
Recipes 2.0: Building for Today and Tomorrow

Rion Dooley
Texas Advanced Computing Center
The University of Texas at Austin

Austin, US

Matthew R. Hanlon
Texas Advanced Computing Center
The University of Texas at Austin

Austin, US

Abstract—The history of science gateway development has, in
many ways, been a story of the “Haves” vs. the “Have-nots.”
Large infrastructure projects led the way, building thick client
portals to provide coherent interfaces to an incoherent
environment. Contrast this with the way the modern web is
designed using light, front end components and outsourcing
much of the heavy lifting to a mash-up of REST APIs, and it is
easy to see why modern web applications can be prototyped and
refined into stable products in the time it previously took thick
client portals to do an initial release. This paper argues that a
“build for today” philosophy can lead to the rapid development
of science gateways to serve the “Have-nots.” Also presented is a
set of responsive front end components built on top of the iPlant
Foundation API that provide the boilerplate for rapid
development of lightweight science gateways using only HTML,
JavaScript, and CSS. Using these components, developers can
easily stand up new gateways or quickly add new functionality to
existing ones.

Keywords— Science Gateway, REST, API, web service,
AGAVE, HTML5, JavaScript, web

I. INTRODUCTION
The history of science gateway development has, in many

ways, been a story of the “Haves” versus the “Have-nots.”
Large infrastructure projects led the way, building thick client
portals to piece together incongruent service stacks and provide
cohesion to an incoherent environment. The field was
dominated so thoroughly by these heavyweight portals, that the
terms portal and gateway became interchangeable. A gateway
was no longer just a means of access, it was an ecosystem of
moving parts that all had to be managed and maintained over
time for the gateway to work. The concept of modular design
became a relative term. If one could take a component out of
one monolithic framework instance and add it to another
monolithic framework instance, then the component was
modular. Disregard the background processes, supporting
services, and database that needed replication in order for the
module to work. If the UI could be reused, the component was
considered modular.

The resources required to build and maintain such portals
made finding portals with long-term success rare. Whereas at
one time portals were built as thick desktop clients, one of the
reasons that portals gravitated from the desktop to the web was
the ongoing cost of maintaining software on multiple operating
systems. Even applications written entirely in Java require
some platform-specific attention. That means multiple sets of
unit tests, multiple testing environments, and most importantly,

multiple investments of time writing system-specific code
when the web only requires a single investment.

Despite the cost and complexity, projects that could afford
to make the investment in a portal did so gladly because the
end product was well worth the cost. Portals brought cohesion
to complicated infrastructure and made computational science
accessible to researchers without computer science degrees.
They pulled the focus away from the machines and put it back
onto the science.

Portals such as Cipres [1], GridChem [2], UltraScan [3],
Galaxy [4], and NanoHub [5], just to name a few examples in
the United States, continue to provide tremendous value to
their user communities. The researchers using these portals
have made discoveries leading to hundreds of published
papers, multiple thesis and dissertations, and insights that
would have taken significantly longer to realize, if at all. One
cannot deny the value of such portals in today’s scientific
process.

The challenge portal-driven science faces is that for every
scientist that has a portal like Cipres at their disposal there are
hundreds more in the same domain who do not. No portal can
meet the needs of everyone. Successful portals find their niche
and focus on providing value to the researchers in that niche.
Inherent in the design of a successful portal is the realization
that it cannot and will not meet the needs of the vast majority
of scientists who could otherwise derive value from similar
tools. Thus, even within the highly technical research
landscape there is a digital divide [6] between those who have
advanced portal technology to facilitate their work and those
who do not.

Exact numbers are difficult to obtain, but a rough
approximation is possible. The National Science Foundation’s
Science and Engineering Indicator Report for 2012 (SEI) states
that as of 2010, the US Science and Engineering (S&E)
workforce is 6.65 million people [7]. Of them, 31% describe
research and development (R&D) as a major work activity. If
we consider only those with doctorates, 12% of those who
describe R&D as a major work activity remain. This indicates
that there are at least 247,000 PhD level workers in S&E
actively conducting research in the US. Add to this the
estimated 100,000 medical researchers in the US according to
the Bureau of Labor and Statistics and we come to a lower
bound of 347,000 for the number of researchers who could be
impacted by portal technologies [8].

Looking again at SEI, we see a reasonably proportional
investment in R&D across US S&E companies of roughly 6%.

Given that the Pareto Principal applies to revenue distribution
among businesses, we can infer an 80/20 split among industrial
researchers [9]. With 20% having access to the latest high
technology tools to perform their research and 80% utilizing
effective, but cost-restricted technologies. In academia, SEI
shows that the top 100 spending universities spent 80% of the
academic R&D money in the US. This is significantly more
lopsided ratio, but as a lower bound, the Pareto Principal holds
for academic research as well. Thus, it is reasonable to assume
at least an 80/20 split between the haves and the have-not
across US R&D in both sectors today, indicating there are at
least 277,000 underserved researchers in the US alone.

II. BUILDING FOR TOMORROW
How does one go about reaching the 277K scientists on the

other side of the digital divide? Raising taxes to build 10,000
portals is not realistic. It also does not address the
fundamentally deeper issue of utility. That portals provide
value to their users is well documented [10][11][12]. What
value they provide and at what cost are less well-documented
questions. We look at 5 portals from the XSEDE Gateways
Program [13] as short case studies.

Galaxy is an open, web-based platform for data intensive

biomedical research. Scientists can download a copy of
Galaxy for private use or they can use the hosted Galaxy
instance, often called Galaxy Main. The Galaxy Main portal
contains over 2500 application codes in its “Shed” that users
can leverage for their work. Historically, the vast majority of
users select a small number of codes that they use for all their
work. In 2012, users ran over 100k jobs a month through
Galaxy Main. In addition to application registration and job
submission, Galaxy also supports visualization and data
publication. Both are popular features, but neither is the
primary focus of the portal. Does that mean that they were a
waste of time? No. Galaxy Main serves over 28k users. There
are many other features built into Galaxy, but the point of this
observation is that as a portal, Galaxy casts a wide net and
tries to provide something of value to every one its users. The
price of doing so is added complexity, greater development
costs, and a larger investment in supporting infrastructure to
run the application. Initially funded by two awards totaling
just under $1.4M in 2006 from the National Science
Foundation (NSF), the additional use cases necessitated
another round of funding totaling $1.1M from NSF. Recently,
to support the expanding user community and support
different resource utilization patterns, another round of
funding totally $5.8M was obtained from the National Institute
of Health to carry the project through 2018. Even for a
successful portal like Galaxy Main, maintaining continuous
funding and retaining talent are ongoing concerns.

GridChem is a desktop application supporting the

computational chemistry community. Its mission is to enable
computational and experimental scientists to do more
computational chemistry by providing capability computing
resources and services at their fingertips. To that end, the first

release of GridChem provided federated identity management,
job tracking, system monitoring, scheduling, enforcement of
proprietary software license agreements, distributed account
management, large data management, full experiment
reproducibility, and integration with application codes
installed on the user’s local system. Many of the features took
a significant amount of time to build which pushed back the
first release of the software by nearly a year. However, after
its first 3 years in production GridChem had enabled 500 plus
researchers to publish over 60 papers and complete 6
dissertations. The software was used as a teaching tool in
undergraduate chemistry classes at The Ohio State University,
the University of Illinois, and the University of Kentucky to
expose hundreds of students each semester to computational
chemistry. The value of GridChem is obvious, however that
value came at the up front cost of 6 man-years of development
at a cost of $2.7M to provide enough features to
simultaneously support undergraduate students and full
professors alike. Further operation led to another $1M in
funding to support workflow integration and expanded support
for determining appropriate parameters for use in different
experiments.

The Cipres Science Gateway is a public resource for

inference of large phylogenetic trees. As of this writing,
Cipres exposes 30 different tools for use on a preconfigured
set of systems ranging from large shared compute clusters to
private virtual machines. Users access these tools through a
form-driven web interface. The process of developing Cipres
included building multiple interfaces for each applications, job
scheduling heuristics, data management, accounting systems,
identity management, and integration with multiple
infrastructure providers. These features took a significant
amount of time, $4.5M in funding from NSF, and a very
talented team of programmers to develop. The result of that
work was a wildly successful portal. Cipres now serves over
700 users and has been used to run nearly 100k simulations
burning over 15M compute hours. After 18 months in
production, Cipres’ usage was outgrowing its infrastructure.
Due to the heavyweight nature of the infrastructure it took
another year of development and $1.5M in funding from NSF
to allow them to scale out to other systems and move away
from a community account model. While growth is a common
problem of success, this particular problem came at the end of
the project’s original funding. Had it not been for the talent
and passion of the development team, Cipres would not have
been able to address its growing pains and, as such, would
have stalled until the next round of funding arrived.

NanoHub is web application built upon the Joomla CMS

[14] and designed to support nanotechnology research and
education. It provides over 270 simulation tools, 3800
seminars, tutorials, and teaching materials, 200 distinct user
groups, and a mature workflow engine called Pegasus, which
supports job execution across heterogeneous systems. Behind
NanoHub lies a series of web services, command line tools, a
full CMS, and an application-authoring tool. The portal as a

whole was built to support a large community and it does so
very well. In 2010, NanoHub saw 10k users run 380k
simulations. In 2011, 11k users ran 400k simulations. In 2012,
12k users ran 410k simulations. Clearly a lot of people are
doing a lot of work and the growth is cumulative year over
year. Such usage indicates that the portal is reaching a
significant number of people, exposing them to some
functionality, helping them accomplish a specific task, and a
percentage are coming back year after year. The numbers are
impressive, but the behavior is consistent with other portals.
Users come in, find a few tools and/or features of value to
them, and make a routine using those specific tools and/or
features for the duration of their interaction with the portal.

Success comes at a price, and the price of building

NanoHub was $14M from NSF. Sustaining NanoHub amid
rapid growth has been an even more expensive activity. Their
latest round of funding is $21.9M from NSF starting in 2013.
To put that in perspective, NanoHub is a Joomla instance with
a lot of custom plugins and some back-end services to support
running nanotechnology simulations at an average rate of one
simulation every 78 seconds. Looking at the CMS alone, the
site receives 8.5 million hits a month. That is roughly half the
traffic of edublogs.com, the leading educational blog provider
in the world with 1.6 million blogs since 2005 [15]. Given
comparable expenditures and team sizes between the two
organizations, the cost of custom development and supporting
the back-end infrastructure of NanoHub costs roughly 200%
more than the total cost of running the website alone.

The Extreme Science and Engineering Discovery

Environment (XSEDE) [16] is a National Science Foundation
(NSF) funded national cyberinfrastructure (CI) that provides a
set of large resources for scientific simulation and analysis.
The XSEDE User Portal (XUP), led by TACC, is the primary
interface for users to XSEDE. It provides user account
management, project management, documentation, data
management, and a myriad of other features to help users be
productive on the XSEDE CI. It was built on the Liferay
Portal platform [17], an enterprise open-source Java portal
framework. The Liferay platform itself provides many features
out of the box, including a content management system, wikis,
calendaring, web forms, user forums, security and access
control, and user notifications. Liferay also provides a plugin
development platform for extending the portal with plugins
and portlets. As an enterprise portal, Liferay is one of the
leaders in the field, but there is a significant financial and
human cost associated with its use. The cost of training,
professional consulting, and enterprise support must be
considered.

XUP has a very different focus than the previously

mentioned science gateways, and it is more of a “destination
portal” then “science gateway”. But it is another example of a
large, enterprise project that is designed to be a one-stop shop
that provides users of XSEDE everything they need to be
productive on XSEDE, excepting streamlined job execution.

The development of the XUP is a continuation of the previous
5 years of development of the TeraGrid User Portal [18]. The
initial cost of development for the first TeraGrid User Portal
was on the order of $800k. Since then another $1.7M has been
invested in the dedicated team of developers maintaining
active development on XUP, adding features, addressing user
issues, and providing the general maintenance required of a
portal with over 12,000 registered users that supports a variety
of user communities within the XSEDE organization, each
with different needs.

In order to provide all of this functionality, the XUP, and

to a lesser extend the XSEDE website, rely on a suite of
services that provide the backend information services. These
services include relational databases, non-relational “NoSQL”
databases, SOAP and REST web services, flat file parsers, and
many other services that interact directly with the resources in
the XSEDE CI. The front end is built from many custom
developed and specialized portlet applications, as well as out-
of-the-box Liferay portlets. The system works because the
development team has administrative access to the entire
XSEDE infrastructure. They are able to obtain information
that other gateways simply do not have access to. As a result,
the portlets developed for XUP and the functionality they
provide cannot easily be replicated simply by copying over the
portlet code.

Each of the above portals is different in focus and function,

but they are all successful science gateway projects and
provide broad functionality. That functionality is often
targeted at a small set of users who, for a given portal, will
only ever use a subset of the features. The cost of these portals
in terms of time and effort are all measured in multiple man-
years and millions of dollars before they ever had a single
user. They were designed to accommodate thousands of users
when they went live and they made sure they could support a
thousand users before they tried to support one. From their
inception they were targeting long-term operational goals
rather than short-term results. To be clear, there is nothing
wrong with that, but it is an important distinction to make. The
image of a successful science gateway promoted over the last
decade was a portal built to support users of tomorrow rather
than something that will get the results they need today.

III. BUILDING FOR TODAY
The reality for many scientists on the wrong side of the

digital divide is that they do not need portals built for
tomorrow; they need gateways built for today. They are
content using their current workflows, but are willing to adopt
technologies that make their workflows more efficient, more
powerful, or less painful. They will gladly set down Outlook
for Gmail, their departmental FTP server for Dropbox, and the
server under their desk for a virtual machine on Amazon.
These scientists are not pushing the boundaries of size and
scale, but they are, in aggregate, performing the bulk of the
science done today.

These scientists do not live in an enterprise world and
their experimental processes are much less rigid than those of
the organizations building the previously mentioned portals
above. These scientists look for silver bullets, or the next best
thing, to accelerate the time between proposal and discovery.
And if a miracle doesn’t come, simply squeezing an extra 5%
out of their week would be a huge win for them.

Whether they realize it or not, these scientists have

embraced the spirit of Agile [19] development that drives
today’s web ecosystem. In contrast to the monolithic
deliverable approach historically taken by portal projects,
today's web creates and innovates at a blazing pace. Working
from incremental release to incremental release, actively
engaging users, and obsessing over a results-first focus
enables high quality sites and services to be created and
refined into stable products in the time it takes most portals to
make their first release. One notable example being an
application called Burbn, which over a seven-month
timeframe morphed from a web application to an iPhone app
to a cross-platform application, then changed its focus and
relaunched as Instagram [20]. A second example is the social
bulletin board site Pinterest, which spent 3 months in
development before launch, then constantly adapted to user
feedback over the next year before expanding as an iPhone
app and exploding into the giant of today [21]. A third
example is a relatively new startup called GivePulse [22],
which spent 4 months iterating over designs and features with
local philanthropic organizations before publicly launching as
a site enabling the promotion, matchmaking, and coordination
of volunteers with events. While each of these examples gives
launch timelines in terms of months, their feature development
cycles were on the order of 1-2 weeks with updates and bug
fixes pushed out daily.

In each of these examples, the product that went to market

was markedly different from the project that was originally
conceived. They survived due to their ability to leverage
existing open source technologies, prototype ideas, and add
small bits of functionality that they could present to their
audience and find out if it had enough promise to invest more
time into its continued development.

When attempting to serve the needs of the lower half of

the digital divide, developers would do well to learn from
Instagram, Pinterest, and GivePulse and take these lessons to
heart. Start first by understanding that not every project can or
should be the next big thing. Providing a tool that helps a
researcher to see a problem in a different light and enables the
discovery of a solution is a significant contribution in its own
right. The gateway does not need to serve every conceivable
user community to be a success.

While much of what one interacts with on the web is

provided as a hosted service, i.e. Facebook, Gmail, DailyMile,
etc., there is no reason that every gateway should be a hosted
service. Most new desktop computers have more CPUs,

memory, and disk available than the virtual machines
powering the hosted services we rely upon. Furthermore,
modern web browsers are constantly evolving with powerful
new features both for the user and the developers of web
applications. At the same time, as more browsers have adopted
web standards put forth by the W3C [23] these features are
more available for use natively in the browser without the
need for polyfills such as Adobe Flash [24]. Some of these
features can even leverage advanced capabilities of the
underlying system such as GPU accelerated CSS rendering
and animations. The latest CSS modules, such as transforms
[25] and transitions [26] are even beginning to push the
boundaries of 3D graphics. Combined, this makes the
development of feature-rich, high-performance, and reliable
web applications using only HTML, CSS, and JavaScript a
reality.

By moving away from monolithic frameworks and large,

server-side stacks to client-side applications built using only
HTML, CSS, and JavaScript and leveraging RESTful APIs,
one can rapidly develop powerful, targeted applications that
can be quickly deployed, are highly scalable and “cloud-
friendly.”

One example is a tool created by Andre Mercer, an

undergraduate student at the University of Arizona. Andre
created a simple web page that submitted a request to the
iPlant Foundation API to run a GeneSeqer job [27]. He spent
an afternoon creating the page, then showed it to his
supervisor, iterated a handful of times on the wording and
default settings, then pushed it out into the group’s website.
Jon Duvick, a bioinformatician in a sister group saw the tool
and decided to add it to his site as well as embedding it as part
of his cloud-based annotation pipeline. Based on the success
of the original tool, Andre is now adding data browsing via a
jQuery [28] dialog box to the form so users can run analysis
on files stored in the Cloud as well their desktop.

IV. BUILDING ON A SOLID FOUNDATION
One of the reasons that applications can be built with such

light front ends is that they now rely upon a growing number
of web-friendly APIs for much of the work. The API
watchdog Programmable Web has tracked the growth and
adoption of APIs since 2005 and has seen an explosion of new
APIs in the last 2 years [29]. Much of this growth has been
attributed to the fact that, “APIs are helping companies do
business, with the tradeoff between adding an external
dependency being out-shined by the ability to move faster
building upon someone else’s expertise [30].” In short, APIs
allow companies to run lighter and move faster.

For new applications the abundance of APIs completely

changes the established paradigm. API providers offering
access to cloud storage, authentication, identity management,
and Backend-as-a-Service (BaaS) [31] have redefined how
applications are built. Things that used to take months to build
and test are now leveraged as hosted services and integrated in

an afternoon. One well-known benefactor of building on the
shoulders of other APIs is the communication platform
provider Twilio [32]. From its inception Twilio has leveraged
Amazon Web Services to handle spikes in demand and offload
much of its compute load while focusing on the core part of
their service, the communication platform.

Of the thousands of public APIs available today, and the

hundreds targeted towards science, there are remarkably few
that provide a generic platform for computational science. The
SoapLab [33] project provides mechanisms for accessing
SOAP services through a common interface, but it does not
deal with federated identity, sharing, or access control. The
NEWT project exposes HPC systems on the web, but is
restricted in scope to systems and services at NERSC [34].
Recently, the CHAIN project has promoted an end-to-end
solution for science gateway development based on open
standards including JSR 168 and 268, OpenLDAP, SAGA,
and PKSC-11 [35]. The framework is still relatively new at the
time of this writing and as such, could not be included in the
evaluation process leading up to the development of the
solutions described in this paper. Based on early successes,
CHAIN seems like an exciting project to watch going forward.
The target audience and advertised use case, however, are
more in line with traditional portal development than
lightweight gateways creation. The gUSE project provides a
mature web service framework for running workflows, storing
data, and registering applications [36]. Further, it has existing
integration with the WS-PGRADE portal to provide an out-of-
the-box front end based on Liferay. As with CHAIN, the
PGRADE and gUSE project timelines ran parallel to that of
the work in this paper. Futhermore, the approach taken by
gUSE to provide a SOAP-based service stack runs counter to
the desire of current web developers to interact with REST
services in an asynchronous manner.

In response to the dearth of platform APIs available for

general science the iPlant Collaborative created the
Foundation API [37]. The Foundation API is a RESTful
Science-as-a-Service platform for building modern
applications. It includes services that allow consumers to
securely conduct science, manage data, and share and curate
their work. Foundation exists as a hosted, multi-tenant cloud
service that is freely available to the open science community.
Version 1 of Foundation supports the following services.

• Apps: Allows users to register and discover scientific

codes that can be run via the Jobs service. There are
currently over 160 scientific codes both public and
private that can be run across multiple high
performance compute systems.

• Auth: token-based authentication service. Issues
limited use tokens that can be restricted to a
timeframe and number of uses and revoked when
needed.

• Data: Acts as a Rosetta stone for biological data.
Supports the conversion of data between known
formats.

• IO: provides multiprotocol data movement and
management.

• Jobs: Handles the end-to-end execution of registered
applications on a heterogeneous set of systems
ranging from HPC to raw VMs.

• Monitor: constantly monitors Foundation and its
dependent services. Provides real-time and historical
monitoring test results.

• PostIt: pre-authenticated URL shortening.
• Profile: search and view profiles of other users within

the API.
• Systems: provides information about systems

available from Foundation including status, stats, and
accessibility.

Since its initial release in November 2011, the Foundation

API has supported over 250 unique projects representing 10k
scientists worldwide. Users burned nearly 9M SUs running
over 10k jobs, leveraging 200 application codes installed on
HPC systems at PSC, SDSC, and TACC. Version 2, due out
prior to the publication of this paper, will add the following
services as well as expanded support for system registration,
federated identity management, additional execution
platforms, and a more mature callback system.

• Systems: discovery and register storage,
authentication, and execution systems for use
throughout the API.

• Transfer: move data from anywhere to anywhere
using multiple protocols.

• Metadata: create, search, and infer metadata about
any resource (file, job, person, system, etc.) within
the API.

By hiding all the heavy lifting of accessing systems,

moving data, running simulations, and establishing
relationships between people, data, and devices, consumers
are freed up to focus on their science and developers are able
to focus on innovation at the application layer rather than
infrastructure at the system level.

V. YOUR NEXT SCIENCE GATEWAY
Turning back to Andre’s GeneSeqr form, this tool is as

basic an example of a science gateway as one can find, but it
gets the job done. A scientist with remedial programming
capabilities can stand up a static web page on their personal
computer, a public web server, or on a CDN such as their
public Dropbox folder, Amazon S3, or even a free Yahoo
Sitebuilder page. When technology is that easy to adopt and
reuse, the possibility for it to reach a broad audience increases
dramatically. The question then becomes, how can we build
tools to accomplish tasks requiring a bit more complexity and
interaction and yet make them as simple to adopt and reuse as
Andre’s GeneSeqr form?

In recent years, a variety of toolkits and frameworks for
developing modern web applications have emerged that aid in
the development of lightweight, responsive, standards-driven,
front-end components. These projects are open source, have
very large user communities, and are supported by real
companies such as Twitter (Hogan.js, Bootstrap) [38][39],
DocumentCloud (Backbone.js, Underscore.js) [40][41], and
Google (Yeoman.io) [42]. Furthermore, as HTML5 has come
into its own and the development of single-page applications
has become commonplace in the commercial web, it makes
sense to begin using these technologies in science gateways.

With the goal of building tools that are simple to adopt
and reuse in mind, we have developed a toolkit using these
frameworks with the intention of doing for science gateways
what jQuery did for JavaScript and Web 2.0. We leverage the
iPlant Foundation API as a backend, and provide plugins for
Backbone.js that allow a Backbone.js application to easily use
the Foundation API without the developer needing detailed
knowledge of its inner workings. These plugins provide
implementations of the objects in the API as Backbone
Models and Collections that can be readily used to build
science gateways. This allows the gateway developer to focus
more on gateway development and less on handling the web
service calls to the backing API.

TABLE 1. THE FULL LIST OF FOUNDATION API BACKBONE.JS PLUGINS
AND THE FUNCTIONALITY THEY PROVIDE.

Plugin Name Functionality Provided
backbone-foundation Core support for using Foundation API
backbone-foundation-apps Application discovery and registration
backbone-foundation-data Data transformation and staging
backbone-foundation-io Data management and movement
backbone-foundation-jobs Job submission and monitoring
backbone-foundation-profile Identity management
backbone-foundation-systems Resource discovery and monitoring
backbone-foundation-post-it Pre-authenticated URL shortening

The Backbone-Foundation library is broken into separate

plugins that can be included in an ad hoc manner based on the
needs of the application. At the core is the main backbone-
foundation.js file, which provides functionality for basic
interaction with the Foundation API. By providing extensions
of the default Backbone Model and Collection objects, the
Foundation API can be used transparently through the
standard Backbone API. Also in this plugin is an
implementation of the Foundation Auth API and Model
objects for authenticating and obtaining API tokens for
authenticated use of the API. Finally, we include an Events
object that can be used to manage API-aware events across the
application.

Support for the remaining Foundation services is provided

by the additional Backbone plugins listed in Table 1. Each
plugin depends on the Backbone-Foundation core library to
provide the API integration. The only other dependency of the
Backbone-Foundation library is Backbone.js itself.

We selected Backbone as platform for multiple reasons.
Backbone adheres closely to our build-for-today design
philosophy. It is specifically designed for developing rich, yet
lightweight client-side applications that utilize a RESTful API
backend. Backbone applications follow the Model-View-
Controller (MVC) design pattern making for code that is easy
to develop, maintain, and extend. As a JavaScript application
framework, it can be easily integrated into other environments
and web platforms such as Liferay or Drupal. Finally,
Backbone is a widely used and popular framework with an
active user community and multiple examples of large-scale
applications built on top of it. Two examples of large-scale
Backbone users are the Khan Academy [43] and Coursera
[44], both providers of massively open online courses
(MOOC). One can imagine the benefits of having a
computational science course with labs and homework that
included hands-on access to a computational environment
where students can gain experience using actual large-scale,
high-performance computational systems. Using the
Backbone-Foundation plugins we have developed, these
MOOC providers could easily integrate the Foundation API
into coursework offered through those sites.

Figure 1. A standalone boilerplate gateway built using Backbone.js and
the Backbone-Foundation plugins. This application leverages the iPlant
Foundation API to provide authentication, data management, application
discovery, and job submission with no backend other than the
Foundation API.

We have also developed a complete Backbone application

(Figure 1) as a boilerplate science gateway using the
Backbone-Foundation library. The Backbone-Foundation
library and Foundation API are white-label components that
can be readily and easily used to develop your own science
gateway. This application is built using Backbone for the
application framework, Twitter Bootstrap for the front-end
components and HTML structure, and has no backend other
than the Foundation API and a web server to host the static
assets (which could also be hosted out of the Foundation API).

Figure 2. Embedding gateway widgets as a page in privately hosted CMS. From left to right: Wordpress, Drupal, Joomla, and Liferay sites.

The development of this boilerplate application took a single
developer less than a month to complete and includes
authentication, data management, application discovery, and
job submission.

Lastly, we have developed a collection of embeddable
“widgets” that provide discrete slices of functionality that can
be used immediately to add advanced capabilities to any web
page or existing portal or gateway with no more effort than
adding a Twitter “Tweet this” or Facebook “Like” button.

These widgets are also built on top of the Backbone-

Foundation plugin library. To include a widget in a page, the
page author only needs to add a reference to the widgets script
and a single div tag with the widget configuration contained in
data attributes on the tag. The widgets script acts as a scout
script to discover the widget div, determine the desired widget,
and then inject the appropriate widget into the page.

Foundation widgets can be easily used in any HTML page
and many CMS platforms such as Wordpress, Drupal, or
Joomla (Figure 2). And because they leverage the Foundation
API backend and don’t require local server configuration to
use, they can be used even on cloud-hosted sites such as
Wordpress.com.

The widgets available at the time of this writing include a

drag-and-drop file uploader, an application discovery widget,
and a job execution widget. The uploader widget gives a drag-
and-drop upload functionality using the HTML5 FileAPIs
allowing users to drag files from their desktop into the web
browser in order to upload to the iPlant Data Store. The
application discovery widget allows embedding up-to-date
lists of available iPlant applications into any page essentially
providing an application catalog for browsing and searching
applications. The job execution widget allows the embedding
of an application-specific job submission form in any page.

VI. GETTING FROM TODAY TO TOMORROW
The discussion on building for today has been targeted at

researchers developing new gateways up to this point.
Previous sections have demonstrated how one can bootstrap
an idea into a functional science gateway with a relatively
short ramp-up using existing APIs and services like the
Foundation API. However, these same development principles
can benefit existing gateways and portals, enabling the rapid

development and deployment of new features in a results-
driven fashion no matter how established an existing portal
may be.

 Consider the example of the Liferay enterprise platform.

Just as with the CMS platforms mentioned above, one can
drop in a Foundation application using only HTML and
JavaScript, and utilizing the Liferay Web Content Display
portlet as shown in Figure 2. Or, if something more robust is
needed, the application can be wrapped in a portlet and
deployed it in the same way one would deploy any custom
portlet.

Whether this functionality is packaged as content (HTML

and JavaScript) or as a plugin, module, extension, or JSR 268
portlet for a specific platform, migrating the functionality from
a lean prototype gateway using these tools, to an enterprise
solution with all the bells and whistles is a trivial process.
Deploying features built entirely on the front end is not a
deliverable that consumes months of time and effort. On the
contrary, it is more akin to migrating static content from one
site to another.

Finally, as mentioned above, forward integration isn’t

limited to wrapping bits of functionality as pages. It is possible
to embed custom widgets to provide one-off functionality such
as activity streams, share buttons, data drop boxes, submission
forms, and directory trees just to name a few.

The process of embedding a widget is the same as that of

adding a page. However, for easier adoption, an AJAX driven
widget generator is provided on the Foundation API
developer’s website to help users create widgets based on their
unique constraints such as styling, default values, and
restricted permissions.

VII. CONCLUSION
Science gateway development has historically been an

enterprise effort. In recent years, the introduction of
lightweight web technologies and REST APIs have changed
the way modern applications are built. By leveraging the
technologies of today and decoupling complex infrastructure
from gateway front ends, developers can respond to change
faster, innovate more quickly, prototype more easily, and
drastically reduce their time to production. This paper presents
a set of reusable, white labeled, front end components written

entirely in HTML, JavaScript, and CSS that leverage the
Foundation API and enable just such a transformation. By
utilizing the backbone-foundation plugins as fully functional,
interchangeable components, both new and existing gateways
can shift their attention from tedious integration to rapid
innovation that can impact researchers today rather than
tomorrow. Both the gateway components and the Foundation
API are freely available for use today at
https://foundation.iplantcollaborative.org.

ACKNOWLEDGMENT
The iPlant Collaborative is funded by a grant from the

National Science Foundation Plant Cyberinfrastructure
Program (#DBI-0735191). This work was also partially
supported by a grant from the National Science Foundation
Cybersecurity Program (#1127210).

REFERENCES

[1] Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010) "Creating the
CIPRES Science Gateway for inference of large phylogenetic trees" in
Proceedings of the Gateway Computing Environments Workshop
(GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.

[2] Dooley, Rion, Kent Milfeld, Chona Guiang, Sudhakar Pamidighantam,
and Gabrielle Allen. 2006. From proposal to production: Lessons
learned developing the computational chemistry grid cyberinfrastructure.
Journal of Grid Computing 4, no. 2: 195-208.

[3] Demeler, BORRIES. 2005. UltraScan: a comprehensive data analysis
software package for analytical ultracentrifugation experiments. Modern
analytical ultracentrifugation: Techniques and methods: 210-229.

[4] Goecks, Jeremy, Anton Nekrutenko, James Taylor, and T Galaxy Team.
2010. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences.
Genome Biol 11, no. 8: R86.

[5] Klimeck, Gerhard, Michael McLennan, Sean P Brophy, George B
Adams, and Mark S Lundstrom. 2008. nanohub. org: Advancing
education and research in nanotechnology. Computing in Science &
Engineering 10, no. 5: 17-23.

[6] Norris, Pippa. 2003. Digital divide: Civic engagement, information
poverty, and the Internet worldwide. Vol. 40. Cambridge: Cambridge
University Press, September.

[7] 2012. Science and Engineering Indicators 2012.
http://www.nsf.gov/statistics/seind12/start.htm.

[8] Bureau of Labor Statistics, U.S. Department of Labor, Occupational
Outlook Handbook, 2012-13 Edition, Medical Scientists,
on the Internet at http://www.bls.gov/ooh/life-physical-and-social-
science/medical-scientists.htm (visited May 10, 2013).

[9] Fawcett, Henry. Manual of political economy. Macmillan, 1888.
[10] Wilkins-Diehr, Nancy, Dennis Gannon, Gerhard Klimeck, Scott Oster,

and Sudhakar Pamidighantam. 2008. TeraGrid science gateways and
their impact on science. Computer 41, no. 11: 32-41.

[11] Lawrence, Katherine A., and Nancy Wilkins-Diehr. "Roadmaps, not
blueprints: paving the way to science gateway success." In Proceedings
of the 1st Conference of the Extreme Science and Engineering
Discovery Environment: Bridging from the eXtreme to the campus and
beyond, p. 40. ACM, 2012.

[12] Wilkins-Diehr, Nancy, and Katherine A. Lawrence. "Opening science
gateways to future success: The challenges of gateway sustainability." In
Gateway Computing Environments Workshop (GCE), 2010, pp. 1-10.
IEEE, 2010.

[13] "XSEDE | Overview." 2011. 29 Mar. 2013.
https://www.xsede.org/gateways.

[14] 2005. Joomla! The CMS Trusted By Millions for their Websites.
http://www.joomla.org/.

[15] 2005. Edublogs – education blogs for teachers, students and schools.
http://edublogs.com/.

[16] "nsf.gov - National Science Foundation (NSF) News - XSEDE Project
..." 2011. 29 Mar. 2013.
http://www.nsf.gov/news/news_summ.jsp?cntn_id=121181.

[17] 2002. Liferay.com: Enterprise open source portal and collaboration
software. http://www.liferay.com/.

[18] Dahan, Maytal, Eric Roberts, and Jay Boisseau. 2007. TeraGrid User
Portal v1. 0: Architecture, Design, and Technologies. International
Workshop on Grid Computing Environments. November 28.

[19] Martin, Robert Cecil. 2003. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, September 1.

[20] "Instagram." 2009. 29 Mar. 2013. http://instagram.com/.
[21] "Pinterest." 2009. 29 Mar. 2013 .http://pinterest.com/.
[22] "GivePulse | Enabling Everyone to Volunteer." 2012. 22 Mar. 2013.

https://www.givepulse.com/.
[23] "World Wide Web Consortium (W3C)." 29 Mar. 2013.

http://www.w3.org/.
[24] 2006. Adobe - Flash Player.

http://www.adobe.com/software/flash/about/.
[25] "CSS Transforms." 2012. 29 Mar. 2013. http://www.w3.org/TR/css3-

transforms/.
[26] "CSS Transitions." 2009. 29 Mar. 2013. http://www.w3.org/TR/css3-

transitions/.
[27] Schlueter, Shannon D, Qunfeng Dong, and Volker Brendel.

"GeneSeqer@ PlantGDB: Gene structure prediction in plant genomes."
Nucleic Acids Research 31.13 (2003): 3597-3600.

[28] "jQuery." 2006. 29 Mar. 2013. http://jquery.com/.
[29] "ProgrammableWeb - Mashups, APIs, and the Web as Platform." 2005.

29 Mar. 2013. http://www.programmableweb.com/.
[30] 2012. 8,000 APIs: Rise of the Enterprise - ProgrammableWeb.com.

http://blog.programmableweb.com/2012/11/26/8000-apis-rise-of-the-
enterprise/.

[31] "Backend as a service - Wikipedia, the free encyclopedia." 2012. 29
Mar. 2013. http://en.wikipedia.org/wiki/Backend_as_a_service.

[32] "Twilio Cloud Communications - APIs for Voice, VoIP and Text ..."
2005. 29 Mar. 2013. http://www.twilio.com/.

[33] 2007. Soaplab2. http://soaplab.sf.net/.
[34] Cholia, Shreyas, David Skinner, and Joshua Boverhof. 2010. NEWT: A

RESTful service for building High Performance Computing web
applications. Gateway Computing Environments Workshop (GCE),
2010. IEEE, November 14.

[35] CHAIN, (2010) Co-ordination & Harmonisation of Advanced e-
Infrastructures EU FP7 project http://www.chain-project.eu) project

[36] Peter Kacsuk, Zoltan Farkas, Miklos Kozlovszky, Gabor Hermann,
Akos Balasko, Krisztian Karoczkai and Istvan Marton:
WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large
Variety of User Communities
Journal of Grid Computing, Vol. 9, No. 4, pp 479-499, 2012.

[37] Dooley, Rion, Matthew Vaughn, Dan Stanzione, Steve Terry, and Edwin
Skidmore. Software-as-a-Service: The iPlant Foundation API.

[38] 2013. Hogan.js - Twitter on GitHub. http://twitter.github.io/hogan.js/.
[39] 2011. Bootstrap. http://twitter.github.com/bootstrap/.
[40] 2011. Backbone.js. http://backbonejs.org/.
[41] 2008. Underscore.js. http://underscorejs.org/.
[42] 2012. Yeoman - Modern workflows for modern webapps.

http://yeoman.io/.
[43] 2009. Khan Academy - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Khan_Academy.
[44] 2012. Coursera. https://www.coursera.org/.

