Big Int Algorithm
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a procedure that finds the integral of a merchandise of functions in terms of the integral of the merchandise of their derivative and antiderivative. Mathematician Brook Taylor observed integration by parts, first printing the idea in 1715.
/********************************************************************************
Structure implementing long arithmetic in C++
Analogue to BigInteger in Java.
Tested on many problems.
TODO: list some problems
********************************************************************************/
struct BigInt {
vector <int> num;
static const int base = 1000 * 1000 * 1000;
static const int baseDigits = 9;
string leadingZerosModifier;
/****************************************************
* CONSTRUCTONS & SETTERS
****************************************************/
void setLeadingZerosModifier() {
leadingZerosModifier = "%0xd";
leadingZerosModifier[2] = '0' + baseDigits;
}
void set(int value) {
num.clear();
if (value == 0)
num.push_back(0);
while (value) {
num.push_back(value % base);
value /= base;
}
}
void set(long long value) {
num.clear();
if (value == 0)
num.push_back(0);
while (value) {
num.push_back(value % base);
value /= base;
}
}
void set(string &value) {
num.clear();
for (int i = (int)value.length() - 1; i >= 0; i -= baseDigits) {
int add = 0;
for (int j = max(0, i - baseDigits + 1); j <= i; j++)
add = add * 10 + value[j] - '0';
num.push_back(add);
}
}
void operator = (int value) {
set(value);
}
void operator = (long long value) {
set(value);
}
void operator = (string &value) {
set(value);
}
BigInt() {
setLeadingZerosModifier();
set(0);
}
BigInt(int value) {
setLeadingZerosModifier();
set(value);
}
BigInt(string value) {
setLeadingZerosModifier();
set(value);
}
/*====================================================
* SIZE METHODS
====================================================*/
//returns size of vector
int size() {
return (int)num.size();
}
//returns length of the number
int digitNum() {
int result = 0;
for (int i = 0; i < (int)num.size() - 1; i++)
result += baseDigits;
int lastNum = num.back();
while (lastNum) {
result++;
lastNum /= 10;
}
return result;
}
/*====================================================
* I/O
====================================================*/
void read() {
string s;
cin >> s;
num.clear();
for (int i = (int)s.length() - 1; i >= 0; i -= baseDigits) {
int add = 0;
for (int j = max(0, i - baseDigits + 1); j <= i; j++)
add = add * 10 + s[j] - '0';
num.push_back(add);
}
}
void print() {
printf("%d", num.back());
for (int i = (int)num.size() - 2; i >= 0; i--)
printf (leadingZerosModifier.c_str(), num[i]);
}
void println() {
print();
printf("\n");
}
string toString() {
string result = "";
for (int i = 0; i < (int)num.size(); i++) {
int cur = num[i];
for (int j = 1; j <= baseDigits; j++) {
if (cur == 0 && i == (int) num.size() - 1)
break;
result.append(1, (char) '0' + cur % 10);
cur /= 10;
}
}
reverse(result.begin(), result.end());
return result;
}
/*====================================================
* ADDITION
====================================================*/
void sumThis(BigInt number) {
int carry = 0;
for (int i = 0; i < max((int)num.size(), number.size()) || carry; i++) {
if (i == num.size())
num.push_back(0);
if (i >= number.size())
carry = num[i] + carry;
else
carry = num[i] + carry + number.num[i];
num[i] = carry % base;
carry /= base;
}
}
void sumThis(int number) {
int carry = number;
for (int i = 0; i < (int)num.size() || carry; i++) {
if (i == num.size())
num.push_back(0);
carry = num[i] + carry;
num[i] = carry % base;
carry /= base;
}
}
BigInt sum(BigInt number) {
BigInt result = *this;
result.sumThis(number);
return result;
}
BigInt sum(int number) {
BigInt result = *this;
result.sumThis(number);
return result;
}
void operator += (BigInt number) {
sumThis(number);
}
void operator += (int number) {
sumThis(number);
}
BigInt operator + (BigInt number) {
return sum(number);
}
BigInt operator + (int number) {
return sum(number);
}
/*====================================================
* SUBTRACTION
====================================================*/
void subThis(BigInt number) {
int carry = 0;
for (int i = 0; i < (int)number.size() || carry; i++) {
if (i < (int)number.size())
num[i] -= carry + number.num[i];
else
num[i] -= carry;
if (num[i] < 0) {
carry = 1;
num[i] += base;
}
else
carry = 0;
}
while (num.size() > 1 && num.back() == 0)
num.pop_back();
}
void subThis(int number) {
int carry = -number;
for (int i = 0; carry > 0; i++) {
num[i] -= carry;
if (num[i] < 0) {
carry = 1;
num[i] += base;
}
else
carry = 0;
}
while (num.size() > 1 && num.back() == 0)
num.pop_back();
}
BigInt sub(BigInt number) {
BigInt result = *this;
result.subThis(number);
return result;
}
BigInt sub(int number) {
BigInt result = *this;
result.subThis(number);
return result;
}
void operator -= (BigInt number) {
subThis(number);
}
void operator -= (int number) {
subThis(number);
}
BigInt operator - (BigInt number) {
return sub(number);
}
BigInt operator - (int number) {
return sub(number);
}
/*====================================================
* MULTIPLICATION
====================================================*/
BigInt mult(BigInt number) {
BigInt product;
product.num.resize(num.size() + number.size());
for (int i = 0; i < (int)num.size(); i++) {
for (int j = 0, carry = 0; j < (int)number.size() || carry; j++) {
long long cur = product.num[i + j] + num[i] * 1ll * (j < (int)number.size() ? number.num[j] : 0) + carry;
product.num[i + j] = int (cur % base);
carry = int (cur / base);
}
}
while (product.size() > 1 && product.num.back() == 0)
product.num.pop_back();
return product;
}
void multThis(BigInt number) {
*this = mult(number);
}
void multThis(int number) {
int carry = 0;
for (int i = 0; i < (int)num.size() || carry; ++i) {
if (i == num.size())
num.push_back (0);
long long cur = carry + num[i] * 1ll * number;
num[i] = int (cur % base);
carry = int (cur / base);
}
while (num.size() > 1 && num.back() == 0)
num.pop_back();
}
BigInt mult(int number) {
BigInt result = *this;
result.multThis(number);
return result;
}
void operator *= (BigInt number) {
multThis(number);
}
void operator *= (int number) {
multThis(number);
}
BigInt operator * (BigInt number) {
return mult(number);
}
BigInt operator * (int number) {
return mult(number);
}
void multThisByPowerOfTen(int power) {
int baseNums = power / baseDigits;
int curLen = (int)num.size();
num.resize(curLen + baseNums);
for (int i = num.size() - 1; i >= baseNums; i--) {
num[i] = num[i - baseNums];
}
for (int i = baseNums - 1; i >= 0; i--)
num[i] = 0;
power %= baseDigits;
int multBy = (int)pow(10.0, power);
multThis(multBy);
}
/*====================================================
* DIVISION
====================================================*/
void divThis(int number) {
int carry = 0;
for (int i= (int)num.size() - 1; i >= 0; i--) {
long long cur = num[i] + carry * 1ll * base;
num[i] = int (cur / number);
carry = int (cur % number);
}
while (num.size() > 1 && num.back() == 0)
num.pop_back();
}
BigInt div(int number) {
BigInt result = *this;
result.divThis(number);
return result;
}
void operator /= (int number) {
divThis(number);
}
BigInt operator / (int number) {
return div(number);
}
void divThisByPowerOfTen(int power) {
int baseNums = power / baseDigits;
int curLen = (int)num.size();
for (int i = 0; i < (int)num.size() - baseNums; i++) {
num[i] = num[i + baseNums];
}
for (int i = 1; i <= baseNums; i++)
num.pop_back();
power %= baseDigits;
int divBy = (int)pow(10.0, power);
divThis(divBy);
}
/*====================================================
* MODULO
====================================================*/
void modThis(int number) {
int carry = 0;
for (int i= (int)num.size() - 1; i >= 0; i--) {
long long cur = num[i] + carry * 1ll * base;
num[i] = int (cur / number);
carry = int (cur % number);
}
set(carry);
}
BigInt mod(int number) {
BigInt result = *this;
result.modThis(number);
return result;
}
void operator %= (int number) {
modThis(number);
}
BigInt operator % (int number) {
return mod(number);
}
/*====================================================
* COMPARISON
====================================================*/
//Returns: -1 - this number is less than argument, 0 - equal, 1 - this number is greater
int compareTo(BigInt number) {
if ((int)num.size() < number.size())
return -1;
if ((int)num.size() > number.size())
return 1;
for (int i = (int)num.size() - 1; i >= 0; i--) {
if (num[i] > number.num[i])
return 1;
if (num[i] < number.num[i])
return -1;
}
return 0;
}
//Returns: -1 - this number is less than argument, 0 - equal, 1 - this number is greater
int compareTo(int number) {
if (num.size() > 1 || num[0] > number)
return 1;
if (num[0] < number)
return -1;
return 0;
}
bool operator < (BigInt number) {
return compareTo(number) == -1;
}
bool operator < (int number) {
return compareTo(number) == -1;
}
bool operator <= (BigInt number) {
return compareTo(number) != 1;
}
bool operator <= (int number) {
return compareTo(number) != 1;
}
bool operator == (BigInt number) {
return compareTo(number) == 0;
}
bool operator == (int number) {
return compareTo(number) == 0;
}
bool operator > (BigInt number) {
return compareTo(number) == 1;
}
bool operator > (int number) {
return compareTo(number) == 1;
}
bool operator >= (BigInt number) {
return compareTo(number) != -1;
}
bool operator >= (int number) {
return compareTo(number) != 1;
}
bool operator != (BigInt number) {
return compareTo(number) != 0;
}
bool operator != (int number) {
return compareTo(number) != 0;
}
};