
Towards the roles and motives of open source
software developers

Ruvar Spauwen and Slinger Jansen

Utrecht University
Department of Information and Computing Sciences

Princetonplein 5, 3584 CC, Utrecht, Netherlands
r.a.spauwen@students.uu.nl,s.jansen@cs.uu.nl

Abstract. The software ecosystems of current web browsers include
thousands of extensions, which provide additional and customized fea-
tures for end users and which can generate stronger loyalty towards the
browser. Not much research has been done on the development of browser
extensions and, in particular, why developers chose to develop for a cer-
tain browser. Hence, this research tries to do so by (1) investigating and
proposing a set of single platform developer roles and (2) looking more
closely at the subset of developers that have developed for multiple plat-
forms, including their behavioral patterns. The selection of browsers con-
sists of Chrome, Firefox, Opera, and Safari, and the researched dataset
includes all identified browser extension projects on the web-based host-
ing service Github between the years 2007 and 2012. The goal of this
research is to propose a set of methods that enable clear and meaningful
categorization of open source software developers. Consequently, these
methods could be seen as stepping stones towards more qualitative-based
research, such as: investigating the motives of specific category of devel-
opers for contributing to an ecosystem, which can lead to more effective
input for controlling or at least influencing an ecosystem’s health.

Key words: software ecosystems, internet browser extensions, open source soft-
ware development, behavioral patterns, developer roles, repository mining

1 Introduction

These days, many companies realize that the total value of a software prod-
uct can not be defined only by the value of the product itself. Instead, the total
value of a software product can be better defined as the sum of a product’s value
and the values of other products that are interacting with the specific software
product [17]. This creates a network of mutual dependencies in which products,
companies and services work together to keep the network alive, and such type
of network was first described by Messerschmitt and Szyperski in 2003 [14] as
a software ecosystem (SECO). In 2009, Jansen, Finkelstein and Brinkkemper
proceeded by defining a SECO as “a set of businesses functioning as a unit and
interacting with a shared market for software and services, together with the

r.a.spauwen@students.uu.nl,s.jansen@cs.uu.nl

2 Ruvar Spauwen and Slinger Jansen

relationships among them” [10]. Free and Open source software (FOSS) projects
tend to have a SECO that forms itself around the projects in which their growth
is determined by the amount of developers that are willing to contribute to
projects and create new projects [12]. Companies could provide support by of-
fering toolkits and developer platforms, but the success of these types of software
projects still depends on the effort of the developers themselves. This research
project focusses on free and publicly available software development that is lib-
erally licensed to grant users the right to use, copy, study, change and improve
the source code [4].

An important question concerning FOSS development relates to why de-
velopers participate in these projects. Research has shown several motives for
participation, for instance: “pleasure”, “a form of personal rewarding” and “an
opportunity to improve technical skills” [2,16]. Other research names reasons like
“building trust and reputation”, “showing creativity”, “advancement through in-
creasingly challenging technical roles” [11], as well as “being generous in sharing
time expertise and source code” [1]. Additionally, it often occurs that FOSS
developers are involved in several projects: a study of 2002 showed that 5% of
the examined FOSS developers were involved in 10 or more projects [6]. Madey
et al. [13] examined the importance of these so-called “hubs” or “linchpins”,
through social network analysis, and showed that the absence of these devel-
opers can result in the segregation of networks. However, these studies do not
specify if developers are related to one or several platforms and, more specif-
ically, whether developer perform the same role in every SECO or that they
might perform different kind of roles.

To the authors’ knowledge, in-depth research on the behaviour of these mul-
tiple platform developers does not exist. Idu, van de Zande, and Jansen [9]
performed an interesting case study on Apple’s App Store ecosystem, but their
scope is more focused on a single company with multiple sub-ecosystems. On the
other hand, Hyrynsalmi et al. [7] do consider the SECOs from different mobile
software companies and discuss characteristics of multiple platform developers.
Only their research does not elaborate on how developers might behave over
time. Therefore, this research attempts to go a step further by using the devel-
oper behaviour perspective over time to work towards, possibly valuable, motives
of developers for participating in certain FOSS projects.

More specifically, knowledge of behavioral patterns might be useful in a way
that it can lead to new methods for influencing a SECO’s health; i.e. information
about developers’ relationships with platforms and other developers over time
can be used as an indicator of the robustness of a SECO, which is one of the de-
terminants of measuring SECO health [8]. Also, it could be used to define group
stability, connectedness and outbound links, which are part of the metrics Den
Hartigh defines to measure robustness [3]. If companies have access to develop-
ers’ motives, for instance, for choosing to contribute to a specific platform or not,
they can use this knowledge for more accurate improvements to their platform,
which in return might lead to stronger relationship with current developers as
well as more future developers.

3 Research Method 3

Finally, the accessibility of source code, alterations over time and informa-
tion about contributing developers make FOSS projects suitable for (dynamic)
network analysis and they provide new ways of exploring large software ecosys-
tem, as shown by [12]. Additionally, the large number of FOSS projects that are
being hosted on open source software hosting websites like Github, Sourceforge
and Google Code, increase the reliability of statistical analysis results [18].

The remainder of this paper is organized as follows. In the following sec-
tion, we present the main research questions and their related sub questions.
Subsequently, the research method is discussed in section 3, providing argumen-
tation on the chosen type of research, the selection of cases and collection of
data. Section 4 contains the analysis on the gathered dataset and the following
results are presented in section 5. Finally, we conclude this paper by giving an
overview of the things discussed, point out important limitations and propose
several opportunities for future work.

2 Research Questions

The main research questions answered in this paper is: “How can we di-
vide open source developers of browser extensions into distinctive
categories and roles?”. From the main research question, the following sub
questions are derived:

1. What are the characteristics on which we can categorize develop-
ers in the separate browser ecosystems? - By looking closely at the
developers and their activities per platform, we will be able to extract the
most important characteristics on which the developers can be categorised.

2. How can we combine the single platform developer characteris-
tics into roles - In order to get a better overview of the distributions of
characteristics per browser, we have to combine them into meaningful roles.

3. What are the combinations in which developers are or have been
connected to more than one ecosystem? - Before we can research mul-
tiple platform developers and their behaviours, we first need to locate them
and determine if different behavioral patterns exist.

4. How can we quantify the different types of multiple platform de-
velopers? - We need to design a model and visual representation that can
give meaning to the discovered behavioral patterns and that enables clear
and valuable categorization of multiple platform developers.

3 Research Method

In the following sections, we elaborate on the applied research method for gath-
ering the data and performing the analysis. This includes: descriptions of the
selected cases and the data source, explanation on how we performed the actual
data gathering and on our attempts on ensuring the validity of the research.

4 Ruvar Spauwen and Slinger Jansen

3.1 Case selection and description

The selection of cases for the research consisted of the following three criteria.
First, the cases had to be part of the same type of software ecosystem to be able
to compare them. Second, access to case related software development projects
had to be available (e.g. source code, developers and change history) and, finally,
these projects needed to be recognizable during the data mining process.

The selection of cases consist of the following web browsers: Chrome (Google),
Firefox (Mozilla), Opera (ASA) and Safari (Apple). The reason why Internet Ex-
plorer is not selected, will be clarified in the following section. Browser extensions
are small software programs that can modify and enhance the functionality of
the browser and can be created by internal (e.g. the browser company) and
external developers, like commercial companies or (collaborating) independent
developers. Unfortunately, there is no current and complete overview of the total
number of available extensions per browser and, although all browser and their
extensions are freely available and the browser manufacturers actively support
FOSS development, not all extensions have public source code. Therefore, to
ensure objectiveness and completeness of the research, the collection of exten-
sions is narrowed down to only those that are developed and stored online in
Github repositories. Github is a website that provides source code hosting for
repositories that use the Git revision control system and provides several social
networking features to improve collaboration among developers. Additionally,
the website offers both paid plans for private repositories as well as free ac-
counts for FOSS projects. As mentioned in section 1, alternatives to Github and
the Git revision control system exist, but due to the time scope of this project
and the differences in systems (e.g. what kind of data is stored per repository),
this research only includes the most popular combination [5, 15]. Furthermore,
Github provides the necessary structure to be able to divide the dataset into
extensions, unique developers and commits, including details about the size and
the time of the commit and its author. Consequently, the following relation-
ships among the entities are ensured: developers can create multiple commits for
multiple extensions and an extension can be related to one or more developers.

3.2 Data Gathering

In order to be able to perform the analysis, quantitative data needed to be
collected for each of the cases. Although Github provides access to sufficient
data, the repositories are stored in such a manner that they can not be cate-
gorised instantly. For instance: the search-string “Firefox extension” produces
many false-positives, because the search function of Github includes a reposi-
tory description field, which often consists of misleading data (e.g. “this is an
alternative to the Firefox extension”). Fortunately and in contrary to Internet
Explorer, each of the selected browsers have specified a so called “manifest”
file, that needs to be included in order to make the extension executable for
the browser. Table 1 provides an overview of the manifest files considered for
determining if a repository contains a manifest file. Unfortunately, in practice

3 Research Method 5

it appeared that not all repositories have included a manifest file (e.g. yet, any-
more or never had one). Also, it appeared that older versions may have used
different manifest file types (e.g. Firefox), and that for some platforms only the
file type and not the combination of filename and type is mandatory. The last
case might increase the chance for false-positives if a file type is also used in
other programs than browser extensions. Therefore, when we considered a pos-
sible manifest file, we also looked at values inside the file, as can be seen in the
third column of Table 1. Because not all of these values are specified by the
browser manufacturers as being mandatory, a manifest file was considered valid
if and only if it contained at least two of its related values. The manifest files
that have no values specified were considered as special cases, for instance: if
the scraper script did not find a Firefox “install.rdf” or “manifest.json” file but
it did find a “chrome.manifest”,“.manifest” or “.xpi” file, then the repository
would be checked manually.

Platform Files Values

Chrome manifest.json “name”, “version”, “description”

Firefox

install.rdf
“xlmns:em=http://www.mozilla.org/2004/em-rdf#”
“<em:id>”, “<em:version>”, “<em:name>”,
“<em:description>”

chrome.manifest n/a
manifest.json “name”, “version”, “description”, “author”
.manifest/.xpi n/a

Opera config.xml “xlmns=http://www.w3.org/ns/widgets”, “<name”,
“<name>”, “<description>”, “<author>”

Safari
*.plist “<plist>”, “<plist”, “<dict>”, “<key>”
*.safariextz n/a

Table 1: Description of manifest files and related values per platform

The list of candidate repositories was created by searching on Github with
different combinations of keywords, like: “Chrome extension 2011-01-01...2011-
12-31”. Because there is no consensus on the term “extension”, alternatives like
“add(-)on” and “plug(-)in” were considered as well and subsequently combined
with the four platforms and different date intervals. To clarify, a date interval
relates to those repositories that were created in that specific period. It was nec-
essary to include this because Github only returns a thousand repositories per
search query. Additionally, only repositories that are no Forks of other reposito-
ries were considered, because these repositories would skew the data since it is
impossible to combine their commits into unique contributions. Finally, due to
the design of Github it was decided to count a commit in a repository containing
extension for multiple platforms (e.g. Chrome and Firefox) for both platforms.

Different methods are used for collecting the actual data. Due to the extensive
checks for manifest files, it was not possible to use Github’s developer API for
the initial filtering of repositories and so HTML scraping methods were used
for this. When this was finished, we were able to use the quicker Github API to
retrieve a vast amount of additional information on the developers and commits.

6 Ruvar Spauwen and Slinger Jansen

4 Analysis

This section provides the analysis performed on the dataset retrieved from
Github, so each question posed in section 2 can be assessed. But first, we provide
a description on how the final dataset was established.

The combinations of keywords used to search on Github produced a result of
more than 30.000 separate repositories of which almost 9.000 passed one of the
platform specific manifest-file checks. Next, this number was reduced to 7.749
extensions from 7.564 unique repositories, by first automatically removing the
extensions that had no commits in the period of interest and the repositories
that were incomplete. The period of interest was set between 2007 and 2012,
because there were only a few (Firefox) manifest-containing repositories before
that period. In Chapter 6 we argue that this selection, which is also implemented
in the metrics and normalization, can be improved due to the fact that the other
three browsers started supporting extensions in 2009 and 2010, which is more
than five years after Firefox. Then, a second filter was applied on the dataset
by manually controlling an arbitrary selection of outstanding cases, like: odd
date values (e.g. “1/1/1970”), extremely large commits (e.g. bulk import) and
the default developer accounts “invalid-email-address”, “unknown” and “(no au-
thor)”. Finally, the remaining set of extensions was as follows: 4.746 (Chrome),
2.032 (Firefox), 772 (Safari) and 199 (Opera). Furthermore, more than 340.000
commits and nearly 10.000 developers were collected. The performed analysis is
mostly focused on relative values because there is no complete information on
the total number of extensions outside of Github and, despite all measures dur-
ing the gathering of the data, it is not certain whether every record is a finalized
extension (i.e. available at one of the official extension markets). Fortunately, the
obtained dataset is sufficiently large for dividing developers into different cate-
gories and for observing relationships among developers and different platforms.

4.1 Single Platform Developer Roles

This sections explains the design of the single platform developer roles and in-
cludes an overview of the distributions per platform. The roles are based on a
set of metrics which are aggregated into the following three scores: T, N and C.
We argue that a valuable method to categorize developers is provided by a com-
bination of the developer’s connectedness with other developers and extensions
(N), the frequency and intervals over which the developer creates commits (T)
and the number and size of these commits (C). The base metrics are inspired on
metrics from related literature, but they are modified and combined in such a
manner that further research is necessary to validate their design and the results.

The three scores range from 0 to 1 and they can be visually represented by
a 3-dimensional graph divided into eight same-sized cubes, or “octants”. Each
one of these cubes has distinctive properties that can be related to a specific
role. Table 2 gives an overview of these eight roles, including their label and
specific properties. The first property of the roles relates to the score T, where
the value Occasional or Regular is selected depending on a developer’s average

4 Analysis 7

contribution time per extension combined with the total number of days between
a developer’s first and last commit. Next, the scores N and C relate to the second
property of the role, where specific combinations of scores lead to the values
Adjuster, Investor, Networker or Collaborator. For instance, the values Adjuster
and Investor are selected when the developer has a low N score combined with
a low, respectively high C score, and the values Networker and Collaborator are
assigned when the N is high and the score C is low, respectively high.

Labels Roles T C N

a Occasional Adjuster 0,0 - 0,5 0,0 - 0,5 0,0 - 0,5

b Occasional Investor 0,0 - 0,5 0,5 - 1,0 0,0 - 0,5

c Occasional Networker 0,0 - 0,5 0,0 - 0,5 0,5 - 1,0

d Occasional Collaborator 0,0 - 0,5 0,5 - 1,0 0,5 - 1,0

e Regular Adjuster 0,5 - 1,0 0,0 - 0,5 0,0 - 0,5

f Regular Investor 0,5 - 1,0 0,5 - 1,0 0,0 - 0,5

g Regular Networker 0,5 - 1,0 0,0 - 0,5 0,5 - 1,0

h Regular Collaborator 0,5 - 1,0 0,5 - 1,0 0,5 - 1,0

Table 2: Overview of roles and related scores

After defining the roles and calculating the scores, we selected for each plat-
form the top 10 percent of developers having the highest combined T, N and C
scores. Despite the significant differences in the resulting number of developers
per platform (e.g. 576, 357, 21 & 98), these subsets provide the most interesting
developers and a correct comparison is ensured by selecting the same relative
number of developers for each platform. Next, the developers were given a role
based on their T, N and C scores and the resulting distributions are shown in
Figure 1. It can be seen that Chrome, Firefox and Safari appear to be surpris-
ingly similar: they all have the Occasional Adjuster as the most occurring role,
followed by the Occasional Networker, the Regular Adjuster and a small portion
is taken by the Regular Networker or Occasional Collaborator roles. Regarding
Opera, we can see that by far the largest part is occupied by the Occasional Net-
worker role. This might be caused by the fact that many of the Opera extensions
in our dataset share their repository with extensions for other platforms and this
results in a more than average number of connections with other developers.

Fig. 1: Top 10 percent distribution of single platform developer roles per platform

8 Ruvar Spauwen and Slinger Jansen

4.2 Multiple platform Developers

The second part of the research only considers the subset of multiple platform
developers, or MPDs, which include the developers that have contributed to
different extensions for more than one type of browser platform, to a single
repository that contains extensions for more than one type of browser platform,
or both. The dataset contains a total of 743 MPDs of which there are 629, 69
and 45 developers having a connections with 2, 3 and 4 different platforms re-
spectively. An overview of the different combinations and their occurrences can
be seen in Table 3. It is clear that the combination Chrome-Firefox is the most
occurring, but we can also see that the combination Chrome-Safari is quite sig-
nificant with 136 developers. It is clear that combinations of platforms containing
Opera occur the least often, but percentage-wise, the set of Opera developers
consist of the largest number of multiple platform developers (38%) compared
to Chrome (12%), Firefox (16%) and Safari (31%).

Platform Combinations

Chrome * * * * * * *

Firefox * * * * * * *

Opera * * * * * * *

Safari * * * * * * *

409 136 59 59 45 19 7 3 3 2 1

Table 3: Number of developers per multiple platform combination

A quadrant-based model was designed that rates developers upon the follow-
ing two criteria: Fluctuation over Time Active and Amount of Contribution. The
first criterium relates to how often a developer switches to another platform or a
combination of platforms: this is a combined score that looks at the fluctuation
per month, fluctuation per year and the total length of activity (e.g. first and
last commit) of the developer during the previously mentioned main scope of
this research. Two different time interval levels were considered, because: anal-
ysis showed that not every developer creates a commit every month, but if you
would only look at intervals per year the granularity would be too low to dis-
cover valuable fluctuations. The total time of activity of a developer is included,
so that fluctuations of developers that have a longer activity time are weighed
heavier. The second criteria relates to the number of commits combined with the
size of these commits, regarding number of additions and deletions. A logarith-
mic normalization was used on the number of additions and deletions, because
the dataset contains a small collection of high outliers which often consist of
less valuable bulk import commits, and it enables a better distinction between
the large number of developers with relatively low “addition” and “deletion”
values. The metrics used in this model are partly based on existing metrics, but
the combination of them and output of results are based mostly on instinct and
have not yet been extensively validated. Therefore, the analysis presented in
section 5.2 is solely meant for giving an indication of the model’s possibilities.

5 Results 9

5 Results

The following sections elaborate upon the results in the context of the research
questions posed in section 2. The first two sub questions are depicted in sec-
tion 5.1 and section 5.2 elaborates on the findings related to the remaining two.

5.1 Single Platform Developer Roles

The distributions of the developer roles, introduced in section 4.1, provide an
overview of certain properties of developers and their occurrences as well as sim-
ilarities and differences between platforms. Figure 1 shows that most Chrome,
Firefox and Safari developers score low on the length and size of their contribu-
tions. Furthermore we can see that for both Safari and Opera the most occuring
role is the Occasional Networker. But as mentioned in section 4.1, we believe
that the set of Opera developers is skewed because a significantly less amount of
repositories containing only an Opera extension is present in the dataset. The
reason for this is uncertain and therefore interesting to further investigate upon.

5.2 Multiple Platform Developers

The model introduced in section 4.2 has been applied to the collection of multiple
platform developers in the dataset. A graphical representation of the results can
be seen in Figure 2. To ensure the clearness of the graph, the developers are
grouped based on similar ranges (e.g. 0, 1 < x ≤ 0, 2 and 0, 5 < y ≤ 0, 6) and
represented as a bubble in the graph, with a size relative to the number of
developers in the group. Additionally, the bubbles that contain more than one
developers have a label showing the number of developers inside them and, for
explanatory purposes, IDs of several outstanding developers have been included.

Fig. 2: Distribution of the multiple platform developers

10 Ruvar Spauwen and Slinger Jansen

Figure 2 shows that most developers score low on both criteria (e.g. located in
the bottom left quadrant). This implies that these developers have a relatively
low contribution combined with a stable loyalty to a certain combination of
platforms. More interesting are the developers positioned in the other quadrants.
For instance, if we look more closely at the three most right developers, named
“jcutler”, “2d1” and “johnjbarton”. Table 4 shows that “johnjbarton” has a
average number of commits, but his total number of additions and deletions is
significantly higher than the other two and therefore his Amount of Contribution,
despite the logarithmic normalization, is valued higher. The table shows also that
on the level of Years, both “jcutler” and “2d1” did not change their combination
of platforms. Developer “johnjbarton” does have fluctuations on the level of
Years, namely: between 2007 and 2010 he developed only for Firefox, then from
2011 both for Firefox and Chrome and, finally, in 2012 only for Chrome. More
specific, it shows that 2011 is divided into two periods, as the Months value
also shows: until July he developed for Firefox and later on only for Chrome.
Given his high scores on both criteria, it would be interesting to investigate why
“johnjbarton” switched to Chrome after four years of loyalty towards Firefox.

Developer Fluctuation over Time Commits

ID Name Years Months Time (d) Commits Additions Deletions

5732 jrburke 2 3 2017 2087 1126540 264572

5910 georgebrock 4 3 82 15236 263 79431

6134 Ajnasz 2 6 1699 3805 91528 109521

7211 jcutler 0 0 650 2087 609714 425510

7686 2d1 0 2 286 6957 110735 21584

9069 johnjbarton 2 1 1933 3805 3918354 2095710

Table 4: Overview of multiple platform developers from right quadrants

Next, some remarks can be made regarding the top three developers from
Table 4, namely: {5732}, {5733} and {6134}. These IDs relate to the developers
named “jrburke”, “slightlyoff” and “Ajnasz” respectively, and they are part of
the developers with the highest Fluctuation over Time Active values combined
with significantly high Amount of Contribution values. They all have been active
developers for at least 5 years and they all have created a commit in the last
month of 2012. Furthermore, although they have only developed for the Chrome
and Firefox platform, they are all related to multiple different extensions. For
instance, “jrburke” has created commits for a total of 8 different extensions. An-
other remarkable observation from the dataset, is that the developer “slightlyoff”
was not active during the years 2009 and 2010 and when he started developing
again, his loyalty changed from Chrome to Firefox. Regarding the developer “Aj-
nasz”, we observed that his main loyalty is towards Firefox, but we saw that in
2010 and in 2011, during different periods, he created commits for Chrome ex-
tensions, but none of these periods lasted longer than one month. This behaviour
is quite different than the behaviour found at the other mentioned developers.

7 Conclusion 11

6 Discussion

First of all, the amount of collected research data and the number of sources
can be increased: as mentioned in section 3 only repositories hosted on Github
have been considered, while there are several other sources (e.g. SourceForge,
GoogleCode and CodePlex). Furthermore, the dataset could be extended within
the context of Github: although multiple combinations of keywords have been
used, it is possible that not all significant extensions have been retrieved. For
example, names and documentation in non-English languages could withhold
extensions from being discovered; Also, plural forms of keywords could be in-
cluded and a list of extensions names available on each of the official Extension
web stores could be created, although there are some additional challenges to
this method (e.g. differences in names between project development name and
web store version). To improve the completeness of the dataset and results, ex-
tension for Microsoft Internet Explorer, the second most used web browser in
the world, should be included. If this was possible it would provide additional
comparison materials and most likely more multiple platform developers.

Further improvements can be made regarding the contents of the current
dataset. For example, when looking at repositories containing multiple extensions
for the same platform: currently, a maximum of one extension per repository per
platform combination is considered. Accepting more extensions would greatly
increase the data gathering time, because then the scraper script has to consider
all the directories of a repository. Another issue is that we are not certain whether
all extensions in the dataset are actual finished extension. An effective method
for validating all the extensions with the browsers’ official markets is needed to
improve the ratio of installable extensions in the dataset. One can argue that
unfinished, failed or test projects are some kind of contribution to a certain
platform, but it would be wise to additionally investigate manifest-containing
repositories and verify that they are truly related to a web browser.

7 Conclusion

As discussed, this research is mostly intended as a step towards qualitative re-
search: due to designs of the data source and type of SECOs, many validity issues
remain which negatively influence quantitative analysis. Besides providing ex-
tensive insight into these issues, the dataset was analysed in such a manner that
the results could lead the way to succeeding qualitative research. This was done
by suggesting different developer roles and how these were distributed per plat-
form. For the group of multiple platform developers we presented an overview
of platform combinations, a quadrant based on specific criteria and we discussed
several outstanding examples of developers and their behavior patterns. Based
on these examples, we proposed several questions on which future work can be
based on. Additionally, the following questions can be considered when including
the single platform roles: “How do the single platform roles of a multiple platform
developer compare to each other?” and “Does a developer changes roles if you

12 Ruvar Spauwen and Slinger Jansen

look at specific periods?”. These questions should be interpreted as guidelines:
guidelines on how roles, relationships among developers and behavioral patterns
could be used to extract the motives of certain developers for participating in
and contributing to certain development projects. We hope that these guidelines
lead to more reliable methods for influencing the health of open source SECOs.

References

1. M Bergquist and J Ljungberg. The power of gifts: organizing social relationships
in open source communities. Information Systems Journal, 11(4):305–320, 2001.

2. K Crowston and B Scozzi. Open source software projects as virtual organisa-
tions: competency rallying for software development. IEE Proceedings - Software,
149(1):3–17, February 2002.

3. E Den Hartigh, M Tol, and W Visscher. The Health Measurement of a Business
Ecosystem. Ecosystems, 2783565:1–39, 2006.

4. J Feller and B Fitzgerald. Understanding open source software development.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

5. K Finley. Github Has Surpassed Sourceforge and Google Code in Popularity.
http://readwrite.com/2011/06/02/github-has-passed-sourceforge, 2011.

6. A Hars and S Ou. Working for free? Motivations of participating in open source
projects. International Journal of Electronic Commerce, 6(3):25–39, 2002.

7. S Hyrynsalmi, T Mäkilä, A Järvi, A Suominen, M Seppänen, and T Knuutila. App
Store, Marketplace, Play! An Analysis of Multi-Homing in Mobile SECOs. In Proc.
4th Intern. Workshops on SECOs, volume 879, pages 59–72. CEUR, 2012.

8. M Iansiti and R Levien. Keystones and Dominators: Framing the Operational
Dynamics of Business Ecosystems. page 84, 2004.

9. A Idu, T Van De Zande, and S Jansen. Multi-homing in the Apple ecosystem: Why
and how developers target multiple Apple App Stores. In Proc. of the Intern. Conf.
on Management of Emergent Digital EcoSystems, pages 122–128. ACM Press, 2011.

10. S Jansen, A Finkelstein, and S Brinkkemper. A Sense of Community: A Research
Agenda for Software Ecosystems. 31st International Conference on Software En-
gineering Companion Volume, (C):187–190, 2009.

11. C Jensen and W Scacchi. Role migration and advancement processes in ossd
projects: A comparative case study. In Proceedings of the 29th international con-
ference on Software Engineering, pages 364–374, 2007.

12. J Kabbedijk and S Jansen. Steering insight: An exploration of the ruby software
ecosystem. In B Regnell, I Weerd, and O Troyer, editors, Software Business, vol-
ume 80, pages 44–55. Springer Berlin Heidelberg, 2011.

13. G Madey, V Freeh, and R Tynan. Free/Open Source Software Development. IGI
Global, July 2004.

14. D Messerschmitt and C Szyperski. Software Ecosystem: Understanding an Indis-
pensable Technology and Industry, volume 1. The MIT Press, 2003.

15. I Skerrett. Eclipse Community Survey Result for 2012. http://ianskerrett.

wordpress.com/2012/06/08/.
16. G Von Krogh, S Spaeth, and K Lakhani. Community, joining, and specialization

in open source software innovation. Research Policy, (7):1217–1241.
17. L Xu and S Brinkkemper. Concepts of product software. European Journal of

Information Systems, 16(5):531–541, 2007.
18. RK Yin. Case Study Research: Design and Methods, volume 5. Sage Pub., 2009.

http://readwrite.com/2011/06/02/github-has-passed-sourceforge
http://ianskerrett.wordpress.com/2012/06/08/
http://ianskerrett.wordpress.com/2012/06/08/

	Towards the roles and motives of open source software developers
	Ruvar Spauwen and Slinger Jansen

