Using Off-the-Shelf Reasoners for
Reasoning over Distributed ABoxes

Florian Fuchs and Michael Berger

Siemens AG, Corporate Technology, Intelligent Autonomous Systems
Otto-Hahn-Ring 6, 81739 Munich, Germany
{florian.fuchs.ext|m.berger}@siemens.com

1 Introduction

In the recent past, there has been a growing interest in reasoning over large
ABoxes. As an example, consider a large-scale infrastructure monitoring system,
where types of monitored events are modelled as concepts in the TBox and actual
observations are represented as individuals with corresponding assertions in the
ABox. ABox reasoning (such as instance retrieval and instance check) is used
for analyzing the acquired monitoring data.

In many scenarios, the ABox data is produced distributedly, e.g. by the sensor
system which acquired the observation. Today’s established reasoners (RacerPro,
Pellet, Fact++, KAON2) require the complete ABox to be available locally for
query answering. However, centralizing the ABox is frequently not an option:
Data is owned by different organizations, who do not want it to be replicated
outside of their control. Data volumes may be too large to be handled by a
single reasoner and induce high network traffic. High data rates prevent effective
caching.

Existing approaches to reasoning over distributed ABoxes [1] cannot directly
be adopted as they assume several semantically-mapped TBoxes. As they pro-
pose to extend the underlying reasoning algorithm, they require to modify an
existing reasoning implementation, which is only possible for open source imple-
mentations and requires in-depth knowledge about implementation details.

This work therefore investigates an alternative approach, where reasoner in-
stances are considered black boxes and process a query using subqueries to other
relevant reasoner instances. We assume a set of reasoner instances {R;} with a
common TBox 7 and a distributed ABox A = |J; A;, where A; is the ABox
subset available at R;. The goal is to answer (grounded) conjunctive queries
Q=qA...Ng, (with ¢; (named) concept or role query terms), i.e. to determine
all (named) variable bindings for which (7, A) = Q.

Each reasoner instance consists of a query processing component and a reason-
ing component with a local knowledge base. The query processing component
processes the incoming query, generates subqueries to other relevant reasoner
instances and adds their answers to the local knowledge base. Then the local
reasoning component simply answers the original query w.r.t. the updated local
knowledge base and returns the result. Off-the-shelf reasoners can be reused as a



reasoning component. The query processing component is separate and supports
different query answering strategies. Apart from conjunctive queries, the query
language allows retrieval of explicit ABox assertions. This setup provides a flex-
ible framework for query answering over distributed ABoxes. We design query
answering strategies for different combinations of DL expressivity and types of
ABox distribution and investigate their properties such as answer completeness.

A naive strategy downloads all ABoxes A; to the local knowledge base us-
ing subqueries that retrieve all assertions. The reasoning component checks the
consistency of | J; A; and answers ). This strategy delivers complete answers for
arbitrary ABox distributions and the DL supported by the reasoning component.

A second strategy can be used for partitioned ABoxes, i.e. Hq, NH4,; = () for
all 4,j,7 # j where H 4, is the set of individuals that occur in assertions in A;.
In this case, A is consistent iff A; is consistent for every i. A variable binding
satisfies a conjunct g w.r.t. (7, A) iff there are i, k so that the binding satisfies
qr w.r.t. (T, A;) (see also [2]). So the query @ is answered by retrieving satisfying
variable bindings for each conjunct g from each R; (this can be optimized by
using appropriate index structures). The resulting bindings are then consolidated
w.r.t. the original conjunctive query. This strategy delivers complete answers also
for expressive DLs such as SHZ Q.

A third strategy allows shared individuals among ABox subsets (Ngpared =
Uiyj’i# H 4, N Hy,), but imposes the following restrictions: For all a € Nspared
only concept assertions Cypareq(a) and role assertions R(a,b), R(b,a) with R C
Rshared, b arbitrary, are allowed. Cspgreq is disjoint from all other named con-
cepts, R C Rgpareq does not occur in any concept definition and role axiom
except role hierarchy. These restrictions still allow to express the underlying
graph structure of a monitored infrastructure, for example. Moreover, consis-
tency checks and query conjuncts can be answered locally, which allows to pro-
cess conjunctive queries as described for the previous strategy. Answers are com-
plete for expressive DLs such as SHZ Q.

We have implemented this framework and use it as a testbed for experiments
with different query answering strategies: Reasoner instances use an extended
SPARQL query engine as query processing component and Pellet as reason-
ing component. They communicate using SPARQL and the SPARQL protocol.
Future work includes developing new strategies with less restrictions on ABox
distribution. We investigate the spectrum between the two extremes of (i) down-
loading all ABox assertions (naive strategy) for gaining complete answers and
(ii) downloading only ABox assertions about selected individuals for gaining a
certain guaranteed degree of completeness.

References

[1] Serafini, L., Tamilin, A.: Distributed Instance Retrieval in Heterogeneous Ontolo-
gies. In: Proc. of Workshop Semantic Web Applications and Perspectives, 2005.

[2] Pothipruk, P., Governatori, G.: A Formal Ontology Reasoning with Individual Opti-
mization: A Realization of the Semantic Web. In: Proc. of Conf. on Web Information
Systems Engineering, 2005.



