
Carina F. Alves, Geir K. Hanssen, Jan Bosch, Slinger Jansen (Eds.)

Proceedings of

5th International Workshop on
Software Ecosystems (IWSECO 2013)

Workshops hosted by 4th International Conference on Software Business
(ICSOB 2013) in Potsdam, Germany, June 11, 2013

Copyright © 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

Addresses of the editors:

Carina F. Alves
Universidade Federal de
Pernambuco
Cid. Unversitária s/n,
CEP 50.740-560, Brazil
cfa@cin.ufpe.br

Geir K. Hanssen
SINTEF ICT
Box 4760 Sluppen,
N-7465 Trondheim,
Norway
ghanssen@sintef.no

Jan Bosch
Chalmers University of
Technology
SE-412 96 Gothenburg,
Sweden
jan@janbosch.com

Slinger Jansen
Utrecht University
PO Box 80.089
3508 TB Utrecht,
The Netherlands
slinger@slingerjansen.nl

Contents
Towards the Analysis of Software Projects Dependencies: An
Exploratory Visual Study of Software Ecosystems
Francisco W. Santana and Cláudia M. L. Werner 1

On Clusters in Open Source Ecosystems
Shaheen Syed and Slinger Jansen .. 13

Reviewing the Health of Software Ecosystems – A Conceptual
Framework Proposal
Konstantinos Manikas and Klaus Marius Hansen 26

On the Software Ecosystem Health of Open Source Content
Management Systems
Sonny van Lingen, Adrien Palomba, and Garm Lucassen 38

Hadoop and its Evolving Ecosystem
J. Yates Monteith, John D. McGregor, and John E. Ingram 50

Towards the Roles and Motives of Open Source Software Developers
Ruvar Spauwen and Slinger Jansen ... 62

Notes from the panel discussion
Notes taken by Slinger Jansen and Garm Lucassen 74

Towards the Analysis of Software Projects
Dependencies: An Exploratory Visual Study of

Software Ecosystems

Francisco W. Santana and Cláudia M. L. Werner

PESC - COPPE/UFRJ,
Universidade Federal do Rio de Janeiro (UFRJ),

Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro, RJ
{fwsantana,werner}@cos.ufrj.br

Abstract. Software systems are rarely developed in isolation. The de-
velopment of current complex software systems often makes extensive use
of components previously developed or acquired from external suppliers.
Nevertheless, research on software systems has traditionally considered
each system as an isolated and self-contained project. Such character-
istic limits the quality of observations on studies as they do not con-
sider the software ecosystem in which the project is inserted. In this
paper we present an ongoing work that aims to enable the analysis of
software ecosystems from both technical and sociotechnical perspectives.
The novelty of our approach lies in the usage of interactive visualizations
to facilitate uncovering relationships among software projects within an
ecosystem.

Key words: Software Engineering, Software Dependencies, Software
Ecosystems, Software Visualization, Mining Software Repositories

1 Introduction

Software systems are increasingly dependent on other software systems. The
need to cope with an increasingly competitive market and demanding customers
leaves no room for each new complex software system to be completely developed
from scratch. Software industry has therefore recurred to software reuse in order
to achieve its goals, making extensive use of solutions previously developed or
acquired from external suppliers and incorporating them within its products.
Although the usage of software components can o↵er several advantages to the
development of software projects, such as reduced development time, higher pro-
ductivity and reliability, a poor choice of components can undermine the quality
of the developed product [1]. However, most of the studies regarding e↵ects and
impacts related to software components and general dependencies consider each
project as an isolated and self-contained product [2][3]. This perspective ignores
the relationships between a software project and its dependencies, and also the
relationships among software communities involved in the development of these
projects, i.e., the software ecosystem in which the project is inserted.

1

2 Francisco Santana & Cláudia Werner

Software ecosystems (SECOs) have become a subject of great interest for both
industry and academic communities, motivated by this holistic view of software
development that goes beyond exploring a single project and its own entities.
We define software ecosystems as a set of projects that are interdependent from
both technical and sociotechnical perspectives, that is, project artifacts, devel-
opers and supporting communities, linked to other projects by either reuse de-
pendencies or common contributors of development communities. As suggested
by related work [4], we believe that this view is important to better comprehend
software projects’ development characteristics, e.g., uncover details about the
impacts of the chosen reused components in a specific software project.
This paper aims to explore software component dependencies from an ecosystem
point of view, under the hypothesis that characteristics of reused components
impact on the developed system that reuses them. The novelty of our approach
resides on the employment of visualizations to observe and explore software de-
pendencies, uncovering relationships and patterns among interrelated projects.
Our motivation is grounded on our perception that few works [4][5] on litera-
ture tries to comprehend the impacts of components within di↵erent software
projects from both technical and sociotechnical perspectives, constituting a new
scenario for studies on software engineering.
The rest of this paper is organized as follows. In Section 2, we introduce concepts
of Software Ecosystems, detailing our definitions and comparing them to those of
other works. Section 3 presents an overview of existing work involving visualiza-
tion of software ecosystems. Section 4 describes our approach, including notions
that comprise its foundations and visualization techniques. Section 5 presents
a proof of concept conducted to demonstrate the feasibility of our approach.
Finally, Section 6 presents our final remarks and plans for future work.

2 Software Ecosystems

As stated by Lungu et al. “no software project is an island” [6]. The devel-
opment of current software systems are rarely conducted in isolation, with so-
lutions being redesigned and redeveloped. In this sense, the development of a
software system by the composition of reusable components establishes relation-
ships among various software projects and development communities, forming
a genuine ecosystem that guides and constraints the development of a software
system. Software ecosystems have become an increasingly popular subject, with
several research works being conducted to explore and understand relationships
among the various entities involved in software systems development. Neverthe-
less, the study of SECOs is still a novel area and there is no consensus on the
definition of what constitutes a software ecosystem. Based on a recent system-
atic mapping study [7], the term was coined in 2003 as a collection of software
products that have some given degree of symbiotic relationships [8]. More recent
work however tends to identify as a remarkable feature of a SECO the idea of
a common market or platform, inserting the projects in relationships of interest
that are somehow business-oriented. For example, Boucharas et al. [9] define

2

Towards the Analysis of Software Projects Dependencies 3

SECOs as a set of actors functioning as a unit and interacting with a shared
market for software and services, while Bosch [10] sees SECOs as a set of soft-
ware systems that enables, supports and automates activities and transactions
in the associated social or business ecosystems.
Albeit the aspiration to reach a bigger share on a particular market segment can
be observed in software industry and therefore on many software products, inter-
projects relationships may appear for other reasons than business-oriented, rang-
ing from convenience to reuse a previously developed solution to simple interest
in adopting a particular technology. These relationships also establish connec-
tions between projects, forming bonds that, when viewed in a broad perspective,
can be seen as a software ecosystem. Based on this reasoning, we adopted a broad
definition for SECOs, independent of business features and also aligned to other
recent works [11][12].
There are many challenges and unanswered questions regarding SECOs, partic-
ularly from perspectives such as software maintenance and evolution. One such
challenge involves the risks that a software project faces while entering a SECO.
Even though reusing software components with assured quality can provide ben-
efits to software projects, a software ecosystem can also impose obstacles to the
development of a software project when the project is made upon components
with low technical quality. Also, these challenges cannot be seen from a strictly
technical point of view, as both technical and social factors play an important
role on the process of software development [2] [3] [13].

3 Existing Work

Though recent studies have explored characteristics and behaviors of SECOs,
few approaches have been concerned with ways to visualize and analyze SECOs
relationships. Among the studies on this topic, Pérez et al. [4] developed a tool
for visualization and analysis of ecosystems named SECONDA, a tool that col-
lects data from GIT repositories, computes software metrics from source code
artifacts and presents visualizations of the processed data from several projects
simultaneously, allowing the exploration of SECOs. Another important work
presents the Small Project Observatory (SPO) [6], which also collects data and
presents visualizations from multiple projects in an integrated manner, o↵ering
users two di↵erent perspectives to explore SECOs, with focus on either ecosys-
tems’ projects or developers’ communities.
Both SECONDA and SPO o↵er mechanisms for data extracting, metrics evalu-
ation and visualization of projects within SECOs for visual analysis. However,
these tools have limitations related to data collection, being able to only process
a so-called ”super-repository” that contains all projects of a SECO, regardless
of the fact that the data of all SECOs’ projects are not necessarily stored in
one common repository, limiting the analysis that can be done with these tools
and posing as a threat to validity for these works. Furthermore, while these
tools o↵er mechanisms for researchers to explore SECOs from both technical
and sociotechnical perspectives, they do not provide means to explore how the

3

4 Francisco Santana & Cláudia Werner

relationships evolved over time.
Finally, there are other important but less related works that show charts and
indicators of ecosystems and relate to our proposal by providing results that can
assist us in formulating hypotheses, choosing metrics and constructing visual-
izations that are applicable to analyze SECOs. Among this category of studies,
stands out the one described in [13] that analyzed the Evince document viewer
and presented a serie of views that could also be applied to software ecosystems,
and the one detailed in [14] that found closer relationships between develop-
ers’ communities of KDE and Gnome than Apache’s due to technical proximity
between the former projects.

4 Our Approach

Our approach consists on the usage of information visualization techniques to
depict a SECO, applied over software projects repositories’ data extracted using
mining software repositories (MSR) methods. Our proposal features three main
steps: data extracting, data processing, and SECO visualization. On the follow-
ing subsections we describe each step and introduce key concepts to enable a
better comprehension of our proposal.

4.1 Data Extracting

The first step of our proposal consists of obtaining data from version control
systems and issue trackers of software projects that share technical dependen-
cies, and are therefore members of a common ecosystem under our definition.
Software repositories such as VCS and issue tracking systems are widely used
by software developers on both commercial and open source environments, and
contain a plethora of available data about the underlying software projects and
associated development process that can be mined to explore and investigate
evidences about software development. Access to these software repositories is
made using native Subversion protocol for VCS connection, while issue trackers
data are collected using webcrawlers. Our proposal’s data extraction is not lim-
ited to analyzing only one repository, being able to collect data from projects
stored in di↵erent repositories to compose an ecosystem.
Following the data collection of a software project, we automatically identify a
list of software dependencies from build managers and dependency managers’
artifacts, such as Maven’s pom.xml or Ivy’s ivy.xml. These tools are also exten-
sively used by software development communities and assist the development
process, o↵ering features such as dependencies browsing and managing conflicts.
The identification of software dependencies may lead to data extraction of other
software projects, and despite the fact that dependencies identification can be
performed automatically, data extraction needs to be conducted manually be-
cause repositories addresses and their access credentials are not specified in the

4

Towards the Analysis of Software Projects Dependencies 5

build managers’ artifacts. Source code analysis was discarded as a way to estab-
lish links between projects since artifacts path or contents is not reliable to infer
which project the artifact belongs to.

4.2 Data Processing

The Data processing phase has two distinct objectives, beginning with the identi-
fication of dependencies between the collected ecosystems entities, these entities
being developers, actors on issue tracker communities, and software projects’
artifacts and metrics computation. The dependencies among the SECOs enti-
ties are processed using three di↵erent techniques, namely logical dependencies,
static dependencies and coordination requirements. Static dependencies arise
from procedures and methods calls between projects’ classes or compilation
units, while in contrast logical dependencies [15] are computed between arti-
facts that have evolved and been modified many times together, even though
these artifacts have no explicit connection. Finally, as software development is a
typical example of collaborative work, the notion of coordination requirements
proposed by Cataldo and colleagues [16] appears as a way to obtain the set of
individuals a developer should coordinate his/her work with (or at least be aware
of) based on their tasks level of interdependency, measured based on which arti-
facts each developer modified and the logical dependencies these artifacts shared.
Building upon the identification of dependencies, the metrics evaluation phase
has the objective to calculate SECOs software metrics to build indicators of a
SECO feature (e.g., its health). Despite our intentions to evaluate metrics and
construct indicators for SECOs features, there is a lack of formal definition for
metrics on SECOs given the novelty of the discipline, and thus in our initial ex-
ploratory context we have employed but visual means to infer projects cohesion
and coupling.

4.3 SECO Visualizations

Information visualization techniques have been successfully employed by re-
searchers trying to understand software system features, especially those related
to software evolution, maintenance and monitoring [17]. As many SECOs fea-
tures remain unknown, we believe that visualizations o↵er a sound starting point
to explore the relationships of related software projects, and developed two vi-
sualizations to observe di↵erent characteristics of SECOs, namely communities
and technical views.
Higher resolution images of the visualizations presented on next subsections are
available at http://lab3d.coppe.ufrj.br/index.php/projetos/visecos.

Communities View This view (Figure 1) focuses on the analysis of how the
di↵erent communities of a SECO interact, i.e., how each project member of the
SECO contributes to other projects from a sociotechnical point of view. The
main usage scenario of this visualization is to identify the degree of participa-
tion and contributions between di↵erent projects of the same SECO, naively

5

http://lab3d.coppe.ufrj.br/index.php/projetos/visecos

6 Francisco Santana & Cláudia Werner

suggesting the health of the whole SECO community.
To represent these interactions within SECOs’ communities we chose to use
graphs, since it is regarded as an intuitive way to display dependencies. Based on
data from both VCS repositories and issue trackers, we constructed two graphs
at di↵erent levels of granularity. On the coarse grained graph, each project is rep-
resented by a vertex with a unique color and has two child vertices, representing
the VCS developers’ communities and issue trackers contributors. Each of these
communities’ vertices can then be linked by edges to vertices of other projects,
meaning that there are collaborators that act on both communities. The fine
grained graph in turn depicts interaction between the communities actors more
explicitly based on both Coordination Requirements network and discussions on
the same issue by di↵erent contributors.

Fig. 1: Communities View, featuring Apache Sling (green), Apache Jackrabbit
(red) and Apache Felix (blue) projects.

The user can interact with the visualization by applying various filters, enabling
to focus on the relationships that are of interest to his/her analysis. The filters
currently implemented allow: i) hiding nodes from a specific project or archive
(VCS or issue tracker), enabling to focus on a selected set of projects of the
SECO; ii) coloring the nodes based on how many di↵erent projects a contrib-
utor participates; iii) change the graphs granularity; iv) and select a specific
time-span to focus on, considering only contributions made within this period.

Technical View This view focus on the analysis of how technically interde-
pendent of each other the di↵erent projects within a SECO are, i.e., how the
various artifacts/modules of one project make use of methods and/or objects
declared on other projects’ artifacts/modules. This visualization is employed to
observe the most important artifacts of the ecosystems from a reuse perspective,
enabling the visual identification of various characteristics such as the assets that
are more central to the SECO (i.e., that various other artifacts depend upon) or
those that depend upon artifacts supplied by several other projects.
The technical view also makes use of graphs to evidence the links between arti-
facts (Figure 2), displaying the processed static dependencies. Technical view’s

6

Towards the Analysis of Software Projects Dependencies 7

graph also o↵ers filters to conduct analysis over fine or coarse grains, since the
amount of dependencies between the various projects can prove to be too dense
to interpret. In the fine-grained analysis all vertices are artifacts identified by the
project’s color, and edges represent dependencies between the artifacts, whilst
on coarse-grain the vertices represent the projects modules obtained from the
artifacts’ package declaration, naively hinting at the components of each project.

Fig. 2: Technical View presenting dependencies between Apache Slings artifacts
(green) and Apache Felix (blue) and Apache Jackrabbit (red) projects.

To adequately observe the SECO technical dependencies, users can interact
with the visualization likewise the communities view, being able to change the
granularity of dependencies and show/hide artifacts of specified projects.

5 Proof of Concept

To demonstrate the feasibility of our approach, we conducted an exploration of
the relationships of a SECO in the form of a proof of concept. The main objective
was to highlight the usage of the visualizations we proposed in a real case, using
open source projects. Our expectations were that the visualizations would help
to identify how dense the technical and sociotechnical relationships between a
software project and other projects that it depended upon were.

5.1 Project Description

In order to observe the relationships of a SECO, we required a software project
that satisfied three requirements: i) was hosted on Subversion (SVN) repository
that we had read access; ii) reported issues on either JIRA or Bugzilla issue
tracking system; and iii) listed its dependencies in structured artifacts (e.g.,
Apache Maven’s pom.xml or Apache Ivy’s ivy.xml). The first two requirements
are due to limitations of our supporting tools, which can only collect data from
the specified repositories. The latter is given due to the technique we used to in-
fer software project dependencies, using the specified artifacts to automatically

7

8 Francisco Santana & Cláudia Werner

gather this information.
Given our intentions and limitations, we chose to observe Apache Sling’s ecosys-
tem. Apache Sling is a large open source web framework designed to store and
manage content over a Java Content Repository (JCR) specification developed
by Apache Software Foundation (ASF), being one of its top-level projects since
2009. Apache Sling also matches all our established requirements: it is hosted
on a public SVN repository, uses JIRA as issue tracking system and Maven as
dependency manager. Furthermore, the project was handily picked due to our
previous knowledge of its dependencies with other large ASF’s top-level projects
Jackrabbit and Felix.

5.2 Supporting Tools

Extracting relevant data depicting how software systems were developed is a
complex task. The sheer amount of data can easily overwhelm researchers if
appropriate tools and methods are not applied, misleading them to erroneously
identify inexistent patterns and features. We made use of two tools to assist us
on reaching our goals, namely XFlow and JDX.
XFlow [18] is an extensible open source tool that enables empirical software
evolution analyses from both technical and sociotechnical perspectives. We used
XFlow to extract and process projects’ data, evaluate metrics of the selected
projects, and also adapted the tool to extract software projects’ dependencies
and present the visualizations described on the previous subsection.
Java Dependency eXtractor (JDX) is a library developed to identify static de-
pendencies from java source code artifacts, being able to compute call-graphs
using Eclipse IDE compiler’s JDT Core to handle source code in plain form. We
used JDX to compute static dependencies between source code artifacts.

5.3 Analysis Procedure

We analyzed one specific release of Apache Sling, developed from May 14th, 2009
to April 18th, 2011. The information about the release dates was obtained by
browsing the project’s mailing lists and looking for release announcements. In
this period, the project was actively developed by a group of 7 people. Apache
Sling is composed of several modules within the same repository, and our data
collect procedure was configured to extract data from all these modules’ trunk
directories, resulting in 830 commits found. We then proceeded with the data
gathering by accessing and collecting data from Sling’s JIRA, collecting 318 is-
sues reported and/or resolved by a supporting community of 51 people.
After this initial data collect we used XFlow to analyze Sling’s dependencies and
choose two related projects to consider on our analysis: Apache Felix (release
1.2.0 to 1.4.0) and Apache Jackrabbit (release 1.5.0 to 1.6.0). Apache Felix is
an open source implementation of OSGi R4 Service Platform and other OSGi-
related technologies, being widely used by well-known projects such as Glassfish
application server and the Netbeans IDE; while Jackrabbit is an implementa-
tion of Content Repository for Java (JCR) specification, and provides content

8

Towards the Analysis of Software Projects Dependencies 9

management services. We analogously collected data from these selected projects
VCS trunks and issue trackers, ending up with a small portion of Sling’s ecosys-
tem for study.
For the data processing phase, we obtained the source bundle of analyzed
projects on their o�cial site to identify static dependencies between the ar-
tifacts and modules, while logical dependencies were identified using data ex-
tracted from VCS and issue trackers by XFlow. We then proceeded to generate
visualizations and analyzed our results, discussed on the next subsection.

5.4 Results

Our exploratory analysis was able to successfully depict interaction among
projects under our SECO definition (Figure 1 and Figure 2). This initial ex-
ploitation was a necessary step to justify further studies, since we couldn’t pre-
dict how intense would be the interaction among communities of related software
projects. Also while our visualizations may not scale to display a large amount
of data, we believe that filtering graph nodes using metrics such as centrality
and betweenness centrality on future studies can reduce these problems.
Besides verifying the feasibility of our approach, we observed interesting fea-
tures on the analyzed SECO. The discussion of these findings has been divided
in technical and sociotechnical perspectives.

Technical Discussion For the technical perspective analysis we focused on
the dependencies between Apache Sling and both Apache Felix and Jackrabbits,
excluding dependencies between the latter projects. We did that since the graph
that resulted when considering all projects was too dense and proved di�cult to
represent in a legible figure and was beyond our exploratory context.
Considering this limitation, we have analyzed the reused artifacts and the tech-
nical view suggests that there are some critical artifacts to the maintenance of
Apache Sling that are provided by other projects. We did not find any class
that depended upon artifacts from two projects, and identified two interesting
patterns on the assets reused: i) a large set of classes that depends on a single
class of another project (Figure 3(a)); and ii) a class that depends on various
artifacts of other projects (Figure 3(b)). These patterns suggest how prepared
to reuse these components were, implying on the reliability of the modules that
depend on them. In the first pattern, for instance, a defect on the reused arti-
fact could be propagated to several artifacts that reuse it; while the second one
indicates that even small changes in a class could require knowledge of several
other classes from other projects.

Sociotechnical Discussion From a sociotechnical perspective, we observed
that all projects of the SECO were related (Figure 1). We identified that most
of the interactions between the communities involved on the analyzed period has
occurred via issue tracking systems, in which 8 collaborators from Apache Sling’s
issue tracker contributed to project Apache Jackrabbit’s issue tracker and vice-
versa, 7 between Apache Sling and Apache Felix, and 3 between Apache Felix

9

10 Francisco Santana & Cláudia Werner

and Apache Jackrabbit. We also note that there is one contributor that bridges
all the projects, contributing to all three issue tracker. Looking at the VCS com-
munities, we observed that few developers had participated on two projects on
the same period (3 between Apache Sling and Apache Felix), while none had
participated in all three.

(a)

(b)

Fig. 3: Patterns identified on technical visualization.

Based on these exploratory findings, we conclude that there have been con-
siderable contributions between all the projects of the SECO and rea�rm the
importance of sociotechnical analysis on software engineering studies. This initial
analysis also provides basis to the conception of an experimental hypothesis that
needs further studies to be answered, regarding topics such as the role of those
contributors who participate on various projects inside a SECO, or the identi-
fication of features that facilitate or hinder the contribution towards a specific
project from external developers that reuse its assets.

5.5 Threats to Validity

Our study is characterized as a proof of concept, and thus has not the same rigor
as a formal experiment. Nevertheless, we found interesting results that must be
interpreted considering the following validity threats.
Construct Validity. The relationships between developers that we have found
may not be totally accurate as it’s common to find some contributors who do
not have permission to commit to the project’s VCS and have their contributions
carried out by others developers.
Internal Validity. Our approach is based on the hypothesis that features of a
project’s dependencies impact the project that uses them as components, but
we have not extensively verified the correlation between the projects. Consider-
ing this, we cannot determine that the characteristics we observed actually come

10

Towards the Analysis of Software Projects Dependencies 11

from the related projects or are derived from unobserved attributes.
External Validity. As we analyzed few projects, all of them belonging to the
same organization (ASF), we do not claim that these results remain valid for
other projects and in di↵erent development contexts.
Conclusion Validity. We did not conduct any statistical analysis in order to vali-
date our findings, making use of purely visual methods to perform our analysis.
While this could be interpreted as a serious threat to our findings, given the
lack of related work with similar objectives we decided to first conduct analy-
ses without statistical rigor to explore the degree of interdependencies between
projects and general interaction of SECO communities.

6 Final Remarks and Future Work

This paper presented an approach to analyze SECOs from a technical and so-
ciotechnical perspective, focusing on projects that share reuse dependencies. Our
exploratory study matched our expectations that the di↵erent projects interact
beyond the technical level, and this motivated us to further inspect how features
of a reusable component a↵ect software projects and the contributors’ commu-
nities that reuse them.
We remark that this paper presents an initial e↵ort to explore SECOs and ex-
pect to expand this proposal under the following two major aspects:
SECO Metrics: given that software ecosystems form a recent subject for Soft-
ware Engineering studies, there is a lack of papers that list formal metrics and
indicators applicable for SECOs. We intend to conduct a systematic mapping of
studies to identify metrics used by recent works on SECOs context, gathering a
list of metrics that will enable us to further investigate SECOs.
Expand Research Perspective: our initiative is part of a greater context of SECOs
exploration, with other researchers interested in the investigation of IT and Gov-
ernance aspects and the proposal of a framework for modeling and managing
SECOs [19]. In the future we expect to integrate our solutions and provide more
complete studies on SECOs.

Acknowledgments. Francisco Santana receives individual grant from CAPES,
and Cláudia Werner from CNPq.

References

1. Jiang, L., Carley, K., Bigrigg, M., Eberlein, A., Galster, M.: The impact of com-
ponent interconnections on software quality: A network analysis approach. In:
Systems, Man, and Cybernetics (SMC’12). (2012) 1865–1872

2. De Souza, C.R.B.: On the relationship between software dependencies and coordi-
nation: field studies and tool support. PhD thesis, Long Beach, CA, USA (2005)

3. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies,
work dependencies, and their impact on failures. IEEE Transactions on Software
Engineering 35(6) (2009) 864–878

11

12 Francisco Santana & Cláudia Werner

4. Pérez, J., Deshayes, R., Goeminne, M., Mens, T.: Seconda: Software ecosystem
analysis dashboard. In: Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on. (2012) 527–530

5. Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. In: Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE). IWPSE-EVOL ’10, New York, NY, USA, ACM (2010) 42–47

6. Lungu, M., Lanza, M., Gı̂rba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Sci. Comput. Program. 75 (April 2010) 264–275

7. Barbosa, O., Santos, R., Alves, C., Werner, C., Jansen, S.: A systematic mapping
study on software ecosystems through a three-dimensional perspective. In Jansen,
S., Brinkkemper, S., Cusumano, M., eds.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Cheltenham, UK, and Northampton, MA, USA (2013)

8. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. MIT Press, Cambridge, MA, USA (2003)

9. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem model-
ing. In: Proceedings of the 1st international workshop on Open component ecosys-
tems. IWOCE ’09, New York, NY, USA, ACM (2009) 41–50

10. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference. SPLC ’09, Pittsburgh,
PA, USA, Carnegie Mellon University (2009) 111–119

11. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translu-
cence as an enabler for scalable collaboration. In: Proceedings of the Fourth Eu-
ropean Conference on Software Architecture: Companion Volume. ECSA ’10, New
York, NY, USA, ACM (2010) 65–72

12. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. J. Syst. Softw. 83(1)
(January 2010) 67–76

13. Mens, T., Goeminne, M.: Analysing the evolution of social aspects of open source
software ecosystems. In: Proceedings of the Third International Workshop on
Software Ecosystems. IWSECO ’11 (2011) 1–14

14. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: 3. In: Ap-
plying Social Network Analysis Techniques to Community-Driven Libre Software
Projects. Volume 1. Information Resources Management Association (2009) 28–50

15. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on prod-
uct release history. In: Software Maintenance, 1998. Proceedings., International
Conference on. (1998) 190–198

16. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of coor-
dination requirements: implications for the design of collaboration and awareness
tools. In: Proceedings of the 2006 20th anniversary conference on Computer sup-
ported cooperative work. CSCW ’06, New York, NY, USA, ACM (2006) 353–362

17. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

18. Santana, F.W., Oliva, G.A., de Souza, C.R.B., Gerosa, M.A.: Xflow: An extensible
tool for empirical analysis of software systems evolution. In: Proceedings of the
VIII Experimental Software Engineering Latin American Workshop. ESELAW ’10,
New York, NY, USA, ACM (2010) 353–362

19. Santos, R.P., Werner, C.M.L.: Reuseecos: An approach to support global software
development through software ecosystems. In: ICGSE Workshops. (2012) 60–65

12

On Clusters in Open Source Ecosystems

Shaheen Syed and Slinger Jansen

Department of Information and Computer Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, the Netherlands

{s.a.s.syed, slingerjansen}@uu.nl}

Abstract. This paper seeks to find characteristics of relationships be-
tween developers within various clusters of FLOSS ecosystems. We have
mined the repository of the open source programming language Ruby,
and linked developers and projects on the basis of collaboration. We used
Social Network Analysis, and more specifically, the concept of modu-
larity to expose underlying clusters or sub-communities. A survey was
constructed to aid in the qualitative part of this research. The data
shows that Ruby’s ecosystem consist mostly of single developers who
work independently. Developers within clusters of a few developers of-
ten have personal relationships formed through friendship, work and the
open source community. Personal relationships formed through the open
source community grow as clusters consist of more developers. Devel-
opers in clusters with large number of developers are often unaware of
friend-of-friend relationships. Project administrators, however, fail to list
developers that contribute through pull/request issues as authors, mak-
ing data on Ruby’s repository incomplete.

Keywords: Software Ecosystems, Clusters, Ruby, FLOSS

1 Introduction

Free/Libre Open Source Software (FLOSS) developers have to work collabora-
tively in order to maintain, improve or extend their software. Especially when
their collaboration is underpinned by a common technology or market, and op-
erate through the exchange of information, resources and artifacts, Software
Ecosystems (SECOs) start to emerge [1]. Jansen et al. state that getting insights
into a SECO requires the quantification and measurement of specific SECO
characteristics. Possible characteristics are the number of sub-communities, the
reciprocity of the ecosystem or the out degree of keystone actors. Moreover, un-
derstanding SECO characteristics can aid in maximizing its profitability, and
more concretely, SECO orchestrators can develop strategies to keep a SECO
vibrant and profitable for other organizations in the SECO.

This paper addresses the characteristics of sub-communities or clusters within
the Ruby SECO. Clusters are defined as sets of nodes which are connected
together by some path, that is, there exists a sequence of links that can be
traversed to go from one node to any other node. There exist, however, no paths
between two nodes in di↵erent clusters [3]. As SECOs can be seen as large

13

2 Shaheen Syed and Slinger Jansen

social networks, where actors (developers) are connected through relationships
(collaborations) that hold them together [4], numerous clusters are present.

The study of SECOs, or social networks, can be conducted by applying So-
cial Network Analysis (SNA). Several studies have applied SNA in the context
of open source. For example, Gao, Freeh and Madey used SNA to study core
developer networks on SourceForge.net hosted projects [5]. Lopez-Fernandez et
al. used SNA to analyze source code repositories of open source projects [6].
Madey et al. applied SNA to model the open source network as collaborative
networks and studied the growth of these networks [7]. Previous studies are, how-
ever, focused on the developer or project level, and not specifically on the cluster
or sub-community level. Concretely put, this paper uses SNA to reveal under-
lying clusters within the Ruby SECO and strives to define the characteristics
of relationships between developers. The ability to find and analyze such clus-
ters can provide invaluable help in understanding and visualizing the structure
of networks and thus understanding the SECO. Several algorithms exist to find
sub-communities or clusters within networks [8–10]. Popular algorithms for large
networks are based on the concept of modularity, which take the structure of a
network and decompose it into modular communities, i.e. sub-communities or
clusters. It looks for dense connections (relations) within groups, and sparse con-
nections between them. Furthermore, it requires less computational complexity
in contrast to other methods, e.g. graph partitioning. Our study uses the Lou-
vain method [11], a modularity algorithm that has successfully been applied to
find sub-communities in large networks, such as Twitter, LinkedIn, and Flickr.
To extend our analysis, a survey is constructed to aid in the qualitative part
of relationships between developers. Hence, Ruby developers were asked numer-
ous questions related to other developers that were clustered together. Doing so
enabled us to classify qualitative data by cluster sizes.

The remainder of the paper is structured as follows: Section 2 elaborates
on the research method and provides insights into the various steps undertaken
from data extraction to cluster identification. Furthermore, it elaborates on the
survey and how it was constructed. Section 3 discusses the first findings of the
data that were extracted from the Ruby repository and provides an overview of
distributions that define the Ruby ecosystem. Section 4 makes a first classifica-
tion of survey results based on various cluster sizes. Finally, Section 5 concludes
our classification of results and provides improvements for future work.

2 Research Design

Our study has taken as object of study the Ruby open source SECO. Ruby is
an object oriented programming language designed and developed in 1995 by
Yukihiro Matsumoto in Japan. The syntax is influenced by Perl and Smalltalk
features and is similar in many respects. It was created to balance functional
programming with imperative programming. Ruby’s most popular framework,
named Ruby on Rails, is an open source web framework that enables develop-
ers to create web applications more easily. These applications, best described

14

On Clusters in Open Source Ecosystems 3

as utilities or libraries, are called gems and are hosted on Ruby’s repository
Rubygems.org. Several gems can be combined to create specific features or ex-
tend existing work.

2.1 Research Question

This paper is an extension of our previous explorative study, in which we pre-
sented elements, characteristics, descriptives, roles, cliques and relationships of
the Ruby ecosystem [12]. Our previous work was quantitative in nature and
lacked essential qualitative information. We replicated the study and focused
on relationships between developers within clusters. Thus, the main research
question answered in this paper is: What are the defining characteristics of re-
lationships between developers within clusters of FLOSS ecosystems? To answer
this question, we looked at relationships between developers within the Ruby
SECO of various cluster sizes with respect to the number of developers residing
within them.

Developers are connected by strong or weak ties. For example, developers
have strong ties if they are friends, classmates or working at the same company
(i.e. they know each other personally to some extent), and have coded together
to produce a working gem. Weak ties, by contrast, involve infrequent and limited
interaction. For example, developers are connected together through a friend-of-
friend relationship, that is, developer a has worked with developer b, who in
turn has worked with developer c, developer a and c are now connected through
developer b. Our study further looks at these friend-of-friend relationships and
to what extent they constitute strong or weak ties.

Strong ties are important because it improves the exchange of information
with other strong ties and reinforce companionship and support. The study of
strong ties can help us understand the structure and local information of a social
group [3]. Weak ties bring us more new opportunities and resources which cannot
be obtained from close relations [13]. The study of weak ties provides a global
view of the community as a whole.

2.2 Data Gathering

We collected our data from Rubygems.org as it provided us with an API to
mine the data. Because integral collection was not possible, we developed several
scripts to extract the data one by one from the API’s XML output. The data
was then stored in a relational database. The API of Rubygems.org provided us
with the following data on each gem:

1. Gem name
2. Total downloads
3. Current version
4. Downloads current version
5. Authors
6. Info

7. Project uri
8. Gem uri
9. Homepage uri
10. Wiki uri
11. Documentation uri
12. Mailing list uri

15

4 Shaheen Syed and Slinger Jansen

13. Source code uri
14. Bug tracker uri

15. Dependencies

As our research was targeted at developers (authors), we distilled this in-
formation from the complete dataset. Unfortunately, Rubygems.org stored au-
thor information as a string, causing problems when multiple authors have col-
laborated on a gem. Several formats for entering multiple authors were used
by project administrators, such as “Peter and John”, “Peter & John”, “Peter,
John”. This information was decoupled using several SQL statements which ul-
timately resulted in database records with single entities. Each gem was given a
unique id and was linked to one or multiple authors. Data extraction was per-
formed on May 7th 2012, providing us with a snapshot of the Ruby ecosystem
as it was then.

2.3 Cluster Identification

After data collection we visualized the data using Gephi [14], which is a free to
use application for social network analysis. Furthermore, Gephi is an interactive
visualization and exploration platform for all kinds of networks and complex
systems, dynamic and hierarchical graphs.

A common property within networks is community structure. It is the divi-
sion of network nodes into groups within which the connections are dense, but
between which they are sparse [9]. Newman and Girvan defined the measure of
modularity to quantify the strengths of communities by using the denseness and
sparsity of the group’s inner and outer connections. Their modularity measure is
a scalar value between -1 and 1, where 1 indicates networks with clusters that are
disconnected from each other, i.e. no nodes overlap two clusters. Their algorithm
is especially useful for undirected and unweighted graphs to reveal underlying
clusters.

To identify clusters within the Ruby ecosystem we used the algorithm pro-
posed by Blondel, Guillaume, Lambiotte and Lefebvre [11], known as the Louvain
algorithm. Their algorithm is based on the work of Newman and Girvan but im-
proved in terms of computer time and modularity. We used the complete dataset
to create the graph where each node consists of a developer or gem. Developers
were connected to other developers if they both contributed to the same gem.
The above mentioned algorithm was then performed on the graph.

2.4 Survey

To get insights in the qualitative aspects of clusters, we constructed an online
survey that was personalized for Ruby developers registered on Rubygems.org.
The online survey1 was able to retrieve information on the respondent’s cluster
from the database that contained information on developers and gems. For ex-
ample, if developer a was clustered in cluster k, all other gems and developers
in cluster k were shown to developer a when answering the survey.

1 http://www.ruby-research.com

16

On Clusters in Open Source Ecosystems 5

Data was collected between November 23rd 2012 and February 16th 2013.
Invitations to the survey were posted on forums, message boards, and developers
were invited to participate by contacting them via email. Email addresses were
obtained from public profiles on Rubygems.org.

The variables measured in the survey fall into two categories. The first cat-
egory measured relationships (ties) towards other developers and other gems
residing in the respondent’s cluster, and if they had collaborated in producing
gems. Furthermore, it measured to what extent they had personal relationships
to other developers and, if any, how they were established. The second category
measured motivations for creating new gems and the various contributions/roles
developers have when creating gems with other developers.

To measure characteristics of relationships (e.g. tie strength), answers could
be given on an ordinal scale (e.g. I know no - few - half - almost all - all devel-
opers in my cluster). Because our research was explorative of nature, we were
not concerned about interval or ratio data to perform statistical analysis. The
ordinal scale was su�cient in the sense that it enabled us to make some sort of
classification based on the a priori grouping of cluster sizes based on the number
of developers. Other questions were measured on a nominal scale, such as the
various types of relationships or motivations. Moreover, several checkboxes could
be selected that were processed with multiple answer analysis.

3 Data

At the time of analysis, the Ruby ecosystem consists of 37,551 gems and 15,679
developers. On average, each gem is created by 2.39 developers. The gems vary in
their total downloads from just 48 downloads (“Whitelabel” by Peter Schröder)
to a number as high as 12,623,891 downloads (“Rack” by Christian Neukirchen),
with a mean value of 16,477.58 and a standard deviation of 238,668.06. Only 113
gems have total downloads exceeding one million, which constitute for 0.3% of
the total ecosystem. In contrast, 18,783 gems have equal or less than 1,000 total
downloads, representing 50% of the total ecosystem. Out of all the gems, 3.8%
had an additional uri to a wiki of their gem, 7.9% provided an uri to additional
documentation and only 1.5% provided the option to subscribe to their mailing
list.

3.1 Clusters

We have identified 10,586 valid clusters by performing the modularity algorithm
proposed by Blondel et al. [11]. The modularity achieved by performing mod-
ularity optimization (optimizing the modularity to find distinct clusters) was
0.985, an indication that nearly all clusters are unique, i.e. no developers ex-
ist in more than one cluster. These clusters are derived from all 37,551 gems
and 15,679 developers. During data analysis, a total of 328 clusters contained
a single node, which constituted a gem. These clusters were excluded from our
study as, apparently, project administrators failed to register its corresponding

17

6 Shaheen Syed and Slinger Jansen

developer(s). A manual search showed that the majority of these clusters are
registered as version 0.1, had just a few downloads and provided no additional
information. This can be caused by the free nature of its repository, where reg-
istering a gem requires no strict rules or formats. An illustration of a random
cluster with 7 developers and 13 gems is shown in Fig. 1

'DUUHOO�)XKULPDQ

-'�+XQWLQJWRQ

-RHO�+RIIPDQ

-RKQ�:LOJHU

/DXULH�.HPPHUHU

5DYL�*DGDG

6DP�/LYLQJVWRQ�*UD\

DSSBGULYHU

ERRPEHUD

FDSLVWUDQR�H[W�SURMHFWG[

FRUGRQ

FXNHBGDWD

JLWKXEBUHSRBGHOHWHU

JLWKXE�Y��DSL

MXVW�D�WHVW

NRRNDEXUUD

PHPRQ\PRXV

ULVNBRIBEXUQV

VFUXPQLQMD�JLW�FOL

VTUEO

Fig. 1. Cluster with 7 developers (white nodes) and 13 gems (grey nodes) and the
relations between them.

Number of Nodes Most clusters encompass just two nodes (5,819 clusters
that constitute 55% of the total ecosystem), that is, one developer that is linked
to its own gem. A smaller, but still relatively large part, consists of three nodes
(2,035 clusters, 19.2%), being a single developer who created two gems, or two
developers that have worked on the same gem. The distribution of nodes across
clusters shows that a small portion of just 0.5% are clusters with over 100 nodes.
In addition, the largest cluster consist of 600 nodes: 136 developers who created
464 gems, which account for less than 0.01% of the total ecosystem. Interest-
ingly, none of Ruby’s top 10 most downloaded gems were part of the top 6 largest
clusters. “Activesupport”, “Activerecord”, “Actionpack”, “Actionmailer”, “Ac-
tiveresource” and “Rails”, created by David Heinemeier Hansson, were part of
the 7th largest cluster (107 developers and 370 gems).

Number of Developers/Gems Figures 2(a), 2(b), 2(c), 2(d) show the highly
skewed developer and gem distribution across clusters. The skewed distributions
further show that the vast majority of clusters consist of just one or two devel-
opers. We identified 9,341 clusters with 1 developer (88.2%), 786 clusters with 2

18

On Clusters in Open Source Ecosystems 7

developers (7.4%), and 206 clusters with 3 developers (1.9%). This shows that
Ruby’s ecosystem, when looking at the number of developers within a cluster,
consists of 97.6% of clusters that are not larger than 3 developers. Moreover, sim-
ilar numbers are found when focusing on the number of gems. Approximately
90% of all clusters have not produced more than 4 gems.

The ample part of the Ruby ecosystem consists of single developers working
on one or multiple gems. A smaller, but still relatively large part, consists of
two or three developers working together to produce gems. There are few clus-
ters that encompass tens or even +100 developers that are connected through
collaboration.

cluster

120001000080006000400020000

N
u
m
b
e
r

o
f

d
e
v
e
l
o
p
e
r
s

100

10

1

0

(a) Developer distribution

Number of developers

1
2
6

1
1
2

9
9

9
2

8
5

7
7

7
1

6
9

6
4

6
1

5
5

4
8

4
5

4
2

4
0

3
5

3
3

2
7

2
4

2
2

2
0

1
8

1
5

1
3

1
1

97531

P
e
r
c
e
n
t

100

10

1

0

(b) Number of developers as percentage of
the complete ecosystem

Cluster

120001000080006000400020000

N
u
m
b
e
r

o
f

g
e
m
s

1000

100

10

1

0

(c) Gem distribution

Number of gems

4
3
4

3
8
4

3
6
2

3
4
0

2
9
7

2
6
0

2
3
3

2
0
5

1
9
2

1
8
3

1
7
4

1
6
4

1
5
1

1
3
2

1
2
2

1
1
2

1
0
1

8
5

7
0

5
8

4
8

4
4

3
7

3
4

3
1

2
8

2
5

2
2

1
9

1
6

1
3

1
0

741

P
e
r
c
e
n
t

100

10

1

0

(d) Number of gems as percentage of the
complete ecosystem

Fig. 2. Distribution of developers and gems across clusters: y-axis logarithmically
transformed

19

8 Shaheen Syed and Slinger Jansen

4 Survey

A total of 782 respondents filled in the survey, being approximately 5% of all reg-
istered Ruby developers on Rubygems.org. To classify the responses, we grouped
clusters by the number of developers within them. As the distribution of devel-
opers within a cluster is highly skewed, we created groups with minor increments
up to 10 developers. The remainder of clusters, being that with 10+ developers
are grouped together. This enabled us to classify survey data on cluster sizes
with respect to the number of developers. We excluded clusters of a single de-
veloper for questions related to ties, as none were present. The classification of
responses are as follows: Clusters with one developer 403 responses, clusters with
2-3 developers 95 responses, clusters with 4-5 developers 35 responses, clusters
with 6-7 developers 13 responses, clusters with 8-9 developers 4 responses, and
finally, all clusters that have 10 or more developers 232 responses.

4.1 Ties through Collaboration

Tables 1 and 2 show survey data with respect to relationships with other de-
velopers that are clustered together. The data of Table 1 provides an overview
of ties to other developers. These ties are a mixture of strong and weak ties,
for example, developers who have collaborated, have emailed, used each other’s
gems etc. In addition, Table 2 shows the presence of strong ties, i.e. personal
relationships, classified into various cluster sizes.

Two-third of the respondents in clusters with 2-3 developers know all other
developers with more than 50% of them having a personal relationship. When
looking at large clusters with over 10 developers, the vast majority (84.5%)
of developers know just a few other developers, 61.6% of these are personal of
nature. Comparing both tables reveals that the relations of strong ties in contrast
to ties in general do not drop considerable.

Additionally, we asked, if personal relationships were present, how they were
established. The results are shown in Table 3. The large part of these personal
relationships are formed through friendships, work mates and through the open
source community. In all cluster groupings, they constitute the majority of the
responses. Personal relationships that are formed through the open source com-
munity seem to grow from 16.5% in clusters with 2-3 developers, to 33.7% in
clusters with over 10 developers. In contrast, the percentage of personal rela-
tionships that are formed through work associates (work at the same company)
seems to diminish from 41% in clusters with 2-3 developers to 25.4% in clus-
ters with 10+ developers. Furthermore, the Ruby ecosystem consists of very few
personal relationships that are bounded by family or schoolmates. The respon-
dents that answered ”other” were given the option to write out an alternative.
More than half of them answered “conference” as a mean to establish personal
relationships.

The relationships between developers and gems are based on the author field
of the Rubygems.org repository. The algorithm, therefore, seeks for connections

20

On Clusters in Open Source Ecosystems 9

based solely on this information. We asked developers if they would have ex-
pected other developers or gems to be clustered within their cluster. From all
responses, 36.8% had expected other gems, and 30.8% had expected other devel-
opers to be residing in their cluster. The gems that were expected were mostly
related to the Ruby on Rails framework, for example, Active Support, Rack,
Rails. Additionally, developers seem to have expected other gems on which they
have worked through pull requests. Pull requests are a common way of collab-
orating with others, examples are adding updates or fixing bugs, that are then
sent to the project administrators. This does not imply that they list them as
an author. Several developers seem to have committed changes to various other
projects in which they were not mentioned as an author. Similarly, they would
have expected developers that have contributed via pull requests and that were
accepted in the codebase.

Table 1. To what extent do you know the other developers we have identified within
your cluster?

Number
of devel-
opers

I know a few
other developers

I know half of
the other devel-
opers

I know almost
all other devel-
opers

I know all other
developers

I know only devel-
opers with whom I
created a gem

2-3 11.6% (n=11) 1.1% (n=1) 2.1% (n=2) 66.3% (n=63) 18.9% (n=18)
4-5 22.9% (n=8) 8.6% (n=3) 14.3% (n=5) 45.7% (n=16) 8.6% (n=3)
6-7 46.2% (n=6) - - 30.8% (n=4) 23.1% (n=3)
8-9 25.0% (n=1) 50.0% (n=2) 25.0% (n=1) - -
10+ 84.5% (n=196) 4.7% (n=11) .9% (n=2) - 9.9% (n=23)

Table 2. To what extent do you personally know the other developers we have identified
within your cluster?

Number
of devel-
opers

I do not
know any
of the other
developers
personally

I person-
ally know
a few other
developer

I personally
know half
of the other
developers

I personally
know almost
all other
developers

I person-
ally know
all other
developers

I personally
know only
developers
with whom I
created a gem

2-3 18.9% (n=18) 8.4% (n=8) 4.2% (n=4) 2.1% (n=2) 52.6% (n=50) 13.7% (n=13)
4-5 28.6% (n=10) 11.4% (n=4) 11.4% (n=4) 20.0% (n=7) 25.7% (n=9) 2.9% (n=1)
6-7 38,5% (n=5) 7.7% (n=1) - - 30.8% (n=4) 23.1% (n=3)
8-9 25.0% (n=1) 50.0% (n=2) - 25.0% (n=1) - -
10+ 23.3% (n=54) 6.6% (n=143) 2.2% (n=5) - - 12.9% (n=30)

21

10 Shaheen Syed and Slinger Jansen

Table 3. How did you establish your personal relationship (if any) with other developers
within your cluster?

Number of developers: 2-3 4-5 6-7 8-9 10+

Friend 20.9% 16.9% 11.1% 16.7% 19.1%
Work at same company 41.0% 39.0% 22.2% 50.0% 25.4%
Family 2.2% - - - 0.2%
Open Source Community 16.5% 25.4% 27.8% 33.3% 33.7%
Business partner 5.8% 5.1% 11.1% - 4.8%
Schoolmates 0.7% 5.1% 5.6% - 2.2%
I work alone / no personal relationship 6.5% 8.5% 5.6% - 9.2%
Other 6.5% - 16.7% - 5.3%

4.2 Motivations to Create New Gems

We asked developers what motivates them when creating new gems (projects).
The results are shown in Table 4 with the percentage of responses (adjusted for
multiple answers). In each grouping of cluster sizes, the majority of developers
are motivated by personal needs, i.e. they need to create a certain gem for their
own goals. This does not seem to increase or decrease when clusters consist of
more developers. Two other motivations that contribute for a some what smaller
part are “helping others” and “improving programming skills”. The percentage
of responses for “helping others” seems to increase as clusters are getting larger.
Furthermore, ’fun’ was a frequently given answer in the open text box.

Table 4. What motivation(s) do you have for creating new gems?

Number of developers: 1 2-3 4-5 6-7 8-9 10+

Personal needs 65.3% 58.6% 66.7% 48.1% 57.1% 57.9%
To help others 13.5% 14.6% 13.7% 22.2% 18.9%
Monetary rewards 1.8% 2.5% 2.0% 3.7% 3.4%
Improve programming skills 10.8% 11.5% 7.8% 18.5% 14.3% 10.6%
Recognition 6.3% 8.9% 9.8% 7.4% 14.3% 7.0%
Other 2.2% 3.8% - - 14.3% 2.3%

4.3 Contribution/role when Collaborating

Lastly, we asked developers about their contribution when creating gems with
other developers. Results are shown in Table 5 together with the percentage of
cases, as roles vary among di↵erent projects. Sixty percent of the cases create
gems solely by themselves, an indicator that large parts of the Ruby ecosystem
consist of single developers. This was also noticed from the skewed distribution
as discussed in Section 3. The remainder of roles are diverse and make up an
almost equal part of the cases. Project leaders are, however, in minority. Possibly
an indicator that Ruby projects are small in nature and do not consist of a clear
hierarchy of developers that are led by a project leader.

22

On Clusters in Open Source Ecosystems 11

Table 5. What is your contribution when creating gems with other developers?

Contribution / role N Percentage of responses Percentage of cases

I create gems solely by myself 469 22.40% 60.00%
Testing 275 13.10% 35.20%
Debugging 252 12.00% 32.20%
Documenting 207 9.90% 26.50%
Lending technical knowledge 213 10.20% 27.20%
Project leader 133 6.40% 17.00%
Core developer 239 11.40% 30.60%
Co-developer 282 13.50% 36.10%
Other 24 1.10% 3.10%

5 Discussion and Conclusion

In this paper, we have mined data on relationships between developers and gems
from Ruby’s repository Rubygems.org. We have used Social Network Analysis to
uncover underlying sub-communities, or clusters as we have labeled them. Based
on this data, we performed qualitative analysis by means of a survey to make a
first attempt to find characteristics of various cluster sizes. These clusters were
grouped together by the number of developers residing within them. The survey
was aimed at finding characteristics of connections or ties between developers
and gems. We analyzed if these connections were personal and how they were
established. Furthermore, we made an attempt to classify motivations amongst
various cluster sizes and the contributions or roles Ruby developers have when
collaborating with other developers.

Clusters with few developers make up a large part of the Ruby Ecosystem.
Within these small clusters, developers often have personal relationships that
are mainly formed through friendship, work and through the open source com-
munity. As clusters are increasing in developer size, the relationships (ties) to
other developers, personal and non-personal, seem to decline. It seems that Ruby
developers collaborate with other developers, but are not aware of collabora-
tions of friend-of-friend relationships. Additionally, conferences are important to
stimulate collaborations between developers, as developers have stated that it
facilitated in new collaborations. Personal relationships that are formed through
the Open Source community seem to grow as clusters are getting larger. Fur-
thermore, the ample part of the Ruby ecosystem consist of single developers who
create gems for personal use and do not engage in interaction.

Our explorative study made a first attempt into the classification of FLOSS
data in cluster sizes, but it is however far from complete. As developers have
stated, relationships can not solely be modeled by looking at information given
by project administrators, as this information lacks detailed information on the
actual number of developer contributions. A substantial amount of developers
are motivated by altruism and like to help others. As a consequence, develop-
ers contribute by making pull requests/issues in which they are necessarily not
listed as an author by project administrators. This data is, however, available
in other common repositories such as Github. Clustering developers and gems

23

12 Shaheen Syed and Slinger Jansen

by incorporating this information would yield more information and a better
representation of the actual ecosystem structure.

Another important aspect of the Ruby ecosystem is the existence of depen-
dencies between gems. These dependencies can either be runtime dependencies or
development dependencies. The first are other gems that are essential to work in
real time for end-users, the latter are gems that are necessary for development
purposes [12]. Although developers have not directly collaborated with other
developers from gem dependencies, incorporating these dependencies would in-
crease the complexity of the ecosystem and possibly provide a more in-depth
view of the actual structure.

The data we collected by mining rubygems.org will be uploaded to Floss-
mole.org to assist other researchers in the study of FLOSS ecosystems.

6 Acknowledgement

We would like to thank all the Ruby developers who have filled in the survey
and especially Jon-Michael Deldin for his comments to this work.

References

1. Jansen, S., Brinkkemper, S., Finkelstein, A.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering, New and Emerging Research Track. (2009)

2. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. The MIT Press (2005)

3. Xu, J., Christly, S., Madey, G.: Application of social network analysis to the study
of open source software. In Bitzer, J., Schroder, P.J.H., eds.: The Economics of
Open Source Development. Elsevier (2006)

4. Haythornthwaite, C.: Tie strenghts and the impact of new media. In: Proceedings
of the 34th Hawaii International Conference on Systems Science, Maui, Hawaii
(2001) 1019

5. Gao, Y., Freeh, V., Madey, G.: Analysis and modeling of the open source software
community. In: Proceedings of North American Association for Computational
Social and Organizational Science Conference (NAACSOS 2003). (2003)

6. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., et al.: Applying social
network analysis to the information in cvs repositories. In: International Workshop
on Mining Software Repositories. (2004) 101–105

7. Madey, G., Freeh, V., Tynan, R.: The open source software development phe-
nomenon: An analysis based on social network theory. In: Americas conference on
Information Systems (AMCIS2002). (2002) 1806–1813

8. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D., eds.: Defining and
identifying communities in networks. Number 101, USA, Proc. Natl. Acad. Sci.
USA (2004)

9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in
networks. Physical Review E 69(2) (2004) 26113

10. Wu, F., Huberman, B.A.: Finding communities in linear time: A physics approach.
Eur. Phys. J. 38 (2004) 331–338

24

On Clusters in Open Source Ecosystems 13

11. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 10 (October 2008) P10008

12. Kabbedijk, J., Jansen, S.: Steering insight: An exploration of the ruby software
ecosystem. In: Proceedings of the Second International Conference on Software
Business. (2011)

13. Granovetter, M.: The strength of weak ties. American Journal of Sociology 78(6)
(1973) 1360–1380

14. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-
ing and manipulating networks. In: International AAAI Conference on Weblogs
and Social Media. (2009)

25

Reviewing the Health of Software Ecosystems –
A Conceptual Framework Proposal

Konstantinos Manikas and Klaus Marius Hansen

Department of Computer Science (DIKU)
University of Copenhagen

Njalsgade 128
2300 Copenhagen S

Denmark
{kmanikas,klausmh}@diku.dk

Abstract. The health of a software ecosystem is an indication of how
well the ecosystem is functioning. The measurement of health can point
to issues that need to be addressed in the ecosystem and areas for the
ecosystem to improve. However, the software ecosystem field lacks an
applicable way to measure and evaluate health. In this work, we review
the literature related to the concept of software ecosystem health and
the literature that inspired the software ecosystem health literature (a
total of 23 papers) and (i) identify that the main source of inspiration
is the health of business ecosystems while also influenced by theories
from natural ecosystems and open source, (ii) identify two areas where
software ecosystems di↵er from business and natural ecosystems, and (iii)
propose a conceptual framework for defining and measuring the health
of software ecosystems.

Key words: software ecosystems, ecosystem health, software ecosystem
health framework, software ecosystem health measurement

1 Introduction

The notion of software ecosystems (SECOs) is gaining popularity as a means of
expanding development, better positioning in the market, or increasing revenues.
There is a number of definitions of SECOs in the literature [1, 2, 3, 4]. In this
work we define a software ecosystem as “the interaction of a set of actors on top
of a common technological platform that results in a number of software solutions
or services. Each actor is motivated by a set of interests or business models and
connected to the rest of the actors and the ecosystem as a whole with symbiotic
relationships, while, the technological platform is structured in a way that allows
the involvement and contribution of the di↵erent actors” [5]. Today, software
ecosystems come with a wide variability of characteristics: platform structure,
actor participation, ecosystem orchestration, and revenue models, to name a
few. This makes the establishment of methods for measuring and evaluating the
activity of the ecosystem challenging. The SECO literature refers to the concept
of “health” of an ecosystem as a way to monitor ecosystem activity, identify and

26

2 K. Manikas & K.M. Hansen

predict areas for improvement, and evaluate changes in the ecosystem. However,
the measurement of the SECO health is not yet fully achieved.

We tentatively define the health of a software ecosystem as the ability of the
ecosystem to endure and remain variable and productive over time. In this work,
we aim to get closer to SECO health measurement by reviewing the literature
that is elaborating on SECO health. In doing so, we identify that the SECO
health literature is borrowing definitions and measurement of health from other
fields and expand our literature review focus to include additional ecosystem
health fields (explained in section 2). We review the wider ecosystem health
literature body and report the health definitions and measurements (section
3). We identify two main di↵erences between SECOs and business and natural
ecosystems and, based on previous work, we propose a conceptual framework for
defining and measuring the health of SECOs (section 4). Finally, in section 5 we
discuss threats to validity and future work and conclude in section 6.

2 Defining the Health Literature Body

The method used for defining the literature body consisted of the following steps:

(i) Defining the SECO health literature. To define the literature related to the
SECO health, we used as input the papers identified in our recent system-
atic literature review [5]. In [5], we identified a number of papers referring
to the concept of ecosystem health. The papers have a wide variability on
the level of detail they provide on the ecosystem health ranging from mere
reference to the concept (e.g., [6, 7, 8]) to papers in which health forms
part of the main focus (e.g., [9, 10]).

(ii) Defining wider ecosystem health literature. While examining the SECO
health literature, we noticed that the definition and analysis of health is
borrowed from other types of ecosystems not covered by the SECO health
literature . Using the “snowballing technique” [11], we followed the ref-
erences of the SECO health literature and evaluated whether these are
related to the health of an ecosystem 1. The criteria for accepting a paper
in the literature was that it would (a) define the health or sustainability of
an ecosystem or (b) elaborate on ways of measuring health.

Table 1 shows the literature body and the papers that are referenced by each
document. The SECO health literature that resulted from step (i) is the first
row while the literature from step (ii) are the remaining. We have organized the
papers into categories according to their field: software ecosystems (SECOs),
business ecosystems (BECOs)2, natural ecosystems, and open source software
(OSS). The main purpose of listing the categories is to show the fields that

1 We also followed references of the selected references that appeared relevant, result-
ing in a number of papers ([12, 13])

2 Paper [27] is defining the field of “IT ecosystems”, though, as a BECO with IT
products.

27

Reviewing SECO Health 3

Type Paper Source

SECO

[14, 10, 15, 9,
16, 17, 7, 18,
8, 19, 20, 21,
6]

Health literature from [5]

BECO

[22] [14, 9, 21, 10, 15, 23, 24]
[25] [14, 7, 10, 16, 6, 23]
[23] [14, 10, 9, 16, 18]
[26] [18, 8, 23]
[27] [20]
[24] [9]

Natural ecosystems
[28] [9]
[12] [28]
[13] [28]

OSS [29] [19]

Total: 23

Table 1. List of the documents in the health literature and the documents referring
to them.

influenced SECO health. In this work, we have not looked at the health definition
and measurement in the other fields outside the references of the SECO health
literature and, thus, do not claim that these papers are representative of each
field.

3 Ecosystem Health

Following the separation of ecosystem fields in Table 1, we list and discuss the
papers per ecosystem that have influenced the SECO health literature.

3.1 Natural Ecosystems

The field of (natural) ecosystems inspired the rest of the ecosystem fields exam-
ined here (BECO and SECO) and it is the field where the concept of ecosystem
health was initially formulated. Costanza [12], defines a healthy ecosystem as
“being ‘stable and sustainable’; maintaining its organization and autonomy over
time and its resilience to stress”. In addition, Rapport et al. [28], referring to
a collection of papers in the literature, define three indicators for health of an
ecosystem: Vigor that indicates how active or productive an ecosystem is, Or-
ganization that indicates the variability of species, and Resilience that indicates
the ability of the ecosystem to “maintain structure and function in the presence
of stress”. The characterization of an ecosystem in terms of structure and func-
tion is also discussed by Schae↵er et al. in [13]. They parallelize ecosystem health

28

4 K. Manikas & K.M. Hansen

with human health and define it as the “absence of disease”. They identify struc-
ture as “numbers of kinds of organisms, biomass etc.” and function as “activity,
production, decomposition etc.”. These are seen as measures used to define the
ecosystem health. Furthermore, Schae↵er et al., referring to the literature, list
four ways that structure and function may be connected: (a) tightly connected,
where neither can change without the change of the other, (b) structure changes
does not a↵ect function, (c) function changes do not a↵ect structure, and, (d)
structure and function appear unconnected.

3.2 Business Ecosystems

BECO health is the area that has inspired most of the SECO health literature.
In the BECO literature, the concept of health is mainly defined as the ability
of a BECO to provide “durably growing opportunities for its members and for
those who depend on it” [26]3. Iansiti and Levien [25, 26, 22] and Iansiti and
Richards [27] define the health of a business ecosystem using three measures:

Productivity. Inspired by natural ecosystems’ ability to create energy from in-
put sources (e.g., sunlight or mineral nutrients), BECO productivity is the
ability of an ecosystem to “convert raw materials of innovation into low-
ered costs and new products and functions” [26]. Productivity in BECOs
can be measured by means of (a) total factor productivity, (b) productivity
improvement over time, and (c) delivery of innovations, the ability of the
ecosystem to adapt and deliver to its members new technologies, ideas, or
process.

Robustness. The ability of the ecosystem to sustain shocks, perturbations, and
disruptions. Robustness is measured in terms of (a) survival rates, the sur-
vival of actors over time, (b) persistence of ecosystem structure, the extent
to which actor relationships are kept unchanged, (c) predictability, the ex-
tent to which even if shocks alter the relationships of actors, a main core of
the ecosystem remains solid, (d) limited obsolescence, whether the ecosys-
tem has a limited invested technology or components that becomes obsolete
after a shock, and (e) continuity of use experience and use cases, the extent
to which products gradually evolve in response to new technologies rather
than changing abruptly.

Niche Creation or Innovation. The ability of the ecosystem to increase mean-
ingful actor diversity over time. Niche creation is measured in terms of (i)
growth in company variety and (ii) growth in product and technical variety
(value creation) that measures the increase in value the growth brings.

Iansiti and Levien and Iansiti and Richards also propose three ecosystem
actor roles, inspired by natural ecosystems, that a↵ect the health of a BECO:

Keystone. Is an actor that normally occupies or creates highly connected hubs
of actors and promotes the health of the ecosystem by providing value to

3 Similar definitions appear in [22, 27]

29

Reviewing SECO Health 5

the surrounding actors. Keystones promote the health of the ecosystem by
increasing the variability, provide value to the connected actors and thus
increase productivity, and increase robustness by protecting connected actors
from external shocks.

Dominators. Are the actors that control the “value capture and value creation”
[22] of the ecosystem. They tend to expand by taking over the functions of
other actors thus eventually eliminating the actors. Dominators are harmful
for the health of an ecosystem as they reduce diversity

Niche (players or firms). Usually form the main volume of the ecosystem actors
drawing value from the keystones. A niche player aims to separate from the
other niche players by developing special functions.

Typically, a keystone provides value to a number of actors that can be either
niche players trying to develop or dominators trying to dominate the functions
of the surrounding actors. The roles of the BECO actors are also examined
by Iyer and Lee [24]. They classify the actors in an ecosystem in (a) hubs, (b)
brokers that connect two sets of actors, and, (c) bridges that are essential for the
connectedness of the ecosystem. A hub can demonstrate keystone, dominator,
or niche player characteristics.

Hartigh et al. [23] use the work of Iansiti and Levien and Iansiti and Richards
(referred to as “Iansiti” hereafter) to measure the health of the Dutch IT indus-
try. They define BECO health using two long-term parameters: the financial
well-being and strength of the network and break down the health in two com-
ponents: partner health and network health. Partner health evaluates the health
of each individual actor of the ecosystem. A healthy ecosystem is composed of
productive actors contributing to the productivity of the ecosystem while unpro-
ductive actors will have di�culty surviving. The survival of the actors is analo-
gous to the Iansiti robustness measure. Network health is measured in terms of
actor connectivity. Highly connected actors contribute to the robustness of the
ecosystem as the actors are not easily a↵ected by external shocks. In addition,
a healthy ecosystem contains clusters of di↵erent nature, thus increasing the
possibility of niche creation.

3.3 OSS

Wahyudin et al. [29] study the concept of health in OSS projects. They define
the health of an OSS project as “survivability”, the ability of the project to
survive throughout time. An OSS project is healthy and survives if the software
produced by the project is used by a number of users and maintained by a
number of developers. They identify three measures that a↵ect the health of an
open source project:

The developer community liveliness. The project should attract new developers
and keep the existing by boosting their motivation. Wahyudin et al. break
down an OSS developer’s motivation in intellectual stimulation, skill en-
hancement, and access to source code and user needs.

30

6 K. Manikas & K.M. Hansen

The user community liveliness. The users of OSS software play an active role in
the evolution of the project by reporting bugs and requesting new features. A
large, active user community indicates that the software produced is usable
and of good quality.

The product quality. A product that is competitive with commercial products
in use and quality will attract users and developers, increase the activity in
the project, and therefore enhance survivability.

3.4 Software Ecosystems

In the field of SECO, Berk et al. [9] propose SECO-SAM, a model for the as-
sessment of a SECO strategy based on SECO health. In their model, they make
an analogy between the health of an ecosystem and human health and propose
that SECO health is influenced by the biology of the ecosystem, the lifestyle, the
environment, and the intervention of healthcare organizations while they mea-
sure the SECO health adopting the Iansiti productivity, robustness, and niche
creation (PRN) measures. Jansen et al. [10] elaborate on a three-level model of
SECOs, published in [7], consisting of the organization scope level, SECO level,
and software supply network level. They define SECO health as a characteristic
of the software supply network level using the Iansiti PRN measures. Addition-
ally, they propose the application of the Hartigh et al. [23] measures for defining
the health at the SECO level. Angeren et al. [14] show that SECO robustness
of the Iansiti PRN measures is an important factor for vendors that choose to
depend on a SECO.

In OSS, McGregor [20] translates the Iansiti PRN measures to measures
that can be applied to open source projects, while Kilamo et al. [18] propose a
framework for going from a proprietary to a Free/Libre/Open Source Software
(FLOSS) SECO. One of the framework activities is setting up a “community
watchdog” that assesses the community, the software, and “how well the ob-
jectives of the company are met”. The watchdog indirectly assesses the health
while they provide a number of measures to be applied in FLOSS SECOs.

Looking at the SECO health literature, we note that the main source of
inspiration is BECO health when trying to define and measure SECO health or
health-related parameters (e.g., keystone-dominator strategies) with 11 out of
the 13 papers referring to at least one of the Iansiti authored papers [22, 25,
26, 27]. Although the health of a BECO is very similar to the SECO health, we
identify a number of di↵erences between the two. In the next section, we explain
the di↵erences and build on top of the existing literature to define a framework
for SECO health.

4 A SECO Health Proposal

When analyzing the health of SECOs, we identify that similarly to BECOs and
natural ecosystems, the set of actors, their activity and the network they form

31

Reviewing SECO Health 7

is an indication of the level of prosperity and sustainability of the ecosystem.
However, one main di↵erence of SECOs from BECOs and natural ecosystems
is in the nature of the products of the actors and, eventually, of the whole
ecosystem. The BECO approach explained in the previous section is aligned with
the natural ecosystem approach of actors and products, where the products of the
ecosystem (i.e. energy) are represented by the actors (i.e., species) by enclosing
energy in the energy flow between the species. In other words, a herbivorous
species eats a plant and is eaten by a carnivorous species. This herbivorous
species is both an actor and a product in the ecosystem and changes in the health
of this species (e.g., number decrease) a↵ects the energy enclosed (product) by
this species and, thus, the carnivorous species.

In SECOs, the actors are di↵erentiated from the products. The main product
of the actors is software, either as a common software/technological platform, as
software components, or services based on software components. The symbiosis of
this software can influence the health of a SECO. The influence that the software
components have on the SECO health is independent of the actor health. An
example would be an actor that creates a software component that enhances
the component interoperability and increases the use of the platform and thus
contributing to the SECO health. At the same time, this actor might not have a
successful revenue model for this software component and end up loosing a big
part of the invested e↵ort. The actor will have a negative influence on the SECO
health because of low productivity and possibly robustness, while the software
component will have a positive influence.

One additional di↵erence of SECOs to BECO/natural ecosystems is that in
SECOs there is an entity organizing and managing the ecosystem, the orchestra-
tor. The orchestrator, whether a for-profit organization or an OSS community,
is typically managing the ecosystem by running the platform and creating rules
and processes for actors and software. The orchestration of the SECO thus has
a significant e↵ect on the health of the ecosystem.

The proposed SECO health framework can be seen in Figure 1. We depict
three main components that a↵ect the SECO health: (i) the actors, (ii) the
software and (iii) the orchestration. In (i), we separate between the individual
health of an actor and the health of the network of actors and similarly in (ii)
between the individual component health, the ecosystem platform health and
the software network health.

4.1 Individual Actor Health

The health of the individual actors influences the overall health of the ecosys-
tem. The actor health can be measured in similar terms to a BECO actor. The
actor’s productivity and robustness influence the ecosystem. The active partici-
pation and engagement of actors brings value to the ecosystem, while the actor’s
robustness increases the probability that the actor exists and remains involved
in the ecosystem activity in the future. If the SECO is a proprietary ecosystem
or consists of for-profit organisations, the partner health measures of Hartigh et
al. [23] can be directly applied. If in the OSS domain, the actor health can be

32

8 K. Manikas & K.M. Hansen

Individual
Actor
Health

Actor
Network
Health

Actors

Software
Component

Health

Platform
Health

Software
Network
Health

Software
Orchestration

SECO Health

Fig. 1. The SECO health framework breakdown.

assessed in a way similar to Wahyudin et al [29]: measuring the actor activity in
the ecosystem (commits, mailing list activity etc.). In that case, an indication of
actor robustness is the active participation in the ecosystem over a long period
of time. An actor being an active participant in the ecosystem for a long period
of time has lower probability of dropping out of the ecosystem than an actor
that recently started contributing to the ecosystem.

4.2 Actor Network Health

The network of actors and their interaction plays an important role in the SECO
health. The PRN measurements are applicable here, so is the network health
perspective of Hartigh et al. [23]. Additionally, the individual actor health may
be weighted according to the role of the actor in the network. A keystone with
low productivity or robustness will have greater e↵ect in the ecosystem than a
niche player with low productivity or robustness.

4.3 Software Component Health

The health of a software component can be measured in terms of, among others,
(i) reliability, (ii) availability, (iii) modifiability and prevention of ripple e↵ects,
and (iv) interoperability, the ability to interact with, to the extent applicable,
the platform and other components. In SECOs, the software components are, in
most cases, also the products of the ecosystem. The health of such a software
component is also influenced by the relative demand and product quality, e.g.,
how popular is the product and how it is performing in comparison to possible
alternatives. This demand is also a↵ected by whether the product is internal, i.e.,
products intended for use mainly by the ecosystem actors, e.g., the technological
platform or external, i.e., products consumed externally to the ecosystem.

33

Reviewing SECO Health 9

4.4 Platform Health

The health characterization of the software components above can be applied
to the technological platform of a SECO, since it is a software component itself.
However, the technological platform, might have an additional role: depending on
how the SECO is organized and managed, the platform reflects possible orches-
tration actions (rules, processes, or management decisions). The measurement
of the platform health should not reflect how the orchestration a↵ects the SECO
health (as this is reflected in the orchestration influence on SECO health seen
below), but the e↵ectiveness of applying the orchestration actions.

4.5 Software Network Health

The software components are connected and interacting with other components
in the ecosystem forming the software network. Graph measures such as con-
nectivity and clustering coe�cient show to what extent the components interact
[30]. Additionally, the categorization of the activity of hubs into keystone and
dominator indicate the level of healthy interaction. Analogous to the Iansiti
descriptions in the previous section, an example of keystone activity can be a
component that provides interfaces to parts of its functionality for the neighbor-
ing components to consume, while in a dominator activity the component would
intent to take over functionality of the neighboring components.

4.6 Orchestration Influence to Health

The orchestrator can monitor the health of the ecosystem and take measures to
promote ecosystem health if necessary. This requires that the orchestrator has a
good overview of the ecosystem and is consulting e↵ective measurements (e.g.,
ecosystem health). Additionally, the orchestrator can act by creating/refining
rules and processes for the actors, communicating plans to the actors (e.g.,
by road-mapping), organizing the ecosystem development through, e.g., release
management, making changes to the platform and other software components,
changing the revenue model for internal products, and controlling the actor pop-
ulation and motivation by modifying the model by which the actors participate
in the ecosystem. The orchestration of a SECO, i.e., the actions of the orches-
trator, possibly based on monitoring and evaluation, influences SECO health.

4.7 Other Influences on SECO Health

Additionally, there might also be influences on the SECO health that are ex-
ternal to the ecosystem. This kind of influences are referred to as “(external)
perturbation” in the literature [28, 22, 26, 27] and are disturbances that are
outside the control of the ecosystem actors. Influences of this kind might be the
establishment or rise of a competitive ecosystem or a radical technological or
legal change.

34

10 K. Manikas & K.M. Hansen

5 Threats to Validity and Future Work

The wider ecosystem health literature used in this study was identified through
the references in the SECO health literature as our focus was literature that
influenced the SECO health literature. As already mentioned, the literature on
each field (apart from SECO) is not necessarily the representative or most influ-
ential work in the field. Identification of the most influential work and possible
literature mapping of the health in each of the fields (BECO, natural ecosystem,
OSS/FLOSS) might bring perspectives into the SECO health that have been
overlooked. Additionally, we speculate that the influence of the di↵erence fields
to the SECO health is not necessary reflected in the number of papers appear-
ing in this work. Natural ecosystem have had a greater impact on SECO health
concepts, but most of it is indirect through the health of BECOs.

Moreover, the proposed conceptual framework, at this point, does not go into
detail on the di↵erent kinds of actors. An expansion of the model would further
analyze on the nature of the actors, e.g., developing companies, resellers, value-
adding-resellers, and possibly include their influence on health. Additionally,
although the model included products, it did not include customers or end-users.
The influence of entities of this kind could be discussed in future work.

6 Conclusion

In this paper, we analyzed the concept of software ecosystem (SECO) health.
In order to define SECO health and its measurement, we examined the SECO
health literature, a literature body of 13 papers touching upon the concept of
SECO health. We identified that the health research is mainly inspired by three
fields: business ecosystems (BECO), natural ecosystems, and open source soft-
ware, with BECO being the main source of inspiration in 11 out of the 13 SECO
health papers. We reviewed the wider ecosystem health literature, consisting of
23 papers, explained how they define and measure the health of an ecosystem and
concluded with two contributions: (i) We identify two di↵erences between the
SECO and business and natural ecosystems: (a) they perceive products in the
ecosystem di↵erently. BECOs and natural ecosystems perceive actors as a prod-
uct per se, while in SECOs an actor produces software components or services.
(b) SECOs have an orchestrator entity managing the ecosystem, something that
does not appear in the BECO/natural ecosystem literature. (ii) We propose a
logical framework for defining and measuring the SECO health consisting of the
health of (a) each individual actor, (b) network of actors, (c) each individual
software component, (d) platform, (e) software network, and (f) orchestrator.
The purpose of this study is to create a discussion on the particularities of
SECO health and bring the community closer to a measurable way of defining
the health of software ecosystems.

35

Reviewing SECO Health 11

Acknowledgements

This work has been partially funded by the Connect2Care project4.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: Software Engineering - Companion Volume,
2009. ICSE-Companion 2009. 31st International Conference on. (may 2009) 187
–190

2. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems
and Software 83(1) (2010) 67 – 76

3. Messerschmitt, D., Szyperski, C.: Software ecosystem: understanding an indispens-
able technology and industry. MIT Press Books 1 (2003)

4. Lungu, M., Lanza, M., Gı̂rba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Science of Computer Programming 75(4) (2010)
264 – 275 Experimental Software and Toolkits (EST 3): A special issue of the
Workshop on Academic Software Development Tools and Techniques (WASDeTT
2008).

5. Manikas, K., Hansen, K.M.: Software ecosystems – A systematic literature review.
Journal of Systems and Software 86(5) (2013) 1294 – 1306

6. Mizushima, K., Ikawa, Y.: A structure of co-creation in an open source software
ecosystem: A case study of the eclipse community. In: Technology Management in
the Energy Smart World (PICMET), 2011 Proceedings of PICMET ’11:. (august
2011) 1 –8

7. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem model-
ing. In: Proceedings of the 1st international workshop on Open component ecosys-
tems. IWOCE ’09, New York, NY, USA, ACM (2009) 41–50

8. Viljainen, M., Kauppinen, M.: Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In Regnell, B., Weerd, I., Troyer,
O., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C., eds.:
Software Business. Volume 80 of Lecture Notes in Business Information Processing.
Springer Berlin Heidelberg (2011) 32–43 10.1007/978-3-642-21544-5 4.

9. van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a software
ecosystem strategy assessment model. In: Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume. ECSA ’10, New York,
NY, USA, ACM (2010) 127–134

10. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as
a survival strategy: A tale of two software ecosystems. In: First International
Workshop on Software Ecosystems (IWSECO-2009), Citeseer (2009) 34–48

11. Denscombe, M.: The good research guide. Open University Press (2010)
12. Costanza, R.: Toward an operational definition of ecosystem health. Ecosystem

health: New goals for environmental management (1992) 239–256
13. Schae↵er, D.J., Herricks, E.E., Kerster, H.W.: Ecosystem health: I. measuring

ecosystem health. Environmental Management 12(4) (1988) 445–455

4
http://www.partnerskabetunik.dk/projekter/connect2care.aspx

36

12 K. Manikas & K.M. Hansen

14. van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosys-

tems: a survey of the dutch software industry. In: Proceedings of the International

Conference on Management of Emergent Digital EcoSystems. MEDES ’11, New

York, NY, USA, ACM (2011) 68–75

15. dos Santos, R.P., Werner, C.M.L.: A proposal for software ecosystem engineer-

ing. In: Third International Workshop on Software Ecosystems (IWSECO-2011),

CEUR-WS (2011) 40–51

16. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening

up a software producing organization with the open software enterprise model.

Journal of Systems and Software 85(7) (2012) 1495 – 1510

17. dos Santos, R.P., Werner, C.: Treating business dimension in software ecosystems.

In: Proceedings of the International Conference on Management of Emergent Dig-

ital EcoSystems. MEDES ’11, New York, NY, USA, ACM (2011) 197–201

18. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From proprietary to open

source-”growing an open source ecosystem”. Journal of Systems and Software

85(7) (2012) 1467 – 1478

19. Dhungana, D., Groher, I., Schludermann, E., Bi✏, S.: Software ecosystems vs.

natural ecosystems: learning from the ingenious mind of nature. In: Proceedings of

the Fourth European Conference on Software Architecture: Companion Volume.

ECSA ’10, New York, NY, USA, ACM (2010) 96–102

20. McGregor, J.D.: A method for analyzing software product line ecosystems. In: Pro-

ceedings of the Fourth European Conference on Software Architecture: Companion

Volume. ECSA ’10, New York, NY, USA, ACM (2010) 73–80

21. van Ingen, K., van Ommen, J., Jansen, S.: Improving activity in communities of

practice through software release management. In: Proceedings of the International

Conference on Management of Emergent Digital EcoSystems. MEDES ’11, New

York, NY, USA, ACM (2011) 94–98

22. Iansiti, M., Levien, R.: The keystone advantage: what the new dynamics of business

ecosystems mean for strategy, innovation, and sustainability. Harvard Business

Press (2004)

23. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business

ecosystem. In: Proceedings of the European Network on Chaos and Complexity

Research and Management Practice Meeting. (2006)

24. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a small world ecosystem: Some

lessons from the software sector. California Management Review 48(3) (2006)

28–47

25. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82(3) (2004)

68–81

26. Iansiti, M., Levien, R.: Keystones and dominators: Framing operating and tech-

nology strategy in a business ecosystem. Harvard Business School, Boston (2004)

27. Iansiti, M., Richards, G.L.: The information technology ecosystem: Structure,

health, and performance. Antitrust Bull. 51 (2006) 77

28. Rapport, D., Costanza, R., McMichael, A.: Assessing ecosystem health. Trends in

Ecology & Evolution 13(10) (1998) 397–402

29. Wahyudin, D., Mustofa, K., Schatten, A., Bi✏, S., Tjoa, A.M.: Monitoring the

health status of open source web-engineering projects. International Journal of

Web Information Systems 3(1/2) (2007) 116–139

30. Hansen, K.M., Manikas, K.: Towards a Network Ecology of Software Ecosystems:

an Analysis of two OSGi Ecosystems. In: Proceedings of the 25th International

Conference on Software Engineering & Knowledge Engineering (SEKE’2013).

(2013)

37

On the Software Ecosystem Health of Open Source
Content Management Systems

Sonny van Lingen1, Adrien Palomba1, Garm Lucassen1

1Utrecht University
{s.j.vanlingen, a.r.v.palomba, g.g.lucassen}@students.uu.nl

Abstract. Choosing a content management system on which you rely your busi-
ness is challenging because they need a healthy software ecosystem in order to
function efficaciously. Unawareness of this will result in content managers hav-
ing uncertainty about the future suitability of their chosen content management
system. This study describes an empirical, inductive approach by comparing the
software ecosystem health of the three most popular open source Content Man-
agement System platforms (WordPress, Joomla and Drupal) according to a num-
ber of health characteristics. Taking the software ecosystem health of a desired
content management system into account enables stakeholders to make a more
grounded decision in choosing either of the Content Management Systems. This
could lead to a more suitable, dynamic and/or sustainable solution.

Keywords: software ecosystems, software ecosystem health, Drupal, Joomla,
WordPress, content management systems

1 Introduction

Using an online Content Management System (CMS) to create and add content to a
dynamic website is increasingly growing popular [14]. Designing an attractive website
with the help of an online CMS is done with much more ease than having to perform a
manual hard-coding process. A large amount of CMS platforms are offering turnkey
solutions; however, specific features are mostly not available in a basis CMS installa-
tion package. In this case the content manager (website administrator) resorts to addi-
tional plugins. Plugins are collections of files developed by a third party, adding func-
tionality to the core of the CMS platform. Therefore, the CMS platforms and the re-
sponsible developers for writing third party modules are part of a software ecosystem.
Software ecosystems are defined by Jansen [6] as ‘a set of actors functioning as a unit
and interacting with a shared market for software and services, together with the rela-
tionships among them. These relationships are frequently underpinned by a common
technological platform or market and operate through the exchange of information, re-
sources and artifacts.’ Not being able to survive in a software ecosystem has already
led to the demise of many software vendors [6]. Being a CMS platform, measuring the
health of your own software ecosystem is essential. More so, for content managers who
have to decide on implementing either one of the CMS platforms, this work can help in

38

mailto:a.r.v.palomba,%20g.g.lucassen%7d@students.uu.nl

making a sensible choice for either one of the CMS platforms (as the software ecosys-
tem’s health characteristics relate to its lifetime expectations). WordPress, Drupal and
Joomla all act as software ecosystem orchestrators (in this context, as a vendor) by
providing third party module developers the opportunity to develop plugins within an
open platform. This has lead us to pursue the following research question:

What is the health of the Software Ecosystems of the three most popular open source
content management systems?

 It is necessary to understand that WordPress is responsible for a significantly higher
market share (53,6%) than both Joomla (9,6%) and Drupal (6,4%) [18] and that Word-
Press’ community of third party developers is not comparable to both the Drupal and
Joomla ecosystem in terms of development maturity. It demonstrates that Drupal and
Joomla are in a battle for the second spot in the open source CMS market, behind Word-
Press. Furthermore, it is necessary to understand that we consider content managers
who are not involved in developing modules not to be active contributors in the eco-
system because they do not make an active contribution - they are solely using the sys-
tem.
 The practical contribution of this research is to provide detailed information that de-
scribes the software ecosystem health of the three CMS platforms at both a platform-
level and a module-level. This is done by measuring a number of software ecosystem
health characteristics, which are described elaborately in the research method section.
This is done by a mixture of computational calculations, our own observations and a
survey (to confirm the aforementioned findings). In gathering data and response for the
survey we heavily relied on communities (forums) and plugin overviews on the official
sites of the three platforms’ websites. Communities and plugin overviews of unofficial,
third party sites are not taken into account in this research as their reliability (and their
completeness) could be questioned.
 This section introduced the notion of software ecosystems, software ecosystem health
and its relation to CMS platforms. The remainder of the paper is structured as follows:
In Section 2 a literature study is described, which defines key terms and provides defi-
nitions, besides identifying studies that support our research topic. Section 3 details the
research methodology that was applied. Section 4 presents an analysis of the results
together with the findings of our research. Finally, the conclusions, the limitations and
an outlook for further research are provided in Sections 5 and 6.

2 Related Literature

In order to comprehend and explain the context of our study we carried out a focused
literature review. In this section we consecutively describe three different aspects that
have an important relationship with the software ecosystem health of CMS platforms,
namely: software ecosystems, software ecosystem health and finally CMS platforms
(and comparisons thereof).

39

 It is observed that the notion of software ecosystems is still remarkably young; the
first definitions are coined in the year 2003. However, up until 2008 the concept of
ecosystems in a software or information technology perspective was still considered
“not directly obvious” [11]. Various definitions of the notion of software ecosystems
exist [2, 6, 10, 11]. We however consider the definition of Jansen the most appropriate
to this study, which can be found in detail at the introduction section of this work.
 According to Jansen, Brinkkemper and Finkelstein software ecosystems can be one
of the following types: (1) market, (2) technology, (3) platform and (4) firm [7]. Within
each type there are a number of factors that can help in reducing the scope of the soft-
ware ecosystem. This study can be placed in the third category;; this study’s goal is to
compare the software ecosystem health of three CMS platforms. Jansen and Cusumano
[8] provide a classification model for software ecosystems, which is applied to 19 cases
previously explored in software ecosystem literature. Finally, Campbell and Ahmed
propose an elaborated three-dimensional view on the software ecosystem model ex-
plained by three central pillars: business; architecture and social aspects [3]. Software
ecosystem health indicators are part of a software ecosystem related survey carried out
under representatives of the Dutch Software industry [1].
 As early as 2003, McKeever recognized the shift from static, manually deployed web
content to dynamic, automatically deployed web content and the potential of content
management systems in this perspective [12]. The maturity of CMS's has grown due to
new web technologies, plus the need for improved role based web management that has
supported this growth [16]. This growth in maturity and popularity has resulted in the
fact that ~31.7% of today’s websites are managed by a CMS platform [17]. Some works
already compared CMS platforms by using other, non-ecosystem-related metrics. In a
Search Engine Optimization (SEO) comparison experiment of the Joomla, Drupal and
Wordpress CMS platforms, Drupal came out as the platform generating the most search
engine revenue (2099 unique visitors from search engines in six months), followed by
Joomla (1619 visitors) and WordPress (1439 visitors) [15].
 A performance analysis of CMS platforms, again comparing Joomla, Drupal and
Wordpress, reveals that the Joomla platform is best suited for novice content managers,
whereas Drupal is suited better for content managers having to perform critical tasks
and having to provide an increased flexibility [9]. A security audit report detailing the
technical security of the Joomla and Drupal platform revealed unpleasant results; as of
August 2009 the platforms were considerably safe but both platforms possessed a num-
ber of threatening security malfunctions [13]. Although it is not formally confirmed by
another research engagement that these security malfunctions are not to be seen any-
more, it is more than likely that these security threats are fixed at this moment in time.

3 Research Method

Reviewing the software ecosystem health of the three CMS platforms has led us to
decide on a number of software ecosystem health metrics, partially inspired by eco-
nomic ecosystem health characteristics [5] namely: (1) niche creation, (2) productivity
and (3) robustness. A number of these health metrics are computationally measured,

40

which puts us in the position to process large amounts of data which would otherwise
be impossible to review. Furthermore, a number of health metrics are measured manu-
ally. Finally, to confirm our findings, we carried out a brief survey under members
(website administrators, module developers, core developers) of the ecosystems of in-
terest, researching how they perceive the ecosystem health of the platform of choice.
To this end we retrieved a random sample of respondents of interest. This sample con-
sists of members of the three platform’s community forums, workshop participants1
and the authors’ professional relations. The complete list of health metrics looks as
follows:

 Growth of the platform (computational)
 Identification of the contributors (computational)

o Including the number of unique developers.
 Up-to-dateness of modules (computational)
 Findability of the ecosystem (computational)
 Centrality of the platform (manual)
 Market share analysis (manual)
 Level of contribution per community user (manual)
 Perceived ecosystem health (survey, manual)

 In order to perform the computations needed for the computationally measured health
metrics we have developed a set of tools using either the PHP or Java platform. All of
these tools exploit the mechanism of HTML parsing, which consists of browsing the
HTML code of a given page to seek for a given value, since neither WordPress’s, Joom-
la's nor Drupal's platform offer an Application Programming Interface (API) for exe-
cuting search queries.
 All of these programs have been executed from servers within the Netherlands, all
using exclusively Dutch IP addresses2. During one encounter we faced a call limit per
IP address. This has been solved by resorting to a VPN service which allows changing
the external IP address on set intervals. A pool of exclusively Dutch IP addresses has
been used for this purpose. The data gathering process started on 28 December 2012
and ended on 3 January 2013. Data originating from the year 2013 is filtered as we are
only taking entries up to 31 December 2012 into account during the analysis. This has
been decided to assure the analysis has a consistent end-date for all three platforms. We
retrieved two collections of data:

 All official extensions for WordPress, Drupal and Joomla including every rel-
evant field provided on its originating website (including name, author, date
of creation and date of last modification).

 The number of Google hits per individual module.

The data utilized for measuring the manually measurable health metrics did not include
computational interference - this data was accessible in a usable format right away.

1 Participants in the ‘Dutch Student Workshop on Software Ecosystems 2013’.
2 Hereby avoiding retrieving different results given different geographical ranges of IP ranges.

41

4 Results and Data Analysis

This section presents our findings and the data analysis. These results are provided in
table 1. Finally, to confirm our findings, we provide the results of the survey. These
results are provided in table 5.

Table 1. Results overview per ecosystem health metric.

HEALTH METRIC RESULTS
Growth of the plat-

form in modules
Drupal has (and always has had) a larger number of modules for
within its platform. Both Joomla and Drupal have shown a rapid

growth after their respective introduction years.
Additionally visualized in figure 1.

Growth of the plat-
form in number of

developers

The Drupal platform had always had a larger number of unique
developers than Joomla, except for a limited period in 2010. Dur-

ing this period, Drupal failed to provide core updates for two
years.

Additionally visualized in figure 2.
Identification of

the contributors
Total number of developers as of January 2013:

WordPress (9,904) Drupal (6,309) Joomla (3,360)
Average number of modules per developer as of January 2013:

Drupal (3.09) Joomla (3.01) WordPress (2.31)
Up-to-dateness of

modules
Percentage of modules updated in the year 2012:

Drupal (59.62%) Joomla (41.57%)
Drupal including sandbox (41.53%)

WordPress (44.62%)
Findability of the

ecosystem
Joomla’s findability decreases from the year 2010 and on.

WordPress’s findability increases from that point.
Drupal remains a smaller, niche player.

Additionally visualized in figure 3.

Drupal and WordPress show only a few cases of unfindable mod-
ules (~5%). Joomla suffers of approximately half its modules not
generating results. WordPress seems to operationalize a slightly

more effective SEO strategy.
Additionally elaborated upon in table 2.

Centrality of the
platform

Drupal is the most centralized platform, followed by WordPress
and Joomla.

Additionally elaborated upon in table 3.
Market share WordPress possesses the largest market share (53,6%), Joomla

(9.6%) and Drupal (6,4%) are battling for the second spot [18].
Level of contribu-

tion
WordPress’s forum community possesses the largest number of

topics and posts.
Additionally elaborated upon in table 4.

42

A couple of remarks are to be made considering these results. Sandbox modules are
modules which are not fully operational (yet). In the first two health metrics, WordPress
could not be included as the platform does not publish the module’s date of creation.
The 2010 deviation, as can be seen in figure 2, could be explained by an ecosystem
transfer of unsatisfied Drupal developers migrating to the Joomla ecosystem. During
this period Drupal failed to provide core updates for two years whereas Joomla was
releasing a major beta.
 Currently, WordPress attracts more developers to join their ecosystem. On average
however, the WordPress module developers are slightly less productive. In analyzing
the up-to-dateness of modules, the effect of including sandbox modules in this analysis
is remarkably. Considering sandbox modules, the up-to-dateness is equal over all three
platforms. Furthermore, in analyzing the findability of the ecosystems, we made use of
Google’s Trends functionality to gain an insight in the platform’s findability. In ana-
lyzing the findability of individual modules we resorted to a self-developed tool, per-
forming Google searches based on module name. Because there is no consensus on the
term module (plugin and extension are also often used), we included all three terms.
Scores have been normalized in order to remove false positives (only including scores
where -3 < z-score >3). The query used has the following form:

"module MODULE_NAME" OR "plugin MODULE_NAME" OR "extension
MODULE_NAME" + CMS_NAME"

In analyzing the centrality of the platforms, we based our findings on the platform’s
official communication channels. In analyzing the market shares of the platforms, an
important remark has to be made: the number of weekly downloads of the platform’s
executable is declining vastly (WordPress -34,4%, Joomla -24,0%, Drupal -32,2%)
[18]. This might imply that the open source CMS market has already matured. Finally,
in analyzing the level of contribution, WordPress could not be included entirely. Their
forum community does not publish detailed information per member.

Fig. 1. Growth of the number of modules per CMS platform.

43

Fig. 2. Growth of the number of unique module developers per CMS platform.

Fig. 3. Google Trends analysis of findability of the platform [4]. From the bottom and up-

wards (at the commencing of 2013): Drupal, Joomla, WordPress.

Table 2. Descriptive statistics of module findability on Google.

 Drupal Joomla WordPress
AVG 5,447 4,856 6,118
MAX 1,720,000 1,640,000 1,950,000
MIN 0 0 0

STD DEV 48,235 56,996 51,098

Table 3. Centrality of the platforms.

 Drupal Joomla WordPress
Module centrality Y N Y

Support forum centrality Y Y Y
Organized event centrality Y Y Y
Documentation centrality Y Y Y

Availability of support (platform-level) Y N N
Availability of support (module-level) Y N Y

44

Table 4. Descriptive statistics of the platform’s forum communities.

 Drupal Joomla WordPress
Total number of members 1,334,960 593,517 irretrievable

Total number of topics 301,098 647,853 913,912
Total number of posts 1,115,507 2,718,144 3,090,335

Average number of posts per member 0.8357 4.580 incalcuble
Average number of topics per member 0.2256 1.094 incalcuble

4.1 Perceived Ecosystem Health

In the previous subsections we described and measured a number of ecosystem health
metrics. The outcome of these measurements serves as a factual, raw data dependent
mean to measure the given ecosystems’ health. In order to compare these findings to
how a number of stakeholders (n=23) perceive the ecosystem’s health, we carried out
a brief survey. Beforehand, it is hypothesized that a substantial amount of respondents
regard the ecosystem health of their platform of choice equivalently to the findings
presented previously. Furthermore, it is hypothesized that respondents also identify
themselves with the poor prospects of the ‘traditional’ notion/operationalization of
CMS platform providers and the upcoming shift to SaaS CMS solutions. The survey’s
outcome is described in table 5. Note that some comments were rephrased because they
were either in Dutch or otherwise in a format not fit for citing. We tried to apply this
rephrasing as sharp and precise as possible. We have removed entries from respondents
who did not complete the survey in a professional, plausible way.
 A couple of noteworthy comments were given. One respondent is unsure of our cho-
sen cloud naming convention, stating that cloud based CMS solutions should be re-
ferred to as PaaS. We however do not second this vision – such cloud based solutions
do seldom offer an actual platform. Furthermore, one respondent is using WordPress
and Joomla and considers WordPress to be much easier for end-users than Joomla. Fi-
nally, one respondent is reluctant to embrace SaaS CMS solutions. Additional cost is
not seen as the major drawback:

“I always want to host my website and data myself. I am absolutely not comfortable
with SaaS suppliers being able to access my (personal) websites and data. “

 A couple of remarks are to be made considering these results. In the first question,
the distribution of the results is similar to the platform’s respective market shares. In
the second question, respondents could select more than one checkbox so these num-
bers, in total, exceeds the number of respondents.
 One respondent is already actively migrating websites to other platforms, whereas
another respondent feels that WordPress needs to revise their strategic decision about
the (lack of) templates.

45

Table 5. Summarized representation of the survey’s outcome (r = number of respondents).

QUESTION RESULTS
1. Which CMS solution are you cur-
rently most involved with?

WordPress (r=10)
Joomla (r=7)
Drupal (r=6)

2. In which way are you currently in-
volved in the previously selected CMS
platform?

Content Manager (r=22)
Module developer (r=6)
Platform core developer (r=3)

3. Are you worried about the (future)
well-being of the previously selected
CMS platform?

Not at all, complete trust (r=15)
I have reasonable doubt (r=7)
I will drop the platform as soon as possible
(r=1; Drupal)

4. Have you heard about cloud compu-
ting SaaS (Software as a Service) CMS
solutions?

Yes, I have (r=11)
No, I have not (r=12)

5. Are you currently planning on mi-
grating to another CMS solution?

Yes, I am (r=3)
No, I am not (r=20)

6. Most SaaS CMS solutions are paid
services. Assuming they suit your de-
mands better, would you consider mi-
grating to them despite the additional
cost?

No, I will not consider paying (r=10)
Yes, paying for a services does not bother me
(r=5)
Maybe, I will first need to have more infor-
mation (r=8)

 When asked for SaaS CMS solutions already known to the respondents, a number of
solutions were named explicitly:

 WordPress (4 times);
 Netfirms.com;
 Shopify;
 Silkapp;
 Square Space;
 Google Sites;
 TransIP;
 LightCMS;
 WIX.

Three respondents declared they are currently planning on migrating to another CMS
solution. When asked for clarification, the first mover declared to be migrating to the
Drupal platform. The second mover declared to be moving to an unnamed SaaS CMS
environment. The third and last mover declared to be moving to a self-developed CMS.

46

Finally, a substantial amount of respondents does not feel informed sufficiently about
the potential of SaaS CMS solutions (r=8 out of a sample of n=23).

5 Discussion

For this research to become more mature and to allow for a more powerful comparison
of the platforms, future research could be devoted to retrieve and analyze more histor-
ical data about the platforms and its modules. Even though the data set used for this
research was large and detailed, we encountered some limitations within this research.
Therefore completeness is not claimed.
 Firstly, we could only resort to publicly available data. In spite of the fact that this
allowed for a rich ‘snapshot’ of the software ecosystem’s health during the period in
which the data was gathered, we had limited access to historical data. In the context of
this research, more historical data would have proven to be useful.
 Secondly, a number of other software ecosystem health characteristics are not elabo-
rated upon. This is, on one hand, related to restrictions of the data available. The most
apparent deficiencies of the data are the lack of a comparable number of downloads per
module for the platforms and the lacking possibility to download (and analyze) modules
computationally (thus, automatically). Due to the fact that Joomla decentralized the
hosting of modules we were unable to retrieve these modules computationally, disqual-
ifying them for automated code analysis. On the other hand, the chosen health charac-
teristics, metrics and its subsets are based on the authors’ intuition and expertise. These
characteristics do not necessarily follow theoretical classifications and considerations
in the soundest way, which might have resulted in missed opportunities in the selection
and/or operationalization of health characteristics.
 Thirdly, it is to say that the number of Google hits representing a particular module
could be questionable, as it might have triggered an unknown number of false positive
results. Normalization of the results still does not guarantee that we succeeded in ex-
cluding all false positives. However, this eliminated a large part of the outliers.
 Finally a remark is to be made about the platform’s end-user base. A large number of
WordPress’ SaaS-users are using the platform as a (personal) blogging tool – opposed
to a relatively larger number of professional appliances by their competitors. Due to
feasibility reasons these differences in ‘content-maturity’ have not been analyzed.

6 Conclusion

The main goal of this paper was to measure and compare the software ecosystem health
of the Drupal, Joomla and WordPress CMS platforms. This has been done by empiri-
cally measuring a number of health metrics, for which we computationally and manu-
ally retrieved data. The focus of this comparison was at a platform-level and a module-
level.
 The results show that the Joomla and Drupal platforms have a comparable market
share. Both market shares are significantly smaller than that of the market leader, Word-
Press. Furthermore, the results show that Drupal’s level of growth has exceeded

47

Joomla’s level of growth. Unfortunately, we were unable to retrieve comparable data
for the WordPress platform, which would have enabled us to elaborate on the growth
of this platform's number of modules and unique developers. Next to this, it is observed
that the full-project modules within Drupal’s platform are more up-to-date than
Joomla’s and WordPress' modules (that is, excluding Drupal’s sandbox modules). In-
cluding these sandbox modules makes the three platforms’ up-to-dateness surprisingly
equal. Finally, it is observed that Drupal’s platform is more centralized than Joomla’s
and WordPress platform.
 Despite the fact that not all metrics are in favor of Drupal’s platform, we conclude
that Drupal’s platform possesses a healthier ecosystem. Hereby it is taken into account
that the results for the WordPress platform could not be properly supplemented to two
of the health characteristics. These results lead us to conclude that the criteria used by
the CMS users to choose a CMS are not primarily based on the health of its ecosystem.
Furthermore, given our investigation on Google hits for modules and the platform as a
whole, neither of these criteria seem to be a nontrivial criterion for users.
 That said a few remarks are to be made. Firstly, the most recent Google’s Trends
analysis shows a slight downward trend for Drupal's and Joomla's CMS platforms. This
suggests that both platforms already have matured and might lose a factor of their pop-
ularity in coming years. Furthermore, it is to be noted that the average number of weekly
downloads declined vastly for these platforms. This implies that both ecosystems are
in the process of becoming unhealthier, or that the open source CMS market is experi-
encing a (temporary) loss of popularity. However, this does not affect the WordPress
platform.
 To summarize: based on this research, Drupal’s platform is the healthier one of the
three platforms, despite of being the least popular. The results of the survey give to
think that SaaS CMS solutions have not yet become a threat to “classical” CMS’s. So-
lutions of this kind will probably mature in the future and will require new investiga-
tions to quantify its evolution.

References

1. Van Angeren, J., Blijleven, V. and Jansen, S.: Relationship Intimacy in Soft-
ware Ecosystems: A Survey of the Dutch Software Industry. Proceedings of
the Conference on Management of Emergent Digital Ecosystems (MEDES
2011) .

2. J. Bosch. From software product lines to software ecosystems. In Proceedings
of the 13th International Conference on Software Product Lines (SPLC) .
Springer LNCS, 2009.

3. Campbell, P.R.J., Ahmed, F.: A Three-Dimensional View of Software Eco-
systems. Proceedings of the Fourth European Conference on Software Archi-
tecture: Companion Volume (ECSA ’10). 81–84 (2010).

4. Google: Google Trends, http://www.google.nl/trends/explore#q=drupal,
joomla,wordpress, (2013).

48

5. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Har-
vard Business Review. 20, 2, 1 (2004).

6. S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense of community: A re-
search agenda for software ecosystems. 31st International Conference on
Software Engineering, New and Emerging Research Track , pages 187–190,
2009.

7. Jansen, S., Finkelstein, A., and Brinkkemper, S. Business network manage-
ment as a survival strategy: A tale of two software ecosystems. In Proceed-
ings of the First Workshop on Software Ecosystems. CEUR-WS, vol. 505,
(2009)

8. Jansen, S., Cusumano, M.: Defining Software Ecosystems: A Survey of Soft-
ware Platforms and Business Network Governance. Proceedings of the inter-
national Workshop on Software Ecosystems 2012. 1–18 (2012).

9. K Patel Savan Rathod V R Prajapati, J.B.: Performance Analysis of Content
Management Systems- Joomla, Drupal and WordPress. International Journal
of Computer Applications 0975 – 8887. 21, No.4, (2011).

10. Kittlaus, H.-B., Clough, P.N.: Software Product Management and Pricing:
Key Success Factors for Software Organizations. Springer (2009).

11. Kuehnel, A.-K.: Microsoft, Open Source and the software ecosystem: of pred-
ators and prey—the leopard can change its spots. Information Communica-
tions Technology Law. 17, 2, 107–124 (2008).

12. McKeever, S.: Understanding Web content management systems: evolution,
lifecycle and market. Industrial Management Data Systems. 103, 9, 686–692
(2003).

13. Meike, M. et al.: Security in Open Source Web Content Management Sys-
tems. (2009).

14. Mooney, S.D., Baenziger, P.H.: Extensible open source content management
systems and frameworks: a solution for many needs of a bioinformatics
group. Briefings in Bioinformatics. 9, 1, 69–74 (2008).

15. K. Patel, Savan; A. Patel, Jayesh; V. Patel Amit. International Journal of
Computer Applications, vol. 52, issue 3, pp. 1-5.

16. Raghavan, N., Ravikumar, S.: Content Management System. 1–18 (2008).
17. W3Techs: Usage of content management systems for websites,

http://w3techs.com/technologies/overview/content_management/all (2013).
18. Water&Stone: 2011 Open Source CMS Market Share Report. (2011).

49

Hadoop and its evolving ecosystem

J. Yates Monteith, John D. McGregor, and John E. Ingram

School of Computing
Clemson University

{jymonte,johnmc,jei}@clemson.edu

Abstract. Socio-technical ecosystems are living organisms that grow
and shrink, that change velocity, and that split from, or merge with,
others. The ecosystems that surround producers of software-intensive
products exhibit all of these behaviors. We report on the start of a longi-
tudinal study of the evolution of the Hadoop ecosystem, take a look back
over the history of the ecosystem, and describe how we will be observ-
ing this ecosystem over the next few months. Our initial observations of
the early days of Hadoop’s ecosystem showed rapid change. We present
these observations and a method for taking and analyzing observations
in the future. Our goal is to develop an ecosystem modeling technique
that provides practical guidance to strategic decision makers.

1 Introduction

Socio-technical ecosystems are living organisms that grow and shrink, that
change velocity, and that split from, or merge with, others. Recently researchers
have found it useful to describe the environment surrounding certain software
platform-based communities in ecosystem terms. Many of those descriptions fo-
cus on the mutual benefit derived from the platform. However, in trying to sup-
port strategic decision makers, the true predator-prey notion of an ecosystem, in
which both collaborators and competitors interact, gives a comprehensive view
of the ecosystem.

Business strategists and software architects both must balance opposing
forces to achieve the best possible result for their organization. In an organi-
zation that builds software-intensive products the business and technical forces
are closely related and interconnected. New business models, such as Platform as
a Service (PaaS), require new architectures to accommodate collaborators and
to separate that which is the basis for collaboration from that which is the basis
for competition. Over time the line between these two shifts as more features
become commoditized and organizations innovate to identify new proprietary
features. These are the changes that motivate this work.

New algorithms and paradigms are often the basis for new communities and in
the early days there is much activity as the forces of competition from established
technologies clash with the enthusiasm for the new capabilities. This leads us to
some interesting questions:

50

2 J. Yates Monteith, John D. McGregor, and John E. Ingram

– How is the ecosystem surrounding a new technology different from that sur-
rounding a mature, established technology?

– What influence does that difference have on the business decisions that must
be made?

– Will the frequency and types of change show a different pattern as the tech-
nologies mature and the buzz words become accepted termnology?

– How do the linkages between the business and software aspects of the ecosys-
tem respond to changes over time?

In 2004 researchers at Google published a new Map/Reduce algorithm for dis-
tributed computation. This algorithm has formed the nucleus of a new ecosystem
for distributed computing, which is the focus of this paper.

As pointed out by Hannsen et al, there is a need for more detailed accounts
of actual ecosystems and the changes they undergo over time [1]. A portion of
our research time is spent tracking a few ecosystems and examining how they are
changing. Some data is easy to identify, like major software changes indicated by
version numbers; however, most useful data is difficult to identify and parse. Data
including both motivations for and changes to code, business models, governance
structures, collaborative and coopetitive alliances are all useful data points. By
conducting longitudinal studies we have the opportunity to search for patterns
in these changes and to anticipate their frequency and direction in the future.

Our current contribution is a baseline report on the Hadoop ecosystem. We
apply STREAM, our ecosystem analysis method, to Hadoop distributions from
the early releases to the present. We consider two dimensions. We describe por-
tions of the value chain that relates suppliers to customers at the current point
in time. We define data useful in evaluating where value is added. We also ex-
plore the evolutionary forces responsible for changing where value is accrued
over time.

The remainder of this paper is organized as follows: Section 2 and Section 3
provides background information on STREAM; Section 4 describes the observa-
tions that were made; Section 5 presents the results collected from the observa-
tions; Section 6 provides a view into our future efforts, and Section 7 is a brief
conclusion.

2 STREAM

The STRategic Ecosystem Analysis Method (STREAM) [2] addresses the var-
ious facets of a socio-technical ecosystem which encompasses a community, usu-
ally associated through a common interest in a particular domain. STREAM
presents the ecosystem through three types of views: business [3], software [4],
and innovation [5], which correspond to the three types of ecosystems featured
in the ecosystem literature. The business and software views represent the state
of the ecosystem at any given moment. The innovation view shows the forces
that will result in evolution.

51

Hadoop and its evolving ecosystem 3

Each application of STREAM is customized to answer specific questions. The
exact data collected and the analysis methods applied will directly address those
questions.

Each of the types of views has specific attributes, artifacts, and analysis
techniques. We introduce each here and give more detail in the case study.

– Business view - The organizations in an ecosystem interact explicitly, e.g.
trading partners, and implicitly, e.g. through pricing models. Michael Porter’s
Five Forces for Strategy Development model gives a structure to this view [6].

– Software view - The software architecture is the major structuring element for
the software view. We do as detailed an analysis as possible with the level of
architecture description that is available.

– Innovation view - The innovation view represents both business and software
innovations. We organize those innovations according to Businessweek’s cate-
gories of innovation: product, process, business model, and customer experi-
ence.

We use the structuring elements in each view to define appropriate abstrac-
tions and to guide collection of the data needed to instantiate them.

3 E-STREAM

STREAM as it originally was defined gives a snapshot of an ecosystem at a
point in time [2] [7]. E-STREAM is an extension of STREAM that supports
modeling the ecosystem’s evolution by a combination of a series of snapshots,
obtained through multiple applications of STREAM, with measures analyzing
the changes in-between the snapshots. In section 4 we illustrate these extensions.

3.1 Ecosystem Evolution

The evolution of both organizations and software have been well studied but the
evolution of ecosystems, particularly those that encompass software-intensive
products, is not as well understood. Tiwana et al refer to evolution in an ecosys-
tem as coevolution since both organizational and technical changes occur [8].
STREAM handles this coevolution naturally with its multiple views. Tiwana et
al proposed a framework for studying evolution of a platform ecosystem that
separates “internal” platform forces from “external” platform forces and sepa-
rates the internal forces into platform governance and platform architecture. The
dependency graphs we construct for both organizations and software modules
represent this separation and, in fact, allow for multiple separations.

Hanssen et al have conducted a longitudinal study of the ecosystem sur-
rounding CSoft [1] [9] [10] [11] [12]. They hypothesized a set of charactistics for
software ecosystems which we will revisit in Section 5.

Evolution is essentially a time-based view of change. Since change often comes
about as a result of innovation we have organized the rest of this section using the
Businessweek categories of sources of change to discuss evolution. We use forward
references into the case study in the next section to illustrate each category.

52

4 J. Yates Monteith, John D. McGregor, and John E. Ingram

3.2 Product

Each new release of a software product offers a different value to customers.
Some notable exceptions excluded, each release provides more value than the
one before. A measure of this value can be seen by looking at the number of
releases per year, number of downloads per year, or other measure of use. Our
timeline shows releases per year, shown in Figure 1.

3.3 Process

A value chain is a model of the steps through which a product passes as it is
created and the value that is added at each step. One paper has hypothesized a
value chain for software in which the standard development life cycle phases are
the steps in the value chain [13]. In the ecosystem a visible measure of change
will be differences in mechanisms by which a product is assembled. For example,
the project may begin to provide build processes or pre-configured distributions
for targeted groups of developers or users, respectively. The Substitutes section
of the Five Forces analysis in Section 4.1 list organizations providing users with
improved processes for using Hadoop.

3.4 Business model

Business model changes usually occur as a result of a strategic decision to change
directions. Open source projects may maintain repositories of minutes of the gov-
erning councils such as the architecture council or a project management com-
mittee. Commercial organizations often convert projects which have previously
been proprietary to an open source project, e.g. Hadoop.

3.5 Customer experience

The customer experience is tied to the evolution of the business model and the
product itself. Defect reports and change requests reflect customer issues and
these can be tracked over time. Tools such as Jira allow all users to comment
on issues. “Big Data” techniques can be used to mine information from the Jira
logs.

4 Case study

Apache Hadoop is a scalable computing framework that abstracts away the issues
of data distribution, scheduling, and fault tolerance from applications. Hadoop
is a framework that is the core of a rapidly growing ecosystem in which a number
of providers are building Platforms as a Service (PaaS) based on Hadoop.

Hadoop utilizes an innovative approach called Map/Reduce intended for pro-
cessing data collections that are so big that it is more efficient to move the com-
putation to where the data is rather than vice versa. The user of the Map/Reduce

53

Hadoop and its evolving ecosystem 5

approach writes a Map program that divides the data and directs it to the set
of computing nodes. The user then writes Reduce programs that accomplish the
needed computation by first computing on each node and then taking the partial
result from a node and combining it with the partial results from neighboring
nodes to reduce iteratively down to a single answer.

We have developed a timeline, shown in Figure 1 (full color expandable fig-
ures can be found at http://www.cs.clemson.edu/sserg/iwseco/2013/), to cap-
ture some of the historical information we collected about the Hadoop ecosystem.
In 2004 two formative papers were published by Google authors [14][15]. These
papers defined the Google file system and Map/Reduce architecture, respec-
tively. Hadoop was initially housed in the Nutch Apache project, but split off to
become an independent Apache project in 2006. In January 2010, Google was
granted a patent that covers the Map/Reduce algorithm. Three months later
Google issued a license to the Apache Software Foundation. Since that time use
of Hadoop has grown rapidly.

Over the last few years parts of the original Hadoop Apache project have
matured and spun off to become independent Apache projects: Avro, HBase,
Hive, Pig, Flume, Sqoop, Oozie, HCatalog and Zookeeper. These products are
used with Hadoop depending upon the configuration and are focal parts of the
ecosystem.

Fig. 1. Timeline of Major Events

4.1 Business view

At the core of the Hadoop ecosystem is the Apache Hadoop project which
maintains the Map/Reduce framework and the Hadoop Distributed File System
(HDFS). The project is governed by a project management committee (PMC)
that is self-perpetuating and self-directing. Many of the members of the com-
mittee are from larger organizations that use the Hadoop distribution as part of
strategic product offerings.

Figure 3 shows the network of organizations that contribute to the Hadoop
Ecosystem and to which project they contribute. Triangular nodes represent or-

54

6 J. Yates Monteith, John D. McGregor, and John E. Ingram

ganizations that contribute personnel to the PMC or committers. The nodes are
sized by how many personnel are contributed by the organization to all projects
combined. Circular nodes represent the “Hadoopified” projects, their sizes based
on how many committers and PMC members they have. Edges between these
nodes represent an organization contributing some number of personnel to the
project. The edges’ thickness is sized to reflect the number of personnel assigned
from that organization to that project. In some cases, a single person from a
single organization may contribute to multiple projects. This data was collected
from the apache.org team-lists for the “Hadoopified” Projects.

Following Porter’s Five Forces model we consider the five classes of organi-
zations that influence the direction of Hadoop.

Suppliers Not surprisingly, Hadoop, as an Apache project, mainly pulls from
Apache sources. Additional component requirements are satisified by integrating
existing open-source and open-license components. Because of the open-source
nature of the components, suppliers are unable to leverage profitability of the
market into increased profitability; however, greater visibility is useful in convinc-
ing organizations to collaborate. Commercial organizations that are contributing
code to the Hadoop project, which they have developed to facilitate their propri-
etary features, are both users and suppliers. We will discuss the supply network
in section 4.2.

Substitutes A number of different substitutes for big data analysis are avail-
able that diverge from Map/Reduce. GridGrain[16] offers an alternative archi-
tecture that also uses a Map/Reduce approach. Rather than use a distributed
file system, GridGrain uses an in-memory data grid concept. This architecture
handles less data than what is often meant by “big data,” hence its classifica-
tion as a substitute rather than a competitor, but there are many applications
for which it is sufficient. Additional substitutes include Spark, ScaleOut, and
GraphLab, which offer alternatives to Map/Reduce as well.

Potential Entrants Our analysis did not identify any organizations that
are publicly considering entering into this ecosystem.

Competitors The core of Hadoop includes the file system and the compu-
tation engine. There are several competitors to the Hadoop file system: Lustre,
Orange File System, GIGA+, Google File System, Ceph, and NFile System.
Additionally, several alternatives exist to both the Map/Reduce architecture
and algorithm, including those offered by Sector/Sphere, Disco, HortonWorks,
Cloudera and MapR.

Buyers An open source project has users rather than buyers. Hadoop is used
by a large number of organizations. The web-based download makes it impossible
to provide a comprehensive list of users. There are some organizations building
on top of Hadoop and making their use of Hadoop as a feature. Amazon Elastic,
Windows Azure, Google App Engine, and IBM SmartCloud are offering PaaS
and IaaS solutions.

There are a number of collaborations being formed around Hadoop that
bring organizations together to offer comprehensive configurations that isolate

55

Hadoop and its evolving ecosystem 7

users from the complexities of replication and fault tolerance. Hewlett Packard,
NetApp, and Cisco are a few examples.

4.2 Software view

The software architecture of Hadoop provides a robust and scalable distributed
computing infrastructure for unstructured data.

Although the supply network is made up of organizations, we will consider
it from a software product perspective, but we will ignore other suppliers such
as makers of development tools. As an open source project the source code is
available and shows the references to imported software. The licensing conditions
also generally force all imports to be open source and can be used to travel further
down the supply network.

Figure 2 shows two levels of the software supply network of Apache Hadoop.
The software supply network is modeled as a dependency graph where nodes
represent packages of source code, named by their qualified Java package name,
and edges represent a “uses” dependency between two source packages.

Fig. 2. Two levels of the Hadoop supply chain

The dependency graph represents the second level of software suppliers, i.e,
our suppliers’ suppliers. This graph was obtained through analysis of source code
for library imports and build dependencies. Nodes connected by a solid line are
suppliers obtained by analyzing Hadoop 2.0.3. Nodes connected via zigzag lines
represent our suppliers’ suppliers.

Due to the fact that many of the third party components included in Hadoop
are libraries that facilitate utilities, such as testing, logging or I/O, it is not
surprising, though no less interesting, that relationships exist among the software
provided by Hadoop’s suppliers, which are therefore related implicitly.

56

8 J. Yates Monteith, John D. McGregor, and John E. Ingram

4.3 Innovation view

Using the Businessweek categories [17]:
Product The MapReduce architecture was an innovation when Hadoop was

initiated. Besides the innovativeness of the architecture, the Hadoop framework
uses a functional programming paradigm which is unusual if not innovative.
Features such as abstraction of data replication, automatic handling of node
failures/fault tolerance and the use of streaming to create a language agnostic
interface are innovations in distributed computing products.

Process The concept of storing data and then bringing the computation to
it is innovative.

Business model Hadoop itself does not present a new business model, but
the other companies that are using Hadoop are implementing high performance
computing versions of PaaS and IaaS solutions. These solutions put Hadoop at
the core of many products.

Customer experience Hadoop is a fairly traditional open source organiza-
tion. The evolving architecture that is increasingly modular has made it possible
for a customer to replace portions of Hadoop with more hardware specific solu-
tions such as a different file system.

4.4 Risks

The primary risk for the Hadoop project is its current intense popularity and
status as a buzz word. The Apache Hadoop core project may have difficulty
meeting the needs of the large and diverse number of users. The proliferation
of distributions and the independence of the “Hadoopified” projects may lead
to divergence. One approach to mitigating this risk would be to broaden the
representation on the PMC or to create a separate advisory board that can
represent the needs of the diverse user community.

The splitting of several pieces into separate Apache projects potentially
harms the architectural integrity of Hadoop. These separate projects are now
independent and may make design decisions that will move them away from
the trajectory of Hadoop. This is a risk, particularly due to the flat governance
structure of Apache projects.

4.5 Ecosystem Health

STREAM uses the ecosystem health criteria described by den Hartigh et al [18].

Robustness In this early phase the ecosystem is very robust. The Project
Management Committee (PMC) for Hadoop has representation from several
organizations with major resources. The departure of any of these would not
cause the project to fail; however, it could cause the project to change directions.
Additionally, there are a few dominant players in the Hadoop ecosystem, such
as Cloudera and HortonWorks, that support both the core Hadoop project and
various “Hadoopified” projects. Figure 3 shows that each of these organizations
contributes heavily to projects in the ecosystem.

57

Hadoop and its evolving ecosystem 9

Fig. 3. Network of Hadoop Contributers

Niche Creation Many organizations are attempting to create niches within
the Hadoop ecosystem. “Hadoopified” projects are Apache projects that typ-
ically began as Hadoop Contrib projects but have split off into independent
projects. These include Avro, Pig, Zookeeper, Flume, HBase, HCatalog, Oozie,
Sqoop and Hive. Each of these products delivers a set of features, complemen-
tary to those offered by Hadoop, that meets the needs of particular stakehold-
ers. For instance, Hive facilitates data summarization through a domain specific
language, HiveQL, that closely mirrors SQL while providing functionality for
ad-hoc queries, a useful feature for a database specialist wanting to use Hadoop.
Other, mainly commercial, organizations are also working to differentiate them-
selves from others in the ecosystem. Many organizations are contributing some
features to the core Hadoop project and the “Hadoopified” projects. Some or-
ganizations create a niche by providing distributions that add end user features
making Hadoop easier to deploy, manage, and maintain. Others are providing
services related to Hadoop including service and training.

Productivity The ecosystem continues to be very productive. The core Hadoop
project maintains four release streams: legacy, stable, beta and alpha. Apache is
fixing defects an dreleasing builds. In addition to the efforts that surround HDFS
and MapReduce, the set of tools surrounding Hadoop, the Hadoopified projects,
represent a significant amount of productivity, with at least nine new Apache
projects started since 2008, the majority of which have evolved into top-level
Apache projects.

4.6 Evolutionary Forces

In this baseline model we are considering the current state of Hadoop, but we
briefly consider the evolutionary forces, both internal and external, at work in
the Hadoop ecosystem. Rather than simply internal and external forces there are

58

10 J. Yates Monteith, John D. McGregor, and John E. Ingram

layers of forces. At the core there is the Hadoop Apache project with the two fun-
damental components: MapReduce and the Hadoop file system. Then there are
the Hadoopified products which augment, but have split from or formed indepen-
dently of, Hadoop. Still further removed are those organizations like Cloudera,
Hortonworks, and MapR that are adding features to the basic Hadoop distri-
bution, in addition to developing workflow solutions and training and support
materials for Hadoop. Further still there are organizations, such as HP and
Microsoft, bundling basic Hadoop or a supplemented Hadoop to provided com-
pletely configured installations ready for end users who have big data but no
systems expertise.

These organizations are addressing several markets segments which present
different forces and which will most likely evolve at different rates, new levels
may emerge, and organizations may move to different levels. Our longitudinal
look will capture these changes.

5 Results

As part of developing this initial snapshot we have we have systematically cov-
ered the Apache Hadoop project documentation to identify relevant stakehold-
ers and organizations, visited contributing organizations sites to identify their
contributers and analyzed source code for supply-chain modeling in this early
baseline model of the Hadoop ecosystem. The data is organized into diagrams
which are the information managers use.

Gathering information and conducting analyses on an ecosystem surrounding
an open source project has proven to be a difficult, but manageable process.
Several observations can be made based on the techniques we have used and the
information we have gathered:

– Upstream suppliers can be identified by analyzing build dependencies and
library inclusions,

– Niche creation can be evaluated via downstream users who also exist as inter-
nal suppliers,

– Productivity can be measured in part by the number and frequency of releases
determined from changelogs of projects within the ecosystem, and

– Evolutionary information can be related to a timeline created from the above
data.

Hanssen et al hypothesized a set of characteristics for software ecosystems [1].
Our study of Hadoop supports several of those hypotheses:

– central organization - Apache Hadoop project and “Hadoopified” projects
provide the basis for the commercial development

– adaptation - decomposing into niche projects to address user needs
– networked - dependencies among software elements
– use of technology - the Apache infrastructure

59

Hadoop and its evolving ecosystem 11

– shared values - the shared domain leads to certain shared values around dis-
tributed computing while there is diversity from a business perspective

While similar tactics might prove useful in ecosystems surrounding com-
mercial or closed source offerings, the abundance of accessible data within an
open-source ecosystem is what powers an analyst’s ability to model such an
ecosystem. It is necessary to continue to gather all available data concerning
the emergence or splitting of new projects, the addition of new, or exclusion of
existing, software dependencies, the governance structure of projects within the
ecosystem and business models leveraging the ecosystem.

6 Future Work

In Section 1, we posed four questions to help guide our analysis of the ecosys-
tem surrounding the Hadoop Map/Reduce framework and architecture. While
we are closer to the answers for the questions, the continuing evolution of the
ecosystem requires continued data collection and analysis. We will revisit the
Hadoop ecosystem at quarterly intervals to add to and revise our models and
analyses. Recurring analysis and revision is necessary due to the rapid rate of
adoption by companies and the unkowable number of companies using Hadoop,
both of which threaten the validity of this study. At these intervals, we will
consider more quantified measures for evolution and ecosystem health metrics.
Evolutionary metrics may include rates of change on ecosystem elements that
were examined in this work: ecosystem size, roles of ecosystem members, external
suppliers, release rates and niche offerings. Additionally, the work of the authors
in [19] may be helpful in providing project analysis in the software view.

7 Conclusion

We have observed two major trends: a splitting of an initial project into projects
that are more narrowly focused and a broadening of the ways in which organiza-
tions monetize their participation in the ecosystem. By providing an innovative
architecture Hadoop has an advantage but other organizations are already fol-
lowing this approach and offering competing products. STREAM is providing
us with a framework within which to add the tools needed to answer the ques-
tions in which we are interested. The subsequent snapshots and our analyses of
the deltas will provide additional insights about Hadoop specifically and socio-
technical ecosystems in general.

References

1. Hanssen, G.: A longitudinal case study of an emerging software ecosystem: Impli-
cations for practice and theory (2012)

60

12 J. Yates Monteith, John D. McGregor, and John E. Ingram

2. Chastek, G., McGregor, J.D.: It takes an ecosystem, SSTC (2012)
3. Iansiti, M., Levien, R.: Strategy as ecology strategy as ecology. Harvard Business

Review 82(3) (2004) 6881
4. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-

pensable Technology and Industry. MIT Press, Cambridge, MA, USA (2003)
5. Adner, R.: Match your innovation strategy to your innovation ecosystem. Harvard

Business Review 84(4) (2006) 98–107; 148
6. Porter, M.E.: The five competitive forces that shape strategy. Harvard Business

Review 86(1) (2008) 78–93, 137
7. Monteith, J.Y., McGregor, J.D.: A three viewpoint model for software ecosystems.

In: Proceedings of Software Engineering and Applictions 2012. (2012)
8. Tiwana, A., Konsynski, B., Bush, A.A.: Platform evolution: Coevolution of plat-

form architecture, governance, and nvironmental dynamics (2010)
9. Hanssen, G.K., Faegri, T.E.: Agile customer engagement: a longitudinal qualitative

case study. In: Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering. ISESE ’06, New York, NY, USA, ACM (2006)
164–173

10. Hanssen, G.K., F́ıgri, T.E.: Process fusion: An industrial case study on agile
software product line engineering. J. Syst. Softw. 81(6) (June 2008) 843–854

11. Hanssen, G., Yamashita, A.F., Conradi, R., Moonen, L.: Software entropy in agile
product evolution. In: Proceedings of the 2010 43rd Hawaii International Con-
ference on System Sciences. HICSS ’10, Washington, DC, USA, IEEE Computer
Society (2010) 1–10

12. Faegri, T.E., Hanssen, G.K.: Collaboration, process control, and fragility in evo-
lutionary product development. IEEE Softw. 24(3) (May 2007) 96–104

13. Insemble: Building bridges in the software value chain through enterprise architects
"http://www.insemble.com/software-value-chain.html".

14. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings
of the 19th ACM Symposium on Operating Systems Principles. (2003)

15. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of OSDI’04: Sixth Symposium on Operating System Design and
Implementation. (2004)

16. GridGrain: "http://www.gridgain.com/features/".
17. Businessweek: Fifty most innovative companies. (2009) "http://bwnt.

businessweek.com/interactive_reports/innovative_50_2009/".
18. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business

ecosystem. In: Proceeedings of ECCON 2006. (2006)
19. Bjarnason, E., Svensson, R., Regnell, B.: Evidence-based timelines for project ret-

rospectives x2014; a method for assessing requirements engineering in context. In:
Empirical Requirements Engineering (EmpiRE), 2012 IEEE Second International
Workshop on. (2012) 17–24

61

Towards the roles and motives of open source

software developers

Ruvar Spauwen and Slinger Jansen

Utrecht University
Department of Information and Computing Sciences
Princetonplein 5, 3584 CC, Utrecht, Netherlands

r.a.spauwen@students.uu.nl,s.jansen@cs.uu.nl

Abstract. The software ecosystems of current web browsers include
thousands of extensions, which provide additional and customized fea-
tures for end users and which can generate stronger loyalty towards the
browser. Not much research has been done on the development of browser
extensions and, in particular, why developers chose to develop for a cer-
tain browser. Hence, this research tries to do so by (1) investigating and
proposing a set of single platform developer roles and (2) looking more
closely at the subset of developers that have developed for multiple plat-
forms, including their behavioral patterns. The selection of browsers con-
sists of Chrome, Firefox, Opera, and Safari, and the researched dataset
includes all identified browser extension projects on the web-based host-
ing service Github between the years 2007 and 2012. The goal of this
research is to propose a set of methods that enable clear and meaningful
categorization of open source software developers. Consequently, these
methods could be seen as stepping stones towards more qualitative-based
research, such as: investigating the motives of specific category of devel-
opers for contributing to an ecosystem, which can lead to more e↵ective
input for controlling or at least influencing an ecosystem’s health.

Key words: software ecosystems, internet browser extensions, open source soft-
ware development, behavioral patterns, developer roles, repository mining

1 Introduction

These days, many companies realize that the total value of a software prod-
uct can not be defined only by the value of the product itself. Instead, the total
value of a software product can be better defined as the sum of a product’s value
and the values of other products that are interacting with the specific software
product [17]. This creates a network of mutual dependencies in which products,
companies and services work together to keep the network alive, and such type
of network was first described by Messerschmitt and Szyperski in 2003 [14] as
a software ecosystem (SECO). In 2009, Jansen, Finkelstein and Brinkkemper
proceeded by defining a SECO as “a set of businesses functioning as a unit and
interacting with a shared market for software and services, together with the

62

r.a.spauwen@students.uu.nl,s.jansen@cs.uu.nl

2 Ruvar Spauwen and Slinger Jansen

relationships among them” [10]. Free and Open source software (FOSS) projects
tend to have a SECO that forms itself around the projects in which their growth
is determined by the amount of developers that are willing to contribute to
projects and create new projects [12]. Companies could provide support by of-
fering toolkits and developer platforms, but the success of these types of software
projects still depends on the e↵ort of the developers themselves. This research
project focusses on free and publicly available software development that is lib-
erally licensed to grant users the right to use, copy, study, change and improve
the source code [4].

An important question concerning FOSS development relates to why de-
velopers participate in these projects. Research has shown several motives for
participation, for instance: “pleasure”, “a form of personal rewarding” and “an
opportunity to improve technical skills” [2,16]. Other research names reasons like
“building trust and reputation”, “showing creativity”, “advancement through in-
creasingly challenging technical roles” [11], as well as “being generous in sharing
time expertise and source code” [1]. Additionally, it often occurs that FOSS
developers are involved in several projects: a study of 2002 showed that 5% of
the examined FOSS developers were involved in 10 or more projects [6]. Madey
et al. [13] examined the importance of these so-called “hubs” or “linchpins”,
through social network analysis, and showed that the absence of these devel-
opers can result in the segregation of networks. However, these studies do not
specify if developers are related to one or several platforms and, more specif-
ically, whether developer perform the same role in every SECO or that they
might perform di↵erent kind of roles.

To the authors’ knowledge, in-depth research on the behaviour of these mul-
tiple platform developers does not exist. Idu, van de Zande, and Jansen [9]
performed an interesting case study on Apple’s App Store ecosystem, but their
scope is more focused on a single company with multiple sub-ecosystems. On the
other hand, Hyrynsalmi et al. [7] do consider the SECOs from di↵erent mobile
software companies and discuss characteristics of multiple platform developers.
Only their research does not elaborate on how developers might behave over
time. Therefore, this research attempts to go a step further by using the devel-
oper behaviour perspective over time to work towards, possibly valuable, motives
of developers for participating in certain FOSS projects.

More specifically, knowledge of behavioral patterns might be useful in a way
that it can lead to new methods for influencing a SECO’s health; i.e. information
about developers’ relationships with platforms and other developers over time
can be used as an indicator of the robustness of a SECO, which is one of the de-
terminants of measuring SECO health [8]. Also, it could be used to define group
stability, connectedness and outbound links, which are part of the metrics Den
Hartigh defines to measure robustness [3]. If companies have access to develop-
ers’ motives, for instance, for choosing to contribute to a specific platform or not,
they can use this knowledge for more accurate improvements to their platform,
which in return might lead to stronger relationship with current developers as
well as more future developers.

63

3 Research Method 3

Finally, the accessibility of source code, alterations over time and informa-
tion about contributing developers make FOSS projects suitable for (dynamic)
network analysis and they provide new ways of exploring large software ecosys-
tem, as shown by [12]. Additionally, the large number of FOSS projects that are
being hosted on open source software hosting websites like Github, Sourceforge
and Google Code, increase the reliability of statistical analysis results [18].

The remainder of this paper is organized as follows. In the following sec-
tion, we present the main research questions and their related sub questions.
Subsequently, the research method is discussed in section 3, providing argumen-
tation on the chosen type of research, the selection of cases and collection of
data. Section 4 contains the analysis on the gathered dataset and the following
results are presented in section 5. Finally, we conclude this paper by giving an
overview of the things discussed, point out important limitations and propose
several opportunities for future work.

2 Research Questions

The main research questions answered in this paper is: “How can we di-
vide open source developers of browser extensions into distinctive
categories and roles?”. From the main research question, the following sub
questions are derived:

1. What are the characteristics on which we can categorize develop-
ers in the separate browser ecosystems? - By looking closely at the
developers and their activities per platform, we will be able to extract the
most important characteristics on which the developers can be categorised.

2. How can we combine the single platform developer characteris-
tics into roles - In order to get a better overview of the distributions of
characteristics per browser, we have to combine them into meaningful roles.

3. What are the combinations in which developers are or have been
connected to more than one ecosystem? - Before we can research mul-
tiple platform developers and their behaviours, we first need to locate them
and determine if di↵erent behavioral patterns exist.

4. How can we quantify the di↵erent types of multiple platform de-
velopers? - We need to design a model and visual representation that can
give meaning to the discovered behavioral patterns and that enables clear
and valuable categorization of multiple platform developers.

3 Research Method

In the following sections, we elaborate on the applied research method for gath-
ering the data and performing the analysis. This includes: descriptions of the
selected cases and the data source, explanation on how we performed the actual
data gathering and on our attempts on ensuring the validity of the research.

64

4 Ruvar Spauwen and Slinger Jansen

3.1 Case selection and description

The selection of cases for the research consisted of the following three criteria.
First, the cases had to be part of the same type of software ecosystem to be able
to compare them. Second, access to case related software development projects
had to be available (e.g. source code, developers and change history) and, finally,
these projects needed to be recognizable during the data mining process.

The selection of cases consist of the following web browsers: Chrome (Google),
Firefox (Mozilla), Opera (ASA) and Safari (Apple). The reason why Internet Ex-
plorer is not selected, will be clarified in the following section. Browser extensions
are small software programs that can modify and enhance the functionality of
the browser and can be created by internal (e.g. the browser company) and
external developers, like commercial companies or (collaborating) independent
developers. Unfortunately, there is no current and complete overview of the total
number of available extensions per browser and, although all browser and their
extensions are freely available and the browser manufacturers actively support
FOSS development, not all extensions have public source code. Therefore, to
ensure objectiveness and completeness of the research, the collection of exten-
sions is narrowed down to only those that are developed and stored online in
Github repositories. Github is a website that provides source code hosting for
repositories that use the Git revision control system and provides several social
networking features to improve collaboration among developers. Additionally,
the website o↵ers both paid plans for private repositories as well as free ac-
counts for FOSS projects. As mentioned in section 1, alternatives to Github and
the Git revision control system exist, but due to the time scope of this project
and the di↵erences in systems (e.g. what kind of data is stored per repository),
this research only includes the most popular combination [5, 15]. Furthermore,
Github provides the necessary structure to be able to divide the dataset into
extensions, unique developers and commits, including details about the size and
the time of the commit and its author. Consequently, the following relation-
ships among the entities are ensured: developers can create multiple commits for
multiple extensions and an extension can be related to one or more developers.

3.2 Data Gathering

In order to be able to perform the analysis, quantitative data needed to be
collected for each of the cases. Although Github provides access to su�cient
data, the repositories are stored in such a manner that they can not be cate-
gorised instantly. For instance: the search-string “Firefox extension” produces
many false-positives, because the search function of Github includes a reposi-
tory description field, which often consists of misleading data (e.g. “this is an
alternative to the Firefox extension”). Fortunately and in contrary to Internet
Explorer, each of the selected browsers have specified a so called “manifest”
file, that needs to be included in order to make the extension executable for
the browser. Table 1 provides an overview of the manifest files considered for
determining if a repository contains a manifest file. Unfortunately, in practice

65

3 Research Method 5

it appeared that not all repositories have included a manifest file (e.g. yet, any-
more or never had one). Also, it appeared that older versions may have used
di↵erent manifest file types (e.g. Firefox), and that for some platforms only the
file type and not the combination of filename and type is mandatory. The last
case might increase the chance for false-positives if a file type is also used in
other programs than browser extensions. Therefore, when we considered a pos-
sible manifest file, we also looked at values inside the file, as can be seen in the
third column of Table 1. Because not all of these values are specified by the
browser manufacturers as being mandatory, a manifest file was considered valid
if and only if it contained at least two of its related values. The manifest files
that have no values specified were considered as special cases, for instance: if
the scraper script did not find a Firefox “install.rdf” or “manifest.json” file but
it did find a “chrome.manifest”,“.manifest” or “.xpi” file, then the repository
would be checked manually.

Platform Files Values

Chrome manifest.json “name”, “version”, “description”

Firefox

install.rdf
“xlmns:em=http://www.mozilla.org/2004/em-rdf#”
“<em:id>”, “<em:version>”, “<em:name>”,
“<em:description>”

chrome.manifest n/a
manifest.json “name”, “version”, “description”, “author”
.manifest/.xpi n/a

Opera config.xml “xlmns=http://www.w3.org/ns/widgets”, “<name”,
“<name>”, “<description>”, “<author>”

Safari
*.plist “<plist>”, “<plist”, “<dict>”, “<key>”
*.safariextz n/a

Table 1: Description of manifest files and related values per platform

The list of candidate repositories was created by searching on Github with
di↵erent combinations of keywords, like: “Chrome extension 2011-01-01...2011-
12-31”. Because there is no consensus on the term “extension”, alternatives like
“add(-)on” and “plug(-)in” were considered as well and subsequently combined
with the four platforms and di↵erent date intervals. To clarify, a date interval
relates to those repositories that were created in that specific period. It was nec-
essary to include this because Github only returns a thousand repositories per
search query. Additionally, only repositories that are no Forks of other reposito-
ries were considered, because these repositories would skew the data since it is
impossible to combine their commits into unique contributions. Finally, due to
the design of Github it was decided to count a commit in a repository containing
extension for multiple platforms (e.g. Chrome and Firefox) for both platforms.

Di↵erent methods are used for collecting the actual data. Due to the extensive
checks for manifest files, it was not possible to use Github’s developer API for
the initial filtering of repositories and so HTML scraping methods were used
for this. When this was finished, we were able to use the quicker Github API to
retrieve a vast amount of additional information on the developers and commits.

66

6 Ruvar Spauwen and Slinger Jansen

4 Analysis

This section provides the analysis performed on the dataset retrieved from
Github, so each question posed in section 2 can be assessed. But first, we provide
a description on how the final dataset was established.

The combinations of keywords used to search on Github produced a result of
more than 30.000 separate repositories of which almost 9.000 passed one of the
platform specific manifest-file checks. Next, this number was reduced to 7.749
extensions from 7.564 unique repositories, by first automatically removing the
extensions that had no commits in the period of interest and the repositories
that were incomplete. The period of interest was set between 2007 and 2012,
because there were only a few (Firefox) manifest-containing repositories before
that period. In Chapter 6 we argue that this selection, which is also implemented
in the metrics and normalization, can be improved due to the fact that the other
three browsers started supporting extensions in 2009 and 2010, which is more
than five years after Firefox. Then, a second filter was applied on the dataset
by manually controlling an arbitrary selection of outstanding cases, like: odd
date values (e.g. “1/1/1970”), extremely large commits (e.g. bulk import) and
the default developer accounts “invalid-email-address”, “unknown” and “(no au-
thor)”. Finally, the remaining set of extensions was as follows: 4.746 (Chrome),
2.032 (Firefox), 772 (Safari) and 199 (Opera). Furthermore, more than 340.000
commits and nearly 10.000 developers were collected. The performed analysis is
mostly focused on relative values because there is no complete information on
the total number of extensions outside of Github and, despite all measures dur-
ing the gathering of the data, it is not certain whether every record is a finalized
extension (i.e. available at one of the o�cial extension markets). Fortunately, the
obtained dataset is su�ciently large for dividing developers into di↵erent cate-
gories and for observing relationships among developers and di↵erent platforms.

4.1 Single Platform Developer Roles

This sections explains the design of the single platform developer roles and in-
cludes an overview of the distributions per platform. The roles are based on a
set of metrics which are aggregated into the following three scores: T, N and C.
We argue that a valuable method to categorize developers is provided by a com-
bination of the developer’s connectedness with other developers and extensions
(N), the frequency and intervals over which the developer creates commits (T)
and the number and size of these commits (C). The base metrics are inspired on
metrics from related literature, but they are modified and combined in such a
manner that further research is necessary to validate their design and the results.

The three scores range from 0 to 1 and they can be visually represented by
a 3-dimensional graph divided into eight same-sized cubes, or “octants”. Each
one of these cubes has distinctive properties that can be related to a specific
role. Table 2 gives an overview of these eight roles, including their label and
specific properties. The first property of the roles relates to the score T, where
the value Occasional or Regular is selected depending on a developer’s average

67

4 Analysis 7

contribution time per extension combined with the total number of days between
a developer’s first and last commit. Next, the scoresN andC relate to the second
property of the role, where specific combinations of scores lead to the values
Adjuster, Investor, Networker or Collaborator. For instance, the values Adjuster
and Investor are selected when the developer has a low N score combined with
a low, respectively high C score, and the values Networker and Collaborator are
assigned when the N is high and the score C is low, respectively high.

Labels Roles T C N

a Occasional Adjuster 0,0 - 0,5 0,0 - 0,5 0,0 - 0,5
b Occasional Investor 0,0 - 0,5 0,5 - 1,0 0,0 - 0,5
c Occasional Networker 0,0 - 0,5 0,0 - 0,5 0,5 - 1,0
d Occasional Collaborator 0,0 - 0,5 0,5 - 1,0 0,5 - 1,0
e Regular Adjuster 0,5 - 1,0 0,0 - 0,5 0,0 - 0,5
f Regular Investor 0,5 - 1,0 0,5 - 1,0 0,0 - 0,5
g Regular Networker 0,5 - 1,0 0,0 - 0,5 0,5 - 1,0
h Regular Collaborator 0,5 - 1,0 0,5 - 1,0 0,5 - 1,0

Table 2: Overview of roles and related scores

After defining the roles and calculating the scores, we selected for each plat-
form the top 10 percent of developers having the highest combined T, N and C
scores. Despite the significant di↵erences in the resulting number of developers
per platform (e.g. 576, 357, 21 & 98), these subsets provide the most interesting
developers and a correct comparison is ensured by selecting the same relative
number of developers for each platform. Next, the developers were given a role
based on their T, N and C scores and the resulting distributions are shown in
Figure 1. It can be seen that Chrome, Firefox and Safari appear to be surpris-
ingly similar: they all have the Occasional Adjuster as the most occurring role,
followed by the Occasional Networker, the Regular Adjuster and a small portion
is taken by the Regular Networker or Occasional Collaborator roles. Regarding
Opera, we can see that by far the largest part is occupied by the Occasional Net-
worker role. This might be caused by the fact that many of the Opera extensions
in our dataset share their repository with extensions for other platforms and this
results in a more than average number of connections with other developers.

Fig. 1: Top 10 percent distribution of single platform developer roles per platform

68

8 Ruvar Spauwen and Slinger Jansen

4.2 Multiple platform Developers

The second part of the research only considers the subset of multiple platform
developers, or MPDs, which include the developers that have contributed to
di↵erent extensions for more than one type of browser platform, to a single
repository that contains extensions for more than one type of browser platform,
or both. The dataset contains a total of 743 MPDs of which there are 629, 69
and 45 developers having a connections with 2, 3 and 4 di↵erent platforms re-
spectively. An overview of the di↵erent combinations and their occurrences can
be seen in Table 3. It is clear that the combination Chrome-Firefox is the most
occurring, but we can also see that the combination Chrome-Safari is quite sig-
nificant with 136 developers. It is clear that combinations of platforms containing
Opera occur the least often, but percentage-wise, the set of Opera developers
consist of the largest number of multiple platform developers (38%) compared
to Chrome (12%), Firefox (16%) and Safari (31%).

Platform Combinations

Chrome * * * * * * *
Firefox * * * * * * *
Opera * * * * * * *
Safari * * * * * * *

409 136 59 59 45 19 7 3 3 2 1

Table 3: Number of developers per multiple platform combination

A quadrant-based model was designed that rates developers upon the follow-
ing two criteria: Fluctuation over Time Active and Amount of Contribution. The
first criterium relates to how often a developer switches to another platform or a
combination of platforms: this is a combined score that looks at the fluctuation
per month, fluctuation per year and the total length of activity (e.g. first and
last commit) of the developer during the previously mentioned main scope of
this research. Two di↵erent time interval levels were considered, because: anal-
ysis showed that not every developer creates a commit every month, but if you
would only look at intervals per year the granularity would be too low to dis-
cover valuable fluctuations. The total time of activity of a developer is included,
so that fluctuations of developers that have a longer activity time are weighed
heavier. The second criteria relates to the number of commits combined with the
size of these commits, regarding number of additions and deletions. A logarith-
mic normalization was used on the number of additions and deletions, because
the dataset contains a small collection of high outliers which often consist of
less valuable bulk import commits, and it enables a better distinction between
the large number of developers with relatively low “addition” and “deletion”
values. The metrics used in this model are partly based on existing metrics, but
the combination of them and output of results are based mostly on instinct and
have not yet been extensively validated. Therefore, the analysis presented in
section 5.2 is solely meant for giving an indication of the model’s possibilities.

69

5 Results 9

5 Results

The following sections elaborate upon the results in the context of the research
questions posed in section 2. The first two sub questions are depicted in sec-
tion 5.1 and section 5.2 elaborates on the findings related to the remaining two.

5.1 Single Platform Developer Roles

The distributions of the developer roles, introduced in section 4.1, provide an
overview of certain properties of developers and their occurrences as well as sim-
ilarities and di↵erences between platforms. Figure 1 shows that most Chrome,
Firefox and Safari developers score low on the length and size of their contribu-
tions. Furthermore we can see that for both Safari and Opera the most occuring
role is the Occasional Networker. But as mentioned in section 4.1, we believe
that the set of Opera developers is skewed because a significantly less amount of
repositories containing only an Opera extension is present in the dataset. The
reason for this is uncertain and therefore interesting to further investigate upon.

5.2 Multiple Platform Developers

The model introduced in section 4.2 has been applied to the collection of multiple
platform developers in the dataset. A graphical representation of the results can
be seen in Figure 2. To ensure the clearness of the graph, the developers are
grouped based on similar ranges (e.g. 0, 1 < x 0, 2 and 0, 5 < y 0, 6) and
represented as a bubble in the graph, with a size relative to the number of
developers in the group. Additionally, the bubbles that contain more than one
developers have a label showing the number of developers inside them and, for
explanatory purposes, IDs of several outstanding developers have been included.

Fig. 2: Distribution of the multiple platform developers

70

10 Ruvar Spauwen and Slinger Jansen

Figure 2 shows that most developers score low on both criteria (e.g. located in
the bottom left quadrant). This implies that these developers have a relatively
low contribution combined with a stable loyalty to a certain combination of
platforms. More interesting are the developers positioned in the other quadrants.
For instance, if we look more closely at the three most right developers, named
“jcutler”, “2d1” and “johnjbarton”. Table 4 shows that “johnjbarton” has a
average number of commits, but his total number of additions and deletions is
significantly higher than the other two and therefore his Amount of Contribution,
despite the logarithmic normalization, is valued higher. The table shows also that
on the level of Years, both “jcutler” and “2d1” did not change their combination
of platforms. Developer “johnjbarton” does have fluctuations on the level of
Years, namely: between 2007 and 2010 he developed only for Firefox, then from
2011 both for Firefox and Chrome and, finally, in 2012 only for Chrome. More
specific, it shows that 2011 is divided into two periods, as the Months value
also shows: until July he developed for Firefox and later on only for Chrome.
Given his high scores on both criteria, it would be interesting to investigate why
“johnjbarton” switched to Chrome after four years of loyalty towards Firefox.

Developer Fluctuation over Time Commits

ID Name Years Months Time (d) Commits Additions Deletions

5732 jrburke 2 3 2017 2087 1126540 264572
5910 georgebrock 4 3 82 15236 263 79431
6134 Ajnasz 2 6 1699 3805 91528 109521
7211 jcutler 0 0 650 2087 609714 425510
7686 2d1 0 2 286 6957 110735 21584
9069 johnjbarton 2 1 1933 3805 3918354 2095710

Table 4: Overview of multiple platform developers from right quadrants

Next, some remarks can be made regarding the top three developers from
Table 4, namely: {5732}, {5733} and {6134}. These IDs relate to the developers
named “jrburke”, “slightlyo↵” and “Ajnasz” respectively, and they are part of
the developers with the highest Fluctuation over Time Active values combined
with significantly high Amount of Contribution values. They all have been active
developers for at least 5 years and they all have created a commit in the last
month of 2012. Furthermore, although they have only developed for the Chrome
and Firefox platform, they are all related to multiple di↵erent extensions. For
instance, “jrburke” has created commits for a total of 8 di↵erent extensions. An-
other remarkable observation from the dataset, is that the developer “slightlyo↵”
was not active during the years 2009 and 2010 and when he started developing
again, his loyalty changed from Chrome to Firefox. Regarding the developer “Aj-
nasz”, we observed that his main loyalty is towards Firefox, but we saw that in
2010 and in 2011, during di↵erent periods, he created commits for Chrome ex-
tensions, but none of these periods lasted longer than one month. This behaviour
is quite di↵erent than the behaviour found at the other mentioned developers.

71

7 Conclusion 11

6 Discussion

First of all, the amount of collected research data and the number of sources
can be increased: as mentioned in section 3 only repositories hosted on Github
have been considered, while there are several other sources (e.g. SourceForge,
GoogleCode and CodePlex). Furthermore, the dataset could be extended within
the context of Github: although multiple combinations of keywords have been
used, it is possible that not all significant extensions have been retrieved. For
example, names and documentation in non-English languages could withhold
extensions from being discovered; Also, plural forms of keywords could be in-
cluded and a list of extensions names available on each of the o�cial Extension
web stores could be created, although there are some additional challenges to
this method (e.g. di↵erences in names between project development name and
web store version). To improve the completeness of the dataset and results, ex-
tension for Microsoft Internet Explorer, the second most used web browser in
the world, should be included. If this was possible it would provide additional
comparison materials and most likely more multiple platform developers.

Further improvements can be made regarding the contents of the current
dataset. For example, when looking at repositories containing multiple extensions
for the same platform: currently, a maximum of one extension per repository per
platform combination is considered. Accepting more extensions would greatly
increase the data gathering time, because then the scraper script has to consider
all the directories of a repository. Another issue is that we are not certain whether
all extensions in the dataset are actual finished extension. An e↵ective method
for validating all the extensions with the browsers’ o�cial markets is needed to
improve the ratio of installable extensions in the dataset. One can argue that
unfinished, failed or test projects are some kind of contribution to a certain
platform, but it would be wise to additionally investigate manifest-containing
repositories and verify that they are truly related to a web browser.

7 Conclusion

As discussed, this research is mostly intended as a step towards qualitative re-
search: due to designs of the data source and type of SECOs, many validity issues
remain which negatively influence quantitative analysis. Besides providing ex-
tensive insight into these issues, the dataset was analysed in such a manner that
the results could lead the way to succeeding qualitative research. This was done
by suggesting di↵erent developer roles and how these were distributed per plat-
form. For the group of multiple platform developers we presented an overview
of platform combinations, a quadrant based on specific criteria and we discussed
several outstanding examples of developers and their behavior patterns. Based
on these examples, we proposed several questions on which future work can be
based on. Additionally, the following questions can be considered when including
the single platform roles: “How do the single platform roles of a multiple platform
developer compare to each other?” and “Does a developer changes roles if you

72

12 Ruvar Spauwen and Slinger Jansen

look at specific periods?”. These questions should be interpreted as guidelines:
guidelines on how roles, relationships among developers and behavioral patterns
could be used to extract the motives of certain developers for participating in
and contributing to certain development projects. We hope that these guidelines
lead to more reliable methods for influencing the health of open source SECOs.

References

1. M Bergquist and J Ljungberg. The power of gifts: organizing social relationships
in open source communities. Information Systems Journal, 11(4):305–320, 2001.

2. K Crowston and B Scozzi. Open source software projects as virtual organisa-
tions: competency rallying for software development. IEE Proceedings - Software,
149(1):3–17, February 2002.

3. E Den Hartigh, M Tol, and W Visscher. The Health Measurement of a Business
Ecosystem. Ecosystems, 2783565:1–39, 2006.

4. J Feller and B Fitzgerald. Understanding open source software development.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

5. K Finley. Github Has Surpassed Sourceforge and Google Code in Popularity.
http://readwrite.com/2011/06/02/github-has-passed-sourceforge, 2011.

6. A Hars and S Ou. Working for free? Motivations of participating in open source
projects. International Journal of Electronic Commerce, 6(3):25–39, 2002.

7. S Hyrynsalmi, T Mäkilä, A Järvi, A Suominen, M Seppänen, and T Knuutila. App
Store, Marketplace, Play! An Analysis of Multi-Homing in Mobile SECOs. In Proc.
4th Intern. Workshops on SECOs, volume 879, pages 59–72. CEUR, 2012.

8. M Iansiti and R Levien. Keystones and Dominators: Framing the Operational
Dynamics of Business Ecosystems. page 84, 2004.

9. A Idu, T Van De Zande, and S Jansen. Multi-homing in the Apple ecosystem: Why
and how developers target multiple Apple App Stores. In Proc. of the Intern. Conf.
on Management of Emergent Digital EcoSystems, pages 122–128. ACM Press, 2011.

10. S Jansen, A Finkelstein, and S Brinkkemper. A Sense of Community: A Research
Agenda for Software Ecosystems. 31st International Conference on Software En-
gineering Companion Volume, (C):187–190, 2009.

11. C Jensen and W Scacchi. Role migration and advancement processes in ossd
projects: A comparative case study. In Proceedings of the 29th international con-
ference on Software Engineering, pages 364–374, 2007.

12. J Kabbedijk and S Jansen. Steering insight: An exploration of the ruby software
ecosystem. In B Regnell, I Weerd, and O Troyer, editors, Software Business, vol-
ume 80, pages 44–55. Springer Berlin Heidelberg, 2011.

13. G Madey, V Freeh, and R Tynan. Free/Open Source Software Development. IGI
Global, July 2004.

14. D Messerschmitt and C Szyperski. Software Ecosystem: Understanding an Indis-
pensable Technology and Industry, volume 1. The MIT Press, 2003.

15. I Skerrett. Eclipse Community Survey Result for 2012. http://ianskerrett.

wordpress.com/2012/06/08/.
16. G Von Krogh, S Spaeth, and K Lakhani. Community, joining, and specialization

in open source software innovation. Research Policy, (7):1217–1241.
17. L Xu and S Brinkkemper. Concepts of product software. European Journal of

Information Systems, 16(5):531–541, 2007.
18. RK Yin. Case Study Research: Design and Methods, volume 5. Sage Pub., 2009.

73

http://readwrite.com/2011/06/02/github-has-passed-sourceforge
http://ianskerrett.wordpress.com/2012/06/08/
http://ianskerrett.wordpress.com/2012/06/08/

Notes from the IWSECO 2013 panel discussion
RTn = Research Take Aways:

RT1: Relationship SW Architecture vs SECO ==> Clopeness ==> IP

RT2: Operationalizing Health Metrics ==> Context ==> Not viewing SECO just for health
sake. Compare it to requirements. At the same time, should also evaluate temporal health
measures. How is it doing currently and how will it in the future?

RT3: More longitudinal observational studies & more empirical works RT4: How to create
an ecosystem RT5: Become more relevant to industry RT6: What can we learn from other
ecosystems like manufacturing or social? RT7: Are standards fundamental to SECO success?

Jan Bosch: The reason why it was difficult to create an ecosystem: we did not provide a
business model for the ecosystem. The discussion was: ‘why would I give away hundreds of
millions of revenue to other people.’ The answer is: ‘why do people still submit apps to the
App Store - there is a business model. Creating an ecosystem is simple. Throw money at it!’

Sjaak Brinkkemper: But what are these business models?

Pasi Tyrvanen: And how much money should we throw at it? Ecosystem businesses do not
necessarily start working with a parent company through subsidies.

Slinger Jansen: There is a really strong call for theory, developing theoretical models behind
software ecosystems. There should be more empirical studies. We should be doing studies
into OSS, commercial organisations, repository mining (re-use, dependencies, health). Go out
there and collect the data. The larger your scope the better. The commercial side of things -
we need data. Microsoft will give you a list of ecopartners, but will not tell you where the
money is.

Carina: There is a need for good, reliable research methods & approaches. Who can replicate
your own study.

Slinger Jansen: I think many people are interested in how you govern an ecosystem. What
are the findings from the studies that we did. Should an ecosystem have more lone wolfs,
groups or new people? What is beneficial to the ecosystem?

Geir Hanssen: I think one challenge is, becoming more relevant for industry. My motive lies
within being helpful to industry. I see in the RT-list that there are some answers. We have
spent some years on defining and understanding; we are entering the phase of recommending
industry.

Jan Bosch: Several people here mentioned that they have a company, customers and want to
create an ecosystem. But how do I do it? Before we can recommend industry, we should build
our own ecosystem. I think the prescriptive part is difficult because the moment I find out, I
am not going to tell you.

Pasi: Title for the next ICSOB: ‘How to create an ecosystem?’ Slinger & Jan: We could at
least write a paper about how not to do it. Lots of data.

74

Jan Bosch: ‘What would we advise NOKIA to be successful in the Windows 8 ecosystem?’
Pasi, what do you do?

Pasi: I do not as an academic.

Jan Bosch: ‘Another interesting question is, what ecosystem do I join to create a successful
business?’

Sjaak: The issues in the SECO subject are similar to automotive or aerospace. What can we
learn from the manufacturing ecosystem? What I observe is that technical standards are very
important for the survival of a business. (You can buy everything, as long as it is speci!ed). I
am sure that over the years many different standards popped up, and at some point
consolidated. Would also standardization of interfaces be a success determination of
ecosystem. This is my API, please build as many $THING as you like.

Jan Bosch: I agree that standards are useful in ecosystems, but you want to strategically
standardize. Sometimes you do and sometimes you disrupt standards to give other companies
a strategic disadvantage. The moment you standardize it becomes hard to innovate over that
standard.

Other communities we can learn from are social communities in the broadest sense.
Facebook, Twitter, etcetera - they have found effective ways to get (software) ecosystems
going. It is not the money but reputation or other forms of value. How do we implement that
in software ecosystems?

Negative and positive impressions of the workshop

Positive

Atmosphere
Topical discussion
Focus on results
Close knit community
Utrecht
Keynote
Great Community
Business vs Social

Negative

More participation
Need for interaction
More ecosystem stuff
More provocation
Beamer!!
More about people
Location
More empirical
Little time

75

