
Package ‘CORElearn’
November 4, 2024

Title Classification, Regression and Feature Evaluation

Version 1.57.3.1

Date 2022-11-18

Description A suite of machine learning algorithms written in C++ with the R
interface contains several learning techniques for classification and regression.
Predictive models include e.g., classification and regression trees with
optional constructive induction and models in the leaves, random forests, kNN,
naive Bayes, and locally weighted regression. All predictions obtained with these
models can be explained and visualized with the 'ExplainPrediction' package.
This package is especially strong in feature evaluation where it contains several variants of
Relief algorithm and many impurity based attribute evaluation functions, e.g., Gini,
information gain, MDL, and DKM. These methods can be used for feature selection
or discretization of numeric attributes.
The OrdEval algorithm and its visualization is used for evaluation
of data sets with ordinal features and class, enabling analysis according to the
Kano model of customer satisfaction.
Several algorithms support parallel multithreaded execution via OpenMP.
The top-level documentation is reachable through ?CORElearn.

License GPL-3

URL http://lkm.fri.uni-lj.si/rmarko/software/

Imports cluster,stats,nnet,plotrix,rpart.plot

Suggests lattice,MASS,ExplainPrediction

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-11-04 22:25:55 UTC

Author Marko Robnik-Sikonja [aut, cre],
Petr Savicky [aut]

Maintainer Marko Robnik-Sikonja <marko.robnik@fri.uni-lj.si>

Contents
CORElearn-package . 2

1

http://lkm.fri.uni-lj.si/rmarko/software/

2 CORElearn-package

attrEval . 5
auxTest . 9
calibrate . 10
classDataGen . 12
classPrototypes . 15
CORElearn-internal . 16
CoreModel . 17
cvGen . 21
destroyModels . 22
discretize . 23
display.CoreModel . 27
getCoreModel . 28
getRFsizes . 29
getRpartModel . 30
helpCore . 31
infoCore . 37
modelEval . 38
noEqualRows . 41
ordDataGen . 42
ordEval . 43
paramCoreIO . 47
plot.CoreModel . 48
plot.ordEval . 50
predict.CoreModel . 53
preparePlot . 54
regDataGen . 55
reliabilityPlot . 57
rfAttrEval . 58
rfClustering . 60
rfOOB . 61
rfOutliers . 62
rfProximity . 63
saveRF . 64
testCore . 66
versionCore . 67

Index 68

CORElearn-package R port of CORElearn

Description

The package CORElearn is an R port of CORElearn data mining system. It provides various clas-
sification and regression models as well as algorithms for feature selection and evaluation. Several
algorithms support parallel multithreaded execution via OpenMP (see details in function descrip-
tions)., It is possible to run many functions outside the R environment. The description and source
code is available on the package web site http://lkm.fri.uni-lj.si/rmarko/software/.

http://lkm.fri.uni-lj.si/rmarko/software/

CORElearn-package 3

Details

The main functions are

• CoreModel which constructs classification or regression model.

– Classification models available:

* random forests with optional local weighing of basic models

* decision tree with optional constructive induction in the inner nodes and/or models
in the leaves

* kNN and kNN with Gaussian kernel,

* naive Bayes.
– Regression models:

* regression trees with optional constructive induction in the inner nodes and/or models
in the leaves,

* linear models with pruning techniques

* locally weighted regression

* kNN and kNN with Gaussian kernel.

• predict.CoreModel predicts with classification model labels and probabilities of new in-
stances. For regression models it returns the predicted function value.

• plot.CoreModel graphically visualizes trees and random forest models

• modelEval computes some statistics from predictions

• attrEval evaluates the quality of the attributes (dependent variables) with the selected heuris-
tic method. Feature evaluation algorithms are various variants of Relief algorithms (ReliefF,
RReliefF, cost-sensitive ReliefF, etc), gain ratio, gini-index, MDL, DKM, information gain,
MSE, MAE, etc.

• ordEval evaluates ordinal attributes with ordEval algorithm and visualizes them with plot.ordEval,

• infoCore outputs certain information about CORElearn methods,

• helpCore prints short description of a given parameter,

• paramCoreIO reads/writes parameters for given model from/to file,

• versionCore outputs version of the package from underlying C++ library.

Some of the internal structures of the C++ part are described in CORElearn-internal.

For an automatically generated list of functions use help(package=CORElearn) or library(help=CORElearn).

ut this feature is currently not supported on all platforms and may interfere with other means of
parallelization used in R, like package paralell. It is tested to works on Windows, Linux, and Mac.

For certain platforms multithreaded execution is not supported, since current set of compilers at
CRAN do not fully support OpenMP. Also note that OpenMP execution may interfere with other
means of parallelization on certain platforms. E.g., interference with package parallel is reported
on Windows which can be prevented by setting parameter maxThreads=1. For platforms other than
Linux, Windows, and OsX to support multithreading it is possible to recompile the package with
appropriate tools and compilers (modify Makefile or Makefile.win in src folder, or consult authors).

Author(s)

Marko Robnik-Sikonja, Petr Savicky

4 CORElearn-package

References

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Marko Robnik-Sikonja: Improving Random Forests. In J.-F. Boulicaut et al.(Eds): ECML 2004,
LNAI 3210, Springer, Berlin, 2004, pp. 359-370

Marko Robnik-Sikonja, Koen Vanhoof: Evaluation of ordinal attributes at value level. Knowledge
Discovery and Data Mining, 14:225-243, 2007

Marko Robnik-Sikonja: Experiments with Cost-sensitive Feature Evaluation. In Lavrac et al.(eds):
Machine Learning, Proceedings of ECML 2003, Springer, Berlin, 2003, pp. 325-336

Majority of these references are available also from http://lkm.fri.uni-lj.si/rmarko/papers/

See Also

CoreModel, predict.CoreModel, plot.CoreModel, modelEval, attrEval, ordEval, plot.ordEval,
helpCore, paramCoreIO, infoCore, versionCore, CORElearn-internal, classDataGen, regDataGen,
ordDataGen.

Examples

load the package
library(CORElearn)
cat(versionCore(),"\n")

use iris data set
trainIdxs <- sample(x=nrow(iris), size=0.7*nrow(iris), replace=FALSE)
testIdxs <- c(1:nrow(iris))[-trainIdxs]

build random forests model with certain parameters
setting maxThreads to 0 or more than 1 forces
utilization of several processor cores
modelRF <- CoreModel(Species ~ ., iris[trainIdxs,], model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

print(modelRF) # simple visualization, test also others with function plot

prediction on testing set
pred <- predict(modelRF, iris[testIdxs,], type="both")

compute statistics
mEval <- modelEval(modelRF, iris[["Species"]][testIdxs], pred$class, pred$prob)
print(mEval)

Not run:
explain predictions on the level of model and individual instances
require(ExplainPrediction)
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",

visLevel="model", problemName="iris", fileType="none",
classValue=1, displayColor="color")

turn on the history in visualization window to see all instances

http://lkm.fri.uni-lj.si/rmarko/papers/

attrEval 5

explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",
visLevel="instance", problemName="iris", fileType="none",
classValue=1, displayColor="color")

End(Not run)
Clean up, otherwise the memory is still taken
destroyModels(modelRF) # clean up

evaluate features in given data set with selected method
instead of formula interface one can provide just
the name or index of target variable
estReliefF <- attrEval("Species", iris,

estimator="ReliefFexpRank", ReliefIterations=30)
print(estReliefF)

evaluate ordered features with ordEval
profiles <- ordDataGen(200)
est <- ordEval(class ~ ., profiles, ordEvalNoRandomNormalizers=100)
print(est)

attrEval Attribute evaluation

Description

The method evaluates the quality of the features/attributes/dependent variables specified by the for-
mula with the selected heuristic method. Feature evaluation algorithms available for classification
problems are various variants of Relief and ReliefF algorithms (ReliefF, cost-sensitive ReliefF, . . .),
and impurity-based algorithms (information gain, gain ratio, gini-index, MDL, DKM, etc). For
regression problems there are RREliefF, MSEofMean, MSEofModel, MAEofModel, ... Parallel
execution on several cores is supported for speedup.

Usage

attrEval(formula, data, estimator, costMatrix = NULL,
outputNumericSplits=FALSE, ...)

Arguments

formula Either a formula specifying the attributes to be evaluated and the target variable,
or a name of target variable, or an index of target variable.

data Data frame with evaluation data.

estimator The name of the evaluation method.

costMatrix Optional cost matrix used with certain estimators.

6 attrEval

outputNumericSplits

Controls of the output contain the best split point for numeric attributes. This is
only sensible for impurity based estimators (like information gain, gini, MDL,
gain ratio, etc. in classification, and MSEofMean in regression). The default
value of parameter binaryEvaluateNumericAttributes = TRUE shall not be
modified in this case. If the value of outputNumericSplits = TRUE, the output
is a list with attribute evaluations and numeric attributes’ splits (instead of a
single vector with evaaluations). See the returned value description.

... Additional options used by specific evaluation methods as described in helpCore.

Details

The parameter formula can be interpreted in three ways, where the formula interface is the most
elegant one, but inefficient and inappropriate for large data sets. See also examples below. As
formula one can specify:

an object of class formula used as a mechanism to select features (attributes) and prediction vari-
able (class). Only simple terms can be used and interaction expressed in formula syntax are
not supported. The simplest way is to specify just response variable: class ~ .. In this case
all other attributes in the data set are evaluated. Note that formula interface is not appropriate
for data sets with large number of variables.

a character vector specifying the name of target variable, all the other columns in data frame data
are used as predictors.

an integer specifying the index of of target variable in data frame data, all the other columns are
used as predictors.

The optional parameter costMatrix can provide nonuniform cost matrix to certain cost-sensitive
measures (ReliefFexpC, ReliefFavgC, ReliefFpe, ReliefFpa, ReliefFsmp,GainRatioCost, DKM-
cost, ReliefKukar, and MDLsmp). For other measures this parameter is ignored. The format of
the matrix is costMatrix(true class, predicted class). By default a uniform costs are assumed, i.e.,
costMatrix(i, i) = 0, and costMatrix(i, j) = 1, for i not equal to j.

The estimator parameter selects the evaluation heuristics. For classification problem it must be one
of the names returned by infoCore(what="attrEval") and for regression problem it must be one
of the names returned by infoCore(what="attrEvalReg") Majority of these feature evaluation
measures are described in the references given below, here only a short description is given. For
classification problem they are

"ReliefFequalK" ReliefF algorithm where k nearest instances have equal weight.

"ReliefFexpRank" ReliefF algorithm where k nearest instances have weight exponentially de-
creasing with increasing rank. Rank of nearest instance is determined by the increasing (Man-
hattan) distance from the selected instance. This is a default choice for methods taking condi-
tional dependencies among the attributes into account.

"ReliefFbestK" ReliefF algorithm where all possible k (representing k nearest instances) are
tested and for each feature the highest score is returned. Nearest instances have equal weights.

"Relief" Original algorithm of Kira and Rendel (1991) working on two class problems.

"InfGain" Information gain.

"GainRatio" Gain ratio, which is normalized information gain to prevent bias to multi-valued
attributes.

attrEval 7

"MDL" Acronym for Minimum Description Length, presents method introduced in (Kononenko,
1995) with favorable bias for multi-valued and multi-class problems. Might be the best method
among those not taking conditional dependencies into account.

"Gini" Gini-index.

"MyopicReliefF" Myopic version of ReliefF resulting from assumption of no local dependencies
and attribute dependencies upon class.

"Accuracy" Accuracy of resulting split.

"ReliefFmerit" ReliefF algorithm where for each random instance the merit of each attribute is
normalized by the sum of differences in all attributes.

"ReliefFdistance" ReliefF algorithm where k nearest instances are weighed directly with its in-
verse distance from the selected instance. Usually using ranks instead of distance as in
ReliefFexpRank is more effective.

"ReliefFsqrDistance" ReliefF algorithm where k nearest instances are weighed with its inverse
square distance from the selected instance.

"DKM" Measure named after Dietterich, Kearns, and Mansour who proposed it in 1996.

"ReliefFexpC" Cost-sensitive ReliefF algorithm with expected costs.

"ReliefFavgC" Cost-sensitive ReliefF algorithm with average costs.

"ReliefFpe" Cost-sensitive ReliefF algorithm with expected probability.

"ReliefFpa" Cost-sensitive ReliefF algorithm with average probability.

"ReliefFsmp" Cost-sensitive ReliefF algorithm with cost sensitive sampling.

"GainRatioCost" Cost-sensitive variant of GainRatio.

"DKMcost" Cost-sensitive variant of DKM.

"ReliefKukar" Cost-sensitive Relief algorithm introduced by Kukar in 1999.

"MDLsmp" Cost-sensitive variant of MDL where costs are introduced through sampling.

"ImpurityEuclid" Euclidean distance as impurity function on within node class distributions.

"ImpurityHellinger" Hellinger distance as impurity function on within node class distributions.

"UniformDKM" Dietterich-Kearns-Mansour (DKM) with uniform priors.

"UniformGini" Gini index with uniform priors.

"UniformInf" Information gain with uniform priors.

"UniformAccuracy" Accuracy with uniform priors.

"EqualDKM" Dietterich-Kearns-Mansour (DKM) with equal weights for splits.

"EqualGini" Gini index with equal weights for splits.

"EqualInf" Information gain with equal weights for splits.

"EqualHellinger" Two equally weighted splits based Hellinger distance.

"DistHellinger" Hellinger distance between class distributions in branches.

"DistAUC" AUC distance between splits.

"DistAngle" Cosine of angular distance between splits.

"DistEuclid" Euclidean distance between splits.

For regression problem the implemented measures are:

8 attrEval

"RReliefFequalK" RReliefF algorithm where k nearest instances have equal weight.
"ReliefFexpRank" RReliefF algorithm where k nearest instances have weight exponentially de-

creasing with increasing rank. Rank of nearest instance is determined by the increasing (Man-
hattan) distance from the selected instance. This is a default choice for methods taking condi-
tional dependencies among the attributes into account.

"RReliefFbestK" RReliefF algorithm where all possible k (representing k nearest instances) are
tested and for each feature the highest score is returned. Nearest instances have equal weights.

"RReliefFwithMSE" A combination of RReliefF and MSE algorithms.
"MSEofMean" Mean Squared Error as heuristic used to measure error by mean predicted value

after split on the feature.
"MSEofModel" Mean Squared Error of an arbitrary model used on splits resulting from the fea-

ture. The model is chosen with parameter modelTypeReg.
"MAEofModel" Mean Absolute Error of an arbitrary model used on splits resulting from the

feature. The model is chosen with parameter modelTypeReg. If we use median as the model,
we get robust equivalent to MSEofMean.

"RReliefFdistance" RReliefF algorithm where k nearest instances are weighed directly with its
inverse distance from the selected instance. Usually using ranks instead of distance as in
RReliefFexpRank is more effective.

"RReliefFsqrDistance" RReliefF algorithm where k nearest instances are weighed with its in-
verse square distance from the selected instance.

There are some additional parameters . . . available which are used by specific evaluation heuristics.
Their list and short description is available by calling helpCore. See Section on attribute evaluation.

The attributes can also be evaluated via random forest out-of-bag set with function rfAttrEval.

Evaluation and visualization of ordered attributes is covered in function ordEval.

Value

The method returns a vector of evaluations for the features in the order specified by the formula. In
case of parameter binaryEvaluateNumericAttributes=TRUE the method returns a list with two
components: attrEval and splitPointNum. The attrEval contains a vector of evaluations for
the features in the order specified by the formula. The splitPointNum contains the split points of
numeric attributes which produced the given attribute evaluation scores.

Author(s)

Marko Robnik-Sikonja

References

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Marko Robnik-Sikonja: Experiments with Cost-sensitive Feature Evaluation. In Lavrac et al.(eds):
Machine Learning, Proceedings of ECML 2003, Springer, Berlin, 2003, pp. 325-336

Igor Kononenko: On Biases in Estimating Multi-Valued Attributes. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’95), pp. 1034-1040, 1995

Some of these references are available also from http://lkm.fri.uni-lj.si/rmarko/papers/

http://lkm.fri.uni-lj.si/rmarko/papers/

auxTest 9

See Also

CORElearn, CoreModel, rfAttrEval, ordEval, helpCore, infoCore.

Examples

use iris data

run method ReliefF with exponential rank distance
estReliefF <- attrEval(Species ~ ., iris,

estimator="ReliefFexpRank", ReliefIterations=30)
print(estReliefF)

alternatively and more appropriate for large data sets
one can specify just the target variable
estReliefF <- attrEval("Species", iris, estimator="ReliefFexpRank",
ReliefIterations=30)

print all available estimators
infoCore(what="attrEval")

auxTest Test functions for manual usage

Description

Test functions for the current state of the development.

Usage

testTime()
testClassPseudoRandom(s, k, m)

Arguments

s Seed.

k Length of required output.

m number of streams.

Details

testTime() determines the current time. testClassPseudoRandom(s, k, m) tests the functional-
ity of multiple streams of RNGs.

Value

Depends on the function.

10 calibrate

Author(s)

Marko Robnik-Sikonja, Petr Savicky

See Also

CORElearn.

Examples

testTime()

calibrate Calibration of probabilities according to the given prior.

Description

Given probability scores predictedProb as provided for example by a call to predict.CoreModel
and using one of available methods given by methods the function calibrates predicted probabilities
so that they match the actual probabilities of a binary class 1 provided by correctClass. The
computed calibration can be applied to the scores returned by that model.

Usage

calibrate(correctClass, predictedProb, class1=1,
method = c("isoReg","binIsoReg","binning","mdlMerge"),
weight=NULL, noBins=10, assumeProbabilities=FALSE)

applyCalibration(predictedProb, calibration)

Arguments

correctClass A vector of correct class labels for a binary classification problem.
predictedProb A vector of predicted class 1 (probability) scores. In calibrate method it

should be of the same length as correctClass.
class1 A class value (factor) or an index of the class value to be taken as a class to be

calibrated.
method One of isoReg, binIsoReg, binning, or mdlMerge. See details below.
weight If specified, should be of the same length as correctClass and gives the weights

for all the instances, otherwise a default weight of 1 for each instance is assumed.
noBins The value of parameter depends on the parameter method and specifies desired

or initial number of bins. See details below.
assumeProbabilities

If assumeProbabilities=TRUE the values in predictedProb are expected to
be in [0,1] range i.e., probability estimates. assumeProbabilities=FALSE the
algorithm can be used as ordinary (isotonic) regression

calibration The list resulting from a call to calibration and subsequently applied to prob-
ability scores returned by the same model.

calibrate 11

Details

Depending on the specified method one of the following calibration methods is executed.

• "isoReg" isotonic regression calibration based on pair-adjacent violators (PAV) algorithm.

• "binning" calibration into a pre-specified number of bands given by noBins parameter, trying
to make bins of equal weight.

• "binIsoReg" first binning method is executed, following by a isotonic regression calibration.

• "mdlMerge" first intervals are merged by a MDL gain criterion into a prespecified number of
intervals, following by the isotonic regression calibration.

If model="binning" the parameter noBins specifies the desired number of bins i.e., calibration
bands; if model="binIsoReg" the parameter noBins specifies the number of initial bins that are
formed by binning before isotonic regression is applied; if model="mdlMerge" the parameter noBins
specifies the number of bins formed after first applying isotonic regression. The most similar bins
are merged using MDL criterion.

Value

A function returns a list with two vector components of the same length:

interval The boundaries of the intervals. Lower boundary 0 is not explicitly included but
should be taken into account.

calProb The calibrated probabilities for each corresponding interval.

Author(s)

Marko Robnik-Sikonja

References

I. Kononenko, M. Kukar: Machine Learning and Data Mining: Introduction to Principles and
Algorithms. Horwood, 2007

A. Niculescu-Mizil, R. Caruana: Predicting Good Probabilities With Supervised Learning. Pro-
ceedings of the 22nd International Conference on Machine Learning (ICML’05), 2005

See Also

reliabilityPlot, CORElearn, predict.CoreModel .

Examples

generate data set separately for training the model,
calibration of probabilities and testing
train <-classDataGen(noInst=200)
cal <-classDataGen(noInst=200)
test <- classDataGen(noInst=200)

build random forests model with default parameters
modelRF <- CoreModel(class~., train, model="rf", maxThreads=1)

12 classDataGen

prediction
predCal <- predict(modelRF, cal, rfPredictClass=FALSE)
predTest <- predict(modelRF, test, rfPredictClass=FALSE)
destroyModels(modelRF) # clean up, model not needed anymore

calibrate for a chosen class1 and method
class1<-1
calibration <- calibrate(cal$class, predCal$prob[,class1], class1=class1,

method="isoReg",assumeProbabilities=TRUE)

apply the calibration to the testing set
calibratedProbs <- applyCalibration(predTest$prob[,class1], calibration)
the calibration of probabilities can be visualized with
reliabilityPlot function

classDataGen Artificial data for testing classification algorithms

Description

The generator produces classification data with 2 classes, 7 discrete and 3 numeric attributes.

Usage

classDataGen(noInst, t1=0.7, t2=0.9, t3=0.34, t4=0.32,
p1=0.5, classNoise=0)

Arguments

noInst Number of instances to generate.

t1, t2, t3 Parameters, which control the hardness of the discrete attributes.

t4 Parameter, which controls the hardness of the numeric attributes..

p1 Probability of class 1.

classNoise Proportion of noise in the class variable for classification or virtual class variable
for regression.

Details

Class probabilities are p1 and 1 - p1, respectively. The conditional distribution of attributes under
each of the classes depends on parameters t1, t2, t3, t4 from [0,1]. Attributes a7 and x3 are
irrelevant for all values of parameters.

Examples of extreme settings of the parameters.

• Setting satisfying t1*t2 = t3 implies no difference between the distributions of individual dis-
crete attributes among the two classes. However, if t1 < 1, then the joint distribution of them
is different for the two classes.

classDataGen 13

• Setting t1 = 1 and t2 = t3 implies no difference between the joint distribution of the discrete
attributes among the two classes.

• Setting t1 = 1, t2 = 1, t3 = 0 implies disjoint supports of the distributions of a1, a2, a4, a5, so
this allows exact classification.

• Setting t4 = 1 implies no difference between the distribution of x1, x2 between the classes.
Setting t4 = 0 allows correct classification with probability one only using x1 and x2.

For class 1 the attributes have distributions

(a1, a2, a3) D1(t1, t2)
a4, a5, a6 D2(t3)
a7 irrelevant attribute, probabilities of {a,b,c,d} are (1/2, 1/6, 1/6, 1/6)
x1, x2, x3 independent normal variables with mean 0 and standard deviation 1, t4, 1
x4, x5 independent uniformly distributed variables on [0,1]

For class 2 the attributes have distributions

a1, a2, a3 D2(t3)
(a4, a5, a6) D1(t1, t2)
a7 irrelevant attribute, probabilities of {a,b,c,d} are (1/2, 1/6, 1/6, 1/6)
x1, x2, x3 independent normal variables with mean 0 and st. dev. t4, 1, 1
x4, x5 independent uniformly distributed variables on [0,1]

x3 is irrelevant for classification, since it has the same distribution under both classes.

Attributes in a bracket are mutually dependent. Otherwise, the attributes are conditionally indepen-
dent for each of the two classes. This means that if we consider groups of the attributes such that
the attributes in each of the two brackets form a group and each of the remaining attributes forms a
group with one element, then for each class, we have 7 groups, which are conditionally independent
for the given class. Note that the splitting into groups differs for class 1 and 2.

Distribution D1(t1, t2) consists of three dependent attributes. The distribution of individual at-
tributes depends only on t1*t2. For a given t1*t2, the level of dependence decreases with t1 and
increases with t2. There are two extreme settings: Setting t1 = 1, t2 = t1*t2 has the largest t1 and
the smallest t2 and all three attributes are independent. Setting t1 = t1*t2, t2 = 1 has the smallest t1
and the largest t2 and also the largest dependence between attributes.

Distribution D2(t3) is equal to D1(1, t3), so it contains three independent attributes, whose distri-
butions are the same as in D1(t1, t2) for every setting satifying t1*t2 = t3.

In other words, if t3 = t1*t2, then the distributions D1(t1, t2) and D2(t3) have the same distributions
of individual attributes and may differ only in the dependences. There are no in D2(t3) and there
are some in D1(t1, t2) if t1 < 1.

Hardness of the discrete part

Setting t1 = 1 and t2 = t3 implies no difference between the discrete attributes among the two
classes.

Setting satisfying t1*t2 = t3 implies no difference between the distributions of individual discrete
attributes among the two classes. However, there may be a difference in dependences.

Setting t1 = 1, t2 = 1, t3 = 0 implies disjoint supports of the distributions of a1, a2, a4, a5, so this
allows exact classification.

14 classDataGen

Hardness of the continuous part

Depends monotonically on t4. Setting t4 = 1 implies no difference between the classes. Setting t4
= 0 allows correct classification with probability one.

Value

The method classDataGen returns a data.frame with noInst rows and 11 columns. Range of
values of the attributes and class are

a1 0,1

a2 0,1

a3 a,b,c,d

a4 0,1

a5 0,1

a6 a,b,c,d

a7 a,b,c,d

x1 numeric

x2 numeric

x3 numeric

class 1,2

For detailed specification of attributes (columns) see details section below.

Author(s)

Petr Savicky

See Also

regDataGen, ordDataGen,CoreModel.

Examples

#prepare a classification data set
classData <-classDataGen(noInst=200)

build random forests model with certain parameters
modelRF <- CoreModel(class~., classData, model="rf",

selectionEstimator="MDL", minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

print(modelRF)
destroyModels(modelRF) # clean up

classPrototypes 15

classPrototypes The typical instances of each class - class prototypes

Description

For each class the most typical instances are returned based on the highest predicted probability for
each class.

Usage

classPrototypes(model, dataset, noPrototypes=10)

Arguments

model a CoreModel model.

dataset a dataset from which to get prototypes.

noPrototypes number of instances of each class to return

Details

The function uses predict.CoreModel(model, dataset) for prediction of the dataset with model.
Based on the returned probabilities, it selects the noPrototypes instances with highest probabili-
ties for each class to be typical representatives of that class, i.e., prototypes. The prototypes can be
visualized by calling e.g.,
plot(model, dataset, rfGraphType="prototypes", noPrototypes = 10).

Value

A list with the most typical noPrototypes instances is returned. The list has the following at-
tributes.

prototypes vector with indexes of the most typical instances

clustering vector with class assignments for typical instances in vector instances

levels the names of the class values.

Author(s)

John Adeyanju Alao (as a part of his BSc thesis) and Marko Robnik-Sikonja (thesis supervisor)

References

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

See Also

predict.CoreModel, plot.CoreModel.

16 CORElearn-internal

Examples

dataset <- iris
md <- CoreModel(Species ~ ., dataset, model="rf", rfNoTrees=30,maxThreads=1)
typical <- classPrototypes(md, dataset, 10)
destroyModels(md) # clean up

CORElearn-internal Internal structures of CORElearn C++ part

Description

The package CORElearn is an R port of CORElearn data mining system. This document is a short
description of the C++ part which can also serve as a standalone Linux or Windows data mining
system, its organization and main classes and data structures.

Details

The C++ part is called from R functions collected in file Rinterface.R. The C++ functions called
from R and providing interface to R are collected in Rfront.cpp and Rconvert.cpp. The front end
for standalone version is in file frontend.cpp. For many parts of the code there are two variants,
classification and regression one. Regression part usually has Reg somewhere in its name. The main
classes are

• marray, mmatrix are templates for storing vectors and matrixes

• dataStore contains data storage and data manipulation methods, of which the most important
are

– mmatrix<int> DiscData, DiscPredictData contain values of discrete attributes and
class for training and prediction (optional). In classification column 0 always stores class
values.

– mmatrix<double> ContData, ContPredictData contain values of numeric attribute and
prediction values for training and prediction (optional). In regression column 0 always
stores target values.

– marray<attribute> AttrDesc with information about attributes’ types, number of val-
ues, min, max, column index in DiscData or ContData, ...

• estimation, estimationReg evaluate attributes with different purposes: decision/regression
tree splitting, binarization, discretization, constructive induction, feature selection, etc. Be-
cause of efficiency these classes store its own data in

– mmatrix<int> DiscValues containing discrete attributes and class values,
– mmatrix<double> ContValues containing numeric attribute and prediction values.

• Options stores and handles all the parameters of the system.

• featureTree, regressionTree build all the models, predict with them, and create output.

Author(s)

Marko Robnik-Sikonja

CoreModel 17

See Also

CORElearn, CoreModel, predict.CoreModel, modelEval, attrEval, ordEval, plot.ordEval,
helpCore, paramCoreIO, infoCore, versionCore.

CoreModel Build a classification or regression model

Description

Builds a classification or regression model from the data and formula with given parameters.
Classification models available are

• random forests, possibly with local weighing of basic models (parallel execution on several
cores),

• decision tree with constructive induction in the inner nodes and/or models in the leaves,

• kNN and weighted kNN with Gaussian kernel,

• naive Bayesian classifier.

Regression models:

• regression trees with constructive induction in the inner nodes and/or models in the leaves,

• linear models with pruning techniques,

• locally weighted regression,

• kNN and weighted kNN with Gaussian kernel.

Function cvCoreModel applies cross-validation to estimate predictive performance of the model.

Usage

CoreModel(formula, data,
model=c("rf","rfNear","tree","knn","knnKernel","bayes","regTree"),
costMatrix=NULL,...)

cvCoreModel(formula, data,
model=c("rf","rfNear","tree","knn","knnKernel","bayes","regTree"),
costMatrix=NULL, folds=10, stratified=TRUE, returnModel=TRUE, ...)

Arguments

formula Either a formula specifying the attributes to be evaluated and the target variable,
or a name of target variable, or an index of target variable.

data Data frame with training data.

model The type of model to be learned.

costMatrix Optional misclassification cost matrix used with certain models.

folds An integer, specifying the number of folds to use in cross-validation of model.

18 CoreModel

stratified A boolean specifying if cross-valiadation is to be stratified fpr classification
problems, i.e. shall all folds have the same distribution of class values.

returnModel If TRUE the function cvCoreModel estimates predictive performance using cross-
validation and returns the model build on the whole data set. If returnModel=FALSE
the function only evaluates the model using cross-validation.

... Options for building the model. See helpCore.

Details

The parameter formula can be interpreted in three ways, where the formula interface is the most
elegant one, but inefficient and inappropriate for large data sets. See also examples below. As
formula one can specify:

an object of class formula used as a mechanism to select features (attributes) and prediction vari-
able (class). Only simple terms can be used and interaction expressed in formula syntax are
not supported. The simplest way is to specify just response variable: class ~ .. In this case
all other attributes in the data set are evaluated. Note that formula interface is not appropriate
for data sets with large number of variables.

a character vector specifying the name of target variable, all the other columns in data frame data
are used as predictors.

an integer specifying the index of of target variable in data frame data, all the other columns are
used as predictors.

Parameter model controls the type of the constructed model. There are several possibilities:

"rf" random forests classifier as defined by (Breiman, 2001) with some extensions,

"rfNear" random forests classifier with basic models weighted locally (Robnik-Sikonja, 2005),

"tree" decision tree with constructive induction in the inner nodes and/or models in the leaves,

"knn" k nearest neighbors classifier,

"knnKernel" weighted k nearest neighbors classifier with distance taken into account through
Gaussian kernel,

"bayes" naive Bayesian classifier,

"regTree" regression trees with constructive induction in inner nodes and/or models in leaves
controlled by modelTypeReg parameter. Models used in leaves of the regression tree can also
be used as stand-alone regression models using option minNodeWeightTree=Inf (see examples
below):

• linear models with pruning techniques
• locally weighted regression
• kNN and kNN with Gaussian kernel.

There are many additional parameters . . . available which are used by different models. Their list
and description is available by calling helpCore. Evaluation of attributes is covered in function
attrEval.

The optional parameter costMatrix can provide nonuniform cost matrix for classification prob-
lems. For regression problem this parameter is ignored. The format of the matrix is costMatrix(true
class, predicted class). By default uniform costs are assumed, i.e., costMatrix(i, i) = 0, and costMa-
trix(i, j) = 1, for i not equal to j.

CoreModel 19

Value

The created model is not returned as a R structure. It is stored internally in the package mem-
ory space and only its pointer (index) is returned. The maximum number of models that can
be stored simultaneously is a parameter of the initialization function initCore and defaults to
16384. Models, which are not needed, may be deleted in order to free the memory using function
destroyModels. By referencing the returned model, any of the stored models may be used for
prediction with predict.CoreModel. What the function actually returns is a list with components:

modelID index of internally stored model,

terms description of prediction variables and response,

class.lev class values for classification problem, null for regression problem,

model the type of model used, see parameter model,

formula the formula parameter passed.

The function cvCoreModel evaluates the model using cross-validation and function modelEval to
return these additional components:

avgs A vector with average values of each evaluation metric obtained from modelEval.

stds A vector with standard deviations of each evaluation metric from modelEval.

evalList A list, where each component is an evaluation metric from modelEval. Each
component contains results of cross-validated runs.

In case returnModel=FALSE the function only returns the above three components are keeps no
model.

Author(s)

Marko Robnik-Sikonja, Petr Savicky

References

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

Marko Robnik-Sikonja: Improving Random Forests. In J.-F. Boulicaut et al.(Eds): ECML 2004,
LNAI 3210, Springer, Berlin, 2004, pp. 359-370

Marko Robnik-Sikonja: CORE - a system that predicts continuous variables. Proceedings of
ERK’97 , Portoroz, Slovenia, 1997

Marko Robnik-Sikonja, Igor Kononenko: Discretization of continuous attributes using ReliefF. Pro-
ceedings of ERK’95, B149-152, Ljubljana, 1995

Majority of these references are available from http://lkm.fri.uni-lj.si/rmarko/papers/

See Also

CORElearn, predict.CoreModel, modelEval, attrEval, helpCore, paramCoreIO.

http://lkm.fri.uni-lj.si/rmarko/papers/

20 CoreModel

Examples

use iris data set
trainIdxs <- sample(x=nrow(iris), size=0.7*nrow(iris), replace=FALSE)
testIdxs <- c(1:nrow(iris))[-trainIdxs]

build random forests model with certain parameters
setting maxThreads to 0 or more than 1 forces
utilization of several processor cores
modelRF <- CoreModel(Species ~ ., iris[trainIdxs,], model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

print(modelRF) # simple visualization, test also others with function plot
prediction on testing set
pred <- predict(modelRF, iris[testIdxs,], type="both")
mEval <- modelEval(modelRF, iris[["Species"]][testIdxs], pred$class, pred$prob)
print(mEval) # evaluation of the model
visualization of individual predictions and the model
Not run:
require(ExplainPrediction)
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",

visLevel="model", problemName="iris", fileType="none",
classValue=1, displayColor="color")

turn on the history in visualization window to see all instances
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",

visLevel="instance", problemName="iris", fileType="none",
classValue=1, displayColor="color")

End(Not run)
destroyModels(modelRF) # clean up

build decision tree with naive Bayes in the leaves
more appropriate for large data sets one can specify just the target variable
modelDT <- CoreModel("Species", iris, model="tree", modelType=4)
print(modelDT)
destroyModels(modelDT) # clean up

build regression tree similar to CART
instReg <- regDataGen(200)
modelRT <- CoreModel(response~., instReg, model="regTree", modelTypeReg=1)
print(modelRT)
destroyModels(modelRT) # clean up

build kNN kernel regressor by preventing tree splitting
modelKernel <- CoreModel(response~., instReg, model="regTree",

modelTypeReg=7, minNodeWeightTree=Inf)
print(modelKernel)
destroyModels(modelKernel) # clean up

Not run:
A more complex example

cvGen 21

Test accuracy of random forest predictor with 20 trees on iris data
using 10-fold cross-validation.
ncases <- nrow(iris)
ind <- ceiling(10*(1:ncases)/ncases)
ind <- sample(ind,length(ind))
pred <- rep(NA,ncases)
fit <- NULL
for (i in unique(ind)) {

Delete the previous model, if there is one.
fit <- CoreModel(Species ~ ., iris[ind!=i,], model="rf",

rfNoTrees=20, maxThreads=1)
pred[ind==i] <- predict(fit, iris[ind==i,], type="class")
if (!is.null(fit)) destroyModels(fit) # dispose model no longer needed

}
table(pred,iris$Species)

End(Not run)
a simpler way to estimate performance using cross-validation
model <- cvCoreModel(Species ~ ., iris, model="rf", rfNoTrees=20,

folds=10, stratified=TRUE, returnModel=TRUE,
maxThreads=1)

model$avgs

cvGen Cross-validation and stratified cross-validation

Description

Generate indices for cross-validation and stratified cross-validation

Usage

cvGen(n, k)
cvGenStratified(classVal,k)
gatherFromList(lst)

Arguments

n The number of instances in a data set.

k The number of folds in cross-validation.

classVal A vector of factors representing class values.

lst A list of lists from which we collect results of the same components.

22 destroyModels

Details

The functions cvGen and cvGenStratified generate indices of instances from a data set which can
be used in cross-validation. The function cvGenStratified generates the same distribution of class
values in each fold. The function gatherFromList is an auxiliary function helping in collection of
results, see the example below.

Value

The functions cvGen and cvGenStratified return a vector of indices indicating fold membership
i.e. from 1:k. The function gatherFromList returns a list with components containing elements of
the same name.

Author(s)

Marko Robnik-Sikonja

See Also

CORElearn.

Examples

data <- iris
folds <- 10
foldIdx <- cvGen(nrow(data), k=folds)
evalCore<-list()
for (j in 1:folds) {
dTrain <- data[foldIdx!=j,]
dTest <- data[foldIdx==j,]
modelCore <- CoreModel(Species~., dTrain, model="rf")
predCore <- predict(modelCore, dTest)
evalCore[[j]] <- modelEval(modelCore, correctClass=dTest$Species,

predictedClass=predCore$class, predictedProb=predCore$prob)
destroyModels(modelCore)
}
results <- gatherFromList(evalCore)
sapply(results, mean)

destroyModels Destroy single model or all CORElearn models

Description

Destroys internal representation of a given model or all constructed models. As side effect the
memory used by the model(s) is freed.

Usage

destroyModels(model=NULL)

discretize 23

Arguments

model The model structure as returned by CoreModel. The default value of NULL
represents all generated models.

Details

The function destroys the model structure as returned by CoreModel. Subsequent work with this
model is no longer possible. If parameter model=NULL (default value) all generated models are
destroyed and memory used by their internal representation is freed.

Value

There is no return value.

Author(s)

Marko Robnik-Sikonja, Petr Savicky

See Also

CORElearn, CoreModel.

Examples

use iris data set

build random forests model with certain parameters
model <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL", minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

prediction
pred <- predict(model, iris, rfPredictClass=FALSE)
print(pred)

destruction of model's internal representation
destroyModels(model)

discretize Discretization of numeric attributes

24 discretize

Description

The method discretize returns discretization bounds for numeric attributes and two auxiliary
functions. Discretization can be obtained with one of the three discretization methods: greedy
search using given feature evaluation heuristics, equal width of intervals, or equal number of in-
stances in each interval. The attributes and target variable are specified using formula interface, tar-
get variable name or index. Feature evaluation algorithms available for classification problems are
various variants of Relief and ReliefF algorithms, gain ratio, gini-index, MDL, DKM, information
gain, etc. For regression problems there are RREliefF, MSEofMean, MSEofModel, MAEofMode,
etc.

Usage

discretize(formula, data, method=c("greedy", "equalFrequency", "equalWidth"),
estimator, discretizationLookahead=3, discretizationSample=0,
maxBins=0, equalDiscBins=4, ...)

applyDiscretization(data, boundsList, noDecimalsInValueName=2)

intervalMidPoint(data, boundsList,
midPointMethod=c("equalFrequency", "equalWidth"))

Arguments

formula Either a formula specifying the attributes to be evaluated and the target variable,
or a name of target variable, or an index of target variable.

data Data frame with data.

method Three discretization methods are available. With method="greedy" greedy
search using given feature evaluation heuristics is selected, while "equalFrequency"
and "equalWidth" select equal frequency (the same number of instances in each
interval) and equal width discretization, respectively.

estimator The name of the evaluation method.
discretizationLookahead

Discretization is performed with a greedy algorithm which adds a new boundary,
until there is no improvement in evaluation function for discretizationLookahead
number of times (0=try all possibilities). Candidate boundaries are chosen from
a random sample of boundaries, whose size is discretizationSample.

discretizationSample

Maximal number of points to try discretization (0=all sensible). Binarization of
multivalued discrete features with k values is performed exhaustively, if 2k − 1
is at most discretizationSample. Otherwise binarization is done greedily
starting from the best separation of a single value. For ReliefF-type measures,
binarization of numeric features is performed with discretizationSample ran-
domly chosen splits. For other measures, the split is searched exhaustively
among all possible splits.

maxBins The maximal number of discrete bins for numeric attributes used for greedy
discretization (0=don’t care). This shall be an integer vector of length equal to

discretize 25

the number of numeric attributes or an integer which applies to all numeric at-
tributes. The default value of 0 means that the number of bins will be determined
greedily taking into account discretizationLookahead.

.

equalDiscBins The number of bins used in equal frequency and equal width discretization. This
shall be an integer vector of length equal to the number of numeric attributes or
an integer which applies to all numeric attributes. The default value is 4.

... Additional options used by specific evaluation methods as described in helpCore.

boundsList A list of numeric bounds which is applied to numeric attributes in data to pro-
duce discrete attributes of type factor. Numeric bounds can be obtained by
calling discretize function.

.

noDecimalsInValueName

With how many decimal places will the numeric feature values be presented in
description (i.e., levels) of feature values. The default value is 2, but will be
increased if this is necessary to avoid the same description of feature values.

midPointMethod Two methods to determine the middle points of discretization intervals are avail-
able. The "equalFrequency" method select the middle point so that each half-
interval contains equal number of instances. The "equalWidth" methods sets
middle point to be equally distant from the boundaries.

Details

In method discretize the parameter formula can be interpreted in three ways, where the formula
interface is the most elegant one, but inefficient and inappropriate for large data sets. See CoreModel
for details.

The estimator parameter selects the evaluation heuristics. For classification problem it must be one
of the names returned by infoCore(what="attrEval") and for regression problem it must be one
of the names returned by infoCore(what="attrEvalReg"). For details see their description in
attrEval.

If the number of supplied vector in maxBins and equalDiscBins is shorter than the number of
numeric attributes, the vector is coerced to the required length.

There are some additional parameters . . . available which are used by specific evaluation heuristics.
Their list and short description is available by calling helpCore. See Section on attribute evaluation.

The function applyDiscretization takes the discretization bounds obtain with function discretize
and transforms numeric features in a data set into discrete features.

The function intervalMidPoint takes discretization bounds provided by function discretize
and returns middle points of discretization intervals for numeric attributes. The middle points are
computed from the data; for lowest/highest interval the minimum/maximum of the values in the
data for particular attribute are implicitly taken as an additional left/right boundary point.

26 discretize

Value

The method discretize returns a list of discretization bounds for numeric attributes. One com-
ponent of a list contains bounds for one attribute. If an attribute has all values equal, value NA is
returned. If an attribute has all values equal to NA, it is skipped in the returned list.

The function applyDiscretization returns a data set where all numeric attributes are replaced
with their discrete versions.

The function intervalMidPoint returns a list of vectors where each vector contains middle point
of discretized intevals.

Author(s)

Marko Robnik-Sikonja

References

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Marko Robnik-Sikonja, Igor Kononenko: Discretization of continuous attributes using ReliefF. Pro-
ceedings of ERK’95 , Portoroz, Slovenia, 1995.

Some of these references are available also from http://lkm.fri.uni-lj.si/rmarko/papers/

See Also

CORElearn, CoreModel, attrEval, helpCore, infoCore.

Examples

use iris data
run method using estimator ReliefF with exponential rank distance
discBounds <- discretize(Species ~ ., iris, method="greedy",

estimator="ReliefFexpRank")
print(discBounds)
discreteIris <- applyDiscretization(iris, discBounds)
prototypePoints <- intervalMidPoint(iris, discBounds,

midPointMethod="equalFrequency")

regData <- regDataGen(200)
discretize(response ~ ., regData, method="greedy", estimator="RReliefFequalK",

maxBins=2)

print all available estimators
#infoCore(what="attrEval")
#infoCore(what="attrEvalReg")

http://lkm.fri.uni-lj.si/rmarko/papers/

display.CoreModel 27

display.CoreModel Displaying decision and regression trees

Description

The method display prints the tree models returned by CoreModel() function. Depending of
parameter format the output is prepared for either screen or in dot format.

Usage

S3 method for class 'CoreModel'
display(x, format=c("screen","dot"))

Arguments

x The model structure as returned by CoreModel.

format The type of output, i.e., prepared for screen display or in dot language

Details

The tree based models returned by function CoreModel are visualized. Only tree based models
supported, including the trees which include other prediction models in their leaves. Tree based
models available are decision trees (obtained by using parameter model="tree" in CoreModel),
and regression trees (with model="regTree").

Models in the leaves of decision trees can be set using parameter modelType in CoreModel. At the
moment naive Bayes and kNN are available, for details see helpCore.

Models in the leaves of regression trees can be set using parameter modelTypeReg in CoreModel.
At the moment kNN, kernel regression, and several types of linear models are available, for details
see helpCore.

The output in dot language can be used with graphViz visualization software to create model visu-
alization in various formats.

Value

The method invisibly returns a printed character vector.

Author(s)

Marko Robnik-Sikonja

See Also

CoreModel, plot.CoreModel.

28 getCoreModel

Examples

decision tree
dataset <- CO2
md <- CoreModel(Plant ~ ., dataset, model="tree")
display(md)
destroyModels(md) #clean up

regression tree
dataset <- CO2
mdr <- CoreModel(uptake ~ ., dataset, model="regTree")
display(mdr, format="dot")
destroyModels(mdr) # clean up

getCoreModel Conversion of model to a list

Description

Function converts given model from internal structures in C++ to R’s data structures.

Usage

getCoreModel(model)

Arguments

model The model structure as returned by CoreModel.

Details

The function converts the model referenced by model from C++ internal structures to R’s lists.
Currently it is implemented only for random forests models.

Value

For random forest a resulting list contains first all the information on the forest level, followed by
the list of trees. For each tree the nodes are recursively nested with indication of node type (leaf or
internal node) and than required information for that data type.

Author(s)

Marko Robnik-Sikonja

See Also

CoreModel, CORElearn.

getRFsizes 29

Examples

uses iris data set

build random forests model with certain parameters,
do not make too many and too large trees
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL", minNodeWeightRF=50,
rfNoTrees=5, maxThreads=1)

print(modelRF)

get the structure of the forest
forest <- getCoreModel(modelRF)
forest

destroyModels(modelRF) # clean up

getRFsizes Get sizes of the trees in RF

Description

Get numerical characteristics of the trees in a RF model related to the size and depth.

Usage

getRFsizes(model, type=c("size", "sumdepth"))

Arguments

model The model structure as returned by CoreModel.

type The required characteristics.

Details

Size is the number of leaves. The sum of depths means the sum of the depth of all leaves.

Value

Numerical vector of the length equal to the number of trees in RF.

Author(s)

Petr Savicky

See Also

CoreModel, CORElearn.

30 getRpartModel

Examples

uses iris data set

build random forests model with certain parameters,
do not make too many and too large trees
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL", minNodeWeightRF=50,
rfNoTrees=50, maxThreads=1)

getRFsizes(modelRF)

destroyModels(modelRF) # clean up

getRpartModel Conversion of a CoreModel tree into a rpart.object

Description

The function converts a given CoreModel model (decision or regression tree) into a rpart.object
prepared for visualization with plot function.

Usage

getRpartModel(model, dataset)

Arguments

model A tree model produced by CoreModel

dataset A data set which was used in learning of the model.

Details

The conversion creates rpart.object and copies CORElearn internal structures contained in mem-
ory controlled by dynamic link library written in C++.

An alternative visualization is accessible via function display, which outputs tree structure format-
ted for screen or in dot format.

Value

Function returns a rpart.object.

Author(s)

Initial version by John Adeyanju Alao, improvements by Marko Robnik-Sikonja.

See Also

CoreModel, plot.CoreModel,rpart.object, display

helpCore 31

Examples

plot a decision tree directly
dataset <- CO2
md<-CoreModel(Plant ~ ., dataset, model="tree")
plot(md, dataset)

or indirectly
rpm <- getRpartModel(md, dataset)
set angle to tan(0.5)=45 (degrees) and length of branches at least 5
plot(rpm, branch=0.5, minbranch=5, compress=TRUE)
pretty=0 prints full names of attributes,
numbers to 3 decimals, try to make a dendrogram more compact
text(rpm, pretty=0, digits=3)
destroyModels(md) # clean up

an alternative is to use fancier rpart.plot package
rpart.plot(rpm) # rpart.plot has many parameters controlling the output
but it cannot plot models in tree leaves

helpCore Description of parameters.

Description

The behavior of CORElearn is controlled by several parameters. This is a short overview.

Details

There are many different parameters available. Some are general and can be used in many learning,
or feature evaluation algorithms. All the values actually used by the classifier / regressor can be
written to file (or read from it) using paramCoreIO. The parameters for the methods are split into
several groups and documented below.

Attribute/feature evaluation

The parameters in this group may be used inside model construction via CoreModel and feature
evaluation in attrEval. See attrEval for description of relevant evaluation methods.

Parameters attrEvaluationInstances, binaryEvaluation,
binarySplitNumericAttributes are applicable to all attribute evaluation methods. In models
which need feature evaluation (e.g., trees, random forests) they affect the selection of splits in the
nodes. Other parameters may be used only in context sensitive measures, i.e., ReliefF in classifica-
tion and RReliefF in regression and their variants.

binaryEvaluation type: logical, default value: FALSE
Shall we treat all attributes as binary and binarize them before evaluation if necessary. If TRUE,
then for all multivalued discrete and all numeric features a search for the best binarization is
performed. The evaluation of the best binarization found is reported. If FALSE, then multi-
valued discrete features are evaluated "as is" with multivalued versions of estimators. With

32 helpCore

ReliefF-type measures, numeric features are also evaluated "as is". For evaluation of numeric
features with other (non-ReliefF-type) measures, they are first binarized or discretized. The
choice between binarization and discretization is controlled by binaryEvaluateNumericAttributes.
Due to performance reasons it is recommended that binaryEvaluation=FALSE is used. See
also discretizationSample.

binaryEvaluateNumericAttributes type: logical, default value: TRUE
ReliefF like measures can evaluate numeric attributes intrinsically, others have to discretize
or binarize them before evaluation; for those measures this parameter selects binarization
(default) or discretization (computationally more demanding).

multiclassEvaluation type: integer, default value: 1, value range: 1, 4
multi-class extension for two-class-only evaluation measures (1-average of all-pairs, 2-best of
all-pairs, 3-average of one-against-all, 4-best of one-against-all).

attrEvaluationInstances type: integer, default value: 0, value range: 0, Inf
number of instances for attribute evaluation (0=all available).

minNodeWeightEst type: numeric, default value: 2, value range: 0, Inf
minimal number of instances (weight) in resulting split to take it in consideration.

ReliefIterations type: integer, default value: 0, value range: -2, Inf
number of iterations for all variants of Relief (0=DataSize, -1=ln(DataSize) -2=sqrt(DataSize)).

numAttrProportionEqual type: numeric, default value: 0.04, value range: 0, 1
used in ramp function, proportion of numerical attribute’s range to consider two values equal.

numAttrProportionDifferent type: numeric, default value: 0.1, value range: 0, 1
used in ramp function, proportion of numerical attribute’s range to consider two values differ-
ent.

kNearestEqual type: integer, default value: 10, value range: 0, Inf
number of neighbors to consider in equal k-nearest attribute evaluation.

kNearestExpRank type: integer, default value: 70, value range: 0, Inf
number of neighbors to consider in exponential rank distance attribute evaluation.

quotientExpRankDistance type: numeric, default value: 20, value range: 0, Inf
quotient in exponential rank distance attribute evaluation.

Decision/regression tree construction

There are several parameters controlling a construction of the tree model. Some are described
here, but also attribute evaluation, stop building, model, constructive induction, discretization, and
pruning options described in this document are applicable. Splits in trees are always binary, how-
ever, the option binaryEvaluation has influence on the feature selection for the split. Namely,
selecting the best feature for the split is done with the given value of binaryEvaluation. If
binaryEvaluation=FALSE, the features are first evaluated and the best one is finally binarized.
If binaryEvaluation=TRUE, the features are binarized before selection. In this case, a search for
the best binarization for all considered features is performed and the best binarizations found are
used for splits. The latter option is computationally more intensive, but typically does not produce
better trees.

selectionEstimator type: character, default value: "MDL", possible values: all from attrEval,
section classification
estimator for selection of attributes and binarization in classification.

helpCore 33

selectionEstimatorReg type: character, default value: "RReliefFexpRank", possible values: all
from attrEval, section regression
estimator for selection of attributes and binarization in regression.

minReliefEstimate type: numeric, default value: 0, value range: -1, 1
for all variants of Relief attribute estimator: the minimal evaluation of attribute to consider the
attribute useful in further processing.

minInstanceWeight type: numeric, default value: 0.05, value range: 0, 1
minimal weight of an instance to use it further in splitting.

Stop tree building

During tree construction the node is recursively split, until certain condition is fulfilled.

minNodeWeightTree type: numeric, default value: 5, value range: 0, Inf
minimal number of instances (weight) of a leaf in the decision or regression tree model.

minNodeWeightRF type: numeric, default value: 2, value range: 0, Inf
minimal number of instances (weight) of a leaf in the random forest tree.

relMinNodeWeight type: numeric, default value: 0, value range: 0, 1
minimal proportion of training instances in a tree node to split it further.

majorClassProportion type: numeric, default value: 1, value range: 0, 1
proportion of majority class in a classification tree node to stop splitting it.

rootStdDevProportion type: numeric, default value: 0, value range: 0, 1
proportion of root’s standard deviation in a regression tree node to stop splitting it.

Models in the tree leaves

In leaves of the tree model there can be various prediction models controlling prediction. For exam-
ple instead of classification with majority of class values one can use naive Bayes in classification,
or a linear model in regression, thereby expanding expressive power of the tree model.

modelType type: integer, default value: 1, value range: 1, 4
type of models used in classification tree leaves (1=majority class, 2=k-nearest neighbors,
3=k-nearest neighbors with kernel, 4=naive Bayes).

modelTypeReg type: integer, default value: 5, value range: 1, 8
type of models used in regression tree leaves (1=mean predicted value, 2=median predicted
value, 3=linear by MSE, 4=linear by MDL, 5=linear reduced as in M5, 6=kNN, 7=Gaussian
kernel regression, 8=locally weighted linear regression).

kInNN type: integer, default value: 10, value range: 0, Inf
number of neighbors in k-nearest neighbors models (0=all).

nnKernelWidth type: numeric, default value: 2, value range: 0, Inf
kernel width in k-nearest neighbors models.

bayesDiscretization type: integer, default value: 2, value range: 1, 3
type of discretization for naive Bayesian models (1=greedy with selection estimator, 2=equal
frequency, 3=equal width).

discretizationIntervals type: integer, default value: 4, value range: 1, Inf
number of intervals in equal frequency or equal width discretizations.

34 helpCore

Constructive induction aka. feature construction

The expressive power of tree models can be increased by incorporating additional types of splits.
Operator based constructive induction is implemented in both classification and regression. The best
construct is searched with beam search. At each step new constructs are evaluated with selected
feature evaluation measure. With different types of operators one can control expressions in the
interior tree nodes.

constructionMode type: integer, default value: 15, value range: 1, 15
sum of constructive operators (1=single attributes, 2=conjunction, 4=addition, 8=multiplica-
tion); all=1+2+4+8=15

constructionDepth type: integer, default value: 0, value range: 0, Inf
maximal depth of the tree for constructive induction (0=do not do construction, 1=only at root,
...).

noCachedInNode type: integer, default value: 5, value range: 0, Inf
number of cached attributes in each node where construction was performed.

constructionEstimator type: character, default value: "MDL", possible values: all from attrEval,
section classification
estimator for constructive induction in classification.

constructionEstimatorReg type: character, default value: "RReliefFexpRank", possible values:
all from attrEval, section regression
estimator for constructive induction in regression.

beamSize type: integer, default value: 20, value range: 1, Inf
size of the beam in search for best feature in constructive induction.

maxConstructSize type: integer, default value: 3, value range: 1, Inf
maximal size of constructs in constructive induction.

Attribute discretization and binarization

Some algorithms cannot deal with numeric attributes directly, so we have to discretize them. Also
the tree models use binary splits in nodes. The discretization algorithm evaluates split candidates
and forms intervals of values. Note that setting discretizationSample=1 will force random se-
lection of splitting point, which will speed-up the algorithm and may be perfectly acceptable for
random forest ensembles.

CORElearn builds binary trees so multivalued discrete attributes have to be binarized i.e., values
have to be split into twoa subset, one going left and the other going right in a node. The method used
depends on the parameters and the number of attribute values. Possible methods are exhaustive (if
the number of attribute values is less or equal maxValues4Exhaustive), greedy ((if the number of
attribute values is less or equal maxValues4Greedy) and random ((if the number of attribute values
is more than maxValues4Exhaustive). Setting maxValues4Greedy=2 will always randomly selet
splitting point.

discretizationLookahead type: integer, default value: 3, value range: 0, Inf
Discretization is performed with a greedy algorithm which adds a new boundary, until there
is no improvement in evaluation function for discretizationLookahead number of times
(0=try all possibilities). Candidate boundaries are chosen from a random sample of bound-
aries, whose size is discretizationSample.

helpCore 35

discretizationSample type: integer, default value: 50, value range: 0, Inf
Maximal number of points to try discretization (0=all sensible). For ReliefF-type measures,
binarization of numeric features is performed with discretizationSample randomly chosen
splits. For other measures, the split is searched among all possible splits.

maxValues4Exhaustive type: integer, default value: 7, value range: 2, Inf
Maximal number of values of a discrete attribute to try finding split exhaustively. If the at-
tribute has more values the split will be searched greedily or selected ranomly based on the
value of parameter maxValues4Greedy.

maxValues4Greedy type: integer, default value: 30, value range: 2, Inf
Maximal number of values of a discrete attribute to try finding split greedily. If the attribute
has more values the split will be selected ranomly. Setting this parameter to 2 will force
random but balanced selection of splits which may be acceptable for random forest ensembles
and will greatly speed-up tree construction.

Tree pruning

After the tree is constructed, to reduce noise it is beneficial to prune it.

selectedPruner type: integer, default value: 1, value range: 0, 1
decision tree pruning method used (0=none, 1=with m-estimate).

selectedPrunerReg type: integer, default value: 2, value range: 0, 4
regression tree pruning method used (0=none, 1=MDL, 2=with m-estimate, 3=as in M5, 4=er-
ror complexity as in CART (fixed alpha)).

mdlModelPrecision type: numeric, default value: 0.1, value range: 0, Inf
precision of model coefficients in MDL tree pruning.

mdlErrorPrecision type: numeric, default value: 0.01, value range: 0, Inf
precision of errors in MDL tree pruning.

mEstPruning type: numeric, default value: 2, value range: 0, Inf
m-estimate for pruning with m-estimate.

alphaErrorComplexity type: numeric, default value: 0, value range: 0, Inf
alpha for error complexity pruning.

Prediction

For some models (decision trees, random forests, naive Bayes, and regression trees) one can smoothe
the output predictions. In classification models output probabilities are smoothed and in case of re-
gression prediction value is smoothed.

smoothingType type: integer, default value: 0, value range: 0, 4
default value 0 means no smoothing (in case classification one gets relative frequencies), value
1 stands for additive smoothing, 2 is pure Laplace’s smoothing, 3 is m-estimate smoothing,
and 4 means Zadrozny-Elkan type of m-estimate smoothing where smoothingValue is inter-
preted as m · pc and pc is the prior probability of the least probable class value; for regression
smoothingType has no effect, as the smoothing is controlled solely by smoothingValue.

smoothingValue type: numeric, default value: 0, value range: 0, Inf
additional parameter for some sorts of smoothing; in classification it is needed for additive,
m-estimate, and Zadrozny-Elkan type of smoothing; in case of regression trees 0 means no
smoothing and values larger than 0 change prediction value towards the prediction of the
models in ascendant nodes.

36 helpCore

Random forests

Random forest is quite complex model, whose construction one can control with several parameters.
Momentarily only classification version of the algorithm is implemented. Besides parameters in
this section one can apply majority of parameters for control of decision trees (except constructive
induction and tree pruning).

rfNoTrees type: integer, default value: 100, value range: 1, Inf
number of trees in the random forest.

rfNoSelAttr type: integer, default value: 0, value range: -2, Inf
number of randomly selected attributes in the node (0=sqrt(numOfAttr), -1=log2(numOfAttr)+1,
-2=all).

rfMultipleEst type: logical, default value: FALSE
use multiple attribute estimators in the forest? If TRUE the algorithm uses some preselected
attribute evaluation measures on different trees.

rfkNearestEqual type: integer, default value: 30, value range: 0, Inf
number of nearest intances for weighted random forest classification (0=no weighing).

rfPropWeightedTrees type: numeric, default value: 0, value range: 0, 1
Proportion of trees where attribute probabilities are weighted with their quality. As attribute
weighting might reduce the variance between the models, the default value switches the
weighing off.

rfPredictClass type: logical, default value: FALSE
shall individual trees predict with majority class (otherwise with class distribution).

General tree ensembles

In the same manner as random forests more general tree ensembles can be constructed. Additional
options control sampling, tree size and regularization.

rfSampleProp type: numeric, default value: 0, value range: 0, 1
proportion of the training set to be used in learning (0=bootstrap replication).

rfNoTerminals type: integer, default value: 0, value range: 0, Inf
maximal number of leaves in each tree (0=build the whole tree).

rfRegType type: integer, default value: 2, value range: 0, 2
type of regularization (0=no regularization, 1=global regularization, 2=local regularization).

rfRegLambda type: numeric, default value: 0, value range: 0, Inf
regularization parameter lambda (0=no regularization).

Read data directly from files

In case of very large data sets it is useful to bypass R and read data directly from files as the
standalone learning system CORElearn does. Supported file formats are C4.5, M5, and native
format of CORElearn. See documentation at http://lkm.fri.uni-lj.si/rmarko/software/.

domainName type: character,
name of a problem to read from files with suffixes .dsc, .dat, .names, .data, .cm, and .costs

dataDirectory type: character,
folder where data files are stored.

http://lkm.fri.uni-lj.si/rmarko/software/

infoCore 37

NAstring type: character, default value: "?"
character string which represents missing and NA values in the data files.

Miscellaneous

maxThreads type: integer, default value: 0, value range: 0, Inf
maximal number of active threads (0=allow OpenMP to set its defaults).
As side effect, this parameter changes the number of active threads in all subsequent execution
(till maxThreads is set again).

Author(s)

Marko Robnik-Sikonja, Petr Savicky

References

B. Zadrozny, C. Elkan. Learning and making decisions when costs and probabilities are both un-
known. In Proceedings of the Seventh International Conference on Knowledge Discovery and Data
Mining, 2001.

See Also

CORElearn, CoreModel, predict.CoreModel, attrEval, ordEval, paramCoreIO.

infoCore Description of certain CORElearn parameters

Description

Depending on parameter what the function prints some information on CORElearn, for example
codes of available classification (or regression) attribute evaluation heuristics. For more complete
description of the parameters see helpCore.

Usage

infoCore(what=c("attrEval","attrEvalReg"))

Arguments

what Selects the info to be printed.

Details

Depending on the parameter what the function some information on CORElearn.

"attrEval" Prints codes of all available classification attribute evaluation heuristics. These codes
can be used as parameters for attribute evaluation methods in learning. It is internally used for
validation of parameters. For more complete information see attrEval.

38 modelEval

"attrEvalReg" prints codes of all available regression attribute evaluation heuristics. These codes
can be used as parameters for attribute evaluation methods in learning. It is internally used for
validation of parameters. For more complete information see attrEval.

Value

For what="attrEval" or "attrEvalReg" function returns vector of codes for all implemented
classification or regression attribute evaluation heuristics, respectively.

Author(s)

Marko Robnik-Sikonja

See Also

attrEval, helpCore, CoreModel.

Examples

estClass <- infoCore(what="attrEval")
print(estClass)
infoCore(what="attrEvalReg")

modelEval Statistical evaluation of predictions

Description

Using predictions of given model produced by predict.CoreModel and correct labels, computes
some statistics evaluating the quality of the model.

Usage

modelEval(model=NULL, correctClass, predictedClass,
predictedProb=NULL, costMatrix=NULL,
priorClProb = NULL, avgTrainPrediction = NULL, beta = 1)

Arguments

model The model structure as returned by CoreModel, or NULL if some other predic-
tions are evaluated.

correctClass A vector of correct class labels for classification problem and function values
for regression problem.

predictedClass A vector of predicted class labels for classification problem and function values
for regression problem.

predictedProb An optional matrix of predicted class probabilities for classification.

modelEval 39

costMatrix Optional cost matrix can provide nonuniform costs for classification problems.

priorClProb If model=NULL a vector of prior class probabilities shall be provided in case of
classification.

avgTrainPrediction

If model=NULL mean of prediction values on training set shall be provided in
case of regression.

beta For two class problems beta controls the relative importance of precision and
recall in F-measure.

Details

The function uses the model structure as returned by CoreModel, predictedClass and predictedProb
returned by predict.CoreModel. Predicted values are compared with true values and some statis-
tics are computed measuring the quality of predictions. In classification only one of the predictedClass
and predictedProb can be NULL (one of them is computed from the other under assumption that
class label is assigned to the most probable class). Some of the returned statistics are defined
only for two class problems, for which the confusion matrix specifying the number of instances of
true/predicted class is defined as follows,

true/predicted class positive negative
positive true positive (TP) false negative (FN)
negative false positive (FP) true negative (TN)

Optional cost matrix can provide nonuniform costs for classification problems. For regression
problem this parameter is ignored. The costs can be different from the ones used for building
the model in CoreModel and prediction with the model in predict.CoreModel. If no costs are
supplied, uniform costs are assumed. The format of the matrix is costMatrix(true_class,
predicted_class). By default a uniform costs are assumed, i.e., costMatrix(i, i) = 0, and
costMatrix(i, j) = 1, for i not equal to j. See the example below.

If a non-CORElearn model is evaluated, one should set model=NULL, and a vector of prior of class
probabilities priorClProb shall be provided in case of classification, and in case of regression
avgTrainPrediction shall be the mean of prediction values (estimated on a e.g., training set).

Value

For classification problem function returns list with the components

accuracy classification accuracy, for two class problems this would equal

accuracy =
TP + TN

TP+ FN+ FP + TN

averageCost average classification cost
informationScore

information score statistics measuring information contents in the predicted prob-
abilities

AUC Area under the ROC curve
predictionMatrix

matrix of miss-classifications also confusion matrix

40 modelEval

sensitivity sensitivity for two class problems (also called accuracy of the positive class, i.e.,
acc+, or true positive rate),

rmsensitivity =
TP

TP + FN

specificity specificity for two class problems (also called accuracy of the negative class,
i.e., acc-, or true negative rate),

specificity =
TN

TN+ FP

brierScore Brier score of predicted probabilities (the original Brier’s definition which scores
all the classes not only the correct one)

kappa Cohen’s kappa statistics measuring randomness of the predictions; for perfect
predictions kappa=1, for completely random predictions kappa=0

precision precision for two class problems

precision =
TP

TP + FP

recall recall for two class problems (the same as sensitivity)

F-measure F-measure giving a weighted score of precision and recall for two class problems

F =
(1 + β2) · recall · precision
β2 · recall + precision

G-mean geometric mean of positive and negative accuracy,

G =
√
senstivity · specificity

KS Kolmogorov-Smirnov statistics defined for binary classification problems, re-
ports the distance between the probability distributions of positive class for pos-
itive and negative instances, see (Hand, 2005), value 0 means no separation, and
value 1 means perfect separation,

KS = max
t

|TPR(t)− FPR(t)|

see definitions of TPR and FPR below

TPR true positive rate TPR = TP
TP+FN at maximal value of KS statistics

FPR false positive rate FPR = FP
FP+TN at maximal value of KS statistics

For regression problem the returned list has components

MSE square root of Mean Squared Error

RMSE Relative Mean Squared Error

MAE Mean Absolute Error

RMAE Relative Mean Absolute Error

noEqualRows 41

Author(s)

Marko Robnik-Sikonja

References

Igor Kononenko, Matjaz Kukar: Machine Learning and Data Mining: Introduction to Principles
and Algorithms. Horwood, 2007

David J.Hand: Good practice in retail credit scorecard assesment. Journal of Operational Research
Society, 56:1109-1117, 2005)

See Also

CORElearn, CoreModel, predict.CoreModel.

Examples

use iris data

build random forests model with certain parameters
model <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

prediction with node distribution
pred <- predict(model, iris, rfPredictClass=FALSE)

Model evaluation
mEval <- modelEval(model, iris[["Species"]], pred$class, pred$prob)
print(mEval)

use nonuniform cost matrix
noClasses <- length(levels(iris[["Species"]]))
costMatrix <- 1 - diag(noClasses)
costMatrix[3,1] <- costMatrix[3,2] <- 5 # assume class 3 is more valuable
mEvalCost <- modelEval(model, iris[["Species"]], pred$class, pred$prob,

costMatrix=costMatrix)
print(mEvalCost)

destroyModels(model) # clean up

noEqualRows Number of equal rows in two data sets

Description

Counts number of equal rows in two data sets. The two data sets shall have equal number of
columns.

42 ordDataGen

Usage

noEqualRows(data1, data2, tolerance=1e-5, countOnce=TRUE)

Arguments

data1 The first data set.

data2 The second data set.

tolerance Tolerated difference between two rows.

countOnce Shall each equal row in data1 be counted just once, or number of rows it is equal
to in data2.

Details

Rows are compared using column-wise comparisons. The sum of differences up to a given tolerance
are tolerated.

Value

Integer value giving the count of equal instances.

Author(s)

Marko Robnik-Sikonja

See Also

CORElearn.

Examples

uses two randomly generated data sets
set.seed(12345)
d1 <- classDataGen(100)
d2 <- classDataGen(100)
noEqualRows(d1, d2, tolerance=1e-4)

ordDataGen Artificial data for testing ordEval algorithms

Description

The generator produces ordinal data simulating different profiles of attributes: basic, performance,
excitement and irrelevant.

Usage

ordDataGen(noInst, classNoise=0)

ordEval 43

Arguments

noInst Number of instances to generate.

classNoise Proportion of randomly determined values in the class variable.

Details

Problem is described by six important and two irrelevant features. The important features corre-
spond to different feature types from the marketing theory: two basic features (Bweak and Bstrong),
two performance features (Pweak and Pstrong), two excitement features (Eweak and Estrong), and
two irrelevant features (Iuniform and Inormal). The values of all features are randomly generated
integer values from 1 to 5, indicating for example score assigned to each of the features by the sur-
vey’s respondent. The dependent variable for each instance (class) is the sum of its features’ effects,
which we scale to the uniform distribution of integers 1-5, indicating, for example, an overall score
assigned by the respondent.

C = bw(Bweak) + bs(Bstrong) + pw(Pweak) + ps(Pstrong) + ew(Eweak) + es(Estrong)

Value

The method returns a data.frame with noInst rows and 9 columns. Range of values of the at-
tributes and class are integers in [1,5]

Author(s)

Marko Robnik-Sikonja

See Also

classDataGen, regDataGen, ordEval,

Examples

#prepare a data set
dat <- ordDataGen(200)

evaluate ordered features with ordEval
est <- ordEval(class ~ ., dat, ordEvalNoRandomNormalizers=100)
print(est)
plot(est)

ordEval Evaluation of ordered attributes

Description

The method evaluates the quality of ordered attributes specified by the formula with ordEval algo-
rithm.

44 ordEval

Usage

ordEval(formula, data, file=NULL, rndFile=NULL,
variant=c("allNear","attrDist1","classDist1"), ...)

Arguments

formula Either a formula specifying the attributes to be evaluated and the target variable,
or a name of target variable, or an index of target variable.

data Data frame with evaluation data.

file Name of file where evaluation results will be written to.

rndFile Name of file where evaluation of random normalizing attributes will be written
to.

variant Name of the variant of ordEval algorithm. Can be any of "allNear", "attrDist1",
or "classDist1".

... Other options specific to ordEval or common to other context-sensitive evalua-
tion methods (e.g., ReliefF).

Details

The parameter formula can be interpreted in three ways, where the formula interface is the most
elegant one, but inefficient and inappropriate for large data sets. See also examples below. As
formula one can specify:

an object of class formula used as a mechanism to select features (attributes) and prediction vari-
able (class). Only simple terms can be used and interaction expressed in formula syntax are
not supported. The simplest way is to specify just response variable: class ~ .. In this case
all other attributes in the data set are evaluated. Note that formula interface is not appropriate
for data sets with large number of variables.

a character vector specifying the name of target variable, all the other columns in data frame data
are used as predictors.

an integer specifying the index of of target variable in data frame data, all the other columns are
used as predictors.

In the data frame data take care to supply the ordinal data as factors and to provide equal levels for
them (this is not necessary what one gets with read.table). See example below.

The output can be optionally written to files file and rndFile, in a format used by visualization
methods in plotOrdEval.

The variant of the algorithm actually used is controlled with variant parameter which can have
values "allNear", "attrDist1", and "classDist1". The default value is "allNear" which takes all near-
est neighbors into account in evaluation of attributes. Variant "attrDist1" takes only neighbors with
attribute value at most 1 different from current case into account (for each attribute separately). This
makes sense when we want to see the thresholds of reinforcement, and therefore observe just small
change up or down (it makes sense to combine this with equalUpDown=TRUE in plot.ordEval
function). The "classDist1" variant takes only neighbors with class value at most 1 different from
current case into account. This makes sense if we want to observe strictly small changes in up-
ward/downward reinforcement and has little effect in practical applications.

ordEval 45

There are some additional parameters (note . . .) some of which are common with other context-
sensitive evaluation methods (e.g., ReliefF). Their list of common parameters is available in helpCore
(see subsection on attribute evaluation therein). The parameters specific to ordEval are:

ordEvalNoRandomNormalizers type: integer, default value: 0, value range: 0, Inf,
number of randomly shuffled attributes for normalization of each attribute (0=no normaliza-
tion). This parameter should be set to a reasonably high value (e.g., 200) in order to produce re-
liable confidence intervals with plot.ordEval. The parameters ordEvalBootstrapNormalize
and ordEvalNormalizingPercentile only make sense if this parameter is larger than 0.

ordEvalBootstrapNormalize type: logical, default value: FALSE
are features used for normalization constructed with bootstrap sampling or random permuta-
tion.

ordEvalNormalizingPercentile type: numeric, default value: 0.025, value range: 0, 0.5
percentile defines the length of confidence interval obtained with random normalization. Per-
centile t forms interval by taking the n · t and n(1 − t) random evaluation as the confidence
interval boundaries, thereby forming 100(1 − 2t)% confidence interval (t=0.025 gives 95%
confidence interval). The value n is set by ordEvalNoRandomNormalizers parameter.

attrWeights type: character,
a character vector representing a list of attribute weights in the ordEval distance measure.

Evaluation of attributes without specifics of ordered attributes is covered in function attrEval.

Value

The method returns a list with following components:

reinfPosAV a matrix of positive reinforcement for attributes’ values,

reinfNegAV a matrix of negative reinforcement for attributes’ values,

anchorAV a matrix of anchoring for attributes’ values,

noAV a matrix containing count for each value of each attribute,

reinfPosAttr a vector of positive reinforcement for attributes,

reinfNegAttr a matrix of negative reinforcement for attributes,

anchorAttr a matrix of anchoring for attributes,

noAVattr a vector containing count of valid values of each attribute,

rndReinfPosAV a three dimensional array of statistics for random normalizing attributes’ positive
reinforcement for attributes’ values,

rndReinfPosAV a three dimensional array of statistics for random normalizing attributes’ nega-
tive reinforcement for attributes’ values,

rndAnchorAV a three dimensional array of statistics for random normalizing attributes’ anchor-
ing for attributes’ values,

rndReinfPosAttr

a three dimensional array of statistics for random normalizing attributes’ positive
reinforcement for attributes,

rndReinfPosAttr

a three dimensional array of statistics for random normalizing attributes’ nega-
tive reinforcement for attributes,

46 ordEval

rndAnchorAttr a three dimensional array of statistics for random normalizing attributes’ anchor-
ing for attributes.

attrNames the names of attributes

valueNames the values of attributes

noAttr number of attributes

ordVal maximal number of attribute values

variant the variant of the algorithm used

file the file to store the results

rndFile the file to store random normalizations

The statistics used are median, 1st quartile, 3rd quartile, low and high percentile selected by
ordEvalNormalizingPercentile, mean, standard deviation, and expected probability according
to value distribution. With these statistics we can visualize significance of reinforcements using
adapted box and whiskers plot.

Author(s)

Marko Robnik-Sikonja

References

Marko Robnik-Sikonja, Koen Vanhoof: Evaluation of ordinal attributes at value level. Knowledge
Discovery and Data Mining, 14:225-243, 2007

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Some of the references are available also from http://lkm.fri.uni-lj.si/rmarko/papers/

See Also

plot.ordEval, CORElearn, CoreModel, helpCore, infoCore.

Examples

#prepare a data set
dat <- ordDataGen(200)

evaluate ordered features with ordEval
est <- ordEval(class ~ ., dat, ordEvalNoRandomNormalizers=100)
print(est)
printOrdEval(est)
plot(est)

http://lkm.fri.uni-lj.si/rmarko/papers/

paramCoreIO 47

paramCoreIO Input/output of parameters from/to file

Description

All the parameters of the given model are written directly to file, or read from file into model.

Usage

paramCoreIO(model, fileName, io=c("read","write"))

Arguments

model The model structure as returned by CoreModel.

fileName Name of the parameter file.

io Controls weather the parameters will be read or written.

Details

The function uses the model structure as returned by CoreModel and reads or writes all its param-
eters from/to file. If parameter io="read" parameters are read from file filename. If parameter
io="write" parameters are written to file filename.

Value

Returns invisible list with parameters passed to C function: list(modelID, filename, io.

Author(s)

Marko Robnik-Sikonja

See Also

CORElearn, helpCore.

Examples

use iris data
build random forests model with certain parameters
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=50, maxThreads=1)

writes all the used parameters to file
paramCoreIO(modelRF, "parameters.par", io="write")
and reads them back into the model
paramCoreIO(modelRF, "parameters.par", io="read")

48 plot.CoreModel

clean up for the sake of R package checks
file.remove("parameters.par")

destroyModels(modelRF) # clean up

plot.CoreModel Visualization of CoreModel models

Description

The method plot visualizes the models returned by CoreModel() function or summaries obtained
by applying these models to data. Different plots can be produced depending on the type of the
model.

Usage

S3 method for class 'CoreModel'
plot(x, trainSet, rfGraphType=c("attrEval", "outliers", "scaling",

"prototypes", "attrEvalCluster"), clustering=NULL, ...)

Arguments

x The model structure as returned by CoreModel.

trainSet The data frame containing training data which produced the model x.

rfGraphType The type of the graph to produce for random forest models. See details.

clustering The clustering of the training instances used in some model types. See details.

... Other options controlling graphical output passed to additional graphical func-
tions.

Details

The output of function CoreModel is visualized. Depending on the model type, different visualiza-
tions are produced. Currently, classification tree, regression tree, and random forests are supported
(models "tree", "regTree", "rf", and "rfNear").

For classification and regression trees (models "tree" and "regTree") the visualization produces a
graph representing structure of classification and regression tree, respectively. This process exploits
graphical capabilities of rpart.plot package. Internal structures of CoreModel are converted to
rpart.object and then visualized by calling rpart.plot using default parameters. Any additional
parameters are passed on to this function. For further control use the getRpartModel function and
call the function rpart.plot or plot.rpart with different parameters. Note that rpart.plot can
only display a single value in a leaf, which is not appropriate for model trees using e.g., linear
regression in the leaves. For these cases function display is a better alternative.

For random forest models (models "rf" and "rfNear") different types of visualizations can be pro-
duced depending on the graphType parameter:

plot.CoreModel 49

• "attrEval" the attributes are evaluated with random forest model and the importance scores
are then visualized. For details see rfAttrEval.

• "attrEvalClustering" similarly to the "attrEval" the attributes are evaluated with ran-
dom forest model and the importance scores are then visualized, but the importance scores are
generated for each cluster separately. The parameter clustering provides clustering infor-
mation on the trainSet. If clustering parameter is set to NULL, the class values are used
as clustering information and visualization of attribute importance for each class separately is
generated. For details see rfAttrEvalClustering.

• "outliers" the random forest proximity measure of training instances in trainSet is visu-
alized and outliers for each class separately can be detected. For details see rfProximity and
rfOutliers.

• "prototypes" typical instances are found based on predicted class probabilities and their
values are visualized (see classPrototypes).

• "scaling" returns a scaling plot of training instances in a two dimensional space using
random forest based proximity as the distance (see rfProximity and a scaling function
cmdscale).

Value

The method returns no value.

Author(s)

John Adeyanju Alao (initial implementation) and Marko Robnik-Sikonja (integration, improve-
ments)

References

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

See Also

CoreModel, rfProximity, pam, rfClustering, rfAttrEvalClustering, rfOutliers, classPrototypes,
cmdscale

Examples

decision tree
dataset <- iris
md <- CoreModel(Species ~ ., dataset, model="tree")
plot(md, dataset) # additional parameters are passed directly to rpart.plot

Additional visualizations can be obtained by explicit conversion to rpart.object
#rpm <- getRpartModel(md,dataset)
and than setting graphical parameters in plot.rpart and text.rpart
#require(rpart)
E.g., set angle to tan(0.5)=45 (degrees) and length of branches at least 5,
try to make a dendrogram more compact
#plot(rpm, branch=0.5, minbranch=5, compress=TRUE)

50 plot.ordEval

#(pretty=0) full names of attributes, numbers to 3 decimals,
#text(rpm, pretty=0, digits=3)

destroyModels(md) # clean up

regression tree
dataset <- CO2
mdr <- CoreModel(uptake ~ ., dataset, model="regTree")
plot(mdr, dataset)
destroyModels(mdr) # clean up

#random forests
dataset <- iris
mdRF <- CoreModel(Species ~ ., dataset, model="rf", rfNoTrees=30, maxThreads=1)
plot(mdRF, dataset, rfGraphType="attrEval")
plot(mdRF, dataset, rfGraphType="outliers")
plot(mdRF, dataset, rfGraphType="scaling")
plot(mdRF, dataset, rfGraphType="prototypes")
plot(mdRF, dataset, rfGraphType="attrEvalCluster", clustering=NULL)
destroyModels(mdRF) # clean up

plot.ordEval Visualization of ordEval results

Description

The method plot visualizes the results of ordEval algorithm with an adapted box-and-whiskers
plots. The method printOrdEval prints summary of the results in a text format.

Usage

plotOrdEval(file, rndFile, ...)

S3 method for class 'ordEval'
plot(x, graphType=c("avBar", "attrBar", "avSlope"), ...)

printOrdEval(x)

Arguments

x The object containing results of ordEval algorithm obtained by calling ordEval.
If this object is not given, it has to be constructed from files file and rndFile.

file Name of file where evaluation results of ordEval algorithm were written to.
rndFile Name of file where evaluation of random normalizing attributes by ordEval al-

gorithm were written to.
graphType The type of the graph to produce. Can be any of "avBar", "attrBar", "avSlope".
... Other options controlling graphical output, used by specific graphical methods.

See details.

plot.ordEval 51

Details

The output of function ordEval either returned directly or stored in files file and rndFile is read
and visualized. The type of graph produced is controlled by graphType parameter:

• avBar the positive and negative reinforcement of each value of each attribute is visualized
as the length of the bar. For each value also a normalizing modified box and whiskers plot
is produced above it, showing the confidence interval of the same attribute value under the
assumption that the attribute contains no information. If the length of the bar is outside the
normalizing whiskers, this is a statistically significant indication that the value is important.

• attrBar the positive and negative reinforcement for each attribute is visualized as the length
of the bar. This reinforcement is weighted sum of contributions of individual values visualized
with avBar graph type.

• avSlope the positive and negative reinforcement of each value of each attribute is visualized
as the slope of the line segment connecting consequent values

The avBar and avSlope produce several graphs (one for each attribute). In order to see them all
on an interactive device use devAskNewPage. On some platforms or in RStudio environment the
graphical window stores the history and one can browse through recent pages. Alternatively use
any of non-interactive devices such as pdf or postscript. Some support for opening and handling
of these devices is provided by function preparePlot. The user should take care to call dev.off
after completion of the operations.

There are some additional optional parameters . . . which are important to all or for some graph
types.

• ciType The type of the confidence interval in "avBar" and "attrBar" graph types. Can be
"two.sided", "upper", "lower", or "none". Together with ordEvalNormalizingPercentile
parameter in ordEval, ciType, ciDisplay, and ciDecorate controls the type, length and dis-
play of confidence intervals for each value.

• ciDisplay The way how confidence intervals are displayed. Can be "box" or "color". The
value "box" displays confidence interval as box and whiskers plot above the actual value with
whiskers representing confidence percentiles. The value "color" displays only the upper
limit of confidence interval, namely the value (represented with a length of the bar) beyond
the confidence interval is displayed with more intensive color or shade.

• ciDecorate controls if the reinforcement factors stretching outside the confidence intervals
of possible random effects are decorated by being circled with an ellipse. The default value
NULL means that there are no decorations, other values are interpreted as colors in the func-
tion draw.elipse, e.g., ciDecorate="red" draws red ellipses around statisticaly significant
reinforcemnets.

• equalUpDown a boolean specifying if upward and downward reinforcement of the same value
are to be displayed side by side on the same level; it usually makes sense to set this param-
eter to TRUE when specifying a single value differences by setting variant="attrDist1" in
ordEval function.

• graphTitle specifies text to incorporate into the title.

• attrIdx displays plot for a single attribute with specified index.

• xlabel label of lower horizontal axis.

• ylabLeft label of the left-hand vertical axis.

52 plot.ordEval

• ylabRight label of the right-hand vertical axis.

• colors a vector with four colors specifying colors of reinforcement bars for down, down_beyond,
up, and up_beyond, respectively. If set to NULL this produces black and white graph with
shades of gray. The colors down_beyond and up_beyond depict the confidence interval if pa-
rameter ciDisplay="color".
The default values are colors=c("green","lightgreen","blue","lightblue").

Value

The method returns no value.

Author(s)

Marko Robnik-Sikonja

References

Marko Robnik-Sikonja, Koen Vanhoof: Evaluation of ordinal attributes at value level. Knowledge
Discovery and Data Mining, 14:225-243, 2007

Marko Robnik-Sikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RRe-
liefF. Machine Learning Journal, 53:23-69, 2003

Some of the references are available also from http://lkm.fri.uni-lj.si/rmarko/papers/

See Also

ordEval, helpCore, preparePlot, CORElearn

Examples

prepare a data set
dat <- ordDataGen(200)

evaluate ordered features with ordEval
oe <- ordEval(class ~ ., dat, ordEvalNoRandomNormalizers=200)
plot(oe)
printOrdEval(oe)

the same effect we achieve by storing results to files
tmp <- ordEval(class ~ ., dat, file="profiles.oe",

rndFile="profiles.oer", ordEvalNoRandomNormalizers=200)
plotOrdEval(file="profiles.oe", rndFile="profiles.oer",

graphType="attrBar")
clean up for the sake of R package checks
file.remove("profiles.oe")
file.remove("profiles.oer")

http://lkm.fri.uni-lj.si/rmarko/papers/

predict.CoreModel 53

predict.CoreModel Prediction using constructed model

Description

Using a previously built model and new data, predicts the class value and probabilities for classifi-
cation problem and function value for regression problem.

Usage

S3 method for class 'CoreModel'
predict(object, newdata, ..., costMatrix=NULL,

type=c("both","class","probability"))

Arguments

object The model structure as returned by CoreModel.

newdata Data frame with fresh data.

costMatrix Optional cost matrix can provide nonuniform costs for classification problems.

type Controls what will be return value in case of classification.

... Other model dependent options for prediction. See helpCore.

Details

The function uses the object structure as returned by CoreModel and applies it on the data frame
newdata. The newdata must be transformable using the formula specified for building the model
(with dependent variable removed). If the dependent variable is present in newdata, it is ignored.

Optional cost matrix can provide nonuniform costs for classification problems. For regression prob-
lem this parameter is ignored. The costs can be different from the ones used for building the model
in CoreModel.

Value

For regression model a vector of predicted values for given input instances. For classification prob-
lem the parameter type controls what is returned. With default value "both" function returns a list
with two components class and probabilities containing predicted class values and probabil-
ities for all class values, respectively. With type set to "class" or "probability" the function
returns only the selected component as vector or matrix.

Author(s)

Marko Robnik-Sikonja, Petr Savicky

See Also

CORElearn, CoreModel, modelEval, helpCore, paramCoreIO.

54 preparePlot

Examples

use iris data set

build random forests model with certain parameters
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,rfNoTrees=100)
print(modelRF)

prediction with node distribution
pred <- predict(modelRF, iris, rfPredictClass=FALSE, type="both")
print(pred)

destroyModels(modelRF) # clean up

preparePlot Prepare graphics device

Description

Based on provided fileName opens and sets appropriate graphical device: pdf, postscript, interac-
tive graphical window, or (only on windows) windows metafile,.

Usage

preparePlot(fileName="Rplot",...)

Arguments

fileName Name of the file to store the output to.
... Further parameters passed to device.

Details

The function opens the graphical output device based on fileName extension. The extensions .pdf,
.ps, .jpg, .bmp, .tif, .png, .tiff or none select pdf, postscript, jpeg, bmp, tiff,png, bitmap or a
default (interactive) graphical device.

On Windows also .emf extension is supported which opens win.metafile and creates vector graph-
ics in windows enhanced metafile format.

The extension .tiff opens bitmap device which produces bitmap via postscript device. Therefore
it requires Ghostscript to be installed and on the executable path.

Some sensible default values are passed to created devices, but further options can be passed via
....

Value

A plot device is opened and nothing is returned to the R interpreter.

regDataGen 55

Author(s)

Marko Robnik-Sikonja

See Also

CORElearn, plot.ordEval, pdf, postscript, jpeg, bmp, tiff, png, Devices

Examples

prepare a data set
dat <- ordDataGen(200)
evaluate ordered features with ordEval
oe <- ordEval(class ~ ., dat, ordEvalNoRandomNormalizers=200)

the folowing line if uncommented will create a separate
postscript file with given filename for each attribute
preparePlot("myGraph%03d.ps")

plot(oe)
dev.off()

regDataGen Artificial data for testing regression algorithms

Description

The generator produces regression data data with 4 discrete and 7 numeric attributes.

Usage

regDataGen(noInst, t1=0.8, t2=0.5, noise=0.1)

Arguments

noInst Number of instances to generate.

t1, t2 Parameters controlling the shape of the distribution.

noise Parameter controlling the amount of noise. If noise=0, there is no noise. If
noise = 1, then the level of the signal and noise are the same.

Details

The response variable is derived from x4, x5, x6 using two different functions. The choice de-
pends on a hidden variable, which determines weather the response value would follow a linear
dependency f = x4 − 2x5 + 3x6, or a nonlinear one f = cos(4πx4)(2x5 − 3x6).

Attributes a1, a2, x1, x2 carry some information on the hidden variables depending on parameters
t1, t2. Extreme values of the parameters are t1=0.5 and t2=1, when there is no information. On the

56 regDataGen

other hand, if t1=0 or t1=1 then each of the attributes a1, a2 carries full information. If t2=0, then
each of x1, x2 carries full information on the hidden variable.

The attributes x4, x5, x6 are available with a noise level depending on parameter noise. If noise=0,
there is no noise. If noise=1, then the level of the signal and noise are the same.

Value

Returns a data.frame with noInst rows and 11 columns. Range of values of the attributes and
response are

a1 0,1

a2 a,b,c,d

a3 0,1 (irrelevant)

a4 a,b,c,d (irrelevant)

x1 numeric (gaussian with different sd for each class)

x2 numeric (gaussian with different sd for each class)

x3 numeric (gaussian, irrelevant)

x4 numeric from [0,1]

x5 numeric from [0,1]

x6 numeric from [0,1]

response numeric

Author(s)

Petr Savicky

See Also

classDataGen,ordDataGen,CoreModel,

Examples

#prepare a regression data set
regData <-regDataGen(noInst=200)

build regression tree similar to CART
modelRT <- CoreModel(response ~ ., regData, model="regTree", modelTypeReg=1)
print(modelRT)

destroyModels(modelRT) # clean up

reliabilityPlot 57

reliabilityPlot Plots reliability plot of probabilities

Description

Given probability scores probScore and true probabilities trueProb the methods plots one against
the other using a selected boxing method which groups scores and probabilities to show calibration
of probabilities in given probability bands.

Usage

reliabilityPlot(probScore, trueProb, titleText="", boxing="equipotent",
noBins=10, classValue = 1, printWeight=FALSE)

Arguments

probScore A vector of predicted probabilities for a given class classValue.

trueProb A vector of true probabilities for a given classValue, should be of the same
length as probScore.

titleText The text of the graph title.

boxing One of "unique", "equidistant" or "equipotent", determines the grouping
of probabilities. See details below.

noBins The value of parameter depends on the parameter boxing and specifies the num-
ber of bins. See details below.

classValue A class value (factor) or an index of the class value (integer) for which reliability
plot is made.

printWeight A boolean specifying if box weights are to be printed.

Details

Depending on the specified boxing the probability scores are grouped in one of three possible ways

• "unique" each unique probability score forms its own box.

• "equidistant" forms noBins equally wide boxes.

• "equipotent" forms noBins boxes with equal number of scores in each box.

The parameter trueProb can represent either probabilities (in [0, 1] range, in most cases these will
be 0s or 1s), or the true class values from which the method will form 0 and 1 values corresponding
to probabilities for class value classValue.

Value

A function returns a graph containing reliability plot on a current graphical device.

Author(s)

Marko Robnik-Sikonja

58 rfAttrEval

See Also

CORElearn, calibrate.

Examples

generate data consisting from 3 parts:
one part for training, one part for calibration, one part for testing
train <-classDataGen(noInst=200)
cal <-classDataGen(noInst=200)
test <- classDataGen(noInst=200)

build random forests model with default parameters
modelRF <- CoreModel(class~., train, model="rf")
prediction of calibration and test set
predCal <- predict(modelRF, cal, rfPredictClass=FALSE)
predTest <- predict(modelRF, test, rfPredictClass=FALSE)
destroyModels(modelRF) # no longer needed, clean up

show reliability plot of uncalibrated test set
class1<-1
par(mfrow=c(1,2))
reliabilityPlot(predTest$prob[,class1], test$class,

titleText="Uncalibrated probabilities", classValue=class1)

calibrate for a chosen class1 and method using calibration set
calibration <- calibrate(cal$class, predCal$prob[,class1], class1=1,

method="isoReg", assumeProbabilities=TRUE)
calTestProbs <- applyCalibration(predTest$prob[,class1], calibration)
display calibrated probabilities
reliabilityPlot(calTestProbs, test$class,

titleText="Calibrated probabilities", classValue=class1)

rfAttrEval Attribute evaluation with random forest

Description

The method evaluates the quality of the features/attributes/dependent variables used in the given
random forest model.

Usage

rfAttrEval(model)
rfAttrEvalClustering(model, dataset, clustering=NULL)

rfAttrEval 59

Arguments

model The model of type rf or rfNear as returned by CoreModel.
dataset Training instances that produced random forest model.
clustering A clustering vector of dataset training instances used in model.

Details

The attributes are evaluated via provided random forest’s out-of-bag sets. Values for each attribute
in turn are randomly shuffled and classified with random forest. The difference between average
margin of non-shuffled and shuffled instances serves as a quality estimate of the attribute. The
function rfAttrEvalClustering uses a clustering of the training instances to produce importance
score of attributes for each cluster separately. If parameter clustering is set to NULL the actual class
values of the instances are used as clusters thereby producing the evaluation of attributes specific
for each of the class values.

Value

In case of rfAttrEval a vector of evaluations for the features in the order specified by the formula
used to generate the provided model. In case of rfAttrEvalClustering a matrix is returned, where
each row contains evaluations for one of the clusters.

Author(s)

Marko Robnik-Sikonja (thesis supervisor) and John Adeyanju Alao (as a part of his BSc thesis)

References

Marko Robnik-Sikonja: Improving Random Forests. In J.-F. Boulicaut et al.(Eds): ECML 2004,
LNAI 3210, Springer, Berlin, 2004, pp. 359-370 Available also from http://lkm.fri.uni-lj.
si/rmarko/papers/

Leo Breiman: Random Forests. Machine Learning Journal, 2001, 45, 5-32

See Also

CORElearn, CoreModel, attrEval.

Examples

build random forests model with certain parameters
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL", minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

rfAttrEval(modelRF) # feature evaluations

x <- rfAttrEval(modelRF) # feature evaluations for each class
print(x)

destroyModels(modelRF) # clean up

http://lkm.fri.uni-lj.si/rmarko/papers/
http://lkm.fri.uni-lj.si/rmarko/papers/

60 rfClustering

rfClustering Random forest based clustering

Description

Creates a clustering of random forest training instances. Random forest provides proximity of its
training instances based on their out-of-bag classification. This information is usually passed to
visualizations (e.g., scaling) and attribute importance measures.

Usage

rfClustering(model, noClusters=4)

Arguments

model a random forest model returned by CoreModel

noClusters number of clusters

Details

The method calls pam function for clustering, initializing its distance matrix with random forest
based similarity by calling rfProximity with argument model.

Value

An object of class pam representing the clustering (see ?pam.object for details), the most important
being a vector of cluster assignments (named cluster) to training instances used to generate the
model.

Author(s)

John Adeyanju Alao (as a part of his BSc thesis) and Marko Robnik-Sikonja (thesis supervisor)

References

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

See Also

CoreModel rfProximity pam

Examples

set<-iris
md<-CoreModel(Species ~ ., set, model="rf", rfNoTrees=30, maxThreads=1)
mdCluster<-rfClustering(md, 5)

destroyModels(md) # clean up

rfOOB 61

rfOOB Out-of-bag performance estimation for random forests

Description

The method returns internal out-of-bag performance evaluation for given random forests model.

Usage

rfOOB(model)

Arguments

model The model of type rf or rfNear as returned by CoreModel.

Details

The method returns random forest performance estimations obtained via its out-of-bag sets. The
performance measures returned are classification accuracy, average classification margin, and cor-
relation between trees in the forest. The classification margin is defined as the difference between
probability of the correct class and probability of the most probable incorrect class. The correlation
between models is estimated as the ratio between classification margin variance and variance of the
forest as defined in (Breiman, 2001).

Value

The list containing three performance measures computed with out-of-bag instances is returned:

accuracy the classification accuracy of the forest,

margin the average margin of classification with the forest,

correlation the correlation between trees in the forest.

Author(s)

Marko Robnik-Sikonja.

References

Leo Breiman: Random Forests. Machine Learning Journal, 2001, 45, 5-32

See Also

CORElearn, CoreModel.

62 rfOutliers

Examples

build random forests model with certain parameters
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL", minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

rfOOB(modelRF)

destroyModels(modelRF) # clean up

rfOutliers Random forest based outlier detection

Description

Based on random forest instance proximity measure detects training cases which are different to all
other cases.

Usage

rfOutliers(model, dataset)

Arguments

model a random forest model returned by CoreModel

dataset a training set used to generate the model

Details

Strangeness is defined using the random forest model via a proximity matrix (see rfProximity). If
the number is greater than 10, the case can be considered an outlier according to Breiman 2001.

Value

For each instance from a dataset the function returns a numeric score of its strangeness to other
cases.

Author(s)

John Adeyanju Alao (as a part of his BSc thesis) and Marko Robnik-Sikonja (thesis supervisor)

References

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

See Also

CoreModel, rfProximity, rfClustering.

rfProximity 63

Examples

#first create a random forest tree using CORElearn
dataset <- iris
md <- CoreModel(Species ~ ., dataset, model="rf", rfNoTrees=30,

maxThreads=1)
outliers <- rfOutliers(md, dataset)
plot(abs(outliers))
#for a nicer display try
plot(md, dataset, rfGraphType="outliers")

destroyModels(md) # clean up

rfProximity A random forest based proximity function

Description

Random forest computes similarity between instances with classification of out-of-bag instances. If
two out-of-bag cases are classified in the same tree leaf the proximity between them is incremented.

Usage

rfProximity(model, outProximity=TRUE)

Arguments

model a CORElearn model of type random forest.

outProximity if TRUE, function returns a proximity matrix, else it returns a distance matrix.

Details

A proximity is transformed into distance with expression distance=sqrt(1-proximity).

Value

Function returns an M by M matrix where M is the number of training instances. Returned matrix
is used as an input to other function (see rfOutliers and rfClustering).

Author(s)

John Adeyanju Alao (as a part of his BSc thesis) and Marko Robnik-Sikonja (thesis supervisor)

References

Leo Breiman: Random Forests. Machine Learning Journal, 45:5-32, 2001

64 saveRF

See Also

CoreModel, rfOutliers, cmdscale, rfClustering.

Examples

md <- CoreModel(Species ~ ., iris, model="rf", rfNoTrees=30, maxThreads=1)
pr <- rfProximity(md, outProximity=TRUE)
visualization
require(lattice)
levelplot(pr)

destroyModels(md) # clean up

saveRF Saves/loads random forests model to/from file

Description

saveRF: the internal structure of given random forests model is saved to file. loadRF: the internal
structure of random forests model is loaded from given file and a model is created and returned.

Usage

saveRF(model, fileName)
loadRF(fileName)

Arguments

model The model structure as returned by CoreModel.

fileName Name of the file to save/load the model to/from.

Details

The function saveRF saves the internal structure of given random forests model to file. The struc-
tures from C++ code are stored to the file with specified file, while internal structures from R are
stored to file named fileName.Rda. The model must be a valid structure returned by CoreModel.

The function loadRF loads the internal structure of random forests saved in a specified files and
returns access to it.

Value

saveRF invisibly returns some debugging information, while loadRF returns a loaded model as a
list, similarly to CoreModel.

saveRF 65

Author(s)

Marko Robnik-Sikonja

See Also

CORElearn, CoreModel.

Examples

use iris data set

build random forests model with certain parameters
modelRF <- CoreModel(Species ~ ., iris, model="rf",

selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)

print(modelRF)

prediction with node distribution
pred <- predict(modelRF, iris, rfPredictClass=FALSE, type="both")
print(pred)

saves the random forests model to file
saveRF(modelRF, "tempRF.txt")

restore the model to another model
loadedRF = loadRF("tempRF.txt")

prediction should be the same
predLoaded <- predict(loadedRF, iris, rfPredictClass=FALSE, type="both")
print(predLoaded)
sum of differences should be zero subject to numeric imprecision
sum(pred$probabilities - predLoaded$probabilities)

cat("Are predicted classes of original and retrieved models equal? ",
all(pred$class == predLoaded$class), "\n")

cat("Are predicted probabilities of original and retrieved model equal? ",
all(pred$probabilities == predLoaded$probabilities), "\n")

clean up the models when no longer needed
destroyModels(modelRF)
destroyModels(loadedRF)

clean up for the sake of R package checks
file.remove("tempRF.txt")
file.remove("tempRF.txt.Rda")

66 testCore

testCore Verification of the CORElearn installation

Description

Performs a partial check of the classification part of CORElearn.

Usage

testCoreClass(continue=TRUE)
testCoreAttrEval(continue=TRUE)
testCoreReg(continue=TRUE)
testCoreOrdEval(continue=TRUE)
testCoreNA(continue=TRUE)
testCoreRPORT(continue=TRUE)
testCoreRand(continue=TRUE)
allTests(continue=TRUE, timed=FALSE)

Arguments

continue Logical. Whether a warning or an error should be generated when a test fails.

timed Logical. Whether the time usage should be printed.

Details

Functions testCoreClass(), testCoreAttrEval(), testCoreReg() evaluate functions CoreModel(),
predict.CoreModel(), modelEval(), and attrEval() and perform a partial check of the ob-
tained results.

Function testNA() performs a test of consistency NA and NaN between R and CORElearn.

Functions testCoreRPORT() and testCoreRand() test, whether the R_PORT directive is defined in
C code and whether R random number generator is used. These tests are mostly used for debugging.

Function allTests() calls all the above functions and prints a table of the results. If an error
is found, a more detailed information is printed and the continuation of the tests depends on the
argument continue.

Value

The functions have no output value. The result OK or FAILED is printed.

Author(s)

Marko Robnik-Sikonja, Petr Savicky

See Also

CORElearn.

versionCore 67

Examples

allTests() # run all tests and generate an error, if any of the tests fails

versionCore Package version

Description

Prints package version obtained from C code.

Usage

versionCore()

Arguments

None.

Details

The function returns the information about the current version obtained from underlying C library
link{CORElearn}.

Value

Character string with information about the version.

Author(s)

Marko Robnik-Sikonja, Petr Savicky

See Also

CORElearn.

Examples

load the package
library(CORElearn)

print its version
versionCore()

Index

∗ classif
attrEval, 5
calibrate, 10
CORElearn-internal, 16
CORElearn-package, 2
CoreModel, 17
destroyModels, 22
discretize, 23
getCoreModel, 28
getRFsizes, 29
helpCore, 31
infoCore, 37
modelEval, 38
ordEval, 43
paramCoreIO, 47
plot.ordEval, 50
predict.CoreModel, 53
reliabilityPlot, 57
rfAttrEval, 58
rfOOB, 61
saveRF, 64
testCore, 66
versionCore, 67

∗ cluster
plot.CoreModel, 48
rfClustering, 60
rfOutliers, 62
rfProximity, 63

∗ datagen
classDataGen, 12
ordDataGen, 42
regDataGen, 55

∗ datasets
CORElearn-package, 2

∗ data
classDataGen, 12
ordDataGen, 42
regDataGen, 55

∗ loess

CORElearn-package, 2
CoreModel, 17
modelEval, 38
predict.CoreModel, 53

∗ models
calibrate, 10
CORElearn-internal, 16
CORElearn-package, 2
CoreModel, 17
destroyModels, 22
getCoreModel, 28
getRFsizes, 29
helpCore, 31
infoCore, 37
modelEval, 38
paramCoreIO, 47
predict.CoreModel, 53
reliabilityPlot, 57
rfAttrEval, 58
rfOOB, 61
saveRF, 64
versionCore, 67

∗ multivariate
CORElearn-package, 2
CoreModel, 17
getCoreModel, 28
getRFsizes, 29
modelEval, 38
predict.CoreModel, 53

∗ nonlinear
attrEval, 5
CORElearn-package, 2
CoreModel, 17
discretize, 23
helpCore, 31
infoCore, 37
modelEval, 38
ordEval, 43
paramCoreIO, 47

68

INDEX 69

predict.CoreModel, 53
rfAttrEval, 58
rfOOB, 61
saveRF, 64
versionCore, 67

∗ package
CORElearn-package, 2

∗ regression
attrEval, 5
CORElearn-internal, 16
CORElearn-package, 2
CoreModel, 17
destroyModels, 22
discretize, 23
getCoreModel, 28
getRFsizes, 29
helpCore, 31
infoCore, 37
modelEval, 38
ordEval, 43
paramCoreIO, 47
predict.CoreModel, 53
saveRF, 64
versionCore, 67

∗ robust
classPrototypes, 15
plot.CoreModel, 48
rfClustering, 60
rfOutliers, 62
rfProximity, 63

∗ tree
CORElearn-internal, 16
CORElearn-package, 2
CoreModel, 17
destroyModels, 22
display.CoreModel, 27
getCoreModel, 28
getRFsizes, 29
getRpartModel, 30
helpCore, 31
infoCore, 37
modelEval, 38
paramCoreIO, 47
plot.CoreModel, 48
predict.CoreModel, 53
rfAttrEval, 58
rfClustering, 60
rfOOB, 61

saveRF, 64
versionCore, 67

allTests (testCore), 66
applyCalibration (calibrate), 10
applyDiscretization (discretize), 23
attrEval, 3, 4, 5, 17–19, 25, 26, 31–34, 37,

38, 45, 59
auxTest, 9

bitmap, 54
bmp, 54, 55

calibrate, 10, 58
classDataGen, 4, 12, 43, 56
classPrototypes, 15, 49
cmdscale, 49, 64
CORElearn, 9–11, 17, 19, 22, 23, 26, 28, 29,

37, 41, 42, 46, 47, 52, 53, 55, 58, 59,
61, 65–67

CORElearn (CORElearn-package), 2
CORElearn-internal, 16
CORElearn-package, 2
CoreModel, 3, 4, 9, 14, 15, 17, 17, 23, 25–31,

37–39, 41, 46–49, 53, 56, 59–62, 64,
65

cvCoreModel (CoreModel), 17
cvGen, 21
cvGenStratified (cvGen), 21

data.frame, 14, 43, 56
destroyModels, 22
dev.off, 51
devAskNewPage, 51
Devices, 55
discretize, 23
display, 30, 48
display (display.CoreModel), 27
display.CoreModel, 27

gatherFromList (cvGen), 21
getCoreModel, 28
getRFsizes, 29
getRpartModel, 30, 48

help.Core (helpCore), 31
helpCore, 3, 4, 6, 8, 9, 17–19, 25–27, 31, 37,

38, 45–47, 52, 53

infoCore, 3, 4, 9, 17, 26, 37, 46

70 INDEX

intervalMidPoint (discretize), 23

jpeg, 54, 55

loadRF (saveRF), 64

modelEval, 3, 4, 17, 19, 38, 53

noEqualRows, 41

ordDataGen, 4, 14, 42, 56
OrdEval (ordEval), 43
ordEval, 3, 4, 8, 9, 17, 37, 43, 43, 45, 50–52

pam, 49, 60
paramCoreIO, 3, 4, 17, 19, 31, 37, 47, 53
pdf, 51, 54, 55
plot.CoreModel, 3, 4, 15, 27, 30, 48
plot.ordEval, 3, 4, 17, 44–46, 50, 55
plot.rpart, 48
plotOrdEval, 44
plotOrdEval (plot.ordEval), 50
png, 54, 55
postscript, 51, 54, 55
predict (predict.CoreModel), 53
predict.CoreModel, 3, 4, 10, 11, 15, 17, 19,

37–39, 41, 53
preparePlot, 51, 52, 54
printOrdEval (plot.ordEval), 50

read.table, 44
regDataGen, 4, 14, 43, 55
reliabilityPlot, 11, 57
rfAttrEval, 8, 9, 49, 58
rfAttrEvalClustering, 49
rfAttrEvalClustering (rfAttrEval), 58
rfClustering, 49, 60, 62–64
rfOOB, 61
rfOutliers, 49, 62, 63, 64
rfProximity, 49, 60, 62, 63
rpart.object, 30, 48
rpart.plot, 48

saveRF, 64

testClassPseudoRandom (auxTest), 9
testCore, 66
testCoreAttrEval (testCore), 66
testCoreClass (testCore), 66
testCoreNA (testCore), 66

testCoreOrdEval (testCore), 66
testCoreRand (testCore), 66
testCoreReg (testCore), 66
testCoreRPORT (testCore), 66
testTime (auxTest), 9
tiff, 54, 55

versionCore, 3, 4, 17, 67

	CORElearn-package
	attrEval
	auxTest
	calibrate
	classDataGen
	classPrototypes
	CORElearn-internal
	CoreModel
	cvGen
	destroyModels
	discretize
	display.CoreModel
	getCoreModel
	getRFsizes
	getRpartModel
	helpCore
	infoCore
	modelEval
	noEqualRows
	ordDataGen
	ordEval
	paramCoreIO
	plot.CoreModel
	plot.ordEval
	predict.CoreModel
	preparePlot
	regDataGen
	reliabilityPlot
	rfAttrEval
	rfClustering
	rfOOB
	rfOutliers
	rfProximity
	saveRF
	testCore
	versionCore
	Index

