
Managing Model and Meta-Model Components
with Export and Import Interfaces

Daniel Strüber, Stefan Jurack, Tim Schäfer, Stefan Schulz, Gabriele Taentzer

Philipps-Universität Marburg, Germany,
{strueber,sjurack,timschaefer,schulzs,taentzer}

@informatik.uni-marburg.de

Abstract. When developing software in distributed teams, the maintenance and
comprehension of models require an adequate modularization concept. Existing
approaches that support the modularization of models over distributed resources
demand a compile-time or load-time integration step of uniting the involved mod-
ules to form one big model. In our earlier work, we have proposed composite
models, a component-oriented modularization approach for models that facili-
tates fundamental engineering principles such as encapsulation, decoupling, and
information hiding at the model level as well as the meta-model level. In this
paper, we present an implementation of composite models. Our implementation
comprises a tool set of wizards and editor extensions based on the Eclipse Mod-
eling Framework. We demonstrate our tool set in the use-case scenario of devel-
oping a data-oriented applications in a model-driven manner.

Keywords: composite models, model modularization, distributed modeling, EMF

1 Introduction

Model-Driven Engineering (MDE) is now a common practice in many software do-
mains. As requirements grow in size and complexity, so do the resulting models, lead-
ing to a need for appropriate modularization facilities to support maintainability and
comprehension [9]. The notion of modular modeling is inspired by that of modular pro-
gramming as introduced in the seminal paper by David Parnas [10]. The key properties
of modular programming are: (i) the identification and separation of distinct concerns
that are distributed over a set of modules and (ii) the identification of interfaces estab-
lishing encapsulation and restricting visibility between modules.

In the MDE community, Eclipse Modeling Framework (EMF) [13] is a widely used
base technology. In EMF, a separation of concerns can be established by distributing
information over a set of related models. Consider the left part of Fig. 1 for a pair of
data models from operational systems for a tourism agency and an airline. The tourism
agency model contains a travel assigned to a flight from the airline model. The dashed
arrow denotes a remote reference: When the travel agency system loads the model, the
flight is represented as a proxy object. In the case of data accesses on the flight, the flight
model is loaded and added to the memory representation of travel model (right part).
All model contents, including critical data such as flight logs and pilots, become visible.



Fig. 1: Related models in EMF: before and after proxy resolution.

Fig. 2: Two model components with export and import interfaces.

This example highlights a security issue related to the remote reference mechanism.
Other affected concerns include performance, analyzability, and collaborative work:
During queries and transformations, considering a large model set in union may be in-
efficient. Checking static properties of the individual models is prohibited unless certain
restrictions are imposed [1], since models are not self-contained units. A main issue dur-
ing collaboration is proneness to inconsistencies. As an example, consider a situation
where a developer deletes a model element from their model, unaware that this element
is referred to from another model. This deletion results in a broken model reference.

A modularization technique addressing theses issues is provided by composite mod-
els [6,17]. A composite model is a set of components where each component comprises
a model with a set of export and import interfaces. Export and import interfaces declare
subsets of model elements offered to and obtained from the environment. In Fig. 2, the
travel agency has an import interface; the airline component has an export interface.
Each model element in the import interface is mapped to a corresponding export ele-
ment (dotted lines). In comparison to Fig. 1, the travel agency component now maintains
the flight and its assigned airports as autonomous, but distinguished objects. We refer to
these objects as delegate objects. Similar to a proxy, a delegate object represents an ob-
ject stored somewhere else. But despite reflecting some of the remote object’s features,
a delegate object has an own identity. Consequently, as shown in our earlier work [17],
components are self-contained units amenable to analysis and collaborative editing.

In this paper, we introduce a basic tool set that makes composite modeling avail-
able to model and meta-model developers. The tool set provides an implementation of
composite models that is generic (i.e., applicable to any EMF-based host language) and
transparent (i.e., allows reusing existing meta-models).



2 A core tool set for composite models

Meta-
models

Meta-model
components

Model
components

Model queries, 
transformations

are extended
with interfaces

to become

are edited

are applied
to

1

2

4

Wizards

Meta-
model
editor

Model editorTransformation tool

are edited

3

conform to

Fig. 3: Overview.

We give an overview of our tool set
and its supported features in Fig. 3.
As a starting point, we assume a set
of meta-models used to describe re
lated domains in a MDE scenario.
These meta-models are turned into
meta-model components by extend-
ing them with export and import in-
terfaces (step 1). The resulting com-
ponents can be subject to additional
editing (step 2). Once their develop-
ment converges, the meta-model components are instantiated by model components
with export and import interfaces (step 3). These components can be queried and trans-
formed in the same manner as regular models in typical MDE scenarios (step 4).

Consider the two application meta-models for travel agency and an airline operative
systems shown in Fig. 4. While sharing the classes Flight and Airport, the specifi-
cation differs in the level of detail: The airline meta-model specifies subclasses for the
charter and scheduled flight cases as well as additional attributes for the airport class.
In our approach, we address such mismatch situations by allowing the exporting and
importing of individual features as well as the flattening of generalizations.

(1) Extend meta-models. We provide a set of wizards to introduce export and im-
port interfaces in a set of meta-models. Export and import interfaces specify model parts
provided to and obtained from the environment. Each element contained in an import
interface refers to an exported element in another component. Interfaces of meta-model
components specify potential export-import relations between model components.

Our wizards, shown in Fig. 5, allow the specification of a set of classes and features
from the input model. A selection of classes and features to be exported or imported
is specified using check-boxes. In the case of import interfaces, corresponding classes
from an export interface have to be selected. This mapping from import to export classes
can be set using either drag and drop functionality or buttons.

(2) Edit meta-model components. The meta-model components can be edited us-
ing an extension of EMF’s meta-model editor, excerpts being shown in Fig. 6. The
assignment of classes, references, and attributes to interfaces is highlighted visually,

TravelAgency Airline

TravelAgency
name : EString

Travel
start : EDate

Flight
flightNumber : EInt
departure : EDate
arrival : EDate

Hotel
name : EString
address : EString

Airport
name : EString

travels
0..*

hotels0..*

airports

0..*

flights 0..*

return

1

stay

0..1

outbound

1

from1 to1

Airline
name : EString

Flight
flightNo : EInt

Airport
name : EString
location : EString
runwayCount : EInt

CharterFlight
departure : EDate
arrival : EDate

start
1

dest
1

airports

0..*

flights

0..*

weeklyDeparture : EDate
weeklyArrival : EDate

ScheduledFlight

Fig. 4: TravelAgency and Airline meta-models.



Fig. 5: Export and import creation wizards

Fig. 6: Visualizing interfaces in the EcoreTools meta-model editor.

using a view on top of the default editor. In addition, the editor provides dedicated
functionality for the manipulation of interfaces, e.g., the (re)assigning of elements or
the creation of new additional interfaces from a selection of elements.

(3) Instantiate models. The meta-models can now be instantiated. Export and im-
port relations between models can be edited using an extension of the generic tree-based
model editor (not shown). To edit the interfaces between models visually, in the style
of Fig. 2, a customization of the involved editors is required. In our ongoing work, we
are developing a generic framework that allows to reduce this overhead for editor cus-
tomization. A key prerequisite for such a framework is the view management provided
by Sirius, a concept we harnessed to develop our meta-model editor extension.

(4) Apply queries and transformations. Existing model query and transformation
tools do not provide dedicated support for interfaces. Therefore, queries and transfor-
mations cannot consider the export-import relations between models. To support sup-
port these tasks, we provide a dedicated model transformation tool on top of Henshin,
a graph-based model transformation language for EMF models. The tool comprises a
visual editor (not shown) for the specification of composite transformation rules [7] that
can be applied to a set of model components.



3 Related work

Several works have investigated information hiding at model level. A black-box model
modularization approach based on the fragmentation of a meta-model along some of its
associations, called fragmentation edges, is proposed in [8]. The authors distinguish two
types of modularization artifacts: modules as self-contained units and fragments as frag-
mentary units that contain fragmentation edges. Fragments and modules are brought to
life in an obligatory weaving phase. The approach by Heidenreich et al. [5] comprises a
component model and a composition language. The component model describes com-
ponents with explicit export and import interfaces. The language gives a syntax for
expressing interfaces and composition steps. The key distinction between these works
and ours is that they assume a composition or integration step, whereas in our approach
imported elements are self-contained objects that, supported by a delegation technique,
reflect the features of remote objects. Amálio et al. [1] provide a modularization ap-
proach based on model fragments being related through proxy nodes, a mechanism
emulating the one provided by EMF. Certain global properties of a modularized model
can be checked locally, assuming that suitable constraints are met.

Several works provide interfaces at the meta-model level to improve the develop-
ment of meta-models [18,19]. These works do not address the model level explicitly.
Conversely, another class of approaches is based on defining interfaces for one particu-
lar domain-specific language, e.g., service specifications in the case of [2].

Separation of concerns at model level has been addressed by a line of work on the
splitting of a large model into multiple parts. Garmendia et al. [3] propose a tool to
introduce a package structure in a large model based on annotations in the meta-model.
This tool has been used in a process aimed at the exploration of large models [4]. Schei-
dgen et al. [11,12] provide a technique and tool for the fragmentation of large models
for faster persistence and loading. The technique is based on annotating fragmentation
points in the underlying meta-model. In our own work, we have applied standard clus-
tering techniques to optimize for high cohesion during splitting [14]. We have used
information retrieval techniques to extract the user intention during splitting from text
documents, such as requirements specifications or the project documentation [15,16].

4 Conclusion

In this paper, we propose a tool set that facilitates the modularization of meta-models
and models. By allowing to augment a set of meta-models and models with export and
import interfaces, the tool set provides support for the separation of concerns and in-
formation hiding principles at meta-model and model level. The distinguishing feature
of our approach is that it allows to maintain components as self-contained units: Model
elements imported from another model are managed as distinct model elements with
their own identity. This approach establishes a loose coupling between components,
facilitating developer independence during collaborative editing, local static analysis,
and efficient transformations. The tool set comprises dedicated wizards plus a set of
extensions of existing an visual meta-model editor, a generic tree-based model edi-
tor, and a model transformation tool. We provide these tools online at http://www.
informatik.uni-marburg.de/˜swt/compoemf/.

http://www.informatik.uni-marburg.de/~swt/compoemf/
http://www.informatik.uni-marburg.de/~swt/compoemf/


References

1. Amálio, N., de Lara, J., Guerra, E.: Fragmenta: A theory of fragmentation for MDE. In: Int.
Conf. on Model Driven Engineering, Languages and Systems. pp. 106–115. IEEE (2015)

2. Arifulina, S., Mohr, F., Engels, G., Platenius, M.C., Schafer, W.: Market-specific service
compositions: Specification and matching. In: Services (SERVICES), 2015 IEEE World
Congress on. pp. 333–340. IEEE (2015)

3. Garmendia, A., Guerra, E., Kolovos, D.S., de Lara, J.: Emf splitter: A structured approach to
emf modularity. Workshop on Extreme Modeling pp. 22–31 (2014)

4. Garmendia, A., Jiménez-Pastor, A., de Lara, J.: Scalable model exploration through abstrac-
tion and fragmentation strategies p. 21 (2015)

5. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-Independent Model
Modularisation. T. Aspect-Oriented Software Development VI pp. 39–82 (2009)

6. Jurack, S., Taentzer, G.: Towards Composite Model Transformations Using Distributed
Graph Transformation Concepts. In: Schürr, A., Selic, B. (eds.) Int. Conf. on Model Driven
Engineering Languages and Systems. pp. 226–240. Springer (2009)

7. Jurack, S., Taentzer, G.: Transformation of typed composite graphs with inheritance and
containment structures. Fundam. Inform. 118(1-2), 97–134 (2012)

8. Kelsen, P., Ma, Q.: A Modular Model Composition Technique. In: Int. Conf. on Fundamental
Approaches to Software Engineering. pp. 173–187. Springer (2010)

9. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara,
J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A research roadmap towards achieving scalability
in model driven engineering. In: BigMDE Workshop on Scalability in Model Driven Engi-
neering. p. 2. ACM (2013)

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 1053–1058 (December 1972)

11. Scheidgen, M.: Reference representation techniques for large models. In: BigMDE Work-
shop on Scalability in Model Driven Engineering. p. 5. ACM (2013)

12. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and transparent model frag-
mentation for persisting large models. In: Int. Conf. on Model Driven Engineering Languages
and Systems. pp. 102–118. Springer (2012)

13. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework.
Pearson Education (2008)

14. Strüber, D., Lukaszczyk, M., Taentzer, G.: Tool support for model splitting using information
retrieval and model crawling techniques. In: BigMDE Workshop on Scalability in Model
Driven Engineering. pp. 44–47. Citeseer (2014)

15. Strüber, D., Rubin, J., Taentzer, G., Chechik, M.: Splitting models using information retrieval
and model crawling techniques. In: Int. Conf. on Fundamental Approaches to Software En-
gineering, pp. 47–62. Springer (2014)

16. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering large meta-models. In: Big-
MDE Workshop on Scalability in Model Driven Engineering. p. 7. ACM (2013)

17. Strüber, D., Taentzer, G., Jurack, S., Schäfer, T.: Towards a distributed modeling process
based on composite models. In: Int. Conf. of Fundamental Approaches to Software Engi-
neering, pp. 6–20. Springer (2013)

18. Weisemöller, I., Schürr, A.: Formal definition of mof 2.0 metamodel components and compo-
sition. In: Model Driven Engineering Languages and Systems, pp. 386–400. Springer (2008)

19. Živković, S., Karagiannis, D.: Towards metamodelling-in-the-large: Interface-based compo-
sition for modular metamodel development. In: Enterprise, Business-Process and Informa-
tion Systems Modeling, pp. 413–428. Springer (2015)


	Managing Model and Meta-Model Components with Export and Import Interfaces

