
Deciding ALBO with Tableau

Renate A. Schmidt1 and Dmitry Tishkovsky1

School of Computer Science, The University of Manchester
{renate.schmidt,dmitry.tishkovsky}@manchester.ac.uk

Abstract. This paper presents a tableau approach for deciding descrip-
tion logics outside the scope of OWL DL and current state-of-the-art
tableau-based description logic systems. In particular, we de�ne a sound
and complete tableau calculus for the description logic ALBO and show
that it provides a basis for decision procedures for this logic and nu-
merous other description logics. ALBO is the extension of ALC with
the Boolean role operators, inverse of roles, domain and range restric-
tion operators and it includes full support for objects (nominals). ALBO
is a very expressive description logic which is NExpTime complete and
subsumes Boolean modal logic and the two-variable fragment of �rst-
order logic. An important novelty is the use of a versatile, unrestricted
blocking rule as a replacement for standard loop checking mechanisms
implemented in description logic systems. Our decision procedure is im-
plemented in the MetTeL system.

1 Introduction

The description logic ALBO is an extension of the description logic ALB in-
troduced in [7] with singleton concepts, called nominals in modal logic. ALB is
the extension of ALC, in which concepts and roles form a Boolean algebra, and
additional operators include inverse of roles and a domain restriction operator.
ALBO extends ALC by union of roles, negation of roles, inverse of roles, and
domain as well as range restriction. In addition, it provides full support for ABox
objects and singleton concepts.

None of the current state-of-the-art tableau-based description logic systems
are able to handle ALBO. Because ALBO allows full negation of roles, it is
out of the scope of OWL DL and most description logic systems including
Fact++, KAON2, Pellet, and RacerPro. A tableau decision procedure
for the description logic ALCQIb which allows for Boolean combinations of
`safe' occurrences of negated roles is described in [14]. Safeness essentially im-
plies a `guardedness' property which is violated for unsafe occurrences of role
negation. Description logics with full, i.e. safe and unsafe, role negation can be
decided however by translation to �rst-order logic and �rst-order resolution the-
orem provers such as MSpass, Spass and Vampire. The paper [7] shows that
the logic ALB can be decided by translation to �rst-order logic and ordered
resolution. This result is extended in [3] to ALB with positive occurrences of
composition of roles. ALBO can be embedded into the two-variable fragment

of �rst-order logic with equality which can be decided with �rst-order resolu-
tion methods [2]. This means that ALBO is decidable and can be decided using
�rst-order resolution methods.

ALBO is a very expressive description logic. It subsumes the Boolean modal
logic [4, 5] and tense, hybrid versions of Boolean modal logic with the @ operator
and nominals. ALBO can also be shown to subsume the two-variable fragment of
�rst-order logic (without equality) [8]. The following constructs and statements
can be handled in ALBO.

� Role negation, the universal role, the su�ciency or window operator, Peirce
sum, domain restriction, cross product, and cylindri�cation.

� Role inclusion axioms and role equivalence axioms in the language of ALBO.
� Role assertions in the language of ALBO.
� Boolean combinations of both concept and role inclusion and equivalence

axioms.

� Boolean combinations of concept and role assertions, including negated role
assertions.

� Disjoint roles, symmetric roles and serial roles.1

Since ALBO subsumes Boolean modal logic it follows from [10] that the satis-
�ability problem in ALBO is NExpTime-hard. In [6] it is shown that the two vari-
able �rst-order fragment with equality is NExpTime-complete. It follows there-
fore that the computational complexity of ALBO-satis�ability is NExpTime-
complete. This follows also from a (slight extension of a) result in [14].

In this paper we present a tableau approach which decides the description
logic ALBO. The tableau calculi we de�ne for ALBO are ground semantic
tableau calculi which work on ground labelled expressions. In contrast to the
tableau calculi for description logics with role operators presented in [3, 11�13]
(including ALC(t,u,−1), ALC(t,u,−1, �), and Peirce logic, or the equivalent
modal versions, where � denotes the domain restriction operator), our tableau
calculi operate only on ground labelled concept expressions. As a consequence
the calculi can be implemented as extensions of existing tableau-based descrip-
tion logic systems which can handle singleton concepts.

In order to limit the number of objects in the tableau we need a mechanism
for detecting periodicity in the underlying interpretations (models). Standard
loop checking mechanisms are based on comparing sets of (labelled or unlabelled)
concept expressions such as subset blocking or equality blocking. Instead of using
the standard loop checking mechanisms our procedure uses a new inference rule,
the unrestricted blocking rule, and equality reasoning. Our approach has the
following advantages over standard loop checking.

� It is conceptually simple and easy to implement.

� It is universal and does not depend on the notion of a type.

1 It is not di�cult to extend our method and results to include full equality handling
including re�exive roles, identity and diversity roles, and the test operator.

� It is versatile and enables more controlled model construction in a tableau
procedure. For instance, it can be used to construct small models for a sat-
is�able concept, e.g. domain minimal models.

� It generalises to other logics, including full �rst-order logic.
� It can be simulated in �rst-order logic provers.

The unrestricted blocking rule corresponds to an unrestricted version of the �rst-
order blocking rule invented by [1], simply called the blocking rule. The blocking
rule is constrained to objects l and l′ such that the object l′ is a successor of the
object l. I.e. in the common branch of l and l′ the object l′ is obtained from l as
a result of a sequence of applications of the existential restriction rule. In this
form the rule can be used to simulate standard blocking mechanisms.

The structure of the paper is as follows. The syntax and semantics of ALBO
is de�ned in Section 2. In Section 3 we prove that ALBO has the �nite model
property. The constructions used in the proof are also used in Section 4, where
we de�ne a tableau calculus for ALBO and prove that it is sound and complete
without the unrestricted blocking rule. Section 5 introduces the (unrestricted)
blocking mechanism and proves soundness, completeness and termination of the
extended tableau calculus. This allows us to de�ne general decision procedures
for ALBO and its sublogics which is discussed in Section 6. We conclude with
Section 7. Due to lack of space some proofs are omitted or only sketched.

2 Syntax and semantics of ALBO

The syntax of ALBO is de�ned over the signature σ = (O,C,R) of three disjoint
alphabets: O = {`0, `1, . . .} the alphabet of object symbols, C = {p0, p1, . . .} the
alphabet of concept symbols, and R = {r0, r1, . . .} the alphabet of role symbols.
The logical connectives are: ¬, t, ∃, −1 (role inverse), � (domain restriction), �
(range restriction). Concept expressions (or concepts) and role expressions (or
roles) are de�ned as follows:

C
def= p | {`} | ¬C | C tD | ∃R.C,

R
def= r | R−1 | ¬R | R t S | R � C | R � C.

p ranges over the set C, ` ranges over O, and r ranges over R. The u connective
on concepts and roles is de�ned as usual in terms of ¬ and t, and the top and

bottom concepts are de�ned by > def= pt¬p and ⊥ def= pu¬p, respectively, for some
concept name p. The universal restriction operator ∀ is a dual to the existential

restriction operator ∃, speci�ed by ∀R.C
def= ¬∃R.¬C.

Next, we de�ne the semantics of ALBO. A model (or an interpretation) I
of ALBO is a tuple I = (∆I , pI0 , . . . , `I0 , . . . , rI0 , . . .), where ∆I is a non-empty
set, pIi is a subset of ∆I , `Ii ∈ ∆I , and rI0 is a binary relation over ∆I . The
semantics of concepts and roles in the model I, i.e. CI and RI , is speci�ed in
Figure 1. A TBox (respectively RBox), is a (�nite) set of inclusion statements
C v D (respectively R v S) which are interpreted in any model I as subset

{`}I def
= {`I}, (R−1)I

def
= (RI)−1 = {(x, y) | (y, x) ∈ RI},

(¬C)I
def
= ∆I \ CI , (¬R)I

def
= (∆I ×∆I) \RI ,

(C tD)I
def
= CI ∪DI , (R t S)I

def
= RI ∪ SI ,

(R � C)I
def
= {(x, y) | x ∈ CI and (x, y) ∈ RI},

(R � C)I
def
= {(x, y) | y ∈ CI and (x, y) ∈ RI},

(∃R.C)I
def
= {x | ∃y ∈ CI (x, y) ∈ RI}.

Fig. 1. De�nition of ·I

relationships, namely CI ⊆ DI (respectively RI ⊆ SI). An ABox is a (�nite)
set of statements of the form ` : C or (`, `′) : R, called concept assertions or role
assertions. A knowledge base is a tuple (T,R, A) of a TBox T , an RBox R, and
an ABox A.

The top role O and the empty role M are de�nable in ALBO as rt¬r and ru
¬r, respectively, for some role symbol r. As a consequence any concept assertion

` : C can be expressed as a concept expression as follows: ` : C
def= ∃O.({`}uC). It

is clear that (` : C)I = ∆I i� `I ∈ CI in every model I. InALBO a role assertion
(`, `′) : R can also be expressed as a concept assertion and concept expression,

namely (`, `′) : R
def= ` : ∃R.{`′}. Moreover, concept and role inclusion axioms

and are de�nable as concept expressions, too. We let C v D
def= ∀O.(¬C t D)

and R v S
def= ∀O.∃¬(¬R t S).⊥, respectively. Thus, Boolean combinations of

inclusion and assertion statements of concepts and roles are also expressible
in ALBO as the corresponding Boolean combinations of the concepts which
represent these statements. As usual, concept satis�ability inALBO with respect
to any knowledge base can be reduced to concept satis�ability with respect to
a knowledge base where all TBox, RBox, and ABox are empty. Without loss of
generality we therefore focus on the problem of concept satis�ability in ALBO.

3 Finite model property

Let ≺ be the smallest transitive ordering on the set of all ALBO expressions
(concepts and roles) satisfying:

(s1) C ≺ ¬C,
(s2) C ≺ C tD,
(s3) D ≺ C tD,
(s4) ¬C ≺ ¬(C tD),
(s5) ¬D ≺ ¬(C tD),
(s6) C ≺ ∃R.C,

(s7) R ≺ ∃R.C,
(s8) ¬C ≺ ¬∃R.C,
(s9) R ≺ ¬∃R.C,
(s10) R ≺ R t S,
(s11) S ≺ R t S,
(s12) R ≺ R−1,

(s13) ¬C ≺ R � C,

(s14) R ≺ R � C,

(s15) ¬C ≺ R � C,

(s16) R ≺ R � C,

(s17) R ≺ ¬R.

It is easy to see that ≺ is a well-founded ordering. Let � be the re�exive
closure of ≺.

Let I be any ALBO model and C be a concept. A C-type τC(x) of an

element x of the model I is de�ned by τC(x) def= {D | D � C and x ∈ DI}.
Let ∼ be an equivalence relation on ∆I such that x ∼ y implies τC(x) = τC(y).
Let ‖x‖ def= {y ∈ ∆I | x ∼ y}.

Given a model I we de�ne the �ltrated model I (through ∼), as follows. Let
∆I def= {‖x‖ | x ∈ ∆I}. For every r ∈ R let rI

def= {(‖x‖, ‖y‖) | (x, y) ∈ rI}. For
every p ∈ C let pI

def= {‖x‖ | x ∈ pI} and for every ` ∈ O let `I
def= ‖`I‖ = {`I}.

The following lemma can be proved by induction on the ordering ≺.

Lemma 1 (Filtration Lemma).

(1) x ∈ DI i� ‖x‖ ∈ DI for any D � C and x ∈ ∆I ,
(2) (x, y) ∈ RI i� (‖x‖, ‖y‖) ∈ RI for every R ≺ C and x, y ∈ ∆I .

A corollary of this lemma is the �nite model property.

Theorem 1 (Finite Model Property). ALBO has the �nite model property,
i.e. if a concept C is satis�able then it has a �nite model.

Proof. Let I be a model for a concept C and ∼ is an equivalence relation on

∆I de�ned by x ∼ y
def⇐⇒ τC(x) = τC(y). Then, by the Filtration Lemma, the

model I �ltrated through ∼ is also a model for C. Moreover the domain of I is
�nite because the number of C-types in every model is �nite.

4 Tableau calculus

Let T denote a tableau calculus and C a concept. We denote by T (C) a �nished
tableau built using the rules of the calculus T starting with the concept C as
input. I.e. we assume that all branches in the tableau are expanded and all
applicable rules of T have been applied in T (C). As usual we assume that all the
rules of the calculus are applied non-deterministically, to a tableau. A branch of
a tableau is closed if a contradiction has been derived in this branch, otherwise
the branch is called open. The tableau T (C) is closed if all its branches are closed
and T (C) is open otherwise. We say that T is terminating i� for every concept
C either T (C) is �nite whenever T (C) is closed or T (C) has a �nite open branch
if T (C) is open. T is sound i� C is unsatis�able whenever T (C) is closed for all
concepts C. T is complete i� for any concept C, C is satis�able (has a model)
whenever T (C) is open.

Let TALBO be the tableau calculus consisting of the rules listed in Table 1.
Given an input concept C, preprocessing is performed which pushes the role
inverse operators toward atomic concepts by exhaustively applying the following
role equivalences from left to right.

(¬R)−1 = ¬(R−1), (R t S)−1 = R−1 t S−1,

(R � C)−1 = R−1 � C, (R � C)−1 = R−1 � C, (R−1)−1 = R.

(⊥):
` : C, ` : ¬C

⊥ (¬¬):
` : ¬¬C

` : C

(¬t):
` : ¬(C tD)

` : ¬C, ` : ¬D
(t):

` : (C tD)

` : C | ` : D

(sym):
` : {`′}
`′ : {`} (sym-):

` : ¬{`′}
`′ : ¬{`} (mon):

` : {`′}, `′ : C

` : C
(id):

` : C

` : {`}

(∃):
` : ∃R.C

` : ∃R.{`′}, `′ : C
(`′ is new) (¬∃):

` : ¬∃R.C, ` : ∃R.{`′}
`′ : ¬C

(bridge):
` : ∃R.{`′}, `′ : {`′′}

` : ∃R.{`′′}

(∃t):
` : ∃(R t S).{`′}

` : ∃R.{`′} | ` : ∃S.{`′} (¬∃t):
` : ¬∃(R t S).C

` : ¬∃R.C, ` : ¬∃S.C

(∃−1):
` : ∃R−1.{`′}
`′ : ∃R.{`} (¬∃−1):

` : ¬∃R−1.C, `′ : ∃R.{`}
`′ : ¬C

(∃�):
` : ∃(R � C).{`′}
` : C, ` : ∃R.{`′} (¬∃�):

` : ¬∃(R � C).D

` : ¬C | ` : ¬∃R.D

(∃�):
` : ∃(R � C).{`′}

`′ : C, ` : ∃R.{`′} (¬∃�):
` : ¬∃(R � C).D

` : ¬∃R.¬(¬C t ¬D)

(∃¬):
` : ∃¬R.{`′}
` : ¬∃R.{`′} (¬∃¬):

` : ¬∃¬R.C, `′ : D

` : ∃R.{`′} | ` : ∃¬R.{`′}

Table 1. Tableau calculus TALBO for ALBO.

Next, the (preprocessed) input concept C is tagged with a fresh object name
` which does not occur in C. Then we build a complete tableau TALBO(C) as
usual by applying the rules of TALBO to the concept assertion ` : C. It is however
important to note that ` : C and all labelled expressions and assertions really
denote concept expressions.

Because every rule preserves the satis�ability of concept assertions, it is easy
to see that the calculus TALBO is sound for ALBO.

We turn to proving completeness of the calculus. Suppose that a tableau
TALBO(C) for the given concept C is open, i.e. it contains an open branch B.
We construct a model I for the satis�ability of C as follows. By de�nition, let

` ∼ `′
def⇐⇒ ` : {`′} ∈ B. It is clear that the rules (sym), (mon), and (id) ensure

that ∼ is an equivalence relation on objects. The equivalence class ‖`‖ of a

representative ` is de�ned as usual by: ‖`‖ def= {`′ | ` ∼ `′}. We set

∆I def= {‖`‖ | ` : {`} ∈ B}, rI
def= {(‖`‖, ‖`′‖) | ` : ∃r.{`′} ∈ B},

pI
def= {‖`‖ | ` : p ∈ B}, `I

def=

{
‖`‖, if ` : {`} ∈ B,

‖`′‖ for some ‖`′‖ ∈ ∆I , otherwise.

It is easy to show that, using the rules (sym), (mon), and (id), the de�nition of
I does not depend on representatives of the equivalence classes.

Lemma 2. (1) If ` : D ∈ B then ‖`‖ ∈ DI for any concept D.
(2) For every role R and every concept D

(2a) ` : ∃R.{`′} ∈ B implies (‖`‖, ‖`′‖) ∈ RI ,
(2b) if (‖`‖, ‖`′‖) ∈ RI and ` : ¬∃R.D ∈ B then `′ : ¬D ∈ B.

Proof. We prove both properties simultaneously by induction on the ordering
≺. The induction hypothesis is: for an arbitrary ALBO expression E for every
expression F such that F ≺ E if F is a concept then property (1) holds with
D = F . Otherwise (i.e. if F is a role), property (2) holds with R = F . To prove
property (1) we consider the following cases.

D = p, D = {`′}. These cases follow from the de�nitions of pI and `I .
D = ¬D0. If ` : ¬D0 ∈ B then ` : D0 /∈ B because otherwise B would have been

closed by the (⊥) rule. We have the following subcases.
D0 = p. We have ` : p ∈ B ⇐⇒ ‖`‖ ∈ pI by the de�nition of pI .
D0 = {`′}. As the rules (sym-) and (id) have been applied in B it is clear

that `′ : {`′} is in B and `′I = ‖`′‖. Similarly, `I = ‖`‖. Furthermore,
because ` : {`′} /∈ B we have ` 6∼ `′, i.e. ` /∈ ‖`′‖ = `′I . That is,
‖`‖ /∈ {‖`′‖} = {`′}I .

D0 = ¬D1, D0 = D1 tD2. The proofs of these cases are easy.
D0 = ∃R.D1. Let ‖`′‖ be an arbitrary element of ∆I such that (‖`‖, ‖`′‖) ∈

RI (trivially, if there is no such element then there is nothing to prove).
By the induction hypothesis the property (2b) holds for R ≺ D0. Thus,
`′ : ¬D1 ∈ B. The induction hypothesis for the property (1) gives us
‖`′‖ /∈ DI

1 . Finally, we obtain ‖`‖ ∈ (¬∃R.D1)I because `′ was chosen
arbitrarily.

D = D0 tD1. The proof of this case is easy.
D = ∃R.D0. If ` : ∃R.D0 ∈ B then `′ : D0 ∈ B and ` : ∃R.{`′} ∈ B for some

object `′ by the (∃) rule. By the induction hypothesis the properties (1)
and (2a) hold for D0 ≺ D and R ≺ D respectively. Hence, ‖`′‖ ∈ DI

0 and
(‖`‖, ‖`′‖) ∈ RI . That is, ‖`‖ ∈ (∃R.D0)I .

To prove property (2) we consider all cases corresponding to the possible forms
of a role R.

R = r. This case easily follows from the de�nition of rI .
R = S−1. For the property (2a) let ` : ∃S−1.{`′} ∈ B. Then `′ : ∃S.{`} ∈ B by

the rule (∃−1). By the induction hypothesis for S ≺ R we have (‖`′‖, ‖`‖) ∈
SI . Consequently, (‖`‖, ‖`′‖) ∈ (S−1)I . For (2b) suppose that (‖`‖, ‖`′‖) ∈
(S−1)I and ` : ¬∃S−1.D ∈ B. As all the occurrences of the inverse operator
have been pushed through other role connectives and double occurrences of
−1 have been removed2 we can assume that S = r for some role name r.
Hence, (‖`′‖, ‖`‖) ∈ rI and, consequently, `′ : ∃r.{`} ∈ B by the de�nition
of rI . Finally, by the (¬∃−1) rule, `′ : ¬D is in the branch B.

R = S0 t S1, R = S � D, R = S � D. The proofs of these cases are easy.

2 Removal of the double occurrences of the inverse operator in front of atoms is not
essential for the proof but it simpli�es the proof a bit.

R = ¬S. For (2a) suppose ` : ∃¬S.{`′} ∈ B. Then ` : ¬∃S.{`′} ∈ B is obtained
with the (∃¬) rule. If (‖`‖, ‖`′‖) /∈ (¬S)I then (‖`‖, ‖`′‖) ∈ SI and by
property (2b) which holds by the induction hypothesis for S ≺ R we have
that `′ : ¬{`′} is in B. This concept together with `′ : {`′} implies the branch
is closed. We reach a contradiction, so (‖`‖, ‖`′‖) ∈ (¬S)I .
For property (2b) suppose that (‖`‖, ‖`′‖) ∈ (¬S)I and ` : ¬∃¬S.D are in the
branch B. Then we have (‖`‖, ‖`′‖) /∈ SI and, hence, by the contra-positive
of property (2a) for S ≺ R, ` : ∃S.{`′} is not in B. Applying the (¬∃¬) rule
to ` : ¬∃¬S.D we get ` : ∃¬S.{`′} ∈ B. Therefore, by the (¬∃) rule, `′ : ¬D
is in the branch too.

A consequence of this lemma is completeness of the tableau calculus. Hence, we
can state:

Theorem 2. TALBO is a sound and complete tableau calculus for ALBO.

5 Blocking

The calculus TALBO is non-terminating for ALBO. There are satis�able concepts
which result in an in�nite TALBO-tableau where all open branches are in�nite.
All the rules respect the well-founded ordering ≺ of expressions under labels, i.e.
in every rule the main symbol of the concept above the line is strictly greater
w.r.t. ≺ than the main symbol(s) of the expression(s) below the line of the rule.
Furthermore, it is easy to see that only applications of the (∃) rule generate
new symbols in the branch. Thus, the reason that a branch can be in�nite is
the unlimited application of the (∃) rule. As a consequence, the following lemma
holds, where #∃(B) denotes the number of applications of the (∃) rule in a
branch B.

Lemma 3. If #∃(B) is �nite then B is �nite.

In order to avoid in�nite derivations we restrict the application of the (∃) rule
by the following blocking mechanism.

Let < be an ordering on objects in the branch which is a linear extension of
the order in which the objects are introduced during a derivation. I.e. let ` < `′

whenever the �rst appearance of object `′ in the branch is strictly later than the
�rst appearance of the object `. We add the following rule, called the unrestricted
blocking rule, to the calculus.

(ub):
` : C, `′ : D

` : {`′} | ` : ¬{`′}

Moreover, we require the following conditions to hold.

(c1) Any rule is applied at most once to the same set of premises.
(c2) The (∃) rule is applied only to expressions of the form ` : ∃R.C when C

is not a singleton, i.e. C 6= {`′′} for some object `′′.

(c3) If ` : {`′} appears in a branch and ` < `′ then all further applications of
the (∃) rule to expressions of the form `′ : ∃R.C are not performed within
the branch.

(c4) In every open branch there is some node from which point onwards before
any application of the (∃) rule all possible applications of the (ub) rule
must have been performed.

We use the notation TALBO + (ub) for the extension of TALBO with this rule
and this blocking mechanism.

Theorem 3. TALBO+(ub) is a sound and complete tableau calculus for ALBO.

Proof. The blocking requirements (c1)�(c4) are sound in the sense that they
cannot cause an open branch to become closed. The (ub) rule is sound in the
usual sense. Thus, we can safely add the blocking requirements and the block-
ing rule to a sound and complete tableau without endangering soundness or
completeness. Hence, TALBO + (ub) is sound and complete.

Let B be the leftmost open branch with respect to the rule (ub) in the
TALBO + (ub) tableau for a given concept C. Assume that I is a model con-
structed from B as in the completeness section above.

Lemma 4. If τC(‖`‖) = τC(‖`′‖) in I then ` : {`′} ∈ B.

Proof. Suppose that τC(‖`‖) = τC(‖`′‖). Therefore, ` : {`′} is consistent with C.
By (c4) the rule (ub) has been applied to the objects ` and `′ in B. As ` : {`′} is
consistent with C, the left branch (containing ` : {`′}) of this application of (ub)
is open and, by the choice of the branch B, coincides with B.

Corollary 1. The model I obtained from I by �ltration with respect to C is
isomorphic to I. In particular, ∆I is �nite.

For every ‖`‖ ∈ ∆I , let #∃(‖`‖) denote the number of applications of the
(∃) rule to concepts of the form `′ : ∃R.D with `′ ∈ ‖`‖.

Lemma 5. #∃(‖`‖) is �nite for every ‖`‖ ∈ ∆I .

Proof. Suppose not, i.e. #∃(‖`‖) is in�nite. The number of concepts of the
shape ∃R.D under labels in the branch is �nitely bounded. By requirements (c1)
and (c2) there is a sequence of objects `0, `1, . . . such that every `i ∈ ‖`‖ and
the (∃) rule has been applied to concepts `0 : ∃R.D, `1 : ∃R.D, . . . for some
∃R.D ≺ C. However, such a situation is impossible because of requirements (c4)
and (c3). Indeed, without loss of generality we can assume that ` < `0 < `1 < · · · .
Then, by requirement (c4), starting from some node of B, as soon as `i appears
in B, it is detected that `i ∈ ‖`‖ before any next application of the rule (∃)
and, hence, `i is immediately blocked for any application of the rule (∃), by
requirement (c3).

Lemma 6. #∃(B) is �nite.

Proof. Clearly #∃(B) ≤ max{#∃(‖`‖) | ‖`‖ ∈ ∆I}×Card(∆I). The rest follows
from Corollary 1 and Lemma 5.

Corollary 2. If the leftmost branch with respect to the rule (ub) in a TALBO +
(ub) tableau is open then the branch is �nite.

Theorem 4 (Termination). TALBO + (ub) is a terminating tableau calculus
for ALBO.

Proof. Termination of TALBO + (ub) follows from Corollary 2. Indeed, every
closed branch of a TALBO+(ub)-tableau is trivially �nite and by Corollary 2 the
length of the leftmost open branch with respect to the rule (ub) is �nite, too.

Notice that condition (c4) is essential for ensuring termination of a TALBO+
(ub) derivation. Indeed, it easy to see that in absence of (c4) the TALBO + (ub)
tableau for the concept ¬(∃(st¬s).¬∃r.pt∃(st¬s).¬∃r.¬p) does not terminate
because new objects are generated more often than their equality check via the
rule (ub) is performed in the tableau.

6 Decision procedures

When turning the presented calculus TALBO+ (ub) into a deterministic decision
procedure it is crucial that this is done in a fair way. A procedure is fair if, when
if an inference is possible forever then it is performed eventually. In other words
a deterministic tableau algorithm based on TALBO + (ub) may not defer the
use of an applicable rule inde�nitely. Note that understand fairness in a `global'
sense. That is, a tableau algorithm has to be fair not only to expressions in a
particular branch but to expressions in all branches of a tableau. In another
words, the algorithm is fair if it is fairly chooses a branch and expression(s) in
it to apply a rule.

Theorem 5. Any fair tableau procedure based on TALBO + (ub) is a decision
procedure for ALBO and all its sublogics.

Note that we do not assume that the branches are expanded in a depth-�rst
left-to-right order. However it also follows from our results that:

Theorem 6. Any fair tableau procedure based on TALBO + (ub) which uses
a depth-�rst and left-to-right strategy, with respect to branch selection of the
(ub) rule, is a decision procedure for ALBO and all its sublogics.

To illustrate the importance of fairness we give an example. The concept

C
def= ¬ (∃(s t ¬s).¬∃r.p t ¬∃t.¬∃r.p)

is not satis�able. Figure 2 gives a depth-�rst left-to-right derivation which is
unfair and does not terminate. Each line in the derivation is numbered on the
left. The rule applied and the number of the premise(s) to which it was applied to

1. `0 : C . given
2. `0 : ¬∃(s t ¬s).¬∃r.p (¬t),1
3. `0 : ¬¬∃t.¬∃r.p (¬t),1
4. `0 : ∃t.¬∃r.p (¬¬),3
5. `0 : ¬∃s.¬∃r.p (¬∃t),2
6. `0 : ¬∃¬s.¬∃r.p (¬∃t),2
7. I`0 : ∃s.{`0} (¬∃¬),6
8. `0 : ¬¬∃r.p (¬∃),7,5
9. `0 : ∃r.p (¬¬),8
10. `1 : p . (∃),9
11. `0 : ∃r.{`1} (∃),9
12. I`0 : ∃s.{`1} (¬∃¬),6,10
13. `1 : ¬¬∃r.p (¬∃),12,5
14. `1 : ∃r.p(¬¬),13
15. I`0 : {`1} (ub)
16. `2 : ¬∃r.p (∃),4
17. `0 : ∃t.{`2} (∃),4
18. I`0 : ∃s.{`2} (¬∃¬),6,16
19. `2 : ¬¬∃r.p (¬∃),5,18

20. Unsatis�able.(⊥),16,19
21. I`0 : ∃¬s.{`2} (¬∃¬),6,16
22. `2 : ¬¬∃r.p (¬∃),6,21
23. Unsatis�able.(⊥),16,22
24. I`0 : ¬{`1} (ub)
25. `2 : p (∃),14
26. `1 : ∃r.{`2} (∃),14
27. I`0 : ∃s.{`2} (¬∃¬),6,25
28. `2 : ¬¬∃r.p (¬∃),27,5
29. `2 : ∃r.p (¬¬),28
30. Non-terminating

. Repetition of 14�29

31. I`0 : ∃¬s.{`2} (¬∃¬),6,25
32. Similarly to 27�30

33. I`0 : ∃¬s.{`1} (¬∃¬),6,10
34. Similarly to 12�32

35. I`0 : ∃¬s.{`0} (¬∃¬),6
36. Similarly to 7�34

Fig. 2. An in�nite, unfair derivation

produce the labelled concept expression (assertion) in each line is speci�ed on the
right. The black triangles denote branching points in the derivation. A branch
expansion after a branching point is indicated by appropriate indentation. We
observe that the derivation is in�nite because the application of the (∃) rule to
`0 : ∃t.¬∃r.p is deferred forever and, consequently, a contradiction is not found.
The example illustrates the importance of fairness to completeness.

Without giving further details we observe that the calculi are compatible with
standard optimisations such as backjumping, simpli�cation, di�erent strategies
for branch selection and rule selection, etc provided that the fairness condition
is not violated.

We have implemented the unrestricted blocking rule as a plug-in to the
MetTeL tableau prover [9], and tested it on various description logics.

7 Conclusion

We have presented a new, general tableau approach for deciding description log-
ics with complex role operators, including especially `non-safe' occurrences of
role negation. The tableau decision procedures found in the description logic
literature, and implemented in existing tableau-based description logic systems,
can handle a large class of description logics but cannot currently handle de-
scription logics with full role negation such as ALB or ALBO. An important
novelty of our approach is the use of a blocking mechanism based on the use of
inference rules rather than standard loop checking mechanisms which are based
on tests performed on sets of expressions or assertions which may need to be

tailored toward speci�c logics. Our techniques are versatile and are not limited
to ALBO or its sublogics, but carry over to all description logics and also other
logics including �rst-order logic. We are optimistic that the ideas of this paper
can be taken a lot further.

References

1. P. Baumgartner and R. A. Schmidt. Blocking and other enhancements for bottom-
up model generation methods. In Proc. IJCAR 2006, vol. 4130 of LNAI, pp. 125�
139. Springer, 2006.

2. H. De Nivelle and I. Pratt-Hartmann. A resolution-based decision procedure for
the two-variable fragment with equality. In Proc. IJCAR 2001, vol. 2083 of LNAI,
pp. 211�225. Springer, 2001.

3. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-based methods for
modal logics. Logic J. IGPL, 8(3):265�292, 2000.

4. G. Gargov and S. Passy. A note on Boolean modal logic. In Mathematical Logic:

Proc. 1988 Heyting Summerschool, pp. 299�309. Plenum Press, 1990.
5. G. Gargov, S. Passy, and T. Tinchev. Modal environment for Boolean speculations.

In Mathematical Logic and its Applications: Proc. 1986 Gödel Conf., pp. 253�263.
Plenum Press, 1987.

6. E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-
variable �rst-order logic. Bull. Symbolic Logic, 3:53�69, 1997.

7. U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the
framework of resolution. In Automated Deduction in Classical and Non-Classical

Logics, vol. 1761 of LNAI, pp. 191�205. Springer, 2000.
8. U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable �rst-order

fragments and description logics. J. Relational Methods Comput. Sci., 1:251�276,
2004.

9. U. Hustadt, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. Automated reason-
ing about metric and topology (System description). In Proc. JELIA'06, vol. 4160
of LNAI, pp. 490�493. Springer, 2006.

10. C. Lutz and U. Sattler. The complexity of reasoning with boolean modal logics.
In Advances in Modal Logics, Vol. 3. CSLI Publications, 2002.

11. R. A. Schmidt. Developing modal tableaux and resolution methods via �rst-order
resolution. In Advances in Modal Logic, Vol. 6, pp. 1�26. College Publications,
2006.

12. R. A. Schmidt and U. Hustadt. First-order resolution methods for modal logics.
In Volume in memoriam of Harald Ganzinger, LNCS. Springer, 2006. To appear.

13. R. A. Schmidt, E. Orlowska, and U. Hustadt. Two proof systems for Peirce alge-
bras. In Proc. RelMiCS 7, vol. 3051 of LNCS, pp. 238�251. Springer, 2004.

14. S. Tobies. Decidability Results and Practical Algorithms for Logics in Knowledge

Representation. Phd dissertation, RWTH Aachen, Germany, 2001.

