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Abstract
Building a compiler for a programming language is a notoriously hard task, especially when starting

from scratch. That’s why we developed Langkit, a meta-compiler which allows language designers to

focus on the high-level aspects of their language. In particular, the specification of type systems is done

in a declarative manner by writing equations in a high-level logic DSL. Those equations are then resolved

by a custom solver embedded in the generated compiler front-end whenever a code fragment of the

target language needs to be analyzed. This framework is successfully used at AdaCore to implement

name and type resolution of Ada, powering navigation in IDEs and enabling development of deep static

analysis tools.

We discuss the implementation of our solver, and how a recent switch to using a DPLL(T) solver

backend with a custom theory allowed us both to address long-standing combinatorial explosion problems

we had with our previous approach, but also to gain new insights in how to emit human-readable

diagnostics for type errors.
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1. Introduction

In a typical multi-pass compiler pipeline for a statically typed language, the result of parsing

a code fragment of the target language is an abstract syntax tree which does not carry any

semantic information: identifiers are mere symbols that are not yet linked to their corresponding

definition, expressions are untyped, etc. Thus, one or several semantic analysis phases take

place to compute cross-references and validate or infer types.

In some languages (such as C), figuring out the definition a name refers to, or the type of

an expression, is not context-sensitive: it merely requires a single name lookup in its lexical

environment. In other words, resolving an identifier does not require resolving the name or

the type of any other adjacent nodes. In languages such as Java or C++ that support function

overloading, the function definition targeted by a function call may depend on the type of one

or several of its arguments: therefore resolving this call requires a more involved analysis, often

done in cooperation with a type analysis working on several sub-parts of the expression at once.

Some languages such as Ada or Swift even allow overloading functions on their return-type,

which may cause type information to flow forward and backward through sub-expressions of a

given statement.
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In such complex languages, it is often useful to compute the static semantics of a given

program in two stage [1, 2], by first accumulating local constraints specified by each construct

appearing in the program according to its syntactic category and lexical context, and then have

a dedicated solver try to satisfy a fixed group of constraints at once in order to find a solution –

the exact scope of collection and solving depending on the language. This is the approach taken

by compiler implementations such as GHC [3] or Swiftc [4], but also by our meta-compiler

framework Langkit [5], which we describe in the next section.

This technique offers several advantages: writing, understanding and debugging the type

system is easier because typing rules are described explicitly instead of being implied by the

execution of an algorithm. Elaborating an optimized implementation of a type system dedicated

to a particular language often requires significant efforts (many articles have been published

over the course of several years about optimization of overload resolution in Ada [6, 7, 8, 9]) and

such implementations are hardly reusable. A constraint solver on the other hand is generally an

independent component that can be reused and optimized without leaking in the implementation

of the type system, making the latter easier to maintain and extend. However using a constraint

solver to type programs raises an issue: how to produce good error messages for sets of

constraints that have no solution, given that producing good error messages for complex type

systems is already a complex problem [10]. We thus present in the following sections our main

contributions, which are:

• The description and formalization of Langkit’s high-level domain-specific language (DSL)

for specifying static semantics of programming languages that support complex features

such as subtyping, return-type overloading and preferred interpretations.

• Its implementation, as a lazy encoding of a custom theory of ordered disjunctions on top of

the DPLL(T) architecture with minor extensions, and a demonstration that the resulting

framework allows generating an efficient semantic analyzer for Ada.

• Extensions to our DSL to allow language implementations to produce concise and relevant

error messages for object language expressions that are semantically incorrect – even in

presence of overloading – based on explanations produced by our theory.

2. Logic Framework

Our Langkit meta-compiler allows users to specify a language frontend, from syntax to semantics,

including the specification of the type system through methods that build sets of logic constraints.

The main use-case of Langkit so far has been to implement Libadalang [11], demonstrating

that the logic framework we developed is sufficient to implement the type system of Ada,

a complex industrial language spanning multiple revisions and featuring generics, ad-hoc

polymorphism (including return-type overloading), subtyping, object oriented features, etc.

The entire specification for the Ada language frontend, including description of the syntax tree,

the scope graph definition, and the name and type resolution specification, is around 25000

SLOCs, which we estimate to be at least 10 times smaller than what is needed by the main Ada

compiler GNAT [12] to implement the equivalent functionalities.

As far as we know, Langkit is the only generic language framework that is able to express

complex type systems such as those of Swift, Ada or C# (which is known to be NP-hard [13]),



ℰ ::= 𝒜 Atom
| ℰ ∧ ℰ Conjunction
| ℰ ×⃗ ℰ Ordered disjunction

𝒜 ::= 𝒱 ← 𝒞 Assignment
| 𝒱 ← ℱ(𝒱, . . . ,𝒱) Propagation
| 𝒱 ↔ 𝒱 Aliasing
| 𝒫(𝒱, . . . ,𝒱) Assertion
| ⊤ True
| ⊥ False

𝒱 ::= 𝑥, 𝑦, . . . Variables
𝒞 ::= A, B, . . . Constants
ℱ ::= F, G, . . . Function symbols
𝒫 ::= P, Q, . . . Predicate symbols

Grammar 1: Formal syntax of Langkit’s logic DSL

where types and names flow in both directions in the expression tree, and in some particular cases

even require looking deeper down the tree [14]. In particular, we think that one of the features

that makes our framework powerful is that there is no distinct stage between name binding

and type inference: every bit of semantic information is represented by a logic variable to be

resolved. Inter-dependency between name resolution and type inference is represented by type

variables being defined as functions of name variables (as in footype ← ReturnType(fooref ))
and vice-versa.

Langkit has also been used to implement more complex type system features in proof-of-

concepts projects such as Dependz [15], implementing a small dependently typed calculus.

However, it remains to be seen how adaptable our approach is to languages with type systems

that contain more structural features, like structural subtyping.

2.1. Formalization

In our Langkit meta-compiler, an element of unresolved semantic information – such as a type

to be inferred – can be represented by a logic variable. Using Langkit’s logic DSL – whose

grammar is formalized in 1, users can define constraints on those variables: an Assignment
allows assigning constant values to variables, such as footype ← Integer. A Propagation
assigns to a variable a function of another variable – as in bartype ← ReturnType(barref ) – by

evaluating that function at solve-time once all the argument variables have been solved. Such

functions are defined by the user in the pure (side-effect free) functional language fragment

provided by Langkit. An Aliasing allows unifying two variables together, forcing them to hold

the same value. An Assertion can be used to enforce that a predicate over given variables

must hold – as in IsSubtype(footype , bartype), and is evaluated as soon as all input variables

are solved. Predicate symbols are also defined by the user as functions returning booleans in

Langkit’s functional DSL. Finally, it is possible to combine all of these constraints in arbitrarily

nested conjunctions and (ordered) disjunctions.



Ordered Disjunctions. The ordered disjunction operator (×⃗) resembles the one introduced

by Qualitative Choice Logic [16] and LPODs [17, 18]. Intuitively, the meaning of ℰ1 ×⃗ ℰ2 is:

try ℰ1 first, but if it doesn’t work then try ℰ2. This behavior allows language designers to

encode static preference semantics in their language. For example, in a binary operation X + Y
in Ada, if there are multiple possible interpretations of + among which one of them is the +
operator defined on root integers (one of the primitive types in Ada), then this interpretation is

preferred [19]. This can also for example be used to encode the preferred order for overload

resolution in C++, or even the order in which implicit values should be considered when

synthesizing an implicit parameter in Scala.

Definition 2.1 (Partially Ordered Split Programs). Formally, we define the semantics of ordered

disjunctions by reasoning in terms of partially ordered split programs, where a split program is

only a conjunction of atoms. For that, we define the operator 𝜓(ℰ) reducing an equation ℰ to

its partially ordered set of split programs ⟨{𝑃1, . . . , 𝑃𝑛},≤⟩, using the rules from figure 1.

Atom
𝜓(𝒜) = ⟨{𝒜}, {𝒜 ≤ 𝒜}⟩

𝜓(ℰ1) = ⟨𝑆1,≤1⟩ 𝜓(ℰ2) = ⟨𝑆2,≤2⟩
Disjunction

𝜓(ℰ1 ×⃗ ℰ2) = ⟨𝑆1 ∪ 𝑆2,≤1 ∪ ≤2 ∪ {𝑃1 ≤ 𝑃2}𝑃1∈𝑆1,𝑃2∈𝑆2
⟩

𝜓(ℰ1) = ⟨𝑆1,≤1⟩ 𝜓(ℰ2) = ⟨𝑆2,≤2⟩
Conjunction

𝜓(ℰ1 ∧ ℰ2) = ⟨{𝑃1 ∧ 𝑃2}𝑃1∈𝑆1,𝑃2∈𝑆2
, {𝑃1 ∧ 𝑃2 ≤ 𝑄1 ∧𝑄2}𝑃1≤1𝑄1,𝑃2≤2𝑄2

⟩

Figure 1: Reduction rules for 𝜓, mapping a DSL equation to a partially ordered set of split programs.

Intuitively, the resulting partial order allows reasoning about preference on split programs

that do not contain ordered disjunctions anymore – as if the ordering information had been

extracted out of them. We have for example that:

𝜓((𝑣 ← A ×⃗ 𝑣 ← B) ∧ (𝑤 ← C ×⃗ 𝑤 ← D)) = ⟨{𝑃1, 𝑃2, 𝑃3, 𝑃4}, 𝑃1 ≤ 𝑃2,3 ≤ 𝑃4⟩

𝑃1 = 𝑣 ← A ∧ 𝑤 ← C, 𝑃2 = 𝑣 ← A ∧ 𝑤 ← D,

𝑃3 = 𝑣 ← B ∧ 𝑤 ← C, 𝑃4 = 𝑣 ← B ∧ 𝑤 ← D.

In particular, 𝑃2 and 𝑃3 are not comparable because 𝑃2 contains 𝑣 ← A which is preferred

over 𝑣 ← B, but 𝑃3 contains 𝑤 ← C which is preferred over 𝑤 ← D. However, both 𝑃2 and 𝑃3

are smaller than 𝑃4 (which contains all least preferred alternatives). 𝑃1 on the other hand is

smaller than all of them, as it contains all most preferred alternatives.

Definition 2.2 (Evaluation of Split Programs). We now give a method for evaluating equations

that do not contain ordered disjunctions. By definition, such an equation is of the form 𝐴1 ∧
· · · ∧ 𝐴𝑛 (with 𝑛 ≥ 1). Since conjunctions are commutative and associative, we can actually

reason about such equations as an unordered set of atoms {𝐴1, . . . , 𝐴𝑛}.



We therefore define Φ : 𝒫(𝒜)→ 𝒫(𝒱 ×𝒞)∪{⊥} as reducing a set of atoms to a variable-to-

constant mapping 𝜇 or a failure term⊥ using the reduction rules from figure 2, where predicate

calls P(𝐶1, . . . , 𝐶𝑛) ∈ {⊤,⊥} and function calls F(𝐶1, . . . , 𝐶𝑛) = 𝐶 may run arbitrary, side-

effect free computations:

Bot
Φ(𝑃 ∪ {⊥}) = ⊥

Φ(𝑃 ) = 𝜇
Top

Φ(𝑃 ∪ {⊤}) = 𝜇

Φ({𝐴[𝑣1 := 𝑣2]}𝐴∈𝑃 ) = 𝜇
Alias

Φ(𝑃 ∪ {𝑣1 ↔ 𝑣2}) = 𝜇

𝐶1 ̸= 𝐶2
Fail

Φ(𝑃 ∪ {𝑣 ← 𝐶1} ∪ {𝑣 ← 𝐶2}) = ⊥
𝑛 ≥ 0 𝑣1 . . . 𝑣𝑛 pairwise distinct

Success
Φ({𝑣𝑖 ← 𝐶𝑖}1≤𝑖≤𝑛) = {(𝑣𝑖, 𝐶𝑖)}1≤𝑖≤𝑛

(𝑣1 ← 𝐶1), . . . , (𝑣𝑛 ← 𝐶𝑛) ∈ 𝑃 Φ(𝑃 ∪ {𝑤 ← F(𝐶1, . . . , 𝐶𝑛)}) = 𝜇
Propagate

Φ(𝑃 ∪ {𝑤 ← F(𝑣1, . . . , 𝑣𝑛)}) = 𝜇

(𝑣1 ← 𝐶1), . . . , (𝑣𝑛 ← 𝐶𝑛) ∈ 𝑃 Φ(𝑃 ∪ {P(𝐶1, . . . , 𝐶𝑛)}) = 𝜇
Assert

Φ(𝑃 ∪ {P(𝑣1, . . . , 𝑣𝑛)}) = 𝜇

Figure 2: Reduction rules for Φ, describing evaluation of split programs.

In particular, rule Success triggers when the only atoms left are assignments to distinct

variables. Conversely, rule Fail triggers when there are two conflicting assignments to the

same variable. Both rules Propagate and Assert require all their variable arguments to have

corresponding assignments, which values are then used as arguments to dynamically invoke

the used-defined operation denoted by the function or predicate symbol. Note that for the sake

of brevity we have not included rules to explicitly fail when reduction is stuck (which can only

happen if rules Propagate and Assert cannot be applied because some variables are never

assigned), but this is easily detectable and we reduce to ⊥ as well in these cases.

Definition 2.3 (Preferred Solutions). Given an equation ℰ and its partially ordered set of split

programs 𝜓(ℰ) = ⟨𝑆,≤⟩, we define the set of preferred solutions 𝑆* ⊆ 𝑆 of ℰ as the set of split

programs for which evaluation succeeds and for which there exists no smaller split program for

which evaluation succeeds as well:

𝑆* = {𝑃 * ∈ 𝑆 : Φ(𝑃 *) ̸= ⊥ ∧ (∄𝑄 ∈ 𝑆 : 𝑄 < 𝑃 * ∧ Φ(𝑄) ̸= ⊥)}

Using this definition, we can already sketch a naive algorithm to compute the set of preferred

solutions of any given equation: construct its set of split programs in a preferred order (i.e.

construct 𝑃 before 𝑄 if 𝑃 ≤ 𝑄), applying the oracle Φ on each of them. As soon as we find a

split program 𝑃 *
that satisfies Φ, insert it in the resulting set. Now continue the process but

only consider split programs that are not comparable to 𝑃 *
, i.e. 𝑄 ∈ 𝑆 ∧ ¬(𝑃 * ≤ 𝑄).

It is common in languages to consider an expression ambiguous when there are several

possible non-comparable solutions. This case can be easily detected by checking whether all

preferred solutions are equivalent or not: |{Φ(𝑃 *)}𝑃 *∈𝑆* | = 1.



3. Implementation and Results

Unsurprisingly, the algorithm sketched in definition 2.3 is very inefficient in practice. In

particular, its run-time for an equation that has no solution is always exponential in its number

of disjunctions, since it will expand and evaluate all split programs independently before

determining that none are feasible. Consider also the following (solvable) equation:

𝑥← A ∧ (𝑥← B ×⃗ 𝑥← A) ∧ (𝑦 ← A ×⃗ 𝑦 ← B ×⃗ 𝑦 ← C)

The algorithm presented so far will compute the set preferred solutions (which only contains

one solution evaluating to {(𝑥,A), (𝑦,A)}) after evaluating 4 fully expanded options.

Early Pruning A first improvement can be made on this algorithm to avoid doing redundant

work in many cases: instead of using our oracle Φ on fully expanded split programs, we can use

it on intermediate split programs during the expansion of the equation. This requires a slight

modification to Φ to make it output a different outcome when it fails because evaluation is

stuck or because of an actual conflict: it only makes sense to prune the expansion in the second

case, as the first case may simply be due to the incompleteness of the partial equation. In our

example, we would get the following intermediate equations by splitting on the first ordered

disjunction:

1. (𝑥← A ∧ 𝑥← B) ∧ (𝑦 ← A ×⃗ 𝑦 ← B ×⃗ 𝑦 ← C)

2. (𝑥← A ∧ 𝑥← A) ∧ (𝑦 ← A ×⃗ 𝑦 ← B ×⃗ 𝑦 ← C)

If we decide to run the oracle on the partial solutions (underlined above) – starting with the

first one since it is preferred – we will find a contradiction early, and therefore we can avoid

expanding its right-hand side. Thanks to this improvement, we now only require evaluating

one partially expanded equation and one fully expanded equation (the solution).

However it has a serious flaw: the optimization can range from being extremely useful to

completely ineffective depending on the order in which disjunctions are expanded: if we had

decided in our example to expand the ordered disjunctions on the right first, we would not have

discovered the contradiction until everything was fully expanded. This is inevitable because

no predefined expansion order in the solver will be optimal for all input equations. Thus, the

burden of choosing the right order is left to the language designer, which would make our logic

DSL not purely declarative
1
.

Conflict-Driven Traversal In order to design an optimal traversal strategy, we make the

two following observations:

1. First, we notice that even if we do not choose the optimal disjunction to split on in our

algorithm above, we can compute a posteriori the minimal set of atoms that would have

been needed to reject this option. In our example, we can easily extract from option

1

Note that this is precisely how our previous solver was implemented, and this not only caused maintenance problems

in our Ada specification due to the order-dependent nature of the DSL being implicit, it was also sometimes a

challenging task to end up with the optimal ordering when the semantics of multiple Ada constructs interfered,

causing the performance of the generated semantic analyzer to degrade.



{𝑥← A, 𝑥← B, 𝑦 ← A} that atoms {𝑥← A, 𝑥← B} were the cause of the conflict. We

call this process Explain-Conflict.

2. If we knew in advance the complete set of atoms that are in conflict, we could reformulate

the search problem as a satisfiability problem in a propositional logic augmented with

ordered disjunctions (such as Qualitative Choice Logic [16]), in which atoms are abstracted

by boolean variables. In our example, this would come down to finding an assignment

that satisfies 𝑎∧(𝑏 ×⃗ 𝑎)∧(𝑑 ×⃗ 𝑒 ×⃗ 𝑓)∧(¬𝑎 ∨ ¬𝑏), where the underlined clause prevents

the conflicting atoms from being set at the same time.

By combining these two ingredients together, we can already devise a general solver scheme

based on a lazy encoding [20] of our theory: iteratively refine the initial formula with conflicts

found by the SAT-with-ordered-disjunctions solver on each candidate (here, to find one solution):

Algorithm 1 Lazy Encoding Scheme

ℰ# ← Encode(ℰ) ◁ Encode the equation into a proposition with ordered disjunctions
while 𝑀 ← Solve(ℰ#) do ◁ Invoke the SAT-with-ordered-disjunctions solver

𝐶 ← Decode(𝑀) ◁ Reconstruct the candidate from the model
𝑅← Φ(𝐶) ◁ Evaluate the candidate
if 𝑅 = ⊥ then

𝜂 ← Explain-Conflict(𝐶) ◁ Build a clause that contradicts this candidate
ℰ# ← ℰ# ∧ Encode(𝜂) ◁ Append it to the original formula to forbid this model

else
return 𝑅 ◁ R is one of the preferred solutions

end if
end while
return Unsat

Encoding of Ordered Disjunctions Instead of designing an ad-hoc SAT-with-ordered-
disjunctions solver, we propose a partial encoding 𝜎 to propositional logic, so as to leverage

decades of research on optimizations in SAT solvers. The encoding is partial because the order-

ing information cannot easily be conveyed through the propositional formula itself [16] – thus

we will handle it differently. We define 𝜎 using the two rules in figure 3, which reduce a DSL

equation to a propositional formula alongside a mapping from each boolean variable appearing

in the propositional formula to the set of atoms from the DSL equation that it represents. The

mapping allows decoding models into candidate solutions that we can evaluate with Φ.

𝑣 ⊢ 𝜎(ℰ1) = 𝜋1 ‖ 𝜇1 . . . 𝑣 ⊢ 𝜎(ℰ𝑛) = 𝜋𝑛 ‖ 𝜇𝑛
(1)

𝑣 ⊢ 𝜎(𝒜1 ∧ · · · ∧ 𝒜𝑚 ∧ ℰ1 ∧ · · · ∧ ℰ𝑛) =
⋀︀𝑛

𝑖=1 𝜋𝑖 ‖ {𝑣 → {𝒜1, . . . ,𝒜𝑛}} ∪
⋃︀𝑛

𝑖=1 𝜇𝑖

𝑛 > 1 fresh(𝑤1, . . . , 𝑤𝑛) 𝑤1 ⊢ 𝜎(ℰ1) = 𝜋1 ‖ 𝜇1 . . . 𝑤𝑛 ⊢ 𝜎(ℰ𝑛) = 𝜋𝑛 ‖ 𝜇𝑛
(2)

𝑣 ⊢ 𝜎(ℰ1 ×⃗ · · · ×⃗ ℰ𝑛) =
⋀︀𝑛

𝑖=1 𝜋𝑖 ∧
⋀︀𝑛

𝑖=1(𝑣 ∨ ¬𝑤𝑖) ∧ (¬𝑣 ∨
⋁︀𝑛

𝑖=1 𝑤𝑖) ∧ AMO𝑛
𝑖=1(𝑤𝑖) ‖

⋃︀𝑛
𝑖=1 𝜇𝑖

Figure 3: Rules for the partial encoding 𝜎, reducing a DSL equation to a propositional formula.



We give the following intuitions about the encoding rules:

• The context variable 𝑣 in both rules is transferred from parent to child. Except from an

initial context variable (say 𝑣0), only disjunctions create variables – which correspond to

the selection of each of their branch. Thus, 𝑣 represents the current parent branch.

• In the first rule, the order in which atoms 𝒜𝑖 and nested equations ℰ𝑖 occur in the

conjunction does not matter. Note that a single variable is used to represent all the atoms

in a conjunction.

• In the second rule, we append to the formulas generated by each branch these facts:

1. A branch variable 𝑤𝑖 can only be selected if its parent branch 𝑣 is selected.

2. At least one branch variable 𝑤𝑖 must be selected if its parent branch 𝑣 is selected.

3. At most one branch variable 𝑤𝑖 can be selected at the same time.

Remark. We do not impose a specific encoding for the generated at-most-one (AMO) constraints

themselves, as there exists a wide variety of them [21] which may be more effective in certain

scenarios than others – we discuss our approach in a later paragraph.

This implementation of Encode can be directly plugged in algorithm 1, and since it generates

clauses in CNF, Solve may be implemented by most available SAT solvers. Here, using a

pairwise encoding for AMO constraints, our running example would be encoded into a formula

equivalent to:

𝑎 ∧ (𝑏 ∨ 𝑐) ∧ (¬𝑏 ∨ ¬𝑐) ∧ (𝑑 ∨ 𝑒 ∨ 𝑓) ∧ (¬𝑑 ∨ ¬𝑒) ∧ (¬𝑑 ∨ ¬𝑓) ∧ (¬𝑒 ∨ ¬𝑓)

which correctly yields models {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑒}, . . . However, the order in which

these models are generated is never specified, therefore a preferred order is not guaranteed.

Enforcing a Preferred Order Indeed, modern SAT solvers typically rely on complex heuris-

tics for literal decisions [22], and since literals in our proposed encoding directly correspond to

branches of ordered disjunctions, it is not possible to enforce that models must be generated in

an order of our choosing. To remedy this situation, we propose to extend the DPLL(T) interface

to allow the theory to interfere in literal decisions. In particular, we propose to replace the

standard Decide [20] transition with a stricter rule which we call T-Decide:

𝑙 or ¬𝑙 appears in 𝐹 𝑙 is undefined in 𝑀 𝑀 ◁𝑇 𝑙
T-Decide

𝑀 ‖ 𝐹 ⇒𝑀 𝑙𝑑 ‖ 𝐹
where 𝑀 ◁𝑇 𝑙 signifies that theory 𝑇 allows literal 𝑙 to be decided in the context of the current

model 𝑀 . Note that this rule does not prevent the theory from allowing multiple literals

to be considered (or from forbidding any of them to be, for that matter), thus sophisticated

decision heuristics of DPLL implementations may still apply. In our specific case, when the

theory is presented with multiple possible literals decisions, it simply makes sure not to select a

literal corresponding to the 𝑛’th branch of an ordered disjunction if a literal corresponding to

selecting the 𝑚’th branch (with 𝑚 < 𝑛) of that same disjunction is also among the possible

decisions. Moreover, once a first solution 𝑃 *
is found (if ever), the theory may switch its mode

of decision in order to force the traversal of candidate solutions that are non-comparable to

𝑃 *
(by forbidding literals that could only end up producing less satisfying candidate), so as to

generate the set of preferred solutions and detect ambiguities in a smaller number of iterations.



Theorem 3.1. Our literal decision scheme effectively generates split programs in a preferred order.

Proof. Assume that our procedure does not implement a preferred order of traversal. This

implies that at some point, it produced a split program 𝐶 whereas it should have produced

a split program 𝐶 ′ < 𝐶 . So, out of all the ordered disjunctions of the original equation, the

branches selected in 𝐶 ′
are the same as those selected in 𝐶 excepted for 𝑘 ≥ 1 of them which

must be strictly preferred. Consider one of those 𝑘 ordered disjunction, encoded to literals

𝑤1 . . . 𝑤𝑙 according to rule (2) from figure 3. Then for some 1 ≤ 𝑚 < 𝑛 ≤ 𝑙, the model for 𝐶
contains ¬𝑤𝑚 and 𝑤𝑛 while that of 𝐶 ′

contains 𝑤𝑚 and ¬𝑤𝑛. By definition of our decision

scheme, the theory could not have decided 𝑤𝑛 if 𝑤𝑚 was also a possible decision, thus ¬𝑤𝑚

must have been implied by previous literal assignments in 𝐶 , a subset of which must not exist

in 𝐶 ′
(otherwise they would have implied ¬𝑤𝑚 in 𝐶 ′

as well). Since literals directly map to

branches of ordered disjunctions, these differences directly correspond to different branch

selections between 𝐶 and 𝐶 ′
. As implication graphs are directed and acyclic, we can apply this

reasoning at most 𝑘 times until we have to consider the selection of a preferred branch which

cannot be explained in terms of other preferred branches. At this stage, the literals that explain

this selection necessarily correspond to least preferred branches in 𝐶 ′
, which makes 𝐶 and 𝐶 ′

not comparable, therefore contradicting our initial hypothesis.

The Theory Solver On top of guiding the selection of literals, our theory solver must be as

smart as possible in its implementation of the Explain-Conflict routine in order to extract

minimal explanations out of invalid candidates and make the traversal converge as fast as

possible. There are two failure cases to handle when evaluating a candidate solution:

• The first one is when the evaluation results in ⊥ due to rules Fail or Assert. The

explanation for such a failure is always a subset of the atoms from the candidate solution.

In particular, it suffices to include in the explanation all the atoms that we encounter by

traversing the dependency graph of atom assignments backwards (taking aliasing into

account) starting from the conflicting assignments or the failing predicate.

• The second case to handle is when the evaluation is stuck because of a missing variable

assignment (for example in equation 𝑥← 𝐶 ∧ P(𝑥, 𝑦), 𝑦 is never assigned a value). In

this case we build a clause that forbids the atoms with such unsatisfied dependencies to be

part of a model if the model does not also contain atoms that satisfy these dependencies –

which may involve atoms that were not part of the candidate solutions. In the case of a

cyclic dependency (as in equation 𝑥← P(𝑦) ∧ 𝑦 ← P(𝑥)), we build a clause that breaks

the cycle by requiring an assignment to any of the variables involved in the cycle (as this

assignment will propagate throughout the cycle).

Optimizing At-Most-One Constraints We initially encoded our AMO constraints using a

naive pairwise encoding, but quickly found instances where it required generating too many

clauses, causing a non-negligible overhead. We experimented with the binary encoding and

found it to be slightly less efficient on the average cases. In the end, we implemented built-in

support for at-most-one constraints in our CDCL algorithm. The idea of adding native support

for cardinality constraints in SAT solvers is not new [23, 24], but for our use case we exploited



the fact that our encoding produces AMO constraints over contiguous literals (see second

rule in figure 3), and designed an even more compact in-memory representation for them,

requiring only a marker flag and two integers determining the range of literals that participate

in the constraint. Thus, a big constraint such as AMO(𝑥1, 𝑥2, . . . , 𝑥998, 𝑥999) only requires us 3

integers to represent, whereas a pairwise encoding would generate several hundred thousands of

binary clauses. This allows keeping memory overhead to a minimum and enables fast iterations

over the constraints’ literals in the unit propagation and conflict resolution routines.

3.1. Performance Results

Our new implementation replaced a legacy solver based on the naive algorithm with early

pruning described in the beginning of this section. We first give an overview of the performance

improvements obtained on carefully crafted test cases exhibiting known pathological patterns

that can be found in actual codebases.

Synthetic Test-Cases The main source of complexity in typechecking Ada comes from the

use of function overloading. Thus, our first synthetic test case simply declares 𝑁 different

overloads and performs 𝑀 nested calls to the overloaded function (see figure 4a).

Our second synthetic test case extends the first one by adding bridges between types (see

figure 4b), such that while a chain of nested calls of length 𝐾 < 𝑀 may be resolved in many

different ways, the complete chain of length 𝑀 has only one possible interpretation. This

effectively tricks the solvers into consider candidates that later become dead ends.

1 procedure Test is
2 type T1 is null record;
3 type T2 is null record;
4 type T3 is null record;
5

6 function F (X : T1) return T1 is (null record);
7 function F (X : T2) return T2 is (null record);
8 function F (X : T3) return T3 is (null record);
9

10 procedure P (X : T1) is null ;
11 procedure P (X : T2) is null ;
12 procedure P (X : T3) is null ;
13

14 X : T1;
15 begin
16 P (F (F (F (X)) ) ) ;
17 end Test ;

(a) Synthetic example 1, for 𝑁 =𝑀 = 3.

1 procedure Test is
2 type T1 is null record;
3 type T2 is null record;
4 type T3 is null record;
5

6 function F (X : T1) return T1 is (null record);
7 function F (X : T1) return T2 is (null record);
8 function F (X : T1) return T3 is (null record);
9

10 function F (X : T2) return T2 is (null record);
11 function F (X : T2) return T3 is (null record);
12

13 function F (X : T3) return T3 is (null record);
14

15 procedure P (X : T1) is null ;
16 procedure P (X : T2) is null ;
17 procedure P (X : T3) is null ;
18

19 X : T1;
20 begin
21 P (F (F (F (X)) ) ) ;
22 end Test ;

(b) Synthetic example 2, for 𝑁 =𝑀 = 3.

Figure 4: Patterns of code exhibiting known pathological solver behavior.



(a) Synthetic case 1 (𝑀 = 𝑁 ). (b) Synthetic case 2 (𝑀 = 3). (c) Synthetic case 2 (𝑀 = 𝑁 ).

Figure 5: Performance measurements on synthetic examples. A logarithmic scale is needed in plots (a)
and (b) to visualize both curves on the same plot.

For both cases, we report the total number of atoms evaluated by each implementation, which

is a deterministic measure of the work done that directly correlates to the actual run-time of the

solvers. In 5a, we see that both solvers have polynomial complexity on the first synthetic case,

but of very different factors and degrees (𝑂(𝑁5) versus 𝑂(𝑁3)). On the second synthetic case,

the naive implementation completely blows up if we let 𝑀 = 𝑁 . Therefore in 5b, we fixed

𝑀 = 3 and only let 𝑁 vary. Even then, the naive implementation exhibits a 𝑂(𝑁6) behavior,

whereas our new implementation is only quadratic. Finally, in 5c we compare the run-time

of our frontend to the run-time of the the main industrial Ada compiler GNAT [12] on that

second synthetic example, with 𝑀 = 𝑁 . This comparison is by nature flawed as we have to

compare run-time of the complete frontends including parsing, construction of lexical scopes,

etc. However, we could verify that on the tested synthetic cases, name and type resolution

do dominate the run-time in our frontend. What this measurement shows is that while our

solution has much higher constant factors (probably explained by the generic nature of our

framework), the asymptotic run-time of the two frontends is 𝑂(𝑁4).

Real-World Codebases We have stress-tested our new implementation on a variety of actual

Ada codebases featuring different coding styles, from internal 50k SLOCs codebases maintained

by AdaCore to industrial codebases of several millions SLOCs to code excerpts exhibiting known

pathological cases – including instances of those shown above. We measured the total time
2

spent by the frontend to analyze each complete codebase with both the legacy solver backend

(𝑡𝑜𝑙𝑑) and the DPLL(T)-based solver backend (𝑡𝑛𝑒𝑤). In figure 6a, we plot the ratio 𝑡𝑜𝑙𝑑/𝑡𝑛𝑒𝑤 for

each codebase, which shows significant performance improvements
3
. Figure 6b gives an idea of

the effective performance of the frontends in terms of number of source lines of code resolved

per second on five industrial codebases (averaging 1.8M SLOCs).

Another consequence of the new solver being able to significantly reduce the search space is

2

Note that since the time spent in the frontend is not exclusively inside the solver, the increase in performance of

the solver itself needed to justify these speedups is even greater.

3G2W-expr is actually one particular source file of the GNAT2Why codebase, and is the only instance which we have

found to be negatively impacted by the transition. We have yet to investigate the underlying issue.



(a) Ratios of run-time between the new frontends (𝑡old/𝑡new).

Logarithmic scale.

(b) Number of lines of code analyzed/s on

various industrial codebases.

Figure 6: Performance comparison between the legacy frontend and the DPLL(T)-based frontend on
real Ada codebases.

that the transition allowed fixing hundreds of timeouts over several codebases, which were due

to our previous solver being stuck in an exponential exploration of the problem space (but the

timeouts triggered fast enough to have no notable impact on the reported ratios).

Finally, while it is difficult to make a fair performance comparison between our analyzer and

that of GNAT due to major architectural differences, we have found our implementation to be

competitive in everyday usage.

3.2. Producing Error-Case Diagnostics

IDEs and language servers [25] being one of the primary targets of our meta-compiler framework,

it is important for our name resolution framework to allow emitting helpful error message

when analyzing user code that is semantically invalid, so as to implement live feedback features

of modern IDEs. With this in mind, we recently extended our logic DSL to allow language

designers to annotate their typing rules with minimal efforts so as to convey the information

required for producing a relevant error message for each kind of error of their type system.

1. We extended the atom constructors to allow attaching abstract contextual information

to them, which we call logic contexts. Intuitively, this can be used by the language-

independent solver to regain language-specific knowledge, and can be exploited when a

candidate solution is rejected to provide insight as to what was being tested.

2. We extended the interface of atoms to allow language designers to specify a location and

an error message template that should be instantiated if this atom is part of a conflict

which caused a candidate solution to be rejected.

We then extended the behavior of our solver in case it couldn’t resolve a given equation, so

as to run itself a second time in an error-reporting mode. In this mode, it will encounter the

same conflicts as the first time, but will use the explanation produced after each conflict and



extract the logic contexts of the atoms that we know minimally explain the conflicts. It can then

emit an error message by instantiating the failed atom’s error message template with the actual

solve-time values computed so far, and the extracted logic contexts. The key insight is that since

explanations only contain atoms that were relevant for a failure, the error reported to the user

will also only contain contexts that are relevant for the failure, instead of for example showing

overloads that were selected in other sub-expression which cannot in any way intervene in the

failure under investigation.

Note that we prioritize maximal performance on satisfiable equations, as they represent the

majority of cases even during live code edition. Thus we favor the overhead of re-running

the solver a second time when we find an unsatisfiable instance, rather than the overhead of

consistently populating and keeping around all the data structures required to report an error

message that in most cases will not be needed.

This work is still in progress (for instance, we cannot emit errors for cases with multiple

solutions yet) but we already found concrete scenarios in which error messages produced by our

generated Ada frontend were more helpful than messages emitted by the GNAT compiler. This

is also a promising lead, using the custom theory we developed, to provide a general framework

to produce useful error messages from the specification of type systems by Langkit users.

4. Related Work

Many specific language implementations, such as the aforementioned Swift’s Swiftc [4] and

Haskell’s GHC [3], have a custom unification-based solver as their core. However, such solvers

are usually specialized for a given type system, and contain built-in primitives that encode the

typing rules of the language they intend to type.

• In the case of Swift, it was shown that it is possible to generate typing problems where the

search space is truly pathological [14]. While the design of the solver is not completely

formalized, it appears relatively clear from the developer documentation [4] that the

solver has a relatively naive design that explores the tree of solutions, similar to the

algorithm exposed at the beginning of section 3.

• In the case of GHC, even though Hindley-Milner type inference has an exponential

worst case, careful design of the type system seems key in making sure that the solver

works with a relatively simple unification algorithm while staying efficient in most of the

real-world use cases.

• The Rust compiler team also has a project to reimplement the trait part of their type system

using a constraint solver [26] based on Prolog, using a classical depth-first exploration

algorithm for solving.

The takeaway is that languages with complex type systems seem to benefit from a solver-

based approach where accumulation of constraints is separated from solving the constraint

system. In that light, having a generalized approach based on SMT seems like a good foundation

for future work on complex type systems.

On the meta-compiler front, the closest related work that we know of is Spoofax [27]. In [28],

they present their framework for modeling static semantics of languages. However, they mention



that their framework is not capable of specifying languages with subtyping and type-based

overloading. In a more recent paper [29], they address some of those issues, but it seems more

limited in several aspects.

• The constraint unification algorithm seems to be a regular unification algorithm, and no

effort is yet made to optimize exponential search-space problems, which is the very point

of the approach described in this paper.

• No effort was yet made to see whether the approach would scale to real-world use cases.

Finally, there is not yet a framework to generate error messages when the constraints are

unsatisfiable.

MPS [30] (short for Meta-Programming System) is another very powerful framework and

language development workbench by Jetbrains. It covers everything from IDE integration to

code generation, and provides a language based on constraints to describe the type system of

the object language. While the constraint language seems to be powerful enough to express

type systems with subtyping, it seems to have built-in support for a lot of notions, and thus to

have a meta type theory that is much more rigid than what is allowed by our framework. To the

best of our knowledge there is no support for anything other than simple name-resolution rules,

and thus anything like type-based overloading resolution seems impossible to express in their

framework. Finally, while there is a user guide, there is no formal description of the capabilities

of the high level constraint language, nor of the underlying solver, so a lot of observations we

are able to make are hard to confirm/infirm.

5. Future Work

So far, Langkit has really been used to define one main type system, and a limited number of

minor experiments. One of the big long term goals would be to express other type systems with

different paradigms, such as structural-subtyping, or other systems with a lot of inference such

as the Swift or Rust type systems, and see how efficient and expressive our framework is for

those. In terms of solver optimizations, there are several leads to explore as well:

• Our current solver does not perform theory propagation, which has shown in some cases

to be a game changer [31].

• Although we have been able to take advantage of extensive research on SAT solvers to

implement various optimizations on our own implementation (conflict analysis, two-

watched literals, blocking literals, etc.), we also want to try plugging existing state-of-the-

art SAT solver backends, after modifying them to support our extensions.

• We want to experiment encoding some properties of our logic more eagerly, such as

dependencies between atoms, in order to minimize the amount of rounds needed to

converge.

However these three leads require careful experimentation, as the potential overhead brought

by each of them on simple instances may affect overall performance negatively even if the

benefit is high on complex cases, as semantic analyzers also spend a lot of time resolving trivial

equations.
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