CEUR-WS.org/Vol-2672/paper_2.pdf

14 Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine

Towards DiArg: An Argumentation-based
Dialogue Reasoning Engine!

Timotheus KAMPIK

Umed University, Sweden

Dov GABBAY
University of Luxembourg, Luxembourg

Abstract. This paper presents ongoing work on the implementation of the DiArg
argumentation-based reasoning engine that focuses on automating sequential argu-
mentation for inquiry and deliberation dialogues. The engine uses abstract argu-
mentation in its core and implements a meta-layer to support argument context and
enforce the consistency of inferences in compliance with the cautious monotony
and reference independence principles. In addition, DiArg can enforce expansion
properties of an argumentation framework w.r.t. its predecessors in an argumenta-
tion framework sequence.

Keywords. Formal argumentation, Dialogue systems, Non-monotonic reasoning

1. Introduction

Formal argumentation has emerged as a promising line of research in the domain of arti-
ficial intelligence. In particular, a large body of theoretical research exists that can serve
as the foundation for building knowledge-based systems. Indeed, recent research results
demonstrate the competitiveness of argumentation-based approaches, for example for
implementing explainable recommender systems [1l]. However, relatively few software
artifacts that provide reusable abstractions (in the form of software libraries with well-
documented application programming interfaces) on formal argumentation approaches
exist. One notable exception is the Tweety Project, which, among other features, pro-
vides Java libraries to define and resolve different types of formal argumentation frame-
works [2]. This paper presents ongoing work on DiArg, which uses Tweety as a founda-
tion to implement argumentation-based dialogue systemﬂ DiArg focuses on sequential
argumentation, i.e., the iterative resolution of sequences of argumentation frameworks,
as well as on inquiry and deliberation aspects of dialogues, and can hence be considered
a useful complement to argumentation-based dialogue reasoners that focus on strategic
(game theoretical) aspects [3/4].

Copyright (©) 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).

'We thank Juan Carlos Nieves. This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

2In particular, Tweety provides abstractions and solvers for abstract argumentation frameworks to DiArg.



Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine 15

The rest of the paper is organized as follows. Section [2] provides an intuition of the
most important theoretical preliminaries. Subsequently, Section [3] describes the DiArg
engine and its implementation. Finally, Section 4| concludes the paper by highlighting
limitations and outlining future work.

2. DiArg’s Theoretical Foundations - A Semi-Formal Overview

This section provides an intuition of DiArg’s theoretical foundations, some of which
are work-in-progress (see, Kampik and Nieves [Sl6]). At its core, DiArg resolves ab-
stract argumentation frameworks. An abstract Argumentation Framework (AF) is a tu-
ple AF = (AR,AT), where AR is a set of propositional atoms and AT is a set of binary
relations on AR X AR [[7]]. For a,b € AR such that (a,b) € AT, we say that “a attacks b”.
S C AR is conflict-free iff iﬂa,b € S, such that “a attacks b”. A key question in abstract
argumentation is which sets of arguments in an AF can be considered ‘“valid”. Such a set
of arguments is called an extension, and the function that determines the extensions of
an AF is called a semantics. In this paper, we use stage semantics [8] as an exampleﬂ
Given an argumentation framework AF = (AR,AT), S C AR is a stage extension of AF iff
SUST is maximal w.r.t. set inclusion among conflict-free sets in AR, where S™ denotes
all arguments that are attacked by any argument in S. Gy qq. (AF) denotes all stage exten-
sions of AF. In DiArg dialogues, an initial argumentation framework is resolved (i.e., its
extensions are determined and one extension is selected as the AF’s conclusion, either
automatically or manually by a human user) and then iteratively expanded by adding new
arguments and attack relations to it (and again resolved, and so forth). In this context, we
distinguish between different types of expansions [9]:

e An argumentation framework AF’ = (AR',AT’) is an expansion of an argumen-
tation framework AF = (AR,AT) (denoted by AF =g AF’) iff AR C AR’ and
AT C AT'.

e An argumentation framework AF’ = (AR',AT’) is a normal expansion of an ar-
gumentation framework AF = (AR,AT) (denoted by AF <y AF’) iff AF <p AF’
and (AR x AR) N (AT"\ AT) = {}.

Colloquially speaking, an AF’s expansion “adds” new arguments and/or attack relations
to the AF, but “removes” neither existing arguments nor existing attack relations. A nor-
mal expansion is an expansion that neither removes nor adds attack relations between
existing arguments. Analogously, iff an argumentation framework AF’ is an expansion
of an argumentation framework AF, we call AF a submodule of AF’, and iff AF' is a
normal expansion of AF, we call AF a normal submodule of AF’.

When iteratively adding arguments and attack relations to an AF, DiArg creates Ar-
gumentation Framework sequences (AF sequences) that can be configured to be expand-
ing or normally expanding. An AF sequence is a sequence of argumentation frameworks
AFS =< AFy,...,AF, >; the sequence is expanding iff each AF; € AF'S,0 <i < nis an ex-
pansion of its predecessor AF;_1, and normally expanding iff each AF; € AFS,0<i<nis
a normal expansion of its predecessor AF;_. After DiArg has determined the extensions

3Let us note that we use stage semantics primarily because it is convenient for demonstration purposes.
Through the Tweety library, the DiArg reasoner supports a range of admissible set-based, as well as maximal
conflict-free set-based argumentation semantics.



16 Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine

of an AF in an AF sequence, one extension is selected and logged as the AF’s conclusion,
either automatically by DiArg, or by a user. In any case, DiArg can ensure the conclusion
is valid according to the configured argumentation semantics and other constraints.

DiArg can enforce that the conclusions that are derived from an AF sequence are
aligned with the following principlesﬂ

e Reference independence Given two argumentation frameworks AF = (AR,AT)
and AF' = (AR’ ,AT’), such that AF’ is a normal expansion of AF, and given the
conclusions A C AR from AF and A’ C AR’ from AF’, it holds true that A’ &
ARVA =A.

e Cautious monotony Given two argumentation frameworks AF = (AR,AT) and
AF' = (AR',AT'"), such that AF’ is a normal expansion of AF, it holds true for
the conclusions A C AR from AF and A” C AR" from AF” that A C A”, where
AF" = (AR ,AT'\ {(a,b)|a € AR\ AR,b € A}).

Cautious monotony is a well-known property for knowledge-based systems, orig-
inally introduced by Gabbay as a generic principle of non-monotonic reasoning [10].
In the context of abstract argumentation, the cautious monotony property stipulates
(roughly) that given an AF and a normal expansion of the AF, an argument of the initial
AF’s conclusion can only be “discarded” if discarding the argument is “caused” by newly
added arguments that attack the conclusion. Reference independence ensures that given
an AF and a normal expansion of the AF, the conclusion derived from the AF’s normal
expansion may only “discard” arguments of the original conclusion if newly added ar-
guments are part of the new conclusion; the property is analogous to the reference inde-
pendence property that is defined in the context of micro-economic decision-theory [[11}
p. 7 et sqq.]. Colloquially speaking, reference independence and cautious monotony can
be considered useful to ensure consistency of the conclusions that are generated in an
argumentation dialogue: given we infer a conclusion from a framework AF and normally
expand the framework, the next conclusion we infer should be aligned with the previous
conclusion.

If a semantics does not satisfy reference independence or cautious monotony in it-
self, DiArg can ensure these properties, for example by adding additional annihilator
arguments to a framework to reach a conclusion that enables the satisfaction of the prin-
ciples. Alternatively, DiArg can automatically remove arguments from the framework in
a way that ensures principle satisfaction and alters the framework as little as possible.

Let us provide an example to show how reference independence and cautious
monotony can be ensured. We start with a sequence that only contains the argumentation
framework AF = (AR,AT) = ({a,b},{(a,b),(b,a)}). The stage extensions of this frame-
work are {{a},{b}}. Let us assume that we select the extensions {a} as our conclusion.
For example, the system can make a random selection if no additional knowledge that
can inform the decision exists, or a human user can select the extension based on knowl-
edge that is not modeled within the system; both modes are supported by DiArg. For the
reference independence scenario, let us assume we add the following normal expansion
of AF to the sequence: AF' = (AR',AT’) = ({a,b,c},{(a,b),(b,a),(b,c),(c,a)}). The
only stage extension of this framework is {b}. This violates reference independence, i.e.,

4See ongoing work for the analogous argumentation principles [3]]. In this dialogue system application sce-
nario, we adjust the principle to the fact that we “pick™ a particular extension of an argumentation framework
as our conclusion.



Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine 17

e N e
/ \ /

! %‘ C
\ b / \

N // N

~
\
!
/

(a) AF. (b) AF'. (c) AF".

Figure 1. Example argumentation frameworks: AF = ({a,b},{(a,b),(b,a)}),

AF' = ({a,b,c},{(a,b),(b,a),(b,c),(c,a)}), and AF" = ({a,b,c},{(a,b),(b,a),(b,c),(c,c)}). In AF, {a}
has been accepted as the conclusion. In AF’, either {a} or {c} can be accepted as conflict-free sets that satisfy
the reference independence property, given the resolution of AF. In AF”, {a} is the only conflict-free set that
can satisfy the cautious monotony property, given the resolution of AF.

we discard a from the conclusion and include the originally existing argument b (that was
not part of the initial conclusion) without considering the only newly added argument ¢
a part of the new conclusiorﬂ

For the cautious monotony scenario, let us assume we add the following normal ex-
pansion of AF to the sequence: AF” = (AR" AT") = ({a,b,c},{(a,b),(b,a),(b,c),
(¢,c)}). The only stage extension of this framework is {b}. However, “switching” from
conclusion {a} to conclusion {b} although {a} is not attacked by any newly added argu-
ment violates cautious monotony. Figure [1| depicts the example’s argumentation frame-
works.

In both scenarios, we can use the following approaches to ensure reference indepen-
dence or cautious monotony, respectively:

e Expansionist approach: attack b with an annihilator argument. The annihilator
argument is a mere helper, i.e., it is not considered a part of the conclusion.
e Reductionist approach: remove b.

The annihilator approach has the advantage that it can potentially guide the search for
new knowledge that allows for a reference independent/cautiously monotonic resolution.

Let us note that the identification of arguments that should either be attacked by the
annihilator argument or be removed is relatively straight-forward: we can start by re-
moving (or adding annihilator attacks to) as few arguments in our framework as possible
and subsequently increase the number of removed arguments (or annihilator attacks) in
case no better solution can be found, starting with the optimistic assumption that in most
scenarios, only few arguments will be the “cause” of reference independence or cautious
monotony violation. Exploiting specific properties of argumentation semantics’ to allow
for a more efficient search approach is a promising future research direction.

[Tt}

SWe assume arguments are either “in” or “out”, which is aligned with the clear preference property of
economically rational decision-making.



18 Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine
3. The DiArg Reasoner

The DiArg reasoner is an open-source Java library, whose source code, includ-
ing documentation, tests and a tutorial, is available at https://github.com/
Interactive-Intelligent-Systems/diarg, Letus note that while the specification
and analysis of the exact formal foundations of the DiArg reasoner are beyond the scope
of this paper, the program code and its documentation allow for an inspection of the
underlying data structures and algorithms.

3.1. Abstractions

DiArg provides the following abstractions to manage sequences of argumentation frame-
works, the relation between different argumentation frameworks, and their conclusions.

AF tuple. The AF tuple object allows to check whether two AFs are expansions,
normal expansions, or (normal) submodules of each other. In addition, the object can,
given two argumentation frameworks AFy and AFj, and a conclusion derived from AFy
with a specific argumentation semantics, determine the largest normal submodules or
smallest normal expansions of AFj, from which a reference independent or cautiously
monotonous conclusion w.r.t. AFy can be derived.

AF sequence. The AF sequence object allows for the instantiation of AF sequences
whose argumentation frameworks satisfy specific properties (i.e., are expanding or nor-
mally expanding), and to derive conclusions from any AFs in a sequence, such that the
conclusions ensure reference independence or cautious monotony w.r.t. preceding argu-
mentation frameworks and their conclusions.

Context. If context support is activated, the requirement that the sequence must be
expanding or normally expanding can be relaxed by specifying that specific sets of argu-
ments are inactive in a specific context. Contexts can be assigned to an AF and managed
by a business logic layer that implements application-specific program code on top of
DiArg. When determining an AF’s conclusion that satisfies reference independence or
cautious monotony, DiArg searches for the AF’s most recent predecessor whose contexts
are consistent with the contexts of the AF.

Serializer. The serializer supports the export of argumentation frameworks, se-
quences, and extensions in a JavaScript Object Notation (JSON)-based format, as well
as the instantiation of the corresponding DiArg objects from JSON.

3.2. Demonstration Example

To show how DiArg can be applied, let us introduce the following example. Let us as-
sume we are developing a digital assistant for stress management (see Guerrero et al. [12]]
for a related application scenario). The assistant recommends stress-relieving activities
(represented by arguments) to an end-user; the end-user can then either accept the rec-
ommendation and add it to their schedule or reject the activity by adding an argument
that attacks the corresponding activity. This argument will be considered when providing
future recommendations. The argument may be context-dependent. For example, a user
may reject stress-relieving activities that are particularly time-consuming during week-
days, but accept them at weekends.


https://github.com/Interactive-Intelligent-Systems/diarg
https://github.com/Interactive-Intelligent-Systems/diarg

Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine 19

Let us present a simplified example of how DiArg can generate recommendations
for a specific sub-scenario. We start with an AF that has three arguments representing
the execution of different activities. Because at any point in time, only one activity can
be executed, all arguments attack each other; i.e., we have the argumentation framework
AFy = ({a,b,c},{(a,b),(b,a),(b,c),(c,b),(c,a),(a,c)}), where we can interpret a, b,
and c as follows: a: recommend activity meditate; b: recommend activity join social
lunch; c: recommend activity go hiking. We assume we have configured the sequence ob-
ject to have the following properties: i) We use stage semantics Oyqg.. ii) In the sequence,
each AF must be a normal expansion of its predecessor. iii) The conclusion of an AF
is determined by expanding the AF until a unique (exactly one) extension is determined
that implies reference independence w.r.t. the previous conclusion.

The recommender system can either allow the user to choose any of the extensions a
specific semantics returns for the AF, or it can add an annihilator argument to the AF that
(with its attacks on other arguments) enforces a unique extension. This behavior is speci-
fied on top of the sequence (i.e., DiArg supports both variants and the specific implemen-
tation depends on how the DiArg library is integrated into the application). Let us assume
our implementation does the latter. To resolve the initial AF, the system adds an anni-
hilator argument an to generate a normal expansion for which stage semantics returns
exactly one extension E" and IE € Oyag.(AF), such that E = E"\ {an}. In our case, the
system adds the argument an to the AF, and the attacks (an,b) and (an,a), i.e., AFy,,, =
({a,b,c,an},{(a,b),(b,a),(b,c),(c,b),(c,a),(a,c),(an,a),(an,b)}). It follows that the
conclusion is {an,c} (Oyage(AFo,,,) = {{an,c}}), i.e., the conclusion is {c} when ex-
cluding the annihilator argument an.

In the example scenario, the conclusion {c} implies that our application
suggests Go hiking as the stress-relieving activity to the end-user. Let us as-
sume the user wants to reject the recommendation because she does not have
time to go hiking on weekdays. For this, she inserts this feedback through the
system’s user interface, which generates the next AF in our sequence: AF|} =
({a,b,c,d},{(a,b),(b,a),(b,c),(c,b),(c,a),(a,c),(d,c)}). On the business logic layer,
the developer can specify that the provided user feedback will be inactive when a new
recommendation is generated for weekend activities. However, in the current context,
the system resolves AF]. Because of the attack cycle “a attacks b attacks a”, the system
again uses an annihilator argument to generate a single recommendation (exactly one
extension), which can be either {a} or {b}. When providing a “weekend” recommen-
dation, the AF is resolved in a consistent manner w.r.t. to its closest predecessor with
whose contexts it is aligned; i.e., if we add a new framework AF, := AF} and activate
the “weekend” context, the system again generates the initial recommendation {c}; i.e.,
argument d and its attack relations are ignored and the conclusion {c} is consistent with
(in this case: identical to) the initial conclusion inferred from AFy. Figure ] depicts the
example’s argumentation frameworks.



20 Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine

(a) AFy.

Figure 2. Recommender system scenario: Given AFy = ({a,b,c},{(a,b),(b,a),(b,c),(c,D),(c,a),(a,c)}),
the system auto-generates the annihilator argument an and the attacks (an,a) and (an,b) to “select” the exten-
sion {c} € Osage(AFy) ({c,an} € Gs,uge(AFoexp)). Then, a human user creates AF} by adding the argument d
and the attack (d,¢) to AF to indicate that the recommendation {c} is not useful in the current context.

4. Limitations and Future Work

In this paper, we have presented ongoing work on an argumentation-based dialogue rea-
soner that iteratively resolves sequences of abstract argumentation frameworks. The fol-
lowing enhancements can be considered useful future work:

Improved context support. DiArg uses context as a means to provide an additional
tool for allowing business logic (application-specific program code) to relax constraints
on how specific AFs in a sequence are resolved; i.e., in DiArg, abstract argumentation
can be considered the lowest layer of abstraction. This approach stands in contrast with
many formal argumentation methods that are concerned with the internal structure of
arguments, but is well-aligned with methods from other domains, e.g., with the mapping
between business process diagrams to Petri nets as the lowest level abstraction layer [13]].
Further investigating the integration of formal argumentation methods with application-
specific program code layers and their paradigms can be promising future work.

Integration with recommender systems approaches. A relevant use case of Di-
Arg may be the enhancement of argumentation-based recommender systems, which are
often implemented using Machine Learning (ML)-based methods. For example, DiArg
can potentially help address “cold start” issues and facilitate the incorporation of user
feedback. Future work can put DiArg into the context of ML-based or hybrid approaches
like the argumentation-based recommender system introduced by Rago er al. [1]].

Interoperability enhancements in alignment with the argument interchange
format. DiArg’s serializer supports the import and export of argumentation frameworks
and extensions, and of DiArg-specific objects like context and argumentation sequences.
So far, the serializer does not consider the standardization attempts that have been made



Kampik and Gabbay / Towards DiArg: An Argumentation-based Dialogue Reasoning Engine 21

in the form of the Argument Interchange Format (AIF) [[14]. A proposal of how to se-
rialize argumentation frameworks as JSON objects exists in the context of AIFﬂ Con-
sequently, an assessment to what extent DiArg can comply with the standardization ap-
proaches of AIF can be considered relevant future work.

References

(1]

[2]

(3]

[4]

(3]
(6]

(71

(8]

[9]
[10]
[11]
[12]

[13]

[14]

A. Rago, O. Cocarascu and F. Toni, Argumentation-Based Recommendations: Fantastic Explanations
and How to Find Them, in: Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence, IJCAT’18, AAAI Press, 2018, pp. 1949-1955—. ISBN ISBN 9780999241127.

M. Thimm, Tweety: A Comprehensive Collection of Java Libraries for Logical Aspects of Artificial
Intelligence and Knowledge Representation, in: Proceedings of the Fourteenth International Conference
on Principles of Knowledge Representation and Reasoning, KR’14, AAAI Press, 2014, pp. 528-537-.
ISBN ISBN 1577356578.

T. Rienstra, M. Thimm and N. Oren, Opponent Models with Uncertainty for Strategic Argumentation,
in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IICAI *13,
AAATI Press, 2013, pp. 332-338—. ISBN ISBN 9781577356332.

E. Awad, M.W.A. Caminada, G. Pigozzi, M. Podlaszewski and I. Rahwan, Pareto optimality and
strategy-proofness in group argument evaluation, Journal of Logic and Computation 27(8) (2017),2581—
2609. doi:10.1093/logcom/exx017.

T. Kampik and J.C. Nieves, Abstract Argumentation and the Rational Man, 2019.

T. Kampik, Economic Rationality and Abstract Argumentation, in: Online Handbook of Argumentation
for AI: Volume 1, F. Castagna, F. Mosca, J. Mumford, S. Sarkadi and A. Xydis, eds, arXiv, 2020, pp. 7—
11, eprint at https://arxiv.org/abs/2006.12020.

PM. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games, Artificial Intelligence 77(2) (1995), 321-357.
doi:https://doi.org/10.1016/0004-3702(94)00041-X. http://www.sciencedirect.com/science/
article/pii/000437029400041X.

B. Verheij, Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages,
in: In Proceedings of the biannual International Conference on Formal and Applied Practical Reasoning
(FAPR) workshop, Universiteit, 1996, pp. 357-368.

R. Baumann and G. Brewka, Expanding Argumentation Frameworks: Enforcing and Monotonicity Re-
sults., COMMA 10 (2010), 75-86.

D.M. Gabbay, Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems, in: Logics
and Models of Concurrent Systems, K.R. Apt, ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 1985,
pp. 439-457. ISBN ISBN 978-3-642-82453-1.

A. Rubinstein, Modeling bounded rationality, MIT press, 1998.

E. Guerrero, J.C. Nieves and H. Lindgren, An activity-centric argumentation framework for assistive
technology aimed at improving health, Argument & Computation 7(1) (2016), 5-33.

RM. Dijkman, M. Dumas and C. Ouyang, Semantics and analysis of business pro-
cess models in BPMN, Information and Software Technology 50(12) (2008), 1281-1294.
doi:https://doi.org/10.1016/j.infsof.2008.02.006. http://wuw.sciencedirect.com/science/
article/pii/S0950584908000323,

I. Rahwan and C. Reed, The Argument Interchange Format, in: Argumentation in Artificial Intelligence,
G. Simari and I. Rahwan, eds, Springer US, Boston, MA, 2009, pp. 383—402. ISBN ISBN 978-0-387-
98197-0. https://doi.org/10.1007/978-0-387-98197-0_19.

Seehttps://arg-tech.org/index.php/projects/aifbdb-user-guide/


http://www.sciencedirect.com/science/article/pii/000437029400041X
http://www.sciencedirect.com/science/article/pii/000437029400041X
http://www.sciencedirect.com/science/article/pii/S0950584908000323
http://www.sciencedirect.com/science/article/pii/S0950584908000323
https://doi.org/10.1007/978-0-387-98197-0_19
https://arg-tech.org/index.php/projects/aifbdb-user-guide/

