
The stable abducible argumentation semantics

Mauricio Osorio1, Juan Carlos Nieves2, and José Luis Carballido3

1 Universidad de las Américas, CENTIA,
osoriomauri@gmail.com

2 Universitat Politècnica de Catalunya
jcnieves@lsi.upc.edu

3 Benemérita Universidad Atónoma de Puebla
jlcarballido7@gmail.com

Abstract We look at a general way of inducing semantics in argumen-
tation theory by means of a mapping defined on the family of 2-valued
models of a normal program, which is constructed in terms of the ar-
gumentation framework. In this way we define a new argumentation se-
mantics called stable abducible which lies in between the stable and the
preferred semantics. The relevance of this new semantics is that it is non-
empty for any argumentation framework, and coincides with the stable
argumentation semantics whenever this is non-empty. We study some of
the properties of this semantics.
Keywords: Argumentation framework, argumentation semantics, logic
programming semantics.

1 Introduction

In the non-monotonic reasoning community, it is well-accepted that the stable
model semantics (also called answer set semantics) [7] represents a prominent
approach for performing non-monotonic reasoning. In fact it has given place to a
new approach of logic programming with negation as failure. Usually an answer
set program can be seen as a specification of a problem where each stable model
of a program P represents possible solutions to the problem. Nowadays, there
are efficient solvers such as dlv, clasp, and smodel. The efficiency of these answer
set solvers have increased the list of the stable model semantics’ applications,
e.g., planning, bioinformatics, argumentation theory, etc.

Even though the stable model semantics enjoys a good reputation in the non-
monotonic reasoning community, it is also well-known that the stable model se-
mantics does not satisfy some desired properties pointed out by several authors
[2,5,10,11]. Among these properties we can mention the existence of intended
models in some normal logic programs. In fact, it is not hard to find a normal
program which does not have stable models. However, the no existence of stable
models for some normal program is not really a weakness because the no exis-
tence of stable models can be regarded as the no existence of solutions of a given
problem. It all depends on the intended use of our logic programs. In the case
of an approach motivated by argumentation theory it is desirable that normal

57

programs (representing a dispute among arguments) always give an answer that
infers the winning arguments in a dispute among arguments.

In argumentation theory, the philosophy of the stable model semantics is
characterized by the so called stable argumentation semantics [6]. Like stable
model semantics, stable argumentation semantics is undefined in some argu-
mentation scenarios. Hence, it is not strange to find, in the literature, different
extensions for both the stable model semantics and the stable argumentation
semantics. On the one side, the extensions for the stable models semantics have
been supported from different logic-based inference properties. On the other
hand, the extensions for the stable argumentation semantics have been moti-
vated mainly from counter-examples. Some authors in argumentation theory [1]
have argued for supporting new argumentation semantics mainly by considering
inferences reasoning properties. In this setting, argumentation semantics such as
the semi-stable has been accepted as a good extension of the stable argumen-
tation semantics. However, semi-stable argumentation still has been weak for
satisfying properties such relevance [3,8]. Relevance is seemed to be a desired
property for dealing with the non-existence of stable extensions.

Since abstract argumentation semantics were introduced [6], it was shown
that these semantics can be viewed as a special form of logic programming
semantics with negation as failure. Therefore, any extension of the stable argu-
mentation semantics based on logic programming semantics looks as a sound
approach for extending argumentation semantics based on logic-based inference.

In this paper, we study an extension of the stable argumentation semantics
based on logic-based inference. To this end, we consider the abductive approach
introduced in [8]. In [8], an approach for extending logic programming semantics
based on an abductive set of atoms was introduced. In this paper, this abductive
set of atoms is characterized by classic-logic inference. Hence, by considering
this set of abductive atoms, we generalize the stable model semantics by the so
called strong generalized stable models. We show that these strong generalized
stable models characterize a logic programming semantics which is based on
paraconsistent logics, the so called p-stable models [9]. It is worth mentioning
that the p-stable models capture the stable model semantics.

On the argumentation side, by considering a declarative specification of ad-
missible sets in terms of logic normal programs and an order between strong
generalized stable models, an abductive stable argumentation semantics is in-
troduced. We show that this abductive stable argumentation semantics is an
extension of the stable argumentation semantics and has a similar behavior to
that of the semi-stable semantics. Moreover, a relationship between the abducible
stable semantics and the preferred semantics is proved. In the last part of the
paper, we show that the abducible stable argumentation semantics satisfies some
intuitions of relevance.

The rest of the paper is divided as follows: In §2, we present some basic
concepts w.r.t. logic programming and argumentation theory. In §3, we define
a new logic programming semantics that we call stable abducible based on the
concept of strong generalized stable models. In §4, we review the relationships be-

58

tween two argumentation semantics and the stable abducible logic programming
semantics. Theorem 3 is our main contribution. In §5, we review the definition
of weak relevance for argumentation frameworks. Theorem 4 is our contribution
in this section. In the last section, we present our conclusions.

2 Background

In this section, we review some theory about argumentation semantics and logic
programming semantics. We present a short description of Dung’s argumentation
approaches, and also the definitions of the logic programming semantics stable
and p-stable for normal programs.

2.1 Argumentation theory

We review some basic concepts of the preferred argumentation semantics defined
by Dung [6] and some results about how to regard his argumentation approach
as logic programming with negation as failure. The basic structure of Dung’s
argumentation approach is an argumentation framework which captures the re-
lationships between the arguments.

Definition 1. An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e., attacks ⊆ AR × AR.

Any argumentation framework can be regarded as a directed graph. For in-
stance, if AF := 〈{a, b, c, d}, {(a, a), (a, c), (b, c), (c, d)}〉, then AF is represented
as in Figure 1. We say that a attacks c (or c is attacked by a) if attacks(a, c)
holds. Similarly, we say that a set S of arguments attacks c (or c is attacked by
S) if c is attacked by an argument in S. For instance in Figure 1, {a, b} attacks
c.

Figure 1. Graph representation of AF = 〈{a, b, c, d}, {(a, a), (a, c), (b, c), (c, d)}〉.

Given an argumentation framework AF = 〈AR, attacks〉, if A ⊆ AR then we
write AF |A as a shorthand for 〈A, {(a, b)|(a, b) ∈ attacks and a, b ∈ A}〉.

Dung defined his argumentation semantics based on the basic concept of
admissible set.

59

Definition 2. A set S of arguments is said to be conflict-free if there are no
arguments a, b in S such that a attacks b. An argument a ∈ AR is acceptable
with respect to a set S of arguments if and only if for each argument b ∈ AR: If b
attacks a then b is attacked by S. A conflict-free set of arguments S is admissible
if and only if each argument in S is acceptable w.r.t. S.

The argumentation framework of Figure 1 has three admissible sets: { }, {b}
and {b, d}.
Definition 3. A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF . The set of preferred extensions
of AF , denoted by preferred extensions(AF), will be referred to as the preferred
semantics of AF .

The only preferred extension of the argumentation framework of Figure 1 is
{b, d}.
Definition 4. Let AF := 〈AR, attacks〉 be an argumentation framework. We
say that E ⊆ AR is an stable extension of AF if E is an admissible set of
AF that attacks every argument in AR \E. The set of stable extensions of AF ,
denoted by stable extensions(AF), will be referred to as the stable semantics of
AF .

The argumentation framework of Figure 1 does not have stable extensions. The
argumentation framework defined as AF1 = 〈{a, b, c, d, e}, {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, d)}〉 has two stable extensions: {a, d} and {a, c, e}.

2.2 Logic programming semantics

A signature L is a finite set of elements that we call atoms. A literal is either
an atom a, called positive literal ; or the negation of an atom ¬a, called negative
literal. Given a set of atoms {a1, ..., an}, we write ¬{a1, ..., an} to denote the
set of atoms {¬a1, ...,¬an}. A normal clause, C, is a clause of the form a ←
b1 ∧ . . . ∧ bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m where a and each of the bi are atoms for
1 ≤ i ≤ n + m. In a slight abuse of notation, we will denote such a clause by
the formula a ← B+ ∪ ¬B− where the set {b1, . . . , bn} will be denoted by B+,
and the set {bn+1, . . . , bn+m} will be denoted by B−. Given a normal clause a ←
B+ ∪¬B−, denoted by r, we say that a = H(r) is the head and B+(r)∪¬B−(r)
is the body of the clause. If the body of a clause is empty, then the clause is
known as a fact and can be denoted just by: a ← or a ← 	. We define a normal
logic program P , as a finite set of normal clauses. We write LP , to denote the
set of atoms that appear in the clauses of P . We denote by Head(P) the set
{a | a ← B+∪ ¬B− ∈ P}. From now on, by program we will mean a normal logic
program when ambiguity does not arise. We want to point out that our negation
symbol, ¬, corresponds to “not” in the standard use of Logic Programming.

From now on, we assume that the reader is familiar with the notion of an
interpretation and validity [12]. An interpretation M is called a (2-valued clas-
sical) model of P if and only if for each clause c ∈ P , M(c) = 1. We say that c

60

is a logic consequence of P , denoted by P � c, if every model M of P holds that
M(c) = 1.

In this paper, a logic programming semantics S is a mapping defined on the
family of all programs which associates to a given program a subset of its 2-
valued (classical) models. We say that M is a minimal model of P if and only if
there does not exist a model M ′ of P such that M ′ ⊂ M , M ′ �= M [12].

Stable model semantics. The stable model semantics was defined in terms of
the so called Gelfond-Lifschitz reduction [7] and it is usually studied in the con-
text of syntax dependent transformations on programs. The following definition
of a stable model for normal programs was presented in [7].

Let us recall that a normal positive program always has minimal models.

Definition 5. Let P be a normal program. For a set S ⊆ LP we define the
program PS from P by deleting each rule that has a literal ¬l in its body with
l ∈ S, and then all literals of the form ¬l in the bodies of the remaining rules.
Clearly PS does not contain ¬. S is a stable model of P if and only if S is a
minimal model of PS. We will denote by stable(P) the set of all stable models
of P .

Example 1. Let S = {b} and P = {b ← ¬a, c ← ¬b, b ←, c ← a}. Notice that
PS has three models: {b}, {b, c} and {a, b, c}. Since the minimal model among
these models is {b}, we can say that S is a stable model of P .

p-stable semantics. Logical inference in propositional classical logic is denoted
by �. Given a set of proposition symbols S and a theory (a set of well-formed
formulae) Γ , Γ � S if and only if ∀s ∈ S, Γ � s. When we treat a program as a
theory, each negative literal ¬a is regarded as the standard negation operator in
classical logic. Given a normal program P, if M ⊆ LP , we write P � M when:
P � M and M is a classical 2-valued model of P . The p-stable semantics is
defined in terms of a single reduction which is defined as follows:

Definition 6. [9] Let P be a normal program and M be a set of atoms. We
define

RED(P, M) = {a ← B+ ∪ ¬(B− ∩ M) | a ← B+ ∪ ¬B− ∈ P}
Now, we define the p-stable semantics for normal programs (introduced in [9]).

Definition 7. [9] Let P be a normal program and M be a set of atoms. We
say that M is a p-stable model of P if RED(P,M) � M . We will denote by
p-stable(P) the set of all p-stable models of P .

Example 2. Let us consider P = {a ← ¬b∧¬c, a ← b, b ← a} and M = {a, b}.
We can verify that RED(P,M) is: {a ← ¬b, a ← b, b ← a}. We see that M is
a model of P since for each clause C of P we have that M evaluates C to true.
We also see that RED(P, M) � M . Thus RED(P,M) � M and M is a p-stable
model of P .

61

3 Stable abducible semantics

In this section, we define a new logic programming semantics with interesting
properties in logic programming and argumentation, we call it stable abducible
and corresponds to the set of the strong generalized stable models of a given
normal program. The strong generalized stable models correspond to the stable
models of the given normal program joined to a particular subset of facts. In
this paper, the stable abducible semantics will help to characterize some argu-
mentation semantics in terms of logic programming.

Definition 8. Let P be a normal program and X, MX be sets of atoms. We
say that MX is a strong generalized stable model of P if MX is a stable model
of P ∪ X and X ⊆ {y | RED(P,MX) � y}.
We define a partial order on the set of strong generalized stable models of a
program.

Definition 9. Let MX1 and MX2 be two strong generalized stable models of a
program P . We define a partial order between these two strong generalized stable
models of P as follows: MX1 < MX2 , if X1 ⊂ X2.

Now we present the definition of the minimal strong generalized stable model of
P .

Definition 10. Let P be a normal program. We say that MX is a stable abducible
model of P , if it is a minimal strong generalized stable model of P with respect
to the partial order <.

We will denote by stable abducible(P) the set of all stable abducible models of
P . It is clear that a stable model of P is a stable abducible model of P since it
is a strong generalized stable model of P with X = ∅.

The following two examples illustrate our new logic programming semantics.

Example 3. Let P = {a ← b, b ← ¬a}. We can verify that P does not have
stable models.
a) Let M = {a} and X = {a}. In this case, P ∪X = {a ←, a ← b, b ← ¬a.}
So, M is a stable model of P ∪ X, RED(P, M) = {a ← b, b ← ¬a}, A =
{y | RED(P, M) � y} = {a}, and X ⊆ A. Hence M is a strong generalized
stable model of P .
b) Let M = {a, b}, and X = {b}. In this case, P∪X = {b ←, a ← b, b ← ¬a}
So, M is a stable model of P ∪ X, RED(P, M) = {a ← b, b ← ¬a.},
A = {y | RED(P,M) � y} = {a}, however X is not a subset of A. Hence M is
not a strong generalized stable model of P .
Finally, since {a} is minimal, the stable abducible(P) = {{a}}.

Next we present a theorem that shows that the strong generalized stable
models of a normal program are the same as its p-stable models. First we present
some lemmas and theorems useful to prove our main theorem.

62

Definition 11. [4] Two programs P1 and P2 are equivalent, denoted by P1 ≡
P2, if P1 and P2 have the same 2-valued models. Equivalently, if their sets of
rules are equivalent in classical logic.

Lemma 1. Let P be a normal program and let X, M be sets of atoms. If X ⊆
{y | RED(P, M) � y} then RED(P, M) ≡ RED(P ∪ X,M).

Proof. RED(P ∪ X, M) = RED(P, M) ∪ RED(X, M). Hence, it is enough to
show that RED(P, M) � RED(X,M). But this is equivalent to the hypothesis
X ⊆ {y | RED(P, M) � y}. ��
Theorem 1. If M is a strong generalized stable model of P then M is a p-stable
model of P .

Proof. If M is a strong generalized stable model of P then there exists X such
that
(1) M is a stable model of P ∪ X.
(2) X ⊆ {y | RED(P, M) � y}.
From (1) it follows that

(i) M is a classical model of P , since M models in classical logic P ∪X and in
particular it models P .

(ii) M is a p-stable model of P ∪ X since for normal programs the stable
semantics is a subset of the p-stable semantics

From (ii) it follows that
(a) RED(P ∪ X, M) � M}.

From (a) and Lemma 1 we obtain
(b) RED(P ∪ X,M) ≡ RED(P, M).

From the last two relations (b) and (a) we obtain:
(c) RED(P, M) � M .

From (i) and (c) it follows that M is a p-stable model of P . ��
Lemma 2. Let P be a normal program and M be a set of atoms. Then R(P ∪
M,M) � RED(P, M), where R(T, M) denotes the Gelfond and Lifschitz reduc-
tion of T with respect to M .

Proof. We consider two types of rules.

(1) The positive rules of RED(P, M) are also rules of R(P ∪ M,M).
(2) The negative rules of RED(P, M) (the interesting case) are of the form

r := x ← B+ ∪ ¬B−, where B− ⊆ M . Hence M � B− and B− � r. Hence
M � r but M ⊆ R(P ∪ M, M). Therefore R(P ∪ M, M) � r.

��
Theorem 2. Let M be a p-stable model of the normal program P , then M is a
strong generalized stable model of P .

63

Proof. Let us assume that M is a p-stable model of P . Then

(1) M is a classical model of P , and also of R(P,M)
(2) RED(P,M) � M .
It is clear that

(i) R(P ∪ M, M) � M .
From (1) and (i) it follows that M is a minimal model of R(P ∪ M, M).
Hence,

(ii) M is a stable model of P ∪ M .
Also,

(iii) M ⊆ {y | RED(P,M)} by definition of p-stable model.
From (ii) and (iii) we conclude that M is a strong generalized stable model of

P (where M is the set MX in the Definition 10 with X = M).
��

4 Mapping from argumentation to logic programming

In this section, we review the relationships between two argumentation semantics
(the stable argumentation semantics and the preferred argumentation semantics)
and the stable abducible logic programming semantics. These relationships are
based on the proposal introduced in [8] which consists of the following steps:
First, given an argumentation framework AF , we use a particular mapping that
associates to AF a normal program denoted by PAF . Second, we obtain the
stable abducible models of PAF . Finally, we use a second mapping, called f , to
obtain the stable argumentation semantics of AF . The mapping f assigns to
each stable abducible model of PAF a set of arguments from the argumentation
framework AF .

Now, we present the definitions of the two mappings and the theorem that
specifies the relationship between the argumentation semantics and the stable ab−
ducible logic programming semantics.

The first mapping uses the predicate d(x) to represent that “the argument
x is defeated”. This mapping also includes clauses such as d(x) ← ¬d(y) to
capture the idea of argument x is defeated when anyone of its adversaries y is
not defeated.

Definition 12. [8] Let AF = 〈AR, attacks〉 be an argumentation framework,
PD

AF =
⋃

x∈AR{d(x) ← ¬d(y) | (y, x) ∈ attacks} and
PE

AF =
⋃

x∈AR{∪y:(y,x)∈attacks{d(x) ← ∧z:(z,y)∈attacksd(z)}}. We define:

PAF = PD
AF ∪ PE

AF

For a given atom x in the definition of PE
AF there may not be a z as described,

in that case the corresponding conjunction ∧z:(z,y)∈attacksd(z) is empty leaving
the fact d(x) ← in PE

AF . The reader familiar with argumentation theory can
observe that essentially, PD

AF captures the basic principle of conflict-freeness [8].

64

Example 4. [3] Now, we illustrate the mapping PAF , let AF be the argumenta-
tion framework of Figure 1. We can see that PAF = PD

AF ∪ PE
AF where,

P D
AF : P E

AF :
d(a) ← ¬d(a). d(c) ← ¬d(a). d(a) ← d(a). d(d) ← d(a) ∧ d(b).
d(c) ← ¬d(b). d(d) ← ¬d(c). d(c) ← d(a). d(c) ← .

Now, we see how the second mapping, called f , can induce an argumentation
semantics of an argumentation framework AF based on the stable abducible
logic programming semantics. The mapping f assigns an extension (a set of
accepted arguments) of AF to each stable abducible model of PAF . Specifically,
it assigns the set of arguments that does not appear as defeated arguments
in the stable abducible model of PAF . Each of these extensions will be called
stable abducible extension. The induced argumentation semantics (the set of
stable abducible extensions) of AF will be denoted by Exts a(AF).

Definition 13. Let AF = 〈AR, Attacks〉 be an argumentation framework. The
stable abducible argumentation semantics of AF , denoted by Exts a, is defined
as follows:

Exts a(AF) = {N | N = f(M), M ∈ stable abducible(PAF)}

where f is the mapping from 2LPAF to 2AR, such that

f(M) = {a | d(a) ∈ (LPAF \ M)}

Example 5. Let us consider the argumentation framework AF of Figure 1 and
its normal program PAF previously obtained in Example 4. We are going to ob-
tain the stable abducible argumentation semantics of AF , namely Exts a(AF).
First of all, we have to obtain the stable abducible semantics of PAF . It is not
difficult to verify that stable abducible(PAF) corresponds to the following set:
{ {d(a), d(c)} }. Hence, Exts a(AF) = {{d, b}}.

Now, we present the relationship between the stable abducible argumentation
semantics and two well known argumentation semantics: the stable argumenta-
tion semantics and the preferred argumentation semantics. It is important to
remark that the semi-stable argumentation semantics defined by Caminada in
[3] also has a similar relationship with these two argumentation semantics. As fu-
ture work, it would be interesting to explore the relation between the semi-stable
semantics and the stable abducible argumentation semantics.

The following theorem shows four facts: there exists at least one stable ab-
ducible extension; a stable extension is also a stable abducible extension; a
stable abducible extension is also a preferred extension; and if there exists at
least one stable extension, then the stable abducible extensions coincide with
the stable extensions.

Let us point out that, according to the next result, stable abducible exten-
sions always exists, and in case the family of stable extensions of a program is
non-empty, the two argumentation semantics coincide.

65

Theorem 3. Let AF = 〈AR,Attacks〉 be an argumentation framework and L ⊆
AR, the following four statements hold:
(1) Exts a(AF) �= ∅
(2) if L ∈ stable extensions(AF) then L ∈ Exts a(AF)
(3) if L ∈ Exts a(AF) then L ∈ preferred extensions(AF)
(4) when AF has at least an stable extension, it holds that

Exts a(AF) = stable extensions(AF)

Proof. In [6] it is proven that the preferred semantics of an AF is not empty,
hence the p-stable semantics of PAF is not empty. Since, the stable abducible(PAF)
is defined as the set of p-stable models of PAF that satisfies certain minimality
conditions, then stable abducible(PAF) �= ∅. Therefore, Exts a(AF) �= ∅. This
proves (1).

It is clear from the definition of stable abducible logic programming semantics
that if P is a normal program and M ∈ stable(PAF) then M ∈ stable abducible(PAF),
and that stable abducible(PAF) ⊆ p − stable(PAF). In fact, let us observe that
if stable(PAF) �= ∅ then stable(PAF) �= stable abducible(PAF), for if M ∈
stable(PAF), it is known that M ∈p-stable(PAF), and therefore M satisfies the
definition of stable abducible(PAF) with X = ∅.
We then have: stable(PAF) ⊆ stable abducible(PAF) ⊆ p-stable(PAF).
Since the stable semantics logic programming corresponds to the stable argu-
mentation semantics and the p-stable semantics corresponds to the preferred
argumentation semantics according to the mapping f of Definition 13, then we
obtain stable extensions(AF)⊆ Exts a(AF) ⊆ preferred extensions(AF). This
proves (2) and (3).

To prove (4), we observe that if AF has at least one stable extension then
PAF has at least one stable model, then stable(PAF) = stable abducible(PAF).
We conclude that stable extensions(AF)= Exts a(AF). ��

The converse of Theorem 3 does not hold. That is, it is not the case that
each extension in Exts a(AF) is also a stable extension, see below Example 6;
and it is not the case that each preferred extension is also in Exts a(AF), see
below Example 7.

Example 6. Let S be the stable abducible semantics. Let us consider the argu-
mentation framework AF of Figure 1. In Example 5, we show that Exts a(AF) =
{{d, b}}. We can see that Exts a(AF) does not coincides with the set of stable
extensions of AF , i.e., Exts a(AF) �= stable extensions(AF).

Example 7. Let us consider the argumentation framework AF = 〈AR, attacks〉
where AR = {a, b, c, d, e} and attacks = {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}.
We can see that L = {a} is a preferred extension and L �∈ Exts a(AF). The only
stable abducible extension is {b, d}.

5 Weak relevance

Now, we present the definition of weak relevance for argumentation frameworks
which is called relevant by Caminada in [3].

66

Definition 14. Let AF = 〈AR,Attacks〉 be an argumentation framework. An
argument a ∈ AR is weakly relevant w.r.t. an argument b ∈ AR if and only if
there exists an undirected path between a and b.

If in Definition 14 we replace an undirected path between a and b with a
directed path from a to b, we would be talking about a relevance relation which
is stronger and which is used in the context of logic programming.

Example 8. Let us consider the argumentation framework AF = 〈AR, attacks〉
where AR = {a, b, c, d} and attacks = {(a, a), (b, c), (c, d)}. In this AF , the argu-
ments b, c, and d are weakly relevant with respect to each other, and argument
a is not weakly relevant with respect to b, c and d. Yet, argument a is the reason
why there is no stable extension containing b and d.

The following theorem indicates that irrelevant arguments do not determine
whether an argument is justified under the stable abducible argumentation se-
mantics.

Theorem 4. Let AF = 〈AR,Attacks〉 be an argumentation framework and let
a ∈ AR and A ⊂ AR the set of all arguments that are weakly relevant w.r.t. a.

1. There exists a stable abducible extension of AF iff there exists a stable abducible
extension of AF |A.

2. a is in every stable abducible extension of AF iff a is in every stable abducible
extension of AF |A.

Proof. Sketch.
To prove this theorem first we should prove two things:

(1) If L is a stable abducible extension of AF then L∩A is a stable abducible
extension of AF |A.

(2) If L is a stable abducible extension of AF |A then there exists a sta-
ble abducible extension L′ of AF with L′ ∩ A = L.

Finally, the theorem follows directly from these two results. ��

6 Conclusions

Argumentation theory and logic programming with negation as failure are two
approaches non-monotonicity which have been intensively explored the last years.
Moreover, these approaches share some common behaviors in their inference
process; in particular, by the relationships there exist between argumentation
semantics and logic programming semantics. In this paper, on the one hand, an
extension of the stable model semantics is introduced by the so called strong gen-
eralized stable models. It is shown that the strong generalized stable models cap-
ture the p-stable models (Theorem 2). By considering an order between strong
generalized stable models, the stable abducible semantics is defined. On the other
hand, by considering the stable abducible semantics, the stable abducible argu-
mentation semantics is defined. This new argumentation semantics is an inter-
mediate argumentation semantics between the stable argumentation semantics

67

and the preferred semantics (Theorem 3). It is shown that the stable argumenta-
tion semantics is always defined and satisfies the notion of relevance introduced
by Caminada [3].

The results of Theorem 3 suggest that the stable abducible argumentation
semantics has similar behavior to semi-stable semantics. Part of our future work
will be to formalize the relationship between the stable abducible argumentation
semantics and the semi-stable semantics. We want to point out that the stable
abducible argumentation semantics does not characterize exactly the semi-stable
semantics; because the stable abducible argumentation semantics satisfies a no-
tion of relevance which semi-stable semantics does not satisfies.

7 Funding

This work was supported by the CONACyT [CB-2008-01 No.101581].

References

1. P. Baroni and M. Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence., 171(10-15):675–700, 2007.

2. G. Brewka. An abductive framework for generalized logic programs. In LPNMR,
pages 349–364, 1993.

3. M. Caminada. Semi-stable semantics. In P. E. Dunne and T. J. M. Bench-Capon,
editors, COMMA, volume 144 of Frontiers in Artificial Intelligence and Applica-
tions, pages 121–130. IOS Press, 2006.

4. J. L. Carballido, M. Osorio, and J. Arrazola. Equivalence for the G’3-stable models
semantics. J. Applied Logic, 8(1):82–96, 2010.

5. J. Dix. A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform., 22(3):257–288, 1995.

6. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

8. J. C. Nieves, M. Osorio, and C. Zepeda. A schema for generating relevant logic
programming semantics and its applications in argumentation theory. Fundamenta
Informaticae, 106(2-4):295–319, 2011.

9. M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common
Weak Completions. Journal of Logic and Computation, 16(6):867–890, 2006.

10. L. M. Pereira and A. M. Pinto. Layer supported models of logic programs. In
LPNMR 2009, volume 5753 of Lecture Notes in Computer Science. Springer, 2009.

11. J. S. Schlipf. Formalizing a logic for logic programming. Ann. Math. Artif. Intell.,
5(2-4):279–302, 1992.

12. D. van Dalen. Logic and structure. Springer-Verlag, Berlin, 3rd., augmented edi-
tion, 1994.

68

