- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
SQLScalarColumnTransformer(sql: str, target_column: str = "transformed_{0}")Wrapper for plain SQL code contained in a ColumnTransformer.
Create a single column transformer in plain sql. This transformer can only be used inside ColumnTransformer.
When creating an instance '{0}' can be used as placeholder for the column to transform:
SQLScalarColumnTransformer("{0}+1")
The default target column gets the prefix 'transformed_' but can also be changed when creating an instance:
SQLScalarColumnTransformer("{0}+1", "inc_{0}")
Examples:
>>> from bigframes.ml.compose import ColumnTransformer, SQLScalarColumnTransformer
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({'name': ["James", None, "Mary"], 'city': ["New York", "Boston", None]})
>>> col_trans = ColumnTransformer([
...     ("strlen",
...      SQLScalarColumnTransformer("CASE WHEN {0} IS NULL THEN 15 ELSE LENGTH({0}) END"),
...      ['name', 'city']),
... ])
>>> col_trans = col_trans.fit(df)
>>> df_transformed = col_trans.transform(df)
>>> df_transformed
   transformed_name  transformed_city
0                 5                 8
1                15                 6
2                 4                15
<BLANKLINE>
[3 rows x 2 columns]
SQLScalarColumnTransformer can be combined with other transformers, like StandardScaler:
>>> col_trans = ColumnTransformer([
...     ("identity", SQLScalarColumnTransformer("{0}", target_column="{0}"), ["col1", "col5"]),
...     ("increment", SQLScalarColumnTransformer("{0}+1", target_column="inc_{0}"), "col2"),
...     ("stdscale", preprocessing.StandardScaler(), "col3"),
...     # ...
... ])