
Package ‘DiscreteFDR’
July 8, 2024

Type Package

Title FDR Based Multiple Testing Procedures with Adaptation for
Discrete Tests

Version 2.0.0

Date 2024-07-08

Description Implementations of the multiple testing procedures for discrete
tests described in the paper Döhler, Durand and Roquain (2018) ``New FDR
bounds for discrete and heterogeneous tests'' <doi:10.1214/18-EJS1441>. The
main procedures of the paper (HSU and HSD), their adaptive counterparts
(AHSU and AHSD), and the HBR variant are available and are coded to take as
input the results of a test procedure from package 'DiscreteTests', or a set
of observed p-values and their discrete support under their nulls. A
shortcut function to obtain such p-values and supports is also provided,
along with a wrapper allowing to apply discrete procedures directly to data.

License GPL-3

Language en-US

LazyData true

Encoding UTF-8

Depends R (>= 3.00)

RoxygenNote 7.3.2

Suggests rmarkdown, knitr, R.rsp, kableExtra

VignetteBuilder knitr, R.rsp

Imports Rcpp (>= 1.0.12), DiscreteTests, lifecycle, checkmate,
DiscreteDatasets

LinkingTo Rcpp, RcppArmadillo

URL https://github.com/DISOhda/DiscreteFDR

BugReports https://github.com/DISOhda/DiscreteFDR/issues

NeedsCompilation yes

1

https://doi.org/10.1214/18-EJS1441
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues

2 ADBH

Author Sebastian Döhler [aut, ctb],
Florian Junge [aut, ctb, cre],
Guillermo Durand [aut, ctb],
Etienne Roquain [ctb],
Christina Kihn [ctb]

Maintainer Florian Junge <diso.fbmn@h-da.de>

Repository CRAN

Date/Publication 2024-07-08 09:50:02 UTC

Contents
ADBH . 2
amnesia . 5
DBH . 6
DBR . 9
direct.discrete.BH . 12
discrete.BH . 13
DiscreteFDR . 17
fast.Discrete . 18
fisher.pvalues.support . 20
generate.pvalues . 22
hist.DiscreteFDR . 24
kernel . 25
match.pvals . 28
plot.DiscreteFDR . 29
print.DiscreteFDR . 31
summary.DiscreteFDR . 32

Index 34

ADBH Wrapper Functions for the Adaptive Discrete Benjamini-Hochberg
Procedure

Description

ADBH() is a wrapper function of discrete.BH() for computing [AHSU] and [AHSD], which are
more powerful than [HSU] and [HSD], respectively. It simply passes its arguments to discrete.BH()
with fixed adaptive = TRUE and is computationally more demanding than DBH().

Usage

ADBH(test.results, ...)

Default S3 method:
ADBH(

ADBH 3

test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
ADBH(
test.results,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have

4 ADBH

them calculated when they need them, e.g. for illustrating the rejection area in a plot or other
theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).

Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Select$Threshold

p-value selection threshold (only exists if threshold < 1).

Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold (only exists if
threshold < 1).

Select$Pvalues selected p-values that are ≤ selection threshold (only exists if threshold <
1).

Select$Indices indices of p-values ≤ selection threshold (only exists if threshold < 1).

Select$Scaled scaled selected p-values (only exists if threshold < 1).

Select$Number number of selected p-values ≤ threshold (only exists if threshold < 1).

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), DBH(), DBR()

https://doi.org/10.1214/18-EJS1441

amnesia 5

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

ADBH (SU) without critical values; using extracted p-values and supports
ADBH.su.fast <- ADBH(raw.pvalues, pCDFlist)
summary(ADBH.su.fast)

ADBH (SD) without critical values; using extracted p-values and supports
ADBH.sd.fast <- ADBH(raw.pvalues, pCDFlist, direction = "sd")
summary(ADBH.sd.fast)

ADBH (SU) with critical values; using test results
ADBH.su.crit <- ADBH(test.result, ret.crit.consts = TRUE)
summary(ADBH.su.crit)

ADBH (SD) with critical values; using test results
ADBH.sd.crit <- ADBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(ADBH.sd.crit)

amnesia Amnesia and other drug reactions in the MHRA pharmacovigilance
spontaneous reporting system

Description

[Deprecated]
For each of 2,446 drugs in the MHRA database (column 1), the number of cases with amnesia as an
adverse event (column 2), and the number of cases with other adverse event for this drug (column
3). In total, 682,648 adverse drug reactions were reported, among them 2,044 cases of amnesia.

Note: In future versions, this dataset will be removed. Please use the amnesia dataset from package
DiscreteDatasets.

Usage

data(amnesia)

6 DBH

Format

A data frame with 2,446 rows representing drugs with the following three columns:

DrugName The name of the drug.

AmnesiaCases Number of the amnesia cases reported for the drug.

OtherAdverseCases Number of other adverse drug reactions reported for the drug.

Details

The data was collected from the Drug Analysis Prints published by the Medicines and Healthcare
products Regulatory Agency (MHRA), by Heller & Gur. See references for more details.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv:1112.4627v2
(preprint).

Source

Drug Analysis Prints on MHRA site

DBH Wrapper Functions for the Discrete Benjamini-Hochberg Procedure

Description

DBH() is a wrapper function of discrete.BH() for computing [HSU] and [HSD]. It simply passes
its arguments to discrete.BH() with fixed adaptive = FALSE.

Usage

DBH(test.results, ...)

Default S3 method:
DBH(
test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
DBH(

https://arxiv.org/abs/1112.4627v2
https://yellowcard.mhra.gov.uk/idaps

DBH 7

test.results,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection area in a plot or other
theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).

8 DBH

Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Select$Threshold

p-value selection threshold (only exists if threshold < 1).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold (only exists if
threshold < 1).

Select$Pvalues selected p-values that are ≤ selection threshold (only exists if threshold <
1).

Select$Indices indices of p-values ≤ selection threshold (only exists if threshold < 1).

Select$Scaled scaled selected p-values (only exists if threshold < 1).

Select$Number number of selected p-values ≤ threshold (only exists if threshold < 1).

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), ADBH(), DBR()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH (SU) without critical values; using extracted p-values and supports
DBH.su.fast <- DBH(raw.pvalues, pCDFlist)

https://doi.org/10.1214/18-EJS1441

DBR 9

summary(DBH.su.fast)

DBH (SD) without critical values; using extracted p-values and supports
DBH.sd.fast <- DBH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)

DBH (SU) with critical values; using test results
DBH.su.crit <- DBH(test.result, ret.crit.consts = TRUE)
summary(DBH.su.crit)

DBH (SD) with critical values; using test results
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)

DBR The Discrete Blanchard-Roquain Procedure

Description

Applies the [HBR-λ] procedure, with or without computing the critical constants, to a set of p-
values and their respective discrete supports.

Usage

DBR(test.results, ...)

Default S3 method:
DBR(
test.results,
pCDFlist,
alpha = 0.05,
lambda = NULL,
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
DBR(
test.results,
alpha = 0.05,
lambda = NULL,
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

10 DBR

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

lambda real number strictly between 0 and 1 specifying the DBR tuning parameter; if
lambda = NULL (the default), lambda is chosen to be equal to alpha.

ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

[DBR-λ] is the discrete version of the [Blanchard-Roquain-λ] procedure (see References). The
authors of the latter suggest to take lambda = alpha (see their Proposition 17), which explains the
choice of the default value here.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection area in a plot or other
theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values.
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Select$Threshold

p-value selection threshold (only exists if threshold < 1).

DBR 11

Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold (only exists if
threshold < 1).

Select$Pvalues selected p-values that are ≤ selection threshold (only exists if threshold <
1).

Select$Indices indices of p-values ≤ selection threshold (only exists if threshold < 1).

Select$Scaled scaled selected p-values (only exists if threshold < 1).

Select$Number number of selected p-values ≤ threshold (only exists if threshold < 1).

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

DBR.Tuning value of the tuning parameter lambda.

References

G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence and
dependence. Journal of Machine Learning Research, 10, pp. 2837-2871.

See Also

discrete.BH(), DBH(), ADBH()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBR without critical values; using extracted p-values and supports
DBR.fast <- DBR(raw.pvalues, pCDFlist)
summary(DBR.fast)

DBR with critical values; using test results
DBR.crit <- DBR(test.result, ret.crit.consts = TRUE)

12 direct.discrete.BH

summary(DBR.crit)

direct.discrete.BH Direct Application of Multiple Testing Procedures to Dataset

Description

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, with or without computing the critical
constants, to a data set of 2x2 contingency tables using Fisher’s exact tests which may have to be
transformed before computing p-values.

Usage

direct.discrete.BH(
dat,
test.fun,
test.args = NULL,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
preprocess.fun = NULL,
preprocess.args = NULL

)

Arguments

dat input data; must be suitable for the first parameter of the provided preprocess.fun
function or, if preprocess.fun is NULL, for the first parameter of the test.fun
function.

test.fun function from package DiscreteTests, i.e. one whose name ends with *.test.pv
and which performs hypothesis tests and provides an object with p-values and
their support sets; can be specified by a single character string (which is auto-
matically checked for being a suitable function from that package and may be
abbreviated) or a single function object.

test.args optional named list with arguments for test.fun; the names of the list fields
must match the test function’s parameter names. The first parameter of the test
function MUST NOT be included!

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

adaptive single boolean specifying whether to conduct an adaptive procedure or not.
ret.crit.consts

single boolean specifying whether critical constants are to be computed.

discrete.BH 13

select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

preprocess.fun optional function for pre-processing the input data; its result must be suitable
for the first parameter of the test.fun function.

preprocess.args

optional named list with arguments for preprocess.fun; the names of the list
fields must match the pre-processing function’s parameter names. The first pa-
rameter of the test function MUST NOT be included!

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

DBH.su <- direct.discrete.BH(df, "fisher", direction = "su")
summary(DBH.su)

DBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd")
DBH.sd$Adjusted
summary(DBH.sd)

ADBH.su <- direct.discrete.BH(df, "fisher", direction = "su", adaptive = TRUE)
summary(ADBH.su)

ADBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd", adaptive = TRUE)
ADBH.sd$Adjusted
summary(ADBH.sd)

discrete.BH The Discrete Benjamini-Hochberg Procedure

Description

Applies the [HSU], [HSD], [AHSU] and [AHSD] procedures at a given FDR level, with or without
computing the critical constants, to a set of p-values and their respective discrete supports.

14 discrete.BH

Usage

discrete.BH(test.results, ...)

Default S3 method:
discrete.BH(
test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
discrete.BH(
test.results,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

adaptive single boolean specifying whether to conduct an adaptive procedure or not.
ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

discrete.BH 15

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

The adaptive variants [AHSU] and [AHSD], which are executed via adaptive = TRUE, are often
slightly more powerful than [HSU] and [HSD], respectively. But they are also computationally
more demanding.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection area in a plot or other
theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Select$Threshold

p-value selection threshold (only exists if threshold < 1).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold (only exists if
threshold < 1).

Select$Pvalues selected p-values that are ≤ selection threshold (only exists if threshold <
1).

Select$Indices indices of p-values ≤ selection threshold (only exists if threshold < 1).

Select$Scaled scaled selected p-values (only exists if threshold < 1).

Select$Number number of selected p-values ≤ threshold (only exists if threshold < 1).

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

16 discrete.BH

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

DBH(), ADBH(), DBR()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH (SU) without critical values; using extracted p-values and supports
DBH.su.fast <- discrete.BH(raw.pvalues, pCDFlist)
summary(DBH.su.fast)

DBH (SD) without critical values; using extracted p-values and supports
DBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)

DBH (SU) with critical values; using test results
DBH.su.crit <- discrete.BH(test.result, ret.crit.consts = TRUE)
summary(DBH.su.crit)

DBH (SD) with critical values; using test results
DBH.sd.crit <- discrete.BH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)

ADBH (SU) without critical values; using extracted p-values and supports
ADBH.su.fast <- discrete.BH(raw.pvalues, pCDFlist, adaptive = TRUE)
summary(ADBH.su.fast)

ADBH (SD) without critical values; using extracted p-values and supports
ADBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd", adaptive = TRUE)
summary(ADBH.sd.fast)

ADBH (SU) with critical values; using test results
ADBH.su.crit <- discrete.BH(test.result, adaptive = TRUE, ret.crit.consts = TRUE)
summary(ADBH.su.crit)

https://doi.org/10.1214/18-EJS1441

DiscreteFDR 17

ADBH (SD) with critical values; using test results
ADBH.sd.crit <- discrete.BH(test.result, direction = "sd", adaptive = TRUE, ret.crit.consts = TRUE)
summary(ADBH.sd.crit)

DiscreteFDR FDR-based Multiple Testing Procedures with Adaptation for Discrete
Tests

Description

This package implements the [HSU], [HSD], [AHSU], [AHSD] and [HBR-λ] procedures for dis-
crete tests (see References).

Details

The functions are reorganized from the reference paper in the following way. discrete.BH() (for
Discrete Benjamini-Hochberg) implements [HSU], [HSD], [AHSU] and [AHSD], while DBR() (for
Discrete Blanchard-Roquain) implements [HBR-λ]. DBH() and ADBH() are wrapper functions for
discrete.BH() to access [HSU] and [HSD], as well as [AHSU] and [AHSD] directly.

This package is part of a package family to which the DiscreteDatasets and DiscreteTests
packages also belong. The latter allows to compute p-values and their respective supports for vari-
ous tests. The objects that contain these results can be used directly by the discrete.BH(), DBH(),
ADBH() and DBR() functions. Alternatively, these functions also accept a vector of raw observed
p-values and a list of the respective discrete supports of the CDFs of the p-values.

Note: The former function fisher.pvalues.support(), which allows to compute such p-values
and supports in the framework of a Fisher’s exact test, is now deprecated and should not be used
anymore. It has been replaced by generate.pvalues().

The same applies for the function fast.Discrete(), which is a wrapper for fisher.pvalues.support()
and discrete.BH() and allows to apply discrete procedures directly to a data set of contingency
tables and perform data pre-processing before p-values are computed. It is also now deprecated and
has been replaced by direct.discrete.BH(), but for more flexibility, users may employ pipes,
e.g.
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
discrete.BH(<args>).

Author(s)

Maintainer: Florian Junge <diso.fbmn@h-da.de> [contributor]

Authors:

• Sebastian Döhler [contributor]

• Guillermo Durand [contributor]

Other contributors:

18 fast.Discrete

• Etienne Roquain [contributor]

• Christina Kihn [contributor]

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence and
dependence. Journal of Machine Learning Research, 10, pp. 2837-2871.

See Also

Useful links:

• https://github.com/DISOhda/DiscreteFDR

• Report bugs at https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete Fast Application of Discrete Multiple Testing Procedures

Description

[Deprecated]
Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, without computing the critical constants,
to a data set of 2x2 contingency tables which may have to be pre-processed in order to have the
correct structure for computing p-values using Fisher’s exact test.

Note: This function is deprecated and will be removed in a future version. Please use direct.discrete.BH()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct_two
or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline,
e.g.
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
discrete.BH(<args>).

Usage

fast.Discrete(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
direction = "su",
adaptive = FALSE,
select.threshold = 1

)

https://doi.org/10.1214/18-EJS1441
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete 19

Arguments

counts a data frame of two or four columns and any number of lines; each line repre-
senting a 2x2 contingency table to test. The number of columns and what they
must contain depend on the value of the input argument (see Details section of
fisher.pvalues.support()).

alternative same argument as in stats::fisher.test(). The three possible values are
"greater" (default), "two.sided" or "less" (may be abbreviated).

input the format of the input data frame (see Details section of fisher.pvalues.support().
The three possible values are "noassoc" (default), "marginal" or "HG2011"
(may be abbreviated).

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

adaptive single boolean specifying whether to conduct an adaptive procedure or not.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Select$Threshold

p-value selection threshold (only exists if threshold < 1).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold (only exists if
threshold < 1).

Select$Pvalues selected p-values that are ≤ selection threshold (only exists if threshold <
1).

Select$Indices indices of p-values ≤ selection threshold (only exists if threshold < 1).

Select$Scaled scaled selected p-values (only exists if threshold < 1).

Select$Number number of selected p-values ≤ threshold (only exists if threshold < 1).

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

20 fisher.pvalues.support

Data$raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

See Also

fisher.pvalues.support(), discrete.BH()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

DBH.su <- fast.Discrete(df, input = "noassoc", direction = "su")
summary(DBH.su)

DBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd")
DBH.sd$Adjusted
summary(DBH.sd)

ADBH.su <- fast.Discrete(df, input = "noassoc", direction = "su", adaptive = TRUE)
summary(ADBH.su)

ADBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd", adaptive = TRUE)
ADBH.sd$Adjusted
summary(ADBH.sd)

fisher.pvalues.support

Computing Discrete P-Values and Their Supports for Fisher’s Exact
Test

Description

[Deprecated]
Computes discrete raw p-values and their support for Fisher’s exact test applied to 2x2 contingency
tables summarizing counts coming from two categorical measurements.

Note: This function is deprecated and will be removed in a future version. Please use generate.pvalues()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct_two

fisher.pvalues.support 21

or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline
like
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::fisher.test.pv(<args>)

Usage

fisher.pvalues.support(counts, alternative = "greater", input = "noassoc")

Arguments

counts a data frame of two or four columns and any number of lines; each line repre-
sents a 2x2 contingency table to test. The number of columns and what they
must contain depend on the value of the input argument, see Details.

alternative same argument as in stats::fisher.test(). The three possible values are
"greater" (default), "two.sided" or "less" and you can specify just the ini-
tial letter.

input the format of the input data frame, see Details. The three possible values are
"noassoc" (default), "marginal" or "HG2011" and you can specify just the
initial letter.

Details

Assume that each contingency tables compares two variables and resumes the counts of association
or not with a condition. This can be resumed in the following table:

Association No association Total
Variable 1 X1 Y1 N1

Variable 2 X2 Y2 N2

Total X1 +X2 Y1 + Y2 N1 +N2

If input="noassoc", counts has four columns which respectively contain, X1, Y1, X2 and Y2. If
input="marginal", counts has four columns which respectively contain X1, N1, X2 and N2.

If input="HG2011", we are in the situation of the amnesia data set as in Heller & Gur (2011, see
References). Each contingency table is obtained from one variable which is compared to all other
variables of the study. That is, counts for "second variable" are replaced by the sum of the counts
of the other variables:

Association No association Total
Variable j Xj Yj Nj

Variables ̸= j
∑

i ̸=j Xi

∑
i ̸=j Yi

∑
i ̸=j Ni

Total
∑

Xi

∑
Yi

∑
Ni

Hence counts needs to have only two columns which respectively contain Xj and Yj .

The code for the computation of the p-values of Fisher’s exact test is inspired by the example in
the help page of p.discrete.adjust of package discreteMTP, which is no longer available on
CRAN.

22 generate.pvalues

See the Wikipedia article about Fisher’s exact test, paragraph Example, for a good depiction of what
the code does for each possible value of alternative.

Value

A list of two elements:

raw raw discrete p-values.

support a list of the supports of the CDFs of the p-values. Each support is represented
by a vector in increasing order.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv
preprint. arXiv:1112.4627v2.

"Fisher’s exact test", Wikipedia, The Free Encyclopedia, accessed 2018-03-20, link.

See Also

fisher.test()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

generate.pvalues Generation of P-Values and Their Supports After Data Transforma-
tions

Description

Simple wrapper for generating p-values of discrete tests and their supports after pre-processing the
input data. The user only has to provide 1.) a function that generates p-values and supports and 2.)
an optional function that pre-processes (i.e. transforms) the input data (if necessary) before it can
be used for p-value calculations. The respective arguments are provided by named lists.

https://arxiv.org/abs/1112.4627v2
https://en.wikipedia.org/w/index.php?title=Fisher's_exact_test&oldid=823327889

generate.pvalues 23

Usage

generate.pvalues(
dat,
test.fun,
test.args = NULL,
preprocess.fun = NULL,
preprocess.args = NULL

)

Arguments

dat input data; must be suitable for the first parameter of the provided preprocess.fun
function or, if preprocess.fun is NULL, for the first parameter of the test.fun
function.

test.fun function from package DiscreteTests, i.e. one whose name ends with *.test.pv
and which performs hypothesis tests and provides an object with p-values and
their support sets; can be specified by a single character string (which is auto-
matically checked for being a suitable function from that package and may be
abbreviated) or a single function object.

test.args optional named list with arguments for test.fun; the names of the list fields
must match the test function’s parameter names. The first parameter of the test
function MUST NOT be included!

preprocess.fun optional function for pre-processing the input data; its result must be suitable
for the first parameter of the test.fun function.

preprocess.args

optional named list with arguments for preprocess.fun; the names of the list
fields must match the pre-processing function’s parameter names. The first pa-
rameter of the test function MUST NOT be included!

Value

A DiscreteTestResults R6 class object.

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

24 hist.DiscreteFDR

Compute p-values and their supports of Fisher's exact test with pre-processing
df2 <- data.frame(X1, N1, X2, N2)
generate.pvalues(

dat = df2,
test.fun = "fisher.test.pv",
preprocess.fun = function(tab) {
for(col in c(2, 4)) tab[, col] <- tab[, col] - tab[, col - 1]
return(tab)

}
)

Compute p-values and their supports of a binomial test with pre-processing
generate.pvalues(

dat = rbind(c(5, 2, 7), c(3, 4, 0)),
test.fun = "binom.test.pv",
test.args = list(n = c(9, 8, 11), p = 0.6, alternative = "two.sided"),
preprocess.fun = colSums

)

hist.DiscreteFDR Histogram of Raw P-Values

Description

Computes a histogram of the raw p-values of a DiscreteFDR object.

Usage

S3 method for class 'DiscreteFDR'
hist(x, breaks = "FD", plot = TRUE, ...)

Arguments

x an object of class DiscreteFDR.

breaks as in hist; here, the Friedman-Diaconis algorithm ("FD") is used as default.

plot a boolean; if TRUE (the default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

... further arguments to hist or plot.histogram, respectively.

Details

This method simply calls hist and passes the raw p-values of the object.

Value

An object of class histogram.

kernel 25

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH <- DBH(raw.pvalues, pCDFlist)
hist(DBH)

kernel Kernel Functions

Description

Kernel functions that transform observed p-values or their support according to [HSU], [HSD],
[AHSU], [AHSD] and [HBR-λ]. The output is used by discrete.BH or DBR, respectively. kernel_DBH_crit,
kernel_ADBH_crit and kernel_DBR_crit additionally compute and return the critical constants.
The end user should not use these functions directly.

Note: As of version 2.0, these functions are purely internal functions! As a consequence, they have
to be called directly via :::, e.g. DiscreteFDR:::kernel_DBH_fast(). But users should not rely
on them, as parameters (including their names, order, etc.) may be changed without notice!

Usage

kernel_DBH_fast(
pCDFlist,
pvalues,
stepUp = FALSE,
alpha = 0.05,
support = numeric(),
pCDFcounts = NULL

)

kernel_DBH_crit(
pCDFlist,
support,
sorted_pv,
stepUp = FALSE,

26 kernel

alpha = 0.05,
pCDFcounts = NULL

)

kernel_ADBH_fast(
pCDFlist,
sorted_pv,
stepUp = FALSE,
alpha = 0.05,
support = numeric(),
pCDFcounts = NULL

)

kernel_ADBH_crit(
pCDFlist,
support,
sorted_pv,
stepUp = FALSE,
alpha = 0.05,
pCDFcounts = NULL

)

kernel_DBR_fast(pCDFlist, sorted_pv, lambda = 0.05, pCDFcounts = NULL)

kernel_DBR_crit(
pCDFlist,
support,
sorted_pv,
lambda = 0.05,
alpha = 0.05,
pCDFcounts = NULL

)

Arguments

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

pvalues numeric vector, sorted in increasing order, that either must contain the entirety of
all observable values of the p-value supports (when computing critical constants)
or only the sorted raw p-values.

stepUp boolean specifying whether to conduct the step-up (TRUE) or step-down (FALSE;
the default) procedure.

alpha single real number strictly between 0 and 1 indicating the target FDR level; for
*.fast kernels, it is only needed, if stepUp = TRUE.

support numeric vector, sorted in increasing order, that contains the entirety of all ob-
servable values of the p-value supports; for *.fast kernels, it is ignored if
stepUp = FALSE.

kernel 27

pCDFcounts integer vector of counts that indicates to how many p-values each unique p-
value distributions belongs.

sorted_pv numeric vector containing the raw p-values, sorted in increasing order.

lambda real number strictly between 0 and 1 specifying the DBR tuning parameter.

Details

When computing critical constants under step-down, that is, when using kernel_DBH_crit, kernel_ADBH_crit
or kernel_DBR_crit with stepUp = FALSE (i.e. the step-down case), we still need to get trans-
formed p-values to compute the adjusted p-values.

Value

For kernel.DBH.fast, kernel.ADBH.fast and kernel.DBR.fast, a vector of transformed p-
values is returned. kernel.DBH.crit, kernel.ADBH.crit kernel.DBR.crit return a list with
critical constants ($crit.consts) and transformed p-values ($pval.transf), but if stepUp = FALSE,
there are critical values only.

See Also

discrete.BH, fast.Discrete, DBR

Examples

Not run:
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

alpha <- 0.05

Compute the step functions from the supports

If not searching for critical constants, we use only the observed p-values
sorted.pvals <- sort(raw.pvalues)
y.DBH.sd.fast <- kernel_DBH_fast(pCDFlist, sorted.pvals)
y.ADBH.sd.fast <- kernel_ADBH_fast(pCDFlist, sorted.pvals)
y.DBR.fast <- kernel_DBR_fast(pCDFlist, sorted.pvals)
transformed values
y.DBH.sd.fast
y.ADBH.sd.fast

28 match.pvals

y.DBR.fast

compute transformed support
pv.list <- sort(unique(unlist(pCDFlist)))
y.DBH.sd.crit <- kernel_DBH_crit(pCDFlist, pv.list, sorted.pvals)
y.ADBH.sd.crit <- kernel_ADBH_crit(pCDFlist, pv.list, sorted.pvals)
y.DBR.crit <- kernel_DBR_crit(pCDFlist, pv.list, sorted.pvals)
critical constants
y.DBH.sd.crit$crit.consts
y.ADBH.sd.crit$crit.consts
y.DBR.crit$crit.consts
The following exist only for step-down direction or DBR
y.DBH.sd.crit$pval.transf
y.ADBH.sd.crit$pval.transf
y.DBR.crit$pval.transf

End(Not run)

match.pvals Matching Raw P-Values with Supports

Description

[Deprecated]

Constructs the observed p-values from the raw observed p-values, by rounding them to their nearest
neighbor matching with the supports of their respective CDFs (as in function p.discrete.adjust()
of package discreteMTP, which is no longer available on CRAN).

Note: In the next version, this is to become an internal function and will have to be called directly
via :::, i.e. DiscreteFDR:::match.pvals().

Usage

match.pvals(pCDFlist, raw.pvalues, pCDFlist.indices = NULL)

Arguments

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

raw.pvalues numeric vector with raw p-values for which a discrete FDR procedure is to be
performed.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

plot.DiscreteFDR 29

Details

Well computed raw p-values should already belong to their respective CDF support. So this function
is called at the beginning of discrete.BH(), DBH(), ADBH() and DBR(), just in case raw p-values
are biased.

For each raw p-value that needs to be rounded, a warning is issued.

Value

A vector where each raw p-value has been replaced by its nearest neighbor, if necessary.

See Also

discrete.BH(), DBR()

Examples

Not run:
toyList <- list(c(0.3,0.7,1),c(0.1,0.65,1))
toyRaw1 <- c(0.3,0.65)
match.pvals(toyList,toyRaw1)
toyRaw2 <- c(0.31,0.6)
match.pvals(toyList,toyRaw2)

End(Not run)

plot.DiscreteFDR Plot Method for DiscreteFDR objects

Description

Plots raw p-values of a DiscreteFDR object and highlights rejected and accepted p-values. If
present, the critical values are plotted, too.

Usage

S3 method for class 'DiscreteFDR'
plot(
x,
col = c(2, 4, 1),
pch = c(20, 20, 17),
lwd = rep(par()$lwd, 3),
cex = rep(par()$cex, 3),
type.crit = "b",
legend = NULL,
...

)

30 plot.DiscreteFDR

Arguments

x object of class DiscreteFDR.

col numeric or character vector of length 3 indicating the colors of the

1. rejected p-values
2. accepted p-values
3. critical values (if present).

pch numeric or character vector of length 3 indicating the point characters of the

1. rejected p-values
2. accepted p-values
3. critical values (if present and type.crit is a plot type like 'p', 'b' etc.).

lwd numeric vector of length 3 indicating the thickness of the points and lines; de-
faults to current par()$lwd setting.

cex numeric vector of length 3 indicating the size of point characters or lines of the

1. rejected p-values
2. accepted p-values
3. critical values (if present).

defaults to current par()$cex setting.

type.crit 1-character string giving the type of plot desired for the critical values (e.g.: 'p',
'l' etc; see plot()).

legend if NULL, no legend is plotted; otherwise expecting a character string like "topleft"
etc. or a numeric vector of two elements indicating (x, y) coordinates.

... further arguments to plot.default().

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.su.fast <- DBH(raw.pvalues, pCDFlist)
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
DBH.sd.fast <- DBH(test.result, direction = "sd")
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)

plot(DBH.sd.fast)

print.DiscreteFDR 31

plot(DBH.sd.crit, xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.fast, col = c(2, 4), pch = c(2, 3), lwd = c(2, 2),

legend = "topleft", xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.crit, col = c(2, 4, 1), pch = c(1, 1, 4), lwd = c(1, 1, 2),

type.crit = 'o', legend = c(1, 0.4), lty = 1, xlim = c(1, 5),
ylim = c(0, 0.4))

print.DiscreteFDR Printing DiscreteFDR results

Description

Prints the results of discrete FDR analysis, stored in a DiscreteFDR class object.

Usage

S3 method for class 'DiscreteFDR'
print(x, ...)

Arguments

x an object of class "DiscreteFDR".

... further arguments to be passed to or from other methods. They are ignored in
this function.

Value

The input object x is invisibly returned via invisible(x).

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.su.crit <- DBH(raw.pvalues, pCDFlist, direction = "su", ret.crit.consts = TRUE)
print(DBH.su.crit)

32 summary.DiscreteFDR

summary.DiscreteFDR Summarizing Discrete FDR Results

Description

summary method for class DiscreteFDR.

Usage

S3 method for class 'DiscreteFDR'
summary(object, ...)

S3 method for class 'summary.DiscreteFDR'
print(x, max = NULL, ...)

Arguments

object an object of class DiscreteFDR.

... further arguments passed to or from other methods.

x an object of class summary.DiscreteFDR.

max numeric or NULL, specifying the maximal number of rows of the p-value table to
be printed. By default, when NULL, getOption("max.print") is used.

Details

summary.DiscreteFDR objects contain all data of an DiscreteFDR object, but also include an addi-
tional table which includes the raw p-values, their indices, the respective critical values (if present),
the adjusted p-values (if present) and a logical column to indicate rejection. The table is sorted in
ascending order by the raw p-values.

print.summary.DiscreteFDR simply prints the same output as print.DiscreteFDR, but also
prints the p-value table.

Value

summary.DiscreteFDR computes and returns a list that includes all the data of an input DiscreteFDR
object, plus

Table data.frame, sorted by the raw p-values, that contains the indices, the raw p-
values themselves, their respective critical values (if present), their adjusted p-
values (if present) and a logical column to indicate rejection.

summary.DiscreteFDR 33

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.sd.crit <- DBH(raw.pvalues, pCDFlist, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)

Index

∗ datasets
amnesia, 5

ADBH, 2
ADBH(), 8, 11, 16, 17, 29
amnesia, 5, 5

DBH, 6
DBH(), 2, 4, 11, 16, 17, 29
DBR, 9, 25, 27
DBR(), 4, 8, 16, 17, 29
direct.discrete.BH, 12
direct.discrete.BH(), 17, 18
discrete.BH, 13, 25, 27
discrete.BH(), 2, 4, 6, 8, 11, 17, 20, 29
DiscreteDatasets, 5, 17
DiscreteFDR, 17
DiscreteFDR-package (DiscreteFDR), 17
DiscreteTestResults, 3, 7, 10, 14, 23
DiscreteTests, 3, 7, 10, 12, 14, 17, 23

fast.Discrete, 18, 27
fast.Discrete(), 17
fisher.pvalues.support, 20
fisher.pvalues.support(), 17, 19, 20
fisher.test(), 22

generate.pvalues, 22
generate.pvalues(), 17, 20

hist, 24
hist.DiscreteFDR, 24

kernel, 25
kernel_ADBH_crit (kernel), 25
kernel_ADBH_fast (kernel), 25
kernel_DBH_crit (kernel), 25
kernel_DBH_fast (kernel), 25
kernel_DBR_crit (kernel), 25
kernel_DBR_fast (kernel), 25

match.pvals, 28

plot(), 30
plot.default(), 30
plot.DiscreteFDR, 29
plot.histogram, 24
print.DiscreteFDR, 31
print.summary.DiscreteFDR

(summary.DiscreteFDR), 32

stats::fisher.test(), 19, 21
summary.DiscreteFDR, 32

34

	ADBH
	amnesia
	DBH
	DBR
	direct.discrete.BH
	discrete.BH
	DiscreteFDR
	fast.Discrete
	fisher.pvalues.support
	generate.pvalues
	hist.DiscreteFDR
	kernel
	match.pvals
	plot.DiscreteFDR
	print.DiscreteFDR
	summary.DiscreteFDR
	Index

