Package ‘gpboost’

February 11, 2026
Type Package

Title Combining Tree-Boosting with Gaussian Process and Mixed Effects
Models

Version 1.6.6
Date 2026-02-11

Description An R package that allows for combining tree-boosting with Gaussian pro-
cess and mixed effects models. It also allows for independently doing tree-boosting as well as in-
ference and prediction for Gaussian process and mixed effects mod-
els. See <https://github.com/fabsig/GPBoost> for more information on the soft-
ware and Sigrist (2022, JMLR) <https://www.jmlr.org/papers/v23/20-322.
html> and Sigrist (2023, TPAMI) <doi:10.1109/TPAMI.2022.3168152> for more informa-
tion on the methodology.

Encoding UTF-8
License Apache License (== 2.0) | file LICENSE

URL https://github.com/fabsig/GPBoost

BugReports https://github.com/fabsig/GPBoost/issues
NeedsCompilation yes

Biarch true

Suggests testthat

Depends R (>=3.5), R6 (>=2.4.0)

Imports data.table (>= 1.9.6), graphics, RISONIO, Matrix (>= 1.1-0),
methods, utils

SystemRequirements C++17
RoxygenNote 6.0.1

Author Fabio Sigrist [aut, cre],
Tim Gyger [aut],
Pascal Kuendig [aut],
Benoit Jacob [cph],
Gael Guennebaud [cph],
Nicolas Carre [cph],

https://github.com/fabsig/GPBoost
https://www.jmlr.org/papers/v23/20-322.html
https://www.jmlr.org/papers/v23/20-322.html
https://doi.org/10.1109/TPAMI.2022.3168152
https://github.com/fabsig/GPBoost
https://github.com/fabsig/GPBoost/issues

2 Contents

Pierre Zoppitelli [cph],
Gauthier Brun [cph],

Jean Ceccato [cph],

Jitse Niesen [cph],

Other authors of Eigen for the included version of Eigen [ctb, cph],
Timothy A. Davis [cph],
Guolin Ke [ctb],

Damien Soukhavong [ctb],
James Lamb [ctb],

Other authors of LightGBM for the included version of LightGBM [ctb],
Microsoft Corporation [cph],
Dropbox, Inc. [cph],

Jay Loden [cph],

Dave Daeschler [cph],
Giampaolo Rodola [cph],
Alberto Ferreira [ctb],
Daniel Lemire [ctb],

Victor Zverovich [cph],

IBM Corporation [ctb],
Keith O'Hara [cph],

Stephen L. Moshier [cph],
Jorge Nocedal [cph],

Naoaki Okazaki [cph],
Yixuan Qiu [cph],

Dirk Toewe [cph]

Maintainer Fabio Sigrist <fabiosigrist@gmail.com>
Repository CRAN
Date/Publication 2026-02-11 14:30:03 UTC

Contents
A@AriCUS.LESt e e e e 4
A@ArICUS.LIAIN ot e e e e e e e 4
bank e 5
COOTAS . o v v vt e e e e 5
COOTdS_teSt e e e e 6
dim.gpb.Dataset e e e 6
dimnames.gpb.Dataset 7
fit . 8
fitGPModel 11
fitGPModel 15
getinfo 26
GEL_AUX_PATS .+« o v v v e 27
get_aux_pars.GPModel 28
get_coef . . L L e e 28
get_coef.GPModel 29

GELLCOV_PALS . o v v v v v e et e e e e e e e e e e e e e e 30

Contents

3
get_cov_pars.GPModel 31
get_nested_categories o e e e e e e e e e 31
gpb.convert_with_ruleso 32
SPb.CV L L e 34
gpb.Dataset e e 38
gpb.Dataset.construct 39
gpb.Dataset.create.valid 40
gpb.Dataset.save L L e e e 40
gpb.Dataset.set.categorical 41
gpb.Dataset.set.reference 42
gpb.dump e 43
gpb.get.ievalresulto L 44
gpb.grid.search.tune.parameters 45
gPbAMPOItanCe e e e e 48
EPDANETPIELE e e e e e e e e e e 50
gpbload 51
gpb.model.dttreeo L. 52
gpb.plotimportance e e e e e e 53
gpb.plotinterpretation e e e 54
gpb.plot.part.dep.interact e 56
gpb.plot.partial.dependence 57
EPD.SAVE . . . e e e e e 59
gpbtrain L e 60
gPbOOSt . . L e 65
GPBoost_data e 70
GPModel e 70
GPModel_shared_params L 77
group_data L. L e e 87
group_data_test L. e e e e e e e 87
loadGPModel e 88
neg_log_likelihood 89
neg_log_likelihood. GPModel 90
predict.gpb.Booster L e 91
predict. GPModel 94
predict_training_data_random_effects o oo 97
predict_training_data_random_effects.GPModel 98
readRDS.gpb.Booster 99
saveGPModel 100
saveRDS.gpb.Booster 101
Setinfo L e e e 102
SEt_OPtiM_Paramst i i e e e e e e e 103
set_optim_params.GPModel 106
set_prediction_data L e e e e 110
set_prediction_data.GPModel Lo 112
slice 114
summary.GPModel 115
X 116

4 agaricus.train

/28 SO 116
Index 117
agaricus.test Test part from Mushroom Data Set
Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

e label: the label for each record

* data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.test)

Format

A list containing a label vector, and a dgCMatrix object with 1611 rows and 126 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

agaricus.train Training part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

e label: the label for each record

* data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.train)

Format

A list containing a label vector, and a dgCMatrix object with 6513 rows and 127 variables

bank 5

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

bank Bank Marketing Data Set

Description

This data set is originally from the Bank Marketing data set, UCI Machine Learning Repository.

It contains only the following: bank.csv with 10 randomly selected from 3 (older version of this
dataset with less inputs).

Usage
data(bank)

Format

A data.table with 4521 rows and 17 variables

References

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

S. Moro, P. Cortez and P. Rita. (2014) A Data-Driven Approach to Predict the Success of Bank
Telemarketing. Decision Support Systems

coords Coordinates for example data for the GPBoost package

Description

A matrix with spatial coordinates for the example data of the GPBoost package

Usage

data(GPBoost_data)

6 dim.gpb.Dataset

coords_test Test coordinates for example data for the GPBoost package

Description

A matrix with spatial coordinates for predictions for the example data of the GPBoost package

Usage
data(GPBoost_data)

dim.gpb.Dataset Dimensions of an gpb.Dataset

Description

Returns a vector of numbers of rows and of columns in an gpb.Dataset.

Usage
S3 method for class 'gpb.Dataset'
dim(x, ...)

Arguments

X Object of class gpb.Dataset
other parameters

Details
Note: since nrow and ncol internally use dim, they can also be directly used with an gpb.Dataset
object.

Value

a vector of numbers of rows and of columns

Examples

data(agaricus.train, package = "gpboost"”)
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

stopifnot(nrow(dtrain) == nrow(traing$data))
stopifnot(ncol(dtrain) == ncol(train$data))
stopifnot(all(dim(dtrain) == dim(train$data)))

dimnames.gpb.Dataset 7

dimnames.gpb.Dataset Handling of column names of gpb.Dataset

Description

Only column names are supported for gpb.Dataset, thus setting of row names would have no effect
and returned row names would be NULL.

Usage

S3 method for class 'gpb.Dataset'
dimnames(x)

S3 replacement method for class
dimnames(x) <- value

gpb.Dataset'

Arguments
X object of class gpb.Dataset
value a list of two elements: the first one is ignored and the second one is column
names
Details

Generic dimnames methods are used by colnames. Since row names are irrelevant, it is recom-
mended to use colnames directly.

Value

A list with the dimension names of the dataset

A list with the dimension names of the dataset

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

dimnames(dtrain)

colnames(dtrain)

colnames(dtrain) <- make.names(seq_len(ncol(train$data)))
print(dtrain, verbose = TRUE)

fit Generic ’fit’ method for a GPModel

Description

Generic ’fit’ method for a GPModel

Usage

fit(gp_model, y, X, params, offset = NULL, fixed_effects = NULL)

Arguments
gp_model a GPModel
y A vector with response variable data
X A matrix with numeric covariate data for the fixed effects linear regression term
(if there is one)
params A list with parameters for the estimation / optimization

e trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If ’init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option ’trace
= TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

e init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If *esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

fit

estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)
optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "lbfgs", "gradient_descent", "fisher_scoring",
"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, *optimizer_cov’ is also used for those
optimizer_coef: string (default ="wls" for Gaussian likelihoods and "Ibfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent", "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lbfgs", *optimizer_coef’ is automatically also set to
the same value.
maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm
delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used
cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms
cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization
cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation
num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix
reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated
seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)
cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.
— Options for grouped random effects:
* "ssor" (= default): SSOR preconditioner
* "incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-
tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

fit

* "vadu" (= default): (BT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma“-1

x "fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1 * D * BA-T + WA-1)

"pivoted_cholesky": (Lk * LKk"T + W”-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted
Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma

* "incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * D/-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1

— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":

+ "fitc" (= default): FITC / modified predictive process preconditioner

x "vifdu": VIF with diagonal update preconditioner

— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
x "fitc" (= default): modified predictive process preconditioner
% "none": no preconditioner

* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing
points as in the approximation as used). Internal default values if NULL or
<0:

— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner

 convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters'

e Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used

"

— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent
and 1. otherwise)
— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those
— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion
* Ir_coef: numeric (default=0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used
* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

fit. GPModel 11

* acc_rate_coef: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

* momentum_offset: integer (Default =2, only relevant for "gradient_descent").
Number of iterations for which no momentum is applied in the beginning.

* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "Ibfgs" optimizer

¢ delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-

ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

offset A numeric vector with additional fixed effects contributions that are added
to the linear predictor (= offset). The length of this vector needs to equal the
number of training data points.

fixed_effects This is discontinued. Use the renamed equivalent argument of fset instead

Author(s)

Fabio Sigrist

fit.GPModel Fits a GPModel

Description

Estimates the parameters of a GPModel by maximizing the marginal likelihood

Usage

S3 method for class 'GPModel'
fit(gp_model, y, X = NULL, params = list(),
offset = NULL, fixed_effects = NULL)

Arguments
gp_model a GPModel
y A vector with response variable data
X A matrix with numeric covariate data for the fixed effects linear regression term
(if there is one)
params A list with parameters for the estimation / optimization

e trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

fit. GPModel

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If ’init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option trace
= TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

¢ init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If "esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

* estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)

* optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "lbfgs", "gradient_descent", "fisher_scoring",
"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, ’optimizer_cov’ is also used for those

* optimizer_coef: string (default="wls" for Gaussian likelihoods and "lbfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent", "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lbfgs", ’optimizer_coef’ is automatically also set to
the same value.

e maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm

e delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used

fit. GPModel 13

e cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms

* cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization

e cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation

e num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix

e reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated

* seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)

* cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.

— Options for grouped random effects:
"ssor" (= default): SSOR preconditioner
* "incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-

tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

* "vadu" (= default): (BAT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma“-1

x "fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1 * D * BA-T + WA-1)

"pivoted_cholesky": (Lk * Lk T + W”-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted
Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma

"incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * D”-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1

— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":

"fitc" (= default): FITC / modified predictive process preconditioner

"vifdu": VIF with diagonal update preconditioner

— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
* "fitc" (= default): modified predictive process preconditioner
* "none": no preconditioner
* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing

14 fit. GPModel

points as in the approximation as used). Internal default values if NULL or
<0:

— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner

 convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters"

e Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used

"

— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent
and 1. otherwise)

— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those

— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion
¢ Ir_coef: numeric (default =0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used

* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

* acc_rate_coef: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

* momentum_offset: integer (Default =2, only relevant for "gradient_descent").
Number of iterations for which no momentum is applied in the beginning.

* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "lbfgs" optimizer

¢ delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-
ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

offset A numeric vector with additional fixed effects contributions that are added
to the linear predictor (= offset). The length of this vector needs to equal the
number of training data points.

fixed_effects This is discontinued. Use the renamed equivalent argument of fset instead

Value

A fitted GPModel

fitGPModel 15

Author(s)

Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[1]1),X)

X_testl <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- GPModel(group_data = group_datal[,1], likelihood="gaussian")

fit(gp_model, y =y, X = X1)

summary (gp_model)

Make predictions

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)

pred$mu # Predicted mean

pred$var # Predicted variances

Also predict covariance matrix

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_cov_mat = TRUE)

pred$mu # Predicted mean

pred$cov # Predicted covariance

gp_model <- GPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
likelihood="gaussian")
fit(gp_model, y =y, X = X1)
summary (gp_model)
Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test,
X_pred = X_test1, predict_cov_mat = TRUE)
pred$mu # Predicted (posterior) mean of GP
pred$cov # Predicted (posterior) covariance matrix of GP

fitGPModel Fits a GPModel

Description

Estimates the parameters of a GPModel by maximizing the marginal likelihood

16 fitGPModel

Usage

fitGPModel(likelihood = "gaussian”, group_data = NULL,
group_rand_coef_data = NULL, ind_effect_group_rand_coef = NULL,
drop_intercept_group_rand_effect = NULL, gp_coords = NULL,

gp_rand_coef_data = NULL, cov_function = "matern”, cov_fct_shape = 1.5,
gp_approx = "none", num_parallel_threads = NULL, GPU_use = FALSE,
matrix_inversion_method = "default”, weights = NULL,

likelihood_learning_rate = 1, cov_fct_taper_range = 1,
cov_fct_taper_shape = 1, num_neighbors = NULL,

vecchia_ordering = "random”, ind_points_selection = "kmeans++",
num_ind_points = NULL, cover_tree_radius = 1, seed = 0L,
cluster_ids = NULL, free_raw_data = FALSE, y, X = NULL,

params = list(), vecchia_approx = NULL, vecchia_pred_type = NULL,
num_neighbors_pred = NULL, offset = NULL, fixed_effects = NULL,
likelihood_additional_param = NULL)

Arguments

likelihood A string specifying the likelihood function (distribution) of the response vari-
able. Available options:

* "gaussian"

* "bernoulli_logit": Bernoulli likelihood with a logit link function for binary
classification. Aliases: "binary", "binary_logit"

* "bernoulli_probit": Bernoulli likelihood with a probit link function for bi-
nary classification. Aliases: "binary_probit"

* "binomial_logit": Binomial likelihood with a logit link function. The re-
sponse variable y needs to contain proportions of successes / trials, and the
weights parameter needs to contain the numbers of trials. Aliases: "bino-
mial"

* "binomial_probit": Binomial likelihood with a probit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials

* "beta_binomial": Beta-binomial likelihood with a logit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials. Aliases:
"betabinomial”, "beta-binomial"

* "poisson": Poisson likelihood with a log link function

* "negative_binomial": negative binomial likelihood with a log link function
(aka "nbinom2", "negative_binomial_2"). The variance is mu * (mu + r) /
1, mu = mean, r = shape, with this parametrization

* "negative_binomial_1": Negative binomial 1 (aka "nbinom1") likelihood
with a log link function. The variance is mu * (1 + phi), mu = mean, phi =
dispersion, with this parametrization

* "gamma": Gamma likelihood with a log link function

* "lognormal": Log-normal likelihood with a log link function

* "beta" : Beta likelihood with a logit link function (parametrization of Fer-
rari and Cribari-Neto, 2004)

fitGPModel

17

"t": t-distribution (e.g., for robust regression)
"t_fix_df": t-distribution with the degrees-of-freedom (df) held fixed and
not estimated
— The degrees-of-freedom (df) can be set via the 1ikelihood_additional_param
parameter. The default is df = 2
"quantile_regression" / "asymmetric_laplace" : an asymmetric Laplace like-

"non

lihood for quantile regression, aliases: "asymmetric_laplace", "quantile_regression"
— The quantile can be set via the 1ikelihood_additional_param pa-
rameter. The default is quantile = 0.5
"zero_inflated_gamma": Zero-inflated gamma likelihood. The log-transformed
mean of the response variable equals the sum of fixed and random effects,
E(y) = mu = exp(F(X) + Zb), and the rate parameter equals (1-p0) * gamma
/ mu, where p0 is the zero-inflation probability and gamma the shape pa-
rameter. L.e., the rate parameter depends on F(X) + Zb, and p0 and gamma
are (univariate auxiliary) parameters that are estimated. Note that E(y) = mu
above refers the the mean of the entire distribution and not just the positive
part
"zero_censored_power_transformed_normal": Likelihood of a censored and
power-transformed normal variable for modeling data with a point mass
at 0 and a continuous distribution for y > 0. The model used is Y =
max(0,X)"ambda, X ~ N(mu, sigma”2), where mu = F(X) + Zb, and sigma
and lambda are (auxiliary) parameters that are estimated. For more details
on this model, see Sigrist et al. (2012, AOAS) "A dynamic nonstationary
spatio-temporal model for short term prediction of precipitation”
"gaussian_heteroscedastic": Gaussian likelihood where both the mean and
the variance are related to fixed and random effects. This is currently only
implemented for GPs with a "vecchia’ approximation
Note: the first lines in the likelihoods source file contain additional com-
ments on the specific parametrizations used
Note: other likelihoods can be implemented upon request

group_data A vector or matrix whose columns are categorical grouping variables. The
elements being group levels defining grouped random effects. The elements
of ’group_data’ can be integer, double, or character. The number of columns
corresponds to the number of grouped (intercept) random effects

group_rand_coef_data
A vector or matrix with numeric covariate data for grouped random coeffi-
cients

ind_effect_group_rand_coef
A vector with integer indices that indicate the corresponding categorical group-
ing variable (=columns) in ’group_data’ for every covariate in ’group_rand_coef_data’.
Counting starts at 1. The length of this index vector must equal the number of
covariates in ’group_rand_coef_data’. For instance, c(1,1,2) means that the first
two covariates (=first two columns) in ’group_rand_coef_data’ have random co-
efficients corresponding to the first categorical grouping variable (=first column)
in ’group_data’, and the third covariate (=third column) in ’group_rand_coef_data’
has a random coefficient corresponding to the second grouping variable (=sec-
ond column) in ’group_data’

https://github.com/fabsig/GPBoost/blob/master/include/GPBoost/likelihoods.h

fitGPModel

drop_intercept_group_rand_effect
A vector of type logical (boolean). Indicates whether intercept random ef-
fects are dropped (only for random coefficients). If drop_intercept_group_rand_effect[k]
is TRUE, the intercept random effect number k is dropped / not included. Only
random effects with random slopes can be dropped.

gp_coords A matrix with numeric coordinates (= inputs / features) for defining Gaussian
processes

gp_rand_coef_data

A vector or matrix with numeric covariate data for Gaussian process random
coefficients

cov_function A string specifying the covariance function for the Gaussian process. Avail-
able options:

* "matern": Matern covariance function with the smoothness specified by the
cov_fct_shape parameter (using the parametrization of Rasmussen and
Williams, 2006)

* "matern_estimate_shape": same as "matern" but the smoothness parameter
is also estimated

* "matern_space_time": Spatio-temporal Matern covariance function with
different range parameters for space and time. Note that the first column
in gp_coords must correspond to the time dimension

 "space_time_gneiting": Spatio-temporal covariance function given in Eq.
(16) of Gneiting (2002). Note that the first column in gp_coords must cor-
respond to the time dimension. This covariance has seven parameters (in
the following order: sigma?2, a, c, alpha, nu, beta, delta) which are all esti-
mated by default. You can disable the estimation of some of these param-
eter using the "estimate_cov_par_index’ argument of the params argument
in either the fit function of a gp_model object or the set_optim_params
function prior to estimation.

* "matern_ard": anisotropic Matern covariance function with Automatic Rel-
evance Determination (ARD), i.e., with a different range parameter for ev-
ery coordinate of gp_coords

* "matern_ard_estimate_shape": same as "matern_ard" but the smoothness
parameter is also estimated

* "exponential": Exponential covariance function (using the parametrization
of Diggle and Ribeiro, 2007)

* "gaussian": Gaussian, aka squared exponential, covariance function (using
the parametrization of Diggle and Ribeiro, 2007)

* "gaussian_ard": anisotropic Gaussian, aka squared exponential, covariance
function with Automatic Relevance Determination (ARD), i.e., with a dif-
ferent range parameter for every coordinate of gp_coords

» "powered_exponential": powered exponential covariance function with the
exponent specified by the cov_fct_shape parameter (using the parametriza-
tion of Diggle and Ribeiro, 2007)

* "wendland": Compactly supported Wendland covariance function (using
the parametrization of Bevilacqua et al., 2019, AOS)

fitGPModel 19

* "linear": linear covariance function. This corresponds to a Bayesian linear
regression model with a Gaussian prior on the coefficients with a constant
variance diagonal prior covariance, and the prior variance is estimated using
empirical Bayes.

* "hurst": Hurst covariance function cov(s, s’) = (sigma2 / 2) * (lIsll*"(2H)
+ Is’lI"(2H) - lIs - s’lIN(2H)). For H = 0.5, this corresponds to Brownian
motion (-> see the ’estimate_cov_par_index’ argument)

"hurst_ard": Hurst covariance function with with Automatic Relevance De-
termination (ARD), i.e., with a different range parameter for every coordi-
nate of “gp_coords* except for the first coordinate which has a range pa-
rameter of 1 due to identifiability with the marginal variance: cov(s,s’) =

072 | (51 + Shoatou/?)” 4 (1 Shaeu/?)” = (1= 527+ Thoollon = o

cov_fct_shape A numeric specifying the shape parameter of the covariance function (e.g.,
smoothness parameter for Matern and Wendland covariance) This parameter is
irrelevant for some covariance functions such as the exponential or Gaussian

gp_approx A string specifying the large data approximation for Gaussian processes. Avail-
able options:

* "none": No approximation

* "vecchia": Vecchia approximation; see Sigrist (2022, JMLR) for more de-
tails

 "full_scale_vecchia": Vecchia-inducing points full-scale (VIF) approxima-
tion; see Gyger, Furrer, and Sigrist (2025) for more details

 "tapering": The covariance function is multiplied by a compactly supported
Wendland correlation function

* "fitc": Fully Independent Training Conditional approximation aka modified
predictive process approximation; see Gyger, Furrer, and Sigrist (2024) for
more details

"full_scale_tapering": Full-scale approximation combining an inducing point
/ predictive process approximation with tapering on the residual process;
see Gyger, Furrer, and Sigrist (2024) for more details

 "vecchia_latent": similar as "vecchia" but a Vecchia approximation is ap-
plied to the latent Gaussian process for likelihood == "gaussian". For like-

non

lihood != "gaussian", "vecchia" and "vecchia_latent" are equivalent

num_parallel_threads
An integer specifying the number of parallel threads for OMP. If num_parallel_threads

= NULL, all available threads are used
GPU_use A boolean. If TRUE, GPU acceleration will be used if supported

matrix_inversion_method
A string specifying the method used for inverting covariance matrices. Avail-
able options:

» "default": iterative methods where possible, otherwise Cholesky factoriza-
tion

* "cholesky": Cholesky factorization

20 fitGPModel

 "iterative": iterative methods. A combination of the conjugate gradient, the
Lanczos algorithm, and other methods.
This is currently only supported for the following cases:
— grouped random effects with more than one level
— likelihood != "gaussian" and gp_approx == "vecchia" (non-Gaussian
likelihoods with a Vecchia-Laplace approximation)
— likelihood != "gaussian" and gp_approx == "full_scale_vecchia" (non-
Gaussian likelihoods with a VIF approximation)
— likelihood == "gaussian" and gp_approx == "full_scale_tapering" (Gaus-
sian likelihood with a full-scale tapering approximation)
weights A vector with sample weights
likelihood_learning_rate
A numeric with a learning rate for the likelihood for generalized Bayesian in-
ference (only non-Gaussian likelihoods)
cov_fct_taper_range
A numeric specifying the range parameter of the Wendland covariance function
and Wendland correlation taper function. We follow the notation of Bevilacqua
et al. (2019, AOS)
cov_fct_taper_shape
A numeric specifying the shape (=smoothness) parameter of the Wendland co-

variance function and Wendland correlation taper function. We follow the nota-
tion of Bevilacqua et al. (2019, AOS)

num_neighbors An integer specifying the number of neighbors for the Vecchia and VIF ap-
proximations. Internal default values if NULL:
* 20 for gp_approx = "vecchia"
* 30 for gp_approx = "full_scale_vecchia"
Note: for prediction, the number of neighbors can be set through the 'num_neighbors_pred’
parameter in the "set_prediction_data’ function. By default, num_neighbors_pred
=2 * num_neighbors. Further, the type of Vecchia approximation used for mak-
ing predictions is set through the vecchia_pred_type’ parameter in the ’set_prediction_data’
function
vecchia_ordering
A string specifying the ordering used in the Vecchia approximation. Available
options:
* "none": the default ordering in the data is used
* "random": a random ordering
* "time": ordering accorrding to time (only for space-time models)

e "time_random_space": ordering according to time and randomly for all
spatial points with the same time points (only for space-time models)

ind_points_selection
A string specifying the method for choosing inducing points Available options:
e "kmeans++: the k-means++ algorithm
* "cover_tree": the cover tree algorithm
* "random": random selection from data points

fitGPModel 21

num_ind_points An integer specifying the number of inducing points / knots for FITC, full_scale_tapering,
and VIF approximations. Internal default values if NULL:

* 500 for gp_approx = "FITC" and gp_approx = "full_scale_tapering"
* 200 for gp_approx = "full_scale_vecchia"
cover_tree_radius
A numeric specifying the radius (= "spatial resolution") for the cover tree algo-
rithm

seed An integer specifying the seed used for model creation (e.g., random ordering
in Vecchia approximation)

cluster_ids A vector with elements indicating independent realizations of random effects /
Gaussian processes (same values = same process realization). The elements of
"cluster_ids’ can be integer, double, or character.

free_raw_data A boolean. If TRUE, the data (groups, coordinates, covariate data for random
coefficients) is freed in R after initialization

y A vector with response variable data

X A matrix with numeric covariate data for the fixed effects linear regression term
(if there is one)

params A list with parameters for the estimation / optimization

e trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If *init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option ’trace
=TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

e init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If *esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

fitGPModel

* estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)

* optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "lbfgs", "gradient_descent", "fisher_scoring",
"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, *optimizer_cov’ is also used for those

* optimizer_coef: string (default ="wls" for Gaussian likelihoods and "lbfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent", "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lbfgs", *optimizer_coef’ is automatically also set to
the same value.

e maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm

e delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used

e cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms

e cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization

e cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation

e num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix

e reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated

 seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)

* cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.

— Options for grouped random effects:
* "ssor" (= default): SSOR preconditioner
* "incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-
tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

fitGPModel 23

* "vadu" (= default): (BT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma“-1

x "fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1 * D * BA-T + WA-1)

"pivoted_cholesky": (Lk * LKk"T + W”-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted
Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma

* "incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * D/-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1

— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":

+ "fitc" (= default): FITC / modified predictive process preconditioner

x "vifdu": VIF with diagonal update preconditioner

— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
x "fitc" (= default): modified predictive process preconditioner
% "none": no preconditioner

* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing
points as in the approximation as used). Internal default values if NULL or
<0:

— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner

 convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters'

e Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used

"

— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent
and 1. otherwise)
— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those
— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion
* Ir_coef: numeric (default=0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used
* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

24

fitGPModel

* acc_rate_coef: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

* momentum_offset: integer (Default =2, only relevant for "gradient_descent").

Number of iterations for which no momentum is applied in the beginning.
* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "Ibfgs" optimizer
¢ delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-

ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

vecchia_approx Discontinued. Use the argument gp_approx instead

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making pre-
dictions. This is discontinued here. Use the function ’set_prediction_data’ to
specify this

num_neighbors_pred
an integer specifying the number of neighbors for making predictions. This is
discontinued here. Use the function ’set_prediction_data’ to specify this

offset A numeric vector with additional fixed effects contributions that are added
to the linear predictor (= offset). The length of this vector needs to equal the
number of training data points.

fixed_effects This is discontinued. Use the renamed equivalent argument of fset instead

likelihood_additional_param
A numeric specifying an additional parameter for the 1ikelihood which cannot
be estimated for this 1ikelihood (e.g., degrees of freedom for likelihood =
"t_fix_df"). This is not to be confused with any auxiliary parameters that can
be estimated and accessed through the function get_aux_pars after estimation.
Note that this 1ikelihood_additional_param parameter is irrelevant for many
likelihoods. If 1ikelihood_additional_param = NULL, the following internal
default values are used:

e df = 2 for likelihood = "t_fix_df"
* quantile = 0.5 for likelihood = "asymmetric_laplace"

Value

A fitted GPModel

Author(s)

Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

fitGPModel 25

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[11),X)

X_test1l <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1,
likelihood="gaussian")

summary (gp_model)

Make predictions

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)

pred$mu # Predicted mean

pred$var # Predicted variances

Also predict covariance matrix

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_cov_mat = TRUE)

pred$mu # Predicted mean

pred$cov # Predicted covariance

gp_model <- fitGPModel(group_data = group_data, likelihood="gaussian",
group_rand_coef_data = X[,21],
ind_effect_group_rand_coef = 1,
y =y, X=X1)

summary (gp_model)

gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
likelihood="gaussian", y =y, X = X1)
summary (gp_model)
Make predictions
pred <- predict(gp_model, gp_coords_pred = coords_test,
X_pred = X_test1, predict_cov_mat = TRUE)
pred$mu # Predicted (posterior) mean of GP
pred$cov # Predicted (posterior) covariance matrix of GP

#-—mm Gaussian process model with Vecchia approximation----------------
gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
gp_approx = "vecchia”, num_neighbors = 20,

likelihood="gaussian”, y = vy)
summary (gp_model)

#-—mm Gaussian process model with random coefficients-------------—---
gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
gp_rand_coef_data = X[,2], y=y,
likelihood = "gaussian)

summary (gp_model)

gp_model <- fitGPModel(group_data = group_data,
gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,

26

likelihood = "gaussian”, y =y, X = X1)

summary (gp_model)

getinfo

getinfo Get information of an gpb.Dataset object

Description

Get one attribute of a gpb.Dataset

Usage

getinfo(dataset, ...)

S3 method for class 'gpb.Dataset'

getinfo(dataset, name, ...)
Arguments
dataset Object of class gpb.Dataset

other parameters

name the name of the information field to get (see details)

Details

The name field can be one of the following:

* label: label gpboost learn from ;

* weight: to do a weight rescale ;

* group: used for learning-to-rank tasks. An integer vector describing how to group rows to-
gether as ordered results from the same set of candidate results to be ranked. For example, if
you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the

second group, etc.

* init_score: initial score is the base prediction gpboost will boost from.

Value

info data

info data

get_aux_pars

Examples

data(agaricus.train, package = "gpboost"”)

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

labels <- gpboost::getinfo(dtrain, "label”)
gpboost::setinfo(dtrain, "label”, 1 - labels)

labels2 <- gpboost::getinfo(dtrain, "label")
stopifnot(all(labels2 == 1 - labels))

27

get_aux_pars Get (estimated) auxiliary (additional) parameters of the likelihood

Description

Get (estimated) auxiliary (additional) parameters of the likelihood such as the shape parameter of a
gamma or a negative binomial distribution. Some likelihoods (e.g., bernoulli_logit or poisson) have

no auxiliary parameters

Usage

get_aux_pars(gp_model)

Arguments

gp_model A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")
X1 <- cbind(rep(1,dim(X)[1]1),X) # Add intercept column
y_pos <= exp(y)

gp_model <- fitGPModel(group_data = group_datal[,1], y = y_pos, X = X1, likelihood="gamma")

get_aux_pars(gp_model)

28 get_coef

get_aux_pars.GPModel Get (estimated) auxiliary (additional) parameters of the likelihood

Description

Get (estimated) auxiliary (additional) parameters of the likelihood such as the shape parameter of a
gamma or a negative binomial distribution. Some likelihoods (e.g., bernoulli_logit or poisson) have
no auxiliary parameters

Usage
S3 method for class 'GPModel'
get_aux_pars(gp_model)

Arguments

gp_model A GPModel

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

X1 <= cbind(rep(1,dim(X)[1]1),X) # Add intercept column

y_pos <= exp(y)

gp_model <- fitGPModel(group_data = group_datal[,1], y = y_pos, X = X1, likelihood="gamma")
get_aux_pars(gp_model)

get_coef Get (estimated) linear regression coefficients

Description

Get (estimated) linear regression coefficients and standard errors (if std_err=TRUE)

Usage

get_coef (gp_model, std_err = FALSE)

get_coef.GPModel 29

Arguments
gp_model A GPModel
std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square
root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)
Author(s)
Fabio Sigrist
Examples

data(GPBoost_data, package = "gpboost")

X1 <= cbind(rep(1,dim(X)[1]1),X) # Add intercept column

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
get_coef (gp_model)

get_coef.GPModel Get (estimated) linear regression coefficients

Description

Get (estimated) linear regression coefficients and standard errors (if std_err=TRUE)

Usage

S3 method for class 'GPModel'
get_coef (gp_model, std_err = FALSE)

Arguments
gp_model A GPModel
std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square
root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)
Value
A GPModel
Author(s)

Fabio Sigrist

30 get_cov_pars

Examples

data(GPBoost_data, package = "gpboost")

X1 <= cbind(rep(1,dim(X)[1]1),X) # Add intercept column

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
get_coef (gp_model)

get_cov_pars Get (estimated) covariance parameters

Description

Get (estimated) covariance parameters and standard error (if std_err=TRUE)

Usage

get_cov_pars(gp_model, std_err = FALSE)

Arguments
gp_model A GPModel
std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square
root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)
Author(s)
Fabio Sigrist
Examples

data(GPBoost_data, package = "gpboost")

X1 <= cbind(rep(1,dim(X)[1]1),X) # Add intercept column

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
get_cov_pars(gp_model)

get_cov_pars.GPModel 31

get_cov_pars.GPModel Get (estimated) covariance parameters

Description

Get (estimated) covariance parameters and standard errors (if std_err=TRUE)

Usage

S3 method for class 'GPModel'
get_cov_pars(gp_model, std_err = FALSE)

Arguments
gp_model A GPModel
std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square
root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)
Value
A GPModel
Author(s)
Fabio Sigrist
Examples

data(GPBoost_data, package = "gpboost")

X1 <= cbind(rep(1,dim(X)[1]1),X) # Add intercept column

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
get_cov_pars(gp_model)

get_nested_categories Auxiliary function to create categorical variables for nested grouped
random effects

Description

Auxiliary function to create categorical variables for nested grouped random effects

Usage

get_nested_categories(outer_var, inner_var)

32 gpb.convert_with_rules

Arguments
outer_var A vector containing the outer categorical grouping variable within which the
inner_var is nested in. Can be of type integer, double, or character.
inner_var A vector containing the inner nested categorical grouping variable
Value

A vector containing a categorical variable such that inner_var is nested in outer_var

Author(s)

Fabio Sigrist

Examples

Fit a model with Time as categorical fixed effects variables and Diet and Chick
as random effects, where Chick is nested in Diet using lme4
chick_nested_diet <- get_nested_categories(ChickWeight$Diet, ChickWeight$Chick)
fixed_effects_matrix <- model.matrix(weight ~ as.factor(Time), data = ChickWeight)
mod_gpb <- fitGPModel(X = fixed_effects_matrix,
group_data = cbind(diet=ChickWeight$Diet, chick_nested_diet),
y = ChickWeight$weight)
summary (mod_gpb)
This does (almost) the same thing as the following code using 1lme4:
mod_lme4 <- lmer(weight ~ as.factor(Time) + (1 | Diet/Chick), data = ChickWeight, REML = FALSE)
summary(mod_lme4)

gpb.convert_with_rules
Data preparator for GPBoost datasets with rules (integer)

Description

Attempts to prepare a clean dataset to prepare to put in a gpb.Dataset. Factor, character, and
logical columns are converted to integer. Missing values in factors and characters will be filled with
OL. Missing values in logicals will be filled with -1L.

This function returns and optionally takes in "rules" the describe exactly how to convert values in
columns.

Columns that contain only NA values will be converted by this function but will not show up in the
returned rules.

Usage

gpb.convert_with_rules(data, rules = NULL)

gpb.convert_with_rules

Arguments

data

rules

Value

33

A data.frame or data.table to prepare.

A set of rules from the data preparator, if already used. This should be an R list,
where names are column names in data and values are named character vectors
whose names are column values and whose values are new values to replace
them with.

A list with the cleaned dataset (data) and the rules (rules). Note that the data must be converted
to a matrix format (as.matrix) for input in gpb.Dataset.

Examples

data(iris)

str(iris)

new_iris <- gpb.convert_with_rules(data = iris)
str(new_iris$data)

data(iris) # Erase iris dataset
iris$Species[1L] <- "NEW FACTOR" # Introduce junk factor (NA)

Use conversion using known rules

Unknown factors
newer_iris <- gpb

Unknown factor

become @, excellent for sparse datasets
.convert_with_rules(data = iris, rules = new_iris$rules)

is now zero, perfect for sparse datasets

newer_iris$data[1L,] # Species became @ as it is an unknown factor

newer_iris$datal[1L, 5L] <- 1.0 # Put back real initial value

Is the newly created dataset equal? YES!
all.equal(new_iris$data, newer_iris$data)

Can we test our

own rules?

data(iris) # Erase iris dataset

We remapped values differently

personal_rules <-
Species = c(
"setosa” = 3L
, "versicolor
, "virginica”
)
)

list(

"= 2L
=1L

newest_iris <- gpb.convert_with_rules(data = iris, rules = personal_rules)
str(newest_iris$data) # SUCCESS!

34 gpb.cv

gpb.cv CV function for number of boosting iterations

Description

Cross validation function for determining number of boosting iterations

Usage

gpb.cv(params = list(), data, gp_model = NULL, nrounds = 1000L,
early_stopping_rounds = NULL, folds = NULL, nfold = 5L, metric = NULL,
verbose = 1L, use_gp_model_for_validation = TRUE,
fit_GP_cov_pars_00S = FALSE, train_gp_model_cov_pars = TRUE,
label = NULL, weight = NULL, obj = NULL, eval = NULL, record = TRUE,
eval_freq = 1L, showsd = FALSE, stratified = TRUE, init_model = NULL,
colnames = NULL, categorical_feature = NULL, callbacks = list(),

reset_data = FALSE, delete_boosters_folds = FALSE, ...)
Arguments
params list of "tuning" parameters. See the parameter documentation for more informa-

tion. A few key parameters:

* learning_rate: The learning rate, also called shrinkage or damping pa-
rameter (default = 0.1). An important tuning parameter for boosting. Lower
values usually lead to higher predictive accuracy but more boosting itera-
tions are needed

* num_leaves: Number of leaves in a tree. Tuning parameter for tree-boosting
(default = 31)

* max_depth: Maximal depth of a tree. Tuning parameter for tree-boosting
(default = no limit)

* min_data_in_leaf: Minimal number of samples per leaf. Tuning param-
eter for tree-boosting (default = 20)

e lambda_12: L2 regularization (default = 0)

e lambda_11: L1 regularization (default = 0)

* max_bin: Maximal number of bins that feature values will be bucketed in
(default = 255)

e line_search_step_length (default = FALSE): If TRUE, a line search is
done to find the optimal step length for every boosting update (see, e.g.,
Friedman 2001). This is then multiplied by the learning rate

e train_gp_model_cov_pars (default = TRUE): If TRUE, the covariance
parameters of the Gaussian process are estimated in every boosting itera-
tions, otherwise the gp_model parameters are not estimated. In the latter
case, you need to either estimate them beforehand or provide values via the
’init_cov_pars’ parameter when creating the gp_model

https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst

gpb.cv 35

e use_gp_model_for_validation (default = TRUE): If TRUE, the Gaus-
sian process is also used (in addition to the tree model) for calculating pre-
dictions on the validation data

¢ leaves_newton_update (default = FALSE): Set this to TRUE to do a New-
ton update step for the tree leaves after the gradient step. Applies only to
Gaussian process boosting (GPBoost algorithm)

* num_threads: Number of threads. For the best speed, set this to the number
of real CPU cores(parallel::detectCores(logical = FALSE)), not the
number of threads (most CPU using hyper-threading to generate 2 threads
per CPU core).

data a gpb.Dataset object, used for training. Some functions, such as gpb. cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

gp_model A GPModel object that contains the random effects (Gaussian process and / or
grouped random effects) model

nrounds number of boosting iterations (= number of trees). This is the most important
tuning parameter for boosting

early_stopping_rounds
int. Activates early stopping. Requires at least one validation data and one
metric. When this parameter is non-null, training will stop if the evaluation of
any metric on any validation set fails to improve for early_stopping_rounds
consecutive boosting rounds. If training stops early, the returned model will
have attribute best_iter set to the iteration number of the best iteration.

folds (list) This provides the possibility to use a list of pre-defined CV folds (each
element must be a vector of test fold’s indices). When folds are supplied, the
nfold and stratified parameters are ignored.

nfold The original dataset is randomly partitioned into nfold equal-sized subsamples.
This allows for doing nfold-CV
metric Evaluation metric to be monitored when doing CV and parameter tuning. Can

be a character string or vector of character strings. If not NULL, the metric
in params will be overridden.

* Default ="test_neg_log_likelihood" if there is a GPModel
* Non-exhaustive list of supported metrics: "test_neg_log_likelihood", "mse",

"rmse", "mae", "crps_gaussian", "auc", "average_precision", "binary_logloss",
"binary_error"
* See the "metric" section of the parameter documentation for a complete list

of valid metrics

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

use_gp_model_for_validation
Boolean. If TRUE, the gp_model (Gaussian process and/or random effects)
is also used (in addition to the tree model) for calculating predictions on the
validation data. If FALSE, the gp_model (random effects part) is ignored for
making predictions and only the tree ensemble is used for making predictions
for calculating the validation / test error.

https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters

36

gpb.cv

fit_GP_cov_pars_00S

Boolean (default = FALSE). If TRUE, the covariance parameters of the gp_model
model are estimated using the out-of-sample (OOS) predictions on the valida-
tion data using the optimal number of iterations (after performing the CV). This
corresponds to the GPBoostOOS algorithm.

train_gp_model_cov_pars

label
weight
obj

eval

record
eval_freq
showsd

stratified

init_model

colnames

Boolean. If TRUE, the covariance parameters of the gp_model (Gaussian pro-
cess and/or random effects) are estimated in every boosting iterations, otherwise
the gp_model parameters are not estimated. In the latter case, you need to either
estimate them beforehand or provide the values via the init_cov_pars param-
eter when creating the gp_model

Vector of labels, used if data is not an gpb.Dataset
vector of response values. If not NULL, will set to dataset

(character) The distribution of the response variable (=label) conditional on fixed
and random effects. This only needs to be set when doing independent boosting
without random effects / Gaussian processes.

Evaluation metric to be monitored when doing CV and parameter tuning. This
can be a string, function, or list with a mixture of strings and functions.

* a. character vector: Non-exhaustive list of supported metrics: "test_neg_log_likelihood",

" " non non "

mse", "rmse", "mae", "auc", "average_precision", "binary_logloss", "bi-
nary_error” See the "metric" section of the parameter documentation for a
complete list of valid metrics.

* b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

— name: A string with the name of the metric, used for printing and stor-
ing results.

— value: A single number indicating the value of the metric for the given
predictions and true values

— higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

e c. list: If a list is given, it should only contain character vectors and func-

tions. These should follow the requirements from the descriptions above.
Boolean, TRUE will record iteration message to booster$record_evals
evaluation output frequency, only effect when verbose > 0
boolean, whether to show standard deviation of cross validation. This parame-
ter defaults to TRUE.
a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.
path of model file of gpb.Booster object, will continue training from this model

feature names, if not null, will use this to overwrite the names in dataset

categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters

gpb.cv 37

callbacks List of callback functions that are applied at each iteration.

reset_data Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets
delete_boosters_folds
Boolean, setting it to TRUE (not the default value) will delete the boosters of
the individual folds

other parameters, see Parameters.rst for more information.

Value

a trained model gpb.CVBooster.

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Author(s)
Authors of the LightGBM R package, Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Create random effects model and dataset
gp_model <- GPModel(group_data = group_datal[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5)
Run CV
cvbst <- gpb.cv(params = params,
data = dtrain,
gp_model = gp_model,
nrounds = 100,
nfold = 4,
eval = "12",
early_stopping_rounds = 5,
use_gp_model_for_validation = TRUE)

38

print(paste@("Opt

n

, best test error:

gpb.Dataset

imal number of iterations: ", cvbst$best_iter,
", cvbst$best_score))

gpb.Dataset

Construct gpb.Dataset object

Description

Construct gpb.Dataset object from dense matrix, sparse matrix or local file (that was created
previously by saving an gpb.Dataset).

Usage
gpb.Dataset(data, params = list(), reference = NULL, colnames = NULL,
categorical_feature = NULL, free_raw_data = FALSE, info = list(), ...)
Arguments
data amatrix object, a dgCMatrix object or a character representing a filename

params

reference

colnames

a list of parameters. See the "Dataset Parameters" section of the parameter doc-
umentation for a list of parameters and valid values.

reference dataset. When GPBoost creates a Dataset, it does some preprocessing
like binning continuous features into histograms. If you want to apply the same
bin boundaries from an existing dataset to new data, pass that existing Dataset
to this argument.

names of columns

categorical_feature

free_raw_data

info

Value

constructed dataset

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

GPBoost constructs its data format, called a "Dataset”, from tabular data. By
default, this Dataset object on the R side does keep a copy of the raw data. If
you set free_raw_data = TRUE, no copy of the raw data is kept (this reduces
memory usage)

a list of information of the gpb.Dataset object

other information to pass to info or parameters pass to params

https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst#dataset-parameters
https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst#dataset-parameters

gpb.Dataset.construct

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
gpb.Dataset.save(dtrain, data_file)

dtrain <- gpb.Dataset(data_file)
gpb.Dataset.construct(dtrain)

39

gpb.Dataset.construct Construct Dataset explicitly

Description

Construct Dataset explicitly

Usage

gpb.Dataset.construct(dataset)

Arguments

dataset Object of class gpb.Dataset

Value

constructed dataset

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

40 gpb.Dataset.save

gpb.Dataset.create.valid
Construct validation data

Description

Construct validation data according to training data

Usage
gpb.Dataset.create.valid(dataset, data, info = list(), ...)
Arguments
dataset gpb.Dataset object, training data
data amatrix object, a dgCMatrix object or a character representing a filename
info a list of information of the gpb.Dataset object
other information to pass to info.
Value

constructed dataset

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")

test <- agaricus.test

dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)

gpb.Dataset.save Save gpb.Dataset to a binary file

Description

Please note that init_score is not saved in binary file. If you need it, please set it again after
loading Dataset.

Usage

gpb.Dataset.save(dataset, fname)

gpb.Dataset.set.categorical 41

Arguments
dataset object of class gpb.Dataset
fname object filename of output file
Value

the dataset you passed in

Examples

data(agaricus.train, package = "gpboost"”)

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.save(dtrain, tempfile(fileext = ".bin"))

gpb.Dataset.set.categorical
Set categorical feature of gpb.Dataset

Description

Set the categorical features of an gpb.Dataset object. Use this function to tell GPBoost which
features should be treated as categorical.

Usage

gpb.Dataset.set.categorical (dataset, categorical_feature)

Arguments

dataset object of class gpb.Dataset

categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

Value

the dataset you passed in

42 gpb.Dataset.set.reference

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
gpb.Dataset.save(dtrain, data_file)

dtrain <- gpb.Dataset(data_file)
gpb.Dataset.set.categorical(dtrain, 1L:2L)

gpb.Dataset.set.reference
Set reference of gpb.Dataset

Description

If you want to use validation data, you should set reference to training data

Usage

gpb.Dataset.set.reference(dataset, reference)

Arguments
dataset object of class gpb.Dataset
reference object of class gpb.Dataset
Value

the dataset you passed in

Examples

data(agaricus.train, package ="gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")

test <- agaricus.test

dtest <- gpb.Dataset(test$data, test = train$label)
gpb.Dataset.set.reference(dtest, dtrain)

gpb.dump 43

gpb. dump Dump GPBoost model to json

Description

Dump GPBoost model to json

Usage

gpb.dump(booster, num_iteration = NULL)

Arguments

booster Object of class gpb.Booster

num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration

Value

json format of model

Examples

library(gpboost)
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression”, metric = "12")
valids <- list(test = dtest)
model <- gpb.train(
params = params
, data = dtrain
, hrounds = 10L
, valids = valids
, min_data = 1L
, learning_rate = 1.0
, early_stopping_rounds = 5L
)
json_model <- gpb.dump(model)

44

gpb.get.eval.result

gpb.get.eval.result Get record evaluation result from booster

Description

Given a gpb.Booster, return evaluation results for a particular metric on a particular dataset.

Usage

gpb.get.eval.result(booster, data_name, eval_name, iters

is_err = FALSE)

Arguments
booster Object of class gpb.Booster
data_name Name of the dataset to return evaluation results for.
eval_name Name of the evaluation metric to return results for.
iters An integer vector of iterations you want to get evaluation results for. If NULL
(the default), evaluation results for all iterations will be returned.
is_err TRUE will return evaluation error instead
Value

numeric vector of evaluation result

Examples

train a regression model

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")

test <- agaricus.test

dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)

params <- list(objective = "regression”, metric = "12")
valids <- list(test = dtest)
model <- gpb.train(

params = params

, data = dtrain

, hrounds = 5L

, valids = valids

, min_data = 1L

, learning_rate = 1.0

)

Examine valid data_name values
print(setdiff(names(model$record_evals), "start_iter"))

gpb.grid.search.tune.parameters 45

Examine valid eval_name values for dataset "test”
print(names(model$record_evals[["test"]1]))

Get L2 values for "test" dataset
gpb.get.eval.result(model, "test”, "12")

gpb.grid.search.tune.parameters

Function for choosing tuning parameters

Description

Function that allows for choosing tuning parameters from a grid in a determinstic or random way
using cross validation or validation data sets.

Usage

gpb.grid.search.tune.parameters(param_grid, num_try_random = NULL, data,
gp_model = NULL, params = list(), nrounds = 1000L,

early_stopping_rounds = NULL, folds = NULL, nfold = 5L, metric
verbose_eval = 1L, cv_seed = NULL, use_gp_model_for_validation

NULL,
TRUE,

train_gp_model_cov_pars = TRUE, label = NULL, weight = NULL,
obj = NULL, eval = NULL, stratified = TRUE, init_model = NULL,

colnames = NULL, categorical_feature = NULL, callbacks = list(),
return_all_combinations = FALSE, ...)
Arguments
param_grid list with candidate parameters defining the grid over which a search is done

num_try_random integer with number of random trial on parameter grid. If NULL, a determin-

data

gp_model

params

nrounds

istic search is done

a gpb.Dataset object, used for training. Some functions, such as gpb. cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

A GPModel object that contains the random effects (Gaussian process and / or
grouped random effects) model

list with other parameters not included in param_grid

number of boosting iterations (= number of trees). This is the most important
tuning parameter for boosting

early_stopping_rounds

int. Activates early stopping. Requires at least one validation data and one
metric. When this parameter is non-null, training will stop if the evaluation of
any metric on any validation set fails to improve for early_stopping_rounds
consecutive boosting rounds. If training stops early, the returned model will
have attribute best_iter set to the iteration number of the best iteration.

gpb.grid.search.tune.parameters

folds (list) This provides the possibility to use a list of pre-defined CV folds (each
element must be a vector of test fold’s indices). When folds are supplied, the
nfold and stratified parameters are ignored.

nfold The original dataset is randomly partitioned into nfold equal-sized subsamples.
This allows for doing nfold-CV
metric Evaluation metric to be monitored when doing CV and parameter tuning. Can

be a character string or vector of character strings. If not NULL, the metric
in params will be overridden.

 Default ="test_neg_log_likelihood" if there is a GPModel
* Non-exhaustive list of supported metrics: "test_neg_log_likelihood", "mse",

"rmse", "mae", "crps_gaussian", "auc", "average_precision", "binary_logloss",
"binary_error"
* See the "metric" section of the parameter documentation for a complete list

of valid metrics

verbose_eval integer. Whether to display information on the progress of tuning parameter
choice. If None or 0, verbose is of. If = 1, summary progress information is dis-
played for every parameter combination. If >= 2, detailed progress is displayed
at every boosting stage for every parameter combination.

cv_seed Seed for generating folds when doing nfold CV

use_gp_model_for_validation
Boolean. If TRUE, the gp_model (Gaussian process and/or random effects)
is also used (in addition to the tree model) for calculating predictions on the
validation data. If FALSE, the gp_model (random effects part) is ignored for
making predictions and only the tree ensemble is used for making predictions
for calculating the validation / test error.

train_gp_model_cov_pars
Boolean. If TRUE, the covariance parameters of the gp_model (Gaussian pro-
cess and/or random effects) are estimated in every boosting iterations, otherwise
the gp_model parameters are not estimated. In the latter case, you need to either
estimate them beforehand or provide the values via the init_cov_pars param-
eter when creating the gp_model

label Vector of labels, used if data is not an gpb.Dataset
weight vector of response values. If not NULL, will set to dataset
obj (character) The distribution of the response variable (=label) conditional on fixed

and random effects. This only needs to be set when doing independent boosting
without random effects / Gaussian processes.

eval Evaluation metric to be monitored when doing CV and parameter tuning. This
can be a string, function, or list with a mixture of strings and functions.

* a. character vector: Non-exhaustive list of supported metrics: "test_neg_log_likelihood",
"mse", "rmse", "mae", "auc", "average_precision", "binary_logloss", "bi-
nary_error" See the "metric" section of the parameter documentation for a
complete list of valid metrics.

* b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters
https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters

gpb.grid.search.tune.parameters 47

— name: A string with the name of the metric, used for printing and stor-
ing results.

— value: A single number indicating the value of the metric for the given
predictions and true values

— higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

* c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

stratified a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.

init_model path of model file of gpb.Booster object, will continue training from this model

colnames feature names, if not null, will use this to overwrite the names in dataset

categorical_feature
categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").
callbacks List of callback functions that are applied at each iteration.
return_all_combinations
a boolean indicating whether all tried parameter combinations are returned

other parameters, see Parameters.rst for more information.

Value

A list with the best parameter combination and score The list has the following format: list("best_params"
= best_params, "best_iter" = best_iter, "best_score" = best_score) If return_all_combinations is
TRUE, then the list contains an additional entry ’all_combinations’

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"

one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Author(s)

Fabio Sigrist

48 gpb.importance

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

n <- length(y)

param_grid <- list("learning_rate” = c(0.001, 0.01, 0.1, 1, 10),
"min_data_in_leaf” = c(1, 10, 100, 1000),
"max_depth” = c(-1),
"num_leaves” = 2%(1:10),
"lambda_12" = c(o, 1, 10, 100),
"max_bin" = c(250, 500, 1000, min(n,10000)),
"line_search_step_length” = c(TRUE, FALSE))

Note: "max_depth” = c(-1) means no depth limit as we tune 'num_leaves'.

Can also additionally tune 'max_depth', e.g., "max_depth” = c(-1, 1, 2, 3, 5, 10)
metric = "mse” # Define metric

Note: can also use metric = "test_neg_log_likelihood”.

See https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst#metric-parameters
gp_model <- GPModel(group_data = group_datal[,1], likelihood="gaussian")
data_train <- gpb.Dataset(data = X, label =y)
set.seed(1)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid,
data = data_train, gp_model = gp_model,
num_try_random = 100, nfold = 5,
nrounds = 1000, early_stopping_rounds = 20,
verbose_eval = 1, metric = metric, cv_seed = 4)

n

print(paste@(”"Best parameters: ",
paste@(unlist(lapply(seq_along(opt_params$best_params),

function(y, n, i) { pasteo(n[[il],"”: ", y[[ilD) 3,

y=opt_params$best_params,

n=names(opt_params$best_params))), collapse=", ")))
print(paste@(”"Best number of iterations: ", opt_params$best_iter))

”

print(paste@(”"Best score: ", round(opt_params$best_score, digits=3)))
Alternatively and faster: using manually defined validation data instead of cross-validation
use 20% of the data as validation data
valid_tune_idx <- sample.int(length(y), as.integer(@.2xlength(y)))
folds <- list(valid_tune_idx)
opt_params <- gpb.grid.search.tune.parameters(param_grid = param_grid,
data = data_train, gp_model = gp_model,
num_try_random = 100, folds = folds,
nrounds = 1000, early_stopping_rounds = 20,
verbose_eval = 1, metric = metric, cv_seed = 4)

gpb.importance Compute feature importance in a model

gpb.importance
Description

Creates a data. table of feature importances in a model.

Usage

gpb.importance(model, percentage = TRUE)

Arguments

model object of class gpb.Booster.

percentage whether to show importance in relative percentage.
Value

For a tree model, a data. table with the following columns:

e Feature: Feature names in the model.
* Gain: The total gain of this feature’s splits.
¢ Cover: The number of observation related to this feature.

* Frequency: The number of times a feature splited in trees.

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

model <- gpb.train(
params = params
, data = dtrain
, nrounds = 5L

)

tree_impl <- gpb.importance(model, percentage = TRUE)
tree_imp2 <- gpb.importance(model, percentage = FALSE)

49

50

gpb.interprete

gpb.interprete Compute feature contribution of prediction

Description

Computes feature contribution components of rawscore prediction.

Usage

gpb.interprete(model, data, idxset, num_iteration = NULL)

Arguments
model object of class gpb.Booster.
data a matrix object or a dgCMatrix object.
idxset an integer vector of indices of rows needed.

num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration.

Value

For regression, binary classification and lambdarank model, a 1ist of data. table with the follow-
ing columns:

e Feature: Feature names in the model.

* Contribution: The total contribution of this feature’s splits.

For multiclass classification, a 1ist of data.table with the Feature column and Contribution
columns to each class.

Examples

Logit <- function(x) log(x / (1.0 - x))

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)

setinfo(dtrain, "init_score”, rep(Logit(mean(train$label)), length(train$label)))
data(agaricus.test, package = "gpboost")

test <- agaricus.test

params <- list(
objective = "binary”

’
)
’

’

)

model

learning_rate = 0.1

max_depth = -1L
min_data_in_leaf = 1L
min_sum_hessian_in_leaf = 1.0

<- gpb.train(

params = params

gpb.load 51

, data = dtrain
, nrounds = 3L

)

tree_interpretation <- gpb.interprete(model, test$data, 1L:5L)

gpb.load Load GPBoost model

Description

Load GPBoost takes in either a file path or model string. If both are provided, Load will default to
loading from file Boosters with gp_models can only be loaded from file.

Usage
gpb.load(filename = NULL, model_str = NULL)

Arguments

filename path of model file

model_str a str containing the model

Value

gpb.Booster

Author(s)
Fabio Sigrist, authors of the LightGBM R package

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Train model and make prediction

gp_model <- GPModel(group_data = group_datal[,1], likelihood = "gaussian")

bst <- gpboost(data = X, label =y, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = @)

pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],

predict_var= TRUE, pred_latent = TRUE)

Save model to file

filename <- tempfile(fileext = ".json")

gpb.save(bst,filename = filename)

Load from file and make predictions again

bst_loaded <- gpb.load(filename = filename)

52 gpb.model.dt.tree

pred_loaded <- predict(bst_loaded, data = X_test, group_data_pred = group_data_test[,1],
predict_var= TRUE, pred_latent = TRUE)

Check equality

pred$fixed_effect - pred_loaded$fixed_effect

pred$random_effect_mean - pred_loaded$random_effect_mean

pred$random_effect_cov - pred_loaded$random_effect_cov

gpb.model.dt. tree Parse a GPBoost model json dump

Description

Parse a GPBoost model json dump into a data. table structure.

Usage

gpb.model.dt.tree(model, num_iteration = NULL)

Arguments

model object of class gpb.Booster

num_iteration number of iterations you want to predict with. NULL or <= 0 means use best
iteration

Value

A data. table with detailed information about model trees’ nodes and leafs.

The columns of the data. table are:

* tree_index: ID of a tree in a model (integer)
* split_index: ID of a node in a tree (integer)

* split_feature: for a node, it’s a feature name (character); for a leaf, it simply labels it as
IINA”

* node_parent: ID of the parent node for current node (integer)

e leaf_index: ID of a leaf in a tree (integer)

* leaf_parent: ID of the parent node for current leaf (integer)

* split_gain: Split gain of a node

* threshold: Splitting threshold value of a node

* decision_type: Decision type of a node

e default_left: Determine how to handle NA value, TRUE -> Left, FALSE -> Right
* internal_value: Node value

* internal_count: The number of observation collected by a node

e leaf_value: Leaf value

* leaf_count: The number of observation collected by a leaf

gpb.plot.importance 53

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.01
, num_leaves = 63L
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(params, dtrain, 10L)

tree_dt <- gpb.model.dt.tree(model)

gpb.plot.importance Plot feature importance as a bar graph

Description

Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.

Usage
gpb.plot.importance(tree_imp, top_n = 10L, measure = "Gain",
left_margin = 10L, cex = NULL, ...)
Arguments
tree_imp adata.table returned by gpb. importance.
top_n maximal number of top features to include into the plot.
measure the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".
left_margin (base R barplot) allows to adjust the left margin size to fit feature names.
cex (base R barplot) passed as cex.names parameter to barplot. Set a number
smaller than 1.0 to make the bar labels smaller than R’s default and values
greater than 1.0 to make them larger.
other parameters passed to graphics::barplot
Details

The graph represents each feature as a horizontal bar of length proportional to the defined impor-
tance of a feature. Features are shown ranked in a decreasing importance order.

54 gpb.plot.interpretation

Value

The gpb.plot.importance function creates a barplot and silently returns a processed data.table
with top_n features sorted by defined importance.

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary”
, learning_rate = 0.1
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

)

model <- gpb.train(
params = params
, data = dtrain
, nrounds = 5L

)

tree_imp <- gpb.importance(model, percentage = TRUE)
gpb.plot.importance(tree_imp, top_n = 5L, measure = "Gain")

gpb.plot.interpretation
Plot feature contribution as a bar graph

Description

Plot previously calculated feature contribution as a bar graph.

Usage

gpb.plot.interpretation(tree_interpretation_dt, top_n = 10L, cols = 1L,
left_margin = 10L, cex = NULL)

Arguments
tree_interpretation_dt
adata.table returned by gpb.interprete.
top_n maximal number of top features to include into the plot.

cols the column numbers of layout, will be used only for multiclass classification
feature contribution.

left_margin (base R barplot) allows to adjust the left margin size to fit feature names.

cex (base R barplot) passed as cex.names parameter to barplot.

gpb.plot.interpretation 55

Details

The graph represents each feature as a horizontal bar of length proportional to the defined contribu-
tion of a feature. Features are shown ranked in a decreasing contribution order.

Value

The gpb.plot.interpretation function creates a barplot.

Examples

Logit <- function(x) {
log(x / (1.0 - x))
3
data(agaricus.train, package = "gpboost"”)
labels <- agaricus.train$label
dtrain <- gpb.Dataset(
agaricus.train$data
, label = labels
)
setinfo(dtrain, "init_score”, rep(Logit(mean(labels)), length(labels)))

data(agaricus.test, package = "gpboost")

params <- list(
objective = "binary”
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
params = params
, data = dtrain
, nrounds = 5L

)

tree_interpretation <- gpb.interprete(
model = model
, data = agaricus.test$data
, idxset = 1L:5L
)
gpb.plot.interpretation(
tree_interpretation_dt = tree_interpretation[[1L]]
, top_n = 3L
)

56 gpb.plot.part.dep.interact

gpb.plot.part.dep.interact
Plot interaction partial dependence plots

Description

Plot interaction partial dependence plots

Usage

gpb.plot.part.dep.interact(model, data, variables, latent_scale = TRUE,
n.pt.per.var = 20, subsample = pmin(1, n.pt.per.var*2 * 100/nrow(data)),
discrete.variables = c(FALSE, FALSE), which.class = NULL,
type = "filled.contour”, nlevels = 20, xlab = variables[1],

ylab = variables[2], zlab = "", main = "", return_plot_data = FALSE,
.2
Arguments
model A gpb.Booster model object
data A matrix with data for creating partial dependence plots
variables A vector of length two of type string with names of the columns or integer
with indices of the columns in data for which an interaction dependence plot is
created

latent_scale If TRUE, the plot is done on the scale of the tree-ensemble. If FALSE, the plot is
done on the (potentially transformed) response variable scale (e.g. probabilities
for classification)

n.pt.per.var Number of grid points per variable (used only if a variable is not discrete) For
continuous variables, the two-dimensional grid for the interaction plot has di-
mension c(n.pt.per.var, n.pt.per.var)

subsample Fraction of random samples in data to be used for calculating the partial depen-
dence plot

discrete.variables

A vector of length two of type boolean. If an entry is TRUE, the evaluation
grid of the corresponding variable is set to the unique values of the variable

which.class An integer indicating the class in multi-class classification (value from 0 to
num_class - 1)

type A character string indicating the type of the plot. Supported values: "filled.contour"
and "contour”

nlevels Parameter passed to the filled. contour or contour function

xlab Parameter passed to the filled. contour or contour function

ylab Parameter passed to the filled. contour or contour function

zlab Parameter passed to the filled. contour or contour function

gpb.plot.partial.dependence 57

main Parameter passed to the filled. contour or contour function

return_plot_data
A boolean. If TRUE, the data for creating the partial dependence plot is re-
turned

Additional parameters passed to the filled. contour or contour function

Value

A list with three entries for creating the partial dependence plot: the first two entries are vectors
with x and y coordinates. The third is a two-dimensional matrix of dimension c(length(x), length(y))
with z-coordinates. This is only returned if return_plot_data==TRUE

Author(s)

Fabio Sigrist

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
gpboost_model <- gpboost(data = X,

label =y,

gp_model = gp_model,

nrounds = 16,

learning_rate = 0.05,

max_depth = 6,

min_data_in_leaf = 5,

verbose = 0)
gpb.plot.part.dep.interact(gpboost_model, X, variables = c(1,2))

gpb.plot.partial.dependence
Plot partial dependence plots

Description

Plot partial dependence plots

Usage

gpb.plot.partial.dependence(model, data, variable, latent_scale = TRUE,
n.pt = 100, subsample = pmin(1, n.pt * 100/nrow(data)),
discrete.x = FALSE, which.class = NULL,
xlab = deparse(substitute(variable)), ylab = "", type = if (discrete.x)
"p" else "b", main = "", return_plot_data = FALSE, ...)

58

gpb.plot.partial.dependence

Arguments
model A gpb.Booster model object
data A matrix with data for creating partial dependence plots
variable A string with a name of the column or an integer with an index of the column

latent_scale

in data for which a dependence plot is created

If TRUE, the plot is done on the scale of the tree-ensemble. If FALSE, the plot is
done on the (potentially transformed) response variable scale (e.g. probabilities
for classification)

n.pt Evaluation grid size (used only if x is not discrete)

subsample Fraction of random samples in data to be used for calculating the partial depen-
dence plot

discrete.x A boolean. If TRUE, the evaluation grid is set to the unique values of x

which.class

An integer indicating the class in multi-class classification (value from O to
num_class - 1)

xlab Parameter passed to plot
ylab Parameter passed to plot
type Parameter passed to plot
main Parameter passed to plot

return_plot_data

Value

A boolean. If TRUE, the data for creating the partial dependence plot is re-
turned

Additional parameters passed to plot

A two-dimensional matrix with data for creating the partial dependence plot. This is only returned
if return_plot_data==TRUE

Author(s)

Fabio Sigrist (adapted from a version by Michael Mayer)

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
gpboost_model <- gpboost(data = X,

label =y,

gp_model = gp_model,

nrounds = 16,

learning_rate = 0.05,

max_depth = 6,

min_data_in_leaf = 5,

verbose = 0)

gpb.save 59

gpb.plot.partial.dependence(gpboost_model, X, variable = 1)

gpb.save Save GPBoost model (booster and GPModel)

Description

Save GPBoost model (booster and GPModel)

Usage

gpb.save(booster, filename, start_iteration = NULL, num_iteration = NULL,
save_raw_data = FALSE, ...)

Arguments

booster Object of class gpb.Booster

filename saved filename

start_iteration
int or NULL, optional (default=NULL) Start index of the iteration to predict. If
NULL or <= 0, starts from the first iteration.

num_iteration int or NULL, optional (default=NULL) Limit number of iterations in the predic-
tion. If NULL, if the best iteration exists and start_iteration is NULL or <= 0,
the best iteration is used; otherwise, all iterations from start_iteration are used.
If <= 0, all iterations from start_iteration are used (no limits).

save_raw_data If TRUE, the raw data (predictor / covariate data) for the Booster is also saved.
Enable this option if you want to change start_iteration or num_iteration
at prediction time after loading.

Additional named arguments passed to the predict () method of the gpb.Booster
object passed to object. This is only used when there is a gp_model and when
save_raw_data=FALSE

Value

gpb.Booster. After loading, the GPModel can be accessed via bst_loaded$.__enclos_env__$private$gp_model

Author(s)

Fabio Sigrist, authors of the LightGBM R package

60 gpb.train

Examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Train model and make prediction

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")

bst <- gpboost(data = X, label =y, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 0)

pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var= TRUE, pred_latent = TRUE)

Save model to file

filename <- tempfile(fileext = ".json")

gpb.save(bst,filename = filename)

Load from file and make predictions again

bst_loaded <- gpb.load(filename = filename)

pred_loaded <- predict(bst_loaded, data = X_test, group_data_pred = group_data_test[,1],

predict_var= TRUE, pred_latent = TRUE)

Check equality

pred$fixed_effect - pred_loaded$fixed_effect

pred$random_effect_mean - pred_loaded$random_effect_mean

pred$random_effect_cov - pred_loaded$random_effect_cov

gpb.train Main training logic for GBPoost

Description

Logic to train with GBPoost

Usage

gpb.train(params = list(), data, nrounds = 100L, gp_model = NULL,
use_gp_model_for_validation = TRUE, train_gp_model_cov_pars = TRUE,
valids = list(), obj = NULL, eval = NULL, verbose = 1L,
record = TRUE, eval_freq = 1L, init_model = NULL, colnames = NULL,
categorical_feature = NULL, early_stopping_rounds = NULL,

callbacks = list(), reset_data = FALSE, ...)
Arguments
params list of "tuning" parameters. See the parameter documentation for more informa-

tion. A few key parameters:

* learning_rate: The learning rate, also called shrinkage or damping pa-
rameter (default = 0.1). An important tuning parameter for boosting. Lower
values usually lead to higher predictive accuracy but more boosting itera-
tions are needed

https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst

gpb.train

data

nrounds

gp_model

61

* num_leaves: Number of leaves in a tree. Tuning parameter for tree-boosting
(default = 31)

* max_depth: Maximal depth of a tree. Tuning parameter for tree-boosting
(default = no limit)

* min_data_in_leaf: Minimal number of samples per leaf. Tuning param-
eter for tree-boosting (default = 20)

e lambda_12: L2 regularization (default = 0)

e lambda_11: L1 regularization (default = 0)

* max_bin: Maximal number of bins that feature values will be bucketed in
(default = 255)

e line_search_step_length (default = FALSE): If TRUE, a line search is
done to find the optimal step length for every boosting update (see, e.g.,
Friedman 2001). This is then multiplied by the learning rate

e train_gp_model_cov_pars (default = TRUE): If TRUE, the covariance
parameters of the Gaussian process are estimated in every boosting itera-
tions, otherwise the gp_model parameters are not estimated. In the latter
case, you need to either estimate them beforehand or provide values via the
’init_cov_pars’ parameter when creating the gp_model

e use_gp_model_for_validation (default = TRUE): If TRUE, the Gaus-
sian process is also used (in addition to the tree model) for calculating pre-
dictions on the validation data

* leaves_newton_update (default = FALSE): Set this to TRUE to do a New-
ton update step for the tree leaves after the gradient step. Applies only to
Gaussian process boosting (GPBoost algorithm)

* num_threads: Number of threads. For the best speed, set this to the number
of real CPU cores(parallel::detectCores(logical = FALSE)), not the
number of threads (most CPU using hyper-threading to generate 2 threads
per CPU core).

a gpb.Dataset object, used for training. Some functions, such as gpb. cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

number of boosting iterations (= number of trees). This is the most important
tuning parameter for boosting

A GPModel object that contains the random effects (Gaussian process and / or
grouped random effects) model

use_gp_model_for_validation

Boolean. If TRUE, the gp_model (Gaussian process and/or random effects)
is also used (in addition to the tree model) for calculating predictions on the
validation data. If FALSE, the gp_model (random effects part) is ignored for
making predictions and only the tree ensemble is used for making predictions
for calculating the validation / test error.

train_gp_model_cov_pars

Boolean. If TRUE, the covariance parameters of the gp_model (Gaussian pro-
cess and/or random effects) are estimated in every boosting iterations, otherwise
the gp_model parameters are not estimated. In the latter case, you need to either
estimate them beforehand or provide the values via the init_cov_pars param-
eter when creating the gp_model

62

gpb.train

valids a list of gpb.Dataset objects, used for validation

obj (character) The distribution of the response variable (=label) conditional on fixed
and random effects. This only needs to be set when doing independent boosting
without random effects / Gaussian processes.

eval Evaluation metric to be monitored when doing CV and parameter tuning. This
can be a string, function, or list with a mixture of strings and functions.

* a. character vector: Non-exhaustive list of supported metrics: "test_neg_log_likelihood",
"mse", "rmse", "mae", "auc", "average_precision", "binary_logloss", "bi-
nary_error" See the "metric" section of the parameter documentation for a

complete list of valid metrics.

* b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

— name: A string with the name of the metric, used for printing and stor-
ing results.

— value: A single number indicating the value of the metric for the given
predictions and true values

— higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

e c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

record Boolean, TRUE will record iteration message to booster$record_evals

eval_freq evaluation output frequency, only effect when verbose > 0

init_model path of model file of gpb.Booster object, will continue training from this model

colnames feature names, if not null, will use this to overwrite the names in dataset

categorical_feature
categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

early_stopping_rounds
int. Activates early stopping. Requires at least one validation data and one
metric. When this parameter is non-null, training will stop if the evaluation of
any metric on any validation set fails to improve for early_stopping_rounds
consecutive boosting rounds. If training stops early, the returned model will
have attribute best_iter set to the iteration number of the best iteration.

callbacks List of callback functions that are applied at each iteration.

reset_data Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets

other parameters, see the parameter documentation for more information.

https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters
https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst

gpb.train 63

Value

a trained booster model gpb.Booster.

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Author(s)
Fabio Sigrist, authors of the LightGBM R package

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Create random effects model

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")

The default optimizer for covariance parameters (hyperparameters) is

Nesterov-accelerated gradient descent.

This can be changed to, e.g., Nelder-Mead as follows:

re_params <- list(optimizer_cov = "nelder_mead")

gp_model$set_optim_params(params=re_params)

Use trace = TRUE to monitor convergence:

re_params <- list(trace = TRUE)

gp_model$set_optim_params(params=re_params)

dtrain <- gpb.Dataset(data = X, label = y)

Train model

bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 0)

Estimated random effects model

summary (gp_model)

Make predictions

pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var= TRUE)

pred$random_effect_mean # Predicted mean

pred$random_effect_cov # Predicted variances

¥ B O H O R

gpb.train

pred$fixed_effect # Predicted fixed effect from tree ensemble
Sum them up to otbain a single prediction
pred$random_effect_mean + pred$fixed_effect

o Combine tree-boosting and Gaussian process model----------------
Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential”,

likelihood = "gaussian”)

Train model

dtrain <- gpb.Dataset(data = X, label = y)

bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 16,

learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,

verbose = 0)

Estimated random effects model

summary (gp_model)

Make predictions

pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_cov_mat =TRUE)

pred$random_effect_mean # Predicted (posterior) mean of GP

pred$random_effect_cov # Predicted (posterior) covariance matrix of GP

pred$fixed_effect # Predicted fixed effect from tree ensemble

Sum them up to otbain a single prediction

pred$random_effect_mean + pred$fixed_effect

set.seed(1)
train_ind <- sample.int(length(y),size=250)
dtrain <- gpb.Dataset(data = X[train_ind,], label = y[train_ind])
dtest <- gpb.Dataset.create.valid(dtrain, data = X[-train_ind,], label = y[-train_ind])
valids <- list(test = dtest)
gp_model <- GPModel(group_data = group_datal[train_ind,1], likelihood="gaussian")
Need to set prediction data for gp_model
gp_model$set_prediction_data(group_data_pred = group_datal-train_ind,1])
Training with validation data and use_gp_model_for_validation = TRUE
bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 100,

learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,

verbose = 1, valids = valids,

early_stopping_rounds = 10, use_gp_model_for_validation = TRUE)
print(paste@(”"Optimal number of iterations: ", bst$best_iter,

", best test error: ", bst$best_score))
Plot validation error
val_error <- unlist(bst$record_evals$test$l2%$eval)
plot(1:1length(val_error), val_error, type="1", 1lwd=2, col="blue",
xlab="iteration"”, ylab="Validation error”, main="Validation error vs. boosting iteration”)

Note: run the above examples first

bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 100,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 1, valids = valids,
early_stopping_rounds = 5, use_gp_model_for_validation = FALSE,

gpboost 65

leaves_newton_update = TRUE)
print(paste@(”"Optimal number of iterations: ", bst$best_iter,
", best test error: ", bst$best_score))
Plot validation error
val_error <- unlist(bst$record_evals$test$l2$eval)
plot(1:1length(val_error), val_error, type="1", 1lwd=2, col="blue",
xlab="iteration"”, ylab="Validation error”, main="Validation error vs. boosting iteration”)

Create random effects model and dataset
gp_model <- GPModel(group_data = group_datal[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5)
Stage 1: run cross-validation to (i) determine to optimal number of iterations
and (ii) to estimate the GPModel on the out-of-sample data
cvbst <- gpb.cv(params = params,
data = dtrain,
gp_model = gp_model,
nrounds = 100,
nfold = 4,
eval = "12",
early_stopping_rounds = 5,
use_gp_model_for_validation = TRUE,
fit_GP_cov_pars_00S = TRUE)
print(paste@(”"Optimal number of iterations: ", cvbst$best_iter))
Estimated random effects model
Note: ideally, one would have to find the optimal combination of
other tuning parameters such as the learning rate, tree depth, etc.)
summary (gp_model)
Stage 2: Train tree-boosting model while holding the GPModel fix
bst <- gpb.train(data = dtrain,
gp_model = gp_model,
nrounds = cvbst$best_iter,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
verbose = 0,
train_gp_model_cov_pars = FALSE)
The GPModel has not changed:
summary (gp_model)

gpboost Train a GPBoost model

Description

Simple interface for training a GPBoost model.

66 gpboost

Usage

gpboost(data, label = NULL, weight = NULL, params = list(),
nrounds = 100L, gp_model = NULL, use_gp_model_for_validation = TRUE,
train_gp_model_cov_pars = TRUE, valids = list(), obj = NULL,
eval = NULL, verbose = 1L, record = TRUE, eval_freq = 1L,
early_stopping_rounds = NULL, init_model = NULL, colnames = NULL,

categorical_feature = NULL, callbacks = list(), ...)
Arguments
data a gpb.Dataset object, used for training. Some functions, such as gpb. cv, may

allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

label Vector of response values / labels, used if data is not an gpb.Dataset
weight Vector of weights. The GPBoost algorithm currently does not support weights
params list of "tuning" parameters. See the parameter documentation for more informa-

tion. A few key parameters:

* learning_rate: The learning rate, also called shrinkage or damping pa-
rameter (default = 0.1). An important tuning parameter for boosting. Lower
values usually lead to higher predictive accuracy but more boosting itera-
tions are needed

* num_leaves: Number of leaves in a tree. Tuning parameter for tree-boosting
(default = 31)

* max_depth: Maximal depth of a tree. Tuning parameter for tree-boosting
(default = no limit)

* min_data_in_leaf: Minimal number of samples per leaf. Tuning param-
eter for tree-boosting (default = 20)

e lambda_12: L2 regularization (default = 0)
e lambda_11: L1 regularization (default = 0)

e max_bin: Maximal number of bins that feature values will be bucketed in
(default = 255)

e line_search_step_length (default = FALSE): If TRUE, a line search is
done to find the optimal step length for every boosting update (see, e.g.,
Friedman 2001). This is then multiplied by the learning rate

e train_gp_model_cov_pars (default = TRUE): If TRUE, the covariance
parameters of the Gaussian process are estimated in every boosting itera-
tions, otherwise the gp_model parameters are not estimated. In the latter
case, you need to either estimate them beforehand or provide values via the
“init_cov_pars’ parameter when creating the gp_model

e use_gp_model_for_validation (default = TRUE): If TRUE, the Gaus-
sian process is also used (in addition to the tree model) for calculating pre-
dictions on the validation data

* leaves_newton_update (default = FALSE): Set this to TRUE to do a New-
ton update step for the tree leaves after the gradient step. Applies only to
Gaussian process boosting (GPBoost algorithm)

https://github.com/fabsig/GPBoost/blob/master/docs/Parameters.rst

gpboost 67

* num_threads: Number of threads. For the best speed, set this to the number
of real CPU cores(parallel: :detectCores(logical = FALSE)), not the
number of threads (most CPU using hyper-threading to generate 2 threads
per CPU core).

nrounds number of boosting iterations (= number of trees). This is the most important
tuning parameter for boosting

gp_model A GPModel object that contains the random effects (Gaussian process and / or
grouped random effects) model

use_gp_model_for_validation
Boolean. If TRUE, the gp_model (Gaussian process and/or random effects)
is also used (in addition to the tree model) for calculating predictions on the
validation data. If FALSE, the gp_model (random effects part) is ignored for
making predictions and only the tree ensemble is used for making predictions
for calculating the validation / test error.

train_gp_model_cov_pars
Boolean. If TRUE, the covariance parameters of the gp_model (Gaussian pro-
cess and/or random effects) are estimated in every boosting iterations, otherwise
the gp_model parameters are not estimated. In the latter case, you need to either
estimate them beforehand or provide the values via the init_cov_pars param-
eter when creating the gp_model

valids a list of gpb.Dataset objects, used for validation

obj (character) The distribution of the response variable (=label) conditional on fixed
and random effects. This only needs to be set when doing independent boosting
without random effects / Gaussian processes.

eval Evaluation metric to be monitored when doing CV and parameter tuning. This
can be a string, function, or list with a mixture of strings and functions.

* a. character vector: Non-exhaustive list of supported metrics: "test_neg_log_likelihood",
"mse", "rmse", "mae", "auc", "average_precision", "binary_logloss", "bi-
nary_error" See the "metric" section of the parameter documentation for a
complete list of valid metrics.

* b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

— name: A string with the name of the metric, used for printing and stor-
ing results.

— value: A single number indicating the value of the metric for the given
predictions and true values

— higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

e c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose verbosity for output, if <= 0, also will disable the print of evaluation during
training

record Boolean, TRUE will record iteration message to booster$record_evals

https://gpboost.readthedocs.io/en/latest/Parameters.html#metric-parameters

68

gpboost

eval_freq evaluation output frequency, only effect when verbose > 0
early_stopping_rounds

int.

Activates early stopping. Requires at least one validation data and one

metric. When this parameter is non-null, training will stop if the evaluation of
any metric on any validation set fails to improve for early_stopping_rounds
consecutive boosting rounds. If training stops early, the returned model will
have attribute best_iter set to the iteration number of the best iteration.

init_model path of model file of gpb.Booster object, will continue training from this model

colnames feature names, if not null, will use this to overwrite the names in dataset

categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

callbacks List of callback functions that are applied at each iteration.

Additional arguments passed to gpb. train. For example

Value

a trained gpb.Booster

Early Stopping

valids: alist of gpb.Dataset objects, used for validation

eval: evaluation function, can be (a list of) character or custom eval func-
tion

record: Boolean, TRUE will record iteration message to booster$record_evals
colnames: feature names, if not null, will use this to overwrite the names
in dataset

categorical_feature: categorical features. This can either be a character
vector of feature names or an integer vector with the indices of the features
(e.g. c(1L, 10L) to say "the first and tenth columns").

reset_data: Boolean, setting it to TRUE (not the default value) will trans-
form the booster model into a predictor model which frees up memory and
the original datasets

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early

stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Author(s)

Fabio Sigrist, authors of the LightGBM R package

gpboost 69

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Create random effects model

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
The default optimizer for covariance parameters (hyperparameters) is
Nesterov-accelerated gradient descent.

This can be changed to, e.g., Nelder-Mead as follows:

re_params <- list(optimizer_cov = "nelder_mead")
gp_model$set_optim_params(params=re_params)

Use trace = TRUE to monitor convergence:

re_params <- list(trace = TRUE)
gp_model$set_optim_params(params=re_params)

% ¥ O OH H M

Train model

bst <- gpboost(data = X, label =y, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 0)

Estimated random effects model

summary (gp_model)

Make predictions

Predict latent variables

pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var = TRUE, pred_latent = TRUE)

pred$random_effect_mean # Predicted latent random effects mean

pred$random_effect_cov # Predicted random effects variances

pred$fixed_effect # Predicted fixed effects from tree ensemble

Predict response variable

pred_resp <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],

predict_var = TRUE, pred_latent = FALSE)

pred_resp$response_mean # Predicted response mean

For Gaussian data: pred$random_effect_mean + pred$fixed_effect = pred_resp$response_mean

pred$random_effect_mean + pred$fixed_effect - pred_resp$response_mean

Hommmm - Combine tree-boosting and Gaussian process model----------------
Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential”,

likelihood = "gaussian™)

Train model

bst <- gpboost(data = X, label =y, gp_model = gp_model, nrounds = 8,
learning_rate = 0.1, max_depth = 6, min_data_in_leaf = 5,
verbose = @)

Estimated random effects model

summary (gp_model)

Make predictions

pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,

70 GPModel

predict_var = TRUE, pred_latent = TRUE)
pred$random_effect_mean # Predicted latent random effects mean
pred$random_effect_cov # Predicted random effects variances
pred$fixed_effect # Predicted fixed effects from tree ensemble
Predict response variable
pred_resp <- predict(bst, data = X_test, gp_coords_pred = coords_test,

predict_var = TRUE, pred_latent = FALSE)

pred_resp$response_mean # Predicted response mean

GPBoost_data Example data for the GPBoost package

Description

Simulated example data for the GPBoost package This data set includes the following fields:

* y: response variable

e X: a matrix with covariate information

* group_data: a matrix with categorical grouping variables

e coords: a matrix with spatial coordinates

* X_test: a matrix with covariate information for predictions

* group_data_test: a matrix with categorical grouping variables for predictions

* coords_test: a matrix with spatial coordinates for predictions

Usage

data(GPBoost_data)

GPModel Create a GPModel object

Description

Create a GPModel which contains a Gaussian process and / or mixed effects model with grouped
random effects

GPModel 71

Usage

GPModel (1likelihood = "gaussian”, group_data = NULL,
group_rand_coef_data = NULL, ind_effect_group_rand_coef = NULL,
drop_intercept_group_rand_effect = NULL, gp_coords = NULL,

gp_rand_coef_data = NULL, cov_function = "matern”, cov_fct_shape = 1.5,
gp_approx = "none"”, num_parallel_threads = NULL, GPU_use = FALSE,
matrix_inversion_method = "default”, weights = NULL,
likelihood_learning_rate = 1, cov_fct_taper_range = 1,
cov_fct_taper_shape = 1, num_neighbors = NULL,

vecchia_ordering = "random”, ind_points_selection = "kmeans++",
num_ind_points = NULL, cover_tree_radius = 1, seed = 0L,

cluster_ids = NULL, likelihood_additional_param = NULL, num_data = NULL,

free_raw_data = FALSE, vecchia_approx = NULL, vecchia_pred_type = NULL,
num_neighbors_pred = NULL)

Arguments

likelihood A string specifying the likelihood function (distribution) of the response vari-
able. Available options:

* "gaussian"

* "bernoulli_logit": Bernoulli likelihood with a logit link function for binary
classification. Aliases: "binary", "binary_logit"

* "bernoulli_probit": Bernoulli likelihood with a probit link function for bi-
nary classification. Aliases: "binary_probit"

* "binomial_logit": Binomial likelihood with a logit link function. The re-
sponse variable y needs to contain proportions of successes / trials, and the
weights parameter needs to contain the numbers of trials. Aliases: "bino-
mial"

* "binomial_probit": Binomial likelihood with a probit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials

* "beta_binomial": Beta-binomial likelihood with a logit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials. Aliases:
"betabinomial”, "beta-binomial"

* "poisson": Poisson likelihood with a log link function

* "negative_binomial": negative binomial likelihood with a log link function
(aka "nbinom2", "negative_binomial_2"). The variance is mu * (mu + r) /
r, mu = mean, r = shape, with this parametrization

* "negative_binomial_1": Negative binomial 1 (aka "nbinom1") likelihood
with a log link function. The variance is mu * (1 + phi), mu = mean, phi =
dispersion, with this parametrization

* "gamma": Gamma likelihood with a log link function

* "lognormal": Log-normal likelihood with a log link function

* "beta" : Beta likelihood with a logit link function (parametrization of Fer-
rari and Cribari-Neto, 2004)

72

GPModel

"t": t-distribution (e.g., for robust regression)
"t_fix_df": t-distribution with the degrees-of-freedom (df) held fixed and
not estimated
— The degrees-of-freedom (df) can be set via the 1ikelihood_additional_param
parameter. The default is df = 2
"quantile_regression" / "asymmetric_laplace" : an asymmetric Laplace like-

"non

lihood for quantile regression, aliases: "asymmetric_laplace", "quantile_regression"
— The quantile can be set via the 1ikelihood_additional_param pa-
rameter. The default is quantile = 0.5
"zero_inflated_gamma": Zero-inflated gamma likelihood. The log-transformed
mean of the response variable equals the sum of fixed and random effects,
E(y) = mu = exp(F(X) + Zb), and the rate parameter equals (1-p0) * gamma
/ mu, where p0 is the zero-inflation probability and gamma the shape pa-
rameter. L.e., the rate parameter depends on F(X) + Zb, and p0 and gamma
are (univariate auxiliary) parameters that are estimated. Note that E(y) = mu
above refers the the mean of the entire distribution and not just the positive
part
"zero_censored_power_transformed_normal": Likelihood of a censored and
power-transformed normal variable for modeling data with a point mass
at 0 and a continuous distribution for y > 0. The model used is Y =
max(0,X)"ambda, X ~ N(mu, sigma”2), where mu = F(X) + Zb, and sigma
and lambda are (auxiliary) parameters that are estimated. For more details
on this model, see Sigrist et al. (2012, AOAS) "A dynamic nonstationary
spatio-temporal model for short term prediction of precipitation”
"gaussian_heteroscedastic": Gaussian likelihood where both the mean and
the variance are related to fixed and random effects. This is currently only
implemented for GPs with a "vecchia’ approximation
Note: the first lines in the likelihoods source file contain additional com-
ments on the specific parametrizations used
Note: other likelihoods can be implemented upon request

group_data A vector or matrix whose columns are categorical grouping variables. The
elements being group levels defining grouped random effects. The elements
of ’group_data’ can be integer, double, or character. The number of columns
corresponds to the number of grouped (intercept) random effects

group_rand_coef_data
A vector or matrix with numeric covariate data for grouped random coeffi-
cients

ind_effect_group_rand_coef
A vector with integer indices that indicate the corresponding categorical group-
ing variable (=columns) in ’group_data’ for every covariate in ’group_rand_coef_data’.
Counting starts at 1. The length of this index vector must equal the number of
covariates in ’group_rand_coef_data’. For instance, c(1,1,2) means that the first
two covariates (=first two columns) in ’group_rand_coef_data’ have random co-
efficients corresponding to the first categorical grouping variable (=first column)
in ’group_data’, and the third covariate (=third column) in ’group_rand_coef_data’
has a random coefficient corresponding to the second grouping variable (=sec-
ond column) in ’group_data’

https://github.com/fabsig/GPBoost/blob/master/include/GPBoost/likelihoods.h

GPModel 73

drop_intercept_group_rand_effect
A vector of type logical (boolean). Indicates whether intercept random ef-
fects are dropped (only for random coefficients). If drop_intercept_group_rand_effect[k]
is TRUE, the intercept random effect number k is dropped / not included. Only
random effects with random slopes can be dropped.

gp_coords A matrix with numeric coordinates (= inputs / features) for defining Gaussian
processes

gp_rand_coef_data

A vector or matrix with numeric covariate data for Gaussian process random
coefficients

cov_function A string specifying the covariance function for the Gaussian process. Avail-
able options:

* "matern": Matern covariance function with the smoothness specified by the
cov_fct_shape parameter (using the parametrization of Rasmussen and
Williams, 2006)

* "matern_estimate_shape": same as "matern" but the smoothness parameter
is also estimated

* "matern_space_time": Spatio-temporal Matern covariance function with
different range parameters for space and time. Note that the first column
in gp_coords must correspond to the time dimension

 "space_time_gneiting": Spatio-temporal covariance function given in Eq.
(16) of Gneiting (2002). Note that the first column in gp_coords must cor-
respond to the time dimension. This covariance has seven parameters (in
the following order: sigma?2, a, c, alpha, nu, beta, delta) which are all esti-
mated by default. You can disable the estimation of some of these param-
eter using the "estimate_cov_par_index’ argument of the params argument
in either the fit function of a gp_model object or the set_optim_params
function prior to estimation.

* "matern_ard": anisotropic Matern covariance function with Automatic Rel-
evance Determination (ARD), i.e., with a different range parameter for ev-
ery coordinate of gp_coords

* "matern_ard_estimate_shape": same as "matern_ard" but the smoothness
parameter is also estimated

* "exponential": Exponential covariance function (using the parametrization
of Diggle and Ribeiro, 2007)

* "gaussian": Gaussian, aka squared exponential, covariance function (using
the parametrization of Diggle and Ribeiro, 2007)

* "gaussian_ard": anisotropic Gaussian, aka squared exponential, covariance
function with Automatic Relevance Determination (ARD), i.e., with a dif-
ferent range parameter for every coordinate of gp_coords

» "powered_exponential": powered exponential covariance function with the
exponent specified by the cov_fct_shape parameter (using the parametriza-
tion of Diggle and Ribeiro, 2007)

* "wendland": Compactly supported Wendland covariance function (using
the parametrization of Bevilacqua et al., 2019, AOS)

74

GPModel

* "linear": linear covariance function. This corresponds to a Bayesian linear
regression model with a Gaussian prior on the coefficients with a constant
variance diagonal prior covariance, and the prior variance is estimated using
empirical Bayes.

* "hurst": Hurst covariance function cov(s, s’) = (sigma2 / 2) * (lIsll"(2H)
+ Is’lI"(2H) - lIs - s’lN(2H)). For H = 0.5, this corresponds to Brownian
motion (-> see the ’estimate_cov_par_index’ argument)

"hurst_ard": Hurst covariance function with with Automatic Relevance De-
termination (ARD), i.e., with a different range parameter for every coordi-
nate of “gp_coords* except for the first coordinate which has a range pa-
rameter of 1 due to identifiability with the marginal variance: cov(s,s’) =

072 | (51 + Shoatou/?)” + (1 Shatea/?)” = (1= 527+ Thoollon o

cov_fct_shape A numeric specifying the shape parameter of the covariance function (e.g.,
smoothness parameter for Matern and Wendland covariance) This parameter is
irrelevant for some covariance functions such as the exponential or Gaussian

gp_approx A string specifying the large data approximation for Gaussian processes. Avail-
able options:
* "none": No approximation

* "vecchia": Vecchia approximation; see Sigrist (2022, JMLR) for more de-
tails

 "full_scale_vecchia": Vecchia-inducing points full-scale (VIF) approxima-
tion; see Gyger, Furrer, and Sigrist (2025) for more details

"tapering": The covariance function is multiplied by a compactly supported
Wendland correlation function

"fitc": Fully Independent Training Conditional approximation aka modified
predictive process approximation; see Gyger, Furrer, and Sigrist (2024) for
more details

"full_scale_tapering": Full-scale approximation combining an inducing point
/ predictive process approximation with tapering on the residual process;
see Gyger, Furrer, and Sigrist (2024) for more details

 "vecchia_latent": similar as "vecchia" but a Vecchia approximation is ap-
plied to the latent Gaussian process for likelihood == "gaussian". For like-

non

lihood != "gaussian", "vecchia" and "vecchia_latent" are equivalent

num_parallel_threads
An integer specifying the number of parallel threads for OMP. If num_parallel_threads
= NULL, all available threads are used

GPU_use A boolean. If TRUE, GPU acceleration will be used if supported

matrix_inversion_method
A string specifying the method used for inverting covariance matrices. Avail-
able options:

 "default": iterative methods where possible, otherwise Cholesky factoriza-
tion

* "cholesky": Cholesky factorization

GPModel 75

 "iterative": iterative methods. A combination of the conjugate gradient, the
Lanczos algorithm, and other methods.
This is currently only supported for the following cases:
— grouped random effects with more than one level
— likelihood != "gaussian" and gp_approx == "vecchia" (non-Gaussian
likelihoods with a Vecchia-Laplace approximation)
— likelihood != "gaussian" and gp_approx == "full_scale_vecchia" (non-
Gaussian likelihoods with a VIF approximation)
— likelihood == "gaussian" and gp_approx == "full_scale_tapering" (Gaus-
sian likelihood with a full-scale tapering approximation)
weights A vector with sample weights
likelihood_learning_rate
A numeric with a learning rate for the likelihood for generalized Bayesian in-
ference (only non-Gaussian likelihoods)
cov_fct_taper_range
A numeric specifying the range parameter of the Wendland covariance function

and Wendland correlation taper function. We follow the notation of Bevilacqua
et al. (2019, AOS)

cov_fct_taper_shape
A numeric specifying the shape (=smoothness) parameter of the Wendland co-

variance function and Wendland correlation taper function. We follow the nota-
tion of Bevilacqua et al. (2019, AOS)

num_neighbors An integer specifying the number of neighbors for the Vecchia and VIF ap-
proximations. Internal default values if NULL:
* 20 for gp_approx = "vecchia"
* 30 for gp_approx = "full_scale_vecchia"
Note: for prediction, the number of neighbors can be set through the 'num_neighbors_pred’
parameter in the "set_prediction_data’ function. By default, num_neighbors_pred
=2 * num_neighbors. Further, the type of Vecchia approximation used for mak-
ing predictions is set through the vecchia_pred_type’ parameter in the ’set_prediction_data’
function
vecchia_ordering

A string specifying the ordering used in the Vecchia approximation. Available
options:
* "none": the default ordering in the data is used
* "random": a random ordering
* "time": ordering accorrding to time (only for space-time models)
e "time_random_space": ordering according to time and randomly for all
spatial points with the same time points (only for space-time models)
ind_points_selection
A string specifying the method for choosing inducing points Available options:
e "kmeans++: the k-means++ algorithm
* "cover_tree": the cover tree algorithm
* "random": random selection from data points

76 GPModel

num_ind_points An integer specifying the number of inducing points / knots for FITC, full_scale_tapering,
and VIF approximations. Internal default values if NULL:

* 500 for gp_approx = "FITC" and gp_approx = "full_scale_tapering"
* 200 for gp_approx = "full_scale_vecchia"

cover_tree_radius
A numeric specifying the radius (= "spatial resolution") for the cover tree algo-
rithm

seed An integer specifying the seed used for model creation (e.g., random ordering
in Vecchia approximation)

cluster_ids A vector with elements indicating independent realizations of random effects /
Gaussian processes (same values = same process realization). The elements of
"cluster_ids’ can be integer, double, or character.

likelihood_additional_param

A numeric specifying an additional parameter for the 1ikelihood which cannot
be estimated for this 1ikelihood (e.g., degrees of freedom for likelihood =
"t_fix_df"). This is not to be confused with any auxiliary parameters that can
be estimated and accessed through the function get_aux_pars after estimation.
Note that this 1ikelihood_additional_param parameter is irrelevant for many
likelihoods. If 1ikelihood_additional_param = NULL, the following internal
default values are used:

e df =2 for likelihood = "t_fix_df"

* quantile = 0.5 for likelihood = "asymmetric_laplace"
num_data A numeric with the number of samples. This is only used for iid models

free_raw_data A boolean. If TRUE, the data (groups, coordinates, covariate data for random
coefficients) is freed in R after initialization

vecchia_approx Discontinued. Use the argument gp_approx instead

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making pre-
dictions. This is discontinued here. Use the function ’set_prediction_data’ to
specify this

num_neighbors_pred
an integer specifying the number of neighbors for making predictions. This is
discontinued here. Use the function ’set_prediction_data’ to specify this

Value
A GPModel containing ontains a Gaussian process and / or mixed effects model with grouped ran-
dom effects

Author(s)

Fabio Sigrist

GPModel_shared_params 77

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

data(GPBoost_data, package = "gpboost")

gp_model <- GPModel(group_data = group_datal[,1], likelihood="gaussian")

#ommmm Gaussian process model---------------—-
gp_model <- GPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
likelihood="gaussian")
Hommmm Combine Gaussian process with grouped random effects----------------
gp_model <- GPModel(group_data = group_data,
gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,

likelihood="gaussian")

GPModel_shared_params Documentation for parameters shared by GPModel, gpb.cv, and
gpboost

Description

Documentation for parameters shared by GPModel, gpb. cv, and gpboost

Arguments

likelihood A string specifying the likelihood function (distribution) of the response vari-
able. Available options:

 "gaussian"
* "bernoulli_logit": Bernoulli likelihood with a logit link function for binary

"non

classification. Aliases: "binary", "binary_logit"

* "bernoulli_probit": Bernoulli likelihood with a probit link function for bi-
nary classification. Aliases: "binary_probit"

* "binomial_logit": Binomial likelihood with a logit link function. The re-
sponse variable y needs to contain proportions of successes / trials, and the
weights parameter needs to contain the numbers of trials. Aliases: "bino-
mial"

"binomial_probit": Binomial likelihood with a probit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials

* "beta_binomial": Beta-binomial likelihood with a logit link function. The
response variable y needs to contain proportions of successes / trials, and
the weights parameter needs to contain the numbers of trials. Aliases:
"betabinomial"”, "beta-binomial"

* "poisson": Poisson likelihood with a log link function

GPModel_shared_params

* "negative_binomial": negative binomial likelihood with a log link function
(aka "nbinom2", "negative_binomial_2"). The variance is mu * (mu + r) /
1, mu = mean, r = shape, with this parametrization

* "negative_binomial_1": Negative binomial 1 (aka "nbinom1") likelihood
with a log link function. The variance is mu * (1 + phi), mu = mean, phi =
dispersion, with this parametrization

e "gamma": Gamma likelihood with a log link function
* "lognormal": Log-normal likelihood with a log link function

* "beta" : Beta likelihood with a logit link function (parametrization of Fer-
rari and Cribari-Neto, 2004)

e "t": t-distribution (e.g., for robust regression)

e "t_fix_df": t-distribution with the degrees-of-freedom (df) held fixed and
not estimated

— The degrees-of-freedom (df) can be set via the 1ikelihood_additional_param
parameter. The default is df = 2

* "quantile_regression" / "asymmetric_laplace" : an asymmetric Laplace like-

non

lihood for quantile regression, aliases: "asymmetric_laplace", "quantile_regression"

— The quantile can be set via the 1ikelihood_additional_param pa-
rameter. The default is quantile = 0.5

* "zero_inflated_gamma": Zero-inflated gamma likelihood. The log-transformed
mean of the response variable equals the sum of fixed and random effects,
E(y) = mu = exp(F(X) + Zb), and the rate parameter equals (1-p0) * gamma
/ mu, where p0 is the zero-inflation probability and gamma the shape pa-
rameter. Le., the rate parameter depends on F(X) + Zb, and p0 and gamma
are (univariate auxiliary) parameters that are estimated. Note that E(y) = mu
above refers the the mean of the entire distribution and not just the positive
part

* "zero_censored_power_transformed_normal": Likelihood of a censored and
power-transformed normal variable for modeling data with a point mass
at 0 and a continuous distribution for y > 0. The model used is Y =
max(0,X)"ambda, X ~ N(mu, sigma”2), where mu = F(X) + Zb, and sigma
and lambda are (auxiliary) parameters that are estimated. For more details
on this model, see Sigrist et al. (2012, AOAS) "A dynamic nonstationary
spatio-temporal model for short term prediction of precipitation”

* "gaussian_heteroscedastic": Gaussian likelihood where both the mean and
the variance are related to fixed and random effects. This is currently only
implemented for GPs with a *vecchia’ approximation

* Note: the first lines in the likelihoods source file contain additional com-
ments on the specific parametrizations used

* Note: other likelihoods can be implemented upon request

likelihood_additional_param
A numeric specifying an additional parameter for the 1ikelihood which cannot
be estimated for this 1ikelihood (e.g., degrees of freedom for likelihood =
"t_fix_df"). This is not to be confused with any auxiliary parameters that can
be estimated and accessed through the function get_aux_pars after estimation.
Note that this 1ikelihood_additional_param parameter is irrelevant for many

https://github.com/fabsig/GPBoost/blob/master/include/GPBoost/likelihoods.h

GPModel_shared_params 79

likelihoods. If 1ikelihood_additional_param = NULL, the following internal
default values are used:

e df =2 for likelihood = "t_fix_df"
* quantile = 0.5 for likelihood = "asymmetric_laplace"

group_data A vector or matrix whose columns are categorical grouping variables. The
elements being group levels defining grouped random effects. The elements
of ’group_data’ can be integer, double, or character. The number of columns
corresponds to the number of grouped (intercept) random effects

group_rand_coef_data
A vector or matrix with numeric covariate data for grouped random coeffi-
cients

ind_effect_group_rand_coef
A vector with integer indices that indicate the corresponding categorical group-
ing variable (=columns) in ’group_data’ for every covariate in ’group_rand_coef_data’.
Counting starts at 1. The length of this index vector must equal the number of
covariates in ’group_rand_coef_data’. For instance, c(1,1,2) means that the first
two covariates (=first two columns) in ’group_rand_coef_data’ have random co-
efficients corresponding to the first categorical grouping variable (=first column)
in ’group_data’, and the third covariate (=third column) in ’group_rand_coef_data’
has a random coefficient corresponding to the second grouping variable (=sec-
ond column) in ’group_data’

drop_intercept_group_rand_effect
A vector of type logical (boolean). Indicates whether intercept random ef-
fects are dropped (only for random coefficients). If drop_intercept_group_rand_effect[k]
is TRUE, the intercept random effect number k is dropped / not included. Only
random effects with random slopes can be dropped.

gp_coords A matrix with numeric coordinates (= inputs / features) for defining Gaussian
processes

gp_rand_coef_data
A vector or matrix with numeric covariate data for Gaussian process random
coefficients

cov_function A string specifying the covariance function for the Gaussian process. Avail-
able options:

* "matern": Matern covariance function with the smoothness specified by the
cov_fct_shape parameter (using the parametrization of Rasmussen and
Williams, 2006)

* "matern_estimate_shape": same as "matern" but the smoothness parameter
is also estimated

* "matern_space_time": Spatio-temporal Matern covariance function with
different range parameters for space and time. Note that the first column
in gp_coords must correspond to the time dimension

 "space_time_gneiting": Spatio-temporal covariance function given in Eq.
(16) of Gneiting (2002). Note that the first column in gp_coords must cor-
respond to the time dimension. This covariance has seven parameters (in
the following order: sigma?2, a, c, alpha, nu, beta, delta) which are all esti-
mated by default. You can disable the estimation of some of these param-
eter using the ’estimate_cov_par_index’ argument of the params argument

GPModel_shared_params

in either the fit function of a gp_model object or the set_optim_params
function prior to estimation.

* "matern_ard": anisotropic Matern covariance function with Automatic Rel-
evance Determination (ARD), i.e., with a different range parameter for ev-
ery coordinate of gp_coords

* "matern_ard_estimate_shape": same as "matern_ard" but the smoothness
parameter is also estimated

» "exponential": Exponential covariance function (using the parametrization
of Diggle and Ribeiro, 2007)

» "gaussian": Gaussian, aka squared exponential, covariance function (using
the parametrization of Diggle and Ribeiro, 2007)

* "gaussian_ard": anisotropic Gaussian, aka squared exponential, covariance
function with Automatic Relevance Determination (ARD), i.e., with a dif-
ferent range parameter for every coordinate of gp_coords

* "powered_exponential": powered exponential covariance function with the
exponent specified by the cov_fct_shape parameter (using the parametriza-
tion of Diggle and Ribeiro, 2007)

* "wendland": Compactly supported Wendland covariance function (using
the parametrization of Bevilacqua et al., 2019, AOS)

* "linear": linear covariance function. This corresponds to a Bayesian linear
regression model with a Gaussian prior on the coefficients with a constant
variance diagonal prior covariance, and the prior variance is estimated using
empirical Bayes.

* "hurst": Hurst covariance function cov(s, s’) = (sigma2 / 2) * (lIsll*"(2H)
+ Is’lI"(2H) - lIs - s’lIN(2H)). For H = 0.5, this corresponds to Brownian
motion (-> see the ’estimate_cov_par_index’ argument)

¢ "hurst_ard": Hurst covariance function with with Automatic Relevance De-
termination (ARD), i.e., with a different range parameter for every coordi-
nate of “gp_coords* except for the first coordinate which has a range pa-
rameter of 1 due to identifiability with the marginal variance: cov(s,s’) =

(02/2) [(s% E S on/12) (55 S) — (o1 5% + Sy (e — '

cov_fct_shape A numeric specifying the shape parameter of the covariance function (e.g.,
smoothness parameter for Matern and Wendland covariance) This parameter is
irrelevant for some covariance functions such as the exponential or Gaussian

gp_approx A string specifying the large data approximation for Gaussian processes. Avail-
able options:

* "none": No approximation

* "vecchia": Vecchia approximation; see Sigrist (2022, JMLR) for more de-
tails

 "full_scale_vecchia": Vecchia-inducing points full-scale (VIF) approxima-
tion; see Gyger, Furrer, and Sigrist (2025) for more details

* "tapering": The covariance function is multiplied by a compactly supported
Wendland correlation function

 "fitc": Fully Independent Training Conditional approximation aka modified
predictive process approximation; see Gyger, Furrer, and Sigrist (2024) for
more details

GPModel_shared_params 81

 "full_scale_tapering": Full-scale approximation combining an inducing point
/ predictive process approximation with tapering on the residual process;
see Gyger, Furrer, and Sigrist (2024) for more details

* "vecchia_latent": similar as "vecchia" but a Vecchia approximation is ap-
plied to the latent Gaussian process for likelihood == "gaussian". For like-

non

lihood != "gaussian", "vecchia" and "vecchia_latent" are equivalent
num_parallel_threads
An integer specifying the number of parallel threads for OMP. If num_parallel_threads
= NULL, all available threads are used

GPU_use A boolean. If TRUE, GPU acceleration will be used if supported
cov_fct_taper_range
A numeric specifying the range parameter of the Wendland covariance function
and Wendland correlation taper function. We follow the notation of Bevilacqua
et al. (2019, AOS)
cov_fct_taper_shape
A numeric specifying the shape (=smoothness) parameter of the Wendland co-

variance function and Wendland correlation taper function. We follow the nota-
tion of Bevilacqua et al. (2019, AOS)

num_neighbors An integer specifying the number of neighbors for the Vecchia and VIF ap-
proximations. Internal default values if NULL:

* 20 for gp_approx = "vecchia"
* 30 for gp_approx = "full_scale_vecchia"

Note: for prediction, the number of neighbors can be set through the *num_neighbors_pred’
parameter in the "set_prediction_data’ function. By default, num_neighbors_pred
= 2 * num_neighbors. Further, the type of Vecchia approximation used for mak-
ing predictions is set through the vecchia_pred_type’ parameter in the ’set_prediction_data
function
vecchia_ordering
A string specifying the ordering used in the Vecchia approximation. Available
options:

b}

* "none": the default ordering in the data is used
e "random": a random ordering
* "time": ordering accorrding to time (only for space-time models)

* "time_random_space": ordering according to time and randomly for all
spatial points with the same time points (only for space-time models)

ind_points_selection
A string specifying the method for choosing inducing points Available options:
* "kmeans++: the k-means++ algorithm
» "cover_tree": the cover tree algorithm
* "random": random selection from data points
num_ind_points An integer specifying the number of inducing points / knots for FITC, full_scale_tapering,
and VIF approximations. Internal default values if NULL:
* 500 for gp_approx = "FITC" and gp_approx = "full_scale_tapering"
* 200 for gp_approx = "full_scale_vecchia"

82 GPModel_shared_params

cover_tree_radius
A numeric specifying the radius (= "spatial resolution") for the cover tree algo-
rithm

matrix_inversion_method
A string specifying the method used for inverting covariance matrices. Avail-
able options:

» "default": iterative methods where possible, otherwise Cholesky factoriza-
tion
¢ "cholesky": Cholesky factorization

 "iterative": iterative methods. A combination of the conjugate gradient, the
Lanczos algorithm, and other methods.
This is currently only supported for the following cases:

grouped random effects with more than one level

likelihood != "gaussian" and gp_approx == "vecchia" (non-Gaussian
likelihoods with a Vecchia-Laplace approximation)

likelihood != "gaussian" and gp_approx == "full_scale_vecchia" (non-
Gaussian likelihoods with a VIF approximation)

likelihood == "gaussian" and gp_approx == "full_scale_tapering" (Gaus-
sian likelihood with a full-scale tapering approximation)

seed An integer specifying the seed used for model creation (e.g., random ordering
in Vecchia approximation)

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making predic-
tions. Default value if vecchia_pred_type = NULL: "order_obs_first_cond_obs_only".
Available options:

* "order_obs_first_cond_obs_only": Vecchia approximation for the observ-
able process and observed training data is ordered first and the neighbors
are only observed training data points

* "order_obs_first_cond_all": Vecchia approximation for the observable pro-
cess and observed training data is ordered first and the neighbors are se-
lected among all points (training + prediction)

* "latent_order_obs_first_cond_obs_only": Vecchia approximation for the la-
tent process and observed data is ordered first and neighbors are only ob-
served points

* "latent_order_obs_first_cond_all": Vecchia approximation for the latent pro-
cess and observed data is ordered first and neighbors are selected among all
points

 "order_pred_first": Vecchia approximation for the observable process and
prediction data is ordered first for making predictions. This option is only
available for Gaussian likelihoods

num_neighbors_pred
an integer specifying the number of neighbors for the Vecchia approximation
for making predictions. Default value if NULL: num_neighbors_pred = 2 *
num_neighbors

GPModel_shared_params 83

cg_delta_conv_pred

nsim_var_pred

a numeric specifying the tolerance level for L2 norm of residuals for checking
convergence in conjugate gradient algorithms when being used for prediction
Default value if NULL: le-3

an integer specifying the number of samples when simulation is used for cal-
culating predictive variances Internal default values if NULL:

* 500 for grouped random effects

* 1000 for gp_approx = "vecchia" and gp_approx = "full_scale_tapering"

* 100 for gp_approx = "full_scale_vecchia"

rank_pred_approx_matrix_lanczos

cluster_ids

weights

an integer specifying the rank of the matrix for approximating predictive co-
variances obtained using the Lanczos algorithm Default value if NULL: 1000

A vector with elements indicating independent realizations of random effects /
Gaussian processes (same values = same process realization). The elements of
"cluster_ids’ can be integer, double, or character.

A vector with sample weights

likelihood_learning_rate

free_raw_data

params

A numeric with a learning rate for the likelihood for generalized Bayesian in-
ference (only non-Gaussian likelihoods)

A boolean. If TRUE, the data (groups, coordinates, covariate data for random
coefficients) is freed in R after initialization

A vector with response variable data

A matrix with numeric covariate data for the fixed effects linear regression term
(if there is one)

A list with parameters for the estimation / optimization

* trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If ’init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option trace
= TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

e init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

GPModel_shared_params

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If *esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

* estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)

* optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "Ibfgs", "gradient_descent", "fisher_scoring",

"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, *optimizer_cov’ is also used for those

* optimizer_coef: string (default ="wls" for Gaussian likelihoods and "lbfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent”, "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lbfgs", ’optimizer_coef’ is automatically also set to
the same value.

e maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm

¢ delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used

e cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms

e cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization

e cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation

e num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix

e reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated

GPModel_shared_params 85

* seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)

» cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.

— Options for grouped random effects:
"ssor" (= default): SSOR preconditioner
"incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-

tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

* "vadu" (= default): (BT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma”-1

% "fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1 * D * BA-T + WA-1)

"pivoted_cholesky": (Lk * Lk T + W”-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted
Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma

* "incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * D/-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1

— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":

"fitc" (= default): FITC / modified predictive process preconditioner

+ "vifdu": VIF with diagonal update preconditioner

— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
"fitc" (= default): modified predictive process preconditioner
* "none": no preconditioner
* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing
points as in the approximation as used). Internal default values if NULL or
<0:
— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner
* convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters"
* Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used
— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent"
and 1. otherwise)

GPModel_shared_params

— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those
— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion

¢ Ir_coef: numeric (default=0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used

* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

* acc_rate_coef: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

* momentum_offset: integer (Default =2, only relevant for "gradient_descent").
Number of iterations for which no momentum is applied in the beginning.

* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "lbfgs" optimizer

¢ delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-
ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

offset A numeric vector with additional fixed effects contributions that are added
to the linear predictor (= offset). The length of this vector needs to equal the
number of training data points.

fixed_effects This is discontinued. Use the renamed equivalent argument of fset instead

group_data_pred
A vector or matrix with elements being group levels for which predictions are
made (if there are grouped random effects in the GPModel)

group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)

gp_coords_pred A matrix with prediction coordinates (=features) for Gaussian process (if there
is a GP in the GPModel)

gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coeffi-
cients (if there are some in the GPModel)

cluster_ids_pred
A vector with elements indicating the realizations of random effects / Gaussian
processes for which predictions are made (set to NULL if you have not specified
this when creating the GPModel)

X_pred A matrix with prediction covariate data for the fixed effects linear regression
term (if there is one in the GPModel)

predict_cov_mat
A boolean. If TRUE, the (posterior) predictive covariance is calculated in ad-
dition to the (posterior) predictive mean

group_data 87

predict_var A boolean. If TRUE, the (posterior) predictive variances are calculated

std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square
root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)

vecchia_approx Discontinued. Use the argument gp_approx instead

num_data A numeric with the number of samples. This is only used for iid models
group_data Gouping data for example data for the GPBoost package
Description

A matrix with categorical grouping variables for the example data of the GPBoost package

Usage

data(GPBoost_data)

group_data_test Test grouping data for example data for the GPBoost package

Description

A matrix with categorical grouping variables for predictions for the example data of the GPBoost
package

Usage

data(GPBoost_data)

88 loadGPModel

loadGPModel Load a GPModel from a file

Description

Load a GPModel from a file

Usage

loadGPModel (filename)

Arguments

filename filename for loading

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[11),X)

X_testl <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)
Save model to file
filename <- tempfile(fileext = ".json")
saveGPModel (gp_model, filename = filename)
Load from file and make predictions again
gp_model_loaded <- loadGPModel(filename = filename)
pred_loaded <- predict(gp_model_loaded, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)
Check equality
pred$mu - pred_loaded$mu
pred$var - pred_loaded$var

neg_log_likelihood 89

neg_log_likelihood Evaluate the negative log-likelihood

Description

Evaluate the negative log-likelihood. If there is a linear fixed effects predictor term, this needs to be
calculated "manually" prior to calling this function (see example below)

Usage

neg_log_likelihood(gp_model, cov_pars, y, fixed_effects = NULL,
aux_pars = NULL)

Arguments
gp_model A GPModel
cov_pars A vector with numeric elements. Covariance parameters of Gaussian process
and random effects
y A vector with response variable data

fixed_effects A numeric vector with fixed effects, e.g., containing a linear predictor. The
length of this vector needs to equal the number of training data points.

aux_pars A vector with numeric elements. Additional parameters for non-Gaussian like-
lihoods (e.g., shape parameter of a gamma or negative_binomial likelihood)

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

gp_model <- GPModel(group_data = group_data, likelihood="gaussian")

X1 <= cbind(rep(1,dim(X)[1]1), X)

coef <- c(0.1, 0.1, 0.1)

fixed_effects <- as.numeric(X1 %*% coef)

neg_log_likelihood(gp_model, y =y, cov_pars = c(0.1,1,1),
fixed_effects = fixed_effects)

90 neg_log_likelihood. GPModel

neg_log_likelihood.GPModel
Evaluate the negative log-likelihood

Description

Evaluate the negative log-likelihood. If there is a linear fixed effects predictor term, this needs to be
calculated "manually" prior to calling this function (see example below)

Usage

S3 method for class 'GPModel'
neg_log_likelihood(gp_model, cov_pars, vy,
fixed_effects = NULL, aux_pars = NULL)

Arguments
gp_model A GPModel
cov_pars A vector with numeric elements. Covariance parameters of Gaussian process
and random effects
y A vector with response variable data

fixed_effects A numeric vector with fixed effects, e.g., containing a linear predictor. The
length of this vector needs to equal the number of training data points.

aux_pars A vector with numeric elements. Additional parameters for non-Gaussian like-
lihoods (e.g., shape parameter of a gamma or negative_binomial likelihood)

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

gp_model <- GPModel(group_data = group_data, likelihood="gaussian")

X1 <= cbind(rep(1,dim(X)[11), X)

coef <- c(0.1, 0.1, 0.1)

fixed_effects <- as.numeric(X1 %*% coef)

neg_log_likelihood(gp_model, y =y, cov_pars = c(0.1,1,1),
fixed_effects = fixed_effects)

predict.gpb.Booster 91

predict.gpb.Booster Prediction function for gpb.Booster objects

Description

Prediction function for gpb.Booster objects

Usage

S3 method for class 'gpb.Booster'

predict(object, data, start_iteration = NULL,
num_iteration = NULL, pred_latent = FALSE, predleaf = FALSE,
predcontrib = FALSE, header = FALSE, reshape = FALSE,
group_data_pred = NULL, group_rand_coef_data_pred = NULL,
gp_coords_pred = NULL, gp_rand_coef_data_pred = NULL,
cluster_ids_pred = NULL, predict_cov_mat = FALSE, predict_var = FALSE,
cov_pars = NULL, offset_pred = NULL, ignore_gp_model = FALSE,
rawscore = NULL, vecchia_pred_type = NULL, num_neighbors_pred = NULL,

.
Arguments
object Object of class gpb.Booster
data amatrix object, a dgCMatrix object or a character representing a filename

start_iteration
int or NULL, optional (default=NULL) Start index of the iteration to predict. If
NULL or <= 0, starts from the first iteration.

num_iteration int or NULL, optional (default=NULL) Limit number of iterations in the predic-
tion. If NULL, if the best iteration exists and start_iteration is NULL or <= 0,
the best iteration is used; otherwise, all iterations from start_iteration are used.
If <=0, all iterations from start_iteration are used (no limits).

pred_latent If TRUE latent variables, both fixed effects (tree-ensemble) and random effects
(gp_model) are predicted. Otherwise, the response variable (label) is predicted.
Depending on how the argument "pred_latent’ is set, different values are re-
turned from this function; see the ’Value’ section for more details. If there is no
gp_model, this argument corresponds to raw_score’ in LightGBM.

predleaf whether predict leaf index instead.

predcontrib return per-feature contributions for each record.

header only used for prediction for text file. True if text file has header

reshape whether to reshape the vector of predictions to a matrix form when there are

several prediction outputs per case.

group_data_pred
A vector or matrix with elements being group levels for which predictions are
made (if there are grouped random effects in the GPModel)

92

predict.gpb.Booster

group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)

gp_coords_pred A matrix with prediction coordinates (=features) for Gaussian process (if there
is a GP in the GPModel)

gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coeffi-
cients (if there are some in the GPModel)

cluster_ids_pred
A vector with elements indicating the realizations of random effects / Gaussian
processes for which predictions are made (set to NULL if you have not specified
this when creating the GPModel)

predict_cov_mat
A boolean. If TRUE, the (posterior) predictive covariance is calculated in ad-
dition to the (posterior) predictive mean

predict_var A boolean. If TRUE, the (posterior) predictive variances are calculated

cov_pars A vector containing covariance parameters which are used if the gp_model has
not been trained or if predictions should be made for other parameters than the
trained ones

offset_pred A numeric vector. Offsets for prediction: additional fixed effects contributions
that are added to the predictor for the prediction points. The length of this vector
needs to equal the number of prediction points.

ignore_gp_model
A boolean. If TRUE, predictions are only made for the tree ensemble part and
the gp_model is ignored

rawscore This is discontinued. Use the renamed equivalent argument pred_latent in-
stead

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making pre-
dictions. This is discontinued here. Use the function ’set_prediction_data’ to
specify this

num_neighbors_pred
an integer specifying the number of neighbors for making predictions. This is
discontinued here. Use the function ’set_prediction_data’ to specify this

Additional named arguments passed to the predict () method of the gpb.Booster
object passed to object.

Value

either a list with vectors or a single vector / matrix depending on whether there is a gp_model or not

e If there is a gp_model, the result dict contains the following entries.

— 1. If pred_latent is FALSE (=default), the dict contains the following 2 entries:
* result["response_mean"] are the predictive means of the response variable (Label)
taking into account both the fixed effects (tree-ensemble) and the random effects
(gp_model)

predict.gpb.Booster 93

+ result["response_var"] are the predictive covariances or variances of the response
variable (only if ’predict_var’ or ’predict_cov’ is TRUE)
— 2. If pred_latent is TRUE, the dict contains the following 3 entries:
+ result["fixed_effect"] are the predictions from the tree-ensemble.
* result["random_effect_mean"] are the predictive means of the gp_model.

result["random_effect_cov"] are the predictive covariances or variances of the gp_model
(only if *predict_var’ or *predict_cov’ is TRUE).

e If there is no gp_model or predcontrib or ignore_gp_model are TRUE, the result contains
predictions from the tree-booster only.

Author(s)
Fabio Sigrist, authors of the LightGBM R package

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

library(gpboost)
data(GPBoost_data, package = "gpboost")

Create random effects model

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
The default optimizer for covariance parameters (hyperparameters) is
Nesterov-accelerated gradient descent.

This can be changed to, e.g., Nelder-Mead as follows:

re_params <- list(optimizer_cov = "nelder_mead")
gp_model$set_optim_params(params=re_params)

Use trace = TRUE to monitor convergence:

re_params <- list(trace = TRUE)
gp_model$set_optim_params(params=re_params)

o o o H O R

Train model

bst <- gpboost(data = X, label =y, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = @)

Estimated random effects model

summary (gp_model)

Make predictions

Predict latent variables

pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var = TRUE, pred_latent = TRUE)

pred$random_effect_mean # Predicted latent random effects mean

pred$random_effect_cov # Predicted random effects variances

pred$fixed_effect # Predicted fixed effects from tree ensemble

Predict response variable

pred_resp <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],

predict_var = TRUE, pred_latent = FALSE)

94 predict. GPModel

pred_resp$response_mean # Predicted response mean
For Gaussian data: pred$random_effect_mean + pred$fixed_effect = pred_resp$response_mean
pred$random_effect_mean + pred$fixed_effect - pred_resp$response_mean

o Combine tree-boosting and Gaussian process model----------------
Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential”,

likelihood = "gaussian”)

Train model

bst <- gpboost(data = X, label
learning_rate =
verbose = 0)

Estimated random effects model

summary (gp_model)

Make predictions

pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_var = TRUE, pred_latent = TRUE)

pred$random_effect_mean # Predicted latent random effects mean

pred$random_effect_cov # Predicted random effects variances

pred$fixed_effect # Predicted fixed effects from tree ensemble

Predict response variable

pred_resp <- predict(bst, data = X_test, gp_coords_pred = coords_test,

predict_var = TRUE, pred_latent = FALSE)
pred_resp$response_mean # Predicted response mean

y, gp_model = gp_model, nrounds = 8,
, max_depth = 6, min_data_in_leaf = 5,

(S
—_

predict.GPModel Make predictions for a GPModel

Description

Make predictions for a GPModel

Usage

S3 method for class 'GPModel'

predict(object, predict_response = TRUE,
predict_var = FALSE, predict_cov_mat = FALSE, y = NULL,
cov_pars = NULL, group_data_pred = NULL,
group_rand_coef_data_pred = NULL, gp_coords_pred = NULL,
gp_rand_coef_data_pred = NULL, cluster_ids_pred = NULL, X_pred = NULL,
use_saved_data = FALSE, offset = NULL, offset_pred = NULL,
fixed_effects = NULL, fixed_effects_pred = NULL,
vecchia_pred_type = NULL, num_neighbors_pred = NULL, ...)

Arguments

object a GPModel

predict. GPModel 95

predict_response
A boolean. If TRUE, the response variable (label) is predicted, otherwise the
latent random effects

predict_var A boolean. If TRUE, the (posterior) predictive variances are calculated
predict_cov_mat
A boolean. If TRUE, the (posterior) predictive covariance is calculated in ad-
dition to the (posterior) predictive mean

y Observed data (can be NULL, e.g. when the model has been estimated already
and the same data is used for making predictions)

cov_pars A vector containing covariance parameters which are used if the GPModel has
not been trained or if predictions should be made for other parameters than the
trained ones

group_data_pred
A vector or matrix with elements being group levels for which predictions are
made (if there are grouped random effects in the GPModel)

group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)

gp_coords_pred A matrix with prediction coordinates (=features) for Gaussian process (if there
is a GP in the GPModel)

gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coeffi-
cients (if there are some in the GPModel)

cluster_ids_pred
A vector with elements indicating the realizations of random effects / Gaussian
processes for which predictions are made (set to NULL if you have not specified
this when creating the GPModel)

X_pred A matrix with prediction covariate data for the fixed effects linear regression
term (if there is one in the GPModel)

use_saved_data A boolean. If TRUE, predictions are done using a priory set data via the func-
tion $set_prediction_data’ (this option is not used by users directly)

offset A numeric vector with additional fixed effects contributions that are added
to the linear predictor (= offset). The length of this vector needs to equal the
number of training data points.

offset_pred A numeric vector with additional fixed effects contributions that are added to
the linear predictor for the prediction points (= offset). The length of this vector
needs to equal the number of prediction points.

fixed_effects This is discontinued. Use the renamed equivalent argument of fset instead
fixed_effects_pred
This is discontinued. Use the renamed equivalent argument of fset_pred in-
stead
vecchia_pred_type
A string specifying the type of Vecchia approximation used for making pre-
dictions. This is discontinued here. Use the function ’set_prediction_data’ to
specify this

96 predict. GPModel

num_neighbors_pred
an integer specifying the number of neighbors for making predictions. This is
discontinued here. Use the function ’set_prediction_data’ to specify this

(not used, ignore this, simply here that there is no CRAN warning)

Value

Predictions from a GPModel. A list with three entries is returned:

* "mu" (first entry): predictive (=posterior) mean. For (generalized) linear mixed effects models,
i.e., models with a linear regression term, this consists of the sum of fixed effects and random
effects predictions

* "cov" (second entry): predictive (=posterior) covariance matrix. This is NULL if *predict_cov_mat=FALSE’

* "var" (third entry) : predictive (=posterior) variances. This is NULL if *predict_var=FALSE’

Author(s)

Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[11),X)

X_test1 <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1,
likelihood="gaussian")

summary (gp_model)

Make predictions

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)

pred$mu # Predicted mean

pred$var # Predicted variances

Also predict covariance matrix

pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_cov_mat = TRUE)

pred$mu # Predicted mean

pred$cov # Predicted covariance

gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
likelihood="gaussian", y =y, X = X1)

summary (gp_model)

Make predictions

pred <- predict(gp_model, gp_coords_pred = coords_test,

predict_training_data_random_effects 97

X_pred = X_test1, predict_cov_mat = TRUE)
pred$mu # Predicted (posterior) mean of GP
pred$cov # Predicted (posterior) covariance matrix of GP

predict_training_data_random_effects
Predict ("estimate") training data random effects for a GPModel

Description

Predict ("estimate") training data random effects for a GPModel

Usage

predict_training_data_random_effects(gp_model, predict_var = FALSE)

Arguments

gp_model A GPModel

predict_var A boolean. If TRUE, the (posterior) predictive variances are calculated

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[1]1),X)

X_test1l <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal,1], y =y, X = X1, likelihood="gaussian")
all_training_data_random_effects <- predict_training_data_random_effects(gp_model)
first_occurences <- match(unique(group_datal[,1]), group_datal[,1])
unique_training_data_random_effects <- all_training_data_random_effects[first_occurences]
head(unique_training_data_random_effects)

98 predict_training_data_random_effects. GPModel

predict_training_data_random_effects.GPModel
Predict ("estimate") training data random effects for a GPModel

Description

Predict ("estimate") training data random effects for a GPModel

Usage

S3 method for class 'GPModel'
predict_training_data_random_effects(gp_model,
predict_var = FALSE)

Arguments

gp_model A GPModel

predict_var A boolean. If TRUE, the (posterior) predictive variances are calculated

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <- cbind(rep(1,dim(X)[1]1),X)

X_test1l <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal,1], y =y, X = X1, likelihood="gaussian")
all_training_data_random_effects <- predict_training_data_random_effects(gp_model)
first_occurences <- match(unique(group_datal[,1]), group_datal[,1])
unique_training_data_random_effects <- all_training_data_random_effects[first_occurences]
head(unique_training_data_random_effects)

readRDS.gpb.Booster 99

readRDS. gpb.Booster readRDS for gpb.Booster models

Description

Attempts to load a model stored in a . rds file, using readRDS

Usage

readRDS.gpb.Booster(file, refhook = NULL)

Arguments
file a connection or the name of the file where the R object is saved to or read from.
refhook a hook function for handling reference objects.

Value

gpb.Booster

Examples

library(gpboost)
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression”, metric = "12")
valids <- list(test = dtest)
model <- gpb.train(
params = params
, data = dtrain
, hrounds = 10L
, valids = valids
, min_data = 1L
, learning_rate = 1.0
, early_stopping_rounds = 5L
)
model_file <- tempfile(fileext = ".rds")
saveRDS.gpb.Booster(model, model_file)
new_model <- readRDS.gpb.Booster(model_file)

100 saveGPModel

saveGPModel Save a GPModel

Description

Save a GPModel

Usage

saveGPModel (gp_model, filename)

Arguments

gp_model a GPModel

filename filename for saving

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[11),X)

X_testl <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal[,1], y =y, X = X1, likelihood="gaussian")
pred <- predict(gp_model, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)
Save model to file
filename <- tempfile(fileext = ".json")
saveGPModel (gp_model, filename = filename)
Load from file and make predictions again
gp_model_loaded <- loadGPModel(filename = filename)
pred_loaded <- predict(gp_model_loaded, group_data_pred = group_data_test[,1],
X_pred = X_test1, predict_var = TRUE)
Check equality
pred$mu - pred_loaded$mu
pred$var - pred_loaded$var

saveRDS.gpb.Booster

101

saveRDS.gpb.Booster saveRDS for gpb.Booster models

Description

Attempts to save a model using RDS. Has an additional parameter (raw) which decides whether to
save the raw model or not.

Usage

saveRDS. gpb.Booster(object, file, ascii = FALSE, version = NULL,
compress = TRUE, refhook = NULL, raw = TRUE)

Arguments
object R object to serialize.
file a connection or the name of the file where the R object is saved to or read from.
ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (de-
fault), a binary one is used. See the comments in the help for save.
version the workspace format version to use. NULL specifies the current default version
(2). Versions prior to 2 are not supported, so this will only be relevant when
there are later versions.
compress a logical specifying whether saving to a named file is to use "gzip" compression,
or one of "gzip", "bzip2" or "xz" to indicate the type of compression to be
used. Ignored if file is a connection.
refhook a hook function for handling reference objects.
raw whether to save the model in a raw variable or not, recommended to leave it to
TRUE.
Value
NULL invisibly.
Examples
library(gpboost)
data(agaricus.train, package = "gpboost"”)

train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "gpboost")
test <- agaricus.test
dtest <- gpb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression”, metric = "12")
valids <- list(test = dtest)
model <- gpb.train(
params = params

102 setinfo

, data = dtrain

, nrounds = 10L

, valids = valids

, min_data = 1L

, learning_rate = 1.0

, early_stopping_rounds = 5L
)
model_file <- tempfile(fileext = ".rds")
saveRDS.gpb.Booster (model, model_file)

setinfo Set information of an gpb .Dataset object

Description

Set one attribute of a gpb.Dataset

Usage

setinfo(dataset, ...)

S3 method for class 'gpb.Dataset'

setinfo(dataset, name, info, ...)
Arguments
dataset Object of class gpb.Dataset

other parameters

name the name of the field to get
info the specific field of information to set
Details

The name field can be one of the following:

* label: vector of labels to use as the target variable
* weight: to do a weight rescale
e init_score: initial score is the base prediction gpboost will boost from

* group: used for learning-to-rank tasks. An integer vector describing how to group rows to-
gether as ordered results from the same set of candidate results to be ranked. For example, if
you have a 100-document dataset with group = c(10, 20, 40, 10, 10, 10), that means that
you have 6 groups, where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

set_optim_params

Value

103

the dataset you passed in

the dataset you passed in

Examples

data(agaricus.train, package = "gpboost")

train <- agaricus.train

dtrain <- gpb.Dataset(train$data, label = train$label)
gpb.Dataset.construct(dtrain)

labels <- gpboost::getinfo(dtrain, "label”)
gpboost::setinfo(dtrain, "label”, 1 - labels)

labels2 <- gpboost::getinfo(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))

set_optim_params

Set parameters for estimation of the covariance parameters

Description

Set parameters for optimization of the covariance parameters of a GPModel

Usage

set_optim_params(gp_model, params = list())

Arguments

gp_model

params

A GPModel

A list with parameters for the estimation / optimization

* trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If *init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option ’trace
= TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

104 set_optim_params

e init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If "esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

* estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)

* optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "lbfgs", "gradient_descent", "fisher_scoring",

"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, *optimizer_cov’ is also used for those

* optimizer_coef: string (default="wls" for Gaussian likelihoods and "lbfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent”, "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lIbfgs", ’optimizer_coef’ is automatically also set to
the same value.

* maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm

e delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used

e cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms

e cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization

* cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation

e num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix

set_optim_params 105

e reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated

* seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)

* cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.

— Options for grouped random effects:
"ssor" (= default): SSOR preconditioner

"incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-

tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

* "vadu" (= default): (BAT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma“-1

"fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1* D * BA-T + WA-1)

x "pivoted_cholesky": (Lk * LKk"T + WA-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted
Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma

"incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * D”-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1

— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":

* "fitc" (= default): FITC / modified predictive process preconditioner

"vifdu": VIF with diagonal update preconditioner

— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
% "fitc" (= default): modified predictive process preconditioner
* '"none": no preconditioner

* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing
points as in the approximation as used). Internal default values if NULL or
<0:

— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner

* convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters"

106 set_optim_params.GPModel

e Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used

— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent"
and 1. otherwise)

— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those

— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion

* Ir_coef: numeric (default=0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used

* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

* acc_rate_coef: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default =0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

* momentum_offset: integer (Default =2, only relevant for "gradient_descent").
Number of iterations for which no momentum is applied in the beginning.

* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "lbfgs" optimizer

* delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-

ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")
gp_model <- GPModel(group_data = group_data, likelihood="gaussian")
set_optim_params(gp_model, params=list(optimizer_cov="nelder_mead"))

set_optim_params.GPModel
Set parameters for estimation of the covariance parameters

set_optim_params.GPModel 107

Description

Set parameters for optimization of the covariance parameters of a GPModel

Usage

S3 method for class 'GPModel'
set_optim_params(gp_model, params = list())

Arguments
gp_model A GPModel
params A list with parameters for the estimation / optimization

* trace: boolean (default = FALSE). If TRUE, information on the progress
of the parameter optimization is printed

* init_cov_pars: vector with numeric elements (default = NULL). Initial
values for covariance parameters of Gaussian process and random effects
(can be NULL). The order is same as the order of the parameters in the sum-
mary function: first is the error variance (only for "gaussian" likelihood),
next follow the variances of the grouped random effects (if there are any, in
the order provided in ’group_data’), and then follow the marginal variance
and the ranges of the Gaussian process. If there are multiple Gaussian pro-
cesses, then the variances and ranges follow alternatingly. If *init_cov_pars
= NULL’, an internal choice is used that depends on the likelihood and the
random effects type and covariance function. If you select the option ’trace
= TRUE’ in the ’params’ argument, you will see the first initial covariance
parameters in iteration 0.

e init_coef: vector with numeric elements (default = NULL). Initial values
for the regression coefficients (if there are any, can be NULL)

* init_aux_pars: vector with numeric elements (default = NULL). Initial
values for additional parameters for non-Gaussian likelihoods (e.g., shape
parameter of a gamma or negative_binomial likelihood)

* estimate_cov_par_index: vector with integer (default = -1). This allows
for disabling the estimation of some (or all) covariance parameters. If "esti-
mate_cov_par_index’ = -1, all covariance parameters are estimated. If esti-
mate_cov_par_index != -1, this should be a vector with length equal to the
number of covariance parameters, and estimate_cov_par_index[i] should
be of bool type indicating whether parameter number i is estimated or not.
For instance, estimate_cov_par_index = c(1,1,0) means that the first two
covariance parameters are estimated and the last one not. Parameters that
are not estimated are kept at their initial values (see ’init_cov_pars’).

* estimate_aux_pars: boolean (default = TRUE). If TRUE, additional pa-
rameters for non-Gaussian likelihoods are also estimated (e.g., shape pa-
rameter of a gamma or negative_binomial likelihood)

* optimizer_cov: string (default = "lbfgs"). Optimizer used for estimating
covariance parameters. Options: "lbfgs", "gradient_descent", "fisher_scoring",
"newton", "nelder_mead". If there are additional auxiliary parameters for
non-Gaussian likelihoods, *optimizer_cov’ is also used for those

108

set_optim_params.GPModel

optimizer_coef: string (default="wls" for Gaussian likelihoods and "Ibfgs"
for other likelihoods). Optimizer used for estimating linear regression coef-
ficients, if there are any (for the GPBoost algorithm there are usually none).
Options: "gradient_descent", "lbfgs", "wls", "nelder_mead". Gradient de-
scent steps are done simultaneously with gradient descent steps for the co-
variance parameters. "wls" refers to doing coordinate descent for the re-
gression coefficients using weighted least squares. If *optimizer_cov’ is set
to "nelder_mead" or "lbfgs", *optimizer_coef’ is automatically also set to
the same value.
maxit: integer (default = 1000). Maximal number of iterations for opti-
mization algorithm
delta_rel_conv: numeric (default = 1E-6 except for "nelder_mead" for
which the default is 1E-8). Convergence tolerance. The algorithm stops
if the relative change in either the (approximate) log-likelihood or the pa-
rameters is below this value. If < 0, internal default values are used
cg_max_num_it: integer (default = 1000). Maximal number of iterations
for conjugate gradient algorithms
cg_max_num_it_tridiag: integer (default = 1000). Maximal number of
iterations for conjugate gradient algorithm when being run as Lanczos al-
gorithm for tridiagonalization
cg_delta_conv: numeric (default = 1E-2). Tolerance level for L2 norm of
residuals for checking convergence in conjugate gradient algorithm when
being used for parameter estimation
num_rand_vec_trace: integer (default = 50). Number of random vectors
(e.g., Rademacher) for stochastic approximation of the trace of a matrix
reuse_rand_vec_trace: boolean (default = TRUE). If true, random vectors
(e.g., Rademacher) for stochastic approximations of the trace of a matrix
are sampled only once at the beginning of the parameter estimation and
reused in later trace approximations. Otherwise they are sampled every
time a trace is calculated
seed_rand_vec_trace: integer (default = 1). Seed number to generate ran-
dom vectors (e.g., Rademacher)
cg_preconditioner_type (string): Type of preconditioner used for conju-
gate gradient algorithms.

— Options for grouped random effects:

* "ssor" (= default): SSOR preconditioner

"incomplete_cholesky": zero fill-in incomplete Cholesky factoriza-

tion
— Options for likelihood != "gaussian" and gp_approx == "vecchia" or
likelihood == "gaussian" and gp_approx == "vecchia_latent":

* "vadu" (= default): (BT * (D”-1 + W) * B) as preconditioner for
inverting (BAT * DA-1 * B + W), where BAT * DA-1 * B approx=
Sigma“-1

"fitc": FITC / modified predictive process preconditioner for invert-
ing (BA-1* D * BA-T + WA-1)

"pivoted_cholesky": (Lk * LKk"T + WA-1) as preconditioner for in-
verting (BA-1 * D * BA-T + WA-1), where Lk is a low-rank pivoted

set_optim_params.GPModel 109

Cholesky approximation for Sigma and BA-1 * D * BA-T approx=
Sigma
"incomplete_cholesky": zero fill-in incomplete (reverse) Cholesky
factorization of (BAT * DA-1 * B + W) using the sparsity pattern of
BAT * DA-1 * B approx= Sigma”-1
— Options for likelihood !="gaussian" and gp_approx == "full_scale_vecchia":
* "fitc" (= default): FITC / modified predictive process preconditioner
+ "vifdu": VIF with diagonal update preconditioner
— Options for likelihood == "gaussian" and gp_approx == "full_scale_tapering":
+ "fitc" (= default): modified predictive process preconditioner
"none": no preconditioner

* fitc_piv_chol_preconditioner_rank (integer): Rank of the FITC and piv-
oted Cholesky decomposition preconditioners for iterative methods for Vec-
chia and VIF approximations (for full_scale_tapering, the same inducing
points as in the approximation as used). Internal default values if NULL or
<O0:

— 200 for the FITC preconditioner
— 50 for the pivoted Cholesky decomposition preconditioner

e convergence_criterion: string (default = "relative_change_in_log_likelihood",
only relevant for "gradient_descent", "fisher_scoring", and "newton"). The
convergence criterion used for terminating the optimization algorithm. Op-
tions: "relative_change_in_log_likelihood" or "relative_change_in_parameters"

e Ir_cov: numeric (default = 0.1 for "gradient_descent" and 1. otherwise,
only relevant for "gradient_descent", "fisher_scoring", and "newton"). Ini-
tial learning rate for covariance parameters if a gradient-based optimization
method is used

— Iflr_cov <0, internal default values are used (0.1 for "gradient_descent"
and 1. otherwise)

— If there are additional auxiliary parameters for non-Gaussian likeli-
hoods, ’Ir_cov’ is also used for those

— For "Ibfgs", this is divided by the norm of the gradient in the first itera-
tion
¢ Ir_coef: numeric (default=0.1, only relevant for "gradient_descent", "fisher_scoring",
and "newton"). Learning rate for fixed effect regression coefficients if gra-
dient descent is used

* use_nesterov_acc: boolean (default = TRUE, only relevant for "gradi-
ent_descent"). If TRUE Nesterov acceleration is used. This is used only
for gradient descent

* acc_rate_coef: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for regression coefficients (if there are any) for Nesterov
acceleration

* acc_rate_cov: numeric (default=0.5, only relevant for "gradient_descent").
Acceleration rate for covariance parameters for Nesterov acceleration

e momentum_offset: integer (Default =2, only relevant for "gradient_descent").
Number of iterations for which no momentum is applied in the beginning.

110 set_prediction_data

* m_lbfgs: integer (Default = 6). Number of corrections to approximate the
inverse Hessian matrix for the "lbfgs" optimizer

¢ delta_conv_mode_finding: numeric (Default = 1E-8). Convergence toler-
ance in mode finding algorithm for Laplace approximation for non-Gaussian
likelihoods

Value

A GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")
gp_model <- GPModel(group_data = group_data, likelihood="gaussian")
set_optim_params(gp_model, params=list(optimizer_cov="nelder_mead"))

set_prediction_data Set prediction data for a GPModel

Description

Set the data required for making predictions with a GPModel

Usage

set_prediction_data(gp_model, vecchia_pred_type = NULL,
num_neighbors_pred = NULL, cg_delta_conv_pred = NULL,
nsim_var_pred = NULL, rank_pred_approx_matrix_lanczos = NULL,
group_data_pred = NULL, group_rand_coef_data_pred = NULL,
gp_coords_pred = NULL, gp_rand_coef_data_pred = NULL,
cluster_ids_pred = NULL, X_pred = NULL)

Arguments

gp_model A GPModel

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making predic-
tions. Default value if vecchia_pred_type = NULL: "order_obs_first_cond_obs_only".
Auvailable options:

 "order_obs_first_cond_obs_only": Vecchia approximation for the observ-
able process and observed training data is ordered first and the neighbors
are only observed training data points

set_prediction_data 111

 "order_obs_first_cond_all": Vecchia approximation for the observable pro-
cess and observed training data is ordered first and the neighbors are se-
lected among all points (training + prediction)

* "latent_order_obs_first_cond_obs_only": Vecchia approximation for the la-
tent process and observed data is ordered first and neighbors are only ob-
served points

* "latent_order_obs_first_cond_all": Vecchia approximation for the latent pro-
cess and observed data is ordered first and neighbors are selected among all
points

* "order_pred_first": Vecchia approximation for the observable process and
prediction data is ordered first for making predictions. This option is only
available for Gaussian likelihoods

num_neighbors_pred
an integer specifying the number of neighbors for the Vecchia approximation
for making predictions. Default value if NULL: num_neighbors_pred = 2 *
num_neighbors

cg_delta_conv_pred
a numeric specifying the tolerance level for L2 norm of residuals for checking
convergence in conjugate gradient algorithms when being used for prediction
Default value if NULL: le-3

nsim_var_pred an integer specifying the number of samples when simulation is used for cal-
culating predictive variances Internal default values if NULL:

* 500 for grouped random effects
* 1000 for gp_approx = "vecchia" and gp_approx = "full_scale_tapering"
* 100 for gp_approx = "full_scale_vecchia"
rank_pred_approx_matrix_lanczos
an integer specifying the rank of the matrix for approximating predictive co-
variances obtained using the Lanczos algorithm Default value if NULL: 1000
group_data_pred
A vector or matrix with elements being group levels for which predictions are
made (if there are grouped random effects in the GPModel)
group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)

gp_coords_pred A matrix with prediction coordinates (=features) for Gaussian process (if there
is a GP in the GPModel)

gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coeffi-
cients (if there are some in the GPModel)

cluster_ids_pred
A vector with elements indicating the realizations of random effects / Gaussian
processes for which predictions are made (set to NULL if you have not specified
this when creating the GPModel)

X_pred A matrix with prediction covariate data for the fixed effects linear regression
term (if there is one in the GPModel)

112 set_prediction_data. GPModel

Author(s)

Fabio Sigrist

Examples

data(GPBoost_data, package = "gpboost")

set.seed(1)

train_ind <- sample.int(length(y),size=250)

gp_model <- GPModel(group_data = group_data[train_ind,1], likelihood="gaussian")
set_prediction_data(gp_model, group_data_pred = group_data[-train_ind,1])

set_prediction_data.GPModel
Set prediction data for a GPModel

Description

Set the data required for making predictions with a GPModel

Usage

S3 method for class 'GPModel'

set_prediction_data(gp_model, vecchia_pred_type = NULL,
num_neighbors_pred = NULL, cg_delta_conv_pred = NULL,
nsim_var_pred = NULL, rank_pred_approx_matrix_lanczos = NULL,
group_data_pred = NULL, group_rand_coef_data_pred = NULL,
gp_coords_pred = NULL, gp_rand_coef_data_pred = NULL,
cluster_ids_pred = NULL, X_pred = NULL)

Arguments

gp_model A GPModel

vecchia_pred_type
A string specifying the type of Vecchia approximation used for making predic-
tions. Default value if vecchia_pred_type = NULL: "order_obs_first_cond_obs_only".
Available options:

 "order_obs_first_cond_obs_only": Vecchia approximation for the observ-
able process and observed training data is ordered first and the neighbors
are only observed training data points

 "order_obs_first_cond_all": Vecchia approximation for the observable pro-
cess and observed training data is ordered first and the neighbors are se-
lected among all points (training + prediction)

* "latent_order_obs_first_cond_obs_only": Vecchia approximation for the la-
tent process and observed data is ordered first and neighbors are only ob-
served points

set_prediction_data. GPModel 113

* "latent_order_obs_first_cond_all": Vecchia approximation for the latent pro-
cess and observed data is ordered first and neighbors are selected among all
points

 "order_pred_first": Vecchia approximation for the observable process and
prediction data is ordered first for making predictions. This option is only
available for Gaussian likelihoods

num_neighbors_pred

an integer specifying the number of neighbors for the Vecchia approximation
for making predictions. Default value if NULL: num_neighbors_pred = 2 *
num_neighbors
cg_delta_conv_pred
a numeric specifying the tolerance level for L2 norm of residuals for checking
convergence in conjugate gradient algorithms when being used for prediction
Default value if NULL: le-3
nsim_var_pred an integer specifying the number of samples when simulation is used for cal-
culating predictive variances Internal default values if NULL:
* 500 for grouped random effects
* 1000 for gp_approx = "vecchia" and gp_approx = "full_scale_tapering"
* 100 for gp_approx = "full_scale_vecchia"
rank_pred_approx_matrix_lanczos
an integer specifying the rank of the matrix for approximating predictive co-
variances obtained using the Lanczos algorithm Default value if NULL: 1000
group_data_pred
A vector or matrix with elements being group levels for which predictions are
made (if there are grouped random effects in the GPModel)
group_rand_coef_data_pred
A vector or matrix with covariate data for grouped random coefficients (if
there are some in the GPModel)
gp_coords_pred A matrix with prediction coordinates (=features) for Gaussian process (if there
is a GP in the GPModel)
gp_rand_coef_data_pred
A vector or matrix with covariate data for Gaussian process random coeffi-
cients (if there are some in the GPModel)
cluster_ids_pred
A vector with elements indicating the realizations of random effects / Gaussian
processes for which predictions are made (set to NULL if you have not specified
this when creating the GPModel)
X_pred A matrix with prediction covariate data for the fixed effects linear regression
term (if there is one in the GPModel)

Value

A GPModel

Author(s)

Fabio Sigrist

114 slice

Examples

data(GPBoost_data, package = "gpboost")

set.seed(1)

train_ind <- sample.int(length(y),size=250)

gp_model <- GPModel(group_data = group_dataltrain_ind,1], likelihood="gaussian")
set_prediction_data(gp_model, group_data_pred = group_data[-train_ind,1])

slice Slice a dataset

Description

Get a new gpb.Dataset containing the specified rows of original gpb.Dataset object

Usage

slice(dataset, ...)

S3 method for class 'gpb.Dataset'

slice(dataset, idxset, ...)
Arguments
dataset Object of class gpb.Dataset

other parameters (currently not used)

idxset an integer vector of indices of rows needed

Value

constructed sub dataset

Examples

data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)

dsub <- gpboost::slice(dtrain, seq_len(42L))
gpb.Dataset.construct(dsub)
labels <- gpboost::getinfo(dsub, "label")

summary.GPModel 115

summary . GPModel Summary for a GPModel

Description

Summary for a GPModel

Usage
S3 method for class 'GPModel'
summary(object, std_err = TRUE, ...)
Arguments
object a GPModel
std_err A boolean. If TRUE, (approximate) standard errors are calculated (= square

root of diagonal of the inverse Fisher information for Gaussian likelihoods and
square root of diagonal of a numerically approximated inverse Hessian for non-
Gaussian likelihoods)

(not used, ignore this, simply here that there is no CRAN warning)

Value

Summary of a (fitted) GPModel

Author(s)

Fabio Sigrist

Examples

See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples

data(GPBoost_data, package = "gpboost")

Add intercept column

X1 <= cbind(rep(1,dim(X)[11),X)

X_test1 <- cbind(rep(1,dim(X_test)[1]),X_test)

gp_model <- fitGPModel(group_data = group_datal[,1], vy =y, X = X1,
likelihood="gaussian")
summary (gp_model)

gp_model <- fitGPModel(gp_coords = coords, cov_function = "matern”, cov_fct_shape = 1.5,
likelihood="gaussian"”, y =y, X = X1)

116 vy

summary (gp_model)

X Predictor variable data for example data for the GPBoost package

Description

A matrix with covariate data for the example data of the GPBoost package

Usage
data(GPBoost_data)

X_test Test predictor variable data for example data for the GPBoost package

Description

A matrix with covariate information for the predictions for the example data of the GPBoost package

Usage
data(GPBoost_data)

y Response variable data for example data for the GPBoost package

Description

Response variable for the example data of the GPBoost package

Usage
data(GPBoost_data)

Index

+ datasets gpb.Dataset, 36, 38, 46, 66
agaricus.test, 4 gpb.Dataset.construct, 39
agaricus.train, 4 gpb.Dataset.create.valid, 40
bank, 5 gpb.Dataset.save, 40
coords, 5 gpb.Dataset.set.categorical, 41
coords_test, 6 gpb.Dataset.set.reference, 42
GPBoost_data, 70 gpb.dump, 43
group_data, 87 gpb.get.eval.result, 44
group_data_test, 87 gpb.grid.search.tune.parameters, 45
X, 116 gpb.importance, 48, 53
X_test, 116 gpb.interprete, 50, 54
y, 116 gpb.load, 51

gpb.model.dt.tree, 52

agaricus.test, 4 gpb.plot.importance, 53

agaricus.train, 4 gpb.plot.interpretation, 54

bank. S gpb.plot.part.dep.interact, 56

barpiot 53 gpb.plot.partial.dependence, 57

’ gpb.save, 59
coords, 5 gpb.train, 60, 68
coords_test, 6 gpboost, 65

GPBoost_data, 70

dim.gpb.Dataset, 6 GPModel, 70

dimnames.gpb.Dataset, 7 GPModel_shared_params, 77

dimnames<-.gpb.Dataset group_data, 87

(dimnames. gpb.Dataset), 7 group_data_test, 87

fit, 8 loadGPModel, 88

fit.GPModel, 11

fitGPModel, 15 neg_log_likelihood, 89

neg_log_likelihood.GPModel, 90
get_aux_pars, 27

get_aux_pars.GPModel, 28 predict.gpb.Booster, 91

get_coef, 28 predict.GPModel, 94

get_coef.GPModel, 29 predict_training_data_random_effects,
get_cov_pars, 30 97

get_cov_pars.GPModel, 31 predict_training_data_random_effects.GPModel,
get_nested_categories, 31 98

getinfo, 26

gpb.convert_with_rules, 32 readRDS, 99

gpb.cv, 34, 35,45, 61, 66 readRDS. gpb.Booster, 99

117

118

saveGPModel, 100

saveRDS. gpb.Booster, 101
set_optim_params, 103
set_optim_params.GPModel, 106
set_prediction_data, 110
set_prediction_data.GPModel, 112
setinfo, 102

slice, 114

summary .GPModel, 115

X, 116
X_test, 116

y, 116

INDEX

	agaricus.test
	agaricus.train
	bank
	coords
	coords_test
	dim.gpb.Dataset
	dimnames.gpb.Dataset
	fit
	fit.GPModel
	fitGPModel
	getinfo
	get_aux_pars
	get_aux_pars.GPModel
	get_coef
	get_coef.GPModel
	get_cov_pars
	get_cov_pars.GPModel
	get_nested_categories
	gpb.convert_with_rules
	gpb.cv
	gpb.Dataset
	gpb.Dataset.construct
	gpb.Dataset.create.valid
	gpb.Dataset.save
	gpb.Dataset.set.categorical
	gpb.Dataset.set.reference
	gpb.dump
	gpb.get.eval.result
	gpb.grid.search.tune.parameters
	gpb.importance
	gpb.interprete
	gpb.load
	gpb.model.dt.tree
	gpb.plot.importance
	gpb.plot.interpretation
	gpb.plot.part.dep.interact
	gpb.plot.partial.dependence
	gpb.save
	gpb.train
	gpboost
	GPBoost_data
	GPModel
	GPModel_shared_params
	group_data
	group_data_test
	loadGPModel
	neg_log_likelihood
	neg_log_likelihood.GPModel
	predict.gpb.Booster
	predict.GPModel
	predict_training_data_random_effects
	predict_training_data_random_effects.GPModel
	readRDS.gpb.Booster
	saveGPModel
	saveRDS.gpb.Booster
	setinfo
	set_optim_params
	set_optim_params.GPModel
	set_prediction_data
	set_prediction_data.GPModel
	slice
	summary.GPModel
	X
	X_test
	y
	Index

