CEUR-WS.org/Vol-2826/T4-23.pdf

Theedhum Nandrum@Dravidian-CodeMix-FIRE2020: A
Sentiment Polarity Classifier for YouTube Comments

with Code-switching between Tamil, Malayalam and
English

BalaSundaraRaman Lakshmanan®, Sanjeeth Kumar Ravindranath®

“DataWeave, Bengaluru, India

bExotel, Bengaluru, India

Abstract

Theedhum Nandrum is a sentiment polarity detection system using two approaches—a Stochastic Gradient
Descent (SGD) based classifier and a Long Short-term Memory (LSTM) based Classifier. Our approach utilises
language features like use of emoji, choice of scripts and code mixing which appeared quite marked in the
datasets specified for the Dravidian Codemix - FIRE 2020 task. The hyperparameters for the SGD were tuned
using GridSearchCV. Our system was ranked 4™ in Tamil-English with a weighted average F1 score of 0.62
and 9" in Malayalam-English with a score of 0.65. We achieved a weighted average F1 score of 0.77 for Tamil-
English using a Logistic Regression based model after the task deadline. This performance betters the top ranked
classifier on this dataset by a wide margin. Our use of language-specific Soundex to harmonise the spelling
variants in code-mixed data appears to be a novel application of Soundex. Our complete code is published in
github at https://github.com/oligoglot/theedhum-nandrum.

Keywords
Sentiment polarity, Code mixing, Tamil, Malayalam, English, SGD, LSTM, Logistic Regression

1. Introduction

Dravidian languages are spoken by 227 million people in south India and elsewhere. To improve
production of and access to information for user-generated content of Dravidian languages [1, 2]
organised a shared task. Theedhum Nandrum ! was developed in response to the Dravidian-CodeMix
sentiment classification task collocated with FIRE 2020. We were supplied with manually labelled
training data from the datasets described in TamilMixSentiment [3] and MalayalamMixSentiment
[4]. The datasets consisted of 11,335 training, 1,260 validation and 3,149 test records for Tamil-English
code-mixed data and 4,851 training, 541 validation and 1,348 test records for Malayalam-English code-
mixed data.

The comments in the dataset exhibited inter-sentential switching, intra-sentential switching and
tag switching [5, 6]. Even though Tamil and Malayalam have their own native scripts [7], most com-
ments were written in Roman script due to ease of access to English Keyboard [8]. The comments
often mixed Tamil or Malayalam lexicons with an English-like syntax or vice versa. Some comments

FIRE 2020: Forum for Information Retrieval Evaluation, December 16-20, 2020, Hyderabad, India
EMAIL: quasilinguist@gmail.com (B. Lakshmanan); sanjeeth@gmail.com (S.K. Ravindranath)
ORCID: 0000-0001-5818-4330 (B. Lakshmanan); 0000-0002-3799-4411 (S.K. Ravindranath)
® © 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
C =] CEUR Workshop Proceedings (CEUR-WS.org)
' Theedum Nandrum is a phrase from the 1st century BCE Tamil literary work Purananiiru. Meaning “the good and
the bad”, it is part of the oft-quoted lines “All towns are ours. Everyone is our kin. Evil and goodness do not come to us from
others.” written by Kaniyan Pangunranar.



https://github.com/oligoglot/theedhum-nandrum
mailto:quasilinguist@gmail.com
mailto:sanjeeth@gmail.com
https://orcid.org/0000-0001-5818-4330
https://orcid.org/0000-0002-3799-4411
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

were written in native scripts but with intervening English expressions. Even though these languages
are spoken by millions of people, they are still under-resourced and there are not many data sets avail-
able for code-mixed Dravidian languages [9, 10, 11].

2. Method

Given the particular register of language used in YouTube comments and the fact that most of the com-
ments used the Roman alphabet to write Tamil and Malayalam text without following any canonical
spelling, we understood the importance of pre-processing and choice of features over other specifics
of the Machine Learning model to be used. This was evident from the bench marking results on the
gold dataset in TamilMixSentiment [3]. We used core libraries like Keras ? and scikit-learn * for the
classifiers.

2.1. Pre-processing

We normalised the text using The Indic Library * to canonicalise multiple ways of writing the same
phoneme in Unicode. We also attempted spelling normalisation by doing a brute force transliteration
from Roman to Tamil or Malayalam, followed by a dictionary lookup using a SymSpell-based spell
checker on a large corpus °. However, we did not get much success in finding dictionary matches
up to edit distance 2, the highest supported value. We then chose to use an Indian language specific
Soundex as a feature to harmonise the various spellings with some success as described in 2.2.2.

Words from multiple corpora indexed by their Soundex values could be used to get canonical
spellings where there is long-range variation. We can combine edit distance allowance and Soundex
equivalence while looking up our dictionary. The potential utility of such a method is supported by
the characterisation of the text of these datasets in [12].

2.2. Feature Generation
2.2.1. Emoji Sentiment

We noticed that a key predictor of the overall sentiment of a comment was the set of emoji used. Based
on this observation, we extracted the emoji from text and used Sentimoji [13] to assign a sentiment
(positive, negative or neutral) to the emoji. However, the list of emoji available in Sentimoji did not
include a majority of the emoji found in our datasets. We used the sentiment labels in the training
data to compute a sentiment polarity for each of the missing emoji based on the frequency of use in
each class. We used both the raw emoji as well as its inferred sentiment as features.

2.2.2. Soundex

As mentioned previously in 2.1, we used Soundex to harmonise the numerous spelling variants of the
same word when expressed in the Roman alphabet. For example, the Tamil word mestny) is written
as nanri and nandri in the corpus. The standard Soundex algorithm for English did not approximate
Tamil and Malayalam words well. We found libindic-soundex © to perform very well. Soundex has

%https://github.com/fchollet/keras

*https://github.com/fchollet/keras
*https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
Shttps://github.com/indicnlp/solthiruthi- sothanaikal

®https://github.com/libindic/soundex


https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/indicnlp/solthiruthi-sothanaikal
https://github.com/libindic/soundex

been employed in spoken document classification [14, 15] where it helps in learning over transcription
errors. Our use of language-specific Soundex to harmonise the spelling variants in code-mixed data
appears to be a first of its kind.

The specificity improves when the input text was in Tamil or Malayalam script rather than in
Roman alphabets. Hence, we used indictrans [16] to perform a transliteration to native scripts before
feeding the text to the Soundex generator function. That gave improved matches. For example,
S pemw and oyHw have a Soundex of o PCND000, while arumai in Roman alphabets gets a65.
This problem is mitigated by using indictrans as above before generating the Soundex values.

2.2.3. Language Tag

Comments were not all in the expected language of the dataset. Some were in other languages either
using their native scripts or the Roman alphabet. The classifier was expected to label not Tamil or not
Malayalamas the case may be. To support that as well as to ensure the features specific to alanguage are
aligned well, predicted language from Google Translation API7 was added as a feature. Tagging parts
of the code-mixed comments into respective languages should improve the classification accuracy
further.

2.2.4. Word Vector

We tokenised the text based on separators, but retained most other characters so as to not drop any
non-word signals. We also added word ngrams up to length 4 as features.

2.2.5. Document length range

We bucketed Document length into 21 ranges viz. 1-10, 11-20,...,>200 was used as a feature. This
improved the performance.

2.3. Classifiers

The task required us to classify the comments into 5 classes viz. mixed_feelings, negative, positive,
not-tamil/not-malayalam, unknown_state. After evaluating various other linear models, we picked
SGD as the best performing algorithm for the data at hand with the features we had used at the time
of benchmarking. Additionally, we trained an LSTM-based classifier [17] which did not perform as
well as the linear classifier. A combined approach may perform better in the face of text mixed with
multi-modal noise [18].

2.3.1. Stochastic Gradient Descent (SGD) Classifier

Based on parameter tuning, we arrived at the following configuration which gave the best perfor-
mance on trials using the training dataset. An SGD classifier [19] with modified Huber loss and a
learning rate of 0.0001 was used. Different weights were applied to the features of Tamil and Malay-
alam.

"https://cloud.google.com/translate/docs/reference/rest/v3/projects/detectLanguage


https://cloud.google.com/translate/docs/reference/rest/v3/projects/detectLanguage

Table 1
Theedhum Nandrum Performance. W-weighted average

Language Dataset W-Precision ~W-Recall W-F1 Score
Validation (SGD) 0.74 0.65 0.68
Tamil Validation (LSTM) 0.46 0.68 0.55
Test 0.64 0.67 0.62
Validation (SGD) 0.73 0.64 0.67
Malayalam Validation (LSTM) 0.17 0.41 0.24
Test 0.67 0.66 0.65

2.3.2. Long Short-term Memory (LSTM)

A 4-layer sequential model was trained. Embedding, SpatialDropout, LSTM and a Densely-connected
Neural Network were the layers. Softmax was used in the last layer to generate probability distribu-
tion on all classes. We used categorical cross entropy loss and Adam optimiser with a learning rate of
0.0001. The learning seemed to maximise at 15 epochs for Tamil and 10 for Malayalam. Based on the
results in Table 1, we found that it performed worse than the SGD Classifier. We identified that there
was considerable overfitting because of the class imbalance in the relatively small training dataset. A
pre-trained embedding combined with transfer learning could improve the performance [20].

2.4. Parameter Tuning

Tuning and optimisation of the SGD model was performed using grid-based hyper-parameter tuning.
Since a FeatureUnion of Transformers was used with a Stochastic Gradient Classifier, two types of
parameters were optimised.

1. Parameters of the Classifier
2. Weights of the Transformers in the FeatureUnion

For the Classifier, the main parameters that were optimised are the loss function and regularisation
term (penalty). Tuning was also performed on the weights of the transformers of the FeatureUnion.
The features used by the model are mentioned in 2.2. We observed that though the features used
for classification were common to both Tamil and Malayalam language documents, the classification
accuracy improved with different weights for the features for Tamil and Malayalam. For e.g., having
a higher weight for Document Length Range (mentioned in 2.2.5) improved results for Malayalam.

3. Results

We tuned our SGD and LSTM classifiers using the available training data against the validation sets.
We then classified the unlabelled test data using the optimised classifiers. We submitted the output
from three of our best performing configurations between LSTM and SGD classifiers. The results for
the test data were from the task organisers who picked the best of 3 classifications. The combined
results are tabulated in Table 1.

The above results are better than the benchmark done in TamilMixSentiment [4]. Theedhum Nan-
drum was ranked 4™ in the Dravidian-CodeMix task competition for Tamil-English, the weighted
average F1 score was only 0.03 less than the top ranked team SRJ ®. With an average F1 score of

8https://dravidian-codemix.github.io/2020/Dravidian- Codemix-Tamil.pdf


https://dravidian-codemix.github.io/2020/Dravidian-Codemix-Tamil.pdf

Table 2
Theedhum Nandrum Logistic Regression Model Performance. W-weighted average

Language Dataset ~ W-Precision W-Recall W-F1 Score

Tamil Validation 0.91 0.70 0.78
Test 0.91 0.68 0.77

Malavalam Validation 0.80 0.54 0.61
Y Test 0.73 0.67 0.69

0.65, Theedhum Nandrum was ranked 9" in the Dravidian-CodeMix task competition for Malayalam-
English °.

After the task deadline, we ran a benchmark on other linear models with the full set of features
above. Logistic Regression performed much better giving a weighted average of 0.77 for Tamil and 0.69
for Malayalam with the following parameters C=0.01, penalty=‘12’,solver="‘newton-cg’ as shown in
Table 2. Since we picked SGD based on our benchmarking performed before we added the Soundex
feature, we had overlooked this better performing configuration. The performance of this classifier
even exceeds the top ranked-classifier for the Tamil-English dataset by a wide margin.

4. Conclusion

Theedhum Nandrum demonstrates that SGD and Logistic Regression based models leveraging spelling
harmonisation achieved by using language-specific Soundex values as features for code-mixed text
perform well on the code-mixed datasets specified for the Dravidian Codemix - FIRE 2020 task. Our
use of language-specific Soundex to harmonise the spelling variants in code-mixed data appears to be
a first of its kind. In addition, emoji are a useful feature in sentiment prediction over YouTube com-
ments. Future work is required to validate the usefulness of spelling correction using a combination
of edit distance and Soundex.

Acknowledgments

The authors are grateful for the contributions of Ishwar Sridharan to the code base. Particularly, the
idea of using emoji as a feature is owed to him, among other things. We also thank Shwet Kamal
Mishra for his inputs relating to LSTM. The logo for Theedhum Nandrum software was designed
by Tharique Azeez signifying the duality of good and bad using the yin yang metaphor. Theedhum
Nandrum also benefited from open source contributions of several people.

References

[1] B.R. Chakravarthi, R. Priyadharshini, V. Muralidaran, S. Suryawanshi, N. Jose, J. P. Sherly, Eliz-
abeth McCrae, Overview of the track on Sentiment Analysis for Dravidian Languages in Code-
Mixed Text, in: Working Notes of the Forum for Information Retrieval Evaluation (FIRE 2020).
CEUR Workshop Proceedings. In: CEUR-WS. org, Hyderabad, India, 2020.

*https://dravidian-codemix.github.io/2020/Dravidian- Codemix-Malayalam.pdf


https://dravidian-codemix.github.io/2020/Dravidian-Codemix-Malayalam.pdf

(2]

(4]

B. R. Chakravarthi, R. Priyadharshini, V. Muralidaran, S. Suryawanshi, N. Jose, J. P. Sherly, Eliz-
abeth McCrae, Overview of the track on Sentiment Analysis for Dravidian Languages in Code-
Mixed Text, in: Proceedings of the 12th Forum for Information Retrieval Evaluation, FIRE 20,
2020.

B. R. Chakravarthi, V. Muralidaran, R. Priyadharshini, J. P. McCrae, Corpus creation for senti-
ment analysis in code-mixed Tamil-English text, in: Proceedings of the 1st Joint Workshop on
Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and
Computing for Under-Resourced Languages (CCURL), European Language Resources associa-
tion, Marseille, France, 2020, pp. 202-210. URL: https://www.aclweb.org/anthology/2020.sltu-1.
28.

B. R. Chakravarthi, N. Jose, S. Suryawanshi, E. Sherly, J. P. McCrae, A sentiment analysis dataset
for code-mixed Malayalam-English, in: Proceedings of the 1st Joint Workshop on Spoken Lan-
guage Technologies for Under-resourced languages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), European Language Resources association, Marseille,
France, 2020, pp. 177-184. URL: https://www.aclweb.org/anthology/2020.sltu-1.25.

P. Ranjan, B. Raja, R. Priyadharshini, R. C. Balabantaray, A comparative study on code-mixed
data of indian social media vs formal text, in: 2016 2nd International Conference on Contempo-
rary Computing and Informatics (IC3I), 2016, pp. 608—-611.

B. R. Chakravarthi, M. Arcan, J. P. McCrae, Improving wordnets for under-resourced languages
using machine translation, in: Proceedings of the 9th Global WordNet Conference (GWC 2018),
2018, p. 78.

B. R. Chakravarthi, M. Arcan, J. P. McCrae, Wordnet gloss translation for under-resourced lan-
guages using multilingual neural machine translation, in: Proceedings of the Second Workshop
on Multilingualism at the Intersection of Knowledge Bases and Machine Translation, 2019, pp.
1-7.

B. R. Chakravarthi, M. Arcan, J. P. McCrae, Comparison of different orthographies for machine
translation of under-resourced Dravidian languages, in: 2nd Conference on Language, Data and
Knowledge (LDK 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

N. Jose, B. R. Chakravarthi, S. Suryawanshi, E. Sherly, J. P. McCrae, A survey of current datasets
for code-switching research, in: 2020 6th International Conference on Advanced Computing
and Communication Systems (ICACCS), 2020, pp. 136—141.

R. Priyadharshini, B. R. Chakravarthi, M. Vegupatti, J. P. McCrae, Named entity recognition
for code-mixed indian corpus using meta embedding, in: 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS), 2020, pp. 68-72.

B. R. Chakravarthi, P. Rani, M. Arcan, J. P. McCrae, A survey of orthographic information in
machine translation, arXiv e-prints (2020) arXiv-2008.

B. R. Chakravarthi, Leveraging orthographic information to improve machine translation of
under-resourced languages, Ph.D. thesis, NUI Galway, 2020. URL: http://hdl.handle.net/10379/
16100.

P. K. Novak, J. Smailovi¢, B. Sluban, 1. Mozeti¢, Sentiment of emojis, PLOS ONE 10 (2015)
€0144296. URL: https://doi.org/10.1371/journal.pone.0144296. doi:10.1371/journal.pone.

0144296.

P. Dai, U. Iurgel, G. Rigoll, A novel feature combination approach for spoken document clas-
sification with support vector machines, in: Proc. Multimedia information retrieval workshop,
Citeseer, 2003, pp. 1-5.

M. A. Reyes-Barragan, L. Villasefior-Pineda, M. Montes-y Gomez, A soundex-based approach
for spoken document retrieval, in: Mexican International Conference on Artificial Intelligence,


https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.25
http://hdl.handle.net/10379/16100
http://hdl.handle.net/10379/16100
https://doi.org/10.1371/journal.pone.0144296
http://dx.doi.org/10.1371/journal.pone.0144296
http://dx.doi.org/10.1371/journal.pone.0144296

[16]

[17]

[18]

Springer, 2008, pp. 204-211.

I. A. Bhat, V. Mujadia, A. Tammewar, R. A. Bhat, M. Shrivastava, IIIT-H System Submission for
FIRE2014 Shared Task on Transliterated Search, in: Proceedings of the Forum for Information
Retrieval Evaluation, FIRE "14, ACM, New York, NY, USA, 2015, pp. 48-53. URL: http://doi.acm.
org/10.1145/2824864.2824872. doi:10.1145/2824864.2824872.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (1997) 1735-
1780. URL: https://doi.org/10.1162/nec0.1997.9.8.1735. doi:10. 1162 /neco.1997.9.8.1735.
P. Agrawal, A. Suri, NELEC at SemEval-2019 task 3: Think twice before going deep, in: Pro-
ceedings of the 13th International Workshop on Semantic Evaluation, Association for Computa-
tional Linguistics, Minneapolis, Minnesota, USA, 2019, pp. 266—271. URL: https://www.aclweb.
org/anthology/S19-2045. doi:10.18653/v1/S19-2045.

T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algo-
rithms, in: Twenty-first international conference on Machine learning - ICML ’04, ACM Press,
2004. URL: httpS://dOi.Org/lo.l145/1015330.1015332. doi:10.1145/1015330.1015332.

P. Liu, W. Li, L. Zou, NULI at SemFEval-2019 task 6: Transfer learning for offensive language
detection using bidirectional transformers, in: Proceedings of the 13th International Workshop
on Semantic Evaluation, Association for Computational Linguistics, Minneapolis, Minnesota,
USA, 2019, pp. 87-91. URL: https://www.aclweb.org/anthology/S19-2011. doi:10.18653/v1/
S19-2011.


http://doi.acm.org/10.1145/2824864.2824872
http://doi.acm.org/10.1145/2824864.2824872
http://dx.doi.org/10.1145/2824864.2824872
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/S19-2045
https://www.aclweb.org/anthology/S19-2045
http://dx.doi.org/10.18653/v1/S19-2045
https://doi.org/10.1145/1015330.1015332
http://dx.doi.org/10.1145/1015330.1015332
https://www.aclweb.org/anthology/S19-2011
http://dx.doi.org/10.18653/v1/S19-2011
http://dx.doi.org/10.18653/v1/S19-2011

	1 Introduction
	2 Method
	2.1 Pre-processing
	2.2 Feature Generation
	2.2.1 Emoji Sentiment
	2.2.2 Soundex
	2.2.3 Language Tag
	2.2.4 Word Vector
	2.2.5 Document length range

	2.3 Classifiers
	2.3.1 Stochastic Gradient Descent (SGD) Classifier
	2.3.2 Long Short-term Memory (LSTM)

	2.4 Parameter Tuning

	3 Results
	4 Conclusion

