edges to the old vertices in the network. The probability
that an old vertex is connected to is proportional to

P [i] ∼ (c · kαi + a)(d · lβi + b)

.

Here ki is the in-degree of vertex i in the current time step and li is the age of vertex i. The age is
simply defined as the number of time steps passed since the vertex is added, with the extension that
vertex age is divided to be in aging.bin bins.

c, α, a, d, β and b are parameters and they can be set via the following arguments: pa.exp (α,
mandatory argument), aging.exp (β, mandatory argument), zero.deg.appeal (a, optional, the
default value is 1), zero.age.appeal (b, optional, the default is 0), deg.coef (c, optional, the
default is 1), and age.coef (d, optional, the default is 1).

The number of edges initiated in each time step is governed by the m, out.seq and out.pref
parameters. If out.seq is given then it is interpreted as a vector giving the number of edges to
be added in each time step. It should be of length n (the number of vertices), and its first element
will be ignored. If out.seq is not given (or NULL) and out.dist is given then it will be used
as a discrete probability distribution to generate the number of edges. Its first element gives the
probability that zero edges are added at a time step, the second element is the probability that one
edge is added, etc. (out.seq should contain non-negative numbers, but if they don’t sum up to 1,
they will be normalized to sum up to 1. This behavior is similar to the prob argument of the sample
command.)

By default a directed graph is generated, but it directed is set to FALSE then an undirected is
created. Even if an undirected graph is generated ki denotes only the adjacent edges not initiated
by the vertex itself except if out.pref is set to TRUE.

If the time.window argument is given (and not NULL) then ki means only the adjacent edges added
in the previous time.window time steps.

This function might generate graphs with multiple edges.

Value

A new graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

sample_pref 429

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pref(), sample_sbm(), sample_smallworld(),
sample_traits_callaway(), sample_tree()

Examples

The maximum degree for graph with different aging exponents
g1 <- sample_pa_age(10000, pa.exp = 1, aging.exp = 0, aging.bin = 1000)
g2 <- sample_pa_age(10000, pa.exp = 1, aging.exp = -1, aging.bin = 1000)
g3 <- sample_pa_age(10000, pa.exp = 1, aging.exp = -3, aging.bin = 1000)
max(degree(g1))
max(degree(g2))
max(degree(g3))

sample_pref Trait-based random generation

Description

Generation of random graphs based on different vertex types.

Usage

sample_pref(
nodes,
types,
type.dist = rep(1, types),
fixed.sizes = FALSE,
pref.matrix = matrix(1, types, types),
directed = FALSE,
loops = FALSE

)

pref(...)

sample_asym_pref(
nodes,
types,
type.dist.matrix = matrix(1, types, types),
pref.matrix = matrix(1, types, types),
loops = FALSE

)

asym_pref(...)

430 sample_pref

Arguments

nodes The number of vertices in the graphs.
types The number of different vertex types.
type.dist The distribution of the vertex types, a numeric vector of length ‘types’ contain-

ing non-negative numbers. The vector will be normed to obtain probabilities.
fixed.sizes Fix the number of vertices with a given vertex type label. The type.dist argu-

ment gives the group sizes (i.e. number of vertices with the different labels) in
this case.

pref.matrix A square matrix giving the preferences of the vertex types. The matrix has
‘types’ rows and columns. When generating an undirected graph, it must be
symmetric.

directed Logical constant, whether to create a directed graph.
loops Logical constant, whether self-loops are allowed in the graph.
... Passed to the constructor, sample_pref() or sample_asym_pref().
type.dist.matrix

The joint distribution of the in- and out-vertex types.

Details

Both models generate random graphs with given vertex types. For sample_pref() the probability
that two vertices will be connected depends on their type and is given by the ‘pref.matrix’ argument.
This matrix should be symmetric to make sense but this is not checked. The distribution of the
different vertex types is given by the ‘type.dist’ vector.

For sample_asym_pref() each vertex has an in-type and an out-type and a directed graph is cre-
ated. The probability that a directed edge is realized from a vertex with a given out-type to a vertex
with a given in-type is given in the ‘pref.matrix’ argument, which can be asymmetric. The joint
distribution for the in- and out-types is given in the ‘type.dist.matrix’ argument.

The types of the generated vertices can be retrieved from the type vertex attribute for sample_pref()
and from the intype and outtype vertex attribute for sample_asym_pref().

Value

An igraph graph.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com> for the R
interface

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_sbm(),
sample_smallworld(), sample_traits_callaway(), sample_tree()

sample_sbm 431

Examples

pf <- matrix(c(1, 0, 0, 1), nrow = 2)
g <- sample_pref(20, 2, pref.matrix = pf)

example code

tkplot(g, layout = layout_with_fr)

pf <- matrix(c(0, 1, 0, 0), nrow = 2)
g <- sample_asym_pref(20, 2, pref.matrix = pf)

tkplot(g, layout = layout_in_circle)

sample_sbm Sample stochastic block model

Description

Sampling from the stochastic block model of networks

Usage

sample_sbm(n, pref.matrix, block.sizes, directed = FALSE, loops = FALSE)

sbm(...)

Arguments

n Number of vertices in the graph.

pref.matrix The matrix giving the Bernoulli rates. This is a K ×K matrix, where K is the
number of groups. The probability of creating an edge between vertices from
groups i and j is given by element (i, j). For undirected graphs, this matrix must
be symmetric.

block.sizes Numeric vector giving the number of vertices in each group. The sum of the
vector must match the number of vertices.

directed Logical scalar, whether to generate a directed graph.

loops Logical scalar, whether self-loops are allowed in the graph.

... Passed to sample_sbm().

Details

This function samples graphs from a stochastic block model by (doing the equivalent of) Bernoulli
trials for each potential edge with the probabilities given by the Bernoulli rate matrix, pref.matrix.
The order of the vertices in the generated graph corresponds to the block.sizes argument.

432 sample_seq

Value

An igraph graph.

Related documentation in the C library

sbm_game().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Faust, K., & Wasserman, S. (1992a). Blockmodels: Interpretation and evaluation. Social Networks,
14, 5–61.

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(),
sample_smallworld(), sample_traits_callaway(), sample_tree()

Examples

Two groups with not only few connection between groups
pm <- cbind(c(.1, .001), c(.001, .05))
g <- sample_sbm(1000, pref.matrix = pm, block.sizes = c(300, 700))
g

sample_seq Sampling a random integer sequence

Description

This function provides a very efficient way to pull an integer random sample sequence from an
integer interval.

Usage

sample_seq(low, high, length)

Arguments

low The lower limit of the interval (inclusive).
high The higher limit of the interval (inclusive).
length The length of the sample.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_sbm_game

sample_smallworld 433

Details

The algorithm runs in O(length) expected time, even if high-low is big. It is much faster (but of
course less general) than the builtin sample function of R.

Value

An increasing numeric vector containing integers, the sample.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Jeffrey Scott Vitter: An Efficient Algorithm for Sequential Random Sampling, ACM Transactions
on Mathematical Software, 13/1, 58–67.

See Also

Other other: convex_hull(), running_mean()

Examples

rs <- sample_seq(1, 100000000, 10)
rs

sample_smallworld The Watts-Strogatz small-world model

Description

This function generates networks with the small-world property based on a variant of the Watts-
Strogatz model. The network is obtained by first creating a periodic undirected lattice, then rewiring
both endpoints of each edge with probability p, while avoiding the creation of multi-edges.

Usage

sample_smallworld(dim, size, nei, p, loops = FALSE, multiple = FALSE)

smallworld(...)

434 sample_smallworld

Arguments

dim Integer constant, the dimension of the starting lattice.

size Integer constant, the size of the lattice along each dimension.

nei Integer constant, the neighborhood within which the vertices of the lattice will
be connected.

p Real constant between zero and one, the rewiring probability.

loops Logical scalar, whether loops edges are allowed in the generated graph.

multiple Logical scalar, whether multiple edges are allowed int the generated graph.

... Passed to sample_smallworld().

Details

Note that this function might create graphs with loops and/or multiple edges. You can use simplify()
to get rid of these.

This process differs from the original model of Watts and Strogatz (see reference) in that it rewires
both endpoints of edges. Thus in the limit of p=1, we obtain a G(n,m) random graph with the same
number of vertices and edges as the original lattice. In comparison, the original Watts-Strogatz
model only rewires a single endpoint of each edge, thus the network does not become fully random
even for p=1. For appropriate choices of p, both models exhibit the property of simultaneously
having short path lengths and high clustering.

Value

A graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Duncan J Watts and Steven H Strogatz: Collective dynamics of ‘small world’ networks, Nature 393,
440-442, 1998.

See Also

make_lattice(), rewire()

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(),
sample_sbm(), sample_traits_callaway(), sample_tree()

sample_spanning_tree 435

Examples

g <- sample_smallworld(1, 100, 5, 0.05)
mean_distance(g)
transitivity(g, type = "average")

sample_spanning_tree Samples from the spanning trees of a graph randomly and uniformly

Description

sample_spanning_tree() picks a spanning tree of an undirected graph randomly and uniformly,
using loop-erased random walks.

Usage

sample_spanning_tree(graph, vid = 0)

Arguments

graph The input graph to sample from. Edge directions are ignored if the graph is
directed.

vid When the graph is disconnected, this argument specifies how to handle the situ-
ation. When the argument is zero (the default), the sampling will be performed
component-wise, and the result will be a spanning forest. When the argument
contains a vertex ID, only the component containing the given vertex will be
processed, and the result will be a spanning tree of the component of the graph.

Value

An edge sequence containing the edges of the spanning tree. Use subgraph_from_edges() to
extract the corresponding subgraph.

Related documentation in the C library

random_spanning_tree().

See Also

subgraph_from_edges() to extract the tree itself

Other trees: is_forest(), is_tree(), make_from_prufer(), to_prufer()

Examples

g <- make_full_graph(10) %du% make_full_graph(5)
edges <- sample_spanning_tree(g)
forest <- subgraph_from_edges(g, edges)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_random_spanning_tree

436 sample_sphere_surface

sample_sphere_surface Sample vectors uniformly from the surface of a sphere

Description

Sample finite-dimensional vectors to use as latent position vectors in random dot product graphs

Usage

sample_sphere_surface(dim, n = 1, radius = 1, positive = TRUE)

Arguments

dim Integer scalar, the dimension of the random vectors.

n Integer scalar, the sample size.

radius Numeric scalar, the radius of the sphere to sample.

positive Logical scalar, whether to sample from the positive orthant of the sphere.

Details

sample_sphere_surface() generates uniform samples from Sdim−1 (the (dim-1)-sphere) with
radius radius, i.e. the Euclidean norm of the samples equal radius.

Value

A dim (length of the alpha vector for sample_dirichlet()) times n matrix, whose columns are
the sample vectors.

See Also

Other latent position vector samplers: sample_dirichlet(), sample_sphere_volume()

Examples

lpvs.sph <- sample_sphere_surface(dim = 10, n = 20, radius = 1)
RDP.graph.3 <- sample_dot_product(lpvs.sph)
vec.norm <- apply(lpvs.sph, 2, function(x) {

sum(x^2)
})
vec.norm

sample_sphere_volume 437

sample_sphere_volume Sample vectors uniformly from the volume of a sphere

Description

Sample finite-dimensional vectors to use as latent position vectors in random dot product graphs

Usage

sample_sphere_volume(dim, n = 1, radius = 1, positive = TRUE)

Arguments

dim Integer scalar, the dimension of the random vectors.

n Integer scalar, the sample size.

radius Numeric scalar, the radius of the sphere to sample.

positive Logical scalar, whether to sample from the positive orthant of the sphere.

Details

sample_sphere_volume() generates uniform samples from Sdim−1 (the (dim-1)-sphere) i.e. the
Euclidean norm of the samples is smaller or equal to radius.

Value

A dim (length of the alpha vector for sample_dirichlet()) times n matrix, whose columns are
the sample vectors.

See Also

Other latent position vector samplers: sample_dirichlet(), sample_sphere_surface()

Examples

lpvs.sph.vol <- sample_sphere_volume(dim = 10, n = 20, radius = 1)
RDP.graph.4 <- sample_dot_product(lpvs.sph.vol)
vec.norm <- apply(lpvs.sph.vol, 2, function(x) {

sum(x^2)
})
vec.norm

438 sample_traits_callaway

sample_traits_callaway

Graph generation based on different vertex types

Description

These functions implement evolving network models based on different vertex types.

Usage

sample_traits_callaway(
nodes,
types,
edge.per.step = 1,
type.dist = rep(1, types),
pref.matrix = matrix(1, types, types),
directed = FALSE

)

traits_callaway(...)

sample_traits(
nodes,
types,
k = 1,
type.dist = rep(1, types),
pref.matrix = matrix(1, types, types),
directed = FALSE

)

traits(...)

Arguments

nodes The number of vertices in the graph.

types The number of different vertex types.

edge.per.step The number of edges to add to the graph per time step.

type.dist The distribution of the vertex types. This is assumed to be stationary in time.

pref.matrix A matrix giving the preferences of the given vertex types. These should be
probabilities, i.e. numbers between zero and one.

directed Logical constant, whether to generate directed graphs.

... Passed to the constructor, sample_traits() or sample_traits_callaway().

k The number of trials per time step, see details below.

sample_tree 439

Details

For sample_traits_callaway() the simulation goes like this: in each discrete time step a new
vertex is added to the graph. The type of this vertex is generated based on type.dist. Then
two vertices are selected uniformly randomly from the graph. The probability that they will be
connected depends on the types of these vertices and is taken from pref.matrix. Then another
two vertices are selected and this is repeated edges.per.step times in each time step.

For sample_traits() the simulation goes like this: a single vertex is added at each time step. This
new vertex tries to connect to k vertices in the graph. The probability that such a connection is
realized depends on the types of the vertices involved and is taken from pref.matrix.

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(),
sample_sbm(), sample_smallworld(), sample_tree()

Examples

two types of vertices, they like only themselves
g1 <- sample_traits_callaway(1000, 2, pref.matrix = matrix(c(1, 0, 0, 1), ncol = 2))
g2 <- sample_traits(1000, 2, k = 2, pref.matrix = matrix(c(1, 0, 0, 1), ncol = 2))

sample_tree Sample trees randomly and uniformly

Description

sample_tree() generates a random with a given number of nodes uniform at random from the set
of labelled trees.

Usage

sample_tree(n, directed = FALSE, method = c("lerw", "prufer"))

440 scan_stat

Arguments

n The number of nodes in the tree

directed Whether to create a directed tree. The edges of the tree are oriented away from
the root.

method The algorithm to use to generate the tree. ‘prufer’ samples Prüfer sequences
uniformly and then converts the sampled sequence to a tree. ‘lerw’ performs a
loop-erased random walk on the complete graph to uniformly sampleits span-
ning trees. (This is also known as Wilson’s algorithm). The default is ‘lerw’.
Note that the method based on Prüfer sequences does not support directed trees
at the moment.

Details

In other words, the function generates each possible labelled tree with the given number of nodes
with the same probability.

Value

A graph object.

Related documentation in the C library

tree_game().

See Also

Random graph models (games) bipartite_gnm(), erdos.renyi.game(), sample_(), sample_bipartite(),
sample_chung_lu(), sample_correlated_gnp(), sample_correlated_gnp_pair(), sample_degseq(),
sample_dot_product(), sample_fitness(), sample_fitness_pl(), sample_forestfire(), sample_gnm(),
sample_gnp(), sample_grg(), sample_growing(), sample_hierarchical_sbm(), sample_islands(),
sample_k_regular(), sample_last_cit(), sample_pa(), sample_pa_age(), sample_pref(),
sample_sbm(), sample_smallworld(), sample_traits_callaway()

Examples

g <- sample_tree(100, method = "lerw")

scan_stat Scan statistics on a time series of graphs

Description

Calculate scan statistics on a time series of graphs. This is done by calculating the local scan
statistics for each graph and each vertex, and then normalizing across the vertices and across the
time steps.

https://igraph.org/c/html/0.10.17/igraph-Generators.html#igraph_tree_game

scan_stat 441

Usage

scan_stat(graphs, tau = 1, ell = 0, locality = c("us", "them"), ...)

Arguments

graphs A list of igraph graph objects. They must be all directed or all undirected and
they must have the same number of vertices.

tau The number of previous time steps to consider for the time-dependent normal-
ization for individual vertices. In other words, the current locality statistics of
each vertex will be compared to this many previous time steps of the same vertex
to decide whether it is significantly larger.

ell The number of previous time steps to consider for the aggregated scan statistics.
This is essentially a smoothing parameter.

locality Whether to calculate the ‘us’ or ‘them’ statistics.

... Extra arguments are passed to local_scan().

Value

A list with entries:

stat The scan statistics in each time step. It is NA for the initial tau + ell time steps.

arg_max_v The (numeric) vertex ids for the vertex with the largest locality statistics, at each time
step. It is NA for the initial tau + ell time steps.

See Also

Other scan statistics: local_scan()

Examples

Generate a bunch of SBMs, with the last one being different
num_t <- 20
block_sizes <- c(10, 5, 5)
p_ij <- list(p = 0.1, h = 0.9, q = 0.9)

P0 <- matrix(p_ij$p, 3, 3)
P0[2, 2] <- p_ij$h
PA <- P0
PA[3, 3] <- p_ij$q
num_v <- sum(block_sizes)

tsg <- replicate(num_t - 1, P0, simplify = FALSE) %>%
append(list(PA)) %>%
lapply(sample_sbm, n = num_v, block.sizes = block_sizes, directed = TRUE)

scan_stat(graphs = tsg, k = 1, tau = 4, ell = 2)
scan_stat(graphs = tsg, locality = "them", k = 1, tau = 4, ell = 2)

442 sequential_pal

sequential_pal Sequential palette

Description

This is the ‘OrRd’ palette from https://colorbrewer2.org/. It has at most nine colors.

Usage

sequential_pal(n)

Arguments

n The number of colors in the palette. The maximum is nine currently.

Details

Use this palette, if vertex colors mark some ordinal quantity, e.g. some centrality measure, or some
ordinal vertex covariate, like the age of people, or their seniority level.

Value

A character vector of RGB color codes.

See Also

Other palettes: categorical_pal(), diverging_pal(), r_pal()

Examples

library(igraphdata)
data(karate)
karate <- karate %>%

add_layout_(with_kk()) %>%
set_vertex_attr("size", value = 10)

V(karate)$color <- scales::dscale(degree(karate) %>% cut(5), sequential_pal)
plot(karate)

https://colorbrewer2.org/

set_edge_attr 443

set_edge_attr Set edge attributes

Description

Set edge attributes

Usage

set_edge_attr(graph, name, index = E(graph), value)

Arguments

graph The graph

name The name of the attribute to set.

index An optional edge sequence to set the attributes of a subset of edges.

value The new value of the attribute for all (or index) edges. If NULL, the input is
returned unchanged.

Value

The graph, with the edge attribute added or set.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_graph_attr(),
set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_edge_attr("label", value = LETTERS[1:10])

g
plot(g)

444 set_vertex_attr

set_graph_attr Set a graph attribute

Description

An existing attribute with the same name is overwritten.

Usage

set_graph_attr(graph, name, value)

Arguments

graph The graph.

name The name of the attribute to set.

value New value of the attribute.

Value

The graph with the new graph attribute added or set.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_graph_attr("layout", layout_with_fr)

g
plot(g)

set_vertex_attr Set vertex attributes

Description

Set vertex attributes

Usage

set_vertex_attr(graph, name, index = V(graph), value)

set_vertex_attrs 445

Arguments

graph The graph.

name The name of the attribute to set.

index An optional vertex sequence to set the attributes of a subset of vertices.

value The new value of the attribute for all (or index) vertices. If NULL, the input is
returned unchanged.

Value

The graph, with the vertex attribute added or set.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_vertex_attr("label", value = LETTERS[1:10])

g
plot(g)

set_vertex_attrs Set multiple vertex attributes

Description

Set multiple vertex attributes

Usage

set_vertex_attrs(graph, ..., index = V(graph))

Arguments

graph The graph.

... <dynamic-dots> Named arguments, where the names are the attributes

index An optional vertex sequence to set the attributes of a subset of vertices.

Value

The graph, with the vertex attributes added or set.

446 shapes

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), vertex_attr(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10)
set_vertex_attrs(g, color = "blue", size = 10, name = LETTERS[1:10])
use splicing if suplying a list
x <- list(color = "red", name = LETTERS[1:10])
set_vertex_attrs(g, !!!x)
to set an attribute named "index" use `:=`
set_vertex_attrs(g, color = "blue", index := 10, name = LETTERS[1:10])

shapes Various vertex shapes when plotting igraph graphs

Description

Starting from version 0.5.1 igraph supports different vertex shapes when plotting graphs.

Usage

shapes(shape = NULL)

shape_noclip(coords, el, params, end = c("both", "from", "to"))

shape_noplot(coords, v = NULL, params)

add_shape(shape, clip = shape_noclip, plot = shape_noplot, parameters = list())

Arguments

shape Character scalar, name of a vertex shape. If it is NULL for shapes(), then the
names of all defined vertex shapes are returned.

coords, el, params, end, v
See parameters of the clipping/plotting functions below.

clip An R function object, the clipping function.

plot An R function object, the plotting function.

parameters Named list, additional plot/vertex/edge parameters. The element named define
the new parameters, and the elements themselves define their default values.
Vertex parameters should have a prefix ‘vertex.’, edge parameters a prefix
‘edge.’. Other general plotting parameters should have a prefix ‘plot.’. See
Details below.

shapes 447

Details

In igraph a vertex shape is defined by two functions: 1) provides information about the size of the
shape for clipping the edges and 2) plots the shape if requested. These functions are called “shape
functions” in the rest of this manual page. The first one is the clipping function and the second is
the plotting function.

The clipping function has the following arguments:

coords A matrix with four columns, it contains the coordinates of the vertices for the edge list
supplied in the el argument.

el A matrix with two columns, the edges of which some end points will be clipped. It should have
the same number of rows as coords.

params This is a function object that can be called to query vertex/edge/plot graphical parame-
ters. The first argument of the function is “vertex”, “edge” or “plot” to decide the type
of the parameter, the second is a character string giving the name of the parameter. E.g.
params("vertex", "size").

end Character string, it gives which end points will be used. Possible values are “both”, “from”
and “to”. If “from” the function is expected to clip the first column in the el edge list, “to”
selects the second column, “both” selects both.

The clipping function should return a matrix with the same number of rows as the el arguments.
If end is both then the matrix must have four columns, otherwise two. The matrix contains the
modified coordinates, with the clipping applied.

The plotting function has the following arguments:

coords The coordinates of the vertices, a matrix with two columns.
v The ids of the vertices to plot. It should match the number of rows in the coords argument.
params The same as for the clipping function, see above.

The return value of the plotting function is not used.

shapes() can be used to list the names of all installed vertex shapes, by calling it without argu-
ments, or setting the shape argument to NULL. If a shape name is given, then the clipping and
plotting functions of that shape are returned in a named list.

add_shape() can be used to add new vertex shapes to igraph. For this one must give the clipping
and plotting functions of the new shape. It is also possible to list the plot/vertex/edge parameters, in
the parameters argument, that the clipping and/or plotting functions can make use of. An example
would be a generic regular polygon shape, which can have a parameter for the number of sides.

shape_noclip() is a very simple clipping function that the user can use in their own shape defini-
tions. It does no clipping, the edges will be drawn exactly until the listed vertex position coordinates.

shape_noplot() is a very simple (and probably not very useful) plotting function, that does not
plot anything.

Value

shapes() returns a character vector if the shape argument is NULL. It returns a named list with
entries named ‘clip’ and ‘plot’, both of them R functions.

add_shape() returns TRUE, invisibly.

shape_noclip() returns the appropriate columns of its coords argument.

448 shapes

Examples

all vertex shapes, minus "raster", that might not be available
shapes <- setdiff(shapes(), "")
g <- make_ring(length(shapes))
set.seed(42)
plot(g,

vertex.shape = shapes, vertex.label = shapes, vertex.label.dist = 1,
vertex.size = 15, vertex.size2 = 15,
vertex.pie = lapply(shapes, function(x) if (x == "pie") 2:6 else 0),
vertex.pie.color = list(heat.colors(5))

)

add new vertex shape, plot nothing with no clipping
add_shape("nil")
plot(g, vertex.shape = "nil")

###
triangle vertex shape
mytriangle <- function(coords, v = NULL, params) {

vertex.color <- params("vertex", "color")
if (length(vertex.color) != 1 && !is.null(v)) {
vertex.color <- vertex.color[v]

}
vertex.size <- params("vertex", "size")
if (length(vertex.size) != 1 && !is.null(v)) {

vertex.size <- vertex.size[v]
}

symbols(
x = coords[, 1], y = coords[, 2], bg = vertex.color,
stars = cbind(vertex.size, vertex.size, vertex.size),
add = TRUE, inches = FALSE

)
}
clips as a circle
add_shape("triangle",

clip = shapes("circle")$clip,
plot = mytriangle

)
plot(g,

vertex.shape = "triangle", vertex.color = rainbow(vcount(g)),
vertex.size = seq(10, 20, length.out = vcount(g))

)

###
generic star vertex shape, with a parameter for number of rays
mystar <- function(coords, v = NULL, params) {

vertex.color <- params("vertex", "color")
if (length(vertex.color) != 1 && !is.null(v)) {

vertex.color <- vertex.color[v]
}
vertex.size <- params("vertex", "size")

similarity 449

if (length(vertex.size) != 1 && !is.null(v)) {
vertex.size <- vertex.size[v]

}
norays <- params("vertex", "norays")
if (length(norays) != 1 && !is.null(v)) {

norays <- norays[v]
}

mapply(coords[, 1], coords[, 2], vertex.color, vertex.size, norays,
FUN = function(x, y, bg, size, nor) {

symbols(
x = x, y = y, bg = bg,
stars = matrix(c(size, size / 2), nrow = 1, ncol = nor * 2),
add = TRUE, inches = FALSE

)
}

)
}
no clipping, edges will be below the vertices anyway
add_shape("star",

clip = shape_noclip,
plot = mystar, parameters = list(vertex.norays = 5)

)
plot(g,

vertex.shape = "star", vertex.color = rainbow(vcount(g)),
vertex.size = seq(10, 20, length.out = vcount(g))

)
plot(g,

vertex.shape = "star", vertex.color = rainbow(vcount(g)),
vertex.size = seq(10, 20, length.out = vcount(g)),
vertex.norays = rep(4:8, length.out = vcount(g))

)

similarity Similarity measures of two vertices

Description

These functions calculates similarity scores for vertices based on their connection patterns.

Usage

similarity(
graph,
vids = V(graph),
mode = c("all", "out", "in", "total"),
loops = FALSE,
method = c("jaccard", "dice", "invlogweighted")

)

450 similarity

Arguments

graph The input graph.

vids The vertex ids for which the similarity is calculated.

mode The type of neighboring vertices to use for the calculation, possible values:
‘out’, ‘in’, ‘all’.

loops Whether to include vertices themselves in the neighbor sets.

method The method to use.

Details

The Jaccard similarity coefficient of two vertices is the number of common neighbors divided by
the number of vertices that are neighbors of at least one of the two vertices being considered. The
jaccard method calculates the pairwise Jaccard similarities for some (or all) of the vertices.

The Dice similarity coefficient of two vertices is twice the number of common neighbors divided
by the sum of the degrees of the vertices. Methof dice calculates the pairwise Dice similarities for
some (or all) of the vertices.

The inverse log-weighted similarity of two vertices is the number of their common neighbors,
weighted by the inverse logarithm of their degrees. It is based on the assumption that two vertices
should be considered more similar if they share a low-degree common neighbor, since high-degree
common neighbors are more likely to appear even by pure chance. Isolated vertices will have zero
similarity to any other vertex. Self-similarities are not calculated. See the following paper for more
details: Lada A. Adamic and Eytan Adar: Friends and neighbors on the Web. Social Networks,
25(3):211-230, 2003.

Value

A length(vids) by length(vids) numeric matrix containing the similarity scores. This argument
is ignored by the invlogweighted method.

Related documentation in the C library

similarity_jaccard(), similarity_dice(), similarity_inverse_log_weighted().

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com> for the man-
ual page.

References

Lada A. Adamic and Eytan Adar: Friends and neighbors on the Web. Social Networks, 25(3):211-
230, 2003.

See Also

Other cocitation: cocitation()

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_similarity_jaccard
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_similarity_dice
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_similarity_inverse_log_weighted

simple_cycles 451

Examples

g <- make_ring(5)
similarity(g, method = "dice")
similarity(g, method = "jaccard")

simple_cycles Finds all simple cycles in a graph.

Description

[Experimental]

This function lists all simple cycles in a graph within a range of cycle lengths. A cycle is called
simple if it has no repeated vertices.

Multi-edges and self-loops are taken into account. Note that typical graphs have exponentially many
cycles and the presence of multi-edges exacerbates this combinatorial explosion.

Usage

simple_cycles(
graph,
mode = c("out", "in", "all", "total"),
min = NULL,
max = NULL

)

Arguments

graph The input graph.

mode Character constant specifying how to handle directed graphs. out follows edge
directions, in follows edges in the reverse direction, and all ignores edge di-
rections. Ignored in undirected graphs.

min Lower limit on cycle lengths to consider. NULL means no limit.

max Upper limit on cycle lengths to consider. NULL means no limit.

Value

A named list, with two entries:

vertices The list of cycles in terms of their vertices.

edges The list of cycles in terms of their edges.

Related documentation in the C library

simple_cycles().

https://igraph.org/c/html/0.10.17/igraph-Cycles.html#igraph_simple_cycles

452 simplify

See Also

Graph cycles feedback_arc_set(), feedback_vertex_set(), find_cycle(), girth(), has_eulerian_path(),
is_acyclic(), is_dag()

Examples

g <- graph_from_literal(A -+ B -+ C -+ A -+ D -+ E +- F -+ A, E -+ E, A -+ F, simplify = FALSE)
simple_cycles(g)
simple_cycles(g, mode = "all") # ignore edge directions
simple_cycles(g, mode = "all", min = 2, max = 3) # limit cycle lengths

simplified Constructor modifier to drop multiple and loop edges

Description

Constructor modifier to drop multiple and loop edges

Usage

simplified()

See Also

Constructor modifiers (and related functions) make_(), sample_(), with_edge_(), with_graph_(),
with_vertex_(), without_attr(), without_loops(), without_multiples()

Examples

sample_(pa(10, m = 3, algorithm = "bag"))
sample_(pa(10, m = 3, algorithm = "bag"), simplified())

simplify Simple graphs

Description

Simple graphs are graphs which do not contain loop and multiple edges.

simplify 453

Usage

simplify(
graph,
remove.multiple = TRUE,
remove.loops = TRUE,
edge.attr.comb = igraph_opt("edge.attr.comb")

)

is_simple(graph)

simplify_and_colorize(graph)

Arguments

graph The graph to work on.
remove.multiple

Logical, whether the multiple edges are to be removed.

remove.loops Logical, whether the loop edges are to be removed.

edge.attr.comb Specifies what to do with edge attributes, if remove.multiple=TRUE. In this
case many edges might be mapped to a single one in the new graph, and their
attributes are combined. Please see attribute.combination() for details on
this.

Details

A loop edge is an edge for which the two endpoints are the same vertex. Two edges are multiple
edges if they have exactly the same two endpoints (for directed graphs order does matter). A graph
is simple is it does not contain loop edges and multiple edges.

is_simple() checks whether a graph is simple.

simplify() removes the loop and/or multiple edges from a graph. If both remove.loops and
remove.multiple are TRUE the function returns a simple graph.

simplify_and_colorize() constructs a new, simple graph from a graph and also sets a color
attribute on both the vertices and the edges. The colors of the vertices represent the number of self-
loops that were originally incident on them, while the colors of the edges represent the multiplicities
of the same edges in the original graph. This allows one to take into account the edge multiplicities
and the number of loop edges in the VF2 isomorphism algorithm. Other graph, vertex and edge
attributes from the original graph are discarded as the primary purpose of this function is to facilitate
the usage of multigraphs with the VF2 algorithm.

Value

a new graph object with the edges deleted.

Related documentation in the C library

simplify(), is_simple().

https://igraph.org/c/html/0.10.17/igraph-Operators.html#igraph_simplify
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_simple

454 spectrum

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

which_loop(), which_multiple() and count_multiple(), delete_edges(), delete_vertices()

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), reverse_edges(), union(), union.igraph(),
vertex()

Examples

g <- make_graph(c(1, 2, 1, 2, 3, 3))
is_simple(g)
is_simple(simplify(g, remove.loops = FALSE))
is_simple(simplify(g, remove.multiple = FALSE))
is_simple(simplify(g))

spectrum Eigenvalues and eigenvectors of the adjacency matrix of a graph

Description

Calculate selected eigenvalues and eigenvectors of a (supposedly sparse) graph.

Usage

spectrum(
graph,
algorithm = c("arpack", "auto", "lapack", "comp_auto", "comp_lapack", "comp_arpack"),
which = list(),
options = arpack_defaults()

)

Arguments

graph The input graph, can be directed or undirected.

algorithm The algorithm to use. Currently only arpack is implemented, which uses the
ARPACK solver. See also arpack().

which A list to specify which eigenvalues and eigenvectors to calculate. By default the
leading (i.e. largest magnitude) eigenvalue and the corresponding eigenvector is
calculated.

options Options for the ARPACK solver. See arpack_defaults().

spectrum 455

Details

The which argument is a list and it specifies which eigenvalues and corresponding eigenvectors to
calculate: There are eight options:

1. Eigenvalues with the largest magnitude. Set pos to LM, and howmany to the number of eigen-
values you want.

2. Eigenvalues with the smallest magnitude. Set pos to SM and howmany to the number of eigen-
values you want.

3. Largest eigenvalues. Set pos to LA and howmany to the number of eigenvalues you want.

4. Smallest eigenvalues. Set pos to SA and howmany to the number of eigenvalues you want.

5. Eigenvalues from both ends of the spectrum. Set pos to BE and howmany to the number of
eigenvalues you want. If howmany is odd, then one more eigenvalue is returned from the larger
end.

6. Selected eigenvalues. This is not (yet) implemented currently.

7. Eigenvalues in an interval. This is not (yet) implemented.

8. All eigenvalues. This is not implemented yet. The standard eigen function does a better job
at this, anyway.

Note that ARPACK might be unstable for graphs with multiple components, e.g. graphs with isolate
vertices.

Value

Depends on the algorithm used.

For arpack a list with three entries is returned:

options See the return value for arpack() for a complete description.

values Numeric vector, the eigenvalues.

vectors Numeric matrix, with the eigenvectors as columns.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

as_adjacency_matrix() to create a (sparse) adjacency matrix.

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(),
power_centrality(), strength(), subgraph_centrality()

456 split_join_distance

Examples

Small example graph, leading eigenvector by default
kite <- make_graph("Krackhardt_kite")
spectrum(kite)[c("values", "vectors")]

Double check
eigen(as_adjacency_matrix(kite, sparse = FALSE))$vectors[, 1]

Should be the same as 'eigen_centrality' (but rescaled)
cor(eigen_centrality(kite)$vector, spectrum(kite)$vectors)

Smallest eigenvalues
spectrum(kite, which = list(pos = "SM", howmany = 2))$values

split_join_distance Split-join distance of two community structures

Description

The split-join distance between partitions A and B is the sum of the projection distance of A from
B and the projection distance of B from A. The projection distance is an asymmetric measure and
it is defined as follows:

Usage

split_join_distance(comm1, comm2)

Arguments

comm1 The first community structure.

comm2 The second community structure.

Details

First, each set in partition A is evaluated against all sets in partition B. For each set in partition
A, the best matching set in partition B is found and the overlap size is calculated. (Matching is
quantified by the size of the overlap between the two sets). Then, the maximal overlap sizes for
each set in A are summed together and subtracted from the number of elements in A.

The split-join distance will be returned as two numbers, the first is the projection distance of the
first partition from the second, while the second number is the projection distance of the second
partition from the first. This makes it easier to detect whether a partition is a subpartition of the
other, since in this case, the corresponding distance will be zero.

Value

Two integer numbers, see details below.

stochastic_matrix 457

References

van Dongen S: Performance criteria for graph clustering and Markov cluster experiments. Techni-
cal Report INS-R0012, National Research Institute for Mathematics and Computer Science in the
Netherlands, Amsterdam, May 2000.

See Also

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(),
voronoi_cells()

stochastic_matrix Stochastic matrix of a graph

Description

Retrieves the stochastic matrix of a graph of class igraph.

Usage

stochastic_matrix(
graph,
column.wise = FALSE,
sparse = igraph_opt("sparsematrices")

)

Arguments

graph The input graph. Must be of class igraph.

column.wise If FALSE, then the rows of the stochastic matrix sum up to one; otherwise it is
the columns.

sparse Logical scalar, whether to return a sparse matrix. The Matrix package is needed
for sparse matrices.

Details

Let M be an n×n adjacency matrix with real non-negative entries. Let us define D = diag(
∑

i M1i, . . . ,
∑

i Mni)

The (row) stochastic matrix is defined as

W = D−1M,

where it is assumed that D is non-singular. Column stochastic matrices are defined in a symmetric
way.

458 strength

Value

A regular matrix or a matrix of class Matrix if a sparse argument was TRUE.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

as_adjacency_matrix()

Examples

library(Matrix)
g is a large sparse graph
g <- sample_pa(n = 10^5, power = 2, directed = FALSE)
W <- stochastic_matrix(g, sparse = TRUE)

a dense matrix here would probably not fit in the memory
class(W)

may not be exactly 1, due to numerical errors
max(abs(rowSums(W)) - 1)

strength Strength or weighted vertex degree

Description

Summing up the edge weights of the adjacent edges for each vertex.

Usage

strength(
graph,
vids = V(graph),
mode = c("all", "out", "in", "total"),
loops = TRUE,
weights = NULL

)

Arguments

graph The input graph.

vids The vertices for which the strength will be calculated.

mode Character string, “out” for out-degree, “in” for in-degree or “all” for the sum of
the two. For undirected graphs this argument is ignored.

strength 459

loops Logical; whether the loop edges are also counted.

weights Weight vector. If the graph has a weight edge attribute, then this is used by
default. If the graph does not have a weight edge attribute and this argument
is NULL, then a degree() is called. If this is NA, then no edge weights are used
(even if the graph has a weight edge attribute).

Value

A numeric vector giving the strength of the vertices.

Related documentation in the C library

strength().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, Alessandro Vespignani: The architec-
ture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

See Also

degree() for the unweighted version.

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(),
power_centrality(), spectrum(), subgraph_centrality()

Examples

g <- make_star(10)
E(g)$weight <- seq(ecount(g))
strength(g)
strength(g, mode = "out")
strength(g, mode = "in")

No weights
g <- make_ring(10)
strength(g)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_strength

460 st_cuts

st_cuts List all (s,t)-cuts of a graph

Description

List all (s,t)-cuts in a directed graph.

Usage

st_cuts(graph, source, target)

Arguments

graph The input graph. It must be directed.

source The source vertex.

target The target vertex.

Details

Given a G directed graph and two, different and non-ajacent vertices, s and t, an (s, t)-cut is a set
of edges, such that after removing these edges from G there is no directed path from s to t.

Value

A list with entries:

cuts A list of numeric vectors containing edge ids. Each vector is an (s, t)-cut.

partition1s A list of numeric vectors containing vertex ids, they correspond to the edge cuts. Each
vertex set is a generator of the corresponding cut, i.e. in the graph G = (V,E), the vertex set
X and its complementer V −X , generates the cut that contains exactly the edges that go from
X to V −X .

Related documentation in the C library

all_st_cuts().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351–372,
1996.

https://igraph.org/c/html/0.10.17/igraph-Flows.html#igraph_all_st_cuts

st_min_cuts 461

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_cut(), min_separators(), min_st_separators(), st_min_cuts(), vertex_connectivity()

Examples

A very simple graph
g <- graph_from_literal(a -+ b -+ c -+ d -+ e)
st_cuts(g, source = "a", target = "e")

A somewhat more difficult graph
g2 <- graph_from_literal(

s --+ a:b, a:b --+ t,
a --+ 1:2:3, 1:2:3 --+ b

)
st_cuts(g2, source = "s", target = "t")

st_min_cuts List all minimum (s, t)-cuts of a graph

Description

Listing all minimum (s, t)-cuts of a directed graph, for given s and t.

Usage

st_min_cuts(graph, source, target, capacity = NULL)

Arguments

graph The input graph. It must be directed.

source The id of the source vertex.

target The id of the target vertex.

capacity Numeric vector giving the edge capacities. If this is NULL and the graph has a
weight edge attribute, then this attribute defines the edge capacities. For forcing
unit edge capacities, even for graphs that have a weight edge attribute, supply
NA here.

Details

Given a G directed graph and two, different and non-ajacent vertices, s and t, an (s, t)-cut is a set
of edges, such that after removing these edges from G there is no directed path from s to t.

The size of an (s, t)-cut is defined as the sum of the capacities (or weights) in the cut. For un-
weighted (=equally weighted) graphs, this is simply the number of edges.

An (s, t)-cut is minimum if it is of the smallest possible size.

462 subcomponent

Value

A list with entries:

value Numeric scalar, the size of the minimum cut(s).

cuts A list of numeric vectors containing edge ids. Each vector is a minimum (s, t)-cut.

partition1s A list of numeric vectors containing vertex ids, they correspond to the edge cuts. Each
vertex set is a generator of the corresponding cut, i.e. in the graph G = (V,E), the vertex set
X and its complementer V −X , generates the cut that contains exactly the edges that go from
X to V −X .

Related documentation in the C library

all_st_mincuts().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs, Algorithmica 15, 351–372,
1996.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_cut(), min_separators(), min_st_separators(), st_cuts(), vertex_connectivity()

Examples

A difficult graph, from the Provan-Shier paper
g <- graph_from_literal(

s --+ a:b, a:b --+ t,
a --+ 1:2:3:4:5, 1:2:3:4:5 --+ b

)
st_min_cuts(g, source = "s", target = "t")

subcomponent In- or out- component of a vertex

Description

Finds all vertices reachable from a given vertex, or the opposite: all vertices from which a given
vertex is reachable via a directed path.

Usage

subcomponent(graph, v, mode = c("all", "out", "in"))

https://igraph.org/c/html/0.10.17/igraph-Flows.html#igraph_all_st_mincuts

subgraph 463

Arguments

graph The graph to analyze.

v The vertex to start the search from.

mode Character string, either “in”, “out” or “all”. If “in” all vertices from which v is
reachable are listed. If “out” all vertices reachable from v are returned. If “all”
returns the union of these. It is ignored for undirected graphs.

Details

A breadth-first search is conducted starting from vertex v.

Value

Numeric vector, the ids of the vertices in the same component as v.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

components()

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- sample_gnp(100, 1 / 200)
subcomponent(g, 1, "in")
subcomponent(g, 1, "out")
subcomponent(g, 1, "all")

subgraph Subgraph of a graph

Description

subgraph() creates a subgraph of a graph, containing only the specified vertices and all the edges
among them.

464 subgraph

Usage

subgraph(graph, vids)

induced_subgraph(
graph,
vids,
impl = c("auto", "copy_and_delete", "create_from_scratch")

)

subgraph_from_edges(graph, eids, delete.vertices = TRUE)

Arguments

graph The original graph.

vids Numeric vector, the vertices of the original graph which will form the subgraph.

impl Character scalar, to choose between two implementation of the subgraph calcu-
lation. ‘copy_and_delete’ copies the graph first, and then deletes the vertices
and edges that are not included in the result graph. ‘create_from_scratch’
searches for all vertices and edges that must be kept and then uses them to cre-
ate the graph from scratch. ‘auto’ chooses between the two implementations
automatically, using heuristics based on the size of the original and the result
graph.

eids The edge ids of the edges that will be kept in the result graph.
delete.vertices

Logical scalar, whether to remove vertices that do not have any adjacent edges
in eids.

Details

induced_subgraph() calculates the induced subgraph of a set of vertices in a graph. This means
that exactly the specified vertices and all the edges between them will be kept in the result graph.

subgraph_from_edges() calculates the subgraph of a graph. For this function one can specify the
vertices and edges to keep. This function will be renamed to subgraph() in the next major version
of igraph.

The subgraph() function currently does the same as induced_subgraph() (assuming ‘auto’ as
the impl argument), but this behaviour is deprecated. In the next major version, subgraph() will
overtake the functionality of subgraph_from_edges().

Value

A new graph object.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

subgraph_centrality 465

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), topo_sort(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- make_ring(10)
g2 <- induced_subgraph(g, 1:7)
g3 <- subgraph_from_edges(g, 1:5)

subgraph_centrality Find subgraph centrality scores of network positions

Description

Subgraph centrality of a vertex measures the number of subgraphs a vertex participates in, weighting
them according to their size.

Usage

subgraph_centrality(graph, diag = FALSE)

Arguments

graph The input graph. It will be treated as undirected.

diag Boolean scalar, whether to include the diagonal of the adjacency matrix in the
analysis. Giving FALSE here effectively eliminates the loops edges from the
graph before the calculation.

Details

The subgraph centrality of a vertex is defined as the number of closed walks originating at the
vertex, where longer walks are downweighted by the factorial of their length.

Currently the calculation is performed by explicitly calculating all eigenvalues and eigenvectors of
the adjacency matrix of the graph. This effectively means that the measure can only be calculated
for small graphs.

Value

A numeric vector, the subgraph centrality scores of the vertices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com> based on the Matlab code by Ernesto Estrada

466 subgraph_isomorphic

References

Ernesto Estrada, Juan A. Rodriguez-Velazquez: Subgraph centrality in Complex Networks. Physi-
cal Review E 71, 056103 (2005).

See Also

eigen_centrality(), page_rank()

Centrality measures alpha_centrality(), authority_score(), betweenness(), closeness(),
diversity(), eigen_centrality(), harmonic_centrality(), hits_scores(), page_rank(),
power_centrality(), spectrum(), strength()

Examples

g <- sample_pa(100, m = 4, dir = FALSE)
sc <- subgraph_centrality(g)
cor(degree(g), sc)

subgraph_isomorphic Decide if a graph is subgraph isomorphic to another one

Description

Decide if a graph is subgraph isomorphic to another one

Usage

subgraph_isomorphic(pattern, target, method = c("auto", "lad", "vf2"), ...)

is_subgraph_isomorphic_to(
pattern,
target,
method = c("auto", "lad", "vf2"),
...

)

Arguments

pattern The smaller graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

target The bigger graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

method The method to use. Possible values: ‘auto’, ‘lad’, ‘vf2’. See their details below.

... Additional arguments, passed to the various methods.

subgraph_isomorphic 467

Value

Logical scalar, TRUE if the pattern is isomorphic to a (possibly induced) subgraph of target.

‘auto’ method

This method currently selects ‘lad’, always, as it seems to be superior on most graphs.

‘lad’ method

This is the LAD algorithm by Solnon, see the reference below. It has the following extra arguments:

domains If not NULL, then it specifies matching restrictions. It must be a list of target vertex
sets, given as numeric vertex ids or symbolic vertex names. The length of the list must be
vcount(pattern) and for each vertex in pattern it gives the allowed matching vertices in
target. Defaults to NULL.

induced Logical scalar, whether to search for an induced subgraph. It is FALSE by default.

time.limit The processor time limit for the computation, in seconds. It defaults to Inf, which
means no limit.

‘vf2’ method

This method uses the VF2 algorithm by Cordella, Foggia et al., see references below. It supports
vertex and edge colors and have the following extra arguments:

vertex.color1, vertex.color2 Optional integer vectors giving the colors of the vertices for colored
graph isomorphism. If they are not given, but the graph has a “color” vertex attribute, then
it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments. See also examples below.

edge.color1, edge.color2 Optional integer vectors giving the colors of the edges for edge-colored
(sub)graph isomorphism. If they are not given, but the graph has a “color” edge attribute,
then it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments.

References

LP Cordella, P Foggia, C Sansone, and M Vento: An improved algorithm for matching large graphs,
Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern Recognition,
149–159, 2001.

C. Solnon: AllDifferent-based Filtering for Subgraph Isomorphism, Artificial Intelligence 174(12-
13):850–864, 2010.

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
graph_from_isomorphism_class(), isomorphic(), isomorphism_class(), isomorphisms(),
subgraph_isomorphisms()

468 subgraph_isomorphisms

Examples

A LAD example
pattern <- make_graph(

~ 1:2:3:4:5,
1 - 2:5, 2 - 1:5:3, 3 - 2:4, 4 - 3:5, 5 - 4:2:1

)
target <- make_graph(

~ 1:2:3:4:5:6:7:8:9,
1 - 2:5:7, 2 - 1:5:3, 3 - 2:4, 4 - 3:5:6:8:9,
5 - 1:2:4:6:7, 6 - 7:5:4:9, 7 - 1:5:6,
8 - 4:9, 9 - 6:4:8

)
domains <- list(
`1` = c(1, 3, 9), `2` = c(5, 6, 7, 8), `3` = c(2, 4, 6, 7, 8, 9),
`4` = c(1, 3, 9), `5` = c(2, 4, 8, 9)

)
subgraph_isomorphisms(pattern, target)
subgraph_isomorphisms(pattern, target, induced = TRUE)
subgraph_isomorphisms(pattern, target, domains = domains)

Directed LAD example
pattern <- make_graph(~ 1:2:3, 1 -+ 2:3)
dring <- make_ring(10, directed = TRUE)
subgraph_isomorphic(pattern, dring)

subgraph_isomorphisms All isomorphic mappings between a graph and subgraphs of another
graph

Description

All isomorphic mappings between a graph and subgraphs of another graph

Usage

subgraph_isomorphisms(pattern, target, method = c("lad", "vf2"), ...)

Arguments

pattern The smaller graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

target The bigger graph, it might be directed or undirected. Undirected graphs are
treated as directed graphs with mutual edges.

method The method to use. Possible values: ‘auto’, ‘lad’, ‘vf2’. See their details below.
... Additional arguments, passed to the various methods.

Value

A list of vertex sequences, corresponding to all mappings from the first graph to the second.

tail_of 469

‘lad’ method

This is the LAD algorithm by Solnon, see the reference below. It has the following extra arguments:

domains If not NULL, then it specifies matching restrictions. It must be a list of target vertex
sets, given as numeric vertex ids or symbolic vertex names. The length of the list must be
vcount(pattern) and for each vertex in pattern it gives the allowed matching vertices in
target. Defaults to NULL.

induced Logical scalar, whether to search for an induced subgraph. It is FALSE by default.

time.limit The processor time limit for the computation, in seconds. It defaults to Inf, which
means no limit.

‘vf2’ method

This method uses the VF2 algorithm by Cordella, Foggia et al., see references below. It supports
vertex and edge colors and have the following extra arguments:

vertex.color1, vertex.color2 Optional integer vectors giving the colors of the vertices for colored
graph isomorphism. If they are not given, but the graph has a “color” vertex attribute, then
it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments. See also examples below.

edge.color1, edge.color2 Optional integer vectors giving the colors of the edges for edge-colored
(sub)graph isomorphism. If they are not given, but the graph has a “color” edge attribute,
then it will be used. If you want to ignore these attributes, then supply NULL for both of these
arguments.

See Also

Other graph isomorphism: canonical_permutation(), count_isomorphisms(), count_subgraph_isomorphisms(),
graph_from_isomorphism_class(), isomorphic(), isomorphism_class(), isomorphisms(),
subgraph_isomorphic()

tail_of Tails of the edge(s) in a graph

Description

For undirected graphs, head and tail is not defined. In this case tail_of() returns vertices incident
to the supplied edges, and head_of() returns the other end(s) of the edge(s).

Usage

tail_of(graph, es)

Arguments

graph The input graph.

es The edges to query.

470 time_bins

Value

A vertex sequence with the tail(s) of the edge(s).

See Also

Other structural queries: [.igraph(), [[.igraph(), adjacent_vertices(), are_adjacent(),
ends(), get_edge_ids(), gorder(), gsize(), head_of(), incident(), incident_edges(),
is_directed(), neighbors()

time_bins SIR model on graphs

Description

Run simulations for an SIR (susceptible-infected-recovered) model, on a graph

Usage

time_bins(x, middle = TRUE)

S3 method for class 'sir'
time_bins(x, middle = TRUE)

S3 method for class 'sir'
median(x, na.rm = FALSE, ...)

S3 method for class 'sir'
quantile(x, comp = c("NI", "NS", "NR"), prob, ...)

sir(graph, beta, gamma, no.sim = 100)

Arguments

x A sir object, returned by the sir() function.

middle Logical scalar, whether to return the middle of the time bins, or the boundaries.

na.rm Logical scalar, whether to ignore NA values. sir objects do not contain any NA
values currently, so this argument is effectively ignored.

... Additional arguments, ignored currently.

comp Character scalar. The component to calculate the quantile of. NI is infected
agents, NS is susceptibles, NR stands for recovered.

prob Numeric vector of probabilities, in [0,1], they specify the quantiles to calculate.

graph The graph to run the model on. If directed, then edge directions are ignored and
a warning is given.

time_bins 471

beta Non-negative scalar. The rate of infection of an individual that is susceptible
and has a single infected neighbor. The infection rate of a susceptible individual
with n infected neighbors is n times beta. Formally this is the rate parameter of
an exponential distribution.

gamma Positive scalar. The rate of recovery of an infected individual. Formally, this is
the rate parameter of an exponential distribution.

no.sim Integer scalar, the number simulation runs to perform.

Details

The SIR model is a simple model from epidemiology. The individuals of the population might be
in three states: susceptible, infected and recovered. Recovered people are assumed to be immune
to the disease. Susceptibles become infected with a rate that depends on their number of infected
neighbors. Infected people become recovered with a constant rate.

The function sir() simulates the model. This function runs multiple simulations, all starting with
a single uniformly randomly chosen infected individual. A simulation is stopped when no infected
individuals are left.

Function time_bins() bins the simulation steps, using the Freedman-Diaconis heuristics to deter-
mine the bin width.

Function median and quantile calculate the median and quantiles of the results, respectively, in
bins calculated with time_bins().

Value

For sir() the results are returned in an object of class ‘sir’, which is a list, with one element for
each simulation. Each simulation is itself a list with the following elements. They are all numeric
vectors, with equal length:

times The times of the events.

NS The number of susceptibles in the population, over time.

NI The number of infected individuals in the population, over time.

NR The number of recovered individuals in the population, over time.

Function time_bins() returns a numeric vector, the middle or the boundaries of the time bins,
depending on the middle argument.

median returns a list of three named numeric vectors, NS, NI and NR. The names within the vectors
are created from the time bins.

quantile returns the same vector as median (but only one, the one requested) if only one quantile
is requested. If multiple quantiles are requested, then a list of these vectors is returned, one for each
quantile.

Related documentation in the C library

sir().

https://igraph.org/c/html/0.10.17/igraph-Spatial-Games.html#igraph_sir

472 tkplot

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>. Eric Kolaczyk (https://kolaczyk.github.io/)
wrote the initial version in R.

References

Bailey, Norman T. J. (1975). The mathematical theory of infectious diseases and its applications
(2nd ed.). London: Griffin.

See Also

plot.sir() to conveniently plot the results

Processes on graphs plot.sir()

Examples

g <- sample_gnm(100, 100)
sm <- sir(g, beta = 5, gamma = 1)
plot(sm)

tkplot Interactive plotting of graphs

Description

tkplot() and its companion functions serve as an interactive graph drawing facility. Not all param-
eters of the plot can be changed interactively right now though, e.g. the colors of vertices, edges,
and also others have to be pre-defined.

Usage

tkplot(graph, canvas.width = 450, canvas.height = 450, ...)

tk_close(tkp.id, window.close = TRUE)

tk_off()

tk_fit(tkp.id, width = NULL, height = NULL)

tk_center(tkp.id)

tk_reshape(tkp.id, newlayout, ..., params)

tk_postscript(tkp.id)

tk_coords(tkp.id, norm = FALSE)

https://kolaczyk.github.io/

tkplot 473

tk_set_coords(tkp.id, coords)

tk_rotate(tkp.id, degree = NULL, rad = NULL)

tk_canvas(tkp.id)

Arguments

graph The graph to plot.
canvas.width, canvas.height

The size of the tkplot drawing area.

... Additional plotting parameters. See igraph.plotting for the complete list.

tkp.id The id of the tkplot window to close/reshape/etc.

window.close Leave this on the default value.

width The width of the rectangle for generating new coordinates.

height The height of the rectangle for generating new coordinates.

newlayout The new layout, see the layout parameter of tkplot.

params Extra parameters in a list, to pass to the layout function.

norm Logical, should we norm the coordinates.

coords Two-column numeric matrix, the new coordinates of the vertices, in absolute
coordinates.

degree The degree to rotate the plot.

rad The degree to rotate the plot, in radian.

Details

tkplot() is an interactive graph drawing facility. It is not very well developed at this stage, but it
should be still useful.

It’s handling should be quite straightforward most of the time, here are some remarks and hints.

There are different popup menus, activated by the right mouse button, for vertices and edges. Both
operate on the current selection if the vertex/edge under the cursor is part of the selection and
operate on the vertex/edge under the cursor if it is not.

One selection can be active at a time, either a vertex or an edge selection. A vertex/edge can be
added to a selection by holding the control key while clicking on it with the left mouse button.
Doing this again deselect the vertex/edge.

Selections can be made also from the "Select" menu. The "Select some vertices" dialog allows
to give an expression for the vertices to be selected: this can be a list of numeric R expessions
separated by commas, like 1,2:10,12,14,15 for example. Similarly in the "Select some edges"
dialog two such lists can be given and all edges connecting a vertex in the first list to one in the
second list will be selected.

In the color dialog a color name like ’orange’ or RGB notation can also be used.

The tkplot() command creates a new Tk window with the graphical representation of graph. The
command returns an integer number, the tkplot id. The other commands utilize this id to be able to
query or manipulate the plot.

474 tkplot

tk_close() closes the Tk plot with id tkp.id.

tk_off() closes all Tk plots.

tk_fit() fits the plot to the given rectangle (width and height), if some of these are NULL the
actual physical width od height of the plot window is used.

tk_reshape() applies a new layout to the plot, its optional parameters will be collected to a list
analogous to layout.par.

tk_postscript() creates a dialog window for saving the plot in postscript format.

tk_canvas() returns the Tk canvas object that belongs to a graph plot. The canvas can be directly
manipulated then, e.g. labels can be added, it could be saved to a file programmatically, etc. See an
example below.

tk_coords() returns the coordinates of the vertices in a matrix. Each row corresponds to one
vertex.

tk_set_coords() sets the coordinates of the vertices. A two-column matrix specifies the new
positions, with each row corresponding to a single vertex.

tk_center() shifts the figure to the center of its plot window.

tk_rotate() rotates the figure, its parameter can be given either in degrees or in radians.

tkplot.center tkplot.rotate

Value

tkplot() returns an integer, the id of the plot, this can be used to manipulate it from the command
line.

tk_canvas() returns tkwin object, the Tk canvas.

tk_coords() returns a matrix with the coordinates.

tk_close(), tk_off(), tk_fit(), tk_reshape(), tk_postscript(), tk_center() and tk_rotate()
return NULL invisibly.

Examples

g <- make_ring(10)
tkplot(g)

Saving a tkplot() to a file programmatically
g <- make_star(10, center=10)
E(g)$width <- sample(1:10, ecount(g), replace=TRUE)
lay <- layout_nicely(g)

id <- tkplot(g, layout=lay)
canvas <- tk_canvas(id)
tcltk::tkpostscript(canvas, file="/tmp/output.eps")
tk_close(id)

Setting the coordinates and adding a title label
g <- make_ring(10)
id <- tkplot(make_ring(10), canvas.width=450, canvas.height=500)

topo_sort 475

canvas <- tk_canvas(id)
padding <- 20
coords <- norm_coords(layout_in_circle(g), 0+padding, 450-padding,

50+padding, 500-padding)
tk_set_coords(id, coords)

width <- as.numeric(tkcget(canvas, "-width"))
height <- as.numeric(tkcget(canvas, "-height"))
tkcreate(canvas, "text", width/2, 25, text="My title",

justify="center", font=tcltk::tkfont.create(family="helvetica",
size=20,weight="bold"))

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

plot.igraph(), layout()

topo_sort Topological sorting of vertices in a graph

Description

A topological sorting of a directed acyclic graph is a linear ordering of its nodes where each node
comes before all nodes to which it has edges.

Usage

topo_sort(graph, mode = c("out", "all", "in"))

Arguments

graph The input graph, should be directed

mode Specifies how to use the direction of the edges. For “out”, the sorting order
ensures that each node comes before all nodes to which it has edges, so nodes
with no incoming edges go first. For “in”, it is quite the opposite: each node
comes before all nodes from which it receives edges. Nodes with no outgoing
edges go first.

Details

Every DAG has at least one topological sort, and may have many. This function returns a possi-
ble topological sort among them. If the graph is not acyclic (it has at least one cycle), a partial
topological sort is returned and a warning is issued.

476 to_prufer

Value

A vertex sequence (by default, but see the return.vs.es option of igraph_options()) containing
vertices in topologically sorted order.

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com> for the R
interface

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), transitivity(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- sample_pa(100)
topo_sort(g)

to_prufer Convert a tree graph to its Prüfer sequence

Description

to_prufer() converts a tree graph into its Prüfer sequence.

Usage

to_prufer(graph)

Arguments

graph The graph to convert to a Prüfer sequence

Details

The Prüfer sequence of a tree graph with n labeled vertices is a sequence of n-2 numbers, constructed
as follows. If the graph has more than two vertices, find a vertex with degree one, remove it from
the tree and add the label of the vertex that it was connected to to the sequence. Repeat until there
are only two vertices in the remaining graph.

Value

The Prüfer sequence of the graph, represented as a numeric vector of vertex IDs in the sequence.

transitivity 477

Related documentation in the C library

to_prufer().

See Also

make_from_prufer() to construct a graph from its Prüfer sequence

Other trees: is_forest(), is_tree(), make_from_prufer(), sample_spanning_tree()

Examples

g <- make_tree(13, 3)
to_prufer(g)

transitivity Transitivity of a graph

Description

Transitivity measures the probability that the adjacent vertices of a vertex are connected. This is
sometimes also called the clustering coefficient.

Usage

transitivity(
graph,
type = c("undirected", "global", "globalundirected", "localundirected", "local",

"average", "localaverage", "localaverageundirected", "barrat", "weighted"),
vids = NULL,
weights = NULL,
isolates = c("NaN", "zero")

)

Arguments

graph The graph to analyze.

type The type of the transitivity to calculate. Possible values:

"global" The global transitivity of an undirected graph. This is simply the
ratio of the count of triangles and connected triples in the graph. In directed
graphs, edge directions are ignored.

"local" The local transitivity of an undirected graph. It is calculated for each
vertex given in the vids argument. The local transitivity of a vertex is
the ratio of the count of triangles connected to the vertex and the triples
centered on the vertex. In directed graphs, edge directions are ignored.

"undirected" This is the same as global.
"globalundirected" This is the same as global.

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_to_prufer

478 transitivity

"localundirected" This is the same as local.
"barrat" The weighted transitivity as defined by A. Barrat. See details below.
"weighted" The same as barrat.

vids The vertex ids for the local transitivity will be calculated. This will be ignored
for global transitivity types. The default value is NULL, in this case all vertices
are considered. It is slightly faster to supply NULL here than V(graph).

weights Optional weights for weighted transitivity. It is ignored for other transitivity
measures. If it is NULL (the default) and the graph has a weight edge attribute,
then it is used automatically.

isolates Character scalar, for local versions of transitivity, it defines how to treat vertices
with degree zero and one. If it is ‘NaN’ then their local transitivity is reported
as NaN and they are not included in the averaging, for the transitivity types that
calculate an average. If there are no vertices with degree two or higher, then the
averaging will still result NaN. If it is ‘zero’, then we report 0 transitivity for
them, and they are included in the averaging, if an average is calculated. For the
global transitivity, it controls how to handle graphs with no connected triplets:
NaN or zero will be returned according to the respective setting.

Details

Note that there are essentially two classes of transitivity measures, one is a vertex-level, the other a
graph level property.

There are several generalizations of transitivity to weighted graphs, here we use the definition by
A. Barrat, this is a local vertex-level quantity, its formula is

Cw
i =

1

si(ki − 1)

∑
j,h

wij + wih

2
aijaihajh

si is the strength of vertex i, see strength(), aij are elements of the adjacency matrix, ki is the
vertex degree, wij are the weights.

This formula gives back the normal not-weighted local transitivity if all the edge weights are the
same.

The barrat type of transitivity does not work for graphs with multiple and/or loop edges. If you
want to calculate it for a directed graph, call as_undirected() with the collapse mode first.

Value

For ‘global’ a single number, or NaN if there are no connected triples in the graph.

For ‘local’ a vector of transitivity scores, one for each vertex in ‘vids’.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

triad_census 479

References

Wasserman, S., and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cam-
bridge: Cambridge University Press.

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, Alessandro Vespignani: The architec-
ture of complex weighted networks, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), unfold_tree(), which_multiple(), which_mutual()

Examples

g <- make_ring(10)
transitivity(g)
g2 <- sample_gnp(1000, 10 / 1000)
transitivity(g2) # this is about 10/1000

Weighted version, the figure from the Barrat paper
gw <- graph_from_literal(A - B:C:D:E, B - C:D, C - D)
E(gw)$weight <- 1
E(gw)[V(gw)[name == "A"] %--% V(gw)[name == "E"]]$weight <- 5
transitivity(gw, vids = "A", type = "local")
transitivity(gw, vids = "A", type = "weighted")

Weighted reduces to "local" if weights are the same
gw2 <- sample_gnp(1000, 10 / 1000)
E(gw2)$weight <- 1
t1 <- transitivity(gw2, type = "local")
t2 <- transitivity(gw2, type = "weighted")
all(is.na(t1) == is.na(t2))
all(na.omit(t1 == t2))

triad_census Triad census, subgraphs with three vertices

Description

This function counts the different induced subgraphs of three vertices in a graph.

Usage

triad_census(graph)

480 triad_census

Arguments

graph The input graph, it should be directed. An undirected graph results a warning,
and undefined results.

Details

Triad census was defined by David and Leinhardt (see References below). Every triple of vertices
(A, B, C) are classified into the 16 possible states:

003 A,B,C, the empty graph.

012 A->B, C, the graph with a single directed edge.

102 A<->B, C, the graph with a mutual connection between two vertices.

021D A<-B->C, the out-star.

021U A->B<-C, the in-star.

021C A->B->C, directed line.

111D A<->B<-C.

111U A<->B->C.

030T A->B<-C, A->C.

030C A<-B<-C, A->C.

201 A<->B<->C.

120D A<-B->C, A<->C.

120U A->B<-C, A<->C.

120C A->B->C, A<->C.

210 A->B<->C, A<->C.

300 A<->B<->C, A<->C, the complete graph.

This functions uses the RANDESU motif finder algorithm to find and count the subgraphs, see
motifs().

Value

A numeric vector, the subgraph counts, in the order given in the above description.

Related documentation in the C library

triad_census().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

See also Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in
Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218-251. Boston:
Houghton Mifflin.

https://igraph.org/c/html/0.10.17/igraph-Motifs.html#igraph_triad_census

triangles 481

See Also

dyad_census() for classifying binary relationships, motifs() for the underlying implementation.

Examples

g <- sample_gnm(15, 45, directed = TRUE)
triad_census(g)

triangles Find triangles in graphs

Description

Count how many triangles a vertex is part of, in a graph, or just list the triangles of a graph.

Usage

triangles(graph)

count_triangles(graph, vids = V(graph))

Arguments

graph The input graph. It might be directed, but edge directions are ignored.

vids The vertices to query, all of them by default. This might be a vector of numeric
ids, or a character vector of symbolic vertex names for named graphs.

Details

triangles() lists all triangles of a graph. For efficiency, all triangles are returned in a single vector.
The first three vertices belong to the first triangle, etc.

count_triangles() counts how many triangles a vertex is part of.

Value

For triangles() a numeric vector of vertex ids, the first three vertices belong to the first triangle
found, etc.

For count_triangles() a numeric vector, the number of triangles for all vertices queried.

Related documentation in the C library

list_triangles(), adjacent_triangles().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

https://igraph.org/c/html/0.10.17/igraph-Motifs.html#igraph_list_triangles
https://igraph.org/c/html/0.10.17/igraph-Motifs.html#igraph_adjacent_triangles

482 unfold_tree

See Also

transitivity()

Examples

A small graph
kite <- make_graph("Krackhardt_Kite")
plot(kite)
matrix(triangles(kite), nrow = 3)

Adjacenct triangles
atri <- count_triangles(kite)
plot(kite, vertex.label = atri)

Always true
sum(count_triangles(kite)) == length(triangles(kite))

Should match, local transitivity is the
number of adjacent triangles divided by the number
of adjacency triples
transitivity(kite, type = "local")
count_triangles(kite) / (degree(kite) * (degree(kite) - 1) / 2)

unfold_tree Convert a general graph into a forest

Description

Perform a breadth-first search on a graph and convert it into a tree or forest by replicating vertices
that were found more than once.

Usage

unfold_tree(graph, mode = c("all", "out", "in", "total"), roots)

Arguments

graph The input graph, it can be either directed or undirected.
mode Character string, defined the types of the paths used for the breadth-first search.

“out” follows the outgoing, “in” the incoming edges, “all” and “total” both of
them. This argument is ignored for undirected graphs.

roots A vector giving the vertices from which the breadth-first search is performed.
Typically it contains one vertex per component.

Details

A forest is a graph, whose components are trees.

The roots vector can be calculated by simply doing a topological sort in all components of the
graph, see the examples below.

union 483

Value

A list with two components:

tree The result, an igraph object, a tree or a forest.

vertex_index A numeric vector, it gives a mapping from the vertices of the new graph to the
vertices of the old graph.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), which_multiple(), which_mutual()

Examples

g <- make_tree(10) %du% make_tree(10)
V(g)$id <- seq_len(vcount(g)) - 1
roots <- sapply(decompose(g), function(x) {

V(x)$id[topo_sort(x)[1] + 1]
})
tree <- unfold_tree(g, roots = roots)

union Union of two or more sets

Description

This is an S3 generic function. See methods("union") for the actual implementations for various
S3 classes. Initially it is implemented for igraph graphs and igraph vertex and edge sequences. See
union.igraph(), and union.igraph.vs().

Usage

union(...)

Arguments

... Arguments, their number and interpretation depends on the function that imple-
ments union().

Value

Depends on the function that implements this method.

484 union.igraph

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), reverse_edges(), simplify(),
union.igraph(), vertex()

union.igraph Union of graphs

Description

The union of two or more graphs are created. The graphs may have identical or overlapping vertex
sets.

Usage

S3 method for class 'igraph'
union(..., byname = "auto")

Arguments

... Graph objects or lists of graph objects.

byname A logical scalar, or the character scalar auto. Whether to perform the operation
based on symbolic vertex names. If it is auto, that means TRUE if all graphs are
named and FALSE otherwise. A warning is generated if auto and some (but not
all) graphs are named.

Details

union() creates the union of two or more graphs. Edges which are included in at least one graph
will be part of the new graph. This function can be also used via the %u% operator.

If the byname argument is TRUE (or auto and all graphs are named), then the operation is performed
on symbolic vertex names instead of the internal numeric vertex ids.

union() keeps the attributes of all graphs. All graph, vertex and edge attributes are copied to the
result. If an attribute is present in multiple graphs and would result a name clash, then this attribute
is renamed by adding suffixes: _1, _2, etc.

The name vertex attribute is treated specially if the operation is performed based on symbolic vertex
names. In this case name must be present in all graphs, and it is not renamed in the result graph.

An error is generated if some input graphs are directed and others are undirected.

Value

A new graph object.

union.igraph.es 485

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), reverse_edges(), simplify(),
union(), vertex()

Examples

Union of two social networks with overlapping sets of actors
net1 <- graph_from_literal(

D - A:B:F:G, A - C - F - A, B - E - G - B, A - B, F - G,
H - F:G, H - I - J

)
net2 <- graph_from_literal(D - A:F:Y, B - A - X - F - H - Z, F - Y)
print_all(net1 %u% net2)

union.igraph.es Union of edge sequences

Description

Union of edge sequences

Usage

S3 method for class 'igraph.es'
union(...)

Arguments

... The edge sequences to take the union of.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of edges is lost in the result. (This is to match the behavior of the based unique function.)

Value

An edge sequence that contains all edges in the given sequences, exactly once.

486 union.igraph.vs

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(),
rev.igraph.vs(), union.igraph.vs(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
union(E(g)[1:6], E(g)[5:9], E(g)["A|J"])

union.igraph.vs Union of vertex sequences

Description

Union of vertex sequences

Usage

S3 method for class 'igraph.vs'
union(...)

Arguments

... The vertex sequences to take the union of.

Details

They must belong to the same graph. Note that this function has ‘set’ semantics and the multiplicity
of vertices is lost in the result. (This is to match the behavior of the based unique function.)

Value

A vertex sequence that contains all vertices in the given sequences, exactly once.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(),
rev.igraph.vs(), union.igraph.es(), unique.igraph.es(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
union(V(g)[1:6], V(g)[5:10])

unique.igraph.es 487

unique.igraph.es Remove duplicate edges from an edge sequence

Description

Remove duplicate edges from an edge sequence

Usage

S3 method for class 'igraph.es'
unique(x, incomparables = FALSE, ...)

Arguments

x An edge sequence.

incomparables a vector of values that cannot be compared. Passed to base function duplicated.
See details there.

... Passed to base function duplicated().

Value

An edge sequence with the duplicate vertices removed.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(),
rev.igraph.vs(), union.igraph.es(), union.igraph.vs(), unique.igraph.vs()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
E(g)[1, 1:5, 1:10, 5:10]
E(g)[1, 1:5, 1:10, 5:10] %>% unique()

unique.igraph.vs Remove duplicate vertices from a vertex sequence

Description

Remove duplicate vertices from a vertex sequence

Usage

S3 method for class 'igraph.vs'
unique(x, incomparables = FALSE, ...)

488 upgrade_graph

Arguments

x A vertex sequence.

incomparables a vector of values that cannot be compared. Passed to base function duplicated.
See details there.

... Passed to base function duplicated().

Value

A vertex sequence with the duplicate vertices removed.

See Also

Other vertex and edge sequence operations: c.igraph.es(), c.igraph.vs(), difference.igraph.es(),
difference.igraph.vs(), igraph-es-indexing, igraph-es-indexing2, igraph-vs-indexing,
igraph-vs-indexing2, intersection.igraph.es(), intersection.igraph.vs(), rev.igraph.es(),
rev.igraph.vs(), union.igraph.es(), union.igraph.vs(), unique.igraph.es()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10]))
V(g)[1, 1:5, 1:10, 5:10]
V(g)[1, 1:5, 1:10, 5:10] %>% unique()

upgrade_graph igraph data structure versions

Description

igraph’s internal data representation changes sometimes between versions. This means that it is not
possible to use igraph objects that were created (and possibly saved to a file) with an older igraph
version.

Usage

upgrade_graph(graph)

Arguments

graph The input graph.

Details

graph_version() queries the current data format, or the data format of a possibly older igraph
graph.

upgrade_graph() can convert an older data format to the current one.

V 489

Value

The graph in the current format.

See Also

graph_version to check the current data format version or the version of a graph.

Other versions: graph_version()

V Vertices of a graph

Description

Create a vertex sequence (vs) containing all vertices of a graph.

Usage

V(graph)

Arguments

graph The graph

Details

A vertex sequence is just what the name says it is: a sequence of vertices. Vertex sequences are
usually used as igraph function arguments that refer to vertices of a graph.

A vertex sequence is tied to the graph it refers to: it really denoted the specific vertices of that graph,
and cannot be used together with another graph.

At the implementation level, a vertex sequence is simply a vector containing numeric vertex ids,
but it has a special class attribute which makes it possible to perform graph specific operations on
it, like selecting a subset of the vertices based on graph structure, or vertex attributes.

A vertex sequence is most often created by the V() function. The result of this includes all vertices
in increasing vertex id order. A vertex sequence can be indexed by a numeric vector, just like a
regular R vector. See [.igraph.vs and additional links to other vertex sequence operations below.

Value

A vertex sequence containing all vertices, in the order of their numeric vertex ids.

Indexing vertex sequences

Vertex sequences mostly behave like regular vectors, but there are some additional indexing opera-
tions that are specific for them; e.g. selecting vertices based on graph structure, or based on vertex
attributes. See [.igraph.vs for details.

490 vertex

Querying or setting attributes

Vertex sequences can be used to query or set attributes for the vertices in the sequence. See
$.igraph.vs() for details.

See Also

Other vertex and edge sequences: E(), as_ids(), igraph-es-attributes, igraph-es-indexing,
igraph-es-indexing2, igraph-vs-attributes, igraph-vs-indexing, igraph-vs-indexing2,
print.igraph.es(), print.igraph.vs()

Examples

Vertex ids of an unnamed graph
g <- make_ring(10)
V(g)

Vertex ids of a named graph
g2 <- make_ring(10) %>%

set_vertex_attr("name", value = letters[1:10])
V(g2)

vertex Helper function for adding and deleting vertices

Description

This is a helper function that simplifies adding and deleting vertices to/from graphs.

Usage

vertex(...)

vertices(...)

Arguments

... See details below.

Details

vertices() is an alias for vertex().

When adding vertices via +, all unnamed arguments are interpreted as vertex names of the new
vertices. Named arguments are interpreted as vertex attributes for the new vertices.

When deleting vertices via -, all arguments of vertex() (or vertices()) are concatenated via c()
and passed to delete_vertices().

vertex.shape.pie 491

Value

A special object that can be used with together with igraph graphs and the plus and minus operators.

See Also

Other functions for manipulating graph structure: +.igraph(), add_edges(), add_vertices(),
complementer(), compose(), connect(), contract(), delete_edges(), delete_vertices(),
difference(), difference.igraph(), disjoint_union(), edge(), igraph-minus, intersection(),
intersection.igraph(), path(), permute(), rep.igraph(), reverse_edges(), simplify(),
union(), union.igraph()

Examples

g <- make_(ring(10), with_vertex_(name = LETTERS[1:10])) +
vertices("X", "Y")

g
plot(g)

vertex.shape.pie Using pie charts as vertices in graph plots

Description

More complex vertex images can be used to express addtional information about vertices. E.g. pie
charts can be used as vertices, to denote vertex classes, fuzzy classification of vertices, etc.

Details

The vertex shape ‘pie’ makes igraph draw a pie chart for every vertex. There are some extra graph-
ical vertex parameters that specify how the pie charts will look like:

pie Numeric vector, gives the sizes of the pie slices.

pie.color A list of color vectors to use for the pies. If it is a list of a single vector, then this is used
for all pies. It the color vector is shorter than the number of areas in a pie, then it is recycled.

pie.angle The slope of shading lines, given as an angle in degrees (counter-clockwise).

pie.density The density of the shading lines, in lines per inch. Non-positive values inhibit the
drawing of shading lines.

pie.lty The line type of the border of the slices.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

igraph.plotting(), plot.igraph()

492 vertex_attr

Examples

g <- make_ring(10)
values <- lapply(1:10, function(x) sample(1:10, 3))

plot(g,
vertex.shape = "pie", vertex.pie = values,
vertex.pie.color = list(heat.colors(5)),
vertex.size = seq(10, 30, length.out = 10), vertex.label = NA

)

vertex_attr Query vertex attributes of a graph

Description

Query vertex attributes of a graph

Usage

vertex_attr(graph, name, index = V(graph))

Arguments

graph The graph.
name Name of the attribute to query. If missing, then all vertex attributes are returned

in a list.
index An optional vertex sequence to query the attribute only for these vertices.

Value

The value of the vertex attribute, or the list of all vertex attributes, if name is missing.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr<-(), vertex_attr_names()

Examples

g <- make_ring(10) %>%
set_vertex_attr("color", value = "red") %>%
set_vertex_attr("label", value = letters[1:10])

vertex_attr(g, "label")
vertex_attr(g)
plot(g)

vertex_attr<- 493

vertex_attr<- Set one or more vertex attributes

Description

Set one or more vertex attributes

Usage

vertex_attr(graph, name, index = V(graph)) <- value

Arguments

graph The graph.

name The name of the vertex attribute to set. If missing, then value must be a named
list, and its entries are set as vertex attributes.

index An optional vertex sequence to set the attributes of a subset of vertices.

value The new value of the attribute(s) for all (or index) vertices.

Value

The graph, with the vertex attribute(s) added or set.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr_names()

Examples

g <- make_ring(10)
vertex_attr(g) <- list(

name = LETTERS[1:10],
color = rep("yellow", gorder(g))

)
vertex_attr(g, "label") <- V(g)$name
g
plot(g)

494 vertex_connectivity

vertex_attr_names List names of vertex attributes

Description

List names of vertex attributes

Usage

vertex_attr_names(graph)

Arguments

graph The graph.

Value

Character vector, the names of the vertex attributes.

See Also

Vertex, edge and graph attributes delete_edge_attr(), delete_graph_attr(), delete_vertex_attr(),
edge_attr(), edge_attr<-(), edge_attr_names(), graph_attr(), graph_attr<-(), graph_attr_names(),
igraph-attribute-combination, igraph-dollar, igraph-vs-attributes, set_edge_attr(),
set_graph_attr(), set_vertex_attr(), set_vertex_attrs(), vertex_attr(), vertex_attr<-()

Examples

g <- make_ring(10) %>%
set_vertex_attr("name", value = LETTERS[1:10]) %>%
set_vertex_attr("color", value = rep("green", 10))

vertex_attr_names(g)
plot(g)

vertex_connectivity Vertex connectivity

Description

The vertex connectivity of a graph or two vertices, this is recently also called group cohesion.

Usage

vertex_connectivity(graph, source = NULL, target = NULL, checks = TRUE)

vertex_disjoint_paths(graph, source = NULL, target = NULL)

S3 method for class 'igraph'
cohesion(x, checks = TRUE, ...)

vertex_connectivity 495

Arguments

graph, x The input graph.

source The id of the source vertex, for vertex_connectivity() it can be NULL, see
details below.

target The id of the target vertex, for vertex_connectivity() it can be NULL, see
details below.

checks Logical constant. Whether to check that the graph is connected and also the
degree of the vertices. If the graph is not (strongly) connected then the con-
nectivity is obviously zero. Otherwise if the minimum degree is one then the
vertex connectivity is also one. It is a good idea to perform these checks, as they
can be done quickly compared to the connectivity calculation itself. They were
suggested by Peter McMahan, thanks Peter.

... Additional arguments passed to methods. Not used by vertex_connectivity()
directly but may be used by other methods that implement cohesion().

Details

The vertex connectivity of two vertices (source and target) in a graph is the minimum num-
ber of vertices that must be deleted to eliminate all (directed) paths from source to target.
vertex_connectivity() calculates this quantity if both the source and target arguments are
given and they’re not NULL.

The vertex connectivity of a pair is the same as the number of different (i.e. node-independent)
paths from source to target, assuming no direct edges between them.

The vertex connectivity of a graph is the minimum vertex connectivity of all (ordered) pairs of
vertices in the graph. In other words this is the minimum number of vertices needed to remove to
make the graph not strongly connected. (If the graph is not strongly connected then this is zero.)
vertex_connectivity() calculates this quantity if neither the source nor target arguments are
given. (I.e. they are both NULL.)

A set of vertex disjoint directed paths from source to vertex is a set of directed paths between them
whose vertices do not contain common vertices (apart from source and target). The maximum
number of vertex disjoint paths between two vertices is the same as their vertex connectivity in most
cases (if the two vertices are not connected by an edge).

The cohesion of a graph (as defined by White and Harary, see references), is the vertex connectivity
of the graph. This is calculated by cohesion().

These three functions essentially calculate the same measure(s), more precisely vertex_connectivity()
is the most general, the other two are included only for the ease of using more descriptive function
names.

Value

A scalar real value.

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

496 voronoi_cells

References

White, Douglas R and Frank Harary 2001. The Cohesiveness of Blocks In Social Networks: Node
Connectivity and Conditional Density. Sociological Methodology 31 (1) : 305-359.

See Also

Other flow: dominator_tree(), edge_connectivity(), is_min_separator(), is_separator(),
max_flow(), min_cut(), min_separators(), min_st_separators(), st_cuts(), st_min_cuts()

Examples

g <- sample_pa(100, m = 1)
g <- delete_edges(g, E(g)[100 %--% 1])
g2 <- sample_pa(100, m = 5)
g2 <- delete_edges(g2, E(g2)[100 %--% 1])
vertex_connectivity(g, 100, 1)
vertex_connectivity(g2, 100, 1)
vertex_disjoint_paths(g2, 100, 1)

g <- sample_gnp(50, 5 / 50)
g <- as_directed(g)
g <- induced_subgraph(g, subcomponent(g, 1))
cohesion(g)

voronoi_cells Voronoi partitioning of a graph

Description

[Experimental]

This function partitions the vertices of a graph based on a set of generator vertices. Each vertex is
assigned to the generator vertex from (or to) which it is closest.

groups() may be used on the output of this function.

Usage

voronoi_cells(
graph,
generators,
...,
weights = NULL,
mode = c("out", "in", "all", "total"),
tiebreaker = c("random", "first", "last")

)

voronoi_cells 497

Arguments

graph The graph to partition into Voronoi cells.

generators The generator vertices of the Voronoi cells.

... These dots are for future extensions and must be empty.

weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has
a weight edge attribute, then the attribute is used. If this is NA then no weights
are used (even if the graph has a weight attribute). In a weighted graph, the
length of a path is the sum of the weights of its constituent edges.

mode Character string. In directed graphs, whether to compute distances from gener-
ator vertices to other vertices ("out"), to generator vertices from other vertices
("in"), or ignore edge directions entirely ("all"). Ignored in undirected graphs.

tiebreaker Character string that specifies what to do when a vertex is at the same distance
from multiple generators. "random" assigns a minimal-distance generator ran-
domly, "first" takes the first one, and "last" takes the last one.

Value

A named list with two components:

membership numeric vector giving the cluster id to which each vertex belongs.

distances numeric vector giving the distance of each vertex from its generator

Related documentation in the C library

voronoi().

See Also

distances()

Community detection as_membership(), cluster_edge_betweenness(), cluster_fast_greedy(),
cluster_fluid_communities(), cluster_infomap(), cluster_label_prop(), cluster_leading_eigen(),
cluster_leiden(), cluster_louvain(), cluster_optimal(), cluster_spinglass(), cluster_walktrap(),
compare(), groups(), make_clusters(), membership(), modularity.igraph(), plot_dendrogram(),
split_join_distance()

Examples

g <- make_lattice(c(10, 10))
clu <- voronoi_cells(g, c(25, 43, 67))
groups(clu)
plot(g, vertex.color = clu$membership)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_voronoi

498 weighted_cliques

weighted_cliques Functions to find weighted cliques, i.e. vertex-weighted complete sub-
graphs in a graph

Description

These functions find all, the largest or all the maximal weighted cliques in an undirected graph. The
weight of a clique is the sum of the weights of its vertices.

Usage

weighted_cliques(
graph,
vertex.weights = NULL,
min.weight = 0,
max.weight = 0,
maximal = FALSE

)

Arguments

graph The input graph, directed graphs will be considered as undirected ones, multiple
edges and loops are ignored.

vertex.weights Vertex weight vector. If the graph has a weight vertex attribute, then this is
used by default. If the graph does not have a weight vertex attribute and this
argument is NULL, then every vertex is assumed to have a weight of 1. Note
that the current implementation of the weighted clique finder supports positive
integer weights only.

min.weight Numeric constant, lower limit on the weight of the cliques to find. NULL means
no limit, i.e. it is the same as 0.

max.weight Numeric constant, upper limit on the weight of the cliques to find. NULL means
no limit.

maximal Specifies whether to look for all weighted cliques (FALSE) or only the maximal
ones (TRUE).

Details

weighted_cliques() finds all complete subgraphs in the input graph, obeying the weight limita-
tions given in the min and max arguments.

largest_weighted_cliques() finds all largest weighted cliques in the input graph. A clique is
largest if there is no other clique whose total weight is larger than the weight of this clique.

weighted_clique_num() calculates the weight of the largest weighted clique(s).

which_multiple 499

Value

weighted_cliques() and largest_weighted_cliques() return a list containing numeric vectors
of vertex IDs. Each list element is a weighted clique, i.e. a vertex sequence of class igraph.vs.

weighted_clique_num() returns an integer scalar.

Related documentation in the C library

weighted_cliques().

Author(s)

Tamas Nepusz <ntamas@gmail.com> and Gabor Csardi <csardi.gabor@gmail.com>

See Also

Other cliques: cliques(), is_complete(), ivs()

Examples

g <- make_graph("zachary")
V(g)$weight <- 1
V(g)[c(1, 2, 3, 4, 14)]$weight <- 3
weighted_cliques(g)
weighted_cliques(g, maximal = TRUE)
largest_weighted_cliques(g)
weighted_clique_num(g)

which_multiple Find the multiple or loop edges in a graph

Description

A loop edge is an edge from a vertex to itself. An edge is a multiple edge if it has exactly the same
head and tail vertices as another edge. A graph without multiple and loop edges is called a simple
graph.

Usage

which_multiple(graph, eids = E(graph))

any_multiple(graph)

count_multiple(graph, eids = E(graph))

which_loop(graph, eids = E(graph))

any_loop(graph)

https://igraph.org/c/html/0.10.17/igraph-Cliques.html#igraph_weighted_cliques

500 which_multiple

Arguments

graph The input graph.

eids The edges to which the query is restricted. By default this is all edges in the
graph.

Details

any_loop() decides whether the graph has any loop edges.

which_loop() decides whether the edges of the graph are loop edges.

any_multiple() decides whether the graph has any multiple edges.

which_multiple() decides whether the edges of the graph are multiple edges.

count_multiple() counts the multiplicity of each edge of a graph.

Note that the semantics for which_multiple() and count_multiple() is different. which_multiple()
gives TRUE for all occurrences of a multiple edge except for one. I.e. if there are three i-j edges
in the graph then which_multiple() returns TRUE for only two of them while count_multiple()
returns ‘3’ for all three.

See the examples for getting rid of multiple edges while keeping their original multiplicity as an
edge attribute.

Value

any_loop() and any_multiple() return a logical scalar. which_loop() and which_multiple()
return a logical vector. count_multiple() returns a numeric vector.

Related documentation in the C library

is_multiple(), has_multiple(), count_multiple(), is_loop(), has_loop().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

simplify() to eliminate loop and multiple edges.

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_mutual()

Examples

Loops
g <- make_graph(c(1, 1, 2, 2, 3, 3, 4, 5))
any_loop(g)
which_loop(g)

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_multiple
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_has_multiple
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_count_multiple
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_loop
https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_has_loop

which_mutual 501

Multiple edges
g <- sample_pa(10, m = 3, algorithm = "bag")
any_multiple(g)
which_multiple(g)
count_multiple(g)
which_multiple(simplify(g))
all(count_multiple(simplify(g)) == 1)

Direction of the edge is important
which_multiple(make_graph(c(1, 2, 2, 1)))
which_multiple(make_graph(c(1, 2, 2, 1), dir = FALSE))

Remove multiple edges but keep multiplicity
g <- sample_pa(10, m = 3, algorithm = "bag")
E(g)$weight <- count_multiple(g)
g <- simplify(g, edge.attr.comb = list(weight = "min"))
any(which_multiple(g))
E(g)$weight

which_mutual Find mutual edges in a directed graph

Description

This function checks the reciprocal pair of the supplied edges.

Usage

which_mutual(graph, eids = E(graph), loops = TRUE)

Arguments

graph The input graph.

eids Edge sequence, the edges that will be probed. By default is includes all edges in
the order of their ids.

loops Logical, whether to consider directed self-loops to be mutual.

Details

In a directed graph an (A,B) edge is mutual if the graph also includes a (B,A) directed edge.

Note that multi-graphs are not handled properly, i.e. if the graph contains two copies of (A,B) and
one copy of (B,A), then these three edges are considered to be mutual.

Undirected graphs contain only mutual edges by definition.

Value

A logical vector of the same length as the number of edges supplied.

502 without_attr

Related documentation in the C library

is_mutual().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

See Also

reciprocity(), dyad_census() if you just want some statistics about mutual edges.

Other structural.properties: bfs(), component_distribution(), connect(), constraint(), coreness(),
degree(), dfs(), distance_table(), edge_density(), feedback_arc_set(), feedback_vertex_set(),
girth(), is_acyclic(), is_dag(), is_matching(), k_shortest_paths(), knn(), reciprocity(),
subcomponent(), subgraph(), topo_sort(), transitivity(), unfold_tree(), which_multiple()

Examples

g <- sample_gnm(10, 50, directed = TRUE)
reciprocity(g)
dyad_census(g)
which_mutual(g)
sum(which_mutual(g)) / 2 == dyad_census(g)$mut

without_attr Construtor modifier to remove all attributes from a graph

Description

Construtor modifier to remove all attributes from a graph

Usage

without_attr()

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_edge_(),
with_graph_(), with_vertex_(), without_loops(), without_multiples()

Examples

g1 <- make_ring(10)
g1

g2 <- make_(ring(10), without_attr())
g2

https://igraph.org/c/html/0.10.17/igraph-Structural.html#igraph_is_mutual

without_loops 503

without_loops Constructor modifier to drop loop edges

Description

Constructor modifier to drop loop edges

Usage

without_loops()

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_edge_(),
with_graph_(), with_vertex_(), without_attr(), without_multiples()

Examples

An artificial example
make_(full_graph(5, loops = TRUE))
make_(full_graph(5, loops = TRUE), without_loops())

without_multiples Constructor modifier to drop multiple edges

Description

Constructor modifier to drop multiple edges

Usage

without_multiples()

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_edge_(),
with_graph_(), with_vertex_(), without_attr(), without_loops()

Examples

sample_(pa(10, m = 3, algorithm = "bag"))
sample_(pa(10, m = 3, algorithm = "bag"), without_multiples())

504 with_graph_

with_edge_ Constructor modifier to add edge attributes

Description

Constructor modifier to add edge attributes

Usage

with_edge_(...)

Arguments

... The attributes to add. They must be named.

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_graph_(),
with_vertex_(), without_attr(), without_loops(), without_multiples()

Examples

make_(
ring(10),
with_edge_(
color = "red",
weight = rep(1:2, 5)

)
) %>%

plot()

with_graph_ Constructor modifier to add graph attributes

Description

Constructor modifier to add graph attributes

Usage

with_graph_(...)

Arguments

... The attributes to add. They must be named.

with_igraph_opt 505

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_edge_(),
with_vertex_(), without_attr(), without_loops(), without_multiples()

Examples

make_(ring(10), with_graph_(name = "10-ring"))

with_igraph_opt Run code with a temporary igraph options setting

Description

Run code with a temporary igraph options setting

Usage

with_igraph_opt(options, code)

Arguments

options A named list of the options to change.

code The code to run.

Value

The result of the code.

See Also

Other igraph options: igraph_options()

Examples

with_igraph_opt(
list(sparsematrices = FALSE),
make_ring(10)[]

)
igraph_opt("sparsematrices")

506 write_graph

with_vertex_ Constructor modifier to add vertex attributes

Description

Constructor modifier to add vertex attributes

Usage

with_vertex_(...)

Arguments

... The attributes to add. They must be named.

See Also

Constructor modifiers (and related functions) make_(), sample_(), simplified(), with_edge_(),
with_graph_(), without_attr(), without_loops(), without_multiples()

Examples

make_(
ring(10),
with_vertex_(
color = "#7fcdbb",
frame.color = "#7fcdbb",
name = LETTERS[1:10]

)
) %>%

plot()

write_graph Writing the graph to a file in some format

Description

write_graph() is a general function for exporting graphs to foreign file formats. The recom-
mended formats for data exchange are GraphML and GML.

Usage

write_graph(
graph,
file,
format = c("edgelist", "pajek", "ncol", "lgl", "graphml", "dimacs", "gml", "dot",

"leda"),
...

)

write_graph 507

Arguments

graph The graph to export.

file A connection or a string giving the file name to write the graph to.

format Character string giving the file format. Right now pajek, graphml, dot, gml,
edgelist, lgl, ncol, leda and dimacs are implemented. As of igraph 0.4 this
argument is case insensitive.

... Other, format specific arguments, see below.

Value

A ‘NULL“, invisibly.

Edge list format

The edgelist format is a simple text file, with one edge per line, the two zero-based numerical
vertex IDs separated by a space character. Note that vertices are indexed starting with zero. The file
is sorted by the first and the second column. This format has no additional arguments.

NCOL format

This format is a plain text edge list in which vertices are referred to by name rather than numerical
ID. Edge weights may be optionally written. Additional parameters:

names The name of a vertex attribute to take vertex names from or NULL to use zero-based numer-
ical IDs.

weights The name of an edge attribute to take edge weights from or NULL to omit edge weights.

Pajek format

The pajek format is provided for interoperability with the Pajek software only. Since the format
does not have a formal specification, it is not recommended for general data exchange or archival.

LGL format

The .lgl format is used by the Large Graph Layout visualization software (https://lgl.sourceforge.
net), it can describe undirected optionally weighted graphs.

names The name of a vertex attribute to use for vertex names, or NULL to use numeric IDs.

weights The name of an edge attribute to use for edge weights, or NULL to omit weights.

isolates Logical, whether to include isolated vertices in the file. Default is FALSE.

DIMACS format

This is a line-oriented text file (ASCII) format. The first character of each line defines the type of the
line. If the first character is c the line is a comment line and it is ignored. There is one problem line
(p in the file), it must appear before any node and arc descriptor lines. The problem line has three
fields separated by spaces: the problem type (max or edge), the number of vertices, and number of
edges in the graph. In MAX problems, exactly two node identification lines are expected (n), one

https://lgl.sourceforge.net
https://lgl.sourceforge.net

508 write_graph

for the source, and one for the target vertex. These have two fields: the ID of the vertex and the
type of the vertex, either s (= source) or t (= target). Arc lines start with a and have three fields:
the source vertex, the target vertex and the edge capacity. In EDGE problems, there may be a node
line (n) for each node. It specifies the node index and an integer node label. Nodes for which no
explicit label was specified will use their index as label. In EDGE problems, each edge is specified
as an edge line (e).

source Numeric ID of the source vertex.

target Numeric ID of the target vertex.

capacity The name of an edge attribute to use for edge capacities, or NULL to use the "capacity"
attribute if it exists.

GML format

GML is a quite general textual format.

id Optional numeric vertex IDs to use.

creator Optional string specifying the creator of the file.

GraphML format

GraphML is an XML-based file format for representing various types of graphs. When a numerical
attribute value is NaN, it will be omitted from the file. This function assumes that non-ASCII
characters in attribute names and string attribute values are UTF-8 encoded. If this is not the case,
the resulting XML file will be invalid. Control characters, i.e. character codes up to and including
31 (with the exception of tab, cr and lf), are not allowed.

prefixAttr Logical, whether to prefix attribute names to ensure uniqueness across vertex/edge/graph
attributes. Default is TRUE.

LEDA format

This function writes a graph to an output stream in LEDA format. See https://www.algorithmic-solutions.
info/leda_guide/graphs/leda_native_graph_fileformat.html. The support for the LEDA
format is very basic at the moment; igraph writes only the LEDA graph section which supports one
selected vertex and edge attribute and no layout information or visual attributes.

vertex.attr Name of vertex attribute to include in the file.

edge.attr Name of edge attribute to include in the file.

DOT format

DOT is the format used by the widely known GraphViz software, see https://www.graphviz.org
for details. The grammar of the DOT format can be found here: https://www.graphviz.org/
doc/info/lang.html. This is only a preliminary implementation, no visualization information is
written. This format is meant solely for interoperability with Graphviz. It is not recommended for
data exchange or archival.

https://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
https://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
https://www.graphviz.org
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html

[.igraph 509

Related documentation in the C library

write_graph_dimacs_flow(), write_graph_dot(), write_graph_edgelist(), write_graph_gml(),
write_graph_graphml(), write_graph_leda(), write_graph_lgl(), write_graph_ncol(), write_graph_pajek().

Author(s)

Gabor Csardi <csardi.gabor@gmail.com>

References

Adai AT, Date SV, Wieland S, Marcotte EM. LGL: creating a map of protein function with an
algorithm for visualizing very large biological networks. J Mol Biol. 2004 Jun 25;340(1):179-90.

See Also

read_graph()

Foreign format readers graph_from_graphdb(), read_graph()

Examples

g <- make_ring(10)
file <- tempfile(fileext = ".txt")
write_graph(g, file, "edgelist")
if (!interactive()) {

unlink(file)
}

[.igraph Query and manipulate a graph as it were an adjacency matrix

Description

Query and manipulate a graph as it were an adjacency matrix

Usage

S3 method for class 'igraph'

x[
i,
j,
...,
from,
to,
sparse = igraph_opt("sparsematrices"),
edges = FALSE,

https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_dimacs_flow
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_dot
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_edgelist
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_gml
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_graphml
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_leda
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_lgl
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_ncol
https://igraph.org/c/html/0.10.17/igraph-Foreign.html#igraph_write_graph_pajek

510 [.igraph

drop = TRUE,
attr = if (is_weighted(x)) "weight" else NULL

]

Arguments

x The graph.

i Index. Vertex ids or names or logical vectors. See details below.

j Index. Vertex ids or names or logical vectors. See details below.

... Currently ignored.

from A numeric or character vector giving vertex ids or names. Together with the to
argument, it can be used to query/set a sequence of edges. See details below.
This argument cannot be present together with any of the i and j arguments and
if it is present, then the to argument must be present as well.

to A numeric or character vector giving vertex ids or names. Together with the
from argument, it can be used to query/set a sequence of edges. See details be-
low. This argument cannot be present together with any of the i and j arguments
and if it is present, then the from argument must be present as well.

sparse Logical scalar, whether to return sparse matrices.

edges Logical scalar, whether to return edge ids.

drop Ignored.

attr If not NULL, then it should be the name of an edge attribute. This attribute is
queried and returned.

Details

The single bracket indexes the (possibly weighted) adjacency matrix of the graph. Here is what you
can do with it:

1. Check whether there is an edge between two vertices (v and w) in the graph:

graph[v, w]

A numeric scalar is returned, one if the edge exists, zero otherwise.

2. Extract the (sparse) adjacency matrix of the graph, or part of it:

graph[]
graph[1:3,5:6]
graph[c(1,3,5),]

The first variants returns the full adjacency matrix, the other two return part of it.

3. The from and to arguments can be used to check the existence of many edges. In this case,
both from and to must be present and they must have the same length. They must contain
vertex ids or names. A numeric vector is returned, of the same length as from and to, it
contains ones for existing edges edges and zeros for non-existing ones. Example:

graph[from=1:3, to=c(2,3,5)]

.

[.igraph 511

4. For weighted graphs, the [operator returns the edge weights. For non-esistent edges zero
weights are returned. Other edge attributes can be queried as well, by giving the attr argu-
ment.

5. Querying edge ids instead of the existance of edges or edge attributes. E.g.

graph[1, 2, edges=TRUE]

returns the id of the edge between vertices 1 and 2, or zero if there is no such edge.

6. Adding one or more edges to a graph. For this the element(s) of the imaginary adjacency
matrix must be set to a non-zero numeric value (or TRUE):

graph[1, 2] <- 1
graph[1:3,1] <- 1
graph[from=1:3, to=c(2,3,5)] <- TRUE

This does not affect edges that are already present in the graph, i.e. no multiple edges are
created.

7. Adding weighted edges to a graph. The attr argument contains the name of the edge attribute
to set, so it does not have to be ‘weight’:

graph[1, 2, attr="weight"]<- 5
graph[from=1:3, to=c(2,3,5)] <- c(1,-1,4)

If an edge is already present in the network, then only its weights or other attribute are updated.
If the graph is already weighted, then the attr="weight" setting is implicit, and one does not
need to give it explicitly.

8. Deleting edges. The replacement syntax allow the deletion of edges, by specifying FALSE or
NULL as the replacement value:

graph[v, w] <- FALSE

removes the edge from vertex v to vertex w. As this can be used to delete edges between two
sets of vertices, either pairwise:

graph[from=v, to=w] <- FALSE

or not:

graph[v, w] <- FALSE

if v and w are vectors of edge ids or names.

‘[’ allows logical indices and negative indices as well, with the usual R semantics. E.g.

graph[degree(graph)==0, 1] <- 1

adds an edge from every isolate vertex to vertex one, and

G <- make_empty_graph(10)
G[-1,1] <- TRUE

creates a star graph.

Of course, the indexing operators support vertex names, so instead of a numeric vertex id a vertex
can also be given to ‘[’ and ‘[[’.

512 [[.igraph

Value

A scalar or matrix. See details below.

See Also

Other structural queries: [[.igraph(), adjacent_vertices(), are_adjacent(), ends(), get_edge_ids(),
gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(), neighbors(),
tail_of()

[[.igraph Query and manipulate a graph as it were an adjacency list

Description

Query and manipulate a graph as it were an adjacency list

Usage

S3 method for class 'igraph'
x[[i, j, from, to, ..., directed = TRUE, edges = FALSE, exact = TRUE]]

Arguments

x The graph.

i Index, integer, character or logical, see details below.

j Index, integer, character or logical, see details below.

from A numeric or character vector giving vertex ids or names. Together with the to
argument, it can be used to query/set a sequence of edges. See details below.
This argument cannot be present together with any of the i and j arguments and
if it is present, then the to argument must be present as well.

to A numeric or character vector giving vertex ids or names. Together with the
from argument, it can be used to query/set a sequence of edges. See details be-
low. This argument cannot be present together with any of the i and j arguments
and if it is present, then the from argument must be present as well.

... Additional arguments are not used currently.

directed Logical scalar, whether to consider edge directions in directed graphs. It is
ignored for undirected graphs.

edges Logical scalar, whether to return edge ids.

exact Ignored.

%>% 513

Details

The double bracket operator indexes the (imaginary) adjacency list of the graph. This can used for
the following operations:

1. Querying the adjacent vertices for one or more vertices:

graph[[1:3,]]
graph[[,1:3]]

The first form gives the successors, the second the predecessors or the 1:3 vertices. (For
undirected graphs they are equivalent.)

2. Querying the incident edges for one or more vertices, if the edges argument is set to TRUE:

graph[[1:3, , edges=TRUE]]
graph[[, 1:3, edges=TRUE]]

3. Querying the edge ids between two sets or vertices, if both indices are used. E.g.

graph[[v, w, edges=TRUE]]

gives the edge ids of all the edges that exist from vertices v to vertices w.

The alternative argument names from and to can be used instead of the usual i and j, to make the
code more readable:

graph[[from = 1:3]]
graph[[from = v, to = w, edges = TRUE]]

‘[[’ operators allows logical indices and negative indices as well, with the usual R semantics.

Vertex names are also supported, so instead of a numeric vertex id a vertex can also be given to ‘[’
and ‘[[’.

See Also

Other structural queries: [.igraph(), adjacent_vertices(), are_adjacent(), ends(), get_edge_ids(),
gorder(), gsize(), head_of(), incident(), incident_edges(), is_directed(), neighbors(),
tail_of()

%>% Magrittr’s pipes

Description

igraph re-exports the %>% operator of magrittr, because we find it very useful. Please see the docu-
mentation in the magrittr package.

Arguments

lhs Left hand side of the pipe.

rhs Right hand side of the pipe.

514 %>%

Value

Result of applying the right hand side to the result of the left hand side.

Examples

make_ring(10) %>%
add_edges(c(1, 6)) %>%
plot()

Index

∗ Edge list
graph_from_edgelist, 198

∗ Empty graph.
make_empty_graph, 310

∗ Full graph
make_full_graph, 314

∗ Graph Atlas.
graph_from_atlas, 196

∗ Lattice
make_lattice, 319

∗ Star graph
make_star, 322

∗ Trees.
make_tree, 323

∗ adjacency
graph_from_adjacency_matrix, 190

∗ arpack
arpack_defaults, 21

∗ attributes
delete_edge_attr, 130
delete_graph_attr, 130
delete_vertex_attr, 131
edge_attr, 159
edge_attr<-, 160
edge_attr_names, 161
graph_attr, 187
graph_attr<-, 187
graph_attr_names, 188
igraph-attribute-combination, 219
igraph-dollar, 221
igraph-vs-attributes, 228
set_edge_attr, 443
set_graph_attr, 444
set_vertex_attr, 444
set_vertex_attrs, 445
vertex_attr, 492
vertex_attr<-, 493
vertex_attr_names, 494

∗ biadjacency

as_data_frame, 34
graph_from_biadjacency_matrix, 197

∗ bipartite
bipartite_mapping, 54
bipartite_projection, 56
is_bipartite, 247
make_bipartite_graph, 306

∗ centrality
alpha_centrality, 18
authority_score, 44
betweenness, 46
closeness, 75
diversity, 150
eigen_centrality, 165
harmonic_centrality, 211
hits_scores, 215
page_rank, 346
power_centrality, 365
spectrum, 454
strength, 458
subgraph_centrality, 465

∗ centralization related
centr_betw, 64
centr_betw_tmax, 65
centr_clo, 66
centr_clo_tmax, 67
centr_degree, 68
centr_degree_tmax, 69
centr_eigen, 70
centr_eigen_tmax, 71
centralize, 62

∗ chordal
is_chordal, 247
max_cardinality, 325

∗ cliques
cliques, 72
is_complete, 249
ivs, 264
weighted_cliques, 498

515

516 INDEX

∗ cocitation
cocitation, 98
similarity, 449

∗ cohesive.blocks
cohesive_blocks, 99

∗ coloring
greedy_vertex_coloring, 208

∗ community
as_membership, 43
cluster_edge_betweenness, 76
cluster_fast_greedy, 79
cluster_fluid_communities, 80
cluster_infomap, 82
cluster_label_prop, 83
cluster_leading_eigen, 85
cluster_leiden, 88
cluster_louvain, 90
cluster_optimal, 92
cluster_spinglass, 93
cluster_walktrap, 96
compare, 104
groups, 209
make_clusters, 308
membership, 328
modularity.igraph, 339
plot_dendrogram, 361
split_join_distance, 456
voronoi_cells, 496

∗ components
articulation_points, 25
biconnected_components, 51
component_distribution, 106
decompose, 126
is_biconnected, 246

∗ console
console, 115

∗ constructor modifiers
make_, 305
sample_, 392
simplified, 452
with_edge_, 504
with_graph_, 504
with_vertex_, 506
without_attr, 502
without_loops, 503
without_multiples, 503

∗ conversion
as.matrix.igraph, 27

as_adj_list, 32
as_adjacency_matrix, 30
as_biadjacency_matrix, 33
as_data_frame, 34
as_directed, 37
as_edgelist, 39
as_graphnel, 40
as_long_data_frame, 42
graph_from_adj_list, 194
graph_from_graphnel, 201

∗ cycles
feedback_arc_set, 172
feedback_vertex_set, 173
find_cycle, 174
girth, 180
has_eulerian_path, 212
is_acyclic, 245
is_dag, 250
simple_cycles, 451

∗ datagen
sample_seq, 432

∗ datasets
dot-data, 153

∗ deterministic constructors
graph_from_atlas, 196
graph_from_edgelist, 198
graph_from_literal, 204
make_, 305
make_chordal_ring, 307
make_empty_graph, 310
make_full_citation_graph, 313
make_full_graph, 314
make_graph, 314
make_lattice, 319
make_ring, 321
make_star, 322
make_tree, 323

∗ efficiency
global_efficiency, 181

∗ embedding
dim_select, 141
embed_adjacency_matrix, 167
embed_laplacian_matrix, 169

∗ env-and-data
dot-data, 153

∗ fit
fit_power_law, 176

∗ flow

INDEX 517

dominator_tree, 151
edge_connectivity, 162
is_min_separator, 258
is_separator, 261
max_flow, 327
min_cut, 334
min_separators, 335
min_st_separators, 337
st_cuts, 460
st_min_cuts, 461
vertex_connectivity, 494

∗ foreign
graph_from_graphdb, 199
read_graph, 379
write_graph, 506

∗ functions for manipulating graph
structure

+.igraph, 10
add_edges, 12
add_vertices, 14
complementer, 105
compose, 109
connect, 110
contract, 117
delete_edges, 129
delete_vertices, 132
difference, 137
difference.igraph, 138
disjoint_union, 142
edge, 158
igraph-minus, 227
intersection, 237
intersection.igraph, 238
path, 348
permute, 349
rep.igraph, 386
reverse_edges, 388
simplify, 452
union, 483
union.igraph, 484
vertex, 490

∗ games
bipartite_gnm, 53
sample_, 392
sample_bipartite, 393
sample_chung_lu, 395
sample_correlated_gnp, 398
sample_correlated_gnp_pair, 399

sample_degseq, 401
sample_dot_product, 405
sample_fitness, 407
sample_fitness_pl, 408
sample_forestfire, 410
sample_gnm, 412
sample_gnp, 413
sample_grg, 415
sample_growing, 416
sample_hierarchical_sbm, 417
sample_islands, 419
sample_k_regular, 420
sample_last_cit, 421
sample_pa, 424
sample_pa_age, 426
sample_pref, 429
sample_sbm, 431
sample_smallworld, 433
sample_traits_callaway, 438
sample_tree, 439

∗ glet
graphlet_basis, 184

∗ graph automorphism
automorphism_group, 44
count_automorphisms, 120

∗ graph isomorphism
canonical_permutation, 59
count_isomorphisms, 122
count_subgraph_isomorphisms, 124
graph_from_isomorphism_class, 202
isomorphic, 241
isomorphism_class, 244
isomorphisms, 243
subgraph_isomorphic, 466
subgraph_isomorphisms, 468

∗ graph layouts
add_layout_, 13
component_wise, 108
layout_, 271
layout_as_bipartite, 272
layout_as_star, 274
layout_as_tree, 275
layout_in_circle, 277
layout_nicely, 278
layout_on_grid, 280
layout_on_sphere, 281
layout_randomly, 282
layout_with_dh, 283

518 INDEX

layout_with_fr, 288
layout_with_gem, 290
layout_with_graphopt, 292
layout_with_kk, 293
layout_with_lgl, 295
layout_with_mds, 297
layout_with_sugiyama, 298
merge_coords, 332
norm_coords, 345
normalize, 344

∗ graph motifs
count_motifs, 123
dyad_census, 153
motifs, 341
sample_motifs, 423

∗ graphical degree sequences
is_degseq, 251
is_graphical, 254

∗ graphs
all_simple_paths, 16
alpha_centrality, 18
arpack_defaults, 21
articulation_points, 25
as.igraph, 26
as_adj_list, 32
as_biadjacency_matrix, 33
as_data_frame, 34
as_directed, 37
as_edgelist, 39
assortativity, 28
automorphism_group, 44
betweenness, 46
bfs, 48
biconnected_components, 51
bipartite_mapping, 54
bipartite_projection, 56
canonical_permutation, 59
cliques, 72
closeness, 75
cluster_edge_betweenness, 76
cluster_fast_greedy, 79
cluster_fluid_communities, 80
cluster_infomap, 82
cluster_label_prop, 83
cluster_leading_eigen, 85
cluster_leiden, 88
cluster_louvain, 90
cluster_optimal, 92

cluster_spinglass, 93
cluster_walktrap, 96
cocitation, 98
cohesive_blocks, 99
compare, 104
complementer, 105
component_distribution, 106
compose, 109
connect, 110
console, 115
constraint, 115
contract, 117
convex_hull, 118
coreness, 119
count_automorphisms, 120
curve_multiple, 125
decompose, 126
degree, 127
dfs, 133
diameter, 136
difference.igraph, 138
dim_select, 141
disjoint_union, 142
distance_table, 144
diversity, 150
dominator_tree, 151
dyad_census, 153
each_edge, 156
edge_connectivity, 162
edge_density, 164
eigen_centrality, 165
embed_adjacency_matrix, 167
embed_laplacian_matrix, 169
feedback_arc_set, 172
feedback_vertex_set, 173
find_cycle, 174
fit_power_law, 176
girth, 180
global_efficiency, 181
graph_from_adj_list, 194
graph_from_adjacency_matrix, 190
graph_from_biadjacency_matrix, 197
graph_from_graphdb, 199
graph_from_lcf, 203
greedy_vertex_coloring, 208
harmonic_centrality, 211
has_eulerian_path, 212
igraph-attribute-combination, 219

INDEX 519

igraph_options, 233
intersection.igraph, 238
is_acyclic, 245
is_biconnected, 246
is_chordal, 247
is_complete, 249
is_dag, 250
is_degseq, 251
is_forest, 253
is_graphical, 254
is_igraph, 255
is_named, 259
is_tree, 262
is_weighted, 263
ivs, 264
k_shortest_paths, 268
keeping_degseq, 265
knn, 266
laplacian_matrix, 270
layout_as_bipartite, 272
layout_as_star, 274
layout_as_tree, 275
layout_in_circle, 277
layout_nicely, 278
layout_on_grid, 280
layout_on_sphere, 281
layout_randomly, 282
layout_with_drl, 285
layout_with_fr, 288
layout_with_gem, 290
layout_with_graphopt, 292
layout_with_kk, 293
layout_with_lgl, 295
layout_with_mds, 297
layout_with_sugiyama, 298
make_bipartite_graph, 306
make_de_bruijn_graph, 309
make_from_prufer, 311
make_full_bipartite_graph, 312
make_kautz_graph, 318
make_line_graph, 320
match_vertices, 324
max_cardinality, 325
membership, 328
merge_coords, 332
min_st_separators, 337
modularity.igraph, 339
mst, 342

norm_coords, 345
page_rank, 346
permute, 349
plot.common, 350
plot.igraph, 357
plot.sir, 359
plot_dendrogram, 361
plot_dendrogram.igraphHRG, 363
power_centrality, 365
print.igraph, 369
read_graph, 379
realize_bipartite_degseq, 382
realize_degseq, 383
reciprocity, 385
rglplot, 390
sample_bipartite, 393
sample_correlated_gnp_pair, 399
sample_degseq, 401
sample_dot_product, 405
sample_fitness, 407
sample_fitness_pl, 408
sample_forestfire, 410
sample_gnm, 412
sample_gnp, 413
sample_grg, 415
sample_growing, 416
sample_hierarchical_sbm, 417
sample_islands, 419
sample_k_regular, 420
sample_last_cit, 421
sample_pa, 424
sample_pa_age, 426
sample_pref, 429
sample_sbm, 431
sample_smallworld, 433
sample_traits_callaway, 438
sample_tree, 439
similarity, 449
simple_cycles, 451
simplify, 452
spectrum, 454
st_cuts, 460
st_min_cuts, 461
stochastic_matrix, 457
strength, 458
subcomponent, 462
subgraph, 463
subgraph_centrality, 465

520 INDEX

time_bins, 470
tkplot, 472
to_prufer, 476
topo_sort, 475
transitivity, 477
triad_census, 479
triangles, 481
unfold_tree, 482
union.igraph, 484
vertex.shape.pie, 491
vertex_connectivity, 494
weighted_cliques, 498
which_multiple, 499
which_mutual, 501
write_graph, 506

∗ graph
sample_spanning_tree, 435

∗ hierarchical random graph functions
consensus_tree, 114
fit_hrg, 175
hrg, 216
hrg-methods, 217
hrg_tree, 218
predict_edges, 367
print.igraphHRG, 373
print.igraphHRGConsensus, 374
sample_hrg, 418

∗ igraph options
igraph_options, 233
with_igraph_opt, 505

∗ isomorphism
simplify, 452

∗ latent position vector samplers
sample_dirichlet, 404
sample_sphere_surface, 436
sample_sphere_volume, 437

∗ layout modifiers
component_wise, 108
normalize, 344

∗ layout_drl
layout_with_drl, 285

∗ manip
running_mean, 391

∗ minimum.spanning.tree
mst, 342

∗ motifs
triad_census, 479

∗ other

convex_hull, 118
running_mean, 391
sample_seq, 432

∗ palettes
categorical_pal, 61
diverging_pal, 149
r_pal, 392
sequential_pal, 442

∗ paths
all_simple_paths, 16
diameter, 136
distance_table, 144
eccentricity, 157
graph_center, 189
radius, 376

∗ plot.common
curve_multiple, 125

∗ plot.shapes
shapes, 446

∗ plot
plot.igraph, 357
rglplot, 390

∗ printer callbacks
is_printer_callback, 260
printer_callback, 375

∗ print
print.igraph, 369

∗ processes
plot.sir, 359
time_bins, 470

∗ random_walk
random_walk, 377

∗ rewiring functions
each_edge, 156
keeping_degseq, 265
rewire, 389

∗ scan statistics
local_scan, 302
scan_stat, 440

∗ sgm
match_vertices, 324

∗ similarity
similarity, 449

∗ simple
simplify, 452

∗ structural queries
[.igraph, 509
[[.igraph, 512

INDEX 521

adjacent_vertices, 15
are_adjacent, 20
ends, 171
get_edge_ids, 179
gorder, 183
gsize, 210
head_of, 213
incident, 235
incident_edges, 236
is_directed, 252
neighbors, 343
tail_of, 469

∗ structural.properties
bfs, 48
component_distribution, 106
connect, 110
constraint, 115
coreness, 119
degree, 127
dfs, 133
distance_table, 144
edge_density, 164
feedback_arc_set, 172
feedback_vertex_set, 173
girth, 180
is_acyclic, 245
is_dag, 250
is_matching, 256
k_shortest_paths, 268
knn, 266
reciprocity, 385
subcomponent, 462
subgraph, 463
topo_sort, 475
transitivity, 477
unfold_tree, 482
which_multiple, 499
which_mutual, 501

∗ tkplot
tkplot, 472

∗ trees
is_forest, 253
is_tree, 262
make_from_prufer, 311
sample_spanning_tree, 435
to_prufer, 476

∗ triangles
triangles, 481

∗ versions
graph_version, 207
upgrade_graph, 488

∗ vertex and edge sequence operations
c.igraph.es, 58
c.igraph.vs, 58
difference.igraph.es, 139
difference.igraph.vs, 140
igraph-es-indexing, 223
igraph-es-indexing2, 225
igraph-vs-indexing, 230
igraph-vs-indexing2, 232
intersection.igraph.es, 239
intersection.igraph.vs, 240
rev.igraph.es, 387
rev.igraph.vs, 388
union.igraph.es, 485
union.igraph.vs, 486
unique.igraph.es, 487
unique.igraph.vs, 487

∗ vertex and edge sequences
as_ids, 41
E, 154
igraph-es-attributes, 222
igraph-es-indexing, 223
igraph-es-indexing2, 225
igraph-vs-attributes, 228
igraph-vs-indexing, 230
igraph-vs-indexing2, 232
print.igraph.es, 371
print.igraph.vs, 372
V, 489

*.igraph (rep.igraph), 386
+.igraph, 10, 13, 14, 106, 110, 113, 117, 129,

132, 138, 139, 143, 159, 228, 238,
239, 349, 350, 387, 389, 454, 484,
485, 491

-.igraph (igraph-minus), 227
.data (dot-data), 153
.env (dot-data), 153
[.igraph, 15, 20, 171, 179, 184, 210, 214,

236, 237, 252, 343, 470, 509, 513
[.igraph.es, 155, 226
[.igraph.es (igraph-es-indexing), 223
[.igraph.vs, 233, 489
[.igraph.vs (igraph-vs-indexing), 230
[<-.igraph.es (igraph-es-attributes),

222

522 INDEX

[<-.igraph.vs (igraph-vs-attributes),
228

[[.igraph, 15, 20, 171, 179, 184, 210, 214,
236, 237, 252, 343, 470, 512, 512

[[.igraph.es (igraph-es-indexing2), 225
[[.igraph.vs (igraph-vs-indexing2), 232
[[<-.igraph.es (igraph-es-attributes),

222
[[<-.igraph.vs (igraph-vs-attributes),

228
$.igraph (igraph-dollar), 221
$.igraph.es (igraph-es-attributes), 222
$.igraph.es(), 155
$.igraph.vs (igraph-vs-attributes), 228
$.igraph.vs(), 490
$<-.igraph (igraph-dollar), 221
$<-.igraph.es (igraph-es-attributes),

222
$<-.igraph.vs (igraph-vs-attributes),

228
%–% (igraph-es-indexing), 223
%->% (igraph-es-indexing), 223
%<-% (igraph-es-indexing), 223
%c% (compose), 109
%du% (disjoint_union), 142
%m% (difference.igraph), 138
%s% (intersection.igraph), 238
%u% (union.igraph), 484
%>%, 513

add_edges, 12, 12, 14, 106, 110, 113, 117,
129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

add_edges(), 158
add_layout_, 13, 109, 272, 273, 275, 276,

278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

add_layout_(), 272
add_shape (shapes), 446
add_vertices, 12, 13, 14, 106, 110, 113, 117,

129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

adhesion (edge_connectivity), 162
adjacent_vertices, 15, 20, 171, 179, 184,

210, 214, 236, 237, 252, 343, 470,
512, 513

algorithm (membership), 328

align_layout, 16
all_shortest_paths (distance_table), 144
all_shortest_paths(), 269
all_simple_paths, 16, 137, 148, 158, 190,

377
alpha_centrality, 18, 44, 48, 76, 151, 167,

212, 216, 348, 367, 455, 459, 466
alpha_centrality(), 367
any_loop (which_multiple), 499
any_multiple (which_multiple), 499
ape::as.phylo(), 331
are_adjacent, 15, 20, 171, 179, 184, 210,

214, 236, 237, 252, 343, 470, 512,
513

arpack (arpack_defaults), 21
arpack(), 22, 44, 86, 165, 166, 168, 170, 215,

216, 347, 454
arpack-options (arpack_defaults), 21
arpack.unpack.complex

(arpack_defaults), 21
arpack_defaults, 21
arpack_defaults(), 168, 170, 454
articulation_points, 25, 52, 108, 127, 246
articulation_points(), 52, 246
as.dendrogram(), 87, 331, 332, 362, 364
as.dendrogram.communities (membership),

328
as.hclust.communities (membership), 328
as.igraph, 26
as.integer(), 29
as.matrix.igraph, 27, 31, 33, 34, 36, 38–40,

42, 195, 201
as_adj_edge_list (as_adj_list), 32
as_adj_list, 28, 31, 32, 34, 36, 38–40, 42,

195, 201
as_adj_list(), 40, 195, 201
as_adjacency_matrix, 27, 28, 30, 33, 34, 36,

38–40, 42, 195, 201
as_adjacency_matrix(), 27, 33, 40, 201,

455, 458
as_biadjacency_matrix, 28, 31, 33, 33, 36,

38–40, 42, 195, 201
as_bipartite (layout_as_bipartite), 272
as_data_frame, 28, 31, 33, 34, 34, 38–40, 42,

195, 198, 201
as_directed, 28, 31, 33, 34, 36, 37, 39, 40,

42, 195, 201
as_edgelist, 28, 31, 33, 34, 36, 38, 39, 40,

INDEX 523

42, 195, 201
as_edgelist(), 27, 33, 195
as_graphnel, 28, 31, 33, 34, 36, 38, 39, 40,

42, 195, 201
as_graphnel(), 201
as_ids, 41, 155, 223, 225, 226, 229, 231, 233,

371, 372, 490
as_long_data_frame, 28, 31, 33, 34, 36,

38–40, 42, 195, 201
as_membership, 43, 78, 80, 81, 83, 85, 87, 90,

91, 93, 96, 98, 105, 209, 309, 332,
340, 363, 457, 497

as_star (layout_as_star), 274
as_tree (layout_as_tree), 275
as_undirected (as_directed), 37
as_undirected(), 478
assortativity, 28
assortativity_degree (assortativity), 28
assortativity_nominal (assortativity),

28
asym_pref (sample_pref), 429
atlas (graph_from_atlas), 196
attribute.combination

(igraph-attribute-combination),
219

attribute.combination(), 37, 117, 234,
235, 453

attributes (graph_attr_names), 188
authority_score, 19, 44, 48, 76, 151, 167,

212, 216, 348, 367, 455, 459, 466
automorphism_group, 44, 121
automorphism_group(), 121
average_local_efficiency

(global_efficiency), 181

base::options(), 370
base::save(), 351
betweenness, 19, 44, 46, 76, 151, 167, 212,

216, 348, 367, 455, 459, 466
betweenness(), 212, 348
bfs, 48, 108, 113, 116, 120, 128, 135, 148,

164, 173, 174, 181, 245, 250, 257,
268, 269, 386, 463, 465, 476, 479,
483, 500, 502

bfs(), 135
bibcoupling (cocitation), 98
biconnected_components, 26, 51, 108, 127,

246
biconnected_components(), 26, 246

bipartite (sample_bipartite), 393
bipartite_gnm, 53, 393, 394, 397, 399, 400,

402, 406, 408, 410, 412–415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440

bipartite_gnp (bipartite_gnm), 53
bipartite_graph (make_bipartite_graph),

306
bipartite_mapping, 54, 57, 247, 307
bipartite_mapping(), 247
bipartite_projection, 55, 56, 247, 307
bipartite_projection_size

(bipartite_projection), 56
blocks (cohesive_blocks), 99
bridges (articulation_points), 25

c(), 220
c.igraph.es, 58, 59, 140, 225, 226, 231, 233,

240, 241, 387, 388, 486–488
c.igraph.vs, 58, 58, 140, 225, 226, 231, 233,

240, 241, 387, 388, 486–488
canonical_permutation, 59, 122, 125, 202,

243, 244, 467, 469
canonical_permutation(), 46, 121, 242,

349, 350
categorical_pal, 61, 149, 355, 392, 442
centr_betw, 63, 64, 65–69, 71, 72
centr_betw_tmax, 63, 64, 65, 66–69, 71, 72
centr_clo, 63–65, 66, 67–69, 71, 72
centr_clo_tmax, 63–66, 67, 68, 69, 71, 72
centr_degree, 63–67, 68, 69, 71, 72
centr_degree_tmax, 63–68, 69, 71, 72
centr_eigen, 63–69, 70, 72
centr_eigen_tmax, 63–69, 71, 71
centralization (centralize), 62
centralize, 62, 64–69, 71, 72
centralize(), 64–71
chordal_ring (make_chordal_ring), 307
chung_lu (sample_chung_lu), 395
cit_cit_types (sample_last_cit), 421
cit_types (sample_last_cit), 421
clique_num (cliques), 72
clique_size_counts (cliques), 72
cliques, 72, 249, 265, 499
closeness, 19, 44, 48, 75, 151, 167, 212, 216,

348, 367, 455, 459, 466
closeness(), 48, 212, 348
cluster_edge_betweenness, 43, 76, 80, 81,

83, 85, 87, 90, 91, 93, 96, 98, 105,

524 INDEX

209, 309, 332, 340, 363, 457, 497
cluster_edge_betweenness(), 80, 81, 87,

90, 91, 98, 340
cluster_fast_greedy, 43, 78, 79, 81, 83, 85,

87, 90, 91, 93, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_fast_greedy(), 78, 81, 85, 87, 90,
91, 93, 98, 340

cluster_fluid_communities, 43, 78, 80, 80,
83, 85, 87, 90, 91, 93, 96, 98, 105,
209, 309, 332, 340, 363, 457, 497

cluster_fluid_communities(), 90
cluster_infomap, 43, 78, 80, 81, 82, 85, 87,

90, 91, 93, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_infomap(), 90, 331
cluster_label_prop, 43, 78, 80, 81, 83, 83,

87, 90, 91, 93, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_label_prop(), 81, 90, 91
cluster_leading_eigen, 43, 78, 80, 81, 83,

85, 85, 90, 91, 93, 96, 98, 105, 209,
309, 332, 340, 363, 457, 497

cluster_leading_eigen(), 24, 78, 80, 81,
90, 91, 98, 331

cluster_leiden, 43, 78, 80, 81, 83, 85, 87,
88, 91, 93, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_leiden(), 80, 81, 85, 91, 98, 340
cluster_louvain, 43, 78, 80, 81, 83, 85, 87,

90, 90, 93, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_louvain(), 80, 81, 85, 88, 90, 98,
340

cluster_optimal, 43, 78, 80, 81, 83, 85, 87,
90, 91, 92, 96, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_optimal(), 90
cluster_spinglass, 43, 78, 80, 81, 83, 85,

87, 90, 91, 93, 93, 98, 105, 209, 309,
332, 340, 363, 457, 497

cluster_spinglass(), 80, 81, 85, 90, 91, 95,
98, 340

cluster_walktrap, 43, 78, 80, 81, 83, 85, 87,
90, 91, 93, 96, 96, 105, 209, 309,
332, 340, 363, 457, 497

cluster_walktrap(), 78, 80, 81, 85, 87, 90,
91, 340

cocitation, 98, 450
code_len (membership), 328
cohesion (vertex_connectivity), 494
cohesion(), 103
cohesion.cohesiveBlocks

(cohesive_blocks), 99
cohesive_blocks, 99
cohesiveBlocks (cohesive_blocks), 99
communities (membership), 328
communities(), 78–85, 89–93, 95–98, 104,

209, 361
compare, 43, 78, 80, 81, 83, 85, 87, 90, 91, 93,

96, 98, 104, 209, 309, 332, 340, 363,
457, 497

compare(), 332
complementer, 12–14, 105, 110, 113, 117,

129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

component_distribution, 26, 51, 52, 106,
113, 116, 120, 127, 128, 135, 148,
164, 173, 174, 181, 245, 246, 250,
257, 268, 269, 386, 463, 465, 476,
479, 483, 500, 502

component_wise, 13, 108, 272, 273, 275, 276,
278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

components (component_distribution), 106
components(), 26, 52, 96, 127, 209, 343, 463
compose, 12–14, 106, 109, 113, 117, 129, 132,

138, 139, 143, 159, 228, 238, 239,
349, 350, 387, 389, 454, 484, 485,
491

connect, 12–14, 51, 106, 108, 110, 110, 116,
117, 120, 128, 129, 132, 135, 138,
139, 143, 148, 159, 164, 173, 174,
181, 228, 238, 239, 245, 250, 257,
268, 269, 349, 350, 386, 387, 389,
454, 463, 465, 476, 479, 483–485,
491, 500, 502

consensus_tree, 114, 176, 217, 218, 368,
374, 375, 419

consensus_tree(), 26
console, 115
constraint, 51, 108, 113, 115, 120, 128, 135,

148, 164, 173, 174, 181, 245, 250,
257, 268, 269, 386, 463, 465, 476,
479, 483, 500, 502

INDEX 525

contract, 12–14, 106, 110, 113, 117, 129,
132, 138, 139, 143, 159, 228, 238,
239, 349, 350, 387, 389, 454, 484,
485, 491

contract(), 219
convex_hull, 118, 391, 433
coreness, 51, 108, 113, 116, 119, 128, 135,

148, 164, 173, 174, 181, 245, 250,
257, 268, 269, 386, 463, 465, 476,
479, 483, 500, 502

count_automorphisms, 46, 120
count_automorphisms(), 45, 46
count_components

(component_distribution), 106
count_isomorphisms, 61, 122, 125, 202, 243,

244, 467, 469
count_max_cliques (cliques), 72
count_motifs, 123, 154, 341, 424
count_multiple (which_multiple), 499
count_multiple(), 454
count_subgraph_isomorphisms, 61, 122,

124, 202, 243, 244, 467, 469
count_triangles (triangles), 481
crossing (membership), 328
curve_multiple, 125
curve_multiple(), 354
cut_at (membership), 328

de_bruijn_graph (make_de_bruijn_graph),
309

decompose, 26, 52, 108, 126, 246
decompose(), 108
degree, 51, 108, 113, 116, 120, 127, 135, 148,

164, 173, 174, 181, 245, 250, 257,
268, 269, 386, 463, 465, 476, 479,
483, 500, 502

degree(), 48, 120, 348, 459
degree_distribution (degree), 127
degseq (sample_degseq), 401
delete_edge_attr, 130, 131, 132, 160, 161,

187–189, 220, 221, 229, 443–446,
492–494

delete_edges, 12–14, 106, 110, 113, 117,
129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

delete_edges(), 158, 348, 454
delete_graph_attr, 130, 130, 132, 160, 161,

187–189, 220, 221, 229, 443–446,

492–494
delete_vertex_attr, 130, 131, 131, 160,

161, 187–189, 220, 221, 229,
443–446, 492–494

delete_vertices, 12–14, 106, 110, 113, 117,
129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

delete_vertices(), 454, 490
dendrogram, 332
dev.capabilities, 352
dfs, 51, 108, 113, 116, 120, 128, 133, 148,

164, 173, 174, 181, 245, 250, 257,
268, 269, 386, 463, 465, 476, 479,
483, 500, 502

dfs(), 51
diameter, 17, 136, 148, 158, 190, 377
difference, 12–14, 106, 110, 113, 117, 129,

132, 137, 139, 143, 159, 228, 238,
239, 349, 350, 387, 389, 454, 484,
485, 491

difference(), 227
difference.igraph, 12–14, 106, 110, 113,

117, 129, 132, 138, 138, 143, 159,
228, 238, 239, 349, 350, 387, 389,
454, 484, 485, 491

difference.igraph(), 137
difference.igraph.es, 58, 59, 139, 140,

225, 226, 231, 233, 240, 241, 387,
388, 486–488

difference.igraph.vs, 58, 59, 140, 140,
225, 226, 231, 233, 240, 241, 387,
388, 486–488

difference.igraph.vs(), 137
dim_select, 141, 169, 171
directed_graph (make_graph), 314
disjoint_union, 12–14, 106, 110, 113, 117,

129, 132, 138, 139, 142, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 485, 491

disjoint_union(), 10, 333
distance_table, 17, 51, 108, 113, 116, 120,

128, 135, 137, 144, 158, 164, 173,
174, 181, 190, 245, 250, 257, 268,
269, 377, 386, 463, 465, 476, 479,
483, 500, 502

distances, 377
distances (distance_table), 144

526 INDEX

distances(), 137, 158, 497
diverging_pal, 62, 149, 392, 442
diversity, 19, 44, 48, 76, 150, 167, 212, 216,

348, 367, 455, 459, 466
DL (read_graph), 379
dominator_tree, 151, 163, 258, 261, 328,

335, 336, 338, 461, 462, 496
dot-data, 153
dot-env (dot-data), 153
dot_product (sample_dot_product), 405
drl_defaults (layout_with_drl), 285
dyad_census, 123, 153, 341, 424
dyad_census(), 481, 502

E, 42, 154, 223, 225, 226, 229, 231, 233, 371,
372, 490

E(), 222, 227
E<- (igraph-es-attributes), 222
each_edge, 156, 266, 390
eccentricity, 17, 137, 148, 157, 190, 377
eccentricity(), 190, 377
ecount (gsize), 210
ecount(), 164
edge, 12–14, 106, 110, 113, 117, 129, 132,

138, 139, 143, 158, 228, 238, 239,
349, 350, 387, 389, 454, 484, 485,
491

edge(), 11, 227
edge.attributes (edge_attr), 159
edge.attributes<- (edge_attr<-), 160
edge.betweenness.estimate

(betweenness), 46
edge_attr, 130–132, 159, 160, 161, 187–189,

220, 221, 229, 443–446, 492–494
edge_attr(), 220, 222
edge_attr<-, 160
edge_attr_names, 130–132, 160, 161,

187–189, 220, 221, 229, 443–446,
492–494

edge_betweenness (betweenness), 46
edge_betweenness(), 78
edge_connectivity, 152, 162, 258, 261, 328,

335, 336, 338, 461, 462, 496
edge_connectivity(), 26
edge_density, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 386, 463, 465,
476, 479, 483, 500, 502

edge_disjoint_paths
(edge_connectivity), 162

edges (edge), 158
edges(), 11, 227
ego (connect), 110
ego_graph (connect), 110
ego_size (connect), 110
eigen_centrality, 19, 44, 48, 76, 151, 165,

212, 216, 348, 367, 455, 459, 466
eigen_centrality(), 19, 22, 24, 70, 216,

367, 466
embed_adjacency_matrix, 142, 167, 171
embed_adjacency_matrix(), 142, 170, 171
embed_laplacian_matrix, 142, 169, 169
empty_graph (make_empty_graph), 310
ends, 15, 20, 171, 179, 184, 210, 214, 236,

237, 252, 343, 470, 512, 513
erdos.renyi.game, 54, 393, 394, 397, 399,

400, 402, 406, 408, 410, 412–415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

eulerian_cycle (has_eulerian_path), 212
eulerian_path (has_eulerian_path), 212
export_pajek (cohesive_blocks), 99

farthest_vertices (diameter), 136
feedback_arc_set, 51, 108, 113, 116, 120,

128, 135, 148, 164, 172, 174, 181,
213, 245, 250, 257, 268, 269, 386,
452, 463, 465, 476, 479, 483, 500,
502

feedback_vertex_set, 51, 108, 113, 116,
120, 128, 135, 148, 164, 173, 173,
174, 181, 213, 245, 250, 257, 268,
269, 386, 452, 463, 465, 476, 479,
483, 500, 502

find_cycle, 173, 174, 174, 181, 213, 245,
250, 452

find_cycle(), 245
fit_hrg, 114, 175, 217, 218, 368, 374, 375,

419
fit_hrg(), 26, 363
fit_power_law, 176
from_adjacency

(graph_from_adjacency_matrix),
190

from_data_frame (as_data_frame), 34
from_edgelist (graph_from_edgelist), 198
from_literal (graph_from_literal), 204

INDEX 527

from_prufer (make_from_prufer), 311
full_bipartite_graph

(make_full_bipartite_graph),
312

full_citation_graph
(make_full_citation_graph), 313

full_graph (make_full_graph), 314

get.edges (ends), 171
get_diameter (diameter), 136
get_edge_ids, 15, 20, 171, 179, 184, 210,

214, 236, 237, 252, 343, 470, 512,
513

getOption(), 235
girth, 51, 108, 113, 116, 120, 128, 135, 148,

164, 173, 174, 180, 213, 245, 250,
257, 268, 269, 386, 452, 463, 465,
476, 479, 483, 500, 502

global_efficiency, 181
GML (read_graph), 379
gnm (sample_gnm), 412
gnp (sample_gnp), 413
gorder, 15, 20, 171, 179, 183, 210, 214, 236,

237, 252, 343, 470, 512, 513
graph.attributes (graph_attr), 187
graph.attributes<- (graph_attr<-), 187
graph.count.isomorphisms.vf2

(count_isomorphisms), 122
graph.count.subisomorphisms.vf2

(count_subgraph_isomorphisms),
124

graph.get.isomorphisms.vf2
(isomorphisms), 243

graph.get.subisomorphisms.vf2
(subgraph_isomorphisms), 468

graph.isoclass (isomorphism_class), 244
graph.isomorphic (isomorphic), 241
graph.subisomorphic.lad

(subgraph_isomorphic), 466
graph.subisomorphic.vf2

(subgraph_isomorphic), 466
graph_, 186
graph_attr, 130–132, 160, 161, 187, 188,

189, 220, 221, 229, 443–446,
492–494

graph_attr(), 220, 221
graph_attr<-, 187
graph_attr_names, 130–132, 160, 161, 187,

188, 188, 220, 221, 229, 443–446,

492–494
graph_center, 17, 137, 148, 158, 189, 377
graph_from_adj_list, 28, 31, 33, 34, 36,

38–40, 42, 194, 201
graph_from_adj_list(), 40, 201
graph_from_adjacency_matrix, 190
graph_from_adjacency_matrix(), 31, 39,

40, 201
graph_from_atlas, 196, 199, 205, 305, 307,

310, 313, 314, 317, 320–323
graph_from_biadjacency_matrix, 36, 197
graph_from_biadjacency_matrix(), 34
graph_from_data_frame (as_data_frame),

34
graph_from_edgelist, 196, 198, 205, 305,

307, 310, 313, 314, 317, 320–323
graph_from_graphdb, 199, 381, 509
graph_from_graphnel, 28, 31, 33, 34, 36,

38–40, 42, 195, 201
graph_from_graphnel(), 40
graph_from_isomorphism_class, 61, 122,

125, 202, 243, 244, 467, 469
graph_from_lcf, 203
graph_from_literal, 196, 199, 204, 305,

307, 310, 313, 314, 317, 320–323
graph_from_literal(), 36, 192, 315
graph_id, 206
graph_id(), 370
graph_version, 207, 489
graph_version(), 488
graphics::par(), 354
graphics::plot(), 351
graphics::text(), 353
graphics::xspline(), 358
graphlet_basis, 184
graphlet_proj (graphlet_basis), 184
graphlets (graphlet_basis), 184
GraphML (read_graph), 379
graphs_from_cohesive_blocks

(cohesive_blocks), 99
grDevices::palette(), 352
greedy_vertex_coloring, 208
grg (sample_grg), 415
groups, 43, 78, 80, 81, 83, 85, 87, 90, 91, 93,

96, 98, 105, 209, 309, 332, 340, 363,
457, 497

groups(), 108, 496
growing (sample_growing), 416

528 INDEX

gsize, 15, 20, 171, 179, 184, 210, 214, 236,
237, 252, 343, 470, 512, 513

harmonic_centrality, 19, 44, 48, 76, 151,
167, 211, 216, 348, 367, 455, 459,
466

harmonic_centrality(), 48, 76
has_eulerian_cycle (has_eulerian_path),

212
has_eulerian_path, 173, 174, 181, 212, 245,

250, 452
head(), 220
head_of, 15, 20, 171, 179, 184, 210, 213, 236,

237, 252, 343, 470, 512, 513
head_print, 214
hierarchical_sbm

(sample_hierarchical_sbm), 417
hierarchy (cohesive_blocks), 99
hits_scores, 19, 44, 48, 76, 151, 167, 212,

215, 348, 367, 455, 459, 466
hrg, 114, 176, 216, 217, 218, 368, 374, 375,

419
hrg-methods, 217
hrg_tree, 114, 176, 217, 218, 368, 374, 375,

419
hub_score (authority_score), 44
hub_score(), 24

identical_graphs, 218
igraph-attribute-combination, 219
igraph-dollar, 221
igraph-es-attributes, 222
igraph-es-indexing, 223
igraph-es-indexing2, 225
igraph-minus, 227
igraph-vs-attributes, 228
igraph-vs-indexing, 230
igraph-vs-indexing2, 232
igraph.drl.coarsen (layout_with_drl),

285
igraph.drl.coarsest (layout_with_drl),

285
igraph.drl.default (layout_with_drl),

285
igraph.drl.final (layout_with_drl), 285
igraph.drl.refine (layout_with_drl), 285
igraph.eigen.default (spectrum), 454
igraph.plotting, 126, 331, 358, 359, 390,

473

igraph.plotting (plot.common), 350
igraph.plotting(), 491
igraph.vertex.shapes (shapes), 446
igraph.vs, 73, 499
igraph_opt (igraph_options), 233
igraph_opt(), 370
igraph_options, 233, 505
igraph_options(), 115, 172, 173, 220, 351,

352, 354, 356, 476
in_circle (layout_in_circle), 277
incident, 15, 20, 171, 179, 184, 210, 214,

235, 237, 252, 343, 470, 512, 513
incident(), 236
incident_edges, 15, 20, 171, 179, 184, 210,

214, 236, 236, 252, 343, 470, 512,
513

indent_print, 237
independence_number (ivs), 264
induced_subgraph (subgraph), 463
intersection, 12–14, 106, 110, 113, 117,

129, 132, 138, 139, 143, 159, 228,
237, 239, 349, 350, 387, 389, 454,
484, 485, 491

intersection.igraph, 12–14, 106, 110, 113,
117, 129, 132, 138, 139, 143, 159,
228, 238, 238, 349, 350, 387, 389,
454, 484, 485, 491

intersection.igraph(), 237
intersection.igraph.es, 58, 59, 140, 225,

226, 231, 233, 239, 241, 387, 388,
486–488

intersection.igraph.vs, 58, 59, 140, 225,
226, 231, 233, 240, 240, 387, 388,
486–488

intersection.igraph.vs(), 237
is_acyclic, 51, 108, 113, 116, 120, 128, 135,

148, 164, 173, 174, 181, 213, 245,
250, 257, 268, 269, 386, 452, 463,
465, 476, 479, 483, 500, 502

is_acyclic(), 174
is_biconnected, 26, 52, 108, 127, 246
is_bipartite, 55, 57, 247, 307
is_chordal, 247, 326
is_chordal(), 325, 326
is_clique (cliques), 72
is_complete, 74, 249, 265, 499
is_connected (component_distribution),

106

INDEX 529

is_connected(), 26, 52, 127, 246
is_dag, 51, 108, 113, 116, 120, 128, 135, 148,

164, 173, 174, 181, 213, 245, 250,
257, 268, 269, 386, 452, 463, 465,
476, 479, 483, 500, 502

is_dag(), 245
is_degseq, 251, 255
is_directed, 15, 20, 171, 179, 184, 210, 214,

236, 237, 252, 343, 470, 512, 513
is_forest, 253, 262, 311, 435, 477
is_forest(), 245
is_graphical, 252, 254
is_hierarchical (membership), 328
is_igraph, 255
is_isomorphic_to (isomorphic), 241
is_ivs (ivs), 264
is_matching, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 256, 268, 269, 386, 463, 465,
476, 479, 483, 500, 502

is_max_matching (is_matching), 256
is_min_separator, 152, 163, 258, 261, 328,

335, 336, 338, 461, 462, 496
is_named, 259
is_printer_callback, 260, 376
is_separator, 152, 163, 258, 261, 328, 335,

336, 338, 461, 462, 496
is_simple (simplify), 452
is_simple(), 100
is_subgraph_isomorphic_to

(subgraph_isomorphic), 466
is_tree, 253, 262, 311, 435, 477
is_weighted, 263
isomorphic, 61, 122, 125, 202, 241, 244, 467,

469
isomorphic(), 61, 122, 200, 244
isomorphism_class, 61, 122, 125, 202, 243,

244, 244, 467, 469
isomorphism_class(), 123, 341, 424
isomorphisms, 61, 122, 125, 202, 243, 243,

244, 467, 469
ivs, 74, 249, 264, 499
ivs_size (ivs), 264

k_shortest_paths, 51, 108, 113, 116, 120,
128, 135, 148, 164, 173, 174, 181,
245, 250, 257, 268, 268, 386, 463,
465, 476, 479, 483, 500, 502

kautz_graph (make_kautz_graph), 318

keeping_degseq, 156, 265, 390
knn, 51, 108, 113, 116, 120, 128, 135, 148,

164, 173, 174, 181, 245, 250, 257,
266, 269, 386, 463, 465, 476, 479,
483, 500, 502

laplacian_matrix, 270
largest_cliques (cliques), 72
largest_component

(component_distribution), 106
largest_ivs (ivs), 264
largest_weighted_cliques (cliques), 72
last_cit (sample_last_cit), 421
lattice (make_lattice), 319
layout (layout_), 271
layout(), 275, 280, 287, 298, 333, 359, 475
layout_, 13, 109, 271, 273, 275, 276,

278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

layout_(), 13, 109, 344
layout_as_bipartite, 13, 109, 272, 272,

275, 276, 278–280, 282, 284, 289,
291, 293, 295, 296, 298, 300, 333,
344, 346

layout_as_star, 13, 109, 272, 273, 274, 276,
278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

layout_as_tree, 13, 109, 272, 273, 275, 275,
278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

layout_components (merge_coords), 332
layout_in_circle, 13, 109, 272, 273, 275,

276, 277, 279, 280, 282, 284, 289,
291, 293, 295, 296, 298, 300, 333,
344, 346

layout_nicely, 13, 109, 272, 273, 275, 276,
278, 278, 280, 282, 284, 289, 291,
293, 295, 296, 298, 300, 333, 344,
346

layout_on_grid, 13, 109, 272, 273, 275, 276,
278, 279, 280, 282, 284, 289, 291,
293, 295, 296, 298, 300, 333, 344,
346

layout_on_sphere, 13, 109, 272, 273, 275,
276, 278–280, 281, 282, 284, 289,
291, 293, 295, 296, 298, 300, 333,
344, 346

layout_randomly, 13, 109, 272, 273, 275,
276, 278–280, 282, 282, 284, 289,

530 INDEX

291, 293, 295, 296, 298, 300, 333,
344, 346

layout_with_dh, 13, 109, 272, 273, 275, 276,
278–280, 282, 283, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

layout_with_drl, 285
layout_with_drl(), 275, 289, 295
layout_with_fr, 13, 109, 272, 273, 275, 276,

278–280, 282, 284, 288, 291, 293,
295, 296, 298, 300, 333, 344, 346

layout_with_fr(), 16, 284, 291, 294
layout_with_gem, 13, 109, 272, 273, 275,

276, 278–280, 282, 284, 289, 290,
293, 295, 296, 298, 300, 333, 344,
346

layout_with_graphopt, 13, 109, 272, 273,
275, 276, 278–280, 282, 284, 289,
291, 292, 295, 296, 298, 300, 333,
344, 346

layout_with_kk, 13, 109, 272, 273, 275, 276,
278–280, 282, 284, 289, 291, 293,
293, 296, 298, 300, 333, 344, 346

layout_with_kk(), 284, 289
layout_with_lgl, 13, 109, 272, 273, 275,

276, 278–280, 282, 284, 289, 291,
293, 295, 295, 298, 300, 333, 344,
346

layout_with_mds, 13, 109, 272, 273, 275,
276, 278–280, 282, 284, 289, 291,
293, 295, 296, 297, 300, 333, 344,
346

layout_with_sugiyama, 13, 109, 272, 273,
275, 276, 278–280, 282, 284, 289,
291, 293, 295, 296, 298, 298, 333,
344, 346

layout_with_sugiyama(), 273
length.cohesiveBlocks

(cohesive_blocks), 99
length.communities (membership), 328
LGL (read_graph), 379
line_graph (make_line_graph), 320
local_efficiency (global_efficiency),

181
local_scan, 302, 441
local_scan(), 441

make_, 196, 199, 205, 305, 307, 310, 313, 314,
317, 320–323, 393, 452, 502–506

make_bipartite_graph, 55, 57, 247, 306

make_bipartite_graph(), 198
make_chordal_ring, 196, 199, 205, 305, 307,

310, 313, 314, 317, 320–323
make_clusters, 43, 78, 80, 81, 83, 85, 87, 90,

91, 93, 96, 98, 105, 209, 308, 332,
340, 363, 457, 497

make_de_bruijn_graph, 309
make_de_bruijn_graph(), 318
make_directed_graph (make_graph), 314
make_ego_graph (connect), 110
make_empty_graph, 196, 199, 205, 305, 307,

310, 313, 314, 317, 320–323
make_from_prufer, 253, 262, 311, 435, 477
make_from_prufer(), 477
make_full_bipartite_graph, 312
make_full_citation_graph, 196, 199, 205,

305, 307, 310, 313, 314, 317,
320–323

make_full_graph, 196, 199, 205, 305, 307,
310, 313, 314, 317, 320–323

make_full_graph(), 249, 312
make_graph, 196, 199, 205, 305, 307, 310,

313, 314, 314, 320–323
make_graph(), 192, 203, 306, 307
make_kautz_graph, 318
make_kautz_graph(), 310
make_lattice, 196, 199, 205, 305, 307, 310,

313, 314, 317, 319, 321–323
make_lattice(), 321, 434
make_line_graph, 320
make_line_graph(), 310, 318
make_neighborhood_graph (connect), 110
make_ring, 196, 199, 205, 305, 307, 310, 313,

314, 317, 320, 321, 322, 323
make_ring(), 305
make_star, 196, 199, 205, 305, 307, 310, 313,

314, 317, 320, 321, 322, 323
make_tree, 196, 199, 205, 305, 307, 310, 313,

314, 317, 320–322, 323
make_undirected_graph (make_graph), 314
match_vertices, 324
max_bipartite_match (is_matching), 256
max_cardinality, 248, 325
max_cardinality(), 248
max_cliques (cliques), 72
max_cohesion (cohesive_blocks), 99
max_degree (degree), 127
max_flow, 152, 163, 258, 261, 327, 335, 336,

INDEX 531

338, 461, 462, 496
max_ivs (ivs), 264
mean(), 220
mean_distance (distance_table), 144
median(), 220
median.sir (time_bins), 470
membership, 43, 78, 80, 81, 83, 85, 87, 90, 91,

93, 96, 98, 105, 209, 309, 328, 340,
363, 457, 497

merge_coords, 13, 109, 272, 273, 275, 276,
278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 332, 344, 346

merge_coords(), 108, 109, 297, 344
merges (membership), 328
min_cut, 152, 163, 258, 261, 328, 334, 336,

338, 461, 462, 496
min_separators, 152, 163, 258, 261, 328,

335, 335, 338, 461, 462, 496
min_st_separators, 152, 163, 258, 261, 328,

335, 336, 337, 461, 462, 496
modularity (modularity.igraph), 339
modularity(), 87, 93, 98
modularity.communities (membership), 328
modularity.igraph, 43, 78, 80, 81, 83, 85,

87, 90, 91, 93, 96, 98, 105, 209, 309,
332, 339, 363, 457, 497

modularity.igraph(), 330
modularity_matrix (modularity.igraph),

339
motifs, 123, 154, 341, 424
motifs(), 480, 481
mst, 342

neighborhood (connect), 110
neighborhood_size (connect), 110
neighbors, 15, 20, 171, 179, 184, 210, 214,

236, 237, 252, 343, 470, 512, 513
neighbors(), 15
nicely (layout_nicely), 278
norm_coords, 13, 109, 272, 273, 275, 276,

278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 345

normalize, 13, 109, 272, 273, 275, 276,
278–280, 282, 284, 289, 291, 293,
295, 296, 298, 300, 333, 344, 346

on_grid (layout_on_grid), 280
on_sphere (layout_on_sphere), 281
options(), 235

pa (sample_pa), 424
pa(), 393
pa_age (sample_pa_age), 426
page_rank, 19, 44, 48, 76, 151, 167, 212, 216,

346, 367, 455, 459, 466
page_rank(), 22, 24, 216, 466
Pajek (read_graph), 379
parent (cohesive_blocks), 99
path, 12–14, 106, 110, 113, 117, 129, 132,

138, 139, 143, 159, 228, 238, 239,
348, 350, 387, 389, 454, 484, 485,
491

path(), 11, 228
permute, 12–14, 106, 110, 113, 117, 129, 132,

138, 139, 143, 159, 228, 238, 239,
349, 349, 387, 389, 454, 484, 485,
491

permute(), 46, 61, 121, 242, 277, 280, 281
plot(), 100, 102, 331, 332, 356, 358, 360
plot.cohesiveBlocks (cohesive_blocks),

99
plot.common, 350
plot.communities (membership), 328
plot.graph (plot.igraph), 357
plot.hclust(), 329
plot.igraph, 357, 390
plot.igraph(), 126, 275, 279, 291, 295, 298,

329, 331, 333, 351–353, 356, 390,
475, 491

plot.sir, 359, 472
plot.sir(), 472
plot_dendrogram, 43, 78, 80, 81, 83, 85, 87,

90, 91, 93, 96, 98, 105, 209, 309,
332, 340, 361, 457, 497

plot_dendrogram(), 234, 332
plot_dendrogram.igraphHRG, 363
plot_hierarchy (cohesive_blocks), 99
power_centrality, 19, 44, 48, 76, 151, 167,

212, 216, 348, 365, 455, 459, 466
power_centrality(), 19
predict_edges, 114, 176, 217, 218, 367, 374,

375, 419
pref (sample_pref), 429
print, 237
print(), 100, 102, 271, 330, 331, 371, 372
print.cohesiveBlocks (cohesive_blocks),

99
print.communities (membership), 328

532 INDEX

print.igraph, 369
print.igraph(), 234
print.igraph.es, 42, 155, 223, 225, 226,

229, 231, 233, 371, 372, 490
print.igraph.vs, 42, 155, 223, 225, 226,

229, 231, 233, 371, 372, 490
print.igraph_layout_modifier (layout_),

271
print.igraph_layout_spec (layout_), 271
print.igraphHRG, 114, 176, 217, 218, 368,

373, 375, 419
print.igraphHRGConsensus, 114, 176, 217,

218, 368, 374, 374, 419
print_all (print.igraph), 369
printer_callback, 260, 375
printer_callback(), 214

quantile.sir (time_bins), 470

r_pal, 62, 149, 392, 442
radius, 17, 137, 148, 158, 190, 376
radius(), 158, 190
random_edge_walk (random_walk), 377
random_walk, 377
randomly (layout_randomly), 282
read.csv(), 35
read.delim(), 35
read.table(), 35, 36
read_graph, 200, 379, 509
read_graph(), 31, 39, 200, 509
realize_bipartite_degseq, 382
realize_degseq, 383
realize_degseq(), 383, 402
reciprocity, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 385, 463, 465,
476, 479, 483, 500, 502

reciprocity(), 502
rep.igraph, 12–14, 106, 110, 113, 117, 129,

132, 138, 139, 143, 159, 228, 238,
239, 349, 350, 386, 389, 454, 484,
485, 491

rev.igraph.es, 58, 59, 140, 225, 226, 231,
233, 240, 241, 387, 388, 486–488

rev.igraph.vs, 58, 59, 140, 225, 226, 231,
233, 240, 241, 387, 388, 486–488

reverse_edges, 12–14, 106, 110, 113, 117,
129, 132, 138, 139, 143, 159, 228,

238, 239, 349, 350, 387, 388, 454,
484, 485, 491

rewire, 156, 266, 389
rewire(), 156, 265, 434
rglplot, 359, 390
rglplot(), 126, 351, 353–356, 359
ring (make_ring), 321
ring(), 305
running_mean, 119, 391, 433

sample_, 54, 305, 392, 394, 397, 399, 400,
402, 406, 408, 410, 412–415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440, 452, 502–506

sample_asym_pref (sample_pref), 429
sample_bipartite, 54, 393, 393, 397, 399,

400, 402, 406, 408, 410, 412–415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_bipartite_gnm (bipartite_gnm), 53
sample_bipartite_gnm(), 393
sample_bipartite_gnp (bipartite_gnm), 53
sample_bipartite_gnp(), 393
sample_chung_lu, 54, 393, 394, 395, 399,

400, 402, 406, 408, 410, 412–415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_cit_cit_types (sample_last_cit),
421

sample_cit_types (sample_last_cit), 421
sample_correlated_gnp, 54, 393, 394, 397,

398, 400, 402, 406, 408, 410,
412–415, 417, 418, 420, 421, 423,
426, 429, 430, 432, 434, 439, 440

sample_correlated_gnp(), 325
sample_correlated_gnp_pair, 54, 393, 394,

397, 399, 399, 402, 406, 408, 410,
412–415, 417, 418, 420, 421, 423,
426, 429, 430, 432, 434, 439, 440

sample_correlated_gnp_pair(), 325
sample_degseq, 54, 393, 394, 397, 399, 400,

401, 406, 408, 410, 412–415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440

sample_degseq(), 266, 384, 397, 407, 420,
421

sample_dirichlet, 404, 436, 437
sample_dirichlet(), 406

INDEX 533

sample_dot_product, 54, 393, 394, 397, 399,
400, 402, 405, 408, 410, 412–415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_dot_product(), 169, 171
sample_fitness, 54, 393, 394, 397, 399, 400,

402, 406, 407, 410, 412–415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440

sample_fitness(), 397, 409
sample_fitness_pl, 54, 393, 394, 397, 399,

400, 402, 406, 408, 408, 412–415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_fitness_pl(), 408
sample_forestfire, 54, 393, 394, 397, 399,

400, 402, 406, 408, 410, 410,
413–415, 417, 418, 420, 421, 423,
426, 429, 430, 432, 434, 439, 440

sample_gnm, 54, 393, 394, 397, 399, 400, 402,
406, 408, 410, 412, 412, 414, 415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_gnp, 54, 393, 394, 397, 399, 400, 402,
406, 408, 410, 412, 413, 413, 415,
417, 418, 420, 421, 423, 426, 429,
430, 432, 434, 439, 440

sample_gnp(), 397, 420
sample_grg, 54, 393, 394, 397, 399, 400, 402,

406, 408, 410, 412–414, 415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440

sample_growing, 54, 393, 394, 397, 399, 400,
402, 406, 408, 410, 412–415, 416,
418, 420, 421, 423, 426, 429, 430,
432, 434, 439, 440

sample_hierarchical_sbm, 54, 393, 394,
397, 399, 400, 402, 406, 408, 410,
412–415, 417, 417, 420, 421, 423,
426, 429, 430, 432, 434, 439, 440

sample_hrg, 114, 176, 217, 218, 368, 374,
375, 418

sample_islands, 54, 393, 394, 397, 399, 400,
402, 406, 408, 410, 412–415, 417,
418, 419, 421, 423, 426, 429, 430,
432, 434, 439, 440

sample_k_regular, 54, 393, 394, 397, 399,
400, 402, 406, 408, 410, 412–415,

417, 418, 420, 420, 423, 426, 429,
430, 432, 434, 439, 440

sample_last_cit, 54, 393, 394, 398–400,
402, 406, 408, 410, 412–415, 417,
418, 420, 421, 421, 426, 429, 430,
432, 434, 439, 440

sample_motifs, 123, 154, 341, 423
sample_pa, 54, 393, 394, 398–400, 402, 406,

408, 410, 412–415, 417, 418, 420,
421, 423, 424, 429, 430, 432, 434,
439, 440

sample_pa(), 393, 412
sample_pa_age, 54, 393, 394, 398–400, 402,

406, 408, 410, 412–415, 417, 418,
420, 421, 423, 426, 426, 430, 432,
434, 439, 440

sample_pref, 54, 393, 394, 398–400, 402,
406, 408, 410, 412–415, 417, 418,
420, 421, 423, 426, 429, 429, 432,
434, 439, 440

sample_sbm, 54, 393, 394, 398–400, 402, 406,
408, 410, 412–415, 417, 418, 420,
421, 423, 426, 429, 430, 431, 434,
439, 440

sample_seq, 119, 391, 432
sample_smallworld, 54, 393, 394, 398–400,

402, 406, 408, 410, 412–415, 417,
418, 420, 421, 423, 426, 429, 430,
432, 433, 439, 440

sample_spanning_tree, 253, 262, 311, 435,
477

sample_sphere_surface, 405, 436, 437
sample_sphere_surface(), 406
sample_sphere_volume, 405, 436, 437
sample_sphere_volume(), 406
sample_traits (sample_traits_callaway),

438
sample_traits_callaway, 54, 393, 394,

398–400, 402, 406, 408, 410,
412–415, 417, 418, 420, 421, 423,
426, 429, 430, 432, 434, 438, 440

sample_tree, 54, 393, 394, 398–400, 402,
406, 408, 410, 412–415, 417, 418,
420, 421, 423, 426, 429, 430, 432,
434, 439, 439

sbm (sample_sbm), 431
scan_stat, 304, 440
seeded.graph.match (match_vertices), 324

534 INDEX

sequential_pal, 62, 149, 392, 442
sequential_pal(), 149
set_edge_attr, 130–132, 160, 161, 187–189,

220, 221, 229, 443, 444–446,
492–494

set_edge_attr(), 222
set_graph_attr, 130–132, 160, 161,

187–189, 220, 221, 229, 443, 444,
445, 446, 492–494

set_graph_attr(), 221
set_vertex_attr, 130–132, 160, 161,

187–189, 220, 221, 229, 443, 444,
444, 446, 492–494

set_vertex_attr(), 229
set_vertex_attrs, 130–132, 160, 161,

187–189, 220, 221, 229, 443–445,
445, 492–494

shape_noclip (shapes), 446
shape_noplot (shapes), 446
shapes, 446
shapes(), 352
shortest_paths (distance_table), 144
shortest_paths(), 269
show_trace (membership), 328
similarity, 99, 449
simple_cycles, 173, 174, 181, 213, 245, 250,

451
simplified, 305, 393, 452, 502–506
simplify, 12–14, 106, 110, 113, 117, 129,

132, 138, 139, 143, 159, 228, 238,
239, 349, 350, 387, 389, 452, 484,
485, 491

simplify(), 38, 110, 164, 204, 219, 402, 434,
500

simplify_and_colorize (simplify), 452
sir (time_bins), 470
sir(), 359, 360
sizes (membership), 328
smallworld (sample_smallworld), 433
solve(), 18, 365
spectrum, 19, 44, 48, 76, 151, 167, 212, 216,

348, 367, 454, 459, 466
split_join_distance, 43, 78, 80, 81, 83, 85,

87, 90, 91, 93, 96, 98, 105, 209, 309,
332, 340, 363, 456, 497

st_cuts, 152, 163, 258, 261, 328, 335, 336,
338, 460, 462, 496

st_min_cuts, 152, 163, 258, 261, 328, 335,

336, 338, 461, 461, 496
star (make_star), 322
star(), 275
stats4::mle(), 177, 178
stats::as.hclust(), 331
stats::dendrogram(), 331
stochastic_matrix, 457
str.igraph (print.igraph), 369
strength, 19, 44, 48, 76, 151, 167, 212, 216,

348, 367, 455, 458, 466
strength(), 169, 267, 478
subcomponent, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 386, 462, 465,
476, 479, 483, 500, 502

subcomponent(), 108
subgraph, 51, 108, 113, 116, 120, 128, 135,

148, 164, 173, 174, 181, 245, 250,
257, 268, 269, 386, 463, 463, 476,
479, 483, 500, 502

subgraph_centrality, 19, 44, 48, 76, 151,
167, 212, 216, 348, 367, 455, 459,
465

subgraph_from_edges (subgraph), 463
subgraph_from_edges(), 435
subgraph_isomorphic, 61, 122, 125, 202,

243, 244, 466, 469
subgraph_isomorphisms, 61, 122, 125, 202,

243, 244, 467, 468
summary(), 100, 102
summary.cohesiveBlocks

(cohesive_blocks), 99
summary.igraph (print.igraph), 369

t.igraph (reverse_edges), 388
tail(), 220
tail_of, 15, 20, 171, 179, 184, 210, 214, 236,

237, 252, 343, 469, 512, 513
tcltk::tkfont.create(), 353
time_bins, 360, 470
tk_canvas (tkplot), 472
tk_center (tkplot), 472
tk_close (tkplot), 472
tk_coords (tkplot), 472
tk_coords(), 358
tk_fit (tkplot), 472
tk_off (tkplot), 472
tk_postscript (tkplot), 472
tk_reshape (tkplot), 472

INDEX 535

tk_rotate (tkplot), 472
tk_set_coords (tkplot), 472
tkplot, 472
tkplot(), 126, 275, 291, 295, 333, 351–354,

356, 358, 359, 390
to_prufer, 253, 262, 311, 435, 476
to_prufer(), 311
topo_sort, 51, 108, 113, 116, 120, 128, 135,

148, 164, 173, 174, 181, 245, 250,
257, 268, 269, 386, 463, 465, 475,
479, 483, 500, 502

traits (sample_traits_callaway), 438
traits_callaway

(sample_traits_callaway), 438
transitivity, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 386, 463, 465,
476, 477, 483, 500, 502

transitivity(), 482
tree (make_tree), 323
triad_census, 479
triad_census(), 154
triangles, 481

UCINET (read_graph), 379
undirected_graph (make_graph), 314
unfold_tree, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 386, 463, 465,
476, 479, 482, 500, 502

union, 12–14, 106, 110, 113, 117, 129, 132,
138, 139, 143, 159, 228, 238, 239,
349, 350, 387, 389, 454, 483, 485,
491

union(), 10
union.igraph, 12–14, 106, 110, 113, 117,

129, 132, 138, 139, 143, 159, 228,
238, 239, 349, 350, 387, 389, 454,
484, 484, 491

union.igraph(), 483
union.igraph.es, 58, 59, 140, 225, 226, 231,

233, 240, 241, 387, 388, 485,
486–488

union.igraph.vs, 58, 59, 140, 225, 226, 231,
233, 240, 241, 387, 388, 486, 486,
487, 488

union.igraph.vs(), 483
unique.igraph.es, 58, 59, 140, 225, 226,

231, 233, 240, 241, 387, 388, 486,

487, 488
unique.igraph.vs, 58, 59, 140, 225, 226,

231, 233, 240, 241, 387, 388, 486,
487, 487

upgrade_graph, 207, 488
upgrade_graph(), 207

V, 42, 155, 223, 225, 226, 229, 231, 233, 371,
372, 489

V(), 227
V<- (igraph-vs-attributes), 228
vcount (gorder), 183
vcount(), 164
vctrs::vec_c(), 143
vertex, 12–14, 106, 110, 113, 117, 129, 132,

138, 139, 143, 159, 228, 238, 239,
349, 350, 387, 389, 454, 484, 485,
490

vertex(), 10, 227
vertex.attributes (vertex_attr), 492
vertex.attributes<- (vertex_attr<-), 493
vertex.shape.pie, 491
vertex.shape.pie(), 352
vertex_attr, 130–132, 160, 161, 187–189,

220, 221, 229, 443–446, 492, 493,
494

vertex_attr(), 220, 229
vertex_attr<-, 493
vertex_attr_names, 130–132, 160, 161,

187–189, 220, 221, 229, 443–446,
492, 493, 494

vertex_connectivity, 152, 163, 258, 261,
328, 335, 336, 338, 461, 462, 494

vertex_connectivity(), 26, 52, 246
vertex_disjoint_paths

(vertex_connectivity), 494
vertices (vertex), 490
vertices(), 10, 227
voronoi_cells, 43, 78, 80, 81, 83, 85, 87, 90,

91, 93, 96, 98, 105, 209, 309, 332,
340, 363, 457, 496

weighted_clique_num (cliques), 72
weighted_cliques, 74, 249, 265, 498
which_loop (which_multiple), 499
which_loop(), 454
which_multiple, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,

536 INDEX

250, 257, 268, 269, 386, 463, 465,
476, 479, 483, 499, 502

which_multiple(), 454
which_mutual, 51, 108, 113, 116, 120, 128,

135, 148, 164, 173, 174, 181, 245,
250, 257, 268, 269, 386, 463, 465,
476, 479, 483, 500, 501

with_dh (layout_with_dh), 283
with_drl (layout_with_drl), 285
with_edge_, 305, 393, 452, 502, 503, 504,

505, 506
with_fr (layout_with_fr), 288
with_gem (layout_with_gem), 290
with_graph_, 305, 393, 452, 502–504, 504,

506
with_graphopt (layout_with_graphopt),

292
with_igraph_opt, 235, 505
with_kk (layout_with_kk), 293
with_lgl (layout_with_lgl), 295
with_mds (layout_with_mds), 297
with_sugiyama (layout_with_sugiyama),

298
with_vertex_, 305, 393, 452, 502–505, 506
with_vertex_(), 305, 393
without_attr, 305, 393, 452, 502, 503–506
without_loops, 305, 393, 452, 502, 503, 503,

504–506
without_multiples, 305, 393, 452, 502, 503,

503, 504–506
write_graph, 200, 381, 506
write_graph(), 101, 351, 381

	+.igraph
	add_edges
	add_layout_
	add_vertices
	adjacent_vertices
	align_layout
	all_simple_paths
	alpha_centrality
	are_adjacent
	arpack_defaults
	articulation_points
	as.igraph
	as.matrix.igraph
	assortativity
	as_adjacency_matrix
	as_adj_list
	as_biadjacency_matrix
	as_data_frame
	as_directed
	as_edgelist
	as_graphnel
	as_ids
	as_long_data_frame
	as_membership
	authority_score
	automorphism_group
	betweenness
	bfs
	biconnected_components
	bipartite_gnm
	bipartite_mapping
	bipartite_projection
	c.igraph.es
	c.igraph.vs
	canonical_permutation
	categorical_pal
	centralize
	centr_betw
	centr_betw_tmax
	centr_clo
	centr_clo_tmax
	centr_degree
	centr_degree_tmax
	centr_eigen
	centr_eigen_tmax
	cliques
	closeness
	cluster_edge_betweenness
	cluster_fast_greedy
	cluster_fluid_communities
	cluster_infomap
	cluster_label_prop
	cluster_leading_eigen
	cluster_leiden
	cluster_louvain
	cluster_optimal
	cluster_spinglass
	cluster_walktrap
	cocitation
	cohesive_blocks
	compare
	complementer
	component_distribution
	component_wise
	compose
	connect
	consensus_tree
	console
	constraint
	contract
	convex_hull
	coreness
	count_automorphisms
	count_isomorphisms
	count_motifs
	count_subgraph_isomorphisms
	curve_multiple
	decompose
	degree
	delete_edges
	delete_edge_attr
	delete_graph_attr
	delete_vertex_attr
	delete_vertices
	dfs
	diameter
	difference
	difference.igraph
	difference.igraph.es
	difference.igraph.vs
	dim_select
	disjoint_union
	distance_table
	diverging_pal
	diversity
	dominator_tree
	dot-data
	dyad_census
	E
	each_edge
	eccentricity
	edge
	edge_attr
	edge_attr<-
	edge_attr_names
	edge_connectivity
	edge_density
	eigen_centrality
	embed_adjacency_matrix
	embed_laplacian_matrix
	ends
	feedback_arc_set
	feedback_vertex_set
	find_cycle
	fit_hrg
	fit_power_law
	get_edge_ids
	girth
	global_efficiency
	gorder
	graphlet_basis
	graph_
	graph_attr
	graph_attr<-
	graph_attr_names
	graph_center
	graph_from_adjacency_matrix
	graph_from_adj_list
	graph_from_atlas
	graph_from_biadjacency_matrix
	graph_from_edgelist
	graph_from_graphdb
	graph_from_graphnel
	graph_from_isomorphism_class
	graph_from_lcf
	graph_from_literal
	graph_id
	graph_version
	greedy_vertex_coloring
	groups
	gsize
	harmonic_centrality
	has_eulerian_path
	head_of
	head_print
	hits_scores
	hrg
	hrg-methods
	hrg_tree
	identical_graphs
	igraph-attribute-combination
	igraph-dollar
	igraph-es-attributes
	igraph-es-indexing
	igraph-es-indexing2
	igraph-minus
	igraph-vs-attributes
	igraph-vs-indexing
	igraph-vs-indexing2
	igraph_options
	incident
	incident_edges
	indent_print
	intersection
	intersection.igraph
	intersection.igraph.es
	intersection.igraph.vs
	isomorphic
	isomorphisms
	isomorphism_class
	is_acyclic
	is_biconnected
	is_bipartite
	is_chordal
	is_complete
	is_dag
	is_degseq
	is_directed
	is_forest
	is_graphical
	is_igraph
	is_matching
	is_min_separator
	is_named
	is_printer_callback
	is_separator
	is_tree
	is_weighted
	ivs
	keeping_degseq
	knn
	k_shortest_paths
	laplacian_matrix
	layout_
	layout_as_bipartite
	layout_as_star
	layout_as_tree
	layout_in_circle
	layout_nicely
	layout_on_grid
	layout_on_sphere
	layout_randomly
	layout_with_dh
	layout_with_drl
	layout_with_fr
	layout_with_gem
	layout_with_graphopt
	layout_with_kk
	layout_with_lgl
	layout_with_mds
	layout_with_sugiyama
	local_scan
	make_
	make_bipartite_graph
	make_chordal_ring
	make_clusters
	make_de_bruijn_graph
	make_empty_graph
	make_from_prufer
	make_full_bipartite_graph
	make_full_citation_graph
	make_full_graph
	make_graph
	make_kautz_graph
	make_lattice
	make_line_graph
	make_ring
	make_star
	make_tree
	match_vertices
	max_cardinality
	max_flow
	membership
	merge_coords
	min_cut
	min_separators
	min_st_separators
	modularity.igraph
	motifs
	mst
	neighbors
	normalize
	norm_coords
	page_rank
	path
	permute
	plot.common
	plot.igraph
	plot.sir
	plot_dendrogram
	plot_dendrogram.igraphHRG
	power_centrality
	predict_edges
	print.igraph
	print.igraph.es
	print.igraph.vs
	print.igraphHRG
	print.igraphHRGConsensus
	printer_callback
	radius
	random_walk
	read_graph
	realize_bipartite_degseq
	realize_degseq
	reciprocity
	rep.igraph
	rev.igraph.es
	rev.igraph.vs
	reverse_edges
	rewire
	rglplot
	running_mean
	r_pal
	sample_
	sample_bipartite
	sample_chung_lu
	sample_correlated_gnp
	sample_correlated_gnp_pair
	sample_degseq
	sample_dirichlet
	sample_dot_product
	sample_fitness
	sample_fitness_pl
	sample_forestfire
	sample_gnm
	sample_gnp
	sample_grg
	sample_growing
	sample_hierarchical_sbm
	sample_hrg
	sample_islands
	sample_k_regular
	sample_last_cit
	sample_motifs
	sample_pa
	sample_pa_age
	sample_pref
	sample_sbm
	sample_seq
	sample_smallworld
	sample_spanning_tree
	sample_sphere_surface
	sample_sphere_volume
	sample_traits_callaway
	sample_tree
	scan_stat
	sequential_pal
	set_edge_attr
	set_graph_attr
	set_vertex_attr
	set_vertex_attrs
	shapes
	similarity
	simple_cycles
	simplified
	simplify
	spectrum
	split_join_distance
	stochastic_matrix
	strength
	st_cuts
	st_min_cuts
	subcomponent
	subgraph
	subgraph_centrality
	subgraph_isomorphic
	subgraph_isomorphisms
	tail_of
	time_bins
	tkplot
	topo_sort
	to_prufer
	transitivity
	triad_census
	triangles
	unfold_tree
	union
	union.igraph
	union.igraph.es
	union.igraph.vs
	unique.igraph.es
	unique.igraph.vs
	upgrade_graph
	V
	vertex
	vertex.shape.pie
	vertex_attr
	vertex_attr<-
	vertex_attr_names
	vertex_connectivity
	voronoi_cells
	weighted_cliques
	which_multiple
	which_mutual
	without_attr
	without_loops
	without_multiples
	with_edge_
	with_graph_
	with_igraph_opt
	with_vertex_
	write_graph
	[.igraph
	[[.igraph
	>
	Index

