togasat Algorithm
The Togasat Algorithm is a highly efficient algorithm designed for solving Boolean Satisfiability (SAT) problems, which are a class of computational problems central to computer science, artificial intelligence, and operations research. SAT problems involve determining whether a given formula consisting of Boolean variables and logical operations (AND, OR, and NOT) can be assigned values of true or false in such a way that the entire formula evaluates to true. As a fundamental problem in the field of computer science, SAT has numerous applications, including hardware and software verification, automated theorem proving, and planning. The Togasat Algorithm, developed by Takehide Soh, is known for its effectiveness in solving large-scale and complex SAT problems, making it a valuable tool for researchers and practitioners alike.
The Togasat Algorithm is an improvement upon existing Conflict-Driven Clause Learning (CDCL) algorithms, which are widely used for SAT solving. CDCL algorithms work by iteratively searching for a satisfying assignment of variables, and when a conflict (i.e., an unsatisfiable subformula) is found, they learn a new clause that prevents the same conflict from occurring again. The Togasat Algorithm introduces several novel techniques that enhance the performance of CDCL algorithms, such as efficient data structures, fast unit propagation, and advanced decision heuristics. By incorporating these innovations, the Togasat Algorithm demonstrates superior performance in solving a wide range of SAT instances, outperforming many state-of-the-art SAT solvers. As a result, it has gained significant attention and recognition in the SAT community for its contribution to the advancement of SAT solving techniques.
/************************************************************
* MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
* Copyright (c) 2007-2010 Niklas Sorensson
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
************************************************************/
#include <algorithm>
#include <cassert>
#include <fstream>
#include <iostream>
#include <list>
#include <queue>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
#include <set>
#include <cmath>
#include <unordered_map>
#include <unordered_set>
// SAT Solver
// CDCL Solver
// Author togatoga
// https://github.com/togatoga/Togasat
namespace togasat
{
using Var = int;
using CRef = int;
using lbool = int;
const CRef CRef_Undef = -1;
class Solver
{
private:
const lbool l_True = 0;
const lbool l_False = 1;
const lbool l_Undef = 2;
const int var_Undef = -1;
// Literal
struct Lit
{
int x;
inline bool operator==(Lit p) const
{
return x == p.x;
}
inline bool operator!=(Lit p) const
{
return x != p.x;
}
inline bool operator<(Lit p) const
{
return x < p.x;
}
inline Lit operator~()
{
Lit q;
q.x = x ^ 1;
return q;
}
};
inline Lit mkLit(Var var, bool sign)
{
Lit p;
p.x = var + var + sign;
return p;
}
inline bool sign(Lit p) const
{
return p.x & 1;
}
inline int var(Lit p) const
{
return p.x >> 1;
}
inline int toInt(Var v)
{
return v;
}
inline int toInt(Lit p)
{
return p.x;
}
inline Lit toLit(int x)
{
Lit p;
p.x = x;
return p;
}
const Lit lit_Undef = {-2};
// lifted boolean
// VarData
struct VarData
{
CRef reason;
int level;
};
inline VarData mkVarData(CRef cr, int l)
{
VarData d = {cr, l};
return d;
}
// Watcher
struct Watcher
{
CRef cref;
Lit blocker;
Watcher()
{
}
Watcher(CRef cr, Lit p) : cref(cr), blocker(p)
{
}
bool operator==(const Watcher &w) const
{
return cref == w.cref;
}
bool operator!=(const Watcher &w) const
{
return cref != w.cref;
}
};
// Clause
class Clause
{
public:
struct
{
bool learnt;
int size;
} header;
std::vector<Lit> data; //(x1 v x2 v not x3)
Clause()
{
}
Clause(const std::vector<Lit> &ps, bool learnt)
{
header.learnt = learnt;
header.size = ps.size();
//data = move(ps);
data.resize(header.size);
for (size_t i = 0; i < ps.size(); i++)
data[i] = ps[i];
// //data.emplace_back(ps[i]);
}
int size() const
{
return header.size;
}
bool learnt() const
{
return header.learnt;
}
Lit &operator[](int i)
{
return data[i];
}
Lit operator[](int i) const
{
return data[i];
}
};
CRef allocClause(std::vector<Lit> &ps, bool learnt = false)
{
static CRef res = 0;
ca[res] = Clause(ps, learnt);
return res++;
}
Var newVar(bool sign = true, bool dvar = true)
{
int v = nVars();
assigns.emplace_back(l_Undef);
vardata.emplace_back(mkVarData(CRef_Undef, 0));
activity.emplace_back(0.0);
seen.push_back(false);
polarity.push_back(sign);
decision.push_back(0);
setDecisionVar(v, dvar);
return v;
}
bool addClause_(std::vector<Lit> &ps)
{
//std::sort(ps.begin(), ps.end());
// empty clause
if (ps.size() == 0)
return false;
else if (ps.size() == 1)
uncheckedEnqueue(ps[0]);
else
{
CRef cr = allocClause(ps, false);
//clauses.insert(cr);
attachClause(cr);
}
return true;
}
void attachClause(CRef cr)
{
const Clause &c = ca[cr];
assert(c.size() > 1);
watches[(~c[0]).x].emplace_back(Watcher(cr, c[1]));
watches[(~c[1]).x].emplace_back(Watcher(cr, c[0]));
}
// Input
void readClause(const std::string &line, std::vector<Lit> &lits)
{
lits.clear();
int var;
var = 0;
std::stringstream ss(line);
while (ss)
{
int val;
ss >> val;
if (val == 0)
break;
var = abs(val) - 1;
while (var >= nVars())
newVar();
lits.emplace_back(val > 0 ? mkLit(var, false) : mkLit(var, true));
}
}
std::unordered_map<CRef, Clause> ca; // store clauses
std::unordered_set<CRef> clauses; // original problem;
std::unordered_set<CRef> learnts;
std::unordered_map<int, std::vector<Watcher>> watches;
std::vector<VarData> vardata; // store reason and level for each variable
std::vector<bool> polarity; // The preferred polarity of each variable
std::vector<bool> decision;
std::vector<bool> seen;
// Todo
size_t qhead;
std::vector<Lit> trail;
std::vector<int> trail_lim;
// Todo rename(not heap)
std::set<std::pair<double, Var>> order_heap;
std::vector<double> activity;
double var_inc;
std::vector<Lit> model;
std::vector<Lit> conflict;
int nVars() const
{
return vardata.size();
}
int decisionLevel() const
{
return trail_lim.size();
}
void newDecisionLevel()
{
trail_lim.emplace_back(trail.size());
}
inline CRef reason(Var x) const
{
return vardata[x].reason;
}
inline int level(Var x) const
{
return vardata[x].level;
}
inline void varBumpActivity(Var v)
{
std::pair<double, Var> p = std::make_pair(activity[v], v);
activity[v] += var_inc;
if (order_heap.erase(p) == 1)
order_heap.emplace(std::make_pair(activity[v], v));
if (activity[v] > 1e100)
{
//Rescale
std::set<std::pair<double, Var>> tmp_order;
tmp_order = std::move(order_heap);
order_heap.clear();
for (int i = 0; i < nVars(); i++)
activity[i] *= 1e-100;
for (auto &val : tmp_order)
order_heap.emplace(std::make_pair(activity[val.second], val.second));
var_inc *= 1e-100;
}
}
bool satisfied(const Clause &c) const
{
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True)
return true;
return false;
}
lbool value(Var p) const
{
return assigns[p];
}
lbool value(Lit p) const
{
if (assigns[var(p)] == l_Undef)
return l_Undef;
return assigns[var(p)] ^ sign(p);
}
void setDecisionVar(Var v, bool b)
{
decision[v] = b;
order_heap.emplace(std::make_pair(0.0, v));
}
void uncheckedEnqueue(Lit p, CRef from = CRef_Undef)
{
assert(value(p) == l_Undef);
assigns[var(p)] = sign(p);
vardata[var(p)] = mkVarData(from, decisionLevel());
trail.emplace_back(p);
}
// decision
Lit pickBranchLit()
{
Var next = var_Undef;
while (next == var_Undef or value(next) != l_Undef)
{
if (order_heap.empty())
{
next = var_Undef;
break;
}
else
{
auto p = *order_heap.rbegin();
next = p.second;
order_heap.erase(p);
}
}
return next == var_Undef ? lit_Undef : mkLit(next, polarity[next]);
}
// clause learning
void analyze(CRef confl, std::vector<Lit> &out_learnt, int &out_btlevel)
{
int pathC = 0;
Lit p = lit_Undef;
int index = trail.size() - 1;
out_learnt.emplace_back(mkLit(0, false));
do
{
assert(confl != CRef_Undef);
Clause &c = ca[confl];
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++)
{
Lit q = c[j];
if (not seen[var(q)] and level(var(q)) > 0)
{
varBumpActivity(var(q));
seen[var(q)] = 1;
if (level(var(q)) >= decisionLevel())
pathC++;
else
out_learnt.emplace_back(q);
}
}
while (not seen[var(trail[index--])])
;
p = trail[index + 1];
confl = reason(var(p));
seen[var(p)] = 0;
pathC--;
} while (pathC > 0);
out_learnt[0] = ~p;
// unit clause
if (out_learnt.size() == 1)
out_btlevel = 0;
else
{
int max_i = 1;
for (size_t i = 2; i < out_learnt.size(); i++)
if (level(var(out_learnt[i])) > level(var(out_learnt[max_i])))
max_i = i;
Lit p = out_learnt[max_i];
out_learnt[max_i] = out_learnt[1];
out_learnt[1] = p;
out_btlevel = level(var(p));
}
for (size_t i = 0; i < out_learnt.size(); i++)
seen[var(out_learnt[i])] = false;
}
// backtrack
void cancelUntil(int level)
{
if (decisionLevel() > level)
{
for (int c = trail.size() - 1; c >= trail_lim[level]; c--)
{
Var x = var(trail[c]);
assigns[x] = l_Undef;
polarity[x] = sign(trail[c]);
order_heap.emplace(std::make_pair(activity[x], x));
}
qhead = trail_lim[level];
trail.erase(trail.end() - (trail.size() - trail_lim[level]), trail.end());
trail_lim.erase(trail_lim.end() - (trail_lim.size() - level),
trail_lim.end());
}
}
CRef propagate()
{
CRef confl = CRef_Undef;
int num_props = 0;
while (qhead < trail.size())
{
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
std::vector<Watcher> &ws = watches[p.x];
std::vector<Watcher>::iterator i, j, end;
num_props++;
for (i = j = ws.begin(), end = i + ws.size(); i != end;)
{
// Try to avoid inspecting the clause:
Lit blocker = i->blocker;
if (value(blocker) == l_True)
{
*j++ = *i++;
continue;
}
CRef cr = i->cref;
Clause &c = ca[cr];
Lit false_lit = ~p;
if (c[0] == false_lit)
c[0] = c[1], c[1] = false_lit;
assert(c[1] == false_lit);
i++;
Lit first = c[0];
Watcher w = Watcher(cr, first);
if (first != blocker && value(first) == l_True)
{
*j++ = w;
continue;
}
// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False)
{
c[1] = c[k];
c[k] = false_lit;
watches[(~c[1]).x].emplace_back(w);
goto NextClause;
}
*j++ = w;
if (value(first) == l_False) // conflict
{
confl = cr;
qhead = trail.size();
while (i < end)
*j++ = *i++;
}
else
uncheckedEnqueue(first, cr);
NextClause:;
}
int size = i - j;
ws.erase(ws.end() - size, ws.end());
}
return confl;
}
static double luby(double y, int x)
{
// Find the finite subsequence that contains index 'x', and the
// size of that subsequence:
int size, seq;
for (size = 1, seq = 0; size < x + 1; seq++, size = 2 * size + 1)
;
while (size - 1 != x)
{
size = (size - 1) >> 1;
seq--;
x = x % size;
}
return std::pow(y, seq);
}
lbool search(int nof_conflicts)
{
int backtrack_level;
std::vector<Lit> learnt_clause;
learnt_clause.emplace_back(mkLit(-1, false));
int conflictC = 0;
while (true)
{
CRef confl = propagate();
if (confl != CRef_Undef)
{
// CONFLICT
conflictC++;
if (decisionLevel() == 0)
return l_False;
learnt_clause.clear();
analyze(confl, learnt_clause, backtrack_level);
cancelUntil(backtrack_level);
if (learnt_clause.size() == 1)
uncheckedEnqueue(learnt_clause[0]);
else
{
CRef cr = allocClause(learnt_clause, true);
//learnts.insert(cr);
attachClause(cr);
uncheckedEnqueue(learnt_clause[0], cr);
}
//varDecay
var_inc *= 1.05;
}
else
{
// NO CONFLICT
if ((nof_conflicts >= 0 and conflictC >= nof_conflicts))
{
cancelUntil(0);
return l_Undef;
}
Lit next = pickBranchLit();
if (next == lit_Undef)
return l_True;
newDecisionLevel();
uncheckedEnqueue(next);
}
}
}
public:
std::vector<lbool> assigns; // The current assignments (ex assigns[0] = 0 ->
// X1 = True, assigns[1] = 1 -> X2 = False)
lbool answer; // SATISFIABLE 0 UNSATISFIABLE 1 UNKNOWN 2
Solver()
{
qhead = 0;
}
void parseDimacsProblem(std::string problem_name)
{
std::vector<Lit> lits;
int vars = 0;
int clauses = 0;
std::string line;
std::ifstream ifs(problem_name, std::ios_base::in);
while (ifs.good())
{
getline(ifs, line);
if (line.size() > 0)
{
if (line[0] == 'p')
sscanf(line.c_str(), "p cnf %d %d", &vars, &clauses);
else if (line[0] == 'c' or line[0] == 'p')
continue;
else
{
readClause(line, lits);
if (lits.size() > 0)
addClause_(lits);
}
}
}
ifs.close();
}
lbool solve()
{
model.clear();
conflict.clear();
lbool status = l_Undef;
answer = l_Undef;
var_inc = 1.01;
int curr_restarts = 0;
double restart_inc = 2;
double restart_first = 100;
while (status == l_Undef)
{
double rest_base = luby(restart_inc, curr_restarts);
status = search(rest_base * restart_first);
curr_restarts++;
}
answer = status;
return status;
}
void addClause(std::vector<int> &clause)
{
std::vector<Lit> lits;
lits.resize(clause.size());
for (size_t i = 0; i < clause.size(); i++)
{
int var = abs(clause[i]) - 1;
while (var >= nVars())
newVar();
lits[i] = clause[i] > 0 ? mkLit(var, false) : mkLit(var, true);
}
addClause_(lits);
}
void printAnswer()
{
if (answer == 0)
{
std::cout << "SAT" << std::endl;
for (size_t i = 0; i < assigns.size(); i++)
{
if (assigns[i] == 0)
std::cout << (i + 1) << " ";
else
std::cout << -(i + 1) << " ";
}
std::cout << "0" << std::endl;
}
else
std::cout << "UNSAT" << std::endl;
}
};
} // namespace togasat