
Speeding up Approximation with nicer Concepts

Anni-Yasmin Turhan? and Yusri Bong

Theoretical Computer Science, TU Dresden, Germany
{turhan, bong}@tcs.inf.tu-dresden.de

Abstract. Concept approximation is an inference service for Descrip-
tion Logics that provides “translations” of concept descriptions from
one DL to a less expressive DL. In [4] a method for optimizing the com-
putation of ALC-ALE-approximations of ALC-concept descriptions was
introduced. The idea is to characterize a certain class of concept de-
scriptions for which conjuncts can be approximated independently. In
this paper we provide relaxed conditions for this class of ALC-concept
descriptions, extend this notion to number restrictions and report on a
first implementation of this method for ALCN -ALEN -approximation.

1 Motivation

Approximation is a non-standard inference service in Description Logics (DLs)
introduced in [3]. Approximating a concept description, defined in one DL, means
to translate this concept description to another concept description, defined in
a second, typically less expressive DL, such that both concepts are as closely
related as possible with respect to subsumption. Like other non-standard in-
ferences such as computing the least common subsumer (lcs) or matching of
concepts, approximation has been introduced to support the construction and
maintenance of DL knowledge bases.

The building of ontologies can be assisted by employing the bottom-up ap-
proach, where new concepts can be derived from a collection of already exist-
ing ones by computing their commonalities. This task is typically realized by
computing the lcs. If the employed DL provides disjunction, the lcs is just the
disjunction of the input concepts. Thus, a user inspecting this concept does
not learn anything about their commonalities. By using concept approximation,
however, one can make the commonalities explicit to some extent by first ap-
proximating the concepts in a sub-language which does not provide disjunction,
and then computing the lcs of the approximations. Besides this approximation
is used to compute semantically closely related versions of expressive knowledge
bases to port knowledge bases between different systems or to integrate different
knowledge bases. Moreover, users who are no DL experts can be supported in
comprehending a knowledge base written in an expressive DL by offering them
a simplified view of it obtained by approximation.

A worst case double exponential algorithm for approximating ALCN - by
ALEN -concept descriptions was presented in [2]. A first implementation of ap-
proximation presented in [3] revealed that run-times for concepts of moderate size

? This work was partially supported by EU FET TONES (grant IST-2005-7603).

is already a couple of seconds. For an interactive application as the bottom-up
construction faster run-times are desirable. In [4] the following approach to op-
timize computation of approximations was presented: Instead of approximating
a concept C as a whole, a significant amount of time could be saved by split-
ting C into its conjuncts and approximating them separately. If, for instance,
C consists of two conjuncts of size n then the approximation of C takes some
ab2n

steps while the conjunct-wise approach would just take 2abn

. Unfortunately,
splitting an arbitrary input concept at conjunctions leads to incorrect approxi-
mations. A class for which this conjunct-wise approximation still produces the
correct result is the class of so-called nice concepts. Moreover, a characterization
of nice concepts is also an important prerequisite for another way of optimizing
computations of concept approximation, namely, non-naive use of caching. Say,
we want to approximate C u D, where C and D are complex ALCN -concept
descriptions. Now, if C uD is nice and we have cached the approximation of C,
we only need to compute the approximation of D and conjoin it with the cached
result, instead of computing the whole approximation from scratch.

2 Preliminaries

We assume that the reader is familiar with the basic notions of DLs, see [1]. Con-
cept descriptions are inductively defined based on a set of concept constructors
starting with a set NC of concept names and a set NR of role names. The DL
ALE provides the constructors conjunction, existential and value restrictions as
well as primitive negation, i.e., only concept names can be negated. ALC extends
ALE by full negation and disjunction. ALCN (ALEN) adds number restrictions
to ALC (ALE). For the syntax and model theoretic semantics of the mentioned
concept constructors, see [1]. In addition to the usual definition, we require that
TBoxes are unfoldable, i.e., their concept definitions are acyclic and unique. In
order to approximate ALCN -concept descriptions by ALEN -concept descriptions,
we need to compute the lcs in ALEN .

Definition 1 (lcs). Given ALEN -concept descriptions C1, . . . , Cn with n ≥ 2,
the ALEN -concept description C is the least common subsumer (lcs) of C1, . . . , Cn

iff (i) Ci v C for all 1 ≤ i ≤ n, and (ii) C is the least concept description with
this property, i.e., if C ′ satisfies Ci v C ′ for all 1 ≤ i ≤ n, then C v C ′.

As already mentioned, in ALCN the lcs trivially exists since lcs(C, D) ≡ C t
D. To obtain a more meaningful concept description, we first approximate the
ALCN -concept descriptions and then compute their lcs.

Definition 2 (approximation). Let L1 and L2 be two DLs, and let C be
an L1- and D be an L2-concept description. Then, D is called an L1 − L2-
approximation of C (written D = approxL2

(C)) iff (i) C v D, and (ii) D is
minimal with this property, i.e., C v D′ and D′ v D implies D′ ≡ D for all
L2-concept descriptions D′.

Intuitively, an approximation of an ALCN -concept description is an ALEN -concept
description that is more general than the input concept description but minimal
w.r.t. subsumption.

2.1 Computation Algorithm for ALCN -ALEN -approximations

We sketch the computation algorithm for ALCN -ALEN -approximations briefly—
for its exact definition refer to [2]. In case an approximation of an ALCN -concept
C that uses names defined in a TBox is to be computed, then these names
have to be first replaced by their definition. If C is equivalent to > (⊥), its
approximation is > (⊥), otherwise the concept description is normalized. First,
the concept description is transformed into negation normal form (NNF). Second,
the obtained concept description is transformed into ALCN -normal form (ALCN -
NF). In this step conjunctions are distributed over the disjunctions. In order to
describe the disjuncts obtained by the ALCN -NF, some notation is needed to
access the different parts of a concept description C.

– prim(C) denotes the set of all (negated) concept names and ⊥ occurring on
the top-level of C;

– valr(C) := C1 u · · · u Cn, if value restrictions of the form ∀r.C1, . . . , ∀r.Cn

exist on the top-level of C; otherwise, valr(C) := >;
– exr(C) := {C ′ | there exists ∃r.C ′ on the top-level of C};
– minr(C) := max{k | C v (≥ k r)} (Note that minr(C) is always finite.);
– maxr(C) := min{k | C v (≤ k r)}; if there exists no k with C v (≤ k r),

then maxr(C) := ∞.

Now, an ALCN -concept description C in ALCN -NF is of the form C = C1t . . .t
Cn with Ci :=

l

A∈prim(Ci)

A u
l

r∈NR

(

l

C′∈exr(Ci)

∃r.C ′ u∀r.valr(Ci)u(≥ minr(Ci) r)u(≤ maxr(Ci) r)
)

,

for all i = 1, . . . n, where the concept descriptions valr(Ci) and C ′ again are in
ALCN -normal form and Ci is removed from the disjunction in case Ci ≡ ⊥.

Next, implicit information captured in the concept description is made ex-
plicit. Due to space limitations, we can only give an intuition in which combina-
tions of concept constructors information is induced. For a thorough discussion
refer to [6] or [2]. In case of the number restrictions appearing in the concept
description (≥ minr(C) r) and (≤ maxr(C) r) already make induced information
explicit. At-least restrictions can be induced by incompatible existential restric-
tions, e.g., ∃r.A u ∃r.¬A induces (≥ 2 r). At-most restrictions can be induced
only by value restrictions equivalent to ∀r.⊥ implying (≤ 0 r). Vice versa, value
restrictions can be induced by (≤ 0 r). Furthermore, value restrictions can be
implied, if the minimal number of r-successors required by either at-least or
by incompatible existential restrictions coincide with maxr(C). For example in
(≤ 2 r)u (∃r.AuB)u (∃r.Au¬B) the value restriction ∀r.A is induced. Induced
value restrictions are denoted ind-valr(C).

Input: ALCN -concept description C. Output: ALCN −ALEN -approximation of C.

1. If C ≡ ⊥ then c-approxALEN (C) := ⊥ elseif C ≡ > then c-approxALEN (C) := >.

2. Otherwise, transform C into ALCN -normal form C1 t · · · t Cn and return

c-approxALEN (C) :=
uA∈

T

i
prim(Ci)A

u (≥ min{minr(Ci) | 1 ≤ i ≤ n} r) u (≤ max{maxr(Ci) | 1 ≤ i ≤ n} r)

u
d

(C′

1
,...,C′

n
)∈

ind-exr(C1)×···×ind-exr(Cn)

∃r.lcs{c-approxALEN (C′
i u valr(Ci)) | 1 ≤ i ≤ n}

u ∀r.lcs{c-approxALEN (ind-valr(Ci)) | 1 ≤ i ≤ n}

Fig. 1. The computation algorithm for ALCN -ALEN -approximation.

Induced existential restrictions are obtained if ||exr(C)|| > maxr(C). In this
case the existential restrictions have to be merged. More precisely, such a merging
must yield maxr(C) existential restrictions s.t. the set exr(C) is partitioned and
only consistent existential restrictions are obtained. Moreover, valr(C) has to be
propagated onto each existential restriction. The induced existential restrictions
are obtained by computing the commonalities of all ways of obtaining valid
mergings.

Figure 1 displays the computation algorithm for ALCN -ALEN -approximation.
In the computation of the approximation as well as in the computation of
ind-valr(C) and ind-exr(C) the lcs for ALEN is used, which was introduced in [6].

3 Nice concepts for Approximation

In general, the computation of an approximation cannot be split at the con-
junction because of possible interactions—in case of ALC-ALE-approximation
between existential and value restrictions on the one hand and inconsistencies in-
duced by negation on the other. For example, the approximation c-approxALE(∃r.>u
(∀r.A t ∃r.A)) yields ∃r.A while the conjunct-wise version c-approxALE(∃r.>) u
c-approxALE(∀r.A t ∃r.A) only produces ∃r.>. In [4] those concept descriptions
were called nice for which this strategy still produces the correct result.

Definition 3 (nice concepts). Let C := C1u· · ·uCn be a L1-concept descrip-
tion. C is nice if approxL2

(C) ≡ approxL2
(C1) u · · · u approxL2

(Cn).

For these concept descriptions interactions between conjuncts are excluded. Since
the use of nice concept descriptions is to speed-up approximation, it is impor-
tant that the conditions to distinguish these concept descriptions can be tested
easily. Therefore the test for nice concept descriptions should be based on sim-
ple discrimination conditions. To this end the conditions for nice ALC-concept
descriptions given in [4] are sound, but not complete:

1. The restrictions are limited to one type per role-depth: on every role depth
of a nice concept either no ∀-restrictions or no ∃-restrictions occur.

2. A concept name and its negation may not occur on the same role-depth of
a nice concept.

It is shown in [4] that for ALC-concept descriptions fulfilling these conditions
conjunct-wise approximation is correct. The above conditions are intuitive and
easy to test, but very strict. Consider the concept description (∃r.∃s.A t B) u
(∃t.∀s.¬A tC), which violates both conditions. However, we get the correct re-
sult, if the conjuncts are approximated independently, since the relevant concept
descriptions are nested in existential restrictions for different roles. In general, a
concept description can still be approximated conjunct-wise, if the “interacting”
concept descriptions are reachable via different role paths. Too strict conditions
to distinguish nice concept descriptions would rule out too many concept de-
scriptions that could actually be approximated conjunct-wise. In these cases
the “expensive” approximation must be applied. In order to be able to classify
more concept descriptions as nice, we devise relaxed conditions for nice concept
descriptions.

3.1 Nice ALCN -concept descriptions

The conditions for nice ALCN -concept descriptions have to take into account
the information induced by number restrictions in combination with other con-
cept constructors, i.e., the interactions we sketched in Section 2.1. For exam-
ple, consider the ALCN -concept description C = C1 u C2, where the conjuncts
are: C1 = (∃s.A) u (∃s.¬A) t ⊥ and C2 = (≤ 1 s) t B. Now, if we approx-
imate C conjunct-wise we obtain c-approxALEN (C1) = (∃s.A) u (∃s.¬A) and
c-approxALEN (C2) = >, yielding (∃s.A) u (∃s.¬A) u > as the combined re-
sult. Due to the incompatibilities between C1 and C2 for the information on
the role s, the disjunction in C2 collapses to B. The approximation yields
c-approxALEN (C) = (∃s.A) u (∃s.¬A) u B, which is more specific than the
conjunct-wise approximation.

To devise syntactic conditions to detect nice ALCN -concept descriptions, we
introduce notation to access the numbers in number restrictions. For an ALCN -
concept description C and a role r let at-leastr(C) (at-mostr(C)) denote the
maximal (minimal) number appearing in at-least (at-most) restrictions on the
top-level of C or, if the top-level of C has no at-least restriction, 0 (at-most
restriction, ∞.) Next, we specify the notion of sub-concept descriptions accessible
by a role path, that will be used in the conditions for nice concept descriptions.

Definition 4. Let a Qr-path (denoted ρ) be defined as ρ = (Q r)∗ for Q ∈ {∃, ∀}
and r ∈ NR and let λ denote the empty Qr-path. Let C be an ALCN -concept
description and ρ be a Qr-path, then sub(C, ρ) :=

– prim(C) u
d

s∈NR
(≤ at-mosts(C) s) u (≥ at-leasts(C) s), if ρ = λ,

– sub(valr(C), ρ′), if ρ = ∀ r · ρ′ and valr(C) 6≡ >,

–
⋃

C′∈exr(C) sub(C ′, ρ′), if ρ = ∃ r · ρ′,

– ∅, otherwise.

Based on role-paths we can give necessary conditions for nice ALCN -concept
descriptions, which additionally relax the necessary conditions given in [4] for
nice ALC-concept descriptions.

Definition 5 (necessary conditions for nice ALCN -concept descriptions).
Let C be an ALCN -concept description in NNF. Then C is nice, if for every Qr-
path ρ with C1, C2 ∈ sub(C, ρ) and C ′

1, C
′
2 denoting C1, C2 in ALCN -NF and all

r ∈ NR it holds

1. ||{∃ | at-leastr(Ci) 6= 0, i ∈ {1, 2}} ∪ {∃ | exr(C1) ∪ exr(C2) 6= ∅}|| +
||{∀ | at-mostr(Ci) 6= ∞, i ∈ {1, 2}} ∪ {∀ |

d
i∈{1,2} valr(Ci) 6≡ >}|| ≤ 1, and

2. prim(C1) ∪ prim(C2) does not contain a concept name and its negation.

The Condition 1 rules out three constellations for sub-concept description acces-
sible via the same Qr-path: (1) concept descriptions that induce role successors
(either by existential or by at-least restrictions) and that have a possibly induced
value restriction and (2) concept descriptions with contradicting number restric-
tions and (3) concept descriptions that require merging of existential restric-
tions. Condition 2 rules out concept descriptions that have a concept name and
its negation accessible via the same Qr-path. To show that concept descriptions
fulfilling the conditions from Definition 5 can be approximated conjunct-wise,
we adapt the proof from [4] in [7]. The following lemma is central in the proof
of the correctness of the characterization of nice concepts.

Lemma 1. For 1 ≤ i ≤ 2, let Ci and Di be ALEN -concept descriptions such that
C1 uC2 uD1 uD2 is a nice concept description. Then it holds that lcs{Ci uDj |
i, j ∈ {1, 2}} ≡ lcs{C1, C2} u lcs{D1, D2}.

The following theorem states our claim that approximations of ALCN -concept
descriptions fulfilling the conditions from Definition 5, can be obtained by a
conjunction of approximations of the conjuncts from the original concept.

Theorem 1. Let C u D be a nice ALCN -concept description, then
c-approxALEN (C u D) ≡ c-approxALEN (C) u c-approxALEN (D).

The claim is proved by induction over the sum of the nesting depths of u and
t on every role level in C and D. For the induction step a case distinction
is made depending on whether C or D are conjunctions or disjunctions. If at
least one concept description is a disjunction the approximation is defined as the
lcs of all ALCN -normalized and approximated disjuncts (if one of the concept
descriptions is a conjunction, it firstly has to be distributed over the disjunction).
The main idea then is to use Lemma 1 to transform single lcs calls of a certain
form into a conjunction of lcs calls which eventually leads to the conjunction of
the approximations of C and D. The full proof can be found in [7].

Now, the actual ALCN -ALEN -approximation algorithm can be adapted by
first testing whether a concept description is nice and then performing conjunct-
wise approximation for each conjunct and conjoin the results. The algorithm
performs the nice test at the beginning of every recursive call, unless the current
(sub-)concept description is already known to be nice.

4 Implementation

The implementation of approximation for nice ALCN -concept descriptions re-
quires little changes in the implementation of the approximation algorithm. The
major part to implement is the tester for nice concept descriptions nice-p .
Since this test has to be performed at the beginning of every approximation
computation, the implementation must be very efficient.

The procedure nice-p in our implementation realizes the necessary condi-
tions for nice ALCN -concept descriptions from Definition 5. Our implementation
of the nice test employs a couple of optimizations. Firstly, some steps are only
taken on demand, such as unfolding and the transformation into NNF. Fur-
thermore, nice-p stores information of a certain named concept, say C, in a
so-called info-table, where the key of this info-table is a path ρ and the value is
the sub(C,ρ). This enhances the checking of the conditions from Definition 5 “on-
the-fly”. Suppose that while unfolding and transforming concept C, we encounter
the concept name A inspecting Qr-path ρ. Then, we update the info-table of C

by adding the concept name A to the value of the key ρ. Before we add A, we
first check whether adding A violates Condition 2 in Definition 5. A similar pro-
cedure is carried out, if we encounter number, value and existential restrictions
during the unfolding and transformation. Furthermore, our implementation does
not only use dynamic programming to re-use results obtained during the current
computation on whether a concept is already known to be nice or not, but caches
these results. Based on this cache the already obtained information on whether
a named concept is nice or not is re-used in subsequent runs of nice-p .

We extended the implementation of ALCN -ALEN -approximation from our
non-standard inference system Sonic [8] to the use of nice ALCN -concepts in a
naive way. This way the full potential of the conjunct-wise application of con-
cepts is not yet used. One can in addition implement a caching strategy based
on nice concepts in the following way: if we want to approximate a conjunction
that is nice and we have computed the approximation of some of its conjuncts
already, we only need to conjoin the cached values with the freshly computed ap-
proximations of the remaining conjuncts. The implementation of this technique
is future work.

5 First tests

Although our implementation is not yet mature, we can already report on some
experiences. Most importantly, it was unknown whether nice concepts do appear
in TBoxes from real-world applications and if, how frequently. We tested our
implementation of nice-p on the DICE TBox, which is a medical knowledge base
from the intensive care domain, see [5]. The DICE TBox contains about 3500
concepts, of which 3249 have a (primitive) definition, and DICE is an unfoldable
TBox. Originally, this TBox uses ALCQ (and disjointness statements), we used
a variant of it pruned down to ALCN for our tests. It turned out that this
knowledge base has 493 nice concepts satisfying the necessary conditions from

Definition 5. These are concepts not only with a nice sub-concept description,
but which are nice “completely”. So a first result of our test is that nice ALCN
concepts do appear in knowledge bases from practical applications. In case of
the DICE knowledge base about 14.3% of all named concepts with a definition
are nice. This might not seem very much at first, but indicates that for many
concepts significant parts of the unfolded concept descriptions are nice and can be
approximated independently. The run-time we measured for each call of nice-p
when testing all concepts in DICE, was 0.91s on the average. This run-time
includes the time needed for unfolding and transforming the concept into NNF—
steps that the approximation algorithm requires anyway.

We tested our implementation of conjunct-wise ALCN -ALEN -approximation
on those 463 concepts from the DICE knowledge base that are nice. It turned out
that the implementation of the ordinary approximation algorithm needed 1.89s
per concept on the average, while the nice approximation needed 1.44s. This is a
speed-up of about 24%. Taking into account that the time for nice approximation
included the time for the nice-p test, one can say that it performed reasonably
well.

In this paper we have extended necessary conditions for nice concepts to ALCN -
concepts. The notion of nice concepts is the basis for the two optimization tech-
niques for concept approximation: non-naive caching and conjunct-wise approx-
imation. A first test of our implementation of nice concepts showed that these
kind of concepts do appear in knowledge bases from practical application and
that conjunct-wise approximation results in a substantial performance gain.

References

1. F. Baader and W. Nutt. The Description Logic Handbook: Theory, Implementation,
and Applications, chapter Basic Description Logics. Cambr. Univ. Press, 2003.

2. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximating ALCN -concept descrip-
tions. In Proc. of the 2002 Description Logic Workshop (DL 2002), 2002.

3. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In Proc. of the 8th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-02). Morgan Kaufm. Publ., 2002.

4. S. Brandt and A.-Y. Turhan. An approach for optimized approximation. In
Proc. of the 2002 Applications of Description Logic Workshop (ADL 2002), 2002.
LTCS-Report 02-03 is an extended version, see http://lat.inf.tu-dresden.de/

research/reports.html.
5. R. Cornet and A. Abu-Hanna. Using description logics for managing medical termi-

nologies. In A. I. in Medicine: 9th Conference on Artificial Intelligence in Medicine
in Europe (AIME 2003). Springer, 2003.

6. R. Küsters and R. Molitor. Computing Least Common Subsumers in ALEN . In
B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-
01). Morgan Kaufman, 2001.

7. A.-Y. Turhan. On the computation of common subsumers. PhD thesis, TU Dresden,
Institute for Theoretical Computer Science, 2007. forthcoming.

8. A.-Y. Turhan and C. Kissig. Sonic — Non-standard inferences go OilEd. In Proc.
of the Int. Joint Conf. on Automated Reasoning (IJCAR-04). Springer, 2004.

