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Abstract. With the growing adoption of IoT and sensor technologies, an
enormous amount of data is being produced at a very rapid pace and in
different application domains. This sensor data consists mostly of live data
streams containing sensor observations, generated in a distributed fashion
by multiple heterogeneous infrastructures with minimal or no
interoperability. RDF streams emerged as a model to represent data
streams, and RDF Stream Processing (RSP) refers to a set of technologies
to process such data. RSP research has produced several successful results
and scientific output, but it can be evidenced that in most of the cases the
Web dimension is marginal or missing. It also noticeable the lack of proper
infrastructures to enable the exchange of RDF streams over heterogeneous
and different types of RSP systems, whose features may vary from data
generation to querying, and from reasoning to visualisation. This article
defines a set of requirements related to the creation of a web of RDF
stream processors. These requirements are then used to analyse the
current state of the art, and to build a novel proposal, WeSP, which
addresses these concerns.

Keywords: RDF stream e RDF stream processing e Interoperability e
Stream processing

1 Introduction

The Web of Data (WoD) vision considers the Web as a distributed database: a
vast—endless—amount of datasets to be accessed and queried. The Linking
Open Data (LOD) cloud is one of the most successful examples of such a
vision: more than a thousand of datasets, owned and managed by different
organisations, exposing interconnected data to be freely accessed. The data
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can be accessed in different ways, and the two most popular solutions are
through dereferentiation and SPARQL. In the latter case, SPARQL is both a
query language for the RDF data exposed in the LOD [14], and a protocol to
exchange such data on the Web [11].

Since the late 2000s, we have observed a trend that substantially increased
the velocity aspect of part of this data. The Internet of Things (IoT) well
exemplifies this: sensors create streams, defined as continuous sequences of
data generated at very high frequencies, where its value is usually strictly
associated to recency, i.e. the quicker the data is processed, the more valuable
it is. It is therefore natural to ask if the existent WoD-related technologies are
good enough to cope with such data. Looking at the research in the database
area, it is possible to observe that the typical database approaches show
several limitations while coping with data streams. Stonebraker et al. [22]
explain which are the requirements for processing streams, and highlight the
limitations of DBMS approaches, e.g. their passive processing model works
poorly with data characterised by extreme velocity; SQL does not support
operators to cope with streams; and it is challenging to predict the behaviour
of such systems while coping with streaming data. It is easy to observe that
these limitations also affect SPARQL and existent WoD solutions.

As a possible solution, Stream Processing Engines (SPEs) emerged in the
area of data management research to cope with streaming data. They
introduce new paradigms and processing models that fit better the
requirements and scenarios involving data streams. As a result, new languages
have been designed and developed, such as CQL [2], EPL and StreamSQL,
with engines and systems designed with the specific task of processing
streams.

In the Web of Data, these novel paradigms inspired RDF Stream Processing
(RSP): it builds on top of SPEs to mitigate the data heterogeneity issues by
exploiting Semantic Web technologies. As the name suggests, such systems are
designed to process data streams modelled through RDF, and they offer a
wide set of operators, from typical SPE operations (e.g. filters, aggregations,
event pattern matching) to reasoning features.

Table 1. Comparison between data management and web of data paradigms

DB SPE WoD WoDS
Processing SQL StreamSQL (et al.)  SPARQL RSP-QL (et al.)
Data exchange - - HTTP, SPARQL 7

RSP fills an important gap between the current Web of Data and a Web of
Data Streams (WoDS): it introduces models and languages to process streams
on the Web, most of them captured by reference models as RSEP-QL [10] and
LARS [7]. However, an important element is still missing, and it is a technical
infrastructure to manage decentralized data exchange among RSP engines. As
depicted in Table 1, data can be exchanged through HTTP (following the
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linked data principles) or via the SPARQL protocol. These solutions perfectly
suit the cases where engines follow passive processing models, i.e. they pull the
data when needed, but not when engines adopt active processing models.

This study addresses the following research question: what is a suitable data
exchange infrastructure to perform stream processing on the Web? In other
words, this study intends to provide the bulding blocks of an infrastructure
that enables the scenario depicted in Figure 1: a network of RSP engines,
distributed on the Web, able to exchange and process RDF streams among
them.
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Fig. 1. The vision of WeSP: a network of RSP engines distributed on the
Web, able to exchange RDF streaming data among them.

The solution should take into account the nature of the streams and the
engines, as well as the technical characteristics of data exchange on the Web.
It should indeed consider that existing RSP engines are heterogeneous in
terms of operators and APIs to control them, as well as the nature of the
Web, that is distributed and relies on existing technologies and standards. We
envision a scenario as the one depicted in Figure 1: interconnected RSPs that
perform several tasks such as querying to reasoning, exchanging the results
and producing sophisticated analyses.

In the following, we present WeSP, a framework to build complex networks
of RSP engines on the Web. WeSP defines a communication protocol to
initialize the connection between two RSP engines and to manage the data
exchange. This is implemented through two interfaces for the elements that
produce and consume streams, and a vocabulary to annotate the streams. The
design and implementation of WeSP takes into account existing previous
results such as the W3C RSP Community Group (RSP-CG) reports, existing
RSP engines, protocol and standards. We empirically show the feasibility of
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the WeSP approach for the construction of a Web of Data Streams, by
proposing an implementation of its components with exiting RSP publishers
and engines.

The remainder of the article is structured as follows. We identify a set of
requirements for communication of Web stream processors in Section 2.
Section 3 presents WeSP, describing its components and presenting an existing
implementation in Section 4. In Section 5, we review the state of the art and
we discuss the solutions available so far, before concluding with remarks and
future directions in Section 6.

2 Requirements

To design an infrastructure to exchange RDF streams on the Web, we first
define a set of requirements. Three of them are extensions of Stonebraker et
al.'s rules for building stream processing engines [22|, while others are elicited
from real-world use cases.

R1: Keep the data moving. The first rule of [22] states that a SPE "should
use an active (i.e., non-polling) processing model". Looking at the WoD, we
can notice that most of the interactions follow a polling paradigm and are
stateless. This is a direct consequence of the client-server paradigm at the
basis of HTTP and the Web: servers supplying resources to client on demand.
In this sense, the traditional WoD is not the most suitable environment to
perform stream processing. Therefore, as first requirement, WeSP must
prioritize active paradigms for data stream exchange, where the data supplier
can push the stream content to the actors interested in it.

R2: Stored and streamed data. The fifth rule of [22] is about the
"capability to efficiently store, access and modify state information, and
combine it with live streaming data". We need to revisit this rule from a WoD
point of view, in particular about the notion of stored data. In this context,
this data is represented by any dataset that is exposed to the Web through
SPARQL endpoints or through Linked Data technologies. Our second
requirement states that WeSP must enable the combination of streaming and
stored data. In this case combination has a broad meaning, and may refer to
several operations, such as stream enrichment, stream storage or fact
derivation.

R3: High availability, distribution and scalability. The sixth rule of [22]
proposes to "ensure that the applications are up and available, and the
integrity of the data maintained at all times, despite failures", while the
seventh states that SPE "must be able to distribute its processing across
multiple processors and machines to achieve incremental scalability. Ideally,
the distribution should be automatic and transparent". Even if such rules are
mainly related to the stream processing engine architectures, we can infer
useful indications for the design of WeSP. Our third requirement is that WeSP
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must enable the possibility to build reliable, distributed and scalable streaming
applications.

R4: Operations on the stream content. Every use case has special
requirements on the way the streaming data should processed. Querying is an
option when the goal is to aggregate, filter and look for relevant patterns of
events. However, other alternatives are possible, such as deductive, inductive
and other types of reasoning; stream generation and visualization. WeSP must
guarantee a wide range of operations over the streams. Such a requirement is
important, in particular on the Web perspective, where data may be accessed
and used in unexpected ways by third-parties.

R5: Accessible information about the stream. While the nature of the
stream content is highly dynamic and volatile, the stream itself is a resource
that can be described. Such descriptions are needed in a number of cases. For
example, statistics about the frequency and the size of the stream content may
be used to enable query optimization in the RSP engines; information about
the generation of the stream may be used to enable provenance-related
reasoning; description of the features of the streams may be collected in
registries to achieve search and discovery. Our fifth requirement states that
WeSP must support the publication of stream descriptions.

R6: Stream variety support. The decentralised and bottom-up nature of
the Web makes it hard—if not impossible—to define the model and
serialization format for streams. Looking at the use cases in the RSP-CG wiki,
it is easy to observe that: streams can have different velocity (e.g. one new
item every minute vs every millisecond); time annotations can be composed by
zero, one, two or more time instants, item schemata can be simple (e.g.
numbers) or complex (e.g., graphs or tables). To preserve the heterogeneity
that characterizes the Web, WeSP should support the exchange of a wide
variety of streams.

R7: Reuse of technologies and standards. A common problem when
building new frameworks and infrastructures is to find a good trade-off among
what is new and what exists. On the one hand, creating everything from
scratch is an opportunity to create a solution that perfectly fits the
requirements, but on the other hand adopting existing specifications (i.e.
standards and protocols) allows reusing existing tools and methods. This is
particular true on the Web, where guaranteeing compatibility is mandatory in
order to enable interoperability. Our last requirements states that the design
of WeSP should exploit as much as possible existing protocols and standards.

3 A framework to exchange RDF streams on the Web



In this section we present our proposal to build an infrastructure to exchange
RDF streams on the Web, WeSP. The design follows the requirements
presented above, and it is composed by a data model for RDF streams, an
API and a protocol to exchange the streams, and a model to describe the
stream objects.

3.1 RDF stream: model and serialization

Following the requirements and the type of scenarios that we address in this
study, it is needed to represent heterogeneous data streams, which can be
shared by different processing engines, and whose data can be not only
retrievable but interpretable and distributable among these engines. The RDF
model lends itself as a natural candidate for representing different types of
data, thanks to its flexibility in data modeling, and the usage of well
established standards, designed for the Web. However, in order to be used in a
streaming scenario, the RDF model may need extensions, as shown in previous
studies such as [16, 5].

We can distinguish two kinds of data in the requirements, first the
streaming data, which are by nature highly dynamic and labeled with time
annotations. Second, the contextual or background data, which changes less
often, provides information that enriches the streaming data (e.g. locations,
profiles, producer data, system descriptions). For the latter, RDF graphs can
be used as an underlying data model, while streams can be captured using an
extended RDF stream data model.

To fulfil these goals, we adopt the notion of time-annotated RDF graphs as
elements of RDF streams, following the abstract data model proposed by the
W3C RSP Community Group.

The proposal introduces a notion of RDF stream as a sequence of time-
annotated named graphs (timestamped graph). Each graph can have different
time annotations, identified through timestamp predicates.

As an example, we can consider the case where each graph has a time
annotation. We define a timeline T as an infinite, ordered sequence of time
entities (t1,ts,...), where t;€ TimeEntities and for all ¢>0, it holds that ¢;
happened before t;;;. When the time entities are restricted to instants,
t; 1 — t; is a constant, i.e. the time unit of T. An RDF stream is a sequence of
pairs (G,t), where G is an RDF graph and ¢ € T is a time entity:

S = (G1,t1), (G, t2), (Gs,t3), (G4, ta), - - - (1)

where, for every i > 0, (G;,t;) is a timestamped RDF graph and t; < t;,;.
The following stream S is compliant with the above model:

S:(Gla Z)a (G274)7 (G3,6), (G4a 8)5 (GSa 10)a ERE)

where each G; contains the depicted RDF triples in .
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Fig. 2. An example of time annotated graphs on an RDF Stream.

This model can be serialized using current standards for RDF representation,
as depicted in Listing 1. The listing shows a JSON-LD representation of a
timestamped graph,annotated using the PROV generatedAtTime property. In
this case the graph contents include the graph Gy of Figure 2.

{"prov:generatedAtTime": "2015-06-30T04:00:00.000Z",
"@id": "wesp:G2",
"@graph": [
{ "eid": "wesp:a2",
"wesp:p": {"@id":"wesp:b2"}
1,
"Qcontext": {
"prov": "http://www.w3.org/ns/prov#",
"wesp": "http://streamreasoning.org/wesp/"

Listing 1. Example of a timestamped graph represented using JSON-LD.

In the remaining of this contribution, we consider this model where the time
annotation is represented by one time instant. The choice is without loss of
generality, since WeSP can be used to exchange other types of streams.

3.2 Communication protocol

WeSP defines two interfaces, namely producer and consumer. As the names
suggest, the former is implemented by actors that distribute streams across
the Web, while the latter is implemented by actors who want to receive
streams.

Every actor involved in the processing may implement either interface, as
well as both of them. This leads us to the following nomenclature. A stream
source implements the producer interface only. Services exposing sensors data
on the Web and TripleWave [18] are examples of stream sources. Similarly, a
stream sink implements the consumer interface only, e.g. a dashboard
visualising information for the final user. Finally, a stream transformer
implements both the interfaces: it gets as input a stream and outputs another
stream, e.g. a stream processor or a stream reasoner.
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The principal responsibility of the producers is to make streaming data
accessible. It is done by exposing Stream Descriptors, i.e. metadata about the
streams. Examples of Stream Descriptor contents are the creator, the adopted
vocabulary and statistical information about the stream. However, the most
relevant data the Stream Descriptor brings is about how to effectively access
the stream content. We detail the stream descriptor in Section 3.3. In the
following, we describe how the producer/consumer communication develops.

: Producer !
c Stream Descriptor RDF Stream
onsumer Endpoint Endpoint
T ! [
| k |
i Get service descriptor (SD) | !
| : :
SD ; |
|
Process E i
SD I |
i Subscribe to stream i g
! I |
i Stream item i
Process : |
Stream : Stream item i
. ! Stream item :
: i |
[ 1
| 1

Fig. 4. Protocol to establish the communication between the producer and
the consumer interfaces

The communication relies on two phases, depicted in Figure 3, and it starts on
the consumer side (as in typical push-based communication). The consumer
only needs to be aware of the IRI of the Stream Descriptor, e.g. the user
provides it as an instruction to the constructor. This is what is needed for the
first phase, where the consumer accesses the Stream Descriptor IRI (as in
Figure 3) through an HTTP request, following the Linked Data principles.

In the second phase, the consumer starts to receive the stream (as in Figure
3). The Service Descriptor brings information about how to access the
effective stream content. That means, it describes one or more ways to
establish the connection between the consumer and the endpoint that is
providing the stream content. This connection can happen with different
protocols, based on push mechanisms. e.g. WebSocket and MQTT, as well as
based on pull mechanisms, e.g. HT'TP. Among the several options offered by
the producer through the Service Descriptor, consumers choose the way they
prefer. After the decision, the consumer can start to receive the stream
content and to process it.
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The choice to allow several channels to distribute the streams gives the
freedom to adopt several channels to exchange the streams, relying on
different technologies based on requirements of the specific scenario.

3.3 Stream Descriptor

The Stream Descriptor is an RDF document providing metadata of the RDF
stream that is used by a consumer for bootstrapping its stream consuming
process. Realizing that an RDF stream is similar to an RDF dataset, we
extend the DCAT vocabulary to represent an RDF Stream as illustrated in
Figure 4 (and available here).

The class RDFStream extends dcat:DataSet to inherit all properties of a
RDF dataset, and it also offers properties specific to a stream, such as
streamrate and streamTemplate. The streamTemplate property can be used to
point to a document that specifies the template or the constraint of the RDF
stream, for instance, the template can be an RDF constraint document
described using SHACL. The template can be used as a hint of the data shape
of the RDF stream for the consumer to optimize its processing. It also plays
the role as a validation rule for consumer to verify if the incoming data is
conformed with the template.

sd:Service

dcat:DataSet

+det:modified

+ det:acctualPeriodicity

dcat:Distribution

+ sd:feature: Feature

+ sd:entailmentRegime

+ deal: landingPage + sd: extentionFuction

N +sd:supportedLanguage
Extends
Extends Extends
I RSPService
RDFStream RDFStreamPublisher + ngine:type

+ streamrate: int 4
+ protocol: type

+ field: type
-
+ field: type
‘ + queryService: RSPService

+ streamTemplate: URI

decat:distribution; deat:aceessURL
+ deat:distribution: URI

Fig. 5. Description of RDF Stream

Note that an RDF stream can be distributed via different stream channels
using different protocols, like HTTP and Websocket. Therefore, a stream
channel is an instance of the RDFStreamPublisher class which is linked to the
RDFStream class via the property dcat:distribution. The RDFStreamPublisher
is used to specify the protocol and the URL whereby the consumer can tap
into to receive the stream. Also, RDFStreamPublisher is a subclass of the
dcat:Distribution class which has several properties for the consumer to
configure its parsers such as dcat:mediaType and dcat:format. An
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RDFStreamPublisher might provide a continuous query service which is
specified by the RSPService class extended from the sd:Service defined by
SPARQL 1.1 Service description.

{"@context": {
"wesp": "http://streamreasoning.org/wesp/",
"generatedAt": {
"@id": "http://www.w3.org/ns/provi#generatedAtTime",
"Q@type": "http://www.w3.org/2001/XMLSchema#dateTime"
}
}’
"@type": "wsd:RDFStream",
"dcat:accessURL": "ws://localhost/streams/S",
"wsd:streamTemplate": {"@id":"http://purl.oclc.org/NET/ssnx/ssn"},
"wsd:shacl": {
"@list": [
{
"generatedAt": "2015-06-30T02:00:00.000Z",
"@id": "wesp:G1"
e
"generatedAt": "2015-06-30T04:00:00.000Z",
"@id": "wesp:G2"
L
"generatedAt": "2015-06-30T06:00:00.000Z",
"@id": "wesp:G3"
}
]
}’
"sld:lastUpdated": "2015-06-30T06:00:00.000Z"
}

Listing 2. The Stream Descriptor associated to the stream in Figure 2.

4 Implementation and examples

In this section, we describe three implementations of WeSP. The first is a
stream source, the others are stream transformers. They are built on top of
existing frameworks, TripleWave and C-SPARQL [5] and CQELS [16]. All the
related code is open source under Apache 2.0 Licence and is available online.

4.1 Stream source example: TripleWave

TripleWave [18] is a framework to create and expose RDF streams according
to the producer interface described above. Triplewave can be fed with different
input, such as non-RDF Web streams or RDF data containing temporal
annotations.
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In the former case, TripleWave lifts existing Web streams as RDF streams,
such as the Wikipedia update stream and Twitter stream. The operation is
enabled through R2RML transformations [9], that map relational to RDF
data. The lifting operation enables the interoperability among the WeSP
actors, addressing R6.

In the latter case, TripleWave streams out data stored in a repository. This
mode is useful for benchmarking as well as experimental runs, where data has
to be streamed multiple times across the network. Precondition to this mode
is the existence of time information associated to the repository content:
TripleWave uses them to compute the correct intervals between consecutive
events and set delays accordingly.

TripleWave has been extended to natively support WeSP, as it implements
the producer interface. It can spread the streams through WebSocket, MQTT
and HTTP chunked encoding. Support for Server-Sent Events (SSE) will be
released soon. This offers to consumers a wide choice on the protocol to be
used to receive the data, according to the use case requirements and on the
system needs. The endpoints related to the protocols, as well as the required
information to access them, are described in RDF and embed in the Stream
Descriptor, exposed on an HTTP address. The code and the instructions are
available at the project page.

4.2 Stream transformer example: C-SPARQL and CQELS

It is possible to create WeSP actors out of existing stream processors by
introducing adapters. We depict this possibility by presenting the cases of C-
SPARQL [5] and CQELS [16], two engines able to processing streams through
continuous query languages based on SPARQL [14].

These engines offer programmatic APIs to manage the communication, i.e.
(i) declare RDF streams, (ii) push the stream items into the declared RDF
Streams, (iii) register the query, (iv) register listeners to obtain and manage
query results. The WeSP adapter should implement the producer and
consumer interfaces according to such APIs.

The implementation of the consumer interface in the adapter should enable
the connection to a stream source or transformer, according to the protocol
described above. Given the nature of such engines, the control of the engine
should happen in a query-driven way. That means, when a new query is
registered, the engine should establish the connections for the streams needed
to evaluate the query. The main problem is related to the discovery of the
streams: how to let the engine know where the streams are? The solution we
propose is based on the following consideration: both the languages adopted
by the engines (respectively C-SPARQL and CQELS-QL) offer the possibility
to declare the stream through a IRI. If such IRI denotes a Stream Descriptor
address, engines would have the information they need to establish the
connection.
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Similarly to the consumption, the stream production is query driven. RSP
engines stream out the query results and make it available to other agents
(e.g. users, other engines, etc.). The WeSP adapter implements the producer
interface as follows. For each query that is registered in the engine, the
adapter performs two actions. First, it creates a Stream Descriptor and
exposes it at an HTTP address. Second, it registers a listener to manage the
answers. The current implementation provides the listeners for MQTT and
WebSocket. The first forwards the results to a MQTT broker, while the latter
sends the result to an internal component that manages the ongoing
connections. In this way, several actors may access the results of the same
query.

The code for C-SPARQL is available on GitHub. The library embeds the C-
SPARQL engine in a Java class that implements the consumer and producer
interfaces. The result is transparent, in the sense that the new main class
exposes the same methods of the C-SPARQL original one. In this way, no
additional effort is put on the user side, which can benefit of WeSP without
learning to use new APIs.

The code for CQELS is available in the official CQELS repository. In this
case, we opted for the integration of the WeSP interface directly in the main
project. The current version supports the data stream exchange via
WebSocket, but we plan to integrate other protocols as future work.

5 Related Work

RSP (RDF Stream Processing) engines emerged in recent years, with the goal
of extending RDF and SPARQL to process RDF streams. They can be
broadly divided into two groups. The first is of those influenced by Complex
Event Processing (CEP), e.g. EP-SPARQL [1], Sparkwave [15] and Instans
[19]. the second group is that of engines inspired by DSMS, which exploit
sliding window mechanisms to capture a finite portion of the input data.
Examples include C-SPARQL [5], CQELS [16], and SPARQLgtyeam [8]. While
these engines provide querying features, they generally lack the means to
publish or reuse RDF data streams on the Web. Instead, they assume ad-hoc
connection to RDF streams without any protocol of communication.

An inital effort targeting communication and interchange among RSP
engines, named RSP Services, was proposed in [3]. The goal of this project is
to enable remote control of RSP engines, which is achieved by introducing
REST APIs that exposes the programmatic APIs of the RSP engines, and by
Web Socket channels to connect engines. So far, an implementation for C-
SPARQL exists. This project has limitations given the heterogeneity and
difficulty of handling the engines in a uniform manner: not all the engines
work based on queries, so it may not be enough to cover a wider range of RDF
stream processing engines, such as stream reasoners. WeSP targets the



https://github.com/dellaglio/csparql-wesp
https://github.com/cqels/CQELS-1.x/
https://github.com/streamreasoning/rsp-services-csparql

problem of exhanging RDF streams between engines, not only query engines;
it supports a wider range of communication protocols and a richer description
of the stream (through the stream descriptor).

Regarding the publication of streams on the Web using RDF technologies,
we can mention [13, 24], which proposes the generation of RDF datasets out of
unstructured streams. Other works focused on the usage of Linked Data
principles for publishing streams [4,17], although they did not provide any
further communication or interchange protocol beyond the standard principles
used in static and stored data.

The stream publishing implementation of WeSP relies on TripleWave [18], a
generic and RDF stream-oriented publication system tailored for the Web. It
goes beyond previous works, providing a generic framework for RDF stream
provision, including ingestion of non-RDF sources and time-annotated RDF
datasets. TripleWave introduced the notion of stream descriptor. As explained
in Section 4, in the context of this study we extended TripleWave with a new
stream descriptor vocabulary and extension to new communication protocols
such as MQTT.

The work of the W3C RDF Stream Processing Community Group (RSP-
CG) provides a starting point towards a common model for representing,
querying and exchanging RDF stream data. However, given the scope of the
group, the published reports on Requirements and Design Principles, as well
as the Abstract model, do not propose a concrete set of interfaces and
serialization formats for enabling interchange and interoperability. In WeSP we
take into consideration the abstract model and guidelines of the RSP-CG,
taking it to the implementation level. Another related specification, the Linked
Data Notifications (LDN) recommendation of W3C, targets a very generic
scenario of Linked Data senders, receivers and consumers. While this
specification is too generic for the streaming data requirements presented in
Section 2, it might be worth to explore commonalities between LDN and this
work.

Finally, outside of the RDF and Semantic Web technologies, different
technologies and protocols have been developed for supporting data stream
communication and exchange, often linked to the Internet of Things. Protocols
include MQTT, WebSockets, or streaming HTTP-based solutions such as SSE
(Server-Sent Events). In this work, these different options can be encapsulated
under a higher-level protocol, allowing the co-existence of different underlying
technologies.

6 Conclusions

In this contribution, we presented WeSP, a framework to exchange RDF
streams. WeSP moves a step towards the realization of an eco-system of Web
stream engines, where engine has a broad meaning and can refer to stream
sources, visualisers, continuous query systems and stream reasoners. In future


http://streamreasoning.github.io/TripleWave/
https://w3id.org/rsp/requirements
https://w3id.org/rsp/abstract-syntax
https://www.w3.org/TR/ldn/

work we we aim at continuing the development of WeSP. In particular, we are
interested in studying the relation with other studies, such as [23], LDN and
Activity Streams, adopting and integrating them when possible.

We designed WeSP based on a set of requirements elicited from literature
and real use cases, and as a result, it builds on existing technologies and
recommendations, such as RDF, WebSocket and MQTT. We have shown the
feasibility of the approach by presenting concrete implementations, available
as open source projects. We believe that a wide availability of Web stream
engines can enable research in future interesting work directions, such as
federated query processing or, more in general, federated stream processing
over the Web.
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