LCA Binary Algorithm

In graph theory and computer science, the lowest common ancestor (LCA) of two nodes V and w in a tree or directed acyclic graph (DAG) However, there exist several algorithms for processing trees so that lowest common ancestors may be found more quickly. Their algorithm processes any tree in linear time, use a heavy path decomposition, so that subsequent lowest common ancestor query may be answered in constant time per query. Omer Berkman and Uzi Vishkin (1993) observed a completely new manner to answer lowest common ancestor query, again achieve linear preprocessing time with constant query time. This is done by keeping the forest use the dynamic trees data structure with partitioning by size; this then keeps a heavy-light decomposition of each tree, and lets LCA query to be carry out in logarithmic time in the size of the tree.
/************************************************************************************

    Finding LCA (Least common ancestor) of two vertices in the tree.
    Uses dp calculated on powers of 2. 
    O(NlogN) for preprocessing, O(logN) on query.

    Based on problem 111796 from informatics.mccme.ru 
    http://informatics.mccme.ru/moodle/mod/statements/view.php?chapterid=111796

************************************************************************************/

#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cstring>
#include <cassert>
#include <utility>
#include <iomanip>

using namespace std;

const int MAXN = 405000;
const int MAXLOG = 22;

int n, qn;
vector <int> g[MAXN];   
int dp[MAXN][MAXLOG];
int tin[MAXN], tout[MAXN];
int timer;

int a[MAXN];
int x, y, z;
long long ans;

void dfs(int v, int par = 1) {
    timer++;
    tin[v] = timer;

    dp[v][0] = par;
    for (int i = 1; i < MAXLOG; i++) 
        dp[v][i] = dp[dp[v][i - 1]][i - 1];

    for (int i = 0; i < (int) g[v].size(); i++) {
        int to = g[v][i];
        if (to != par)
            dfs(to, v);
    }

    timer++;
    tout[v] = timer;
}

bool isParent(int a, int b) {
    return tin[a] <= tin[b] && tout[a] >= tout[b];
}

int lca(int a, int b) {
    if (isParent(a, b))
        return a;
    if (isParent(b, a))
        return b;
    for (int i = MAXLOG - 1; i >= 0; i--) { 
        if (!isParent(dp[a][i], b))
            a = dp[a][i];
    }
    return dp[a][0];
}

int main() {
    //assert(freopen("input.txt","r",stdin));
    //assert(freopen("output.txt","w",stdout));  

    scanf("%d %d", &n, &qn);

    for (int i = 1; i < n; i++) {
        int par;
        scanf("%d", &par);
        par++;
        g[i + 1].push_back(par);
        g[par].push_back(i + 1);
    }

    dfs(1);

    // Reference problem input format
    scanf("%d %d", &a[1], &a[2]);
    scanf("%d %d %d", &x, &y, &z);
    for (int i = 3; i <= 2 * qn; i++) {
        a[i] = (1ll * x * a[i - 2] + 1ll * y * a[i - 1] + 1ll * z) % n;
    }

    int q1 = a[1], q2 = a[2]; 
    for (int i = 1; i <= qn; i++) {
        int cur = lca(q1 + 1, q2 + 1) - 1;
        ans += cur;
        q1 = (a[2 * (i + 1) - 1] + cur) % n;
        q2 = a[2 * (i + 1)];
    }

    cout << ans << endl;

    return 0;
}

LANGUAGE:

DARK MODE: