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Abstract
Recently, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude
of domains. However, accessing this information has been significantly challenging for lay users. Approaches
to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in
increasing information access. These approaches are often based on handcrafted and/or statistical models
derived from data observation. Recently, Deep Learning architectures based on Neural Networks called
seq2seq have shown to achieve the state-of-the-art results at translating sequences into sequences. In this
direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural
language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on
selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question
Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform
graph pattern composition.

Notes: Accepted at SEMANTiCS 2017 Posters & Demos. The first two authors contributed equally.
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Nowadays, the Web has been growing notably and producing an enormous amount of information every day.
Meanwhile, the Linked Data Cloud has been structuring these billions of facts from the Web. However, this
enormous volume of data complicates the access of a given desired information. Thus, becoming a hard task
for lay users that are not familiar with formal query languages such as SPARQL to search their interests. To
this end, Question Answering (QA) systems provide users with friendly interfaces that hide the complexity of
creating such queries. These interfaces enable the users to perform questions using their natural language.
Although the QA systems have shown great solutions for dealing with this huge amount of statements, QA
still lacks good solutions for handling vocabulary mismatch and problems on graph patterns [3] . Vocabulary
mismatch occurs when the user types different terms of the ones contained in a Knowledge Base (KB) for
querying a given information. Several works tried to alleviate this problem, such as [10] [2] [7] .

Recent advances in Deep Learning applied to Natural Language Processing tasks have shown a promising
possibility of parsing, understanding, and translating language sentences. In addition, with the growth of
embeddings-based techniques, the Machine Translation (MT) community brought back the application of
Neural Networks (NN) within MT systems. The first Neural Machine Translation (NMT) approach was
proposed by Kalchbrenner and Blunsom [5] . This approach implemented Deep Neural Networks to build
end-to-end encoder–decoder models using embeddings, i.e. vector spaces, within the language models.
NMT recently overcame the Phrased-based Machine Translation approach on the BLEU [9] score, thus rising
the interest on NN applied to translation problems [13] . In NMT, pairs of sequences are given as input to a
NN model, which is left to learn the translation model. Based on this formal description, we have an insight to
translate from Natural Language (NL) to SPARQL by using NMT models in order to address the
aforementioned QA gaps. Therefore, we propose Neural SPARQL Machine, an end-to-end learning model to
translate any NL expression into a sequence of tokens which can reconstruct a SPARQL grammar. Our
preliminary results show that Neural SPARQL Machines can perform compositions of new graph patterns
which never occurred in the training set. In addition, when evaluated on BLEU, our Neural SPARQL Machine
achieved an accuracy of 0.8.

2. Related work
QA approaches commonly convert NL questions into formal SPARQL queries in order to retrieve the answer
from a triple store [12] [11] [2] . Approaches are designed to answer only facts, fact-based QA [7] , multiple
facts Basic Graph Patterns [11] [15] or more complex queries [12] [2] . Most commonly, QA systems are based
on a conjunction of previously-made rules derived from data analyses and observation [11] [15] [2] or learned
based on positive and negative samples [12] [7] [14] . Therefore, the strategy used to generate the SPARQL
graph patterns and consequently the SPARQL query varies significantly.

TBSL [12] is a template-based QA system that relies on SPARQL query templates to generate queries with
structures that resemble the semantic structure of the original query. The template is detected based on
learned positive and negative examples. The predicate and entity detection are performed by applying a TF-
IDF function implemented in the Lucene Apache Framework .

SINA [11] is a QA system that explores the knowledge base to formulate the SPARQL query by applying
Jaccard similarity to evaluates possible resource matching candidates and Hidden Markov Models to choose
the right answer among them. In this conversion, queries are identified (query-type) based on pre-defined
syntactic rules and resources are linked using DBpedia Spotlight [4] . Recently, [7] proposed a fact retrieval
approach based on a Recurrent Neural Network (RNN) encoding subject labels at character level and
predicates and datatype values at both character and word levels.

3. Neural SPARQL Machine
We then propose a new paradigm for answering NL questions. Instead of using statistical and handcraft
models, we shift the complete task of SPARQL query generation to Neural Simbolic Machines (NSM) which
are a specific class of seq2seq models. NSMs aim at translating NL to a sequence of tokens defining a
program by using a key-variable memory and reinforcement learning with weak supervision [6] . However, our
approach for QA differs slightly from the one proposed by [6] , as the authors 1) train a NN on query templates
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to avoid over-fitting and 2) use reinforcement learning to optimize the task reward of the problem. We instead
use an end-to-end approach that translates an entire NL expression into a final query (see an example in
Figure 1 ).

where is in <EOL>...

...

select var_a br_close <EOL>...<START>

...

Figure 1. LSTM architecture for sequence-to-sequence learning of a machine translator from natural
language to SPARQL. The left side is the encoder , whereas the right side shows the decoder . The question

"Where is Hill 60 located in?" is translated into the sequence of tokens: select var_a where br_open

dbr_Hill_60_(Ypres) dbo_location var_a br_close .

3.1. Architecture
The architecture of our Neural SPARQL Machine relies on three main components: a generator , a learner ,
and an interpreter . The generator takes query templates as input and creates the training dataset which will
be forwarded to the learner. A query template is an alignment between a natural language query and its
respective SPARQL query, with entities replaced by placeholders. The learner takes natural language as
input and generates a sequence which encodes a SPARQL query. The final structure is then reconstructed
by the interpreter.

GENERATOR

LEARNER INTERPRETER

Query 
Templates

RDF 
Data

seq2seq Model SPARQL
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Figure 2. Architecture of a Neural SPARQL Machine at training phase (left) and prediction phase (right).

An overview of the architecture can be seen in Figure 2 , where we highlighted the differences between the
training and the prediction phases of the machine-learning workflow. Below are a few examples of query



templates:

where is <A> located in?
  ->  select ?a where { <A> dbo:location ?a }
what are the <A> northernmost <B>?
  ->  select ?a where { ?a rdf:type <B> . ?a geo:lat ?b }
      order by desc(?b) limit <A>   
was <A> finished before <B>?
  ->  ask where { <A> dbp:complete ?a . FILTER(?a <= <B>) }

3.2. SPARQL Modeling
We focus on learning a model which is suited for a specific KB and therefore we do not expect to reuse a
learned model for QA on other KBs. The rationale behind this viewpoint complies the concept of the Semantic
Web, which allows users to define their own classes, instances, and properties without a need of a global
design. For instance, a model trained on DBpedia may learn that "is located in" translates to dbo:country .
However, property dbo:country might not have any sense in another dataset, where another property is used
instead. For example, the property http://schema.org/Country used in the Schema.org ontology.

Each of the SPARQL operators (e.g., SELECT , FILTER , or ORDER BY ) in a query is encoded using a
certain number of tokens. We decided to encode brackets, wildcards, and dots, since they are also used
inside the query. URIs are shortened using prefixes and column characters replaced with underscores to
keep each URI as a single token.

3.3. The Learner
Our learner features a seq2seq model with Long Short-Term Memory (LSTM). The seq2seq model takes a
sequence of word embeddings X = { x 1 , x 2 , ... , x M } as input and outputs a translated sequence Y = { y 1 ,
y 2 , ... , y N } . Aim of the model is to maximize the generation probability of Y conditioned on X , i.e. p ( y 1 , ...
, y N | x 1 , ... , x M ) . As seen in Figure 1 , the model is composed by a encoder and a decoder. Using a RNN,
an encoder q reads the input words into a vector:

c = q ( h 1 , ... , h T ) . (1)

The hidden states at a time t of the NN are computed as follows:

h t = f ( x t , h t - 1 ) (2)

where f is a non-linear transformation performed by a LSTM using sigmoid function. The same workflow
applies specularly for the decoder, after which the output sequence Y is outputted.

The plain version of our learner learns word embeddings from the input corpus. However, as previously
proposed in [6] , word embeddings can also be imported from a pre-trained corpus of Word2Vec [8] vectors to
help tackling known QA problems such as vocabulary mismatch.

4. Preliminary results
4.1. Data generation
We use DBpedia as a use-case for our preliminary test, considering the extension of one class as working
domain, i.e. dbo:Monument . The class extension contains 35,095 triples and 625 instances. To generate the
training data, we manually annotated 38 query templates involving one or two entities per query. For each of
these templates, we fetched from DBpedia a given number of examples that satisfied the corresponding
SPARQL graph patterns. For instance, for question "where is <A> located in?" , we fetched only instances



having a dbo:location property. These instances were randomly extracted and added to the working dataset.
We split the working dataset into three parts: training, validation, and test dataset. We fixed the size of the
validation and test sets to 100 examples.

4.2. Experiments
We carried out an evaluation of the BLEU accuracy [9] for the NMT model. BLEU uses a modified precision
metric for comparing the MT output with the reference translation, in our case, SPARQL queries. As Table 1
shows, the first setting expects to have an average of 13.35 examples per instance, meaning that the model
has — on average — around 13-14 times to learn that certain labels translate into a certain URI.

Dataset Examples per template Training size Average examples per instance

dbo:Monument 300 8,344 13.35

dbo:Monument 600 14,588 23.34

Table 1. Information about the experiments carried out on the datasets.

The experiments were carried out on a 64-core CPU-only Ubuntu machine with 512 GB RAM. We adopted
the implementation of seq2seq in TensorFlow [1] with embeddings of 128 dimensions, 2 hidden layers, and a
dropout value of 0.2. We tested our NMT model at three different times, i.e. at the 12,000th, 36,000th, and
120,000th iteration.

Dataset Examples per template BLEU 12k epochs BLEU 36k epochs BLEU 120k epochs

dbo:Monument 300 0.753 (0:18:24) 0.767 (0:55:28) 0.765 (3:05:43)

dbo:Monument 600 0.801 (0:19:10) 0.803 (0:58:09) 0.803 (3:11:44)

Table 2. BLEU accuracy after a given training time (expressed as H:MM:SS) for different number of examples
per query template.

The complete evaluation results are shown in Table 2 . One of the main drawbacks of deep-learning
architectures is the computational complexity and training time. As can be seen, the number of examples per
template does not seem to affect the training time as much as the number of iterations. However, the BLEU
accuracy achieved with n=600 saw an increase of +5% , which can lead to think that more examples might
further improve the translation. As Figure 3 shows, this value stabilizes after 10,000 epochs, which
correspond to ~16 minutes of runtime. Minimizing the number of examples per instance, we estimate to learn
a model on a large dataset as DBpedia in less than 20 days; GPU architectures can bring this value down to
5 days. Since the BLEU accuracy gives only an estimation of how the alignments are performed between the
languages, we plan to use standard measures such as F-score to evaluate the final prediction of SPARQL
queries.
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Figure 3. BLEU accuracy on the test set for the translations on dataset dbo:Monument with 600 examples per
query template.

To test compositionality, we inputted complex questions to our Neural SPARQL Machine. An example is
"where are the 3 northernmost monuments located in?" . Although the model never saw such a question
before, it was able to output a sequence which includes the features of two learned templates: select var_a

where br_open var_a rdf_type dbo_Monument sep_dot var_a geo_lat var_b sep_dot var_a dbo_location var_b br_close

order_by desc var_b limit 3 . Still, the interpreter will need to replace variables var_a or var_b with a new
variable var_c to fetch the desired information. This is an open challenge for our model.

5. Conclusion and future work
In this work, we presented a neural approach for the translation of NL questions in SPARQL queries using a
NN model. Preliminary results show an average BLEU accuracy of ~0.8 when trained on QA template model
pairs, even when answering such questions requires the formulation of more complex queries. The current
model is vocabulary-dependent and needs to be trained on samples derived from manually-created QA
template pairs. We plan to address current limitations by investigating how to generate domain-independent
templates and minimize the burden on the end user.
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Footnotes
http://www.w3.org/TR/rdf-sparql-query/ 

For a definition of graph patterns, please visit https://www.w3.org/TR/rdf-sparql-query/ . 

https://lucene.apache.org 

Source code and datasets available at http://w3id.org/neural-sparql-machines/code/ . 
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